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Abstract
The primary analysis of Alzheimer’s disease clinical trials often involves a mixed-model repeated
measure (MMRM) approach. We consider another estimator of the average treatment effect, called
targeted minimum loss based estimation (TMLE). This estimator is more robust to violations of
assumptions about missing data than MMRM. We compare TMLE versus MMRM by analyzing
data from a completed Alzheimer’s disease trial data set and by simulation studies. The simulations
involved different missing data distributions, where loss to followup at a given visit could depend
on baseline variables, treatment assignment, and the outcome measured at previous visits. The
TMLE generally has improved robustness in our simulated settings, i.e., less bias and mean squared
error, and better confidence interval coverage probability. The robustness is due to the TMLE
correctly modeling the dropout distribution. We illustrate the tradeoffs between these estimators
and give recommendations for how to use these estimators in practice.

1 Introduction
In Alzheimer’s disease clinical trials, the mixed-model repeated measure (MMRM) approach is
often used in the primary analysis (Chen et al., 2018). This method for estimating the average
treatment effect adjusts for potential bias due to patient dropout by leveraging information in base-
line variables and longitudinal measurements of the primary outcome. (van der Laan and Gruber,
2012) developed another statistical method for achieving this goal, called targeted minimum loss
based estimation (TMLE).

We assess the performance of TMLE in estimating the average treatment effect in the setting
of randomized clinical trials of individuals with mild cognitive impairment. TMLE has theoreti-
cal advantages over more commonly used estimation methods such as MMRM, including greater
robustness to model misspecification. This estimator has not been compared head-to-head versus
commonly used estimation methods in clinical trials of treatments for mild cognitive impairment.
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In Section 2, we compare TMLE versus MMRM in analyzing data from a completed phase 3
trial of vitamin E and donepezil (Petersen et al., 2005). Implementation of the TMLE estimator is
presented in Section 3. We conduct simulation studies using distributions that mimic key features
from the completed trial in Section 4.

2 Data Analysis Using Completed Phase 3 Trial
We reanalyzed data from the completed phase 3 randomized trial of vitamin E and donepezil for
treating mild cognitive impairment (Petersen et al., 2005). We refer to this trial as the donepezil
MCI trial and we focus on the following two arms of the trial: 10mg of donepezil daily (treatment)
versus placebo (control).

We focus on the Clinical Dementia Rating scale sum of boxes (CDRSB), which was measured
at baseline and then every 6 months up to 18 months. We define our primary outcome to be the
difference between CDRSB measured at 18 months and baseline. (This was a secondary outcome
in the trial, but is important since it is the primary outcome for other, ongoing trials.) The average
treatment effect of interest is the difference in the primary outcome comparing assignment to the
donepezil arm versus placebo. The estimators described below are defined in later sections, but we
wanted to first present results to show how these methods compare in the data analysis.

The unadjusted estimate (difference between sample means comparing treatment versus control
for those who completed the 18 months of follow-up) of the treatment effect is -0.19 (standard error
(se): 0.16, 95% Confidence Interval (CI): -0.51 to 0.11). When applying MMRM that adjusts for
baseline CDRSB and CDRSB over time using longitudinal data on all participants, the estimated
treatment effect is -0.19 (se: 0.15, 95% CI: -0.49 to 0.10), providing a 5% reduction in the width
of the 95% confidence interval compared to the unadjusted estimator.

We next consider estimators that adjust for more baseline variables than just CDRSB. The
study measured a set of potentially prognostic baseline (i.e., measured before randomization)
variables including: age, gender, APOE4 carrier status, Alzheimer’s Disease Assessment Scale
(ADAS) cognitive score, Mini Mental State Exam (MMSE) score, Activities of Daily Living Scale
(ADLS) score, and the Global Deterioration Scale (GDS) score. Including this additional set of
baseline variables in the MMRM model, the estimated treatment effect was -0.20 (se: 0.14, 95%
CI: -0.48, 0.07). The targeted minimum loss based estimator (TMLE) using the same set of base-
line variables produced an estimate of -0.20 (se: 0.14, 95% CI: -0.50 to 0.06). The MMRM and
TMLE results are very similar to each other when applied to the donepezil MCI trial. The added
value of the TMLE estimator, i.e., more robustness to model assumption violations, will be demon-
strated in simulation studies in Section 4.

We next compare the impact of adjusting for the larger set of baseline variables (as in the
previous paragraph) compared to adjusting only for baseline CDRSB (as done two paragraphs
above). Adjusting for the larger set of prognostic variables using either MMRM or TMLE led to an
approximately 23% smaller variance compared to the unadjusted estimator. When adjusting only
for baseline CDRSB, the variance reduction was approximately 9%. These variance reductions
are equivalent to the reductions in the required sample size to achieve a desired power, when using
the adjusted versus unadjusted estimators. (Adjusted estimators, such as MMRM and TMLE, are
those that adjust for baseline and/or post-randomization variables.)
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Table 1: Results of applying 4 estimators of the average treatment effect to the data from the
donepezil MCI trial of Petersen et al. (2005). The average treatment effect is defined as the dif-
ference in the population mean change in CDRSB between baseline and 18-months comparing
assignment to treatment versus control. The results include the estimate, 95% BCa bootstrap con-
fidence interval (CI), estimator variance, and variance reduction (i.e., 1 minus the variance ratio
comparing each estimator (numerator) to the unadjusted estimator (denominator)). “Baseline only”
indicates that estimator adjusts for only the baseline CDRSB whereas “Baseline +” includes ad-
justment for the additional prognostic baseline variables described in Section 2.

Variance
Estimator Estimate 95% BCa CI Variance Reduction
Unadjusted -0.19 -0.51 to 0.11 0.024 0
MMRM, baseline only -0.19 -0.49 to 0.10 0.022 9%
MMRM, baseline + -0.20 -0.48 to 0.07 0.019 23%
TMLE, baseline + -0.20 -0.50 to 0.06 0.019 23%

3 Estimator Definitions

3.1 Overview
Consider a randomized trial where participants have measurements recorded at baseline,K interim
visits, and then a final visit. The following variables are measured on each participant (if he/she
completes the trial): L0, A, L1, L2, . . . , LK , LK+1, where L0 is a vector of baseline variables, A is
the study arm (A = 0 for control and A = 1 for treatment), L1, . . . , LK are variables based on
measurements at visits 1, . . . , K after enrollment, respectively, and LK+1 is the primary outcome
measured at the final visit K + 1. In the donepezil MCI trial, K = 2 and L1, L2, and L3 represent
the change in CDRSB from baseline to 6-, 12- and 18-months of follow-up, respectively.

Each participant may be censored due to loss to follow-up (dropout). Let Rt be the indicator
variable that the participant attends the next visit, i.e., the visit at time t+1. That is, Rt = 1 if Lt+1

is observed, and Rt = 0 otherwise. We assume monotone censoring (i.e., right censoring), that is,
ifRt = 0 thenRt+1 = 0. We make the missing at random assumption, that is, participant dropout is
independent of the primary outcome conditioned on the observed data at all visits before dropout.
We assume that the baseline variable vector L0 is independent of the study arm assignment A,
which holds by design since study arm assignment is randomized.

We code each participant’s data vector as

V = (L0, A,R0, L1, R1, L2, . . . , RK−1, LK , RK , LK+1). (1)

Each variable Lt has value NA if the corresponding Rt−1 = 0 (i.e., if Lt is censored). By conven-
tion, define R−1 = 1; this is important below, in iteration t = 0 of step 2 of the TMLE. We use the
notation L̄k = (L0, L1, . . . , Lk) to denote the history up to time k. Each participant’s data vector
is assumed to be an independent, identically distributed draw from an unknown joint distribution
on V .

The goal is to estimate the average treatment effect θ = E(LK+1|A = 1)− E(LK+1|A = 0).
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3.2 Mixed Model for Repeated Measures Estimator
A commonly used estimator of the average treatment effect is based on the mixed model for re-
peated measures (MMRM) approach. The MMRM approach specifies a longitudinal linear model
for the vector of outcomes L1,i, ..., LK+1,i for participant i = 1, ..., N as Lt,i = µt,i + εt,i for
t = 1, ..., K + 1 where

µt,i = E(Lt,i|Ai, L0,i) = θ1+
K+1∑
j=2

θjI(t = j)+α1×I(Ai = 1)+
K+1∑
j=2

αjI(t = j)×I(Ai = 1)+γBL0,i

and εt,i ∼ N(0, σ2
t ) with Corr(εt,i, εt′,i) = ρt,t′ for t 6= t′. The indicator function, I(x), is de-

fined as 1 if x is true and 0 otherwise. When L0 is a vector of baseline variables, then γB is the
corresponding vector of regression coefficients.

The MMRM estimator of the average treatment effect is the maximum likelihood estimator of
α1 + αK+1 using the participants data vector (1).

3.3 Targeted Minimum Loss Based Estimator
We define an estimator Ê(LK+1|A = a) of E(LK+1|A = a) for each arm a ∈ {0, 1}. The final
estimator of the average treatment effect is Ê(LK+1|A = 1) − Ê(LK+1|A = 0). The estimator is
a special case of the sequential regression targeted minimum loss based estimator from (van der
Laan and Gruber, 2012, Section 3.6, last paragraph).

Step 1 Fit logistic regression models for the probability of attending a given visit conditioned
on the observed history prior to that visit (restricting to those who attended the previous visit). For
each t = 0, . . . , K, fit a logistic regression model

P (Rt = 1|L̄t, A,Rt−1 = 1) = πt(L̄t, A,γ
(t)),

using all participants with Rt−1 = 1, where γ(t) is a vector of coefficients (which can differ ar-
bitrarily for each t = 0, . . . , K). This can be done in R using glm with the argument subset
set to only use those with Rt−1 = 1. For example, one could use the logistic regression model
πt(L̄t, A,γ

(t)) = logit−1(γ
(t)
0 + γ

(t)
1 A + γ

(t)
2 L0 + · · · + γ

(t)
t+2Lt). Another option is to include

interaction terms with A as well. Any terms can be included (or not included) that are func-
tions of the vector L̄t, A. Denote the fit coefficients by γ̂(t). Also, fit a logistic regression model
P (A = 1|L0) = q(L0, η); for each a ∈ {0, 1}, define qa(L0) = q(L0, η̂)a{1− q(L0, η̂)}1−a.

Step 2 involves a sequence of regression model fits, whose purpose at iteration t is to construct
a new variable Yt. We iterate backwards from t = K + 1, K, . . . , 1, 0.

Iteration K + 1 consists of defining YK+1 = LK+1 for all participants with RK = 1 (i.e., for
all participants who are uncensored at the final visit). That is, add a new column YK+1 to the data
set, and set YK+1 ← LK+1 for each participant with RK = 1; set YK+1 ← NA otherwise.

Loop over t = K,K − 1, . . . , 1, 0, where at each iteration t we construct new variables Wt, Yt
by doing the following steps:

1. For each participant with Rt = 1, construct the weight:

Wt =

{
t∏

t′=0

πt′(L̄t′ , A, γ̂
(t′))

}−1
{qA(L0)}−1 .
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This is based on the model fits from step 1. The value πt′(L̄t′ , A, γ̂
(t′)) for a participant with

Rt = 1 is computed in R by using glm.predict (type=“response”) with a newdata row
consisting of that participant’s values of L̄t′ . If the aforementioned example of a logistic
regression model from step 1 is used, then for a participant with Rt = 1, her/his value
of πt′(L̄t′ , A, γ̂

(t′)) equals logit−1(γ̂
(t′)
0 + γ̂

(t′)
1 A + γ̂

(t′)
2 L0 + · · · + γ̂

(t′)
t′+2Lt′) substituting the

participant’s values for each component of L̄t′ , A.

2. Fit a weighted regression model E(Yt+1|L̄t, Rt = 1, A) = mt(L̄t, A,β
(t)) using weightsWt,

among participants with Rt = 1; denote the fit coefficients by β̂
(t)

. This can be implemented
in R using glm with the arguments weight and subset set appropriately. [If the primary
outcome LK+1 is continuous, linear regression models are used for each mt; if the primary
outcome LK+1 is binary, then logistic regression models are used for each mt.]

3. If t > 0, construct the new covariate Yt = mt(L̄t, A, β̂
(t)

) for all participants with Rt−1 = 1.
In R you generate this by using glm.predict (type=“response”) applied to the model fit,
with a newdata row consisting of that participant’s values of L̄t, A. This should be done
for all participants with Rt−1 = 1 (not just those with Rt = 1). Intuitively, Yt represents a
prediction of the final outcome using only the measurements L̄t up through time t, for every
participant with Rt−1 = 1.

If t = 0, for each a ∈ {0, 1}, set Y0,a to be the predicted value m0(L0, a, β̂
(0)

) for every
participant (not just those with A = a).

4. Decrement t by 1 and iterate the above procedure starting at (1).

When the above loop is completed, each participant has a new variable Y0 defined.

Step 3 For each a ∈ {0, 1}, set Ê(Y |A = a) to be the sample mean of Ya,0 across all partici-
pants (including those with A 6= a).

The TMLE estimator of the average treatment effect is θ̂ = Ê(Y |A = 1)− Ê(Y |A = 0).

4 Simulation Studies Mimicking Features of Donepezil MCI
Trial

4.1 Overview
We compared the performance of MMRM, TMLE, and several other adjusted estimators by sim-
ulating randomized trials. The simulation distributions were chosen to mimic the joint distribu-
tion of the baseline variables and longitudinal outcomes from the donepezil MCI trial. Different
dropout distributions were considered in order to explore their impact on estimator bias, variance,
mean squared error, and coverage probability of the 95% BCa confidence interval based on 1000
bootstrap samples.
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We generated simulated trials with zero average treatment effect. We also generated simulated
trials with a beneficial treatment effect θ = −0.19. This value was chosen since it is the unad-
justed average treatment effect estimate from the donepezil MCI trial; specifically, at the 18-month
follow-up, the mean change in CDRSB was 0.19 units less in the donepezil arm compared to
placebo, which is in the direction of a slower decline in cognitive function among patients receiv-
ing donepezil.

4.2 Simulation Distributions Part I: Full Data Vectors Without Censoring
Each simulated trial is generated first by resampling 500 participant data vectors (with replace-
ment) from the donepezil MCI trial from those in both arms who completed the trial, i.e. not
having any missing CDRSB at the 6-, 12- and 18-month follow-up visits. By resampling patients
from the trial, the relationship between the baseline variables and outcomes observed within the
donepezil MCI trial is retained. The functional form of this relationship does not follow any simple
statistical model (such as the outcome regression models used by the MMRM and TMLE estima-
tors). We consider this an advantage of our simulation study distributions, since in practice these
models will be at least somewhat misspecified.

Next, study arm assignment A was overwritten (replaced) for each simulated participant by an
independent Bernoulli draw with probability 0.5 to receive donepezil (A = 1) vs. placebo (A = 0).
This was to ensure study arm assignment A is drawn independent of the baseline variables L0. If
we had used the original values of A from the data set, this would have induced small correlations
with L0, which violates the randomization assumption and could have distorted our findings.

The third step, described next, only applies when generating simulated trials corresponding to
the beneficial average treatment effect. For each simulated participant in the treatment arm A = 1,
her/his change in CDRSB scores at 6-, 12- and 18-months (L1, L2, L3) were decreased by 0.063,
0.127 and 0.19, respectively.

The fourth step in generating simulated trial data sets was to set patient dropout (the variables
Rk). Patient dropout was generated using one of four distributions, called scenarios. These are
described below.

For each combination of the four dropout scenarios and two average treatment effects, 10,000
trials were simulated. Each estimator was applied to each simulated data set, and their performance
was summarized across data sets under each scenario and treatment effect.

4.3 Simulation Distributions Part II: Data Vectors Incorporating Censoring
Each participant data vector in our simulated trials was first constructed as in Section 4.2, and then
censoring (dropout) was added using distributions that are summarized next.

We constructed four dropout scenarios that, similar to the donepezil MCI trial, produce roughly
30% patient dropout over the course of the 18-month follow-up. Precise specifications of the
corresponding dropout distributions are given in Appendix A. We summarize key features of these
distributions below.

Dropout scenarios A through C induce the following dropout rates over time: 16%, 8% and
7% of patients dropout out just after baseline, 6- and 12-months, respectively, which is similar to
what occurred in the donepezil MCI trial. Dropout scenario D, in contrast, has increasing dropout
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rates over time; specifically, 7%, 10% and 13% of patients dropout just after baseline, 6-, and 12-
months, respectively. These are not cumulative dropout rates; they are the probabilities of dropout
among those who have not dropped out previously.

In each of scenarios A and B, dropout is independent of study arm assignment. This type
of censoring generally leads to reduced estimator precision compared to no censoring, but does
not cause bias in estimating the average treatment effect, since any bias in the estimated mean
outcome in each arm cancels out when taking the difference between arms. In scenario A, dropout
is completely at random, i.e., independent of all components of the participant data vector. In
scenario B, dropout depends on CDRSB and ADAS cognitive score, both measured at baseline,
such that patients with higher cognitive impairment at baseline (i.e. higher scores on both scales)
are more likely to dropout.

Scenarios C and D were constructed so that dropout is dependent on the treatment arm. The
dropout rates are higher in the placebo arm. In scenarios C, dropout depends on some baseline
variables and study arm, while in scenario D it also depends on longitudinal data (CDRSB change
over time). Specifically, in scenario C, patient dropout is a function of baselineCDRSB and ADAS
cognitive score and study arm assignmentA. The dropout rates are 22%, 7% and 7% in the placebo
arm and 9%, 5% and 6% in the donepezil arm just after baseline, 6-, and 12-months, respectively.
In scenario D, dropout probability depends on longitudinal history of CDRSB and study arm A.
The resulting proportion of patients that dropout just after each follow-up visit are 6%, 15% and
21% in the placebo arm and 3%, 5% and 9% in the donepezil arm just after baseline, 6-, and
12-month visits, respectively.

4.4 Estimators
The unadjusted estimator of the average treatment effect is the difference in the sample mean
change in CDRSB from baseline to 18-months comparing donepezil to placebo, among patients
who were followed to the 18-month follow-up. In addition, we considered 5 adjusted estimators
for the average treatment effect. Unless otherwise noted, each adjusted estimator accounts for the
baseline CDRSB and the following additional baseline covariates described in Section 2: age,
gender, APOE4 carrier status, ADAS cognitive score, MMSE score, ADLS score, and the GDS
score.

The adjusted estimators include the following for the average treatment effect:

• ANCOVA: The analysis of covariance estimator is the coefficient for the main term of treat-
ment from a linear regression model for the 18-month change in CDRSB with main terms
for treatment and for each of the baseline variables, applied only to patients who completed
the 18-month follow-up. If patient dropout is generated completely at random, this estimator
is consistent, regardless of whether or not the ANCOVA model is correct. This estimator is
also consistent for the average treatment effect under patient dropout missing at random if
the ANCOVA model is correctly specified.

• PLEASE: The precise locally-efficient augmented simple estimator (Colantuoni and Rosen-
blum, 2015), is similar to the ANCOVA estimator in that it considers only the 18-month
change in CDRSB. This estimator requires specification of three models: a propensity score
model for the treatment assignment, a dropout model and an outcome regression model. The
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outcome regression model, fit separately to each treatment arm, is a linear model for the
18-month change in CDRSB as a function of main terms for the baseline variables. The
propensity score and dropout models are logistic regression models for the probability of
A = 1 and R2 = 1, respectively, and include main terms for the baseline variables. The
dropout model is fit separately for each treatment arm. Due to randomized assignment of
treatment, the propensity score model is correct; however, the dropout model is only correct
for scenarios A, B and C; the PLEASE estimator is consistent in these scenarios even under
misspecification of the outcome regression model.

• MMRM: The MMRM estimator (Section 3.2) involves a longitudinal linear model that in-
cludes main terms for treatment and time (factor) plus the interaction for treatment and time
and a main term for the baseline CDRSB (and no other baseline variables). This estimator
is consistent when dropout is completely at random or when the longitudinal linear model is
correctly specified.

• MMRM+: The MMRM+ approach is the same as the MMRM approach but includes main
terms for all the baseline variables described above.

• TMLE: The TMLE (Section 3.3) involves fitting three sets of models: a propensity score
model for the treatment assignment, dropout models and outcome regression models. The
propensity score model is a logistic regression model for A = 1 with main terms for the
baseline variables. The dropout models are logistic models for R0 = 1, R1 = 1 and R2 = 1
that include main terms for baseline CDRSB and the baseline variables, as well as the prior
follow-up CDRSB in the models for R1 and R2; fit separately for each treatment arm. The
outcome regression models are linear models that include all baseline variables as main
terms, as well as the previously measured CDRSB change scores in the models for L1,
L2 and L3 (as main terms). The propensity score model is correct due to randomization.
The dropout models are correctly specified in all scenarios, which means this estimator is
consistent.

4.5 Simulation Results
A comparison of the unadjusted and adjusted estimators of the average treatment effect are pre-
sented in Table 2. The performance of the estimators are similar regardless of whether the average
treatment effect is zero or beneficial. Table 3 compares the unadjusted and adjusted estimators
of the mean 18-month change in CDRSB, separately by study arm, for the setting with treatment
effect being beneficial.

Under missing completely at random (scenario A), all of the estimators are approximately un-
biased for the average treatment effect and achieve the targeted 95% coverage probability. Among
the adjusted estimators, the TMLE yields the greatest precision gain with roughly a 42 percent
reduction in the variance of the estimated average treatment effect comparing the unadjusted esti-
mator to the TMLE (Table 2). However, the other adjusted estimators that accounted for the full
set of baseline variables (i.e. ANCOVA, PLEASE, and MMRM+) also yield substantial precision
gains ranging from 30 to 34 percent when compared to the unadjusted estimator. The MMRM
approach that accounts for only the baseline CDRSB yielded the smallest precision gain (roughly
9 percent reduction in the variance compared to the unadjusted estimator).
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Analogous patterns of bias, coverage probabilities and precision gains are observed when com-
paring the performance of estimators of the treatment arm specific mean 18-month change in
CDRSB (Table 3) in scenario A. The TMLE yields a 26 percent reduction in variance compared
to reductions ranging from 16 to 22 percent for the ANCOVA, PLEASE and MMRM+ and 10
percent for the MMRM compared to the unadjusted estimator.

When patient dropout depends on baseline variables, but not differentially across treatment
arms (scenario B), all of the estimators yield approximately unbiased estimates of the average treat-
ment effect and roughly achieve the targeted 95% coverage probability. In this case, the PLEASE
and TMLE exhibit a loss of precision relative to the ANCOVA and MMRM+ estimators. How-
ever, MMRM and MMRM+ yield biased estimates of the treatment arm specific mean 18-month
change in CDRSB (Table 3); whereas, the ANCOVA, PLEASE and TMLE provide approximately
unbiased estimates. The MMRM and MMRM+ estimators have roughly the same bias for each
treatment arm, and the bias cancels out when estimating the average treatment effect. The bias in
estimates of the treatment arm specific mean 18-month change in CDRSB translate to large re-
ductions from the targeted 95% coverage probability; 95% coverage probabilities of roughly 70%,
75% and 87% for the unadjusted, MMRM and MMRM+, respectively. For estimating the treat-
ment arm specific mean change, the ANCOVA estimator has highest relative MSE (roughly 3.07)
followed by the TMLE (roughly 2.65) and PLEASE (roughly 2.35) estimators.

Under scenario C, dropout depends on baseline variables and study arm assignment, with risk
of dropout greater in the placebo compared to the donepezil arm. There is substantial bias for
the unadjusted (roughly 0.19), MMRM (roughly 0.18) and MMRM+ (roughly 0.10) estimators,
with corresponding low coverage for the 95% confidence intervals. The ANCOVA estimator bias
is considerably smaller; roughly 0.02. From Table 3, the bias in the average treatment effect is
attributable to bias in estimating the mean 18-month change in CDRSB for the placebo arm. The
PLEASE and TMLE are approximately unbiased for estimating the average treatment effect and
treatment arm specific mean changes. Under scenario C, the MSE for the average treatment effect
is smallest for the ANCOVA estimator; the performance of the TMLE and MMRM+ estimators
are similar and the TMLE estimator yields approximately unbiased estimates.

In scenario D, dropout depends on baseline variables, study arm, and CDRSB measured over
time. Under this dropout model, the unadjusted, ANCOVA and PLEASE are biased for estimating
the average treatment effect and the treatment arm specific means. Given the bias in the unadjusted,
ANCOVA, and PLEASE estimators, the 95% coverage probabilities are reduced and range from
71% to 82% for the average treatment effect and 81% to 89% for the treatment arm specific means.
The MMRM and TMLE are approximately unbiased and the MMRM+ has small bias (roughly
0.02) for estimating the average treatment effect. The TMLE has smallest MSE compared to the
MMRM estimators.
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Table 2: Comparison of the bias, variance, mean squared error and 95% coverage probability for
the average treatment effect based on 10,000 hypothetical trials for each treatment effect (zero vs.
beneficial) and dropout scenarios A through D.

Zero treatment effect (θ = 0) Beneficial treatment effect (θ = −0.19)
Dropout
Scenario Estimator Bias VAR MSE RMSE CP Bias VAR MSE RMSE CP

A

Unadj 0.003 0.025 0.025 1.00 0.94 -0.000 0.025 0.025 1.00 0.95
ANCOVA 0.002 0.019 0.019 1.34 0.94 0.001 0.019 0.019 1.33 0.94
PLEASE 0.002 0.019 0.019 1.31 0.94 0.001 0.019 0.019 1.30 0.94
MMRM 0.003 0.023 0.023 1.09 0.94 -0.001 0.023 0.023 1.10 0.95
MMRM+ 0.003 0.019 0.019 1.32 0.94 -0.000 0.019 0.019 1.33 0.95
TMLE 0.002 0.018 0.018 1.43 0.94 0.000 0.017 0.017 1.42 0.95

B

Unadj 0.002 0.021 0.021 1.00 0.94 0.001 0.020 0.020 1.00 0.95
ANCOVA 0.002 0.015 0.015 1.35 0.94 0.001 0.015 0.015 1.33 0.95
PLEASE 0.002 0.025 0.025 0.82 0.93 0.003 0.025 0.025 0.80 0.93
MMRM 0.002 0.020 0.020 1.06 0.95 0.000 0.019 0.019 1.06 0.95
MMRM+ 0.001 0.016 0.016 1.32 0.94 0.001 0.016 0.016 1.31 0.94
TMLE 0.001 0.022 0.022 0.93 0.94 0.002 0.022 0.022 0.91 0.93

C

Unadj 0.194 0.020 0.058 1.00 0.72 0.192 0.019 0.056 1.00 0.71
ANCOVA 0.019 0.015 0.015 3.73 0.94 0.018 0.015 0.015 3.76 0.94
PLEASE -0.005 0.034 0.034 1.69 0.92 -0.006 0.033 0.033 1.68 0.92
MMRM 0.180 0.019 0.051 1.12 0.74 0.178 0.018 0.050 1.12 0.73
MMRM+ 0.107 0.015 0.027 2.15 0.86 0.105 0.015 0.026 2.16 0.85
TMLE -0.003 0.029 0.029 1.99 0.92 -0.004 0.028 0.028 2.01 0.92

D

Unadj 0.208 0.024 0.067 1.00 0.72 0.215 0.024 0.070 1.00 0.71
ANCOVA 0.137 0.018 0.037 1.82 0.81 0.142 0.018 0.038 1.84 0.81
PLEASE 0.137 0.019 0.037 1.79 0.82 0.143 0.018 0.039 1.81 0.81
MMRM 0.004 0.022 0.022 3.08 0.94 0.004 0.022 0.022 3.22 0.94
MMRM+ 0.023 0.018 0.018 3.63 0.94 0.024 0.018 0.018 3.85 0.94
TMLE -0.000 0.017 0.017 3.91 0.94 0.001 0.017 0.017 4.19 0.95
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Table 3: Comparison of the bias, variance, mean squared error and 95% coverage probability for
the mean 18-month change in CDRSB for the placebo (E(Y |A = 0) = 0.567) and donepezil
(E(Y |A = 1) = 0.377) arms under beneficial treatment effect (θ = −0.19), based on 10,000
hypothetical trials for dropout scenarios A through D.

E(Y |A = 0) = 0.567 E(Y |A = 1) = 0.377
Dropout
Scenario Estimator Bias VAR MSE RMSE CP Bias VAR MSE RMSE CP

A

Unadj -0.004 0.012 0.012 1.00 0.94 -0.005 0.013 0.013 1.00 0.95
ANCOVA -0.005 0.010 0.010 1.19 0.94 -0.004 0.010 0.010 1.21 0.95
PLEASE -0.005 0.011 0.011 1.16 0.94 -0.004 0.011 0.011 1.17 0.94
MMRM -0.004 0.011 0.011 1.10 0.95 -0.005 0.012 0.012 1.10 0.95
MMRM+ -0.005 0.010 0.010 1.22 0.94 -0.005 0.010 0.010 1.22 0.94
TMLE -0.006 0.010 0.010 1.26 0.94 -0.005 0.010 0.010 1.26 0.94

B

Unadj -0.151 0.010 0.033 1.00 0.70 -0.150 0.010 0.033 1.00 0.71
ANCOVA -0.007 0.011 0.011 3.12 0.94 -0.006 0.011 0.011 3.07 0.94
PLEASE 0.002 0.014 0.014 2.41 0.93 0.005 0.014 0.014 2.35 0.93
MMRM -0.131 0.010 0.027 1.23 0.75 -0.130 0.010 0.027 1.23 0.77
MMRM+ -0.078 0.009 0.015 2.19 0.87 -0.078 0.009 0.015 2.20 0.87
TMLE -0.003 0.012 0.012 2.69 0.93 -0.001 0.012 0.012 2.65 0.94

C

Unadj -0.259 0.010 0.077 1.00 0.34 -0.067 0.010 0.015 1.00 0.90
ANCOVA -0.024 0.012 0.012 6.34 0.93 -0.006 0.010 0.010 1.53 0.94
PLEASE 0.003 0.026 0.026 2.94 0.91 -0.003 0.010 0.010 1.43 0.94
MMRM -0.228 0.009 0.061 1.25 0.42 -0.050 0.010 0.012 1.20 0.92
MMRM+ -0.140 0.009 0.028 2.71 0.71 -0.035 0.009 0.010 1.47 0.93
TMLE -0.002 0.021 0.021 3.62 0.91 -0.006 0.009 0.009 1.56 0.94

D

Unadj -0.117 0.011 0.025 1.00 0.81 0.097 0.013 0.023 1.00 0.84
ANCOVA -0.078 0.010 0.016 1.57 0.87 0.064 0.011 0.015 1.52 0.89
PLEASE -0.080 0.010 0.017 1.48 0.87 0.062 0.011 0.015 1.54 0.89
MMRM -0.004 0.011 0.011 2.24 0.94 0.000 0.011 0.011 2.07 0.94
MMRM+ -0.015 0.010 0.010 2.50 0.94 0.009 0.010 0.010 2.25 0.94
TMLE -0.001 0.010 0.010 2.44 0.94 -0.000 0.009 0.009 2.44 0.94

5 Discussion
We compared the commonly used MMRM approach and novel TMLE approach for estimating the
average treatment effect within a longitudinal randomized controlled trial evaluating the effect of
donepezil on cognitive function, as measured by the CDRSB score, among MCI patients. When
using the MMRM approach, precision in the estimated average treatment effect can be gained
by adjusting for additional prognostic baseline variables beyond the baseline CDRSB score. Re-
searchers can utilize available observational studies or earlier phase clinical trial data and the meth-
ods described in (Colantuoni and Rosenblum, 2015) to evaluate the prognostic ability of available
baseline variables.

The TMLE approach offers advantages over the MMRM. Specifically, estimates of the aver-
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age treatment effect are unbiased, achieve specified coverage probabilities and have lower mean-
squared error compared to the MMRM approach under a broad range of distributions generating
patient dropout; whereas, the estimated average treatment effects based on the MMRM can suffer
from large bias when patient dropout is generated under different distributions within each treat-
ment arm. Similar advantages of the TMLE hold when estimating the treatment arm specific mean
in the primary outcome.
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A Simulation: Dropout models
In the donepezil MCI trial, roughly 30% of the patients dropped out of the study by 18-months
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three dropout scenarios that produced roughly the same marginal dropout rates in our hypothetical
trials. In scenarios A and B, patient dropout was independent of treatment assignment but varied
over follow-up. In scenario A, patient dropout was completely at random. In scenario B, patient
dropout depended on both the baseline CDRSB (denoted Y0) and ADAS cognitive score (patients
with higher scores or more cognitive impairment were more likely to dropout).
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In scenarios C and D, the patterns of patient dropout varied by treatment arm with greater
proportion of patients dropping out of the placebo arm. Patient dropout in scenario C depends on
baseline CDRSB and the ADAS cognitive score, separately for each treatment arm. In Scenario
D, a total of roughly 30% of the patients dropout (similar to the donepizil trial); however the
proportion of dropout after baseline, 6- and 12-months is 6%, 15% and 21% in the placebo arm
and 3%, 5% and 9% in the donepezil arm.

The specific models for R0, R1 and R2 for each scenario are provided below. Recall that Y0
is CDRSB measured at baseline and Yk, for k > 0 is defined as the CDRSB,k − CDRSB,0 (i.e.
change in CDRSB comparing current follow-up to baseline).

1. Scenario A:
P (R0 = 1) = logit−1(logit(0.84))

P (R1 = 1|R0 = 1) = logit−1(logit(0.90))

P (R2 = 1|R1 = 1) = logit−1(logit(0.90))

2. Scenario B:

P (R0 = 1|L0) = logit−1(logit(0.91)− 0.25× (ADAS − X̄ADAS)− 0.10× Y0)

P (R1 = 1|R0 = 1, L0) = logit−1(logit(0.93)− 0.15× (ADAS − X̄ADAS)− 0.10× Y0)

P (R2 = 1|R1 = 1, L0) = logit−1(logit(0.93)− 0.10× (ADAS − X̄ADAS)− 0.10× Y0)

3. Scenario C:

P (R0 = 1|L0, A) = logit−1(logit(0.93) + (−0.35(ADAS − X̄ADAS)− 0.40Y0)× (1− A)

+(−0.10(ADAS − X̄ADAS)− 0.10Y0)× A)

P (R1 = 1|R0 = 1, L0, A) = logit−1(logit(0.95)+(−0.25(ADAS− ¯ADAS)−0.35Y0)×(1−A)

+(−0.10(ADAS − ¯ADAS)− 0.10Y0)× A)

P (R2 = 1|R1 = 1, L0, A) = logit−1(logit(0.94)+(−0.20(ADAS− ¯ADAS)−0.30Y0)×(1−A)

+(−0.10(ADAS − ¯ADAS)− 0.10Y0)× A)

4. Scenario D:

P (R0 = 1|L0, A) = logit−1(logit(0.93) + 0.20Y0 × (2A− 1))

P (R1 = 1|R0 = 1, L01A) = logit−1((logit(0.89) + 0.30ε1 × (2A− 1))

P (R2 = 1|R1 = 1, L2, A) = logit−1((logit(0.85) + 0.40ε2 × (2A− 1))

where ε1 are the residuals from the linear regression fit of Y1 on Y0, i.e. the information in the
6-month change in CDRSB that is not explained by the baseline CDRSB). Similarly, ε2 are the
residuals from the linear regression fit of Y2 on Y0, i.e. the information in the 12-month change in
CDRSB that is not explained by the baseline CDRSB.
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