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Default Priors for the Intercept Parameter in
Logistic Regressions

Philip S. Boonstra, Ryan P. Barbaro, and Ananda Sen

Abstract

In logistic regression, separation refers to the situation in which a linear com-
bination of predictors perfectly discriminates the binary outcome. Because finite-
valued maximum likelihood parameter estimates do not exist under separation,
Bayesian regressions with informative shrinkage of the regression coefficients of-
fer a suitable alternative. Little focus has been given on whether and how to shrink
the intercept parameter. Based upon classical studies of separation, we argue that
efficiency in estimating regression coefficients may vary with the intercept prior.
We adapt alternative prior distributions for the intercept that downweight implau-
sibly extreme regions of the parameter space rendering less sensitivity to sepa-
ration. Through simulation and the analysis of exemplar datasets, we quantify
differences across priors stratified by established statistics measuring the degree
of separation. Relative to diffuse priors, our recommendations generally result in
more efficient estimation of the regression coefficients themselves when the data
are nearly separated. They are equally efficient in non-separated datasets, mak-
ing them suitable for default use. Modest differences were observed with respect
to out-of-sample discrimination. Our work also highlights the interplay between
priors for the intercept and the regression coefficients: numerical results are more
sensitive to the choice of intercept prior when using a weakly informative prior on
the regression coefficients than an informative shrinkage prior.
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1 Introduction

A default prior in principle falls between nearly flat/improper priors, e.g. Jeffrey’s prior

(Jeffreys, 1946), and informative shrinkage/variable selection priors, e.g. the Bayesian

Lasso (Park and Casella, 2008). Such a prior mildly shrinks toward some null value non-

or weakly identified parameters and leaves alone those well supported by the likelihood

(Gelman et al., 2008; Greenland and Mansournia, 2015; Rainey, 2016). However, it

does not borrow strength via shared hyperpriors as do informative shrinkage priors.

Default priors have been developed for binary data regression models, e.g. logis-

tic regression, because of the possibility of so-called ‘separation’, or the existence of

a linear combination of predictors that can perfectly discriminate the outcomes in

the data (Albert and Anderson, 1984; Santner and Duffy, 1986). Separation can be

‘complete’ or ‘quasi-complete’, with both leading to non-finite maximum likelihood es-

timates (MLEs, Albert and Anderson, 1984; Santner and Duffy, 1986). A truly large

association between a predictor and the outcome can cause separation, illustrating that

this phenomenon is not always undesirable. Other causes include sparsity, high corre-

lation between the predictors, or the inclusion of many binary predictors (Heinze and

Schemper, 2002; Greenland and Mansournia, 2015). Regardless of cause, the lack of

identification may warrant mild regularization via priors. For the intercept parameter,

a very diffuse or improper prior is the usual choice; in this paper, we contend that its

unique role and meaning warrant a more informative choice.

A number of authors have proposed default prior specifications for regression co-

efficients (Clogg et al., 1991; Bedrick et al., 1996; Zorn, 2005; Gelman et al., 2008;

Hanson et al., 2014; Greenland and Mansournia, 2015). The scale-family of g-priors,

or reference informative priors, is one early example of a default prior for regression

coefficients (Zellner, 1983). The degree of shrinkage – and therefore the extent to which

that family of priors may be viewed as ‘default’ – depends on the choice of scale pa-

rameter g, which is shared by all regression coefficients. If fixed at some diffuse or

prespecified value, this would satisfy our definition of a default prior (Hanson et al.,
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2014). If instead g is adaptively tuned via a hyperprior, as in Marin and Robert (2007),

this would not, as information is shared across parameters.

Christmann and Rousseeuw (2001) propose quantitative measures of separation:

ncomp ≥ 0 is the size of the smallest subset of observations that, if removed from the

data, would completely separate the complementary subset. Separation is equivalent

to ncomp = 0; the resulting lack of numerical convergence allows for relatively easy

detection. In contrast, near-separation, i.e. a small but positive ncomp, yields finite

MLEs but manifests symptoms of separation including instability and efficiency loss.

For this reason, mild regularization from default priors can be just as useful when there

are a few dozen predictors as when there are hundreds or more, particularly when the

number of observations is of a similar order, i.e. p ≈ n.

The point of departure from previous work is our specific focus on the intercept

parameter. In contrast to regression coefficients, there is generally not an intuitive null

direction toward which shrinkage should be, and borrowing strength for the intercept

is not possible (e.g. Section 3.4, Hastie et al., 2009). The usual recommendation is that

a prior should be flat or effectively so (Greenland and Mansournia, 2015; Zorn, 2005;

Gelman et al., 2008). We demonstrate that straightforward efficiency gains are possible

by assuming that exceptionally large values of the intercept are either implausible or

unverifiable in the data, such that down-weighting these regions nearly always results

in efficiency gains.

This paper makes several contributions. First, we use complete separation to es-

tablish a rationale that mild shrinkage of the intercept can improve estimation of the

regression coefficients themselves. Following Ghosh et al. (2017), we consider a stronger

type of separation that we call ‘pivotal separation’. Second, we propose to adapt the

exponential-power scale-family of distributions (Box, 1953; West, 1987; Box and Tiao,

1992) for default use as a prior on the intercept in binary data regression models and

develop an algorithm to determine a suitable scale for this prior. Finally, our work high-

lights the interplay between choice of prior on the intercept and that of the regression

coefficients; our numerical studies directly compare the performance of a hierarchical
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shrinkage prior on the regression coefficients against a weakly informative prior.

In Section 2, we motivate the interplay between intercept and regression coefficients

under the premise of separation. Sections 3 and 4 describe our choices of the different

class priors for the intercept and the regression coefficients, respectively. Findings from

a comprehensive simulation study are documented in Section 5, which provides a com-

parative appraisal of the Bayesian estimators under varied scenarios including sparsity

and p ≈ n. The demonstration of our methodology on ten datasets in Section 6 illus-

trates the heterogeneity in the degree of separation in real data and, more importantly,

highlights the stabilizing properties of our proposed priors in estimation of the regres-

sion coefficients. Section 7 interprets our results and discusses some counterarguments

against using priors on the intercept parameter.

2 Motivation from Separation

We have n data points denoted by {Yi,Xi}n1 , where Yi ∈ {0, 1}, and Xi is a p-

dimensional vector of covariates. A generalized linear model (GLM) takes the form

g(Pr(Y = 1|X)) = α + X>β, where g is a link function, e.g. logistic, probit, or

complementary log-log, mapping the unit interval to the real line. The likelihood is

L(α,β) =
∏
i

g−1(α+ β>Xi)
Yi
[
1− g−1(α+ β>Xi)

]1−Yi
. (1)

Partition the outcomes into sets A = {i : Yi = 1} and AC = {i : Yi = 0}. Complete

separation holds when there exists D ∈ Rp+1 such that, for any {α,β} ∈ D,

α+ β>Xi ≥ 0, ∀i ∈ A (2)

α+ β>Xi ≤ 0, ∀i ∈ AC (3)

with the further condition that at least one of the inequalities in Equations (2) and (3)

be strict. The direction of the inequalities is assumed without loss of generality. Unless

noted otherwise, we use ‘separation’ as shorthand for ‘complete separation’ which differs
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from the convention of Gelman et al. (2008), who use it to mean ‘quasi-complete

separation’. This is a weaker condition that exists when Equations (2) and (3) hold for

at least one {α,β} 6= {0,0}, without requiring a strict inequality. Analogous to ncomp,

the overlap statistic nover measures the minimum subset needed to remove in order to

induce quasi-complete separation in the complementary subset, with 0 ≤ nover ≤ ncomp

(Christmann and Rousseeuw, 2001).

Albert and Anderson (1984) demonstrate that, in a logistic regression model, finite-

valued MLEs do not exist for all parameters when the data are separated (either

completely or quasi-completely). This result extends to any link such that g−1 is

increasing in its argument. Moreover, near-separation, i.e. separation in a large subset

of the data, may result in weakly identified parameter estimates. Nonetheless, in

some contexts, e.g. diagnostic test evaluation, separation is the objective. Thus,

separation – and its impact on efficiency – is neither an artificial nor pathological

concern. We re-characterize results from Albert and Anderson to motivate default

priors that ameliorate its symptoms.

When separation holds, then, for a given {α,β} ∈ D, there exists a vector m =

{m1, . . . ,mp} and a scalar β̃ such that β̃m = β and

α+ β̃ × (m>Xi) ≥ 0, ∀i ∈ A (4)

α+ β̃ × (m>Xi) ≤ 0, ∀i ∈ AC , (5)

Although multiple {α,β} pairs may lie in D for a given dataset, the existence of one

such pair is sufficient to separate outcomes, thus we focus on a single realization of

{α,β} ∈ D. Let D(m) be the two-dimensional region of separation so that {α, β̃} ∈

D(m) separates the data as above. Without loss of generality, we may assume that

maxj{|mj |} = 1 and β̃ > 0. β̃ corresponds to the magnitude of the largest element of β,

whilem is understood to be the relative size with respect to β̃ of all remaining elements

of β. If p = 1, then m = 1 and D ≡ D(m). When p > 1, this re-parameterization

reduces the problem into two dimensions. The absence of finite MLEs is a consequence

5

Hosted by The Berkeley Electronic Press



of Theorem 1 in Albert and Anderson (1984), which we re-characterize as follows:

Result 1 Suppose a given dataset is separated by {α, β̃} ∈ D(m), then

a. for any k > 0, {kα, kβ̃} ∈ D(m), and

b. for 0 < k1 < k2, L(k1α, k1β̃m) < L(k2α, k2β̃m), where L is given in Equation (1).

In words, starting from an initial set of parameter values that separates the data, we

can calculate a new, distinct set that also separates the data, increases the magnitude

of the intercept and regression coefficients (those that are non-zero), and increases

the likelihood relative to the initial set. This establishes the lack of a finite-valued

maximum in the interior of the parameter space. The specific value of m in Result 1

is not critical; the existence of just one such m gives rise to non-finite MLEs.

2.1 Pivotal Separation

A result from Ghosh et al. (2017) further characterizes the intercept-regression coef-

ficient relationship in separation. The authors establish conditions under which the

posterior mean of one or more elements of β does not exist. Translated to our nota-

tion, their primary result is that, when βj is a priori Cauchy, its posterior mean does

not exist if and only if there exists a particular m = m∗ satisfying Equations (4) and

(5) such that (i) m∗j′ = 0 for j′ 6= j and (ii) {0, β̃} ∈ D(m), for some β̃ 6= 0. In this

case, Ghosh, et al. call the jth predictor a ‘solitary separator’. Incidentally, ignoring

the first condition and focusing only on the second, i.e. {0, β̃} ∈ D(m), Ghosh, et al.

incidently define a stronger condition than complete separation, namely that in the

absence of an intercept. Formally, we say that ‘pivotal separation’ holds when there

exists D∗ ∈ Rp such that, for any β ∈ D∗,

β>Xi ≥ 0, ∀i ∈ A (6)

β>Xi ≤ 0, ∀i ∈ AC (7)

with the further condition that at least one of the inequalities in Equations (6) and (7)

be strict. In other words, the set of separating planes contains the point α = 0, and
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the set pivots in the neighborhood of α = 0. We define the statistic npiv as the size

of the smallest subset of observations that, if removed from the data, would pivotally

separate the data. Because pivotal separation is the strongest type of separation, we

can extend the inequality to 0 ≤ nover ≤ ncomp ≤ npiv.

These relationships between the magnitude of the intercept and the regression co-

efficients in the likelihood are our key motivation for proposing mild shrinkage of the

intercept. In Bayesian analyses, one relies on the priors’ contribution – that of α as

well as β – to control variability. Thus, in cases of complete separation, a priori sup-

porting extreme regions of α may, a posteriori, support correspondingly extreme values

of β. Put differently, shrinking α may indirectly constrain the posterior support for β,

and vice versa. Although this relationship does not strictly hold when near-separation

holds, i.e. when ncomp is non-zero but small, numerical instability is present in these

cases as well (which we will see in the proceeding sections), and it becomes difficult

to estimate well both the intercept and the regression coefficients. Based upon this,

we propose an alternative default prior for α intended to limit the support of α and

therefore confer more precision in estimating β.

3 Possible Choices of Default Prior

For the remainder of the paper, we focus on the logistic link function, g(x) = logit(x) ≡

loge(x/[1 − x]). We center the covariate vector to the empirical mean in the data, so

thatX = 0 represents the mean, and implicitly assume that all prior formulations have

a location parameter equal to zero. Probabilistically, the elements of β (and therefore

prior interpretations) can only be framed in relative terms. For example, a log odds-

ratio of loge(1.3) increases a baseline probability of 0.004 to about 0.005 but increases a

baseline probability of 0.500 to 0.565. In contrast, we can interpret α as a 1-1 function

of a probability. Because the data are centered, logit−1(α) = Pr(Y = 1|X = 0) ∈ [0, 1]

is the probability of the outcome occurring, the ‘risk’, in a mathematically average

observation. It will be convenient to consider logit−1(α), because the risk scale allows
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for a more intuitive interpretation of the consequences of a particular prior formulation.

3.1 Priors based upon the t-distribution

Gelman et al. (2008) suggest equipping α with a very diffuse Cauchy distribution.

Greenland and Mansournia (2015) recommend an improper/flat prior for multiple rea-

sons, including lack of an appropriate null location parameter and a sensitivity to choice

of coding of the predictors. The authors caution against an informative prior on α;

we discuss this important point further in the Discussion. A diffuse Cauchy prior is

practically flat, and these two recommendations are essentially in agreement.

Let tν(σ) denote a t-distribution centered at zero with ν degrees of freedom and scale

parameter σ. To ensure the existence of the first two posterior moments, we consider a

lighter-tailed prior than that recommend by Gelman, et al., namely α ∼ t3(10). To two

significant digits, the t3(10) distribution implies Pr(0.001 < logit−1(α) < 0.999) = 0.46;

in other words, about 54% of the prior mass falls below 0.001 or above 0.999. This

is the most diffuse prior we consider in this paper. We also consider α ∼ t∞(10) ≡

N(σ = 10), that is, a normal distribution with mean zero and standard deviation 10.

The prior mass of a normal prior is more concentrated towards the center: Pr(0.001 <

logit−1(α) < 0.999) = 0.51. The density functions of these scale-families are given in

the first two rows of Table 1, and Figure 1 plots the densities (truncated to the interval

[−8, 8]) for the particular choices of scales that we evaluated.

3.2 Alternative Prior Formulations

Generally, there are two decisions made (either implicitly or explicitly) in the formu-

lation of a prior. First, a family of distributions must be selected. Then, a particular

parametrization must be selected from within that family, which controls where the

prior mass falls. For example, the scaled t-distribution implies a bell-shaped prior,

with the choice of degrees of freedom and scale parameter determining the spread or

concentration of the mass. We discuss these two choices in reverse order.
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3.2.1 Default parameter values

Explicitly limiting the prior mass on extreme values of α is preferred both intuitively

and theoretically. First, because the covariates are centered, α (properly transformed)

represents the risk for an average patient. An a priori assumption that it is very small

or very large may be counter to intuition or – at the least – unverifiable in all but very

large datasets. Second, very large or small values of α may indirectly admit extreme

values of β, as argued in Section 2. In this section, we describe Algorithm 1 which,

when paired with a scaled-family of priors, identifies the value of the scale parameter

such that the prior probability of α falling in an extreme region is small, given the

sample size n. The algorithm requires a user-provided definition of extreme and small.

We motivate the algorithm by considering the logit−1(α), or risk, scale. Consider

the hypothetical most extreme data configurations:
∑
Yi = 0 or

∑
Yi = n. Although

these configurations suggest that logit−1(α) is likely to be very close to 0 or 1, they

may provide little information on exactly how close it should be. Our algorithm ap-

proximates the boundaries of the interval where precision degrades. As the sample

size n increases, we can precisely estimate more extreme values of logit−1(α). Thus,

the algorithm depends on n. Specifically, it ensures that a proportion, 1 − q, of the

prior mass on logit−1(α) is in the interval [1 − sn, sn], where sn ∈ (0.5, 1). Ignoring

Jensen’s bias and thus equating the average event rate with the event rate at the mean,

i.e. EXPr(Y = 1|X) ≈ Pr(Y = 1|X = E[X]) = logit−1(α), then the likelihood of

the most extreme configuration is Pr(
∑
Yi = n|{Xi}) ≈

(
logit−1(α)

)n
. In this case,

the maximized likelihood, equal to 1, is achieved at α̂MLE = ∞, and so the likelihood

ratio evaluated at sn is (sn)n/supαL(α;
∑
Yi = n) = (sn)n. The likelihood ratio test

statistic, −2nloge(sn), approaches zero as sn is made closer to 1, and a tail region of

the logit−1(α) space exists to the right of sn within which values of logit−1(α) become

increasingly indistinguishable from logit−1(α̂MLE) ≡ 1 with respect to the likelihood ra-

tio. We identify the value of sn such that the likelihood ratio test statistic −2nloge(sn)

equals δ, i.e. sn = exp{−δ/(2n)}. By construction, then, when
∑
Yi = n, the likeli-

hood ratio statistic comparing sn to logit−1(α̂MLE) is δ. The case is symmetric when

9
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∑
Yi = 0. Next, we use this derived value of sn to identify the scale parameter in

a family of priors such that a proportion 1 − q of the prior mass falls in the interval

[1 − sn, sn]; equivalently, the proportion of mass outside this interval is q. The steps

are as follows:

Algorithm 1

1. Choose constants δ and q such that 0 < δ < −2nloge(0.5) and 0 < q < 1. The

bounds on δ ensure that 0.5 < sn < 1.

2. Calculate sn = exp{−δ/(2n)}, where n is the sample size.

3. Given a scale-family of priors on α parametrized by σ, select σ = σn so that

Pr(1− sn < logit−1(α) < sn|σ = σn) = 1− q, equivalently Pr(logit(1− sn) < α <

logit(sn)|σ = σn) = 1− q

The algorithm is semi-automatic in that it requires user-selected constants δ and q.

Larger values of δ and smaller values of q will result in smaller values of σn. The values

that we use here, δ = 1 and q = 0.01 work well in our numerical study.

3.2.2 Choice of prior family

Although the student-t scale family of priors can be applied to Algorithm 1, it is

not necessarily ideally suited for doing so: when n is small, the algorithm-based scale

parameter σn will be correspondingly small, and the prior mass will be concentrated

around α = 0. This is potentially as unsatisfactory as having mass concentrated at

the tails, because α = 0 generally not an appropriate null value for the intercept. It

is not only the scale of the prior on α that is important but also the shape. Modern

developments in computational statistics, such as the STAN probabilistic modeling

language (Stan Development Team, 2018, 2017; Carpenter, 2017), have opened new

avenues for priors driven by statistical sensibility and not computational convenience,

e.g. prior conjugacy. We use a family of distributions called the exponential-power

distribution (Box, 1953; West, 1987; Box and Tiao, 1992) with parameters σ, k >

0. Denoted by EPk(σ), its density function is π(α|σ, k) ∝ exp{−|α/
√

2σ|k}. The

supplement derives further properties of the EP family. With k = 1 or 2, respectively,
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Table 1: Densities of families of priors on the intercept parameter α, up to a multiplicative
constant.

Name π(α) ∝
tν(σ) (σ2 + α2)−(ν+1)/2

t∞(σ) exp{−α2/(2σ2)}
EPk(σ) exp{−|α/

√
2σ|k}

Logis(σ)
e−α/σ

(1 + e−α/σ)2

this reduces to the Laplace and normal families of distributions. Using k > 2 results

in platykurtic distributions which, used in conjunction with Algorithm 1 herein,

yield a more locally uniform distribution of mass within the extreme boundaries while

smoothly vanishing to zero outside of sn. This is illustrated in Figure 1, which plots

EP distributions with k = 2, 4, and 10. Given the numerical results in Section 2,

platykurtosis may be a desirable feature for a prior on α.

For completeness, we also consider a Logistic prior on α, with scale estimated using

Algorithm 1. In total, we consider six specific priors for the intercept parameter in

a multivariable logistic regression: t3(10), t∞(10), EP2(σn), EP4(σn), EP10(σn), and

Logis(σn), where σn denotes estimation of σ using Algorithm 1, with δ = 1 and

q = 0.01. When n = 250, these six distributions are plotted in Figure 1. Table S1

(supplement) gives calculations of σn from Algorithm 1 as n changes.

4 Prior on β

Our objective is not to directly compare priors on β but rather to isolate the impact of

the choice of prior on α, given a typical choice of prior on β. Unavoidable, however, is

that α and β will be a posteriori correlated, and thus the choice of prior on β matters.

As discussed in the Introduction, default priors on β are meant to provide automatic

weak shrinkage of unstable components of β, whereas informative shrinkage priors

proactively distinguish between signal and noise in the components of β by borrowing

strength across parameters. We consider one of each type.

Hierarchical Shrinkage (HS)(Carvalho et al., 2009, 2010; Piironen and Vehtari,

11
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Figure 1: Densities of six prior distributions on α, arranged by the height of the density at
α = 0. The scales of the logistic (‘Logis’) and exponential-power (‘EP’) priors are selected
according to Algorithm 1 with n = 250, using δ = 1 and q = 0.01, which ensures that only
1% of the prior mass falls outside of the interval [−6.21, 6.21], denoted by the vertical lines.

2015, 2017). Independently for each of the j components of β,

τ ∼ t+1 (1),

λj ∼ t+1 (1),

θjn ≡
(
1/c2 + 1/

[
τ2λ2

jψ
2
n

])−1/2
, (8)

βj |{λj , τ}
ind∼ N(θjn) (9)

When c = ∞, each βj is conditionally a mean-zero, Normal-scale-mixture of a local

shrinkage parameter λj , itself distributed as a standard half-Cauchy, a global shrinkage

parameter τ , which is also half-Cauchy, and a fixed, user-defined scale ψn, possibly

dependent on n. Choosing instead a value for c that is large but finite has the effect of

soft-thresholding weakly or under-identified coefficients that are under -shrunk by the

heavy-tailed Cauchy prior, e.g. when the data are separated (Piironen and Vehtari,

2017); the prior variance for any coefficient will never exceed c2. We fix c = 15 here.

Piironen and Vehtari (2016) demonstrate that ψn should scale with n−1/2. In logistic

regressions, they derive a formula to approximate the effective number of non-zero
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parameters implied by any choice of prior that can be formulated as a Normal-scale-

mixture, as in Equation (9). Specifically, the parameter κj ≡ (1+[
√
nθjn/2]2)−1 ∈ (0, 1)

quantifies the amount of shrinkage towards zero relative to the MLE of βj , with larger

values corresponding to greater shrinkage. The effective total number of non-zero

parameters assumed by the prior, peff, is thus approximated by
∑

j(1−κj). Based upon

this, for a desired value of p̃eff, we use the value of ψn solving p̃eff =
∑

j(1−E[κj ]), where

the expectation is taken over the prior distributions of τ and each λj , j = 1, . . . , p. The

choice of p̃eff depends on the context of the study; usually, it will be much smaller than

p, particularly when p is large, to reflect that most associations are expected to be

close to zero. We use HS(p̃eff) to denote the hierarchical shrinkage prior in Equation

(9) with ψn based upon the choice of p̃eff; our choices for p̃eff are given in Section 5.1.

Logistic (Logis) Greenland and Mansournia (2015) compare several weakly infor-

mative default priors on β, including a standard Logistic distribution. That is, each

of the j components of β is identically and independently distributed as a standard

logistic random variable, βj
iid∼ Logis(σ = 1). The authors recommend not to scale the

covariates when using this prior, advice that we adhere to here.

5 Simulation Study

We conduct a simulation study to compare the performance of six priors on α in terms

of their impact on estimation (of the regression coefficients β) and discrimination of

observations. We designed the scenarios to represent the challenging regressions that

may lead to separation, namely rare events (small values of α), large associations (β

large in magnitude), correlated X, binary X, and/or p ≈ n.

5.1 Generating Models

We considered a total of nine scenarios of varying p. These are summarized in Table 2

and detailed in the Supplement (S2). In each, the sample size n is varied such that p/n

ranges between a small to a large fraction. The covariate vectorX is either multivariate

13
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normal or Bernoulli; in the case of the latter, we generated them jointly as indicators

of orthant sets of an underlying multivariate normal. This is akin to a framework

containing correlated binary exposure variables that represent threshold crossing of a

continuous marker. For simulating the datasets, the parameters were fixed at the given

values of β = β∗ and α = α∗; the covariates X and outcome Y are random. Because

X is centered to its empiric mean prior to model fitting, the third column of Table 2,

α∗ + E(X)>β∗ is the value to which the intercept priors correspond.

A single simulation consisted of sampling the random vector {Y,X} for n obser-

vations and fitting the data to a Bayesian logistic regression using either an HS or

Logistic prior on β and one of the considered priors on α. For the HS prior on β,

the covariates were standardized to have mean zero and unit standard deviation. We

selected the scale parameter ψn as described in Section 4, setting the approximate ex-

pected number of non-zero parameters to be p̃eff = 2 for Scenario 1 (for which p = 4)

and p̃eff = 10 for Scenarios 2–9 (p = 25, 75, or 150). For the Logistic prior on β, the

covariates were only centered, as in Greenland and Mansournia (2015) .

We quantified performance using root mean-squared error (RMSE) (Armagan et al.,

2013) and area under the receiver-operator characteristic (AUC). Let ΣX denote the

true covariance matrix of X, and let Fpost generically denote denote the posterior

distribution. The metrics are respectively defined as

RMSE =
√

(EFpost [β]− β∗)>ΣX(EFpost [β]− β∗) (10)

AUC =

∑∑nnew
i,j:Yi,new=0,Yj,new=1 1

[
(Xi,new −Xj,new)>EFpost [β] < 0

]
∑∑nnew

i,j:Yi,new=0,Yj,new=1

(11)

RMSE measures the distance between the posterior mean of β and its true value,

standardized to the variance of X. AUC measures the ability to discriminate between

observations that will and will not experience the outcome. Neither RMSE nor AUC

depend directly upon the posterior distribution of α. For each of 30 scenario-plus-

sample-size combinations, we simulate 200 datasets. To stratify performance based

upon the degree of separation, we calculated ncomp and npiv, the minimum number
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Table 2: Summary of nine scenarios considered in the simulation study. The parameters α∗

and β∗ are the true values of the intercept and regression coefficients, fixed across simulation
iterations, and p is the length of the parameter β∗. The data are centered prior to analysis,
meaning that the third column, α∗ + E(X)>β∗ is the value of the intercept parameter to
which the priors correspond. The fourth column, Pr(Y = 1|X = EX), is the risk at
the average covariate pattern, equal to logit−1(α∗ + E(X)>β∗). The fifth column is the
average risk in the population, equivalently EX logit−1(α∗ + X>β∗). The sixth column is
the standard deviation of the joint linear predictor. The final column qualitatively describes
possible causes of separation for that scenario
Scenario p α∗ + E(X)>β∗ Pr(Y = 1|X = EX) EXPr(Y = 1|X) sd(X>β∗) Causes of Separation

1 4 -1.5 0.182 0.202 0.7 {BX}
2 25 -1.6 0.165 0.186 0.7 {BX, p ≈ n}
3 25 -1.6 0.165 0.167 0.2 {BX, p ≈ n}
4 25 -5.0 0.007 0.075 2.7 {RE, LA, BRX}
5 25 -2.5 0.076 0.181 2.9 {LA, BRX, p ≈ n}
6 75 -4.0 0.018 0.071 2.0 {RE, p ≈ n}
7 75 -3.0 0.047 0.067 0.9 {BX, p ≈ n}
8 150 -3.0 0.047 0.060 0.7 {p ≈ n}
9 150 -3.0 0.047 0.050 0.3 {p ≈ n}

‘BX’ = binary X;
‘BRX’ = binary, rare (mean = 0.05) X;
‘p ≈ n’ = at least one setting considered with n ≤ 2p;
‘RE’ = rare events = Pr(Y = 1|X = EX) < 0.02;
‘LA’ = large association = standard deviation of linear predictor ≥ 2

of observations needed to remove to induce complete and pivotal separation (Section

2.1), respectively using Algorithm 2, described in the Supplement.

5.2 Results

Tables 3 and S2 (in the supplement) respectively report the median RMSE and median

AUC calculated over 200 simulated datasets from each scenario+sample size configu-

ration. The best value (i.e. lowest median RMSE, highest median AUC) is italicized

(calculated separately for each of the two priors on β). Bold-faced values correspond to

those priors that out-performed the italicized prior in at least 33% of the 200 simulated

datasets, which means that the prior was not too suboptimal. Figure 2 plots the log2

ratio of RMSE comparing the t3(10) prior on α to each of the other priors for each

of the 6000 individual simulated datasets from all scenarios combined (200 datasets

per each of 30 scenario + sample size configurations) stratified by the value of the

separation statistics ncomp and npiv. Figure S2 in the Supplement gives the analogous
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plot for AUC.

Focusing on the HS prior on β in Table 3, the choice of prior on α has relatively

little impact on estimation of β in Scenario 1 (p = 4). The median values of both

ncomp and npiv in this scenario were generally much larger than zero, ranging from 9

(n = 50) to about 84 (n = 400). In subsequent Scenarios with larger p, the EP and

Logistic priors (using σn based upon Algorithm 1), generally have better estimation

error among the smaller sample sizes (n) considered, with all six priors yielding about

equal RMSEs as the sample size n, and consequently the statistics ncomp, npiv, increase.

In some scenarios, e.g. Scenario 6 with n = 100, the t3(10) and t∞(10) priors have

the highest median values (155 and 153, respectively, compared to 102 from the EP4

prior), but they are also boldfaced. Thus, these heavy-tailed priors also exhibit greater

within-scenario variation. There were greater differences when considering the Logistic

prior on β, both between, i.e. comparing HS to Logistic priors on β, and within, i.e.

comparing the six priors on α. The HS prior on β outperforms the Logistic prior except

for Scenarios 4 and 5, and the EP4(σn) prior is nearly always smallest when using a

Logistic prior on β. Overall, fewer priors are in boldface, pointing to greater variation

between priors on α.

The final row of Table 3 gives the average rank of each prior over all datasets

combined, with lower numbers corresponding to smaller, i.e. better, RMSE. For HS,

the EP4 prior had the best average rank of 3.15, followed by EP2 and EP4 (both 3.25),

a Logistic prior (3.35), and finally the heavier tailed t∞ and t3 priors, respectively, 3.94

and 4.07. For the Logis prior on β, the EP10 prior had the highest average rank (2.63),

followed by EP4 (2.80), EP2 (3.07), Logistic (3.44), t∞ (4.35), and t3 (4.72).

From Figure 2, the improvement in RMSE is most prominent when the data are

pivotally separated (npiv = 0⇔ the “0!” category on the x-axis) or completely but not

pivotally separated (ncomp = 0 & npiv > 0 ⇔ the “0/{0!}” category), although better

performance is also noted for many datasets in which ncomp was small.

From Table S2 and Figure S2 in the Supplement, differences in terms of discrim-

ination were less pronounced. Under the HS prior on β, there was always a < 0.04
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Table 3: Median RMSEs (×100), across 200 datasets, for estimating β with its posterior
mean for all combinations of six priors on the intercept parameter α and two priors on β.
Smaller numbers are better. In each row, values in italics correspond to the smallest median
RMSE, and values in bold had a smaller RMSE than the italicized value in at least 33% of
the datasets. All metrics were calculated separately for each prior on β. The columns ncomp

and npiv give the median values of these statistics across the 200 simulated datasets.
median β ∼ HS(p̃eff) β ∼ Logis(1)

Scenario p n ncomp. npiv. t3(10) t∞(10) EP2(σn) EP4(σn) EP10(σn) Logis(σn) t3(10) t∞(10) EP2(σn) EP4(σn) EP10(σn) Logis(σn)
1 4 50 9 9 51 51 49 49 50 49 65 65 59 63 65 59
1 4 100 20 20 41 41 41 41 41 42 46 46 45 46 46 45
1 4 200 40 40 36 36 36 36 37 37 33 33 33 33 33 33
1 4 400 84 84 28 27 27 28 27 28 24 24 24 24 24 24

2 25 50 0 1 95 97 67 71 75 67 229 230 207 209 214 208
2 25 100 2 7.5 58 58 58 58 58 57 188 188 181 185 187 179
2 25 200 22 24.5 34 34 34 34 34 34 119 119 118 119 119 117

3 25 50 0 1 95 93 45 51 57 42 233 234 214 216 220 213
3 25 100 2 8 30 31 30 31 31 29 193 193 186 189 193 184
3 25 200 22 25 23 24 23 23 23 23 123 124 122 124 123 122

4 25 100 0 0 425 371 279 267 264 284 180 180 189 190 187 189
4 25 200 1 2 238 219 159 159 158 160 137 136 141 141 139 141
4 25 400 2 7 114 115 110 109 108 111 102 102 105 104 103 105

5 25 50 1 1 744 711 664 639 609 705 191 191 194 193 193 193
5 25 100 2 2 492 496 519 465 465 569 152 152 153 153 152 154
5 25 200 6 6 146 147 144 145 145 145 114 114 115 114 115 115

6 75 100 0 0 155 153 119 110 102 121 784 743 448 380 354 579
6 75 200 0 1 66 66 49 46 48 51 988 953 611 447 358 787
6 75 400 0 8 34 34 31 31 33 31 1076 1052 710 484 358 905

7 75 100 0 0 107 108 82 82 83 82 333 334 282 254 236 298
7 75 200 0 2 74 75 64 65 67 64 390 390 348 322 301 361
7 75 400 0.5 12 30 30 30 30 30 29 348 348 326 317 305 332

8 150 100 0 0 75 74 72 72 72 72 880 830 572 561 606 698
8 150 200 0 0 72 72 71 71 71 71 1161 1107 752 583 514 978
8 150 400 0 4 68 68 68 68 68 68 1541 1490 1072 717 514 1373
8 150 600 0 14 62 61 62 62 62 63 1670 1634 1218 789 535 1523

9 150 100 0 0 42 40 31 31 31 31 854 785 528 515 560 658
9 150 200 0 0 30 30 29 29 30 29 1139 1072 719 552 484 951
9 150 400 0 3 28 28 28 28 28 28 1495 1436 1025 681 485 1328
9 150 600 0 11 28 28 28 28 28 28 1656 1615 1197 758 508 1506

Avg. Rank (1-6) 4.07 3.94 3.25 3.15 3.25 3.35 4.72 4.35 3.07 2.80 2.63 3.44

difference in AUC between the best- and worst-performing prior on α; usually this dif-

ference was within a point. Nonetheless, alternative priors on α discriminated slightly

better, as evidenced by the final row in Table S2, with a nearly 0.5 point improvement

in average ranking over standard heavy tailed priors. Interestingly, for the Logistic

prior, the heavy tailed priors were generally best; however, this is mitigated by the

preference of the HS prior on β over the Logistic prior on β.
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Figure 2: Comparison of t3(10) prior on α against five alternative priors on α (columns) under
two different priors on β (rows). Each point represents an individual simulated dataset. The
y-axis gives root mean-squared error (RMSE) ratios on the log2 scale when estimating β
with its posterior mean, and the x-axis defines groups based upon separation: “0!” indicates
pivotal separation (npiv = 0); “0/{0!}” indicates complete but not pivotal separation (npiv >
ncomp = 0); and the remaining categories correspond to value(s) of ncomp. Positive values
on the y-axis indicate that the given prior on α yielded more efficient estimation
of β than a t3(10) prior on α. Different plot characters are used to indicate p, the number
of predictors. In total, each panel contains 6000 points (30 unique scenario-sample size
configuration times 200 simulated datasets per configuration).

6 Data Examples

We demonstrate our proposed priors on ten exemplar datasets with varying p/n ratios

and degrees of separation and sparsity. Although these datasets have been previously

reported, our re-analysis is novel in two ways. First, it quantifies heterogeneity in the

degree of separation between datasets using the statistics ncomp, etc. Although Christ-

mann and Rousseeuw (2001) have already studied this in five of these ten datasets,

Algorithm 2 was able to identify a tighter upper-bound on ncomp or nover in two

18

http://biostats.bepress.com/umichbiostat/paper123



of those datasets. Second, by sequentially removing increasing subsets of the ncomp

observations from each dataset, which protect it from separation-induced variability,

we characterize the stabilizing properties our proposed intercept priors have on the

regression coefficients. We consider only the HS prior on β, which was preferred to the

Logistic prior on β. The datasets are as follows:

REMISSION n = 27 cancer patients. The outcome is remission (33%, 9/27),

with p = 6 patient characteristics (Lee, 1974; Christmann and Rousseeuw, 2001).

VASOCONSTRICTION n = 39 experiments studying the presence of ‘transient

reflex vasoconstriction’ in subjects’ fingers. The outcome is vasoconstriction (51%,

20/39) with p = 2 predictors (Finney, 1947; Christmann and Rousseeuw, 2001).

FOODSTAMP n = 150 surveyed individuals who may enroll in a foodstamp

program. The outcome is participation (16%, 24/150) with p = 3 factors (Künsch

et al., 1989; Schauberger and Tutz, 2014; Christmann and Rousseeuw, 2001).

BIRTHWEIGHT n = 189 births at a Springfield, MA medical center in 1986.

The outcome is low-birth-weight status (31%, 59/189) with p = 8 possible risk factors

(Jaeger et al., 1997; Venables and Ripley, 2002; Christmann and Rousseeuw, 2001).

ECMO n = 178 pediatric patients receiving extracorporeal membrane oxygenation

(ECMO) at inpatient critical care units in three academic hospitals in North America.

The outcome is short-term mortality (26%, 47/178), with p = 22 patient-level risk

factors (Barbaro et al., 2016, 2018).

PIMA n = 532 records of Pima Indian heritage women tested for diabetes. The

outcome was a positive test (33%, 177/532) with p = 7 risk factors (Venables and

Ripley, 2002; Smith et al., 1988).

NES1964, NES1968 Two years’ worth of national election surveys (NES), 1964

(n = 1062) and 1968 (n = 851). The outcome is preference for the Republican can-

didate (respectively 32%, 344/1062; 54%, 461/851), with p = 3 predictors. (Section

5.10, Gelman and Hill, 2007)

IVC n = 3200 in-vitro experiments on the thrombus-capturing efficacy of a filter

in a model for the inferior vena cava (IVC). The outcome is efficacy (77%, 2452/3200),
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with p = 4 predictors (Jaeger et al., 1997; Christmann and Rousseeuw, 2001).

HYDRAMINOS n = 2992 neonatal pregnancies at an academic hospital over

the period of 1969-1975. The outcome is neonate mortality (0.56%, 17/2992), with

p = 14 risk factors (Neutra et al., 1978; Greenland and Mansournia, 2015; Sullivan and

Greenland, 2013).

The attributes of these ten datasets, including the separation statistics calculated

using Algorithm 2, are given in the first column of Table 4. Quasi-complete separa-

tion, i.e. nover = 0, exists in two of these datasets (ECMO and NES1964); none of the

datasets are completely separated.

We analyzed each of the full datasets with a hierarchical shrinkage prior on β and

one of the six priors on α, recording the posterior mean of β. To select ψn in Equation

(9), we used p̃eff = p/2. We determined the set of ncomp observations, the removal of

which would separate the data, and removed all but k ∈ {0, 1, 2} of these. Thus, k = 0

yields separation, and k = 1 or 2 yield near-separation. Variability in estimation will

increase with smaller values of k. Thus, we compared the posterior means of β from

each of these subsetted analyses to the posterior mean from the full analysis with a

pseudo-RMSE treating the full analysis as the ‘truth’:

pRMSEk =
√

(E
F

SUBk
post

[β]− EFFULL
post

[β])>ΣX(E
F

SUBk
post

[β]− EFFULL
post

[β]). (12)

ΣX is estimated from the predictors in each full dataset, F SUBk
post denotes the posterior

given the removal of all but k of the separation-inducing observations, and FFULL
post

denotes the posterior given the full the data. pRMSEk quantifies the ability of a

prior to stabilize the induced variation coming from removal of key observations. For

k = 0, 1, 2, there are, respectively, 1, ncomp, and ncomp(ncomp − 1)/2 possible subsets;

when ncomp or ncomp(ncomp−1)/2 exceeded 100, we randomly selected 100 such subsets.

Table 4 gives the values of pRMSEk for the priors on α across all ten datasets.

For k = 1 or 2, the median values of pRMSEk over the selected subsets are given; the

smallest such value is italicized. The EP10 prior on α most often yields estimates of
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β that are closest to those coming from the full-data analysis. In several datasets, the

diffuse priors, t3(10), t∞(10), lead to somewhat dramatically different estimates of β as

separation is approached. These results demonstrate the stabilizing effect from using

locally uniform priors and reducing the scale parameter to down-weight implausible

regions of the α space.

7 Conclusion

Understanding the role the intercept parameter plays in a GLM is conceptually difficult.

When the covariates are not centered and the support of X lies far from the origin, the

parameter lacks meaningful interpretation. Yet prediction based on a model without

an intercept will, in general, incur significant error. The intercept plays the crucial role

of balancing the prediction plane. When the covariates are centered, the intercept is a

function of the regression coefficients, as in the third column, Table 2. In both centered

and non-centered cases, it is thus apparent that efficient estimation of the intercept

has bearing on efficient estimation of β. This relationship between the intercept and

regression coefficients is most explicit in binary data regressions subject to separation,

which can arise due to strong associations, sparsity (rare events), binary covariates, or

relatively high dimensionality of the predictor space, among other causes. Given this,

we seek to better estimate the intercept and therefore regression coefficients.

Maximum likelihood is not equipped to handle separation. When the information in

the data is lopsided in an extreme manner, sensible estimates of the parameters are ob-

tained through shrinkage, e.g. Bayesian estimation. We have demonstrated that mod-

est performance gains in estimation in a logistic regression are obtainable by a priori

downweighting implausible regions of the intercept parameter space. Classical results

on complete separation in logistic regression answer why this makes sense and modern

Bayesian methodology and software demonstrate how to do so. The key idea is to use

priors in which extreme values of the intercept are down-weighted, and Algorithm 1

precisely defines ‘extreme’, given a particular sample size. Although our algorithm can

21

Hosted by The Berkeley Electronic Press



Table 4: Values of the pseudo-RMSE (pRMSEk) metric for ten exemplar datasets described
in the text, when all but k = 2, 1, or 0 of the ncomp observations have been removed; pRMSEk

is the standardized distance between the posterior means of β from the full data analysis
and the reduced data analysis. The data are completely separated when k = 0.

pRMSEk
Dataset k t3(10) t∞(10) EP2(σn) EP4(σn) EP10(σn) Logis(σn)

REMISSION 2 0.00 0.00 0.00 0.00 0.00 0.00
{n, p, Ȳ } = {27, 6, 0.333} 1 0.85 0.92 0.80 0.84 0.83 0.78
{npiv, ncomp, nover} = {2, 2, 2} 0 3.11 3.17 2.76 2.96 3.03 2.67

VASOCONSTRICTION 2 1.19 1.24 1.16 1.28 1.20 1.16
{n, p, Ȳ } = {39, 2, 0.513} 1 1.56 1.68 1.53 1.62 1.71 1.58
{npiv, ncomp, nover} = {3, 3, 3} 0 11.42 11.48 10.99 11.15 11.36 10.64

FOODSTAMP 2 8.52 8.66 3.87 3.32 3.27 4.70
{n, p, Ȳ } = {150, 3, 0.160} 1 14.34 13.86 4.83 3.71 3.44 6.61
{npiv, ncomp, nover} = {17, 17, 6} 0 22.12 18.20 5.10 3.89 3.49 7.49

BIRTHWT 2 2.91 2.92 2.38 2.48 2.61 2.34
{n, p, Ȳ } = {189, 8, 0.312} 1 3.96 3.99 2.83 2.84 2.93 2.87
{npiv, ncomp, nover} = {47, 46, 5} 0 15.51 10.53 3.37 3.24 3.21 3.57

ECMO 2 3.11 3.04 3.21 2.90 2.91 3.45
{n, p, Ȳ } = {178, 22, 0.264} 1 3.86 4.03 3.91 3.56 3.61 4.30
{npiv, ncomp, nover} = {21, 20, 0} 0 5.51 5.40 4.84 4.36 4.14 5.75

PIMA 2 8.44 8.48 7.04 6.89 7.00 7.17
{n, p, Ȳ } = {532, 7, 0.333} 1 12.80 12.83 8.89 8.16 7.85 9.58
{npiv, ncomp, nover} = {122, 102, 102} 0 29.85 24.81 10.85 9.03 8.32 13.40

NES1964 2 6.64 6.43 4.92 4.49 4.24 5.36
{n, p, Ȳ } = {1062, 3, 0.324} 1 8.71 8.41 5.54 4.77 4.38 6.58
{npiv, ncomp, nover} = {346, 346, 0} 0 17.47 12.62 6.23 4.98 4.46 8.47

NES1968 2 6.53 6.50 7.19 6.47 6.24 7.72
{n, p, Ȳ } = {851, 3, 0.542} 1 7.01 7.03 8.19 7.25 6.86 8.84
{npiv, ncomp, nover} = {316, 316, 3} 0 10.46 10.06 12.54 11.21 10.66 13.36

IVC 2 25.80 24.44 17.33 11.71 8.29 22.15
{n, p, Ȳ } = {3200, 4, 0.766} 1 35.81 31.42 19.34 12.12 8.37 27.92
{npiv, ncomp, nover} = {488, 458, 213} 0 49.35 37.62 20.74 12.39 8.42 33.67

HYDRAMINOS 2 0.89 0.88 0.53 0.49 0.45 0.58
{n, p, Ȳ } = {2992, 14, 0.006} 1 1.76 1.57 0.66 0.55 0.47 0.77
{npiv, ncomp, nover} = {16, 14, 1} 0 3.79 2.36 0.65 0.51 0.39 0.92

be applied to any scale family of priors, one additional contribution of this paper is the

novel application of an existing family of distributions, the exponential-power (EP)

family, of which the Laplace and normal distributions are members. Critically, the

shape of the EP family can be made platykurtotic, i.e. locally uniform, in an interval
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around α = 0 while simultaneously and smoothly vanishing for large values of |α|.

A complementary contribution of this paper is Algorithm 2 in the Supplement, a

heuristic approach to calculate the ncomp, nover, and npiv statistics measuring the degree

of separation. We are not aware of simulations studies that have stratified results based

upon these statistics, as we have done here. Based upon our simulation study, using

Algorithm 1 to adapt the prior scale of whichever prior distribution is being used

matters more than changing the shape of the prior distribution itself. However, our

analysis of ten datasets demonstrates the stabilizing properties of the EP-family of

priors, which are more locally uniform, in a variety of true data configurations.

The potential costs of our approach are small in that there is relatively little down-

side to excluding regions of the intercept parameter space, within which precise estima-

tion is not possible. In cases that the likelihood suggests that the intercept is very small

or very large, the parameter will still only be weakly identified. Although the efficiency

gains relative to typical approaches diminish with sample size, there is generally little

loss of efficiency. The scale parameter selected by Algorithm 1 also increases with

sample size, so our priors become appropriately diffuse in these data-rich(er) scenarios.

Moreover, these efficiency gains held across two different priors on the regression coef-

ficients β, one being an adaptive shrinkage prior and the other a weakly informative

prior. In this regard, our recommendation satisfies our working definition of ‘default’.

Nonetheless, it is important to evaluate objections to shrinking the intercept, specif-

ically those posed by Greenland and Mansournia (2015). One of these is that the in-

terpretation of α is sensitive to which predictors are in the model and how they are

coded. To ameliorate concerns about covariate coding, we center all covariate(s), in-

cluding binary covariates, to the empiric mean. Centering covariates in this way may

result in an intercept that has no physical interpretation (an observation cannot take

on a proportion of a binary predictor), but it does retain an intuitive mathematical

interpretation as being the log-odds (in the case of logistic regression) corresponding

to an average observation. All quantities can be back-transformed to the natural scale.

Second, and more importantly, Greenland and Mansournia observe that centering
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the prior at α = 0 may not make sense in some contexts, for example, when the

intercept is a function of the sampling design. When observations are retrospectively

sampled based upon their outcome, the intercept does not reflect the prevalence of

the outcome but rather the outcome-sampling ratio. In this case, the modeler is no

longer agnostic about the intercept. This is related to the choice of location for the

prior, and none of the priors considered here, all of which share a common location,

would be suitable. Instead, introducing a location parameter in the EP (or any other

location-scale family) could be used to reflect the outcome-sampling ratios. More to

the point, assuming that the regression is focused on obtaining sensible estimates of

β, we emphasize that any choice of prior encapsulates such assumptions and will have

consequences for this objective. It is possible to be too agnostic. A very diffuse prior

allows for a very small or large baseline prevalence, which will be unverifiable in most

datasets. Thus, the priors that we recommend here are not unique in this limitation.
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