Journal of Siberian Federal University. Chemistry 4 (2017 10) 515-527

УДК 544.472.3; 544.6.076.3

Reactor with Swirled Fluidized Bed Electrode for in Situ H₂O₂ Production and Utilization for Oxidative Treatment of Organic Pollutants

Andrey O. Kuzmin*a,b,

Victor Yu. Kovalskij^a and Oxana P. Taran^{a,c}

^a Boreskov Institute of Catalysis
5 Lavrentieva, Novosibirsk, 630090, Russia
^b Novosibirsk State University
2 Pirogova, Novosibirsk, 630090, Russia
^c Novosibirsk State Technical University
20 Marksa, Novosibirsk, 630090, Russia

Received 20.02.2017, received in revised form 07.11.2017, accepted 12.12.2017

In spite of remarkable progress in the development of catalytic systems for oxidation at mild conditions, their application and further development are limited by the absence of cheap sources of reduced oxygen forms (H_2O_2 , NaOCl, etc). The in situ generation of hydrogen peroxide is very promising to resolving this problem. It is suggested an approach based on in situ production of diluted hydrogen peroxide solutions from air oxygen in a new type electrochemical reactor with a swirled fluidized bed electrode for carrying out oxidative reactions with organic compounds. The reactor allows to process simultaneously the oxidant production and the oxidative reactions and to utilize entire reaction volume in contrast to electrochemical reactors with flat electrodes geometry. Reactor permits to use a variety of homogeneous and heterogeneous catalytic systems which require hydrogen peroxide.

Keywords: electrolyzer, fluidized bed electrode, hydrogen peroxide, waste water treatment, confined swirled flows.

DOI: 10.17516/1998-2836-0045.

[©] Siberian Federal University. All rights reserved

^{*} Corresponding author E-mail address: kuzmin@catalysis.ru

Реактор с закрученным псевдоожиженным электродом для получения H₂O₂ и его использования для окислительной обработки водных растворов

А.О. Кузьмин^{а,6}, В.Ю. Ковальский^а, О.П. Таран^{а,в}

^аИнститут катализа им. Г.К. Борескова СО РАН Россия, 630090,, Новосибирск, пр. Лаврентьева, 5 ⁶Новосибирский государственный университет Россия, 630090, Новосибирск, ул. Пирогова, 2 ⁶Новосибирский государственный технический университет Россия, 630090, Новосибирск, пр. К. Маркса, 20

Несмотря на значительный прогресс в разработке каталитических систем окисления органических соединений в мягких условиях, их практическое использование затрудняется отсутствием дешёвых источников восстановленных форм кислорода, таких как H_2O_2 , NaOCl и m.d. Henocpedcmbende получение таких соединений в химическом реакторе, например, электрохимическим путём, представляется многообещающим подходом к решению этой проблемы. В данной работе предложен новый реактор для проведения окислительной обработки водных растворов, основанный на использовании закрученного псевдоожиженного электрода для электрохимического восстановления кислорода воздуха и in situ получения разбавленных растворов пероксида водорода. Реактор позволяет одновременно получать активный окислитель и использовать его для проведения окислительных реакций сразу во всём доступном реакционном объёме, что выгодно отличает его от электрохимических реакторов с плоскими электродами. В реакторе данного типа возможно применение самых разнообразных гомогенных и гетерогенных каталитических систем, использующих пероксид водорода.

Ключевые слова: электролизёр, псевдоожиженный электрод, пероксид водорода, очистка водных растворов, закрученные многофазные потоки.

Введение

Пероксид водорода является одним из крупнотоннажных продуктов современной химической индустрии, который получается в промышленности в основном алкилантрахиноновым способом, а также близким методом из изопропилового спирта и электрохимически через образование пероксидисерной кислоты [1, 2]. Мировое потребление пероксида водорода растёт с каждым годом, поскольку он является перспективным и экологически безопасным донором активного кислорода [3, 4]. Более половины всего вырабатываемого H_2O_2 расходуется в текстильной и бумажной отраслях промышленности, в виде разбавленных (0,1-1 %) водных растворов. Однако существует большой ряд и других перспективных направлений применения разбавленных растворов $H_2O_2 - химический синтез, обработка биомассы, очист-$

ка сточных вод. Например, известны подходы к решению проблемы переработки лигниноцеллюлозной биомассы путем её фракционирования на целлюлозу и растворимый лигнин за счёт окислительной деполимеризации лигнина с помощью H₂O₂ в водных растворах уксусной кислоты [5–7].

Более широкому применению процессов окисления с применением H_2O_2 в качестве окислителя препятствует его высокая стоимость, а также сложности транспортировки и хранения концентрированного H_2O_2 , хотя в большинстве процессов нет необходимости использовать концентрированный пероксид водорода. Поэтому исследования, направленные на разработку *in situ* методов эффективного получения растворов H_2O_2 с небольшими концентрациями непосредственно на местах его потребления, весьма востребованы, хотя ещё далеки от практической реализации [4].

Раствор H₂O₂ может быть с успехом использован для окислительной очистки загрязнённых сточных вод (растворов с ХПК в интервале 0-10 г/литр) [8]. Действительно, система Фентона, состоящая из раствора H₂O₂ и солей переходных металлов в кислой среде, является эффективной системой глубокого окисления. Её высокая реакционная способность связана с образованием радикалов О́ H и HO₂ по реакциям:

$$\begin{split} & \operatorname{Fe}^{2+} + \operatorname{H}_2\operatorname{O}_2 \to \operatorname{Fe}^{3+} + \operatorname{OH}^- + \operatorname{OH}; \\ & \overset{\bullet}{\operatorname{O}}\operatorname{H} + \operatorname{H}_2\operatorname{O}_2 \to \operatorname{H}_2\operatorname{O} + \operatorname{H}\overset{\bullet}{\operatorname{O}}_2; \\ & \operatorname{Fe}^{3+} + \operatorname{H}_2\operatorname{O}_2 \leftrightarrow \operatorname{Fe}^{2+} + \operatorname{H}\overset{\bullet}{\operatorname{O}}_2 + \operatorname{H}^+. \end{split}$$

Для проведения процессов окислительной очистки водных растворов весьма привлекательным представляется получение H_2O_2 непосредственно в реакционной среде, например, электрохимическим методом. Возможность использования катодных реакций восстановления молекулярного кислорода в кислой $(O_2 + 2H^+ + 2e^- \Leftrightarrow H_2O_2 (E^0 = 0.628B))$ или щелочной $(O_2 + H_2O + 2e^- \Leftrightarrow HO_2^- + OH^- (E^0 = -0.076B))$ средах исследуется уже очень давно и вызывает большой интерес в связи с возможностью непосредственного выделения [1, 9, 10]. Катодная реакция $H_2O_2 + e^- \Rightarrow OH^\bullet + OH^-$ электрохимического разложения H_2O_2 также приводит к образованию гидроксильного радикала, что может быть использовано для реализации процессов окисления органических субстратов [11] без ограничений, свойственных системе Фентона (наличие солей переходных металлов и pH < 3). Так как образование радикала и абсорбция органических соединений происходят на поверхности электрода, то при большой удельной поверхности последнего возможно эффективное проведение процессов окислительной деструкции органических загрязнений в водных растворах.

Основными факторами, влияющими на выход H_2O_2 и его концентрацию в электрохимическом процессе, являются материал катода, состав католита, наличие в нём примесей, величина электродного потенциала, скорость массопереноса кислорода к поверхности электрода, скорость реакции электровосстановления кислорода и побочных реакций электрохимического разложения пероксида водорода и выделения водорода, определяющих его максимально достижимую концентрацию (табл. 1).

В качестве материала для изготовления катодов используют металлы (Pt, Pd, Au), а также графит и активированный уголь. Разрабатываются различные подходы к промотированию электродов путём создания на их поверхности различных активных групп для повышения выхода по току и подавления реакции электрохимического разложения H_2O_2 [12–18]. Лучшие результаты получены на пористых газодиффузионных катодах [1, 19], где наибольший выход по току достигает величины $85 \div 95$ %. Для насыпных катодов такие высокие выходы по току достигаются только при малой концентрации H_2O_2 [20]. Предложены также способы получения H_2O_2 в кислой среде путём катодного восстановления в ячейке с газодиффузионными пористыми электродами, получаемыми методом горячего прессования из соответствующих порошков и черней [21].

Для осуществления электрохимического получения H_2O_2 предложено большое количество вариантов электролизёров (рис. 1) [1, 2, 20–22]. Обычный электролизёр представляет собой ячейку с разделёнными пористой перегородкой анодным и катодным пространствами. В катодное отделение ячейки подаётся кислород. В других вариантах катод может представлять собой газодиффузионную мембрану, с одной стороны которой находится электролит, с другой – подаваемый под давлением воздух. Известен вариант [21], когда на катоде протекает реакция восстановления кислорода, а на аноде – реакция окисления газообразного водорода.

Таблица 1. Окислительно-восстановительные реакции с участием O_2 и $\mathrm{H}_2\mathrm{O}_2$

Table 1. Redox reactions with O_2 and $\mathrm{H}_2\mathrm{O}_2$

$O_2 + 4H^+ + 4e^- = 2H_2O$	$E^{0} = 1.229B$
$O_2 + 2H^+ + 2e^- = H_2O_2$	$E^0 = 0.628B$
$H_2O_2 + 2H^+ + 2e^- = 2H_2O$	$E^0 = 1.77B$
$O_2 + 2e^- + H_2O = HO_2^- + OH^-$	$E^0 = -0.076B$
$HO_2^- + 2e + H_2O \rightarrow 3OH^-$	$\mathrm{E}^{0}=0.88\mathrm{B}$
$O_2 \uparrow +2H_2O + 2e^- \Leftrightarrow 4OH^-$	$E^0 = 0.401 B$
$2H_2O + 2e^- = H_2 \uparrow + 2OH^-$	$\mathrm{E}^{0}=-0.828\mathrm{B}$

Рис. 1. Принципиальные схемы электролизёров для электрохимического восстановления O_2 до H_2O_2 Fig. 1. Design of typical electrolyzers for electrochemical reduction of O_2 to H_2O_2

Такая система может работать как в режиме электролизёра, так и в режиме топливного элемента. Основным недостатком реакторов с плоской геометрией электродов являются очевидные трудности их масштабирования до практически применимых плотностей тока и объёмов обрабатываемой жидкости. Существенным недостатком также является невысокая скорость массопереноса кислорода к рабочей поверхности электродов, что приводит к невозможности достижения высоких плотностей тока.

Наиболее перспективными с точки зрения масштабирования представляются электролизёры с псевдоожиженным катодом [1, 22] (рис. 1), которые потенциально позволяют достичь более высоких значений тока в реакторе и проводить разнообразные каталитические процессы с участием получаемого Н₂O₂. Псевдоожиженное состояние создаётся продувкой кислорода и потоком электролита. Электрический заряд переносится на токопроводящие частицы псевдоожиженного электрода вследствие их столкновений друг с другом и токоподводящим электродом. Выход по току в реакции получения H₂O₂ при эксплуатации псевдоожиженного графитового катода при условии полного насыщения раствора кислородом достигает величины 80 % [22]. Однако для эффективной работы псевдоожиженного электрода необходимо обеспечить высокие скорости растворения и массопереноса кислорода к поверхности частиц псевдоожиженного электрода при соблюдении необходимого условия сохранности электрических характеристик псевдоожиженного электрода – достаточной частоты столкновений между частицами при отсутствии постоянного контакта между ними. Однако при увеличении скорости продувки кислорода возникает проблема увеличения порозности псевдоожиженного слоя и потери им однородности с образованием пузырей, каналов и застойных зон [23]. Отвод тепла в таком типа реактора также представляет собой существенную проблему.

Рабочие принципы вихревых массообменных аппаратов [24] могут быть использованы для создания принципиально новых электрохимических реакторов. Так, в вихревом газожидкостном аппарате [24, 25] происходит закручивание потока жидкости в вихревой камере с помощью потока газа, поступающего через большое количество тангенциальных щелей направляющего аппарата с образованием на периферии камеры высокодисперсного закрученного газожидкостного слоя. Такой слой обладает низким гидродинамическим сопротивлением – 50÷200 мм H₂O; большим центробежным ускорением – 10÷100 g, что обеспечивает его устойчивость; высокими скоростями тепло- и массопереноса.

В данной работе предложена и испытана конструкция электрохимического реактора, в которой рабочий токоподводящий катод расположен на периферии вихревой камеры, а в её объёме поддерживается закрученный трёхфазный слой, являющийся псевдоожиженным катодом. Высокое значение центробежной силы в таком реакторе обеспечивает устойчивость пседоожиженного электрода и позволяет продувать через него воздух с большими расходами без потери им однородности и существенного изменения порозности. В таком реакторе становится возможным объединить процессы получения и разложения H_2O_2 с целью проведения реакций окислительной деструкции токсичных органических загрязнений в водных растворах. В настоящей работе представлены результаты предварительных экспериментов по изучению реакции получения H_2O_2 и кинетики реакции полного окисления модельного органического соединения – муравьиной кислоты.

Экспериментальная часть

Электрохимический реактор

с закрученным псевдоожиженным электродом

Принцип действия реактора (рис. 2) основан на закручивании в вихревой камере электролита с проводящими частицами псевдоожиженного электрода потоком воздуха, поступающего из тангенциальных отверстий направляющего аппарата, который является также токоподводящим электродом (рис. 3). Данный токоподводящий электрод-завихритель расположен на периферии вихревой камеры и обеспечивает заряжение частиц псевдоожиженного электрода.

Снизу вихревой камеры расположена профилированная вращающаяся торцевая крышка, предназначенная для добавочной закрутки потока (необходимой в момент запуска вращающегося дисперсного слоя) и создания в нём меридиональной компоненты течения (для постоянного подвода и электрического контакта с токоподводящим электродом новых частиц псевдоожиженного электрода). Данная вращающаяся крышка также нужна для устранения торцевого эффекта, заключающегося в увлечении жидкости вдоль неподвижной нижней поверхности,

- Направляющий аппарат графитовый катод
- Мембрана Nafion[®]
- . Газовые вход и выход
- Патрубки подачи и отвода католита
- . Патрубки подачи и
- отвода анолита 7. Вращающийся вал с
- вертушкой, профилированной нижней крышкой и отверстиями для отвода газа

Голубые стрелки - потоки газа. Зеленные стрелки - потоки электролита.

Рис. 2. Схема электрохимического реактора с закрученным псевдоожиженным электродом Fig. 2. The design of electrochemical reactor with swirled fluidized bed electrode

Рис. 3. Фотография токоподводящего электрода – завихрителя потока газа

Fig. 3. The photo of current-carrying electrode - gas flow swirler

что приводит к неконтролируемому выносу электролита из зоны электролиза через отверстия для выхода воздуха. Центральная вертушка приводится во вращение с помощью асинхронного двигателя, частота вращения которого регулируется с помощью преобразователя частоты Mitsubishi FR-S540E-1.

Сверху аппарата расположена анодная камера с графитовым анодом. Анодное и катодное отделения электролизёра разделены мембраной Nafion[®], что предотвращает прямой контакт псевдоожиженного катода с анодом. Мембрана выступает также в роли верхней торцевой крышки.

Воздух подаётся через направляющий аппарат, проходит через псевдоожиженный электрод и покидает вихревую камеру через отверстия в центральной лопастной вертушке, играющей также роль сепаратора мелких капель электролита. Воздух в реактор подаётся при атмосферном давлении из линии сжатого воздуха после соответствующей очистки и насыщения парами воды с целью предотвращения потерь католита, вызванных его испарением. Расход воздуха через реактор измеряется с помощью ротаметра РМ-6.3-ГУЗ.

Электролит подаётся в вихревую камеру через патрубки, подводящие его снизу вращающейся торцевой крышки, а также сверху, в районе точки крепления центральной вертушки. Такой подвод электролита реализован для предотвращения эффекта заклинивания вращающихся поверхностей мелкими твёрдыми частицами. Содержащий раствор пероксида водорода электролит отводится через патрубок, расположенный на внутренней границе вихревого электрода. В анодной части реактора расположены патрубки для отвода и подвода электролита, а также патрубки для отвода образующегося кислорода.

Экспериментальная модель электрохимического реактора полностью изготовлена из химически стойких материалов. В качестве материала токоподводящего катода, а также для получения графитовых частиц для закрученного псевдоожиженного электрода, используется высокоплотный особо чистый графит марки МГ-ОСЧ с размером частиц 2÷4 мм.

Ток подаётся с помощью источника постоянного тока (режим гальваностата). Максимальный подаваемый ток – 10 ампер (ограничен имеющимся источником постоянного стабилизированного тока); скорость подачи воздуха 6.5 м³/ч; скорость вращения центральной вертушки 300 об/мин. Объём жидкости в вихревом слое 80÷100 мл, насыпной объём графита 75÷120 мл, полный объём вихревого слоя около 150 мл. Потенциал токоподводящего электрода– завихрителя измеряется относительно хлорсеребряного электрода сравнения через шланг, подводящий электролит в катодную зону реактора. В качестве анолита использовался 0.1М H₂SO₄ + 100 г/литр Na₂SO₄.

Эксперименты по получению пероксида водорода и по очистке водных растворов от модельных загрязнений проводили следующим образом. Электролит из промежуточной ёмкости прокачивался по замкнутому контуру через вихревой псевдоожиженный электрод со скоростью 200 мл/мин, при этом полный объём католита составлял 200÷300 мл. Через определённые промежутки времени отбирались пробы для анализа.

Аналитические методики

Концентрацию H₂O₂ в растворе определяли титрованием церием (IV) [26] либо спектрофотометрически по поглощению комплекса H₂O₂ с Ti(IV) [27, 28]. Для этого к 2 мл TiCl₄ в 4 н H₂SO₄ (1 мг/мл) добавляли 2 мл исследуемого раствора. Концентрацию пероксида водорода рассчитывали, используя молярный коэффициент экстинкции образующегося комплекса ϵ =700 М⁻¹·см⁻¹ при λ =405 нм.

Анализ муравьиной кислоты проводили с внутренним стандартом – уксусной кислотой на жидкостном хроматографе Shumadzu (элюент -20mM K₂HPO₄, pH=2.9), колонка Synerdgi Hydro-RP, объем пробы 20 мкл. Пробы стабилизировали введением этанола.

Выход по току в реакции получения пероксида водорода рассчитывали по формуле

$$\eta = \frac{\mathbf{C} \cdot \mathbf{V} \cdot \mathbf{n} \cdot \mathbf{F}}{\mathbf{J} \cdot \mathbf{t}}.$$

Здесь С – концентрация пероксида водорода (M); t – время (c); n = 2 - число электронов; F – число Фарадея; J – ток (A); V – объем электролита.

Используемое оборудование и реактивы

В работе применяли: потенциостат IPC-Pro (НТФ «Вольта»), источник постоянного тока, вольтметр, магнитная мешалка, насосы ISMATEC и Masterflex Digi-Staltic, термостат, спектрофотометры Shimadzu UV-300 и Uvicon 923 KONTRON INSTRUMENTS Double Dean UV/VIS Spectrophotometer.

Для приготовления реакционных растворов и проведения анализа использовались 0.1 М H₂SO₄ (фиксанал), раствор Ti⁴⁺ (4 мг/мл), раствор 8 N H₂SO₄.

Все растворы готовились с водой, очищенной с помощью установки Milli-Q (Millipore). Используемые реагенты имели квалификацию "хч" или "осч".

Результаты и обсуждение

На рис. 4, 5 представлены результаты предварительных экспериментов по получению пероксида водорода и по электрокаталитическому разложению модельного органического соединения – муравьиной кислоты (рис. 6) в электрохимическом реакторе с закрученным псевдоожиженным электродом.

Без наличия в системе псевдоожиженного электрода (рис. 4, кривая 4) процесс образования пероксида водорода идёт с очень небольшим выходом по току; это объясняется слишком большим потенциалом токоподводящего электрода при данном значении тока, что приводит к преимущественному выделению водорода в кислой среде. Ситуация кардинальным образом меняется при добавлении в реактор дроблёного графита (рис. 4, кривая 2). В данном случае достигаемая концентрация пероксида водорода возрастает примерно в 200 раз при некоторых колебаниях максимальной концентрации и изменении величины измеряемого потенциала токоподводящего электрода во времени, что, по всей видимости, связано с изменением условий в реакционной зоне реактора (появлением мелких частиц вследствие истирания графита, накоплением пероксида водорода).

Добавление фенола в реакционную среду приводит к существенному увеличению выхода по току (рис. 4, кривая 3), что связано с ингибированием радикально-цепных механизмов реакции разложения пероксида водорода. Красная кривая получена при наличии в системе фенола в концентрации 5·10-³M.

- 522 -

Рис. 4. Кривые накопления пероксида водорода в вихревом электрохимическом реакторе в разных условиях. Выход по току на начальном участке кривых накопления обозначен символом η. Текущий потенциал (в мВ) токоподводящего электрода относительно электрода сравнения приведён рядом с экспериментальными точками. Расход воздуха 6.5 м³/ч, скорость прокачки католита 200 мл/мин

Fig. 4. H_2O_2 formation dependences on experimental conditions. Current efficiency is denoted by η . Electrical potential of current-carrying electrode is also given beside experimental points. Airvolumeflowrate – 6.5 m³/h, catholyte volume flow rate – 200 ml/min

Рис. 5. Выход по току η в реакции образования H_2O_2 на начальном этапе и разность потенциалов между анодом и катодом в зависимости от силы тока. V(католит) = 200 мл, V(графит) = 100 мл, расход воздуха 6.5 м³/ч, скорость прокачки католита 200 мл/мин. Католит – 0.1M H_2SO_4

Fig. 5. Current efficiency η at initial stage of H_2O_2 formation and voltage supplied between anode and cathode depending on current. V(catholyte) = 200 ml, V(graphite) = 100 ml. Airvolumeflowrate – 6.5 m³/h, catholyte (0.1M H_2SO_4) volume flow rate – 200 ml/min

Рис. 6. Кинетика окисления муравьиной кислоты при различных значениях силы тока. V(католит) = 200 мл, V(графит) = 100 мл, расход воздуха 6.5 м³/ч, скорость прокачки католита 200 мл/мин. Католит: 0.1 М муравьиная кислота + $0.27M H_2SO_4 + 1.10^{-3}M Fe^{3+}$

Fig. 6. Oxidative destruction rate of formic acid at different currents. V(catholyte) = 200 ml,V(graphite) = 100 ml. Airvolumeflowrate - 6.5 m³/h, catholyte volume flow rate - 200 ml/min.Catholyte: 0.1 Mformic acid + 0.27 MH₂SO₄ + 1×10⁻³MFe³⁺

Показано, что уникальной особенностью предложенной системы является возможность получения пероксида водорода с хорошим выходом по току в дистиллированной воде при невысоком значении напряжения, подаваемого на реактор (рис. 4, кривая 1), что объясняется наличием собственной проводимости псевдоожиженного электрода. Данное обстоятельство привлекательно для проведения реакций окислительной обработки загрязнённой воды, так как отсутствует необходимость добавления электролитов в раствор обрабатываемой жидкости.

При увеличении значения тока, пропускаемого через реактор, выход по току в реакции образования пероксида водорода ожидаемо падает (рис. 5) из-за увеличения скорости реакций выделения водорода в кислой среде и электрохимического разложения пероксида водорода. Видно, что при наличии псевдоожиженного электрода становится возможным пропускание через реактор больших токов при небольшом полном электрическом сопротивлении реактора. Также ввиду высокой скорости отвода тепла из зоны электролиза потоком воздуха увеличение значения подаваемого тока не приводит к разогреву католита.

На рис. 6 представлены предварительные данные по кинетике окисления муравьиной кислоты, в электрохимическом реакторе. Для ускорения реакции разложения пероксида водорода и повышения концентрации гидроксильных радикалов в католит добавлена соль железа (III). Интересно то, что при токе 2.5 А скорость реакции окислительной деструкции муравьиной кислоты, по-видимому, объясняется различным соотношением скоростей накопления и распада пероксида водорода в системе при различных вариантах распределения потенциала на частицах псевдоожиженного электрода. При больших значениях пропускаемого токах реакция окисления следует первому порядку по концентрации муравьиной кислоты, что указывает на большую концентрацию активных частиц, образующихся в ходе электрохимических реакций восстановления кислорода.

При значении тока 10 А значение эффективной константы скорости реакции окисления первого порядка составляет величину около 1.4 с⁻¹. Данное значение при данных условиях эксперимента соответствует скорости окисления муравьиной кислоты на начальном этапе 230 ммоль/(ч·л), что примерно в 3 раза превосходит значение скорости окисления 0.1 М муравьиной кислоты по материалам работы [29], при её каталитическом окислении на гранулах Сибунит-4 с концентрацией 5 г/л, раствором H_2O_2 с постоянной концентрацией 0.5 M, с добавлением 3·10⁻⁴ M Fe³⁺, при pH=3 и 30 °C.

Заключение

В работе показана принципиальная возможность создания электрохимического реактора с закрученным псевдоожиженным электродом, предназначенного для восстановления кислорода воздуха с целью *in situ* получения активного окислителя и его использования для проведения реакций окислительной деструкции органических соединений. Показано, что названные реакции можно эффективно проводить в реакторах данного типа.

На текущем этапе проведения экспериментов отсутствует возможность контроля над распределением истинного потенциала по псевдоожиженному электроду и кинетикой переноса заряда на них от токоподводящего электрода в зависимости от режимных параметров проведения процесса. Используемый в предварительных экспериментах для получения частиц псевдоожиженного электрода особо чистый графит не является оптимальным материалом, который также недостаточно прочен, что приводит к постепенному истиранию частиц с образованием мелкой угольной фракции. С указанными обстоятельствами связаны недостаточно высокие достигнутые выходы по току.

Однако необходимо отметить, что для проведения реакций окислительной деструкции важно не значение выхода по току в реакции получения H_2O_2 , а полная потребляемая мощность электрохимического реактора или полные затраты энергии на проведение процесса. Возможно также значительное увеличение выхода по току в реакции образования H_2O_2 или общее увеличение производительности предложенного электрохимического реактора путём проведения оптимизации режимных параметров функционирования вихревого псевдоожиженного электрода, выбора подходящего материала электрода (стеклоуглерод и другие материалы) и его химической модификации.

Благодарности

Работа выполнена при поддержке РАН и ФАНО России (проект V. 47.1.12).

Авторы также выражают благодарность сотруднику Института катализа СО РАН О.Л. Огородниковой за помощь в проведении химического анализа.

Список литературы

1. Фиошин М.Я., Смирнова М.Г. Электросинтез окислителей и восстановителей. Ленинград: Химия, 1981. [Fioshin M.Ya., Smirnova M.G. Electrosynthesis of oxidant and reductant. Leningrad:Chemistry, 1981 (In Russ.)].

- 525 -

2. Фиошин М.Я., Смирнова М.Г., Электрохимические системы в синтезе химических продуктов, Ленинград: Химия, 1985. [Fioshin M.Ya., Smirnova M.G. Electrochemical systems in the synthesis of chemical products. Leningrad:Chemistry, 1985 (In Russ.)].

3. Hancu D., Green J., Beckman E.J. H₂O₂ in CO₂: sustainable production and green reactions. *Acc. Chem. Res. 2002.* Vol.35, P. 757-764.

4. Ипполитов Е.Г., Артемов А.В., Трипольская Т.А., Похабова И.В. Каталитический синтез пероксида водорода из элементов. *Катализ в промышленности 2001* (3), С. 4. [Ippolitov E.G., Artemov A.V., Tripol'skaya T.A., Pokhabova I.V. Catalytic synthesis of hydrogen peroxide from elements. *Catalysis in Industry 2001* (3), Р. 4. (In Russ.)].

5. Kuznetsov B. N., Sudakova I. G., Garyntseva N. V., Djakovitch L.Pinel C. Kinetic study of aspen-wood sawdust delignification by H₂O₂ with sulfuric acid catalyst under mild conditions. *Reaction Kinetics, Mechanisms and Catalysis 2013.* Vol. 110(2), P. 271-280.

6. Kuznetsov B. N., Kuznetsova S. A., Danilov V. G.Yatsenkova O. V. Catalytic properties of TiO_2 in wood delignification by acetic acid - hydrogen peroxide mixture. *Reaction Kinetics and Catalysis Letters 2008.* Vol. 94(2), P. 311.

7. Kuznetsov B. N., Sudakova I. G., Garyntseva N. V., Djakovitch L., Pinel C. Kinetic studies and optimization of abies wood fractionation by hydrogen peroxide under mild conditions with TiO₂ catalyst. *Reaction Kinetics, Mechanisms and Catalysis 2017.* Vol. 120 (1), P. 81-94.

8. Andreozzi R., Caprio V., Insola A., Marotta R. Advanced oxidation processes (AOP) for water purification and recovery. *Catalysis Today 1999*. Vol. 53, P. 51-59.

9. Savinova E.R., Kuzmin A.O., Frusteri F., Parmaliana A., Parmon V.N. Partial oxidation of ethane in a three-phase electro-Fenton system. *Natural Gas Conversion V, Studies in Surface Science and Catalysis 1998.* Vol.119, P. 429-434. Elsevier Science B.V.

10. Kornienko V.L., Kolyagin G.A., Kornienko G.V., Chaenko N.V., Kosheleva A.M., Kenova T.A., Vasil'eva I.S. Use of aqueous hydrogen peroxide solutions prepared by cathodic reduction of oxygen for indirect oxidation of chemical substances in situ: achievements and prospects. *Russian Journal of Applied Chemistry 2014*. Vol. 87(10), P. 1-15.

11. Корниенко Г.В., Чаенко Н.В., Корниенко В.Л. Непрямое электрохимическое окисление фенола пероксидом водорода, генерированным in situ из кислорода в газодиффузионном электроде в кислой и нейтральной средах. *Химия в интересах устойчивого развития 2006*. Т. 14(1), С. 23-26. [Kornienko G.V., Chaenko N.V., Kornienko V.L. Indirect electrochemical oxidation of phenol by hydrogen peroxide, generated *in situ* from oxygen in a gas diffusion electrode in acidic and neutral media. *Chemistry for Sustainable Development 2006*. Т. 14 (1), Р. 23-26. [In Russ.]].

12. Allongue P., Delamer M. Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts. *J. Am. Chem. Soc. 1997.* Vol. 119, P. 201-207.

13. Vaik K., Sarapuu A., Tammeveski K., Mirkhalaf F., Schiffrin D. J. Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH. *Journal Of Electroanalytical Chemistry 2004*. Vol. 564, P. 159-166.

14. Tammeveski K., Konturi K., Nichols R.J., Potter R.J., Dchiffrin D.J. Surface redox catalysis for O₂ reduction on quinone-modified glassy carbon electrodes. *Journal of Electroanalytical Chemistry* 2001. Vol. 515, P.101-112.

15. Tammeveski K., Schiffrin D.J., Vaik K. Electrochemical reduction of oxygen on anodically pre-treated and chemically grafted glassy carbon electrodes in alkaline solutions. *Electtochem. Comm.* 2004. Vol. 6, P. 1-5.

16. Tammeveski K., Schiffrin D.J., Vaik K. and etc. Oxygen reduction on phenantrenquinonemodified glassy carbon electrodes in 0.1M KOH. *J. of Electroanal. Chem. 2004.* Vol. 564, P. 159-166.

17. Tammeveski K., Schiffrin D.J., Mirkhalaf F. Substituent effects on the electrocatalytic reduction of oxygen on quinone-modified glassy carbon electrodes. *Phys. Chem. Chem. Phys.* 2004. Vol. 6, P. 1321-1327.

18. Tammeveski K., Schiffrin D.J., Vaik K. Electrochemical reduction of oxygen on anthraqiunonemodified glassy carbon electrodes in alkaline solutions *J. of Electroanal. Chem. 2004.* Vol. 541, P. 23-29.

19. Корниенко Г.В., Колягин Г.А., Корниенко В.Л., Парфенов В.А. Исследование углеграфитовых материалов для электросинтеза H_2O_2 из O_2 в газодиффузионных электродах. Электрохимия 2016. Т. 52. № 10. С. 1104-1108. [Kornienko G.V., Kolyagin G.A., Kornienko V.L., Parfenov V.A. Investigation of carbon-graphite materials for electrosynthesis of H2O2 from O2 in gasdiffusion electrodes. *Electrochemistry 2016*. Vol. 52(10), P. 1104-1108. [In Russ.]].

20. Oloman, C., et al. The electroreduction of oxygen to hydrogen peroxide on fixed bed cathodes. *Can. J. Chem. Eng.* 1976. Vol. 54, P.312-318.

21. Otsuka, K., Yamanaka, I. One step synthesis of hydrogen peroxide trough fuel cell reaction. *Electrochimica Acta* 1990. Vol. 35(2), P. 319-322.

22. Oloman, C., et al. The electroreduction of oxygen to hydrogen peroxide on fluidized cathodes. *Can. J. Chem. Eng. 1975.* Vol. 53, P. 268-273.

23. Ейтс Д. Основы механики псевдоожижения с приложениями. М.: 1986. [Eyts D. Fundamentals of fluidization mechanics with applications. Moscow: 1986. (In Russ.)].

24. Гольдштик М.А., *Вихревые процессы и явления*, Новосибирск: Институт теплофизики CO AH CCCP, 1990. [Goldshtik M.A., Vortex processes and phenomena. Novosibirsk: Institute of Thermophysics, Siberian Branch of the USSR Academy of Sciences, 1990 (In Russ.)].

25. Kuzmin A.O., Pravdina M.Kh., Yavorsky A.I., Yavorsky N.I., Parmon V.N., Vortex centrifugal bubbling reactor, *Chemical Engineering Journal 2005*. Vol. 107. 1-3. P. 55-62.

26. Коростылев, П.П. Реактивы и растворы в металлургическом анализе. М: Металлургия, 1977. [Korostylev P.P. Reagents and solutions in metallurgical analysis. Moscow: Metallurgy, 1977. (In Russ.)].

27. Шарло Г. Методы аналитической химии. Количественный анализ неорганических соединений. М.-Л.: Химия, 1965. . Charlot G. Les methodes de la chimie analytique. Analyse quantitative minérale. Edité par Masson & Cie, 1961.].

28. Сендел, Е. Колориметрические методы определения следов металлов. М.: Мир, 1964. [E. Sendel, Colorimetric Determination of Traces of Metals. Interscience Publish-ers, Inc., New York, 1959.].

29. Taran O., Polyanskaya E., Ogorodnikova O., Kuznetsov V., Parmon V., Besson M., Descorme C. Influence of the morphology and the surface chemistry of carbons on their catalytic performances in the catalytic wet peroxide oxidation of organic contaminants. *Applied Catalysis A: General 2010*. Vol. 387, P. 55–66.