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A worldwide collection of strains of Cryphonectria parasitica was examined to draw a precise picture of the incidence and
diversity of mitochondrial plasmids related to the plasmid pUG1. Amplification by specific PCR of 199 strains showed

the presence of pUG1-like plasmids in 22% of the populations examined. The entire plasmid molecules were amplified
by multiplex PCR and the products showed different RFLP patterns. The variability was mostly in a non-coding region
of the molecule that has been sequenced in some representative strains, enabling the molecular evolution of the molecule

to be elucidated. The data show that mitochondrial plasmids of C. parasitica comprise an almost homogeneous family
(designated pCp) that can be divided into two clusters based on the presence/absence respectively of a 60 nucleotide
region in North American and European plasmids.

INTRODUCTION

Plasmids are common extra-chromosomal DNA mol-
ecules that can reproduce independently from chromo-
somal DNA in both pro- and eukaryotes. Plasmids
have been discovered more recently in the latter, but
the number of reports concerning different eukaryotic
organisms, with the exception of animals, is now con-
siderable (Griffiths 1995). Although the origin and
persistence of plasmids is still not understood, their
presence can be considered the rule, particularly in fila-
mentous fungiwhere they aregenerally localized inmito-
chondria (mt) and are of linear type (Nargang 1985).
Most circular mtplasmids are derived from mtDNA
and have sequence homology with the host nucleic acids
and should be considered plasmid-like molecules. How-
ever, aminority, the ‘trueplasmids ’,have theirown inde-
pendent sequence (Griffiths 1995). This second group
includes the plasmids LaBelle, Fiji, Varkud, Maurice-
ville, Java, Mb1, VS and Harbin 2 of Neurospora
spp., and the Cryphonectria parasitica mitochondrial
plasmid, pUG1, which has a high degree of similarity
to the Fiji and LaBelle plasmids ofN. intermedia. These
three mtplasmids all encode a particular family B DNA
polymerase which is characterized by a specific sig-
nature, TTD instead of DTD, in the motif C typical
of this family. Moreover, they are closely related to the
linear plasmid polymerases (Li & Nargang 1993, Gobbi
et al. 1997). The existence of these unique features
in their coded enzymes suggests that pUG1 and the

plasmids Fiji and LaBelle of Neurospora intermedia
constitute a new subgroup of circular mtplasmids, and
that they may share a common origin.

Cryphonectria parasitica is the pathogenic agent of
chestnut blight, a disease that almost completely de-
stroyed the chestnut population of the USA and Europe
(Anagnostakis 1987, Heiniger & Rigling 1994). Some
strains of the pathogen, termed ‘hypovirulent’, are in-
fected by a cytoplasmic mycovirus of the genus Hypo-
virus (Hillman et al. 1995). The viral double-stranded
(ds) RNA produces an attenuation of fungal virulence
and its spread in the chestnut stands by means of the
hypovirulent strains can be used as a tool for biological
control of the disease (Grente &Berthelay-Sauret 1978).

While hypovirulence has been successfully employed
to heal chestnut trees in Europe (Bisiach, DeMartino &
Intropido 1991, Heininger & Rigling 1994), it did not
produce similar results in North American forest eco-
systems (Anagnostakis et al. 1998). A different way of
reducing the virulence of this pathogenwould be of great
interest and importance.

Plasmids of parasitic fungi are generally considered
to be correlated with the pathogenicity of their host
(Griffiths 1995). In C. parasitica, plasmid pUG1 was
initially found in strains showing a senescent phenotype
called heteroauxesis (Gobbi et al. 1985, Firrao & Gobbi
1989, Gobbi, Firrao & Locci 1989). Since then, it has
been hypothesized that the plasmid might reduce the
fitness of the strain and consequently lower pathogen-
icity in chestnut trees (Gobbi & Locci 1990). A second
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C. parasitica plasmid, named pCRY, with 99.8% nu-
cleotide sequence identity to pUG1, has recently been
reported (Monteiro-Vitorello et al. 2000). The two
plasmids appear to be closely related and pCRY has
been proven to affect the virulence of at least one strain
of C. parasitica when tested on apples or chestnut
stems. Moreover mitochondrial hypovirulence has been
proven to exist (Baidyaroy et al. 2000).

Among filamentous fungi, only a few fungal species,
mostlyNeurospora spp., have been well-investigated for
mtplasmids, usually in connectionwith the senescence of
the mycelium. The Fiji and LaBelle plasmids are com-
monly present in Neurospora spp. strains and are very
well characterized. In contrast, little is known about C.
parasiticamitochondrial plasmids. Since these plasmids
may have a role as the agents of a new kind of hypo-
virulence, we undertook an extensive survey on a
worldwide collection of 199 strains from natural popu-
lations of C. parasitica. Our aim was to draw a precise
picture of the incidence and diversity of pUG1-like
mtplasmids and to determine possible evolutionary
groupings. Amplification experiments were performed
to detect the presence of pUG1-like plasmids, to amplify
the entire plasmid molecule, if present, and to sequence
the most diverse regions of the molecule for phylogen-
etic studies. The relationships of the plasmid to a specific
genome (mtDNA or viral dsRNA), to specific hosts, to
the virulence of the host and to the geographic origin of
the strains were also investigated. Since plasmids are
useful markers in the study of fungi at the population
level, pUG1 or similar plasmids could help to clarify
aspects of the biology of C. parasitica, such as the mo-
dality of its worldwide diffusion and the structure of its
populations (Milgroom 1995).

We describe here a family of mitochondrial plasmids
ofC. parasitica named pCp. A huge number of plasmids
belonging to this family have been found around the
world. Since among theWestern plasmids no significant
diversity has been found, we suggest that the European
and the North American populations have a common
ancestor.

MATERIALS AND METHODS

Fungal isolates

The strains ofCryphonectria parasitica used in this study
are listed in Table 1. They were isolated from Castanea
spp. and Quercus spp. tissues. All isolates were grown
on Potato Dextrose Agar (PDA; Difco Laboratories,
Detroit, MI) and are preserved in the National Culture
Bank, Dipartimento di Biologia applicata alla Difesa
delle Piante, Udine.

DNA extraction

Extraction of total DNAwas carried out as described in
Lecellier & Silar (1994) from 0.2 g of mycelium grown
on PDA agar plates covered by BIO-rad membrane

Table 1. Subpopulations of Cryphonectria parasitica used in the

present study (n=number of isolates).

Origin Host n

Europe

Italy

Friuli Venezia Giulia Castanea sativa 10

Trentino C. sativa 2

Lombardiaa C. sativa 9

Piemontea C. sativa 4

Liguriaa C. sativa 1

Toscanaa C. sativa 3

Basilicata 1 C. sativa 3

Basilicata 2 Quercus pubescens 3

Puglia 1 Q. pubescens 2

Puglia 2 C. sativa 2

Calabria 1 C. sativa 5

Calabria 2 Q. pubescens 2

Campania 1 Q. frainetto 1

Campania 2 C. sativa 5

Sardegnaa C. sativa 2

Italy*b C. sativa 1

Italy*c C. sativa 1

Subtotal 56

France

Ardeche C. sativa 2

Lozere C. sativa 4

Dordogne C. sativa 3

Var C. sativa 1

Pyrenees atlantiques C. sativa 1

Corse C. sativa 4

Subtotal 15

Switzerland

Bregaglia C. sativa 4

Novaggio C. sativa 3

Laboratory crossd C. sativa 2

Copera C. sativa 2

Claro C. sativa 4

Choex C. sativa 4

Subtotal 19

Greece

Mt. Pelion C. sativa 4

Messologi C. sativa 3

Ioannina C. sativa 2

Chalkidiki C. sativa 2

Arkadia C. sativa 1

Subtotal 12

Albania

Tropoja Castanea sativa 2

Albania* Castanea sativa 1

Subtotal 3

Europe subtotal 105

North America

Canada

Ontario C. dentata 1

USA

Texas C. pumila 1

California C. dentata 5

Connecticut C. dentata 2

Maryland C. dentata 10

America subtotal 19

Asia

Japan

Yasatoe Castanea sp. 2

Yachiyoe Castanea sp. 7

Sowae Castanea sp. 2

Sanwae Castanea sp. 4

Subtotal 15
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(BIO-rad Laboratories, Hercules, CA) for up to 5 d at
25 xC in the dark. DNA samples were resuspended in
50 ml of water.

Primers design, PCR and electrophoresis

Primers were designed depending upon the sequence of
pUG1 (EMBL accession no. Y12637) ; their sequences
and localization are reported in Fig. 1 and Table 2. Four
PCR experiments were performed: detection PCR, con-
trol PCR, multiplex PCR and preparative PCR for
sequencing. Each PCR reaction contained 10r buffer
(Boehringer Mannheim Biochemicals, Mannheim),
150 ng of each primer, 200 mMdNTPs and 2UTaqPoly-
merase in a standard reaction of 50 ml. All reactionswere
performed in a 9600 thermocycler (Perkin Elmer, NJ).

Control PCR was performed with the NS7/NS8
primer pair (White et al. 1990) for partial amplifica-
tion of the nuclear 18 S rDNA. The reaction was cycled
40 times with 95 x (30 s), 60 x (60 s) and 68 x (165 s) as
parameters. For the detection of pUG1-like plasmids,
PCR amplification was performed with primers PSR
and PSF for 35 cycles of 95 x (30 s), 60 x (75 s), and 72 x

(90 s). Multiplex PCR was conducted using three pairs
of primers, PM1F and PM1R, PM2F and PM2R,
PM3F and PSR, with a touchdown program, 28 cycles
of 95 x (30 s), 64 x xDt=0.5 x (60 s) and 72 x (90 s) fol-
lowed by seven cycles of 95 x (30 s), 50 x (60 s) and 72 x

(90 s). Fragments for sequencing were produced from a
PCR performed with primers PUGF and PUGR for 35
cycles of 95 x (30 s), 56 x (75 s) and 72 x (90 s).

All PCR experiments were performed at least twice
from independent DNA extractions. Amplified DNA
was routinely electrophoresed on 1% (w/v) agarose gels
at 100 V for 1 h in Tris-acetate buffer, stained with EtBr
(0.5 mg mlx1) and photographed under UV light.

Analysis of RFLPs

DNA samples amplified with multiplex PCR were di-
gested with RsaI, EcoRI, KpnI and Hinf I as indicated
by the manufacturer (Boehringer Mannheim Biochemi-
cals). Profiles were resolved on 1% agarose gels run at
100 V for 40 min and stained with EtBr (0.5 mg mlx1).

Sequencing and phylogenetic analysis

After PCR, amplified DNAs were purified by the PCR
purification kit protocol (Qiagen, Germany) and se-
quenced by standard methods. Sequences were aligned
manually and analysed with the PAUP program version
3.1.1 (Swofford 1993). The strength of the tree topology
was assessed by the bootstrap method.

RESULTS

Occurrence of pUG1-like plasmids

All DNA samples were amplified by the control pri-
mers NS7 and NS8 (data not shown). Forty-four of 199
(22.1%) fungal isolates tested consistently gave ampli-
fication products with specific primers PSF and PSR
(Table 3). Only a single band was detected of approxi-
mately 800 bp, the size expected from pUG1. Five
isolates (2.5%) did not give consistent results, and the
remaining 150 (75.4%) failed to amplify despite giving
positive control reactions.

Fig. 1. Physical map of the plasmid pUG1 of Cryphonectria
parasitica. Positions of the primers mentioned in the text are
indicated. The open reading frame (ORF) (semi-circular ar-
row), the polymorphic region (semi-circle), and the 60 bp

insertion of the pCRY-like plasmids (star) are also shown.

Table 1. (cont.)

Origin Host n

China

Suzhow Castanea sp. 2

Schuchene Castanea sp. 2

Nanjinge Castanea sp. 1

Guandonge Castanea sp. 1

Guixie Castanea sp. 3

Jianyange Castanea sp. 1

Xiuming Ae Castanea sp. 3

Xiuming Be Castanea sp. 3

Qian xi Castanea sp. 3

Huai rou Castanea sp. 3

Zhen an Castanea sp. 3

Tong cheng Castanea sp. 3

Yi chang Castanea sp. 3

Dong nan Castanea sp. 1

Yang shuo Castanea sp. 2

Yu ping Castanea sp. 1

Subtotal 31

Korea

Korea* Castanea spp. 29

Subtotal 29

Asia subtotal 75

Total 199

a Subpopulations reported in Cortesi, Milgroom& Bisiach (1996).
b Strain corresponding toATCC52574, obtained by the conversion

of Ep67 with the French hypovirulent Ep 113.
c Strain corresponding to the ATCC 38753, isolated by L. Mit-

tempergher in Italy.
d Strain obtained by the laboratory conversion of a virulent isolate.
e Subpopulations reported in Milgroom et al. (1996).

* Place of isolation unknown.
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There was no correlation between the presence of a
pUG1-type plasmid and a specific genotype of mito-
chondrial DNA of the host strain (Table 4). The pres-
ence of viral dsRNA did not influence the presence of
the plasmids as pUG1-like plasmids were found both
in virus-affected and virus-free isolates with different
degrees of virulence, nor were plasmids associated with
a specific plant host.

Global distribution of the plasmids

Amplifiable pUG1-like plasmids were common in the
Western populations of Cryphonectria parasitica where
32.3% (40/124) of the isolates harboured such plasmids
(Table 3). The frequencies were higher in the French and
Swiss populations, with 12/15 (80%) and 10/19 (52.7%)
strains respectively hosting a plasmid. Plasmids were
detected in 16/56 (28.6%) of the Italian strains, while no
amplification was obtained from any strain fromGreece
or Albania. In contrast, the frequency of the presence of
plasmids in the North American population was only
10.5% (2/19) and only 4% (3/75) in the eastern Asian
populations.

Plasmid restriction site polymorphisms

The entire DNA of the plasmids was amplified bymulti-
plex PCR in all the strains harbouring pUG1-like
plasmids, with the exception of the Asiatic ones, and
three fragments were obtained (Fig. 2). These measured
1991, 1647 and 1151 bp in size as expected from pUG1,
were designated m1, m2 and m3 respectively and
covered, with overlaps, the entire circular molecule.

Restriction enzymes RsaI and Hinf I were chosen for
the RFLP analysis. RsaI digestion of the m1 fragment
produced three restriction patterns, while digestion of
the fragmentsm2andm3gave twopatterns.WhenHinf I
was used, 3 RFLPs were detected in fragment m1, none
in fragment m2 and three in fragment m3 (data not
shown). The most polymorphic region of the plasmid
was detected, corresponding to the non-coding region of
pUG1 between 3800 and 500 bp.

The multiplex primers did not produce any amplifi-
cation under any of the experimental conditions tested
when used with the Asiatic strains.

Table 2. Primers used for the amplifications of the plasmid DNAs of Cryphonectria parasitica.

Primer Sequence 5k–3k Positiona PCR type

NS7 GAGGCAATAACAGGTCTGTGATGC n.r.b Control

NS8 TCCGCAGGTTCACCTACGGA n.r.b Control

PSF GACCTGGATTTAGCTATTAGAAA 3894–3916 Detection

PSR GCCCCACTTCCACTTAAACTAAA 485–507 Detection

PM1F CGAAAAATAACGGGTGTGGGATA 340–362 Multiplex

PM1R TAAGTTTCTTAACAGGGTAGGC 1470–1491 Multiplex

PM2F TTCAGTTGGCCGTTAATACAAG 1381–1402 Multiplex

PM2R TTCTATAACTTGATATTAACGCTTT 3372–3396 Multiplex

PM3F CAAGATCGACGACTACAACAC 3042–3062 Multiplex

PUGF ATACATTGGCATTCGCTG 4093–4110 Sequence

PUGR TCAGCATCTTCATCAACAAC 696–715 Sequence

a Primer position as shown in Fig. 1.
b Position reported in White et al. (1990).

n.r., not relevant.

Table 3. Percentage of isolates in each of the Cryphonectria

parasitica subpopulations which contained pCp plasmids DNAs

amplified by PCR primed with PSF and PSR. Subpopulations not

listed did not contain any isolates carrying amplifiable plasmid

DNA.

Origin % isolates with plasmids

Italy (n=56)

Friuli Venezia Giulia 70

Trentino 50

Lombardia 22.2

Piemonte 25

Basilicata 1 33.4

Basilicata 2 66.6

Calabria 1 20

Calabria 2 50

Italian isolates % 28.6

France (n=15)

Lozere 100

Dordogne 100

Var 100

Pyrenees atlantiques 100

Corse 75

French isolates % 80.0

Switzerland (n=19)

Bregaglia 100

Novaggio 66.6

Laboratory cross 50

Claro 75

Swiss isolates % 52.6

USA (n=19)

California 20

Connecticut 100

USA isolates % 10.5

Japan (n=15)

Sanwa 25

Japanese isolates % 6.6

China (n=16)

Guixi 66.6

Xiuming A 33.3

Chinese subpopulations % 18.7

Total (n=155)

Overall percentage 28.4
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Table 4. Description of the Cryphonectria parasitica isolates that harbour pCp plasmids.

Origin Strain Host mtDNAa dsRNAb Virulencec

Italy

Friuli Venezia Giulia

Udine 1 CP42 Castanea sativa D VIR1

Pordenone CP6 C. sativa x1 VIR1

Pordenone CP2b C. sativa HYPO1

Udine 2 CP13 C. sativa B VIR1

Udine 2 CP9 C. sativa E VIR1

Udine 2 CP16 C. sativa B VIR1

Udine 3 CP17 C. sativa VIR1

Trentino

Trento CP34 C. sativa HYPO1

Lombardia

Bergamo EN31 C. sativa

Bergamo EN70 C. sativa

Piemonte

Verbania Vo14 C. sativa

Basilicata 1

Potenza 1 77 C. sativa

Basilicata 2

Potenza 2 F1 Quercus pubescens

Potenza 2 F5 Q. pubescens

Calabria 1

Catanzaro 287 C. sativa

Calabria 2

Catanzaro F30 Q. pubescens

Italy* Ep802 C. sativa +1 HYPO1

Italy* Ep67 C. sativa x1 VIR1

Switzerland

Bregaglia M1392 C. sativa HYPO2

Bregaglia M1483 C. sativa VIR2

Bregaglia M1487 C. sativa VIR2

Bondo M1390 C. sativa HYPO2

Novaggio M1665 C. sativa VIR2

Novaggio M1672 C. sativa HYPO2

Switzerland* TIX C. sativa +2 HYPO2

Claro TI17-3.X C. sativa VIR2

Claro TI21-1.0 C. sativa HYPO2

France

Lozere 1 48.4D C. sativa

Lozere 2 48.5I C. sativa +3 HYPO3

Lozere 3 48.3H C. sativa

Lozere 4 48.2A C. sativa

Dordogne 1 24.B1 C. sativa x3 VIR3

Dordogne 2 MSD14 C. sativa x3 VIR3

Dordogne 3 MSD3 C. sativa x3 VIR3

Var 2022 C. sativa +3 HYPO3

Pyrenees 2106 C. sativa

Corse 1 SamA2 C. sativa x3 VIR3

Corse 2 BocB8 C. sativa +3 HYPO3

Corse 2 BocA3 C. sativa

America

California 1-3CA C. dentata

Connecticut Ep44 C. dentata A x VIR

Japan

Sanwa JA104 Castanea sp. x4

China

Guixi 09 370 Castanea sp. x4

Guixi 09 383 Castanea sp. x4

Xiuming A 09 509 Castanea sp. x4

a Mitochondrial haplotypes as reported in Gobbi & Locci (1990).
b Presence (+) or absence (x) of dsRNA as reported by 1Gobbi (unpubl.), 2D. Rigling (pers. comm.), 3C. Robin (pers. comm.) and 4Peever

et al. (1998). Blank spaces indicate data not available.
c Normal (VIR) or lower virulence (HYPO) of the isolates of C. parasitica determined on chestnut trees or in vitro and reported by 1Gobbi &

Locci (1990), 2D. Rigling (pers. comm.), 3C. Robin (pers. comm.). Blank spaces indicate data not available.

* Place of isolation unknown.
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Plasmid sequences and diversity

In order to evaluate the degree of sequence similarity
among the different plasmids, the polymorphic region
from 16 representative strains was amplified with the
primers PUGF and PUGR (Fig. 3). The Asiatic strains
produced a single band of 1200 bp in size, larger than
that expected of 800 bp. Repeated attempts to sequence
these amplification products failed as the PCR products
were heterogeneous, and difficulties in their cloning
were encountered, and so they were no longer investi-
gated in this study. Seven sequences were aligned
with those of pUG1 and pCRY (GenBank1 accession
no. AF031368), a pUG1-like plasmid detected in one
American strain (sequence alignment available upon
request from the first author).

When the sequences were analysed with PAUP to
infer phylogenetic relationships, all the plasmids were
very closely related with a low level of divergence. A
maximum parsimony analysis resulted in the tree shown
in Fig. 4. The separation of the American plasmid clus-
ter from the European one was supported by a 100%
bootstrap value. The short distance between the two
groups indicates that the sequences are very stable and
presumably of relatively recent divergence. Thus the
pCp family of mitochondrial plasmids of Cryphonectria
parasitica includes the pUG1 and the pCRY groups.

DISCUSSION

Previously, two smaller surveys of Cryphonectria para-
sitica provided only a sporadic estimate of the diffusion
ofmitochondrial plasmids similar to pUG1 (Gobbi et al.
1997, Monteiro-Vitorello et al. 2000). The present study
offers a more detailed, global picture of the distribution
of these plasmids. The data show that they comprise
an almost homogeneous group, where diversity is not
highly significant and is due mostly to base pair sub-
stitutions. The family of plasmids (designated pCp)

can be divided into two groups, the European with
pUG1-like plasmids and the American with pCRY-like
plasmids, based respectively on the absence/presence of
a 60 bp repeat.

The PCR for the detection of plasmids was specific
and sensitive enough to allow the umambiguous ampli-
fication of plasmids in C. parasitica even starting from
a small amount of mycelium. While most of the strains
gave the same results in all the PCR experiments, a
minority had inconsistent data probably due to the
plasmid instability or to a variable concentration of
DNA that was sometimes too low to be detectable with
the technique employed. The incidence of C. parasitica
strains that have a pCp plasmid is surprisingly high
and is comparable only to the relative incidence of the
plasmid Fiji in N. intermedia as reported by Arganoza
et al. (1994). pCp plasmids are dispersed abundantly
both in Europe and in North America, while in Asia the
estimate of their distribution is still uncertain.

Among the oriental strains, themultiplex PCRalways
failed while the detection and preparative PCR were
possible albeit the sizes of the preparative amplified frag-
ments were larger than expected. Although only one
band was visible on the gels after their amplifications,
the PCR products were heterogeneous so their direct se-
quencingwas not feasible. The putativeAsiatic plasmids
are apparently characterized by a sequence different
from pUG1, although they could be distantly related,
and they require a more detailed characterization. Their
cloning and sequencing is in progress in our laboratory,
and will be discussed elsewhere.

In Europe, the frequency of the plasmids is very vari-
able and depends on the geographic location. A large
heterogeneity was noted in the subpopulations, poss-
ibly due to founder effects. The high frequency of pCp
plasmids in Italy, France and Switzerland is probably
due to the fact that the plasmid was already present
in the fungal host when first introduced into these re-
gions. Each sample size was not vast but the tested
strains were homogeneously distributed, and therefore
the estimates of the plasmid frequency are believed to
be accurate.

Conversely, in Greece no plasmids were found,
although the disease is reported to exist there since 1964
(Xenopulos 1985). It could be speculated that the Greek
fungal population is clonal as it was recently introduced,
there are few vc-groups, no sexual and very reduced
asexual reproduction. This situation is presumably
due to a single introduction of a plasmid-free strain of
C. parasitica, or the absence of plasmids could derive
from the local climate, which is unfavourable for its
maintenance. It could not depend on the background
genomes of the fungal host as it has been demonstrated
that this has no influence.

In North America, 10.5% of the analysed popu-
lations contained plasmids. It should be noted that the
American isolates analysed in this study originated
mostly from one site, while the sample size from the
other locations was very small, so this result should be

Fig. 2.EtBr agarose gel ofDNAs from strains ofCryphonectria

parasitica containing pCp plasmids, amplified by multiplex
PCR with the primers PM1F, PM1R, PM2F, PM2R, PM3F
and PSR.
Lane 1, strain BocA3 (F); lane 2, strain 48.4 (F) ; lane 3, strainM1483 (CH); lane

4, strain Ep44 (USA); lane 5, strain F1 (I); lane 6, strain En31 (I) ; lane 7, strain

Cp34 (I) ; lane 8, strain Cp2b (I) ; lane 9, strain Cp9 (I) ; lane 10, strain Cp13 (I) ;

lane 11, strain Cp6 (I) ; lane 13, marker VI (BMB). The sizes of fragmentsm1, m2

and m3 are 1991, 1647 and 1151 bp respectively, those of the markers (bp) are

indicated.
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considered with caution even though it agrees with a
previously reported lower occurrence of pCp plasmids
in the American strains (Monteiro-Vitorello et al.
2000). The finding of only one plasmid out of the five
Californian isolates is very interesting; the fungi were
sampled in the only commercial chestnut orchard of the
state infected with chestnut blight. The collection site is
outside the natural range ofAmerican chestnut trees and
therefore both the trees and the fungi are separated from
the wider natural populations; moreover the outbreak
of C. parasitica in this plot is recent and results in a

clonal population of fungi (Gobbi & van Alfen, un-
publ.). Their low diversity is probably due to a founder
effect and genetic drift. In such a homogeneous and
restricted group of isolates it is surprising that the
pCp plasmid could not be detected in all the strains as
expected from the rate of incidence shown in other
populations and from its reported capability to spread
among fungi (Baidyaroy et al. 2000).

The sequences of the European and North American
plasmids are very similar and strongly conserved. This
could be due to selective pressure but it is intriguing how

Fig. 3.Amplification of total DNA from strains of Cryphonectria parasitica by PCR with the primers PUGF and PUGR; EtBr-

stained agarose gel.
Lane 1, marker VI (BMB); lane 2, negative control; lane 3, strain JA104 (J) ; lane 4, strain 09370 (C); lane 5, strain 09383 (C); lane 6, strain 09509 (C); lane 7, strain

BocA3 (F); lane 8, strain 48.4 (F) ; lane 9, strainM1483 (CH); lane 10, strain Ep44 (USA); lane 11, strain F1 (I) ; lane 12, strain En31 (I) ; lane 13, strain Cp34 (I) ; lane

14, strain Cp2b (I) ; lane 15, strain Cp9 (I) ; lane 16, strain Cp13 (I) ; lane 17, strain Cp6 (I) ; lane 18, strain Cp42 (I). The sizes of the standardmolecular weightsmarkers

(bp) and of the PCR products (bp) are indicated.

Fig. 4. Unrooted tree generated with portions (pUG1 positions from 4111 to 701) of the sequences of 9 mt pCp plasmids of

Cryphonectria parasitica. Plasmids : pCRY (USA); Ep44 (USA); BocA3 (F); pUG1 (I) ; En31 (I) ; F1 (I) ; M1483 (CH); M1392
(CH); Ti 12-2X (CH).
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diverse the evolutionary rates ofmtDNAand nDNAare
compared to plasmidDNA.High frequencies of RFLPs
of mtDNA have been reported (Gobbi & Locci 1990,
Liu et al. 1996), as well as a moderate to high degree of
genetic differentiation among C. parasitica subpopu-
lations depending on the geographical localization con-
sidered (Peever, Liu & Milgroom 1997). However, the
pCp plasmids, with their very stable sequences, indicate
an evolution not matching that of their fungal host, or
the extrachromosomal hypovirus (Chung, Bedker &
Hillman 1994).

Data on pCp plasmid phylogeny could shed light on
the dynamic interaction of plasmid and fungus. Nothing
is known of the origin of the pCp plasmids; the simplest
hypothesis is that the plasmidswere present in the fungal
ancestor of both European and North American popu-
lations of C. parasitica and that they were spread
worldwide with their fungal hosts. In spite of finding the
European populations of dsRNA in Asia, suggesting
the direct introduction of the Japanese populations
into Europe, it still remains an open question whether
C. parasitica was introduced into Europe from North
America or directly from Japan (Milgroom et al. 1996,
Peever et al. 1998). The characterization of the diversity
of Asiatic plasmids could be helpful in clarifying this
point. Moreover the definition of the distribution of the
pCp family plasmids across species of this fungus and
even across closely related genera would establish if an
event of horizontal transfer between Neurospora and
Cryphonectria through intermediate related genera had
occurred. Conceivably, the Asiatic population of pCp
plasmids, if it exists, is the ancestor of theWestern ones,
and would constitute the link between the different
genera.
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