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Article

HP1a targets the chromosomal passenger
complex for activation at heterochromatin
before mitotic entry
Jan G Ruppert1, Kumiko Samejima1, Melpomeni Platani1 , Oscar Molina1,†, Hiroshi Kimura2,

A Arockia Jeyaprakash1 , Shinya Ohta3 & William C Earnshaw1,*

Abstract

The chromosomal passenger complex (CPC) is directed to centro-
meres during mitosis via binding to H3T3ph and Sgo1. Whether and
how heterochromatin protein 1a (HP1a) influences CPC localisation
and function during mitotic entry is less clear. Here, we alter HP1a
dynamics by fusing it to a CENP-B DNA-binding domain. Tethered
HP1 strongly recruits the CPC, destabilising kinetochore–microtubule
interactions and activating the spindle assembly checkpoint. During
mitotic exit, the tethered HP1 traps active CPC at centromeres. These
HP1-CPC clusters remain catalytically active throughout the subse-
quent cell cycle. We also detect interactions between endogenous
HP1 and the CPC during G2. HP1a and HP1c cooperate to recruit the
CPC to active foci in a CDK1-independent process. Live cell tracking
with Fab fragments reveals that H3S10ph appears well before H3T3
is phosphorylated by Haspin kinase. Our results suggest that HP1
may concentrate and activate the CPC at centromeric heterochro-
matin in G2 before Aurora B-mediated phosphorylation of H3S10
releases HP1 from chromatin and allows pathways dependent on
H3T3ph and Sgo1 to redirect the CPC to mitotic centromeres.
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Introduction

The chromosomal passenger complex (CPC) is a key regulatory

factor that controls chromosome segregation during mitosis. The

CPC regulates chromosome condensation, release of erroneous kine-

tochore–microtubule attachments, spindle assembly checkpoint

(SAC) activation and cytokinesis [reviewed by (Carmena et al,

2012; van der Waal et al, 2012)]. A defining feature of the CPC is

that it functions at different locations at different times during

mitosis (Earnshaw & Bernat, 1991).

The CPC localises to centromeres in order to regulate chromoso-

mal attachments to the mitotic spindle. A breakthrough came

following the discovery of H3T3 phosphorylation by Haspin kinase

(Dai et al, 2005) when it was realised that CPC localisation to

mitotic centromeres involves survivin binding to H3T3ph (Kelly

et al, 2010; Wang et al, 2010). Sgo1 targeting to H2AT120ph (a

product of Bub1 kinase activity) provides a second mechanism for

CPC targeting, with Haspin/H3T3ph localising the CPC to inner

centromeres and Bub1/H2AT120ph localising it to kinetochores

(Yamagishi et al, 2010).

Heterochromatin protein 1a (HP1a) was the first known binding

partner of the CPC (Ainsztein et al, 1998). A C-terminal chro-

moshadow domain (CSD) mediates HP1 dimerisation and interaction

with binding partners containing a PxVxL/I motif (Brasher et al,

2000; Smothers & Henikoff, 2000; Nozawa et al, 2010). These part-

ners include the CPC proteins INCENP and Borealin (Ainsztein et al,

1998; Nozawa et al, 2010; Kang et al, 2011; Liu et al, 2014).

Here, we have examined the role of HP1 in CPC localisation and

activation in HeLa cells. The three isoforms HP1a, HP1b and HP1c
bind to histone H3 di- or trimethylated on lysine 9 (H3K9me2/3) via

conserved N-terminal chromo domains (CD; Bannister et al, 2001;

Lachner et al, 2001). Aurora B kinase, the catalytic component of

the CPC, regulates this interaction during mitosis by phosphorylat-

ing the adjacent Serine10 residue (H3S10ph), thereby releasing HP1

from chromatin (Fischle et al, 2005; Hirota et al, 2005). The reason

for this release is unknown.

A recent report described cell lines with decreased levels of HP1

at mitotic centromeres (Abe et al, 2016). Decreased levels of HP1-

bound CPC led to reduced Aurora B activity in vitro and in vivo and

increased chromosome segregation errors. Surprisingly, HP1 overex-

pression was not sufficient to rescue accurate chromosome segrega-

tion in those cell lines (Abe et al, 2016).
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To explore interactions between HP1 and the CPC at centromeres

in a simplified system without the normal epigenetic regulation, we

recruited HP1a constitutively by tethering it via the DNA-binding

domain (DBD) of CENP-B. This binds a 17 bp “CENP-B box” motif

within the alpha-satellite repeats of human centromeres (Earnshaw

et al, 1987; Masumoto et al, 1989).

Tethered HP1a recruits the CPC to centromeres strongly enough to

cause a mitotic arrest and over-ride normal CPC transfer to the central

spindle at anaphase. The trapped centromeric CPC clusters remain

active throughout the subsequent interphase. In order to investigate

normal interactions between endogenous HP1 and the CPC during

interphase, we characterised CPC activation and localisation during

G2 arrest in CDK1-as cells and HP1 knockout cell lines. H3S10ph (a

reporter of CPC activity) appears in nuclear foci that co-localise with

HP1a. These foci are missing in cells lacking HP1a + HP1c. G2

arrested cells with the H3S10ph foci are negative for H3T3ph. Indeed,

live cell analysis shows that H3T3ph only appears much later, as cells

enter prophase. Our results suggest that CPC recruitment to centro-

meres by H3T3ph occurs downstream of an initial localisation and

activation of the CPC to heterochromatin mediated by HP1.

Results

Tethering HP1a to centromeres via fusion to a CENP-B DNA-
binding domain causes a mitotic delay

In order to investigate the effect of altering HP1a dynamics at

centromeres, we generated a fusion construct linking HP1a to the

DNA-binding domain of CENP-B (CB; Pluta et al, 1992) and

enhanced yellow fluorescent protein (EYFP/EY), referred as CB-

EY-HP1a (Fig 1A), and transiently expressed this in HeLa cells.

Tethering HP1a to centromeres led to an accumulation of cells in

metaphase with a concomitant depletion of cells in anaphase and

telophase (Fig 1B and C). Importantly, cells expressing EYFP-

labelled HP1a (EY-HP1a, i.e. lacking the CENP-B targeting domain)

did not show an altered mitotic progression compared to controls

expressing only EYFP.

To modulate the strength of HP1a tethering, we mutated the

CENP-B DNA-binding domain by substituting residues S40, N120 and

R125 with alanine (CBmut-EY-HP1a). These residues make specific

contacts with the DNA and are conserved among different species

(Fig EV1C and D; Tanaka et al, 2001). This mutant construct did not

cause cells to accumulate in mitosis (Fig 1B and C).

All constructs were expressed at levels comparable to or less

than that of endogenous HP1 (Fig 1D). We determined the dynam-

ics of the various EYFP-tagged HP1a constructs using fluorescence

recovery after photobleaching (FRAP; Fig 1E). Consistent with

previous observations, the mean half-time of recovery (t1/2) for

EY-HP1a was 3.1 s (Schmiedeberg et al, 2004). In contrast, the

recovery half-time of CB-EY-HP1a was ~49 s, a > 15-fold increase.

Mutation of the CENP-B DNA-binding domain resulted in almost

threefold faster dynamics with a t1/2 for CBmut-EY-HP1a of 18 s.

These results suggested that slowing HP1a dynamics at centromeres

might be responsible for the metaphase delay phenotype.

Heterochromatin protein 1 tethered using either the wild-type

or mutated CENP-B DBD co-localised with untethered EY-HP1a in

the inner centromere of prometaphase cells where centromeres

are not under tension (Fig EV1A). In metaphase cells, where

centromeres are stretched, the tethered HP1a split into two peaks

that tracked the separating kinetochores, while untethered

EY-HP1a remained as a single, somewhat broader, peak in the

inner centromere (Fig EV1B). The tethered CB-EY-HP1a remained

0.2–0.3 lm internal to the peak of CENP-C, suggesting that it

occupies a kinetochore-proximal domain, as previously described

for CB-INCENP (Liu et al, 2009; Wang et al, 2011; Hengeveld

et al, 2017).

We hypothesised that the mitotic delay induced by tethering

HP1a to centromeres might be a consequence of constitutive reten-

tion of a mitotic regulator capable of interacting with HP1a. To test

this hypothesis, we generated CB-EY-HP1a mutants carrying point

mutations previously described to perturb different functions of

HP1a (Fig 1F). The V22M mutation in the chromodomain (CD)

prevents HP1a binding to H3K9me2/3 (Bannister et al, 2001;

Lachner et al, 2001; Nielsen et al, 2001). The chromoshadow

domain mutation I165E disrupts HP1 dimerisation, while W174A

disrupts formation of the hydrophobic pocket required for PxVxL

motif binding. The I165E and W174A mutations both block HP1a
association with PxVxL motif-containing HP1 client proteins

(Brasher et al, 2000; Thiru et al, 2004; Nozawa et al, 2010).

Immunoblotting analysis confirmed that all mutant proteins were

expressed to a similar level (Fig EV1F). The localisation of tethered

CB-EY-HP1aW174A resembled that of CB-EY-HP1a, but CB-EY-

HP1aI165E was slightly more diffuse (Fig EV1E). FRAP analysis

revealed that introducing the I165E mutation into CB-EY-HP1a,
which prevents dimer formation in HP1, results in a t1/2 of recovery

of 8 s (Fig 1E). This is similar to the t1/2 of CB-EY (6.8 s), which

consists of only the DNA-binding domain and EYFP without any

▸Figure 1. Tethering HP1a to centromeres via fusion to a CENP-B DNA-binding domain causes a mitotic delay.

A Schematic representation of the various HP1a constructs.
B Frequency of mitotic HeLa cells 24 h after transfection with the indicated constructs (transfection efficiency ~70%, judged by fluorescence microscopy). Graphs

represent the mean, and error bars represent the standard deviation (SD) of three independent experiments (n = 500 cells per experiment).
C Frequency of mitotic phases in HeLa cells 24 h after transfection. Graphs show mean and SD of three independent experiments (n = 60 mitotic cells per experiment).
D Immunoblot of HeLa cell lysates transfected with the indicated HP1a fusion constructs. HP1a fusion constructs and endogenous HP1a were identified using an anti-

HP1a antibody, and GAPDH was used as a loading control.
E Quantitative FRAP analysis of the indicated HP1a fusion constructs in interphase HeLa cells. Error bars show SD.
F Diagram of the tethered HP1a mutants and their perturbed functions.
G Frequency of mitotic phases in HeLa cells 24 h after transfection. Graphs show mean and SD of three independent experiments (n = 60 mitotic cells per

experiment).

Data information: (B, C, G) Statistical significance was determined by Fisher’s exact test followed by the Benjamini–Hochberg multiple comparison test. *P < 0.05;
***P < 0.001; ****P < 0.0001; n.s., not significant.

The EMBO Journal HP1a targets the CPC before mitosis Jan G Ruppert et al

2 of 18 The EMBO Journal 37: e97677 | 2018 ª 2018 The Authors

Published online: February 21, 2018 



A

Pro Prometa Meta Ana Telo
0

20

40

60

80

Mitotic phase
Fr

eq
ue

nc
y 

(%
)

C

EY

CB-EY-HP1α

EY-HP1α

CBmut-EY-HP1α

B

0

5

10

15

Fr
eq

ue
nc

y 
of

 m
ito

tic
 c

el
ls

 (%
)

****

n.s.

Seconds

N
or

m
al

is
ed

 fl
uo

re
sc

en
ce

 in
te

ns
ityE

CB-EY-HP1α

CBmut-EY-HP1α
CB-EY-HP1αW174A

 49 s
 42 s
18 s

Halftime of recovery
CB-EY-HP1αI165E  8.0 s
CB-EY  6.8 s
EY-HP1α 3.1 s

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

1.2

EYFP-H
P1α

CB-E
Y-H

P1α
  

CB-m
ut1

-E
Y-H

P1α
  

un
tra

ns
fec

ted
  

anti HP1α

anti GAPDH38

kDa

49

62

anti HP1α
(endogenous)

28

D

*

n.s.

****

n.s.

n.s.

***

n.s.

****

n.s.

*

CSD

CD

CSD

CD
CSD

CD

CSD

CD

CSD

CD

CSD

CD

I165E W174AV22M

PxVxL

F

CB-EY-HP1α  

CB-EY-HP1αW174A  
EY-HP1α  

CB-EY-HP1αI165E  

CB-EY-HP1αV22M   

Pro Prometa Meta Ana Telo
0

20

40

60

80

Mitotic phase

Fr
eq

ue
nc

y 
(%

)

G

Histone
 H3

K9
me

K9
me

Histone
 H3

n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

****

n.s.

n.s.

n.s.

n.s.

****

n.s.

Figure 1.

Jan G Ruppert et al HP1a targets the CPC before mitosis The EMBO Journal

ª 2018 The Authors The EMBO Journal 37: e97677 | 2018 3 of 18

Published online: February 21, 2018 



fused protein, and suggests that CENP-B dimerisation is important

for its stable binding to DNA.

Expression of CB-EY-HP1aV22M had no effect on the mitotic

delay phenotype as expected, since it is tethered to centromeres

via the CENP-B binding domain and does not need to recognise

H3K9me3 for its localisation (Fig 1G). The single amino-acid

substitutions I165E or W174A within the CSD completely elimi-

nated the mitotic delay caused by HP1a tethering (Fig 1G). Impor-

tantly, in FRAP studies, the CSD mutant CB-EY-HP1aW174A

showed similar dynamics to CB-EY-HP1a, with a mean half-time

of recovery value of 42 s (Fig 1E). This may be because, like CB-

EY-HP1a, this protein is able to dimerise. We used the CB-EY-

HP1aW174A construct as a control in subsequent experiments,

because it shows essentially identical expression, localisation and

binding dynamics to wild-type CB-EY-HP1a, but does not cause

the metaphase delay.

Together, these data suggest that the mitotic delay is caused by

stable recruitment of a protein or proteins, presumably containing a

PxVxL motif, that binds to the chimeric tethered HP1a at centro-

meres.

The mitotic delay caused by centromeric tethering of HP1a is
accompanied by a high frequency of segregation errors

Live cell imaging of HeLa cells confirmed the metaphase delay

observed after centromeric tethering of wild-type HP1a. Imaging

with differential interference contrast (DIC) optics allowed us to

determine precisely the timing of nuclear envelope breakdown

(NEB; Fig 2A—0 min) and anaphase onset (Fig 2A—84 min). Cells

were scored separately depending on whether they expressed low

(L), medium (M) or high (H) levels of chimeric protein (see Materi-

als and Methods). We observed a median duration of 66 min (L),

120 min (M) and 111 min (H), respectively, from NEB until

anaphase onset (Fig 2B). Strikingly, we could observe some cells

remaining up to 38 h in mitosis before anaphase onset. Control cells

expressing CB-EY-HP1aW174A showed a mitotic progression profile

similar to untransfected cells. Similar results were obtained in U2OS

osteosarcoma cells (Fig 2B).

Live cell imaging experiments revealed that HP1a tethering to

centromeres resulted in a twofold to fourfold increase in the number

of lagging chromosomes (Fig 2C). U2OS cells normally have a much

higher baseline of lagging chromosomes, as previously reported

(Kabeche & Compton, 2013). Strikingly, U2OS cells expressing CB-

EY-HP1a at high levels exhibited lagging chromosomes in all cells

(Fig 2C). As expected, the presence of lagging chromosomes was

correlated with an increased frequency of micronucleus formation

(Fig 2D).

Thus, tethering HP1a to centromeres causes a strong phenotype

with a mitotic delay accompanied by a high frequency of chromo-

some segregation errors.

The mechanism of the delay suggests an involvement of the CPC

The mitotic delay induced by tethering HP1a to centromeres is due to

activation of the spindle assembly checkpoint (SAC). Depletion of the

essential SAC component mitotic arrest deficient 2 (Mad2) in HeLa

cells expressing CB-EY-HP1a using published siRNA oligonucleotides

(Gorbsky et al, 1998; Nitta et al, 2004; Fig 3A) resulted in a significant

decrease in metaphase cells, and a concomitant increase in anaphase

and telophase cells to levels comparable to those of control cells

expressing CB-EY-HP1aW174A (Fig 3B).

To understand the reason for SAC activation, we used a cold-

stable microtubule assay to determine whether HP1a tethering

results in impaired microtubule attachment to kinetochores. Indeed,

tethering of wild-type HP1a resulted in a reduced density of micro-

tubules attached to kinetochores as well as kinetochores lacking any

apparent microtubule attachments after cold treatment (Fig 3C).

Measurement of the overall intensity of cold-stable microtubules

revealed a clear contrast between cells expressing CB-EY-HP1a and

control cells expressing CB-EY-HP1aW174A or untransfected cells

(Fig 3D). Thus, tethering of CB-EY-HP1a decreases microtubule

attachment to kinetochores.

We hypothesised that CB-EY-HP1a tethering to kinetochores

might recruit the CPC, which is well known to regulate kineto-

chore–microtubule interactions (Cheeseman et al, 2006; DeLuca

et al, 2006). We indeed observed an increased level of phosphory-

lated Dsn1, an Aurora B substrate (Welburn et al, 2010), at kineto-

chores in metaphase cells expressing CB-EY-HP1a compared to

untransfected cells and cells expressing CB-EY-HP1aW174A (Fig 3E

and F).

To further assess whether Aurora B activity causes the observed

metaphase delay, we exposed CB-EY-HP1a-expressing cells to the

Aurora B inhibitor ZM447439 (Fig 3G). Flow cytometry analysis

revealed that this resulted in a decrease of the mitotic index to a

level similar to that of control cells expressing CB-EY-HP1aW174A

and untransfected cells.

Together, these results indicate that HP1a tethering using the

CENP-B DBD results in a phenotype similar to that seen following

CENP-B tethering of the core CPC protein INCENP, including meta-

phase delay, SAC activation, impaired microtubule attachments to

▸Figure 2. Live cell imaging experiments show a robust mitotic delay and an increase in chromosome segregation defects caused by centromeric tethering of
HP1a.

A U2OS cell expressing high levels of CB-EY-HP1a from live cell imaging experiments. Arrows show lagging chromosome. Scale bar, 5 lm.
B Live cell analysis of the time from nuclear envelope breakdown (NEB) until anaphase onset of HeLa or U2OS cells expressing the indicated tethering construct or

untransfected cells. Transient transfection resulted in low (L), medium (M) or high (H) protein expression levels (see Materials and Methods section). Crosses
indicate cell death before anaphase onset and unfilled squares indicate end of the movie before anaphase onset. Graphs show median and interquartile range.
Statistical significance was determined by the Kolmogorov–Smirnov test followed by the Benjamini–Hochberg multiple comparison test. ****P < 0.0001; n.s., not
significant. Numbers of analysed cells are shown in Table EV1.

C, D Frequency of cells with lagging chromosomes or micronuclei observed in live cell experiments in cells expressing CB-EY-HP1a (red) or CB-EY-HP1aW174A (blue).
Dark colour sections show frequencies of cells with lagging chromosomes or micronuclei, and pale colour sections show frequencies of cells without lagging
chromosomes or micronuclei. Statistical significance was determined by Fisher’s exact test followed by the Benjamini–Hochberg multiple comparison test.
*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; n.s., not significant.
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kinetochores, increased Aurora B activity and ZM447439 sensitivity

(Liu et al, 2009).

Tethering of HP1a to centromeres leads to abnormal centromeric
retention of Aurora B in telophase

Cells expressing CB-EY-HP1a showed an abnormal retention of

Aurora B at centromeres in anaphase and even after mitotic exit,

when chromosomes start to decondense (Fig EV2A and B). This

strong co-localisation of Aurora B with CB-EY-HP1a at centromeres

was clearly seen in telophase, where only a fraction of the kinase

exhibited its physiological localisation to the midbody region, with

a significant portion of the kinase remaining at centromeres

(Fig 4A1). This centromeric Aurora B was not observed in control

telophase cells expressing CB-EY-HP1aW174A (Fig 4A2).

CBmut-EY-HP1a was much less efficient at retaining Aurora B at

centromeres during telophase. Instead, we detected EYFP signal at

the midbody (Fig 4A3). Thus, with this construct, the CPC was

dominant and determined the localisation of the CBmut-EY-HP1a
fusion construct. Recruitment of HP1a to the midbody region was

also observed after expression of untethered EY-HP1a (Fig 4A4) and

has been previously reported by others (Hayakawa et al, 2003).

Together, these results reveal the existence of unexpectedly

robust interactions between HP1a and the CPC in late mitosis. Thus,

tethered HP1a can retain the CPC at centromeres, and the CPC can

recruit untethered or weakly tethered HP1a to the midbody.

Constitutive retention of HP1-bound CPC results in H3S10
phosphorylation in G1

Remarkably, interphase cells in G1 phase (cyclin A2 negative)

expressing CB-EY-HP1a exhibited a robust centromeric H3S10ph

signal that was not detectable in cells expressing CB-EY-HP1aW174A

(Fig 4B). Automated image analysis detected H3S10ph foci in 54%

of CB-EY-HP1a-expressing G1 cells 24 h after transfection (Fig 4C).

In contrast, the same detection parameters revealed few, if any,

H3S10ph-positive G1 cells in cultures expressing CB-EY-HP1aW174A,

CBmut-EY-HP1a, EY-HP1a, or in untransfected cells, none of which

retained Aurora B at telophase centromeres (Fig 4A). Comparable

results were obtained in U2OS cells (Fig 4C).

This H3S10ph signal persisted throughout interphase. Using bead

loading of fluorescently labelled antigen-binding fragments (Fabs;

Hayashi-Takanaka et al, 2009), we could observe H3S10ph-labelled

foci for over 8 h after mitotic exit (Fig EV3A, Movie EV1) and even

track H3S10ph in favourable cells across an entire cell cycle

between two consecutive mitoses (Fig EV3B, Movie EV2). The

persistence of this signal required continued Aurora B activity. The

H3S10ph signal in interphase cells disappeared after the addition of

0.5 lM ZM447439, despite the continued persistence of Aurora B in

CB-EY-HP1a foci (Fig EV2C and D). This dose of drug has little

apparent effect on H3S10ph in mitosis (Fig EV2C). This is consistent

with an altered kinase/phosphatase balance in interphase and

mitotic cells.

Thus, stably tethered HP1a is able to localise a functional CPC

even in G1 cells, a stage of the cell cycle at which the CPC is

normally inactive.

Characteristic labelling of endogenous H3S10ph foci in G2 cells at
the CDK1 arrest point

H3S10ph, the most widely studied read-out of Aurora B activity, has

been known for many years to be associated with mitotic chromo-

some condensation (Gurley et al, 1978). Development of a specific

antibody recognising this modification led to the recognition that

the mark is first abundant during G2 phase (Hendzel et al, 1997),

although it can also be detected at much lower levels at promoters

during gene activation (Nowak & Corces, 2004). Given the ability of

tethered HP1a to activate the CPC during interphase, we decided to

examine the relationship between HP1 isoforms and H3S10ph

during G2 phase. Indeed, co-staining readily revealed that H3S10ph

foci in G2 cells co-localised with untethered EY-HP1a (Fig 5A).

H3S10ph shows a spectrum of different staining patterns in G2

cells (Fig 5B). These include nuclei with a few isolated foci, nuclei

in which the foci are larger and more abundant, and nuclei that

show a general more diffuse labelling throughout the chromatin. In

order to unambiguously determine whether these different patterns

reflect a temporal progression as cells enter prophase, we used

chemical genetics to create HeLa cells whose cell cycle is driven by

a CDK1-as allele that is inhibited by the ATP analogue 1NM-PP1

(Fig 5C). 1NM-PP1 arrests these cells late in G2 and cells enter

▸Figure 3. The mechanism of the mitotic delay after HP1a tethering suggests an involvement of the CPC.

A Immunoblot of HeLa cell lysates transfected with the indicated siRNA shows depletion of Mad2 protein in cells transfected with siRNA targeting Mad2 mRNA. a-
tubulin was a loading control.

B Frequency of mitotic phases in HeLa cells 24 h after transfection. Cells were co-transfected with control siRNA (solid bars) or with Mad2 siRNA (striped bars). Graphs
show the mean and SD of three independent experiments (n = 60 mitotic cells per experiment). Statistical significance was determined by Fisher’s exact test followed
by the Benjamini–Hochberg multiple comparison test. ***P < 0.001; ****P < 0.0001; n.s., not significant.

C HeLa cells expressing the indicated HP1a fusion proteins or untransfected cells after cold treatment. Cells were stained with Hoechst 33342 and immunostained for
a-tubulin and CENP-C. Scale bar, 5 lm. Merge shows a maximum intensity projection of five z-planes. Zoom shows either a-Tubulin and CENP-C (i, ii), tethering
construct and CENP-C (iii and iv), or the tethering construct only (v, vi).

D Quantification of the microtubule intensity of HeLa cells after cold treatment. Graphs show mean and SD of normalised values from three independent experiments
(n = 33 of untransfected cells, n = 36 of transfected cells). Statistical significance was determined by the Kolmogorov–Smirnov test.

E HeLa cells stained with Hoechst 33342 and immunostained for phosphorylated Dsn1 and Hec1 after pre-extraction. Scale bar, 5 lm.
F Quantification of the mean Dsn1ph value per kinetochore in metaphase cells. Graphs show median and interquartile range of three independent experiments.

Individual kinetochores of 60 (untransfected and CB-EY-HP1a expressing) or 58 (CB-EY-HP1aW174A expressing) cells were analysed and compared. Statistical
significance was determined by the Kolmogorov–Smirnov test. ****P < 0.0001.

G HeLa cells were treated with DMSO or 3 lM ZM447439 24 h after transfection. Mitotic indices were determined by flow cytometry after cells were stained with
Hoechst 33342 and immunostained for MPM2. At least 40,000 cells were analysed per condition and experiment. Graphs show the mean and SD of three
independent experiments.
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Figure 4. Constitutive retention of HP1-bound CPC at centromeres results in H3S10 phosphorylation in G1.

A HeLa cells stained with Hoechst 33342 and immunostained for Aurora B. Scale bar, 5 lm.
B HeLa cells stained with Hoechst 33342 and immunostained for histone H3 Serine10 phosphorylation (H3S10ph) and cyclin A2 to identify cells in G1 (cyclin A2-negative

cells). Scale bar, 5 lm.
C Quantification of histone H3S10ph-positive G1 cells 24 h after transfection of the indicated HP1a fusion constructs or in untransfected cells. Graphs show mean and

SD of three independent experiments. Total numbers of analysed cells that were transfected and negative for cyclin A2 staining are shown.
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Figure 5. Characteristic labelling of endogenous H3S10ph foci in G2 cells at the CDK1 arrest point.

A HeLa cells stained with Hoechst 33342 and immunostained for H3S10ph and cyclin B. Scale bar, 10 lm.
B Unsynchronised HeLa CDK1-as cells stained with Hoechst 33342 and immunostained for H3S10ph. Scale bar, 10 lm.
C Schematic representation of the effect of 1NM-PP1 treatment on cell cycle progression in cells with an analogue sensitive CDK1 kinase (CDK1-as).
D–F HeLa CDK1-as cells treated with 10 lM 1NM-PP1 for 20 h, stained after pre-extraction with Hoechst 33342 and immunostained for either H3S10ph and cyclin B

(D), HP1a and H3S10ph (E), or HP1a and Aurora B (F). Scale bars, 5 lm.
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mitosis in under 60 min after removal of the drug. This allowed us

to study the emergence of H3S10ph foci in G2 cells with high tempo-

ral precision.

Examination of cultures after 20 h of 1NM-PP1 incubation

revealed a remarkable uniformity of the H3S10ph staining, with

almost every cell having 3–6 bright H3S10ph foci (Fig 5D). When

labelled Fab fragments recognising H3S10ph were introduced into

living cells in the presence of 1NM-PP1, the foci were found to be

highly stable and did not change over a period of 12 h (Fig EV4B,

Movie EV3).

These H3S10ph foci co-localise with clusters of endogenous HP1a
(Fig 5E), and endogenous HP1a co-localises with Aurora B kinase

(Fig 5F). As was the case for the CPC recruited to centromeres in G1

phase by tethered HP1a, treatment with 0.5 lM of the Aurora B

inhibitor ZM447439 completely abolished the H3S10ph staining in

the synchronised culture, although Aurora B still co-localised with

EY-HP1a foci (Fig EV4A). This co-localisation between Aurora B and

EY-HP1a was also observed in unsynchronised cells, where treatment

with 0.5 lM ZM447439 abolished the H3S10ph signal (which

remained readily detectable in mitotic cells).

Thus, localised H3S10 phosphorylation begins at HP1 foci during

G2 prior to CDK1-cyclin B activation.

H3S10 phosphorylation precedes H3T3 phosphorylation in G2

It is now widely accepted that survivin binding to H3T3ph has an

important role in localising of the CPC to centromeres during mito-

sis. We therefore investigated whether this modification was

involved in targeting the CPC to its sites of action during G2 phase.

No H3T3ph signal was detectable in the culture after synchronisa-

tion of CDK1-as cells with 1NM-PP1, even though almost every cell

showed three to six prominent H3S10ph foci (Fig 6A). To exclude

the possibility that the CDK1 inhibition was interfering with Haspin

activity in these synchronised G2 cells, we also analysed unsynchro-

nised cells (�1NM-PP1). Again, the H3S10ph foci appeared before

H3T3 phosphorylation was detected, which typically occurred when

the nucleus exhibited general chromatin staining for H3S10ph. In a

further control, we stained for H3T3ph and H3S10ph in wild-type

HeLa cells (Fig 6B). This yielded the same result: strong H3S10ph

foci were visible in H3T3ph-negative cells, and H3T3ph was only

visible in cells with a strongly H3S10ph-positive nucleus.

To further resolve the temporal relationship of H3S10ph and

H3T3ph in cycling cells, we bead-loaded HeLa cells with Alexa488-

labelled Fab fragments against H3S10ph and CF640R-labelled Fab

fragments against H3T3ph. This allowed a very clear temporal reso-

lution of the formation of the two marks in living cells (Fig 6C,

Movie EV4). This analysis demonstrated that H3S10ph foci are

established at centromeres long before H3T3ph emerges. Interest-

ingly, H3T3ph disappears rapidly after anaphase onset, whereas

H3S10ph persists for a longer time (Fig 6C—10.8 h).

Loss of HP1a and HP1c abolishes H3S10ph foci in G2 cells

In the light of our HP1 tethering experiments demonstrating the strong

interaction between HP1a and the CPC and the clear co-localisation

between H3S10ph foci and clusters of HP1a, we wished to determine

whether HP1a is required for the clustering and activation of Aurora B

in G2 cells.

To probe the requirement for HP1 isoforms in H3S10ph focus

formation in G2 cells, we created single and double knockouts of

HP1a, HP1b and HP1c in HeLa cells (Fig EV5A). We used the CDK1

inhibitor RO-3306 to synchronise cells in G2, because the HP1

knockouts were performed in cells with a wild-type CDK1. We

stained for cyclin B to assess the cell cycle stage of these cells more

precisely. As in previous experiments, robust H3S10ph foci were

visible in wild-type G2 cells (Fig 7A). In HP1a KO cells, H3S10ph

foci were still detectable in cyclin B-positive G2 cells, but with a

reduced frequency (93% in WT vs. 67% in the HP1a KO).

Testing of the various HP1 mutants revealed that only the

double knockout (DKO) of HP1a + HP1c resulted in a loss of

nearly all discrete H3S10ph foci in G2 cells. These nuclei exhib-

ited a diffuse background labelling for H3S10ph (Fig 7A) as well

as a diffuse distribution of Aurora B kinase (Fig 7B). Expression

of EY-HP1a in these DKO cells could rescue this phenotype, and

discrete H3S10ph foci co-localised with the transfected EY-HP1a
(Fig 7C).

In very rare (< 5%) cases where H3S10ph clusters were observed

(Fig 7A), those DKO cells exhibited much stronger cyclin B staining,

suggesting that they were nearing the G2/M transition. Indeed, live

cell imaging with Fab fragments revealed that H3S10ph clusters are

present long before mitosis in wild-type cells, whereas weak

H3S10ph clusters appeared usually only four frames (24 min) before

NEB in HP1a + HP1c DKO cells (Fig EV5B, Movie EV5).

Co-staining for H3T3ph and H3S10ph in fixed cells and live cell

imaging of these chromatin marks with Fab fragments in the

HP1a + HP1c DKO revealed that the time difference between the

robust appearance of these chromatin marks is apparently much

smaller in these cells (Fig EV5C and D, and Movie EV6). Impor-

tantly, entry of the HP1a + HP1c DKO cells into mitosis was ulti-

mately accompanied by a strong wave of H3S10 phosphorylation.

This is consistent with there being several redundant pathways for

targeting the CPC to chromatin in mitosis.

Discussion

The CPC is an integral part of a centromeric signalling network that

regulates chromosome segregation in mitosis. CPC functions during

mitosis are widely studied, but much less is known about CPC acti-

vation in G2 phase, when Aurora B activity is first detected. These

early G2 events may be important: it has been reported that the

timing of Aurora B activation (detected as phosphorylation of

H3S10) correlates with the accuracy of chromosome segregation

(Hayashi-Takanaka et al, 2009). H3S10ph foci appear later in G2 in

cells that suffer a high frequency of chromosome missegregation in

the subsequent mitosis.

We have focused on interactions between HP1a and the CPC in

mitosis and interphase. Our studies artificially tethering HP1a to

centromeres revealed a robust interaction between this protein and

the CPC. Indeed, HP1a tethered in kinetochore-proximal chromatin

by the CENP-B DNA-binding domain produces phenotypes (includ-

ing an increased mitotic index due to SAC activation by destabilised

kinetochore–microtubule interactions) that resemble the effects

produced by directly tethering the core CPC subunit INCENP to this

location using a similar CENP-B DBD fusion (Liu et al, 2009). Over-

all, our findings are consistent with a recent suggestion that HP1a
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Figure 6. H3S10 phosphorylation precedes H3T3 phosphorylation in G2.

A HeLa CDK1-as cells treated with either 10 lM 1NM-PP1 (+1NM-PP1) or DMSO (�1NM-PP1) for 20 h, stained with Hoechst 33342 and immunostained for H3S10ph
and H3T3ph. Panel A3 is the same as panel A2 but with increased intensities. Outlined nuclei highlight the stage where H3S10ph is already present while H3T3ph is
still absent. Scale bar, 5 lm.

B Wild-type HeLa cells stained with Hoechst 33342 and immunostained for H3S10ph and H3T3ph. Scale bar, 5 lm.
C Stills of a live cell imaging movie using Alexa488-labelled Fabs against H3S10ph and CF640R-labelled Fabs against H3T3ph in HeLa cells. Images were acquired every

10 min with five z sections every 1.2 lm. Scale bars, 5 lm.
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Figure 7. Loss of HP1a and HP1c abolishes H3S10ph foci in G2 cells.

A HeLa wild-type (1), HP1a KO (2) or HP1a and HP1c double KO (DKO) (3, 4) cells were synchronised with 9 lM RO-3306 for 18 h. Cells were stained with Hoechst
33342 and immunostained for H3S10ph and cyclin B. No deconvolution was performed to preserve the true appearance of the cyclin B staining. The per cent of cells
with the phenotype shown is indicated (n = 100). Scale bar, 10 lm.

B HeLa wild-type (1), or HP1a and HP1c double KO (2) cells synchronised with 9 lM RO-3306 for 18 h. Cells were stained with Hoechst 33342 and immunostained for
HP1a and Aurora B. All interphase HP1a and HP1c double KO cells (2) exhibited a diffuse localisation of Aurora B. Scale bar, 5 lm.

C HeLa HP1a and HP1c double KO cells transfected with EY-HP1a and 24 h after transfection synchronised with 9 lM RO-3306 for 12 h. Cells were stained with
Hoechst 33342 and immunostained for H3S10ph and cyclin B. The per cent of EY-HP1a expressing cells with H3S10ph clusters is indicated (n = 100). Scale bar, 5 lm.
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can function as an additional subunit of the CPC (Nozawa et al,

2010; Abe et al, 2016).

Tethered HP1a can trap the CPC at centromeres in anaphase,

preventing it from undergoing its normal transfer to the central

spindle and cell cortex. This trapped CPC remains clustered at

centromeres during G1 and the kinase retains its catalytic activity,

producing persistent foci of H3S10ph that remain throughout inter-

phase. These foci vanish if Aurora B is inhibited with low doses of

ZM447439 that have no obvious effect on H3S10ph during mitosis.

The CPC is well known to be activated by clustering (Sessa et al,

2005; Kelly et al, 2007; Fuller et al, 2008; Tseng et al, 2010; Wang

et al, 2011). Our data reveal that stably targeted HP1a (CB-EY-

HP1a) can recruit CPC clusters in which the kinase activity is

maintained even in the presence of interphase levels of competing

phosphatase activity.

Aurora B activity is normally down-regulated during mitotic exit

by Cdh1-dependent proteasomal degradation (Nguyen et al, 2005;

Stewart & Fang, 2005) and increased phosphatase activity (Murnion

et al, 2001; Nguyen et al, 2005; Stewart & Fang, 2005; Vagnarelli

et al, 2011; Wurzenberger & Gerlich, 2011; Lee et al, 2016).

However, Aurora B tethered in clusters at centromeres by CB-EY-

HP1a is stable throughout interphase: its degradation during mitotic

exit may require transfer of the CPC away from centromeres. This is

consistent with the observation that Cdh1 can exhibit differential

activity against different pools of Aurora B in G1 (Floyd et al, 2013).

One dominant paradigm for CPC activation in mitosis is that

Haspin kinase phosphorylation of H3T3 creates a binding site for

the BIR domain of survivin, and this clusters the CPC at centro-

meres. Our experiments using Fab fragments to monitor the

dynamic behaviour of histone modifications in living cells reveal

that H3S10ph appears in G2 long before H3T3ph, as previously

suggested using fixed cells (Polioudaki et al, 2004). The H3T3ph

signal appears only as the H3S10ph signal starts to spread across

the chromatin. It is therefore tempting to speculate that as chro-

matin becomes generally phosphorylated on H3S10, the association

of HP1 with the chromatin is weakened by the methyl-phos switch

(Fischle et al, 2005; Hirota et al, 2005), and H3T3ph acts as a new

signal to re-concentrate the CPC at centromeres. The reason for this

complex dual control of CPC localisation is unknown.

Just as tethered CB-EY-HP1a can induce the formation of active

CPC clusters in G1 cells, our subsequent results suggest that the first

activation of the CPC during G2 is mediated by interactions with

endogenous HP1a. Our experiments with CDK1-as cells arrested by

1NM-PP1 reveal that this early CPC does not require CDK1 activity for

its activation—these cells exhibit three to six bright foci of H3S10ph

that co-localise with HP1a. Thus, HP1-induced clustering appears to

promote CPC activation, even under conditions where competing

phosphatases, which are inactivated by CDK1 and other mitotic

kinases, retain their interphase level of activity (Wurzenberger &

Gerlich, 2011; Heim et al, 2017). The functional consequences of the

early CPC activation at HP1 foci are not known; however, a recent

study reports that knockout of mouse HP1a is associated with

increased merotelic chromosome attachments during mitosis

(Bosch-Presegué et al, 2017), consistent with impaired CPC activity

(Gassmann et al, 2004; Cimini et al, 2006).

Both HP1a and HP1c appear to be involved in clustering and

activating the CPC, as single knockouts of either protein still exhibit

foci of H3S10ph during G2. Only the double knockout shows diffuse

labelling of the chromatin. In the absence of HP1a + HP1c, foci of
Aurora B activity appear only just prior to entry into prophase,

consistent with the timing of the appearance of H3T3ph label. It is

possible that the late G2 activation of Aurora B in the absence of

HP1a and HP1c may involve clustering of the CPC at sites of Haspin

activity near centromeres.

Live cell imaging using labelled Fab fragments recognising

H3S10ph and H3T3ph in the same cells revealed that H3T3ph disap-

pears rapidly after anaphase onset as previously reported (Dai et al,

2005; Kelly et al, 2010; Qian et al, 2011), but interestingly, H3S10ph

persists for somewhat longer. We speculate that this might allow the

proper transition of the CPC to the central spindle, with survivin no

longer binding to H3T3ph and HP1 binding to H3K9me3 continuing

to be inhibited. This is in line with our tethering experiments reveal-

ing that HP1a’s chromatin binding is regulated rather than its attach-

ment to the CPC. This could potentially explain why H3S10ph is so

broadly conserved during mitosis: the methyl/phos switch releasing

HP1 from chromatin might help to ensure subsequent CPC mobility.

This could promote the shift from HP1-directed interphase CPC locali-

sation to themitotic localisation directed by H3T3ph and H2AT120ph.

Indeed, ZM447439 treatment, which leads to diminished H3S10ph

and H3T3ph in mitosis, results in decreased centromeric localisation

of HP1 and INCENP, accompanied by an increased HP1-dependent

chromosome arm localisation of INCENP (Nozawa et al, 2010).

Two previous studies reported that Sgo1 localisation in inter-

phase cells depends on HP1 (Perera & Taylor, 2010; Kang et al,

2011). HP1-dependent clustering of Sgo1 at centromeres in early G2

was followed by diffuse staining for the remainder of G2, and then a

switch to Bub1/H2AT120ph-dependent binding to kinetochores at

mitotic entry (Perera & Taylor, 2010). Those studies, together with

the results reported here reveal that in addition to participating in

heterochromatin formation via phase separation (Larson et al, 2017;

Strom et al, 2017), HP1 also plays important roles in the regulation

of components that regulate centromeric cohesion (Sgo1) and kine-

tochore function (the CPC) prior to and during mitotic entry. HP1-

induced CPC clustering appears to be an effective way of promoting

the activation of Aurora B kinase.

Materials and Methods

Constructs

The DNA fragment corresponding to the DNA-binding domain

(DBD) of human CENP-B (aa 1–159) was optimised for human cell

line expression and synthesised by Geneart (Thermo Fisher Scien-

tific) and cloned into the NheI and AgeI restrictions sites of the

pYIP-EYFP vector, containing attL and attR sites for Gateway

cloning (Molina et al, 2016). HP1a was amplified from a custom-

made cDNA library from HeLa cells using following oligonucleotides

as primers: HP1a-Fwd (50-CACCATGGGAAAGAAAACCAAGCGGA
CAGC-30) and HP1a-Rev (50-GCTCTTTGCTGTTTCTTTCTCTTTG
TTTTCC-30). The PCR product was cloned into the pENTR plasmid

and Gateway cloning was performed according to the manufacturer’

instructions (Thermo Fisher Scientific) to generate a plasmid coding

for the fusion construct CENP-BDBD-EYFP-HP1a, which is expressed

under a CMV promoter. This plasmid was lacking a stop codon

directly after the HP1a sequence to allow the potential fusion of
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additional proteins. However, for the final plasmid a stop codon

was introduced after the codon coding for S191 of the HP1a
sequence via site-directed mutagenesis using the QuikChange II kit

(Stratagene). Site-directed mutagenesis was also used to generate

the three HP1 mutants CENP-BDBD-EYFP-HP1aV22M, CENP-BDBD-

EYFP-HP1aI165E, CENP-BDBD-EYFP-HP1aW174A. To generate CENP-

BDBD-mut-EYFP-HP1a, the DNA fragment corresponding to the DBD

of human CENP-B (1–159aa), but coding for the substitutions S40A,

N120A, R125A, was synthesised by Geneart and cloned into the

NheI and AgeI restriction sites of the pYIP CENP-BDBD-EYFP-HP1a
plasmid, replacing the wild-type CENP-BDBD. The pYIP-EYFP-HP1a
plasmid was generated by digestion of the pYIP CENP-BDBD-EYFP-

HP1a plasmid with ClaI and AgeI, removing the CENP-BDBD

sequence between those restriction sites.

Generation of the CDK1-as cell line

HeLa analogue sensitive CDK1 (CDK1-as) cells were created using

the MKF1 HeLa cell line previously described (Klebig et al, 2009)

based on the system previously used by (Hochegger et al, 2007). In

brief, Xenopus CDK1as cDNA linked to a puromycin resistance gene

by a T2A peptide was transfected into the MKF1 cell line. Clones

resistant to puromycin with adequate levels of XsCDK1asT2Apuro

were selected by Western blot analysis. Endogenous human CDK1

was inactivated by transient transfection of plasmids encoding

hCas9 (Addgene: ID41815) and hCdk1 gRNA against the following

targeting sequence ATTTCCCGAATTGCAGTACTAGG. hCdk1 gRNA

was cloned into the following plasmid (Addgene:ID41824). The indi-

cated Addgene plasmids were a gift from George Church (Mali et al,

2013). Final clones were tested with 1NM-PP1 for block in G2 and

subsequent entry in mitosis following 1NM-PP1 washout.

Generation of HP1 KO cell lines

pTORA14HA3, pTORA14HB7 or pTORA14HG1 plasmids to gener-

ate HP1a, HP1b or HP1c KO, respectively, were constructed through

inserting the double-strand oligo DNA fragment in the AgeI site,

blunted by mung bean nuclease of the plasmid vector (pTORA14) to

produce Cas9-GFP from the CMV promoter. The guide RNA target

sequences in the DNA fragment were 50-CGCGCCTGTCTAG
CACCTT-30, 50-CCCTCTGATTTATCTGTCT-30 and 50-GACAAATTC
TTCAGGCTCT-30, respectively, for the three plasmids. HeLa cells

transfected with plasmids pTORA14HA3, pTORA14HB7 or

pTORA14HG1 were sorted based on GFP intensity, using FACSAria

II (BD Biosciences). Genomic DNA was extracted from sorted cell

lines, and loci targeted by guide RNAs were amplified and

sequenced using primers (50-TTTGAGACTCAAGAGCAGGG-30 and

50-AACGTAAGCTCCACAAGCGG-30 for HP1a KO; 50-ATTTGCC
TTTGAAGGAAGCC-30 and 50-TTTTCCATTTACTGCTCCTG-30 for

HP1b KO; 50-ATTTTGGTGGTGGGTTGTAAG-30 and 50-TAGACC
TCAAATGAGACACC-30 for HP1c KO). HP1a and HP1c double KO

or HP1b and HP1c double KO were generated from HP1c KO cell.

Cell culture, RNA interference and drug treatment

HeLa and U2OS cells were cultured in DMEM supplemented with

10% foetal bovine serum (FBS), 100 U/ml penicillin, and 100 lg/ml

streptomycin at 37°C and 5% CO2 in air.

Transient transfection for indirect immunofluorescence experi-

ments was performed using jetPRIME (Polyplus Transfection)

according to the manufacturer’s instructions. In short, cells were

seeded the day prior transfection in 12-well plates on polylysine-

coated coverslips. Plasmid DNA (125–500 ng) and, where indicated,

siRNA oligonucleotides (final concentration of 50 nM) were added

to 100 ll of jetPRIME buffer. In addition, 125 ng of salmon sperm

DNA (UltraPure Salmon Sperm DNA Solution, Thermo Fisher Scien-

tific) or 40 nM of the 21-mer oligonucleotide CGUACGCGGAAUA

CUUCGAdTdT (Elbashir et al, 2001) was added to the plasmid DNA

per transfection, serving as carrier to increase the transfection effi-

ciency as previously described (Pradhan & Gadgil, 2012). 2 ll of

jetPRIME was added, followed by 10-min incubation, before the

mixture was added to the cells for 24 h before fixation.

Transient transfection for live cell imaging was performed

using the Neon transfection system (Thermo Fisher Scientific). In

short, 2–4 × 105 cells were suspended in 100 ll buffer R of the

Neon transfection kit, plasmid DNA (1.5–4 lg) was added, and

following electroporation, parameters were used for pulse voltage,

width and number: HeLa (1,005 V, 35 ms, 2#); U2OS (1,230 V,

10 ms, 4#).

Sequences of siRNA oligonucleotides were as follows: Mad2 (50-
ACCUUUACUCGAGUGCAGATTdTdT-30; Nitta et al, 2004), control

(targets luciferase; 50-CGUACGCGGAAUACUUCGAdTdT-30; Elbashir
et al, 2001).

ZM447439 (Tocris Bioscience) was used at the indicated concen-

trations. RO-3306 (Tocris Bioscience) was used at 9 lM.

Indirect immunofluorescence and microscopy

The following antibodies were utilised for indirect immunofluores-

cence: anti-CENP-C (R554; 1:500; Saitoh et al, 1992), anti-a-tubulin
(DM1A; 1:500; Sigma-Aldrich), anti-HP1a (MAB3584; 1:200; Merck

Millipore), anti-Aurora B (ab2254; 1:600; Abcam), anti-Aurora B

(611082; 1:500; BD Transduction Laboratories; Figs EV2D and

EV4A), anti-histone H3S10ph (06-570; 1:400; Merck Millipore), anti-

histone H3T3ph (16B2; 1:500; H. Kimura) anti-cyclin A2 (6E6

ab16726; 1:100; Abcam), anti-cyclin B1 (GNS1 sc-245; 1:25; Santa

Cruz Biotechnology), anti-Dsn1ph (1:1,000; a kind gift of Iain

Cheeseman; Welburn et al, 2010), anti-Hec1 (9G3 ab3613; 1:500;

Abcam).

Cells grown on coverslips were fixed in a pre-warmed 4%

formaldehyde/PBS solution for 10 min and subsequently perme-

abilised in 0.5% Triton X-100/PBS for 10 min. Cells were blocked in

10% donkey serum/PBS for 1 h at room temperature before incu-

bating with the individual primary antibodies at the stated concen-

trations. Secondary antibodies labelled with Alexa Fluor 488, 594 or

647 (Thermo Fisher Scientific) were diluted in PBS (1:400–1:1,000)

and applied to the cells for 45 min. DNA was stained with Hoechst

33342, coverslips were mounted with ProLong Diamond Antifade

(Thermo Fisher Scientific), and cured for 24 h before imaging. In

experiments with pre-extraction, cells were incubated in pre-

warmed 0.1% Triton X-100/PHEM buffer for 1 min before fixation.

Pre-extraction buffer contained 1× PhosSTOP (Roche) in experi-

ments with subsequent staining for Dsn1ph.

For cold-stable microtubule assays, 24 h after transfection cells

were incubated in cooled Leibovitz’s L-15 medium (Thermo Fisher

Scientific) with 20 mM Hepes for 10 min on ice. Cells were fixed in
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4% formaldehyde/PBS containing 0.2% Triton X-100 and stained as

described above.

Optical sections of fixed cells were acquired every 0.2 lm using

the CoolSNAP HQ CCD camera (Photometrics) on the wide-field

microscope DeltaVision Spectris (Applied Precision) with a 100× NA

1.4 Plan Apochromat or 60× NA 1.4 PlanApo objective. SoftWoRx

software (Applied Precision) was used for deconvolution. Images

were imported into OMERO and adjusted with OMERO.figures for

display (Allan et al, 2012). Shown images are maximum intensity

projections.

Live cell imaging

For live cell imaging experiments shown in Fig 2, cells were grown

on glass-bottomed imaging chambers CG (Zell-Kontakt). Prior to

imaging, the medium was changed to the CO2-independent Leibo-

vitz’s L-15 medium (phenol red free), supplemented with 10% FBS,

and the chamber lid was exchanged for a DIC lid (Zell-Kontakt).

Live cell imaging was performed using the Eclipse Ti wide-field

microscope (Nikon) with a Plan Apo k 60× NA 1.4 objective and at

37°C in an environmental chamber. Optical sections were acquired

every 2 lm using the ORCA-Flash 4.0 CMOS camera C11440-22CU

(Hamamatsu), and 2 × 2 binning was applied to increase signal

intensity. Expression levels of the CB-EY-HP1a constructs were

determined according to the EYFP fluorescence values measured

with Fiji (Schindelin et al, 2012). Maximum intensity values were

determined in the movie frame in which cells underwent NEB. One

region of interest (ROI) was applied to chromatin and the measured

value subtracted by the average value of three ROIs applied to the

cytoplasm. Fluorescence values from 300 to 1,000 were designated

as low, > 1,000 to 3,000 medium, and > 3,000 to 6,000 high expres-

sion. Cells with fluorescence values below 300 and above 6,000

were excluded, because weak expression meant that mitotic defects

like lagging chromosomes could not be determined reliably (as

transfected cells could not be identified unambiguously) and very

high expression caused the construct to localise to non-centromeric

regions of the nucleus.

For live cell imaging using labelled Fab fragments, cells were

grown in 35-mm glass bottom l-dishes, high with DIC lid

(ibidi). Bead loading of the Fab fragments (anti-histone H3S10ph:

Fab313; anti-histone H3T3ph: Fab16B2; H. Kimura) was per-

formed as described previously (Hayashi-Takanaka et al, 2011).

Imaging was performed using the above described Eclipse Ti

wide-field microscope with either the Plan Apo k 60× NA 1.4 or

Plan Apo 100× NA 1.40 objective. Movies were deconvolved

using AutoQuant X3 (version X3.1.2) and projected by maximum

intensity projection.

Immunoblotting

Whole-cell lysates were prepared from HeLa cells transfected either

with the indicated siRNAs or the indicated plasmids 24 h before

harvesting. Membranes were incubated with primary antibodies

recognising HP1a (15.19s2 05-689; 1:750; Merck Millipore; Fig 1D),

GAPDH (ab9485; 1:2,500; Abcam; Fig 1D), a-tubulin (B512; 1:3,000;

Sigma-Aldrich), Mad2 (A300-301A; 1:5,000; Bethyl), GFP (A-11122;

1:1,500; Thermo Fisher Scientific), HP1a (2616; 1:1,000; CST;

Fig EV5A), HP1b (8876; 1:1,000; CST; Fig EV5A), HP1c (MAB3450;

1:1,000; Millipore; Fig EV5A), GAPDH (016-25523; 1:10,000; Wako;

Fig EV5A) and subsequently with IRDye 680rd or 800cw labelled

secondary antibodies (LI-COR Biosciences) or HRP-linked secondary

antibodies (GE Healthcare; Fig 1D). Fluorescence intensities were

determined using the imaging systems Odyssey or Odyssey CLx

(Fig EV5A; LI-COR Biosciences). HRP activity was determined after

incubation with ECL substrate (Thermo Fisher Scientific) using the

ChemiDoc MP imaging system (BioRad; Fig 1D).

FRAP

Experiments for the various EYFP-fusion constructs were performed

on a Leica SP5 confocal microscope equipped with an Argon laser

using the 488 nm laser line and a 63×, 1.4 NA objective. HeLa cells

grown on 25-mm round polylysine-coated coverslips were trans-

fected 24 h before the experiments with the indicated plasmids

using the above described jetPRIME protocol. Prior to the experi-

ment, the medium was changed to FluoroBrite DMEM (without

phenol red; Thermo Fisher Scientific) supplemented with 10% FBS.

Temperature was maintained at 37°C in an environmental chamber

(Life Imaging Services), and cells were gassed using 5% CO2 in air.

Five pre-bleach images were taken followed by bleaching a region

of 1.6 lm diameter for 1 s at full laser intensity, selecting an ROI

where the individual HP1 constructs clustered in interphase cells.

Subsequent images were taken in three phases. The first rapid phase

consisted of 20 frames every 0.65 s to observe the rapid initial

recovery. The second phase consisted of 30 frames every 2 s to

observe the slower stages of recovery. The third phase consisted of

45 frames every 5 s to ensure the complete steady state recovery

was captured for all constructs.

Image data were processed using Image-Pro Premier (Media

Cybernetics). The resulting intensity measurements were corrected

for photobleaching and normalised according to Phair & Misteli

(2001), whereby a ROI was applied to the bleach spot, background

and non-bleached area of a nearby cell and compared to the five

pre-bleach images. The t1/2 values were calculated from the fluores-

cence values of 10 measurements after normalisation.

Flow cytometry

HeLa cells were grown in 6-well plates and transfected with the indi-

cated constructs or left untransfected. 24 h after transfection, cells

were treated with either 3 lM ZM447439 or DMSO for 5 h, harvested

and fixed in ice-cold 70% ethanol. Cells were washed in PBS with

0.05% Tween-20 and 1% BSA and stained with an anti-MPM2 anti-

body (ab14581, 1:400; Abcam) and subsequently an Alexa 647-

labelled anti-mouse antibody (Thermo Fisher Scientific) to detect

mitotic cells. Cells were incubated in PBS containing Hoechst 33342

(5 lg/ml) over night, and fluorescent cells were detected using an

LSRII flow cytometer (BD Biosciences). Appropriate gates were set to

evaluate transfected cells using the software FlowJo 8.7, and the

percentage of MPM2-positive cells was determined within the whole

population. Note that the varying mitotic index compared to Fig 1B is

most likely due to the different methods of detection [microscopy

(Fig 1B) vs. flow cytometry (Fig 3G)]. The flow cytometry analysis

suggested a transfection efficiency of > 99%, in contrast to ~70%

when analysed by eye using a fluorescence microscope, apparently

because the flow cytometer can detect cells with very low expression
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levels. Adjusting the gates of the flow cytometry experiment to 70%

transfection efficiency of CB-EY-HP1 resulted in mitotic indices of

10.3% for CB-EY-HP1 with DMSO and 4.2% for CB-EY-HP1 with

ZM447439.

Automated image analysis of histone H3S10ph-positive G1 cells

The Eclipse Ti wide-field microscope (Nikon) with a Plan Fluor 40×

NA 1.3 objective was used to capture fixed cells. Optical sections

were acquired every 0.7 lm using the ORCA-Flash 4.0 CMOS camera

C11440-22CU (Hamamatsu). The numbers of histone H3S10ph-posi-

tive nuclei in G1 cells were determined by an automated pipeline

using the software CellProfiler (Kamentsky et al, 2011). The 3D data

sets were projected (maximum intensity projection) and converted

into TIFF files using standard CellProfiler modules. The analysis was

performed using the following modules: IdentifyPrimaryObjects,

MeasureObjectIntensity, ClassifyObjects and FilterObjects. The

nuclei were identified using Hoechst 33342 staining. Transfected

cells were identified based on the EYFP signal. Among the cyclin A2-

negative nuclei (Alexa 647 fluorescence signal), the cells positive for

histone H3S10ph were identified using the Alexa 594 signal. Detailed

pipeline description is available upon request from Jan Ruppert.

Automated image analysis of Dsn1ph signal

Fixed cells were captured using the DeltaVision wide-field micro-

scope (see details above). Sum intensity projection after deconvolu-

tion was performed, and images were analysed using an adjusted

standard CellProfiler pipeline. Following modules were used for

segmentation based on the Hec1 signal (expanded by 1 pixel) and

for measuring the mean Dsn1ph intensity: IdentifyPrimaryObjects,

EnhanceOrSuppressFeatures, MaskImage, ExpandOrShrinkObjects.

Some cells exhibited Dsn1ph intensity values with up to 600× the

intensity of the median. To ensure that the results were not distorted

by these extreme values, a general cut of value of 10 was applied in

the same way in all experiments and repeats and cells excluded if

they exhibited values above this cut-off. This resulted in following

exclusions; CB-EY-HP1a: four cells; CB-EY-HP1aW174A: zero cell;

untransfected cells: three cells.

Statistical analysis

The Fisher’s exact test was used for analysing data of the contin-

gency table format. The Kolmogorov–Smirnov test was used for

unpaired nonparametric data. The Benjamini–Hochberg procedure

was used for all multiple testing corrections.

Expanded View for this article is available online.
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