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This work presents an experimental analysis of ground-borne vibrations collected on 
high speed lines across 7 European countries. 1500 ground-borne vibration records, at 17 
high speed rail sites are analysed with the aim of quantifying the errors associated with 
ground-borne vibration prediction models. It represents one of the most comprehensive 
analyses of experimental ground borne vibration data undertaken and comprises of 
datasets from Belgium, France, Spain, Portugal, Sweden, England and Italy. 
 

Firstly, a variety of vibration metrics are considered and best fit relationships for 
each are calculated. Furthermore, the suitability of several mathematical vibration 
relationships are considered to describe the attenuation of vibration with distance. Then a 
variety of high speed train speed passages are analysed, up to 300km/h and the effect of 
train velocity on vibration levels is investigated. Next, 1/3 frequency octave bands are 
investigated to determine the effect of critical velocity on vibration propagation. Finally, a 
statistical analysis is undertaken to determine the typical error encountered when modelling 
high speed rail vibrations. To do so, train passages of similar trains and similar speeds are 
analysed to determine the unquantifiable error between each. The results present valuable 
findings for the design of new high speed railways, particularly close to urban environments. 
 

        1. Introduction 

 
Ground-borne vibrations from railway lines in urban environments are an increasing 

environmental concern. This is due to a growth in railway infrastructure, including high 
speed rail, underground lines and increased freight movements. 
 

Before new railway infrastructure is constructed it is common to perform a ground-
borne noise and vibration assessment. The most widely used approach is to predict 
vibrations using a scoping model. Such scoping studies are used to predict vibrations quickly 
and ignore many of the complexities associated with ground vibration modelling (eg. soil 
material properties). The aim of a scoping model is to obtain a quick approximation of the 
anticipated vibration levels, and to identify potential areas which may require further 
investigations. 



Several attempts have been made to develop numerical models for scoping purposes.  For 
example, [1] outlined an analytical model that predicted vibration levels in terms of velocity decibels.  
Alternatively, an empirical model [2] is defined in American standards and is commonly used in 
practise.  This approach uses empirical factors to adjust a reference vibration curve.  A challenge with 
this approach was that it could not account for soil properties, and thus [3], [4] built upon this 
methodology and soil material input parameters were used to improve accuracy. 

In contrast, [5] developed a scoping model where factors accounting for variables such as 
train speed and track quality were used to adjust an average base vibration curve. 

Scoping prediction methods (e.g. the previously described approaches) are based upon using 
a combination of experimental datasets and empirical relationships to approximate vibration levels.  
To minimise the costs of both prediction and mitigation of ground-borne vibration, it is imperative that 
the accuracy of scoping models is maximised.   

With this in mind, this paper analyses large ground vibration datasets from across Europe to 
assess the accuracy of current prediction relationships.  Next, the effect of train speed on vibration 
response is assessed, and then 1/3 octave frequency bands are compared.  The potential of critical 
velocity to amplify low frequency content is investigated, and finally recommendations are made 
regarding the typical accuracy and repeatability of vibration predictions. 

  

2. Test site information 
Experimental data from 17 test locations, across 7 countries was analysed (Figure 1).  All sites 
consisted of ballasted track and key details regarding each test location are provided in Table 1.  It 
should be noted that some datasets contained a mix of ground vibration and track vibration data.  For 
the purposes of this (far-field) study, track vibration signals were removed.   

 

 

 



 
Figure 1 – A selection of test site locations 

 

The datasets were recorded across Belgium, France, Spain, Portugal, Sweden, England and 
Italy.  Detailed descriptions of the experimental campaigns are described in: [6], [7], [8], [9], [10], [11], 
[12], [13], [14], [15], and [16]. 

Site 

number 
Details 

1 At grade 

2 Embankment  

3 Cutting  

4 Over-pass  

5 At grade 

6 At grade  

7 At grade 

8 At grade 

9 At grade 

10 At grade 

11 At grade  

12 At grade  

13 Curve  

14 At grade  

15 At grade  

16 Curve  

17 Embankment 

Table 1 - Test site details – general description 
 



 

3. Experimental analysis 
 

3.1 Analysis of existing mathematical VdB attenuation relationships 
 When performing a detailed vibration assessment it is typical to analyse the frequency 
content of vibrations, however for initial scoping studies it is more common to use instantaneous 
vibration indicators.  One of the most commonly used instantaneous metrics is the logarithmic based 
Vibration Decibels (VdB).  It is calculated as: 

 ��� = 20 × log�� 
����
��

�   (1) 

 

Where v0 is the background vibration levels and vrms is the moving root mean square amplitude. 

 A variety of relationships have been proposed to describe the relationship between VdB and 
distance from railway lines.  To examine these, a selection were fitted to the field data to determine 
their suitability.  The relationships (as outlined in [17], [18], [19] and [2] respectively) were: 

 ������ = −20 × log����� + �   (2) 
 

 ������ = −10 × log����� + �� × �� + 	�   (3) 
 

 ������ = � × ��   (4) 
 

 ������ = −20 × log���1 + �� + �� × �� + �   (5) 
 

where a, b and c were fitted variables and d was track offset. 

 

  

Figure 2 – Best fit relationships for VdB data 
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Figure 2 shows the four relationships plotted against the raw experimental VdB data.  It was 
found that in the 30-40m track offset range, all relationships offered similar performance.  Despite this, 
for scoping studies, larger distances (e.g. 30-100m) are of greater interest, and in this range 
performance differences were more pronounced.  The most accurate relationship was found to be 
that proposed by [18] and gave a mean error of ±4.5dB and a maximum error of 13.75dB. 

Reference Equation 

Best fit values (all 
distances) 

a b c 

Lang, 1977 ������ = −20 × log����� + � - - 103.42 
Tokita, 1978 ������ = −10 × log����� + �� × �� + 	�  - 0.208 96.47 
Lamb, 1904 ������ = � × ��  0.142 - 119.37 
FRA, 2012 
(standard) ������ = −20 × log���1 + �� + �� × �� + �  0.024 - 106.21 

Table 2 – Optimised best fit coefficients for vibration propagation 
 

3.2 Speed effects 
Figure 3 shows the effect of train speed on vibration levels.  The dashed red line signifies the 

base curve as described by [2], which is unadjusted for train speed.  Alternatively, the dotted blue line 
is based on the same curve, however it has been adjusted for train speed as suggested by [2], using: 

 

��������	�� !�"��
= �������	#!�$�	
+ 20 log�� 
%&�'(	)*++�	�,-/ℎ�

&+0+&+(�+	)*++� � 
  (6) 

where the reference speed was 241.403 km/h. 

Figure 3 shows that there was a low correlation between train speed and VdB levels.  For 
example, the vibration level generated by one train at 72 km/h, was higher than the vibration 
generated by some of the greater train speeds at 300 km/h.  Although some of this scatter was likely 
due to differences in track conditions and soil properties [20], [21], the overall low correlation indicated 
that train speed did not have a major effect on vibration levels.  To better estimate the correlation 
between these variables, a best fit line was also plotted on Figure 3.  As expected, only a low (but 
positive) correlation was found. 



  

Figure 3 – The effect of train speed on VdB 
 

3.3 Frequency content effects 
Railway vibrations are generated at the wheel-rail contact points [22].  The nature of their 

generation and propagation depends on train, track and soil characteristics [23].  At locations near the 
track the primary excitation mechanisms are the wheel, axle and bogie passages.  These are low 
frequency and are typically modelled as quasi-static.   In comparison, locations further from the track 
are dominated by higher frequency dynamic excitation caused by rail unevenness and vehicle 
unsprung mass. 

The frequency content of each test site at a distance of 25m from the track is shown in Figure 
4, in terms of 1/3 octave bands.  As expected, the dominant frequency range was 20-40Hz, which is 
caused by soil layering characteristics.  Despite this, for site 7 there were elevated low frequency 
components in the 2-10Hz range.  This indicated that the vehicle passage frequencies had been 
magnified, a characteristic associated with critical velocity effects [24].  Therefore, to investigate this 
further, the critical velocity was calculated for each at-grade test site via the procedure described in 
[25].  This involved the calculation of both the track and soil dispersion curves [26], and identifying 
their intersection.  This intersection point has been shown to approximate the critical velocity within 
3% of the true value [25]. 

 

Site 

number 
Ratio (mean train speed/critical velocity) 

1 0.57 

5 0.51 

6 0.46 

7 0.75 

8 0.45 

9 0.57 

Table 3 shows the calculated critical velocity ratios (where 0=stationary train, and 1=train 
moving at critical velocity). For site 7, the train speed was equivalent to 0.75 of the critical velocity.  In 
comparison to the other sites, this was much closer to the critical velocity.  This is significant because 
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at speeds greater than 50% of the critical velocity, vibration amplitude increases significantly [27], 
[28], [29]. 

 

Figure 4 - One third octave bands (25m offset from track) 

 

Site 

number 
Ratio (mean train speed/critical velocity) 

1 0.57 

5 0.51 

6 0.46 

7 0.75 

8 0.45 

9 0.57 

Table 3 – Critical velocity calculations 
 

3.4 Sources of discrepancy  
The accurate numerical modelling of railway vibrations is challenging due to the uncertainties 

in input variables.  These variables can be divided into two types: site specific variables (e.g. soil 
material properties), and non-site specific variables (e.g. train loads, wheel irregularities and train 
speed). 

 During experimental field testing on railway lines, the only variables that are subject to change 
are non-site specific variables.  Therefore, this means that any discrepancies between successive 
(nearly identical) train passages are generated due to non-site specific variables.  To quantify the 
effect of these variables for trains running on the same network with similar mechanical 
characteristics, the discrepancies between successive train passages was calculated.  Such 
discrepancies are due to non-site specific effects that are difficult to quantify and thus difficult to 
simulate within a vibration prediction model.  The resulting calculations showed that the standard 
deviation was ±2dB.  This is important because it indicates that the highest likely accuracy obtainable 
from a detailed vibration study is ±2dB (if soil properties etc are modelled exactly). 
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 In addition to calculating the average standard deviation at each site, the standard deviation 
was also compared against track offset.  It was found that there was a relatively constant relationship 
with distance, for offsets greater than 20m.  For distances in this range the standard deviation was 
typically below 5 VdB.  For distances closer to the track, there were several data points with higher 
standard deviation levels (max 13.3 VdB).  It was postulated that the standard deviations in the near 
field were due to discrepancies between quasi-static train loads (e.g  passenger effects), whereas the 
standard deviations in the far field were due to discrepancies in dynamic excitation such as wheel 
defects. 

 

4 Conclusion 
1500 vibration records, across 7 countries were analysed to obtain new insights into the 

nature of ground-borne vibration and critical velocity, on at-grade tracks.  Existing scoping prediction 
methodologies were benchmarked and optimised to determine their suitability to model ground 
vibration attenuation.  Investigations were also undertaken to assess the effect of train speed and 
critical velocity on ground vibrations.  Furthermore, insights were made into the typical errors 
associated with scoping and detailed vibration prediction models. 

The key findings were: 

• Train speed had only a very minor effect on ground-borne vibration levels.  Furthermore, 
existing relationships used to describe the effect of speed on vibration levels were found to be 
overly conservative. 

• Current vibration attenuation relationships had a mean error of ±4.5 VdB.  Additionally, for 
similar trains, at similar speeds, a mean standard deviation of ±2 VdB was found.  This gives 
an indication of the maximum potential prediction accuracy. 

• Critical velocity effects magnify low frequency quasi-static excitation which can propagate to 
elevated distances from the track, thus also effecting ground-borne vibration characteristics. 
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