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SOLITONS AND SCATTERING FOR THE CUBIC-QUINTIC

NONLINEAR SCHRÖDINGER EQUATION ON R3

ROWAN KILLIP, TADAHIRO OH, OANA POCOVNICU, AND MONICA VIŞAN

Abstract. We consider the cubic-quintic nonlinear Schrödinger equation:

i∂tu = −∆u− |u|2u + |u|4u.
In the first part of the paper, we analyze the one-parameter family of

ground-state solitons associated to this equation with particular attention to

the shape of the associated mass/energy curve. Additionally, we are able to
characterize the kernel of the linearized operator about such solitons and to

demonstrate that they occur as optimizers for a one-parameter family of in-
equalities of Gagliardo–Nirenberg type. Building on this work, in the latter

part of the paper we prove that scattering holds for solutions belonging to

the region R of the mass/energy plane where the virial is positive. We show
this region is partially bounded by solitons but also by rescalings of solitons

(which are not soliton solutions in their own right). The discovery of rescaled

solitons in this context is new and highlights an unexpected limitation of any
virial-based methodology.
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1. Introduction

In this paper, we consider the Cauchy problem for the cubic-quintic nonlinear
Schrödinger equation (NLS) on R3:{

i∂tu = −∆u− |u|2u+ |u|4u,
u(0) = u0 ∈ H1(R3),

(1.1)

which arises as the natural Hamiltonian evolution associated to the energy

(1.2) E(u) :=

∫
R3

1
2 |∇u|

2 − 1
4 |u|

4 + 1
6 |u|

6 dx.

Here u(t, x) is a complex-valued function of (t, x) ∈ R× R3.
This model appears in numerous problems in physics, including field theory,

nonlinear optics, the mean-field theory of superconductivity, Langmuir waves in
plasma physics, and the motion of Bose–Einstein condensates; see, for example,
[4, 13, 20, 27, 28, 33, 61, 62, 54, 70, 77]. This ubiquity is strongly connected to the
particular signs appearing in (1.1) and (1.2). As we hope to convince the reader,
the combination of focusing cubic nonlinearity and defocusing quintic nonlinearity
is physically very natural and leads to interesting mathematics.

For systems at low densities, nonlinear effects should be weak and hence it is
natural to perform a Taylor expansion on the associated part of the energy and
keep only the lowest nonlinear term. This produces the cubic term in (1.1), at
least in a gauge invariant setting. Such a term with a positive coefficient (i.e., the
defocusing case) represents an inherent repulsion of the constituents of the system
and leads to global solutions that disperse. A mathematically rigorous proof of this
assertion has been available for some time; see, for example, [15].

A cubic term with a negative coefficient (the focusing case) is physically a very
natural scenario. Atoms/molecules do experience an attractive (van der Waals)
force at moderate densities; indeed, such attraction underlies the condensation
of gases into liquids at low temperatures. Similarly, the focusing cubic NLS is
also commonly used to model the self-focusing of laser beams in certain nonlinear
materials.

As might be expected, the three-dimensional focusing cubic NLS has also received
considerable mathematical attention. It was proved in the 1970’s that blowup
occurs for an open set of large initial data; see [34, 72]. For a more up-to-date view
of this phenomenon, see [23, 58] and the references therein.

In the physical systems alluded to above, no true singularity occurs. The very
concentration that mathematics predicts degrades the accuracy of the model; new
physics comes into play, preventing further collapse. From a mathematical point
of view, the simplest way to incorporate such phenomenology is to introduce a
defocusing nonlinearity of the next higher power. A deeper understanding of the
underlying physics is, of course, needed to predict the appropriate coupling con-
stant.
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By making an appropriate choice of units for space, time, and the solution values,
it is possible to scale away any coupling constants in front of the nonlinearities; only
the signs remain. Unlike the case of a single power nonlinearity, this exhausts all
scaling symmetries. Indeed, the dynamics of solutions living at disparate length
scales are inherently different; the amplitude and spatial scale of a solution affects
the relative strengths of the linear dispersion and each of the two nonlinearities.

We will exploit two conservation laws associated to the flow (1.1) in addition to
the energy (1.2), namely, the mass and momentum; these are given by

(1.3) M(u) :=

∫
R3

|u|2 dx and P (u) :=

∫
R3

2 Im(ū∇u) dx,

respectively. Through the rescaling used to normalize the equation, information
about the relative strength of the two nonlinearities is transfered to the mass and
energy. This behooves us to consider initial data for as broad a mass/energy region
as we are able. In Section 4, we determine precisely which mass/energy pairs are
actually possible; Figure 4.1 summarizes our results. Ultimately, we would like to
produce a ‘phase diagram’ for (1.1), indicating which dynamical behaviours are
possible in which regions of the mass/energy plane. This is the long-term dream
that guides the investigations in this paper.

There is no reason to introduce momentum as a third axis in this phase diagram.
The Galilei symmetry can be exploited to normalize the momentum to zero, while
leaving the mass unchanged and modifying the energy in the obvious manner (see
the proof of Proposition 10.1). Indeed, this transformation simply amounts to
passing to the rest frame of the centre of mass.

Much effort has been expended in the development of an analogous phase dia-
gram in the case of a single focusing power nonlinearity. In particular, Nakanishi
and Schlag (see [63, 64]) have given a complete taxonomy of behaviors for the ra-
dial cubic model in a region of the mass/energy plane extending slightly beyond the
ground-state (which is unique up to symmetries). In this model, they show that
ground-state lies on a separatrix between blowup (which is stable) and scattering
to a linear evolution (which is also stable). Underlying much of such investigations
is the fact that the ground state soliton corresponds to a saddle point of the free
energy E(u) + ω

2M(u) and moreover, as observed first in [7], the virial (see below)
can be used to determine on which side of the saddle a solution lies.

The physical intuition espoused earlier suggests that (1.1) should have global
solutions. This has been proved rigorously:

Theorem 1.1 (Global well-posedness of cubic-quintic NLS in R3, [76]). The initial
value problem (1.1) admits a unique global solution u in the class CtH

1
x and the

solution depends continuously (in CtH
1
x) on the initial data u0 ∈ H1(R3). Further-

more, the solution obeys conservation of mass, energy, and momentum.

The cited paper presents a proof of uniqueness only within the subclass of so-
lutions that also belong to L10

t,x. However, the ideas needed to upgrade this to the
‘unconditional uniqueness’ formulated above appear already in [19]; see also [44]
for an adaptation of the argument to an equation very similar to (1.1).

The global well-posedness of (1.1) cannot be proved by the same simple direct
arguments that apply to the defocusing cubic NLS. This stems from the fact that
the quintic nonlinearity is energy-critical in three spatial dimensions. To better
explain this point and its effects on the analysis, let us first redirect our discussion



4 ROWAN KILLIP, TADAHIRO OH, OANA POCOVNICU, AND MONICA VIŞAN

to the defocusing quintic NLS

(1.4) i∂tu = −∆u+ |u|4u

in R3, whose energy functional is given by

(1.5) u 7→
∫
R3

1
2 |∇u|

2 + 1
6 |u|

6 dx.

The rescaling u(t, x) 7→ uλ(t, x) := λ
1
2u(λ2t, λx) is a symmetry of solutions to

(1.4). This scaling also preserves the energy functional (1.5), which is why (1.4) is
termed energy-critical.

For defocusing nonlinearities with power smaller than five, energy conservation
prevents concentration. This combined with simple contraction mapping arguments
yields a proof of global well-posedness. For the energy-critical problem (1.4), this
is not the case; indeed, the scaling symmetry shows that concentration is perfectly
consistent with energy conservation. Note that we cannot use other NLS conser-
vation laws to prevent concentration; energy has the highest regularity among all
known conservation laws.

The development of methods to tackle this problem of criticality constitutes one
of the major breakthroughs in the study of nonlinear dispersive equations. In the
case of NLS, it was precisely for the equation (1.4) that this breakthrough was first
made:

Theorem 1.2 (GWP of the defocusing quintic NLS in R3, [10, 19], see also [35]).

Equation (1.4) admits a unique global CtḢ
1
x solution for every initial data u0 ∈

Ḣ1(R3). This solution obeys

(1.6)

∫
R

∫
R3

|u(t, x)|10 dx dt ≤ C
(
‖u0‖Ḣ1

x

)
.

The spacetime bound (1.6) provides an explicit expression that solutions dis-
perse, something that we previously intuited must hold in the defocusing case. In
fact, this bound leads to the following conclusion: there exist asymptotic states
u± ∈ Ḣ1

x so that

‖u(t)− eit∆u±‖Ḣ1
x
→ 0 as t→ ±∞.

This says that the solution scatters (to the linear flow) as t→ ±∞. More formally,
this is the statement of asymptotic completeness of wave operators. The question
of existence of wave operators is easily settled by contraction mapping arguments,
even in this scaling-critical case.

The proof of Theorem 1.2 is long and subtle. This remains true, even after
incorporating the extensive developments spawned by this breakthrough over the
intervening decade (cf. [47]).

As will be evident from the arguments in Section 8, any solution to (1.4) can
be embedded as a solution to (1.1) in a certain scaling regime. Correspondingly,
any reasonably quantitative proof of Theorem 1.1 must automatically imply The-
orem 1.2. The key theme underlying the proof of Theorem 1.1 in [76] is to argue
conversely, namely, to start with Theorem 1.2 and treat the cubic term as a per-
turbation. (This idea is further expanded upon in [71]). Moreover, it is shown that
if one considers the cubic-quintic NLS with both nonlinearities defocusing, then
scattering holds (in H1

x) even for large initial data u0 ∈ H1
x.
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The papers [71, 76] also prove a scattering result for our equation (1.1). Specif-
ically, they show that if the mass of the initial data is sufficiently small, depending
on the Ḣ1

x norm of the initial data, then scattering holds. To be more precise,
sufficiently small mass means smaller than the reciprocal of a tower of exponentials
in the Ḣ1

x norm. This is the best one can achieve via these perturbative methods,
because of the best known quantitative bounds in (1.6).

One of the main results of this paper is a proof of scattering for initial data
whose mass and energy belong to the larger region R in the mass/energy plane:

Theorem 1.3. Let u0 ∈ H1(R3) be such that (M(u0), E(u0)) belongs to the region
R defined in Section 5. Then, the unique global solution u ∈ C(R;H1(R3)) to the
cubic-quintic NLS (1.1) satisfies

‖u‖L10
t,x(R×R3) ≤ C

(
M(u0), E(u0)

)
.

In particular, the solution u scatters in H1(R3) both forward and backward in time.

The region R is depicted in Figure 1.1. We will give a precise description of
R later in the introduction, once we have covered the necessary prerequisites. For
now, we note the following consequence of Theorem 1.3: there is a mass threshold
M∗ so that scattering holds for all initial data with M(u) < M∗, irrespective of the

energy (or Ḣ1
x-norm).

6E

-
M

M∗

R

Figure 1.1. Schematic diagram of the open set R in Theorem 1.3.

Theorem 1.3 is not a perturbative result. We will be able to show that scat-
tering fails for certain solutions whose mass and energy lie on the boundary of
R. Moreover, the exact value of the mass threshold M∗ noted above is dictated
by the optimizers of a certain Gagliardo–Nirenberg-type inequality (see Section 3).
We show that these optimizers are radially symmetric solutions to a certain ellip-
tic PDE. This reduces matters to an ODE problem that is readily susceptible to
numerical investigation via the shooting method. In this way, we are lead to the
assertion that scattering holds for M(u) < 185.10.

Scattering does not hold for all initial data u0 ∈ H1(R3); our equation admits
solitons. In this paper, we will use the word ‘soliton’ to refer to solutions to (1.1)
of the form u(t, x) = eiωtP (x). Naturally, the Galilei symmetry can be exploited
to introduce (or remove) translational motion.

As well as limiting the region where scattering can occur, solitons also constitute
an essential ingredient in any purported phase diagram of the dynamical behaviour
of (1.1). Section 2 is devoted to the study of solitons for our equation.
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Pohozaev identities show that solitons can only exist when 0 < ω < 3/16; see
Lemma 2.1. That solitons do indeed exist for all such frequencies ω is then deduced
from the general results of [8]. Note that the soliton profile is necessarily different for
differing ω; recall that in the case of a single focusing nonlinearity there is a scaling
symmetry, which means that solitons have the same profile for all ω ∈ (0,∞).

The paper [8] actually shows that (1.1) admits infinitely many radially symmetric
solitons for each 0 < ω < 3/16. We focus our attention on what are known as
ground state solitons, that is, solitons for which P (x) is non-negative. As discussed
in Section 2, these exist for all 0 < ω < 3/16; indeed, there is a unique ground
state soliton Pω for each such ω. We curtail our investigation in this particular way
because the ground state solitons are the smallest solitons in a certain mass/energy
sense; see Theorem 2.2(i). In particular, it is reasonable to predict that it is these
solitons which mark the boundary of the region in the mass/energy plane where
only scattering occurs. Note that pure scattering behaviour will not hold in any
region where both mass and energy exceed the mass and energy of a soliton. This
is easily seen by constructing solutions containing a soliton and a radiation term.

As part of our analysis of the ground state solitons Pω, we are able to determine
the kernel of the linearized operator about Pω:

Lω : u 7→ −∆u+ 5P 4
ωu− 3P 2

ωu+ ωu.

Specifically, we prove that it is spanned by the components of ∇Pω. This spectral
condition is an invaluable stepping stone for any subsequent rigorous analysis of the
stability or asymptotic stability of soliton solutions, at least by the usual methods.
In particular, our verification of the spectral condition allows one to apply the
arguments in [68] to see that solitons are stable wherever the mass/energy curve is
concave and unstable where it is convex.

Figures 2.1, 5.2 and 5.3 depict the mass/energy curve for the solitons Pω, based
on numerics. We note that there is an upper branch of solitons where the curve
is convex (signaling instability) and a lower branch where it is concave (indicating
stability). Note that from our result on the linearized operator, we know that
ω 7→ Pω is a real-analytic H1

x-valued function; the explanation for the cusp is that
∂ωM(Pω) and ∂ωE(Pω) both vanish at the same point. Indeed, by (2.23), both
vanish to the same order.

Our numerics show a single cusp, corresponding to the vanishing of ∂ωM(Pω)
at a single point ω∗, which in turn is the global minimum of ω 7→ M(Pω) and the
global maximum of ω 7→ E(Pω). Unfortunately, we have not been able to prove
this; it constitutes our Conjecture 2.3.

The solitons Pω have been the subject of several numerical studies in the physics
literature [20, 61, 62], in their role as “light bullets” or “3D spatiotemporal optical
solitons”. These numerics confirm our independent investigations and should be
consulted by readers interested in plots of mass or energy against the frequency
parameter ω.

The behavior of unstable (upper branch) soliton solutions to (1.1) has been
investigated numerically in lower dimensions [13, 54]. These authors observe that
solutions beginning near the unstable branch of solitons approach a soliton on the
lower branch, shedding their excess mass/energy in the form of radiation.

As noted previously, the complexity of the manifold of ground-state solitons
stems from the fact that it does not arise simply through the action of symmetries
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on a single ground-state soliton. Such intricacies (and indeed more subtle ones) arise
in many NLS-like models with broken symmetries; see, for example, [9, 26, 25, 56].

For NLS with a single focusing nonlinearity, ground state solitons can be charac-
terized as optimizers of certain Gagliardo–Nirenberg inequalities. This has played
an important role in many investigations, beginning with the seminal work [73].
Section 3 is devoted to the discussion of an analogue for our problem. Because
there is a one-parameter family of ground state soliton profiles (unlike the scale-
invariant case of a single power nonlinearity), we will need a one-parameter family
of inequalities. Our candidates are the following:

‖u‖4L4(R3) . ‖u‖L2(R3)‖u‖
3α

1+α

L6(R3)‖∇u‖
3

1+α

L2(R3)(1.7)

where 0 < α <∞. The veracity of (1.7) is easily deduced by interpolating between
the classical Gagliardo–Nirenberg inequality (which corresponds to α = 0) and the
Hölder inequality (which corresponds to α =∞).

In Proposition 3.1, we show that optimizers of (1.7) are ground state solitons,
up to scaling and translation. Moreover, optimizing solitons Pω have the property
that β(ω) = α, where β(ω) is defined via∫

R3

|Pω(x)|6 dx = β(ω)

∫
R3

|∇Pω(x)|2 dx.

In particular, no soliton occurs as the optimizer in (1.7) for more than one value
of α. However, we must acknowledge one short-comming of our results in this
direction. Numerics show that ω 7→ β(ω) is strictly increasing, which would imply
that each soliton occurs as the unique optimizer for the corresponding value of α.
We have been unable to prove this; see Conjecture 2.6.

As mentioned earlier, Section 4 is devoted to determining all feasible mass/energy
pairs; see Figure 4.1. A transition occurs at massM(Q1), whereQ1 is a ground state
soliton optimizing (1.7) in the case α = 1. For masses below M(Q1), the energy
is necessarily positive; the infimal energy is zero, but this is not achieved. At the
mass M(Q1), zero energy is still the infimal energy, but is now achieved; moreover,
it is achieved only by certain solitons. For masses strictly greater than M(Q1), the
infimal energy is now negative and is achieved precisely by some soliton. We are
interested in feasible pairs (M,E) with the property that any solution having M
and E as its mass and energy, respectively, scatters. Our region of scattering R
is wholly contained in the mass strip where M < M(Q1). Indeed, in the region
M > M(Q1) it is impossible, using only mass and energy variables, to segregate
solutions that scatter from those that converge to a soliton plus radiation.

Beginning with Section 5 we focus more tightly toward the proof of Theorem 1.3.
Naturally, to obtain a non-perturbative proof of scattering, one needs some intrinsi-
cally nonlinear information about the equation. This is true even in the defocusing
case, where this role is invariably fulfilled by (traditional or interaction) Morawetz
identities. For focusing equations, sharp thresholds are typically determined via the
virial identity (suitably truncated); see, for example, [3, 22, 40, 46]. One exception
is the work of Dodson [21] on the mass-critical NLS, which uses a hybrid of the virial
and interaction Morawetz identities. Dodson-style variants are not advantageous
for our problem. We will use the virial identity.

The virial identity stems from the behaviour of a system under scaling; however,
it is not essential that the system has a scaling symmetry. As is easily verified, the
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operator

A = 1
i

(
x · ∇+∇ · x

)
is the generator of unitary dilations on L2(R3). An elementary computation shows
that if u is a solution to (1.1), then

d

dt
〈u(t), Au(t)〉 = 4V (u(t)) where V (f) :=

∫
R3

|∇f(x)|2 + |f(x)|6 − 3
4 |f(x)|4 dx.

This is the virial identity for our equation; correspondingly, we will refer to the
functional V : H1(R3)→ R as the virial.

For soliton solutions u(t, x) = eiωtP (x), we have 〈u(t), Au(t)〉 = 〈P, AP 〉 and
correspondingly, V (P ) = 0. On the other hand, for solutions v(t, x) = eit∆v0 of the
linear Schrödinger equation, we have

d

dt
〈v(t), Av(t)〉 = 4

∫
R3

|∇v0|2 dx and lim
t→±∞

V (v(t)) =

∫
R3

|∇v0|2 dx.

In particular, the virial of linear solutions is positive for large times.
The way that the virial identity is employed in the proof of scattering is rather

subtle. One of the key properties of the region R is that

(1.8)
(
M(u), E(u)

)
∈ R =⇒ V (u(t)) > 0 for all t ∈ R

for any solution u to (1.1). Nevertheless, it is not true that solutions whose virial
is positive for all times must necessarily scatter. Imagine, for example, a solution
which consists of a soliton together with radiation. By suitable construction, one
may decouple the contributions of the two parts of the solution to the virial; indeed,
decoupling will be automatic in the t → ±∞ limits. As solitons have zero virial
and radiation has positive virial, such a solution would have positive virial for all
times, but definitely does not scatter.

Our example highlights a central problem that arises when applying conservation
laws and similar identities: one only observes the aggregate of all the parts of the
solution. Unwanted behaviour of one part of the solution cannot be ruled out
if it can be compensated for by unreasonable behaviour of another part of the
solution. While sometimes space and/or frequency localization techniques can be
applied, this is untenable for generic large data due to the resulting combinatorial
complexity.

In [10], Bourgain introduced the induction on energy technique to overcome
an obstruction of precisely this type. His solution to the combinatorial morass is
to inductively exclude unreasonable behaviour at ever increasing energies. (The
energy is a coercive conserved quantity for the problem treated in [10].)

The guiding principle, advanced significantly in [19], is the following: Assume
all solutions with energy E ≤ E0 have been shown to scatter; this is the inductive
hypothesis. We wish to show that this remains true for all solutions u with E(u) ≤
E0 + η, where η is a very small parameter. Suppose that at some time, such a
solution u can be written as two well-separated parts, each with energy at least η.
Then, we may apply the inductive hypothesis to approximate u by the sum of two
solutions, each of which scatters. That the parts are well-separated is essential.
Our equation is nonlinear; it is only in such a regime that one may obtain an
approximate solution by summing two solutions. For the models studied in [10, 19]
and in this paper, two solutions are well-separated if they live in different spatial
locations or at differing length scales.
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As consequence of the preceding, we see that the inductive step is reduced to
proving scattering for solutions u with E(u) ≤ E0 + η that consist of a single
piece (up to errors of size η), with a clearly-defined location in space and spa-
tial/frequency scale. This substantially enhances the efficacy of conservation laws
and monotonicity formulae.

More recent applications of the induction on energy technique employ a con-
tradiction argument, closer in spirit to the well-ordering principle. Some of these
ideas are already hinted at by the language used in [19], for example, the phrase
“minimal energy blowup solution”. However, the true mathematical realization of
this belongs to Keraani [42] and to Kenig–Merle [40]. This is the variant we will de-
scribe below. It leads to proofs that are more modular and simpler to understand;
it has also fueled an explosion of applications of the underlying paradigm.

Next we will explain the construction of a minimal blowup solution, which cap-
tures the essence of the induction on energy argument. After that, we will return
to our discussion of Section 5 and the role of the virial identity.

Until now, the size of solutions has been determined by two variables: mass
and energy. For a workable notion of minimality, we need to combine them into
a single quantity. To this end, we introduce a continuous map D : R → [0,∞)
in Subsection 5.2. We will also regard D as a function of solutions via D(u) =
D(M(u), E(u)). For expositional clarity, we will arrange that D(u) = 0 if and only
if u ≡ 0 and define D(u) =∞ when (M(u), E(u)) ∈ Rc. Proposition 5.7 describes
further properties of this function.

Given 0 < D <∞, we define

L(D) := sup
{
‖u‖L10

t,x(R×R3) : u solves (1.1) and D(u) ≤ D
}
,(1.9)

In this way, Theorem 1.3 becomes the statement that L(D) <∞ for all 0 < D <∞.
Suppose now that Theorem 1.3 were to fail and let Dc be the supremum of all

values of D for which L(D) is finite. Failure of Theorem 1.3 is the assertion that
Dc < ∞. Note that L(0) = 0, so Dc ≥ 0. In fact, Proposition 6.1 shows that
Dc > 0. This proposition is a refinement of the small-data theory developed in [71].
The positivity of Dc corresponds to the ‘base step’ of the induction.

Under our contradiction hypothesis, there must be a sequence of solutions {un}
so that

D(un)→ Dc and

∫
R

∫
R3

|un(t, x)|10 dx dt→∞.

If we could conclude that a subsequence of {un} converges in H1
x, perturbation

theory (see Proposition 6.3) would guarantee that the limit u∞ is a minimal blowup
solution. It would be minimal because D(u∞) = Dc and a blowup solution because∫∫
|u∞(t, x)|10 dx dt =∞.
The assertion that bounded sequences of solutions converge (subsequentially) to

a solution is a narrow form of the well-known Palais–Smale condition in the cal-
culus of variations. (Our sequence {un} is bounded in L∞t H

1
x because {D(un)} is

bounded.) The usual Palais–Smale condition is immediately broken by the presence
of non-compact symmetries. For our problem, the pertinent symmetries are spatial
and temporal translations, as well as a vestigial/broken scaling symmetry. The first
step in handling this issue is to prove an appropriate concentration-compactness
principle for the linear equation. This is the task of proving a linear profile decom-
position; it is discharged in Section 7.
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Our concentration-compactness principle has strong similarities to earlier work
on the energy-critical case [5, 41]; however, our proofs follow the slightly different
path laid out in [48, 50]. For our problem, we must work in H1

x rather than the

homogeneous space Ḣ1
x and prove decoupling of L4

x-norms as well as L6
x-norms. The

techniques needed to adapt the argument have appeared before in the context of
other problems with broken symmetries, [38, 43, 45, 49]. Nevertheless, as a service
to the reader we provide full details.

The linear profile decomposition, Theorem 7.5, decomposes a subsequence of
initial data un(t = 0) into linear combinations of asymptotically orthogonal (as
n → ∞) bubbles of concentration. Each bubble φj appears at an n-dependent
location in space-time (tjn, x

j
n) at some characteristic length scale λjn. As noted

earlier, for solutions at very small length scales, the quintic nonlinearity is dominant
— they behave as solutions to the quintic NLS (1.4). The role of Section 8 is to
treat bubbles living at such small length scales by exploiting Theorem 1.2.

In Section 9 we combine the results of Sections 7 and 8 to prove that a version
of the Palais–Smale condition holds for our problem (see Proposition 9.1) and then
that failure of Theorem 1.3 would imply the existence of a minimal blowup solution
(see Theorem 9.6). It is here that we perform the ‘inductive step’: the sequence
of initial data cannot split into more than one bubble of concentration, because
this would violate the minimality of Dc. In the language of [55], dichotomy cannot
occur. This argument requires that D(m, e) strictly decreases if either the mass or
the energy is decreased (cf. Proposition 5.7(v) and (vi)).

Because they are exact symmetries of our equation, space and time translations
can be employed directly to tackle these sources of non-compactness. However, the
problem of scaling seems to have simply disappeared in the statements of Proposi-
tion 9.1 and Theorem 9.6. Let us explain. Both nonlinearities are mass supercrit-
ical; correspondingly, solutions with bounded mass but living at very large length
scales behave essentially linearly. By the Strichartz inequality, linear solutions obey
the spacetime bound (1.6). Thus solutions living at very large length scales cannot
arise as minimal blowup solutions. On the other hand, by the analysis of Section 8,
solutions living at very small length scales cannot blow up either and so cannot
occur as minimal blowup solutions. Naturally, if the sequence {un} of solutions all
live at intermediate length scales, there is no need to rescale in order to achieve
subsequential convergence.

Theorem 9.6 gives more than just the existence of a minimal blowup solution
(under the assumption that Theorem 1.3 fails). It shows that any such minimal
counter-example u consists of a single well-localized bump. More precisely, it shows
that such a solution u is almost periodic modulo translations, that is, there is an
R3-valued function x(t) of time so that{

u(t, x− x(t)) : t ∈ R
}

is precompact in H1(R3).

In fact, this very strong property of such minimal blowup solutions is a rather trivial
consequence of our strong Palais–Smale condition.

It is now that we finally see the true power of the induction on energy paradigm.
It tells us where to center our virial identity and at what radius we can safely
truncate; the latter is dictated by compactness. There is one additional subtlety,
however: we need to control how much x(t) moves. In Proposition 10.1 we observe
that minimal blowup solutions have zero momentum. Otherwise, one could apply
a Galilei boost, which preserves the mass and the blowup property, but reduces the
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energy. In Proposition 10.2 we use this to constrain the motion of x(t); specifically,
we show that x(t) = o(t) as |t| → ∞. This is sufficient to exploit a truncated version
of the virial identity to show that (1.8) is inconsistent with the region R admitting
an almost periodic solution. This is done in Section 10. As our previous arguments
show that failure of Theorem 1.3 guarantees the existence of such a solution, this
completes the proof of Theorem 1.3.

By realizing the arguments laid out above, we will be able to show that scattering
occurs on any region R of the mass/energy plane with the following property:

(1.10) If (m, e) ∈ R and u ∈ H1(R) obeys M(u) ≤ m and E(u) ≤ e, then V (u) > 0.

Note that non-vanishing of the virial on such a larger set is needed to perform the
induction argument we described.

In Section 5 we determine the largest R region obeying (1.10); this is the region
appearing in Theorem 1.3. As we will see, one may determine this region by finding
for each mass m > 0 the least energy EVmin(m) at which the virial vanishes. This is
formalized in Definition 5.1.

From prior investigations, it is reasonable to imagine that the boundary of the
region R is marked by solitons; that is, the functions that achieve minimal energy
among those with fixed mass and zero virial are solitons. We will prove that this
is not the case for our model. We find this a startling new observation. It places a
formidable limitation on existing technology and raises curious questions for further
investigation; most notably, what is the true extent of the mass/energy region where
only scattering holds?

We are able to prove that for some values of the mass, functions with zero virial
that achieve energy EVmin(m) are precisely solitons, but for other values of the mass
such functions are non-trivial rescalings of soliton profiles. These rescalings are not
solitons in their own right! Such non-soliton virial obstructions do not appear in
earlier work. See Theorem 5.6 for further information. Theorem 5.2 gives general
information on the shape of the curve m 7→ EVmin(m).

Let us now discuss the relation to the works [1, 2, 60], which considered the case
where the highest nonlinearity is energy-critical and focusing. In that setting, the
scattering threshold is dictated by the radial soliton W associated to the purely
energy-critical problem, which is unstable to finite-time blowup. In particular,
the lower order nonlinearity does not alter the threshold determined earlier in [40,
46]. The authors of the papers [1, 2, 60] consider variational problems based on
minimizing a free energy of the form

Fλ(u) = E(u) + λM(u)

subject to vanishing of the virial, expanding on the methodology introduced by
Payne and Sattinger [65]. (In [60], λ = 0.) It is not difficult to see from the results
of this paper that our problem has the following properties: (a) Minimizers may
exist (depending on λ), but no soliton ever occurs as such a minimizer and (b) The
region R cannot be exhausted by sub-level sets of such functions. More specifically,
we draw the reader’s attention to the concavity proved in Theorem 4.1 and the
shape of the curve of rescaled solitons shown in Figure 5.2. (The facts about this
curve proved in Lemma 5.5 are sufficient to verify (a) and (b), but the convexity
shown by the numerics makes it instantly apparent.)
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Although the presence of a lower-order nonlinearity cannot be expected to alter
the blow-up threshold, it can modify the blow-up dynamic. This is demonstrated
in [53], which addresses the case where the dominant nonlinearity is mass-critical.

In closing this introduction, we wish to express two thoughts about future direc-
tions:
1. We believe that the discovery of the new non-soliton obstructions to the usual
tools used to prove scattering is almost as important as the positive results that
we prove. It breaks the long-standing tradition that minimization subject to zero
virial produces solitons (or wave collapse with a soliton profile). In doing so, it
highlights an unexpected inadequacy of prior methods and hopefully will stimulate
the investigation of substitutes for the virial identity in the treatment of large data
scattering.
2. We hope that this paper may provide some preliminary guidelines for the problem
of large-data scattering for the Gross–Pitaevskii and cubic-quintic problems with
non-zero boundary conditions at infinity. These problems are much more subtle.
The gauge and Galilei symmetries are both broken and the mass (more accurately,
the mass defect relative to the constant background) is no longer coercive. On the
positive side, these problems are known to be well-posed for large data [30, 44]
and to scatter for small data [36, 37]. There have also been substantial advances
in understanding the structure of solitons for these equations [9, 56]. Nonetheless,
considerable obstacles (both variational and dispersive in character) currently stand
in the way of a proof of scattering below the soliton threshold.

1.1. Notation. We write X . Y to indicate that there exists some constant C > 0
so that X ≤ CY for all (X,Y ) ranging in some set. If the constant C depends on
some parameter r, we write X .r Y . We write X ∼ Y if X . Y . X.

Definition 1.4. A pair of exponents (q, r) is admissible if 2 ≤ q, r ≤ ∞ and
2
q + 3

r = 3
2 . Given a spacetime slab I × R3, we define

‖u‖S0(I) := sup
{
‖u‖LqtLrx(I×R3) : (q, r) is admissible

}
.

Analogously, N0(I) denotes the corresponding dual Strichartz spaces.

These notations (introduced in [19]) allow a compact expression of the Strichartz
estimates for the Schrödinger propagator on R3:

Lemma 1.5 (Strichartz estimates, [32, 39, 69, 75]). Let I be an interval in R and
let u : I × R3 → C be a solution to

i∂tu = −∆u+ F with u(t = 0) = u0.

Then,

(1.11) ‖u‖S0(I) . ‖u0‖L2(R3) + ‖F‖N0(I).

We will often apply this estimate to the derivative of solutions to (1.1); for
example, combining (1.11) with Sobolev embedding, we observe that

‖u‖L10
t,x(R×R3) . ‖u0‖Ḣ1(R3) + ‖∇F‖N0(R).

Let us now describe our notations for Littlewood–Paley projectors. Fix ψ ∈
C∞c (R3) that is non-negative, radial, and such that ψ(x) = 1 if |x| ≤ 1 and ψ(x) = 0
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if |x| ≥ 11
10 . We then define Fourier multipliers as follows:

P̂≤Nf(ξ) := ψ
(
ξ
N

)
f̂(ξ), P̂Nf(ξ) :=

[
ψ
(
ξ
N

)
− ψ

(
2ξ
N

)]
f̂(ξ),

and P̂>Nf(ξ) :=
[
1− ψ

(
ξ
N

)]
f̂(ξ).

Lemma 1.6 (Bernstein inequalities). For 1 ≤ p ≤ q ≤ ∞, we have

‖PNf‖Lq(R3) . N
3
p−

3
q ‖PNf‖Lp(R3),

‖P≥Nf‖Lp(R3) . N
−s∥∥|∇|sP≥Nf∥∥Lp(R3)

.

The Brezis-Lieb Lemma is a refinement of Fatou’s Lemma that has proven in-
valuable in the calculus of variations:

Lemma 1.7 ([11]). Fix 1 ≤ p < ∞ and suppose {fn}n∈N is bounded in Lp(Rd)
and converges almost everywhere to f . Then

lim
n→∞

(
‖fn‖pLp(Rd)

− ‖fn − f‖pLp(Rd)

)
= ‖f‖p

Lp(Rd)
.

As one last preliminary, we remind the reader of a particular consequence of
local smoothing; see [41, Lemma 3.7], [46, Lemma 2.5], or [48, Corollary 4.15].

Lemma 1.8. Given φ ∈ Ḣ1(Rd),

‖∇eit∆φ‖3L2
t,x([−T,T ]×{|x|≤R}) . T

2
5R

11
5 ‖eit∆φ‖L10

t,x
‖∇φ‖2L2

x
.

2. Solitons

The purpose of this section is to discuss soliton solutions of the cubic-quintic
NLS, that is, solutions of the form u(t, x) = eiωtP (x) with P ∈ H1(R3) and ω ∈ R.
Evidently, this corresponds to the analysis of the elliptic equation

−∆P + |P |4P − |P |2P + ωP = 0.(2.1)

(Elliptic regularity guarantees that distributional solutions in H1(R3) are actually
classical solutions, so we need not quibble about the appropriate notion of solution.)

In this paper, we are primarily interested in understanding thresholds for scat-
tering. As we will see, this allows us to focus our attention on positive radial
solutions to (2.1); these are typically known as ground states. Incidentally, by the
well-known results of Gidas, Ni, and Nirenberg [31], positive solutions to (2.1) are
automatically radial (about some point).

Before stating our main results about ground state solitons, we pause to recall
some fundamental identities valid for all H1

x solutions:

Lemma 2.1 (Pohozaev Identites). Let P ∈ H1(R3) obey (2.1) for some ω ∈ C.
Then ∫

|∇P |2 + |P |6 − |P |4 + ω|P |2 dx = 0(2.2)

and

∫
1
6 |∇P |

2 + 1
6 |P |

6 − 1
4 |P |

4 + ω
2 |P |

2 dx = 0.(2.3)

In particular, if P 6≡ 0 then ω ∈ (0, 3
16 ).
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Proof. Pairing the equation (2.1) with P̄ (x) yields (2.2), from which it also follows
that ω ∈ R.

The second identity, (2.3), follows from pairing the equation with x · ∇P̄ (x). As
it is not given that x ·∇P̄ (x) ∈ H1(R3), a little extra care is needed here; complete
details can be found in [8, §2.1].

For ω ≥ 3
16 , the polynomial appearing in (2.3) is non-negative; this then forces

P ≡ 0. Lastly, taking a linear combination of (2.2) and (2.3) yields

(2.4)

∫
|P |4 dx = 4ω

∫
|P |2 dx,

which shows that ω > 0 unless P ≡ 0. �

Theorem 2.2 (Basic properties of ground state solitons). For each 0 < ω < 3
16 ,

there is a unique non-negative radially symmetric solution Pω ∈ H1(R3) to

(2.5) −∆Pω + P 5
ω − P 3

ω + ωPω = 0.

In fact, Pω is strictly positive and a decreasing function of |x|. Moreover,
(i) Pω is a non-degenerate saddle point of u 7→ E(u) + ω

2M(u), when viewed as

a functional on H1
rad(R3). The Morse index is equal to one. Furthermore

among all non-zero solutions u to (2.1), Pω achieves the minimal value of
E(u) + ω

2M(u).

(ii) The map ω 7→ Pω is C1; indeed, it is real analytic.

(iii) The Ḣ1
x norm of Pω is strictly increasing; indeed,

(2.6)
d

dω

∫
|∇Pω(x)|2 dx = 3

2M(Pω).

Using the notation β(ω) :=
∫
|Pω(x)|6 dx

/ ∫
|∇Pω(x)|2 dx, we also have

(2.7)
d

dω
M(Pω) < 3β(ω)−1

2ω M(Pω).

(iv) As ω → 0 we have β(ω) = ωβ(g) +O(ω2),

M(Pω) = 1√
ω

∫
g(x)2 dx+

√
ω

2

∫
g(x)6 dx+O(ω3/2),

and

E(Pω) =
√
ω

2

∫
g(x)2 dx− ω3/2

12

∫
g(x)6 dx+O(ω5/2),

where g is the unique positive radially symmetric solution to −∆g−g3+g = 0.
(v) As ω → 3

16 we have β(ω)→∞, M(Pω)→∞, and E(Pω)→ −∞; indeed,

β(ω) ∼ ( 3
16 − ω)−1, (M(Pω) ∼ ( 3

16 − ω)−3, and |E(Pω)| ∼ ( 3
16 − ω)−3.

The remainder of this section is devoted to the proof of this theorem.
Existence of solitons for ω ∈ (0, 3

16 ) follows from the main theorem in [8]. We
remind the reader of the construction, since we will use it in verifying other parts
of the theorem. Defining p(u) = 1

6 |u|
6 − 1

4 |u|
4 + ω

2 |u|
2, one first shows that the

variational problem

(2.8) minimize

∫
|∇P (x)|2 dx over P ∈ H1(R3) with

∫
p(P (x)) dx = −1



THE CUBIC-QUINTIC NLS ON R3 15

admits an optimizer P̃ω that is non-negative, radially symmetric, and non-increasing
(as a function of radius). This is a standard argument, using rearrangement inequal-
ities and the Strauss Lemma (compactness of the embedding H1

x ↪→ L4
x for radial

functions). As an optimizer, P̃ω obeys the Euler–Lagrange equation

(2.9) −∆P̃ω + λ
[
P̃ 5
ω − P̃ 3

ω + ωP̃ω
]

= 0 with λ = 1
6

∫
|∇P̃ω|2 dx,

the value of the Lagrange multiplier λ being determined via the Pohozaev identities
for this equation. Lastly, observe that Pω(x) = P̃ω(x/

√
λ) is the sought-after

soliton.
The variational argument gives a bound on the supremum of the solution, which

we will use later:

(2.10) Pω(x) ≤ b0(ω) :=
√

1
2 + 1

2

√
1− 4ω for all ω ∈ (0, 3

16 ) and x ∈ R3.

To see this, we consider a generic trial function P ∈ H1
x for (2.8) and the competitor

Q(x) = min(b0, |P (ρx)|), where ρ > 0 is chosen so that Q obeys the constraint∫
p(Q) dx = −1. As p(u) > p(b0) whenever |u| > b0, it is not difficult to verify that

if |P | exceeds b0 at some point, then ρ > 1 and so Q will be a better trial function.
This proves (2.10).

Uniqueness of non-negative radial H1
x solutions to the equation (2.5) follows from

[67, Theorem 1′]. As discussed in that paper, there is a lengthy history of proving
uniqueness of such ground state solutions; however, [67] is the earliest paper we
have been able to find which covers the cubic-quintic equation.

That Pω is strictly positive, rather than merely being non-negative, follows from
the fact that it solves a second-order ordinary differential equation (when viewed
as a function of radius). Specifically, at any point x where Pω(x) = 0 one must
also have ∇Pω(x) = 0 to avoid a sign change, but then uniqueness for the ODE
forces Pω ≡ 0. A similar argument also shows that Pω is a strictly decreasing func-
tion of |x|. The significance of this is that the strict rearrangement inequalities of
Brothers and Ziemer [12], then guarantee that any optimizer of (2.8) must auto-
matically be spherically symmetric (about some point) and thus (by the uniqueness

of radially symmetric solutions) a translate of P̃ω. This proves that Pω is uniquely
characterized by the variational problem (2.8).

Incidentally, ODE methods also allow one to see that Pω(x) is a real-analytic
function of x and that as |x| → ∞,

(2.11) |x| exp
{√

ω |x|}Pω(x)→ c and exp
{√

ω |x|}x · ∇Pω(x)→ −c
√
ω

for some c = c(ω) > 0. For these assertions, see Theorems 1.8.1 and 3.8.1 in [17].
We have now verified all the assertions at the beginning of Theorem 2.2. To aid

the reader in navigating the proofs of the numbered parts of the theorem, each is
given its own subsection below.

Theorem 2.2 gives considerable insight into the nature of the mass/energy curve
for the system of solitons Pω, which is depicted in Figure 2.1. Some further results
are included in Subsection 2.3; however, at least one conspicuous question remains
open:

Conjecture 2.3. There is an ω∗ ∈ (0, 3
16 ) so that ω 7→M(Pω) is strictly decreasing

for ω < ω∗ and strictly increasing for ω > ω∗.

This conjecture is strongly supported by numerics. By (2.23), we see that the
map ω 7→ E(Pω) would have the opposite monotonicities, so giving rise to the cusp
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6E

-
M0

Figure 2.1. Schematic mass/energy curve (M(Pω), E(Pω)) for
ground state solitons, based on numerics.

seen in Figure 2.1. By (2.24) we see that this conjecture would also demonstrate
the convexity and concavity of the mass/energy curve when ω < ω∗ and ω > ω∗,
respectively, that is depicted in Figure 2.1.

2.1. Solitons as critical points of E + ω
2M . Recalling the definitions of mass

and energy shows that

E(u) + ω
2M(u) =

∫
R3

1
2 |∇u(x)|2 + 1

6 |u(x)|6 − 1
4 |u(x)|4 + ω

2 |u(x)|2 dx;

thus, critical points of this functional are precisely solutions to (2.1). A proof that
the solution Pω constructed by the variational argument minimizes E(u) + ω

2M(u)
over the class of all non-zero solutions to (2.1) can be found in [8, §4.3].

The Hessian of u 7→ E(u) + ω
2M(u) at Pω is given by the operator

Lω = −∆ + 5P 4
ω − 3P 2

ω + ω.

Note that this operator is also important as the linearization of (2.5) around Pω.
Thirdly, this operator appears when seeking ground states via the shooting method;
specifically, it gives the equation for the derivative of the solution with respect to
the shooting parameter, which is the value of the solution at the origin.

As Pω is radially symmetric, the operator Lω decomposes as a direct sum of
operators, one in each angular momentum eigenspace. Moreover, separation of
variables associates to each such restricted operator an ODE that can be studied
by Sturm–Liouville methods. With this in mind, we regard Pω as a function of
r = |x|, rather than x, whenever this is more convenient. Note also that Lω is a
relatively compact perturbation of −∆ + ω and so has only discrete spectrum on
(−∞, ω).

The statement of Theorem 2.2 focuses attention on the zero angular momentum
component of Lω because standard simple arguments of general applicability (see
below) yield the structure at higher angular momentum. Indeed, the central subtle
question is whether zero is an eigenvalue of the restriction of Lω to the space of
radially symmetric functions. This question arises, for example, in understanding
the stability/instability of the ground state solitons; see [68, 74]. It is also a key
step in the influential Coffman–Kolodner approach to uniqueness of the ground
state (cf. [18, 51, 52, 57]).
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While a number of general uniqueness theorems have been proven by the Coffman–
Kolodner method, we have not found an instance that is applicable to the cubic-
quintic problem of interest to us. Our proof of Theorem 2.2(i) is strongly influenced
by these papers, particularly [57], and our success here perhaps leads to further gen-
eralization this method. We do not pursue this since the competing approach used
in [67] provides the uniqueness statement we need.

Proposition 2.4 in this subsection reduces the study to the key question identified
above; Proposition 2.5 settles it. Note that the presence of ∇Pω in the null space
of Lω is not surprising: from a PDE point of view it corresponds to the translation
invariance of (2.5), while from a variational perspective it represents the same
invariance for u 7→ E(u) + ω

2M(u).

Proposition 2.4. Fix ` = 0, 1, 2, . . . and consider the restriction of Lω to functions
of the form f(|x|)Y (x/|x|) where Y is a spherical harmonic of degree `.

(i) When ` = 0 the operator has exactly one negative eigenvalue; it is simple.
(ii) When ` = 1 there are no negative eigenvalues. Zero is an eigenvalue and its

eigenspace is spanned by the three components of ∇Pω.
(iii) When ` ≥ 2 the operator is positive definite.

Proof. We treat the parts in order, beginning with ` = 0. First observe that
v = x

|x| · ∇Pω(x) belongs to H1
x and is radially symmetric. Using this as a trial

vector shows that Lω has negative spectrum; indeed, a little computation shows

〈v,Lωv〉 = −2

∫
R3

|x · ∇Pω(x)|2

|x|4
dx < 0.

Next we show that Lω has at most one negative eigenvalue (counting multiplic-
ity). This is to be expected from the variational characterization (2.8) of Pω: it
is defined by a singly constrained minimization problem and one constraint can
only counteract one concave direction. To make this heuristic rigorous we argue
by contradiction; specifically, we suppose that there is a two-dimensional subspace
M⊂ H1

x for which

(2.12) 〈u,Lωu〉 < 0 whenever u ∈M \ {0}.

Next, we apply the Implicit Function Theorem to construct a two-dimensional
surface M3 u 7→ Q(u) ∈ H1

x of functions obeying the constraint

(2.13)

∫
1
6 |Q|

6 − 1
4 |Q|

4 + ω
2 |Q|

2 dx =

∫
1
6 |Pω|

6 − 1
4 |Pω|

4 + ω
2 |Pω|

2 dx.

To be precise, having chosen a real-valued w ∈ H1
x with

∫ [
P 5
ω−P 3

ω+ωPω
]
w dx = 1,

there is an ε > 0 and a smooth real-valued function h defined on B(0, ε) ⊆ M so
that h(0) = 0 and Q(u) := Pω + u+ h(u)w obeys (2.13) for all u ∈ B(0, ε).

Recall that P̃ω(x) = Pω(x
√
λ) where λ is as in (2.9). Applying the same rescaling

Q̃(u)(x) = Q(u)(x
√
λ), we see that the variational characterization of Pω guarantees

that
∫
|∇Q(u)|2 dx ≥

∫
|∇Pω|2 dx. Combining this with (2.13) implies

(2.14) E(Q(u)) + ω
2M(Q(u)) ≥ E(Pω) + ω

2M(Pω) for all u ∈ B(0, ε) ⊆M.

We will now reach a contradiction by examining the behaviour of E(Q)+ ω
2M(Q)

near the point Pω on the surface. As Pω is a soliton, dE + ω
2 dM = 0 at Pω. Thus,

d2

dt2

∣∣∣
t=0

E(Q(tu)) + ω
2M(Q(tu)) =

〈[
u+ (u · ∇h(0))w

]
,Lω

[
u+ (u · ∇h(0))w

]〉
.
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As M is two-dimensional, we can choose u ∈ M \ {0} with u ⊥ ∇h(0). By
(2.12), this choice makes the above expression negative, which contradicts (2.14).
This completes the proof that Lω has at most one negative eigenvalue (counting
multiplicity).

It will be easier to understand the case of higher angular momentum if we
separate variables. To this end, let Y be a spherical harmonic of degree ` and
u(x) = f(|x|)Y (x/|x|), then Lωu = λu if and only if

(2.15) − f ′′(r)− 2
rf
′(r) + `(`+1)

r2 f(r) + [5P 4
ω(r)− 3P 2

ω(r) + ω]f(r) = λf(r).

Consider first the case ` = 1. An easy calculation (take the gradient of (2.5))
shows that the components of ∇Pω are eigenvectors of Lω with eigenvalue 0. More-
over, if we write ∇Pω(x) = − x

|x|f(|x|) then the function f is strictly positive; this

is because Pω is a strictly decreasing function of radius. By the Sturm Oscillation
Theorem (cf. [17, Ch. 8]), positivity of f guarantees that zero is at the bottom
of the spectrum. Lastly, the differential equation obeyed by the Wronskian shows
that the ODE (2.15) cannot admit a second zero-energy eigenfunction in L2(r2dr).

Assume now ` ≥ 2. Suppose, toward a contradiction, that u(x) = f(|x|)Y (x/|x|) ∈
H1 obeys Lωu = λu with λ ≤ 0 and Y a spherical harmonic of degree `. Then
v(x) = f(|x|) x

|x| obeys 〈v,Lωv〉 < 0 in contradiction to the preceding paragraph.

�

Proposition 2.5. Let δ be the solution to

(2.16) − δ′′(r)− 2
r δ
′(r) + [5P 4

ω(r)− 3P 2
ω(r) + ω]δ(r) = 0

obeying δ(0) = 1. Then δ(r) → −∞ as r → ∞. Correspondingly, zero is not an
eigenvalue of Lω restricted to radial functions.

Proof. First we should explain why such a solution δ(r) exists and is unique. The
ODE (2.16) has a regular singular point at r = 0; however, changing variables to
σ(r) = rδ(r) transforms it to

(2.17) − σ′′(r) + [5P 4
ω(r)− 3P 2

ω(r) + ω]σ(r) = 0.

Thus δ corresponds (uniquely!) to initial data σ(0) = 0, σ′(0) = 1.
The basic question we need to answer is whether δ(r)→ 0 as r →∞. Applying

Theorem 3.8.1 from [17] to (2.17) shows that δ either grows or decays exponentially
as r → ∞. Proposition 2.4(i) and the Sturm Oscillation Theorem guarantee that
δ changes sign exactly once. Thus, in the growing case we must have δ(r)→ −∞.
In the decaying case, δ ∈ L2(r2 dr), which makes zero an eigenvalue. Thus, we
may prove the proposition by assuming that δ(r) → 0 as r → ∞ and reaching a
contradiction.

To obtain the contradiction, we will be following the arguments in [57], which
become applicable with the addition of one new observation. The main part of the
argument uses the Sturm Separation Theorem to compare δ with a function of the
form vλ(r) := rP ′ω(r) + λPω(r), with λ ∈ R. Note that vλ obeys

(2.18) − v′′λ(r)− 2
rv
′
λ(r) + [5P 4

ω(r)− 3P 2
ω(r) + ω]vλ(r) = −I(λ, Pω(r))

with

(2.19) I(λ, u) := 2[u5 − u3 + ωu]− 2λ[2u5 − u3].
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We wish to choose the parameter λ so that λ > 0 and I(λ, Pω(r1)) = 0, where
r1 ∈ (0,∞) denotes the sole zero of δ(r) noted above. A little effort shows that the
possibility of finding such a λ follows from

(2.20) a0 < Pω(r1) < 1√
2

where a0 =
√

1
2 −

1
2

√
1− 4ω.

Verification of the lower bound on can be found in the proof of [57, Lemma 4];
the argument is as follows: From the equations obeyed by Pω(r) and δ(r), we have

d
dr [r4P ′ω(r)δ′(r)] = r4[(P 5

ω − P 3
ω + ωPω)δ]′(r)

and so integrating over [r1,∞) and using (2.11) yields

(2.21) − r4
1P
′
ω(r1)δ′(r1) = −

∫ ∞
r1

4r3[Pω(r)5 − Pω(r)3 + ωPω(r)]δ(r) dr.

Now if Pω(r1) ≤ a0 then [Pω(r)5 − Pω(r)3 + ωPω(r)] > 0 for r > r1 which means
that RHS(2.21) is strictly positive. (Recall that δ changes sign at r1 and remains
negative there-after.) This yields a contradiction because P ′ω(r1) < 0 and δ′(r1) < 0
making LHS(2.21) negative.

Verifying the upper bound on Pω(r1) in (2.20) is the new input. Suppose
Pω(r1) ≥ 2−1/2 and so Pω(r) > 2−1/2 on [0, r1). Comparing the equations for
δ and Pω we see that this implies that Pω oscillates faster than δ on the interval
[0, r1], in the sense of the Sturm Comparison Theorem. This gives a contradiction
since δ(r1) = 0, while Pω is non-vanishing.

Having verified (2.20) we may now choose λ > 0 so that I(λ, Pω(r1)) = 0. We
claim that I(λ, Pω(r)) < 0 for r ∈ [0, r1) and I(λ, Pω(r)) > 0 for r ∈ (r1,∞). To
check this, we first rewrite (2.19) as

I(λ, u) = 2u(u2 − a2
0)(u2 − b20)− 2λu3(2u2 − 1),

where a0 is as in (2.20) and b0 is given in (2.10). Note that a2
0 <

1
2 < b20. When

2−1/2 ≤ u ≤ b0 we see quickly that I(λ, u) < 0. On the other hand, u 7→ (u5 −
u3 + ωu)(2u5 − u3)−1 is increasing on 0 < u < 2−1/2. Recalling that Pω(r) is a
decreasing function bounded by b0, see (2.10), this proves the claim.

Next we claim that vλ has exactly one zero in [0, r1]. To see this note that
vλ(0) > 0 and while vλ remains positive, it oscillates faster than δ. Thus vλ has at
least one zero in [0, r1]. Let r0 be the smallest such zero and note that vλ changes
sign there. Indeed, if vλ(r0) = v′λ(r0) = 0, then v′′λ(r0) = I(λ, Pω(r0)) < 0, which
would be inconsistent with the fact that vλ is positive on [0, r0). On the other
hand, after changing sign, vλ oscillates more slowly than δ and so cannot vanish on
(r0, r1].

We now compare δ and vλ on [r1,∞). First note that vλ(r1) < 0. If vλ has no
zeros on (r1,∞), then it oscillates faster than δ because I > 0 on this interval. This
is of course self-contradictory, since δ vanishes at both ends of this interval (this
was our contradiction hypothesis).

To reach a contradiction, we will show that vλ does not have a zero in (r1,∞). To
this end, suppose that vλ did vanish there and let r2 denote the smallest such zero.
A repetition of the second derivative argument above (now with reversed signs)
shows that vλ must change sign at r2. However, by (2.11) we also have vλ(r) < 0
for r sufficiently large. Thus there is a point r3 ∈ (r2,∞) at which vλ also vanishes
and such that vλ > 0 on (r2, r3). Now, on this smaller interval, vλ oscillates more
slowly than δ. This yields a contradiction by forcing δ to have a zero in (r2, r3). �
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2.2. Smoothness of ω 7→ Pω. Fix 0 < ω0 < 3
16 . First, we observe that Pω0

belongs to a real-analytic branch ω 7→ u ∈ H1
rad(R3) of solutions to

(2.22) −∆u+ u5 − u3 + ωu = 0

and subsequently identify this branch as consisting of ground state solitons Pω.
As Lω0 is a relatively compact perturbation of −∆+ω0, Theorem 2.2(i) together

with the Fredholm Theorem guarantees that it is an isomorphism of H1
rad(R3) onto

H−1
rad(R3). (Recall that the subscript indicates radially symmetric functions.) Thus,

applying the Implicit Function Theorem to the mapping u 7→ LHS(2.22), we see
that there is a real analytic curve ω 7→ u(ω) ∈ H1

rad of solutions to (2.22) defined
in a neighbourhood of ω0 and obeying u(ω0) = Pω0

.
Note that the Implicit Function Theorem (or the contraction mapping argument

used to prove it) also guarantees that ω 7→ u(ω) is smooth with values in H2(R3)
and so (by Sobolev embedding) also smooth when viewed as a map into L∞(R3).

To conclude that u(ω) = Pω, it suffices to show that u(ω) is non-negative, which
we will do via a spectral theory argument. For each ω, the Schrödinger operator

Hωf := −∆f + u(ω)4f − u(ω)2f + ωf

has a zero eigenvalue, as witnessed by u(ω) itself. Moreover, when ω = ω0 this is
an isolated simple eigenvalue at the bottom of the spectrum (as follows, for exam-
ple, from the Weyl criterion and Sturm comparison). Thus, by eigenvalue/vector
perturbation theory, the zero eigenvalue of Hω must also be at the bottom of the
spectrum for |ω − ω0| small. This in turn guarantees that u(ω) must be positive
(cf. [66, Theorem XIII.46]).

This completes the proof of part (ii) of Theorem 2.2. �

2.3. Further identities and inequalities. Using just (2.5) and the definitions of
mass and energy of Pω, we obtain

dE

dω
=
〈dPω
dω

, −∆Pω + P 5
ω − P 3

ω

〉
L2

=
〈dPω
dω

, −ωPω
〉
L2

= −ω
2

dM

dω
,(2.23)

where E(ω) = E(Pω) and M(ω) = M(Pω). Thus at any point ω0 where dM
dω 6= 0,

d2E

dM2
=
(dM
dω

)−1 d

dω

[dE
dω
÷ dM

dω

]
= −1

2

(dM
dω

)−1

.(2.24)

For much of what follows, it is convenient to introduce the notation

(2.25) β(u) :=

∫
|u|6dx∫
|∇u|2dx

for u ∈ H1(R3),

which generalizes the notion introduced in Theorem 2.2, namely, β(ω) = β(Pω).
By exploiting the Pohozaev identities from Lemma 2.1, we obtain very compact

expressions for the key quantities associated to our solitons:∫
P 2
ω dx = β(ω)+1

3ω

∫
|∇Pω|2 dx,

∫
P 4
ω dx = 4[β(ω)+1]

3

∫
|∇Pω|2 dx,(2.26) ∫

P 6
ω dx = β(ω)

∫
|∇Pω|2 dx, and E(Pω) = 1−β(ω)

6

∫
|∇Pω|2 dx.(2.27)

Numerical investigations give compelling evidence for the following:

Conjecture 2.6. The mapping ω 7→ β(ω) is injective; that is, ground state solitons
are uniquely identified by the ratio β(ω).
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Several properties of solitons are singled out by their β ratio. For example, a
soliton has zero energy if and only if it has β = 1. In subsequent sections, several
results have cumbersome formulations because we have not yet been able to verify
this conjecture.

By Theorem 2.2(iv,v), injectivity of β(ω) is equivalent to its strict monotonicity.
There is another equivalent formulation of Conjecture 2.6, relating it directly to
the variational characterization (2.8) of Pω, namely,

log(ω) 7→ log
[

1
6

∫
|∇P̃ω|2 dx

]
= 2

3 log
[

1
6

∫
|∇Pω|2 dx

]
is a strictly convex function.

This equivalence is easily verified using (2.6) and (2.26). The identity stated here
follows immediately from (2.9).

We turn next to the proof of (2.6). It is very simple: By (2.26) and (2.27) we
have

∫
|∇Pω|2 dx = 3(E + ω

2M) and so (2.23) yields

d

dω

∫
|∇Pω|2 dx =

d

dω
3
(
E + ω

2M
)

= 3
2M.(2.28)

The proof of (2.7) is rather more complicated. We begin by computing the
matrix elements of Lω given in Table 2.1. Differentiating (2.5) with respect to ω
yields Lω ∂Pω∂ω = −Pω from which we immediately deduce the top row of matrix
elements in Table 2.1. For the second row, we use the relation

LωPω = 4P 5
ω − 2P 3

ω ,(2.29)

which is a direct consequence of (2.5), followed by (2.26) and (2.27).

〈·,Lω ·〉 ∂Pω
∂ω Pω x · ∇Pω + 3

2Pω

∂Pω
∂ω − 1

2M
′(ω) −M(ω) 0

Pω −M(ω) 4
3 [β(ω)− 2]G(ω) 2[β(ω)− 1]G(ω)

x · ∇Pω + 3
2Pω 0 2[β(ω)− 1]G(ω) [3β(ω)− 1]G(ω)

Table 2.1. Key matrix elements of Lω. Here G(ω) :=
∫
|∇Pω|2 dx.

For the last row in Table 2.1 we use the basic identity

(2.30) ∆(x · ∇u) = (xkuk)jj = 2δjkukj + xkukjj = 2∆u+ x · ∇∆u

to deduce

Lω(x · ∇Pω + 3
2Pω) = −2∆Pω + 6P 5

ω − 3P 3
ω = 4P 5

ω − P 3
ω − 2ωPω(2.31)

and then apply (2.26) and (2.27) to simplify the expressions for the resulting inner
products.

Observe that the determinant of the bottom right 2× 2 block in Table 2.1 is

4
3 [β(ω)− 2][3β(ω)− 1]G(ω)2 − 4[β(ω)− 1]2G(ω)2 = − 4

3 [β(ω) + 1]G(ω)2,

which is always negative. From Subsection 2.1 we know that Lω has exacly one
negative eigenvalue and no zero eigenvalue. Thus by Sylvester’s law of inertia, the
full 3× 3 determinant must be negative, that is,

2
3M

′(ω)[β(ω) + 1]G(ω)2 −M(ω)2[3β(ω)− 1]G(ω) < 0.
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Employing (2.26) we may rewrite this as{
2ωM ′(ω)− [3β(ω)− 1]M(ω)

}
M(ω)G(ω) < 0,

which proves (2.7).
One consequence of (2.7) is that the mass is strictly decreasing for β(ω) ≤

1/3. Note that by Conjecture 2.6 and the results of Subsection 2.4 below, this
corresponds to an interval of the form ω ∈ (0, ω1/3]. The significance of this is

heightened by the numerical observation that the mass M(ω) =
∫
P 2
ω dx at ω1/3

is extremely close to the minimal value of the mass; see the numerical data in
Table 2.2. Indeed, the masses differ by about one part in a thousand.

ω β(ω)
∫
P 2
ω

∫
|∇Pω|2 Significance

0.023926 0.33333 189.68 10.211 β = 1/3
0.025544 0.36054 189.46 10.671 Minimal M
0.054735 1.00000 240.45 19.741 E = 0

Table 2.2. Selected numerical data

The minimum of the mass of Pω as ω varies is represented by the cusp point
in Figure 2.1. Note that (2.23) combined with the analyticity of E(ω) and M(ω)
guarantees rigorously that this will indeed be a cusp.

In Section 5 we will find that β = 1/3 has a further significance: the curves of
solitons and rescaled solitons meet at this point.

From (2.23) we see that the mass/energy curve (see Figure 2.1) steepens as ω
grows. Our last result for this subsection captures this phenomenon in a manner
that will be used twice in the proof of Theorem 5.6.

Lemma 2.7. Fix 0 < ω0 < ω1 < 3/16 with E(Pω0
) = E(Pω1

). If E(Pω) ≥ E(Pω0
)

for all ω ∈ (ω0, ω1), then M(ω1) < M(ω0). If on the other hand, E(Pω) ≤ E(Pω0
)

for all ω ∈ (ω0, ω1), then M(ω1) > M(ω0).

Proof. From (2.23) and integration by parts, we have

−
∫ ω1

ω0

d
dωM(Pω) dω =

∫ ω1

ω0

d
dωE(Pω) 2dω

ω = 2
ω1
E(Pω1

)− 2
ω0
E(Pω0

) +

∫ ω1

ω0

E(Pω) 2dω
ω2 .

Thus using E(Pω0
) = E(Pω1

) we deduce

−M(ω1) +M(ω0) =

∫ ω1

ω0

[
E(Pω)− E(Pω0

)
]

2dω
ω2 .

This immediately proves the lemma. Note that we obtain strict inequalities because
ω 7→ E(Pω) is a non-constant analytic function; in particular, it is not constant on
the interval (ω0, ω1). �

2.4. Asymptotics as ω → 0. The key idea in our analysis of this case is to change
variables to

(2.32) u(x;ω) := 1√
ω
Pω
(
x√
ω

)
.

This new unknown obeys

(2.33) −∆u+ ωu5 − u3 + u = 0,
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which we regard as a perturbation of the well-studied problem with ω = 0. To this
end, let g denote the unique non-negative radially symmetric solution to

(2.34) −∆g − g3 + g = 0.

The function g is strictly positive, smooth, and exponentially decaying. Most im-
portant for us is the fact that the linearized operator

L : f 7→ −∆f − 3g2f + f

has been shown to be an isomorphism of H1
rad onto H−1

rad; see [18]. Thus, by the Im-
plicit Function Theorem, there is a real-analytic family v(x;ω) ∈ H1

rad of solutions
to (2.33) defined in a neighbourhood of ω = 0 that obeys

(2.35) v(x;ω) = g(x)− ω[L−1g5](x) +O(ω2) in H1(R3) sense.

That v(x;ω) is non-negative and so must equal u(x;ω) follows by the ground
state argument presented in Subsection 2.2.

We now move on to studying asymptotics of the mass and energy. The leading
terms are almost immediate from the above; see below. The second order terms
require the observation that

(2.36) L(g + x · ∇g) = −2g,

which follows from (2.34), (2.30), and direct computation. Indeed, using this, (2.32),
and (2.35) we have

M(Pω) = ω−1/2‖u‖2L2
x

= ω−1/2
[
‖g‖2L2

x
− 2ω〈g, L−1g5〉+O(ω2)

]
= ω−1/2‖g‖2L2

x
+ ω1/2〈g + x · ∇g, g5〉+O(ω3/2)

= ω−1/2‖g‖2L2
x

+ 1
2ω

1/2‖g‖6L6
x

+O(ω3/2).

Note that this also gives asymptotics for the L4-norm of Pω via the identity (2.4).
Using the Pohozaev identities and the asymptotics for the mass we deduce

E(Pω) = ω
2M(Pω)− 1

3‖Pω‖
6
L6
x

= 1
2ω

1/2‖g‖2L2
x

+ 1
4ω

3/2‖g‖6L6
x
− 1

3ω
3/2‖g‖6L6

x
+O(ω5/2)

= 1
2ω

1/2‖g‖2L2
x
− 1

12ω
3/2‖g‖6L6

x
+O(ω5/2).

We also used here the leading term asymptotic for the L6-norm of Pω, which is
evident from (2.35).

A similar analysis yields β(ω) = ωβ(g) +O(ω2).

2.5. Asymptotics as ω → 3
16 . We will exploit the variational characterization

(2.8) of solitons. As there, we write p(u) = 1
6 |u|

6 − 1
4 |u|

4 + ω
2 |u|

2.

First we consider an explicit trial function v defined by v(x) =
√

3/2 when
|x| < R, v(x) = 0 when |x| > R + h, and v(x) is the interpolating linear function
of |x| for intermediate values of |x|. The parameters R and h are chosen so that∫

|x|<R
p(v(x)) dx = −2 and then

∫
R3

p(v(x)) dx = −1.

As p(
√

3/2) = − 3
8 ( 3

16 −ω) we have R ∼ ( 3
16 −ω)−1/3; a slightly longer computation

reveals h ∼ ( 3
16 − ω)2/3 and therefore ‖∇v‖2L2 ∼ ( 3

16 − ω)−4/3.
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By the variational characterization of Pω, via the rescaled function P̃ω, we then
deduce that

‖∇P̃ω‖2L2 . ( 3
16 − ω)−4/3 and so ‖∇Pω‖2L2 . ( 3

16 − ω)−2.

The remainder of the argument is based on a direct analysis of the optimizer P̃ω,
which is necessarily positive, radial, and decreasing.

We define new lengths R and h so that

|P̃ω(x)| ≥ 1
2 when |x| ≤ R and |P̃ω(x)| ≤ 1

4 when |x| ≥ R+ h.

As p(u) & −( 3
16−ω) throughout C and p(u) & |u|2 ≥ 0 when |u| ≤ 1

2 , the constraint∫
p(P̃ω) = −1 guarantees that R & ( 3

16 − ω)−1/3 and that

(2.37)

∫
|x|>R

|P̃ω(x)|2 dx . 1 + ( 3
16 − ω)R3 . ( 3

16 − ω)R3.

In particular, hR2 . ( 3
16 − ω)R3, which is to say, h . ( 3

16 − ω)R.

We can now get a lower bound on
∫
|∇P̃ω|2 by comparing it to the least value

taken by any function that equals 1
2 on the sphere of radius R and equals 1

4 on
the sphere of radius R + h. This minimum is achieved by a harmonic function,

specifically, by U(x) = R(R+h)
4h|x| −

R−h
4h . Thus,∫

R<|x|<R+h

|∇P̃ω(x)|2 dx ≥ R(R+h)
16h & R( 3

16 − ω)−1 & ( 3
16 − ω)−4/3.

From this and our earlier upper bound on
∫
|∇P̃ω|2, we deduce that∫

R3

|∇P̃ω(x)|2 dx ∼ ( 3
16 − ω)−4/3 and so R ∼ ( 3

16 − ω)−1/3.

From the size of R, (2.37), and (2.10), we also obtain
∫
|P̃ω|2 ∼ ( 3

16 − ω)−1.
Rescaling we obtain∫
R3

|∇Pω(x)|2 dx ∼ ( 3
16 − ω)−2 and M(ω) =

∫
R3

|Pω(x)|2 dx ∼ ( 3
16 − ω)−3

and then by employing the Pohozaev identities,

|E(ω)| ∼
∫
R3

|Pω(x)|6 dx ∼
∫
R3

|Pω(x)|4 dx ∼ ( 3
16−ω)−3 and β(ω) ∼ ( 3

16−ω)−1.

This completes the proof of the final part of Theorem 2.2. �

3. Solitons as Gagliardo–Nirenberg–Hölder optimizers

The appearance of solitons as optimizers in Sobolev and Gagliardo–Nirenberg
inequalities has played a key role in the analysis of the focusing NLS with a single
power nonlinearity. In particular, this is an essential ingredient in the determination
of thresholds for well-posedness and for scattering in these cases; see [3, 22, 24, 40,
73].

In this section we discuss an analogous characterization of solitons for the cubic-
quintic problem in terms of a one-parameter family of inequalities we dub Gagliardo–
Nirenberg–Hölder inequalities; see (3.2) below. We suggest this name because they
interpolate between the Gagliardo–Nirenberg and Hölder inequalities

(3.1) ‖u‖4L4 . ‖u‖L2‖∇u‖3L2 and ‖u‖4L4 ≤ ‖u‖L2‖u‖3L6
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as the parameter 0 < α < ∞ varies. While the veracity of the inequality (3.2)
below for some constant Cα > 0 is easily seen by taking a (weighted) geometric
mean of these classical inequalities, this argument tells us little about the optimal
constant or any optimizing functions.

Proposition 3.1 (α-Gagliardo–Nirenberg–Hölder inequality). Fix 0 < α < ∞
and let Cα > 0 denote the optimal (i.e. infimal) constant so that

‖u‖4L4(R3) ≤ Cα‖u‖L2(R3)‖u‖
3α

1+α

L6(R3)‖∇u‖
3

1+α

L2(R3) for all u ∈ H1(R3).(3.2)

Then Cα < ∞ and the inequality admits optimizers; moreover, every optimizer v
is of the form v(x) = λPω(ρ(x − x0)) where λ ∈ C, x0 ∈ R3, ρ > 0, and Pω is a
ground state soliton with β(Pω) = α.

Remark 3.2. Theorem 2.2 shows that ω 7→ β(ω) is real-analytic with β(ω) → 0
as ω → 0 and β(ω)→∞ as ω → 3

16 . Thus for any α, there are only finitely many
ω so that β(ω) = α.

One shortcoming in our result is that we are unable (at this time) to guarantee
that all solitons appear as optimizers of (3.2) nor are we able to preclude that two
different solitons are both optimizers for the same inequality. As will be appar-
ent from what follows, a positive resolution of Conjecture 2.6 would obviate these
concerns.

Proof. That Cα <∞ follows from (3.1) as noted above. It can also be deduced in

a similar manner from Sobolev embedding (specifically, Ḣ1(R3) ⊂ L6(R3)).
Next, we prove that the optimal constant Cα is achieved. To this end, let

F (u) : =
‖u‖L2‖u‖

3α
1+α

L6 ‖∇u‖
3

1+α

L2

‖u‖4L4

, so that C−1
α = inf

u∈H1(R3)\{0}
F (u),(3.3)

and let {un}n∈N ⊂ H1
x be a sequence realizing the infimum (i.e. F (un) → C−1

α ).
By the usual rearrangement inequalities, we may assume that un are non-negative,
radially symmetric, and non-increasing. By exploiting the fact that F (u) is invari-
ant under the rescaling u(x) 7→ λu(x/r), we may also arrange that ‖un‖L2 = 1 and
‖∇un‖L2 = 1 for all n.

Passing to a subsequence, if necessary, we may assume that {un} converges to
some u∞ ∈ H1

x in both the weak topology on H1
x and the norm topology on L4

x.
The latter assertion relies on the fact that un are radially symmetric and the well-
known compactness of the embedding H1

rad(R3) ↪→ L4(R3); see, for example, [73,
p. 570]. Sobolev embedding further guarantees that un ⇀ u∞ weakly in L6

x.
Next we verify that u∞ 6≡ 0. By the normalizations ‖un‖L2 = ‖∇un‖L2 = 1 and

Hölder’s inequality, we have

C−1
α = lim

n→∞
F (un) = lim

n→∞

‖un‖
α

1+α

L2 ‖un‖
3α

1+α

L6

‖un‖4L4

≥ lim
n→∞

‖un‖
4α

1+α

L4

‖un‖4L4

= ‖u∞‖
− 4

1+α

L4 ,

which shows that indeed u∞ 6≡ 0.
Recall that the norm on any Banach space is weakly lower semicontinuous. Ap-

plying this in the numerator of F (un) and using that ‖un‖L4 → ‖u∞‖L4 6= 0 in the
denominator yields

C−1
α = lim

n→∞
F (un) ≥ F (u∞) ≥ inf

u∈H1(R3)\{0}
F (u) = C−1

α .
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Thus equality holds throughout this line and u∞ is an optimizer for (3.2).
It remains to demonstrate that all optimizers v are ground state solitons up

to the obvious symmetries. We begin by treating the case that v is non-negative
and radially symmetric; at the end of the proof we will reduce to this case via
rearrangement inequalities.

As v is a minimizer of F , it must satisfy the corresponding Euler-Lagrange
equation: d

dε |ε=0F (v + εφ) = 0 for all φ ∈ C∞c (R3;R). Thus, direct computation
shows that v is a distributional solution to the following equation:

−∆v + α

∫
|∇v|2dx∫
v6 dx

v5 − 4(1 + α)

3

∫
|∇v|2dx∫
v4 dx

v3 +
1 + α

3

∫
|∇v|2dx∫
v2 dx

v = 0.

A little further computation shows that if we define Q(x) = λ−1v(x/ρ) where
λ, ρ > 0 are given by

λ2 =
4(1 + α)

3α

∫
v6 dx∫
v4 dx

and ρ2 =
16(1 + α)2

9α

∫
v6 dx

∫
|∇v|2 dx( ∫

v4 dx
)2 ,

then, Q satisfies

−∆Q+Q5 −Q3 + ωQ = 0 with ω =
3α

16(1 + α)

( ∫
v4 dx

)2∫
v2 dx

∫
v6 dx

.(3.4)

As Q is non-negative and radially symmetric, Theorem 2.2 shows that (3.4)
uniquely identifies Q(x) as being Pω(x) for this value of ω; moreover,

β(Q) = ρ2

λ4 β(v) = α.

To complete the discussion of optimizers v for (3.2) we now need to consider the
case that v is not non-negative and radial. Standard rearrangement inequalities
guarantee that the symmetric decreasing rearrangement v∗ of v will also be an
optimizer. By what we have just proven, v∗ must then be the rescaling of a ground
state soliton Pω. Consequently, all level sets of v∗ have zero measure. Thus by
the strict rearrangement inequalities of [12], it follows that v agrees with v∗ up to
translation and multiplication by a unimodular complex number. This shows that
v(x) = λPω(ρ(x − x0)) for some λ ∈ C, x0 ∈ R3, ρ > 0, and Pω a ground state
soliton with β(Pω) = α, thereby completing the proof of Proposition 3.1. �

Lemma 3.3. Fix α > 0 and let Qα denote a ground state soliton that optimizes
the α-Gagliardo–Nirenberg–Hölder inequality (3.2). Then, the optimal constant Cα
in that inequality is given by

Cα =
4(1 + α)

3α
α

2(1+α)

1

‖Qα‖L2(R3)‖∇Qα‖
1−α
1+α

L2(R3)

.(3.5)

Moreover, if 0 < γ < α and Qγ is a ground state soliton that optimizes the γ-
Gagliardo-Nirenberg-Hölder inequality, then

‖∇Qα‖L2(R3)

‖∇Qγ‖L2(R3)
>

(
α

γ

) 1
4

> 1,(3.6)

M(Qγ)

M(Qα)
>

(1 + γ)2α
1
2

(1 + α)2γ
1
2

, for 0 < γ < α ≤ 1,(3.7)
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M(Qγ)

M(Qα)
<

(1 + γ)2α
1
2

(1 + α)2γ
1
2

, for 1 ≤ γ < α,(3.8)

E(Qα)

E(Qγ)
>

(α− 1)α
1
2

(γ − 1)γ
1
2

, for 0 < γ < α < 1 or 1 < γ < α.(3.9)

Proof. As Qα is a ground state soliton with β(Qα) = α, it obeys the relations (2.26)

and (2.27); in particular, ‖Qα‖4L4 = 4(α+1)
3 ‖∇Qα‖2L2 and ‖Qα‖6L6(R3) = α‖∇Qα‖2L2 .

Substituting these into

Cα =
‖Qα‖4L4(R3)

‖Qα‖L2(R3)‖Qα‖
3α

1+α

L6(R3)‖∇Qα‖
3

1+α

L2(R3)

leads immediately to (3.5).
As γ 6= α, Proposition 3.1 guarantees that Qγ is not an optimizer for the α-

Gagliardo-Nirenberg-Hölder inequality. Using (3.5) and the fact that Qγ obeys the
relations (2.26) and (2.27), this yields

‖Qγ‖L2‖∇Qγ‖
1−α
1+α

L2

‖Qα‖L2‖∇Qα‖
1−α
1+α

L2

>
(1 + γ)γ−

α
2(1+α)

(1 + α)α−
α

2(1+α)
.(3.10)

Reversing the roles of α and γ, we also obtain

‖Qα‖L2‖∇Qα‖
1−γ
1+γ

L2

‖Qγ‖L2‖∇Qγ‖
1−γ
1+γ

L2

>
(1 + α)α−

γ
2(1+γ)

(1 + γ)γ−
γ

2(1+γ)

.(3.11)

Combining (3.10) and (3.11) gives

1 + γ

1 + α

(
γ

α

)− α
2(1+α)

(
‖∇Qα‖L2

‖∇Qγ‖L2

)1−α
1+α

<
‖Qγ‖L2

‖Qα‖L2

<
1 + γ

1 + α

(
γ

α

)− γ
2(1+γ)

(
‖∇Qα‖L2

‖∇Qγ‖L2

)1−γ
1+γ

,(3.12)

from which we will derive the remaining assertions of the lemma.
Skipping over the middle term in (3.12) and rearranging gives(

‖∇Qα‖L2

‖∇Qγ‖L2

) 2(α−γ)
(1+γ)(1+α)

>

(
α

γ

) α−γ
2(1+γ)(1+α)

,

which then implies (3.6) because α > γ > 0.
From (3.6) and the first inequality in (3.12) we deduce (3.7) while (3.8) follows

from (3.6) and the second inequality in (3.12). Note that when α = 1 or γ = 1,
(3.7) and (3.8) follow directly from (3.12). Finally, (3.9) follows from (3.6) and
(2.27). �

In view of (3.6) we may say colloquially that

(3.13) α 7→ ‖∇Qα‖2L2(R3) is strictly increasing.

However, we have not proved that α uniquely determines a ground state soliton
Qα. Correspondingly, the proper formulation is that (3.13) holds for any system of
optimizing solitons {Qα}α∈(0,∞).
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As a counterpoint, recall from (2.6) that ω 7→ ‖∇Pω‖2L2(R3) is strictly increasing.

Combining this with (3.13) yields the following:

Corollary 3.4. If Pω and Pω′ are optimizers for the Gagliardo–Nirenberg–Hölder
inequalities with parameters α > γ, respectively, then ω > ω′.

This does not resolve Conjecture 2.6 because we do not know that every Pω
occurs as an optimizer in (3.2) for some α.

As α 7→ α−1/2(1 + α)2 is increasing for α > 1
3 and decreasing for α < 1

3 , the
inequalities (3.7) and (3.8) imply

(3.14) α 7→M(Qα) is decreasing on (0, 1
3 ] and increasing on [1,∞).

(This is to be interpreted in the same sense as (3.13).) Analogously,

(3.15) α 7→ E(Qα) is increasing on (0, 1
3 ] and decreasing on [1,∞).

Note that the energy E(Qα) is negative for α > 1; see (2.27).

4. Feasible mass/energy pairs

The purpose of this section is to give an essentially complete description of the
possible pairs (M(u), E(u)) for u ∈ H1(R3). Recall that

E(u) =

∫
R3

1
2 |∇u(x)|2 − 1

4 |u(x)|4 + 1
6 |u(x)|6 dx and M(u) =

∫
R3

|u(x)|2 dx.

Our results are summarized in Figure 4.1. The symbol Q1 appearing in this figure
represents a ground state soliton that optimizes the Gagliardo-Nirenberg-Hölder
inequality with parameter α = 1, as in Lemma 3.3. We will continue to use this
notation throughout the section.

Numerically, we find that Q1 is unique; its vital statistics can be found in Ta-
ble 2.2. Although we do not have a proof that Q1 is unique, the masses of all such
minimizers are identical. Indeed, (3.5) shows that the mass of Q1 can be expressed
in terms of the optimal constant C1 in (3.2) via 9M(Q1) = 64C−2

1 .
We will describe the possible mass/energy pairs by characterizing the possible

energies for each fixed value of the mass. To this end, it is convenient to introduce
the notations

F(m) := {E(u) : u ∈ H1(R3) and M(u) = m} and Emin(m) := inf F(m).(4.1)

This infimium is always finite; indeed, (4.4) below shows that E(u) ≥ − 3
32M(u).

Theorem 4.1 (Feasible mass/energy pairs). Emin(m) is continuous, concave, non-
increasing, and non-positive. Furthermore,

(i) If m = 0, then F(m) = {0} and Emin(m) = 0.
(ii) If 0 < m < M(Q1), then F(m) = (0,∞). In particular, Emin(m) = 0.
(iii) If m = M(Q1), then F(m) = [0,∞). Note that Emin(m) = 0 is now achieved.
(iv) If m > M(Q1), then F(m) = [Emin(m),∞) and Emin(m) < 0.

When m ≥ M(Q1) we see that Emin(m) is achieved. All such minimizers are
ground state solitons Pω with β(ω) ≥ 1, up to translation and multiplication by a
unimodular constant.

Remark 4.2. In the proof below, we also see that Emin is strictly decreasing on
the interval [M(Q1),∞), with negative slope at M(Q1), as depicted in Figure 4.1.
This figure also shows Emin to be smooth on this interval. We do not currently
have a proof of this; it would, however, follow from Conjectures 2.3 and 2.6.
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Proof of Theorem 4.1. As M(u) = 0 enforces u ≡ 0, item (i) follows immediately.
Given a non-zero φ ∈ H1(R3) and ξ ∈ R3, consider φξ(x) := ei|ξ||x|φ(x). Clearly

M(φξ) = M(φ) > 0; moreover, E(φξ) = E(φ) + 1
2 |ξ|

2M(φ). This shows that for
m > 0, the set F(m) of possible energies is a semi-infinite interval.

It remains only to investigate the curve Emin(m) and to determine when this
infimium is achieved. The analysis below will show that minimizing sequences (and
minima, when they occur) can be made radially symmetric. We chose to use the
multiplier ei|ξ||x| above, rather than eiξ·x, because it preserves this radial symmetry.
As a consequence, we see that all feasible mass/energy pairs can be realized by radial
functions and hence, by functions with zero total momentum.

Given φ ∈ H1(R3) and λ > 0, let φλ(x) := λ3/2φ(λx). Then

M(φλ) = M(φ) and E(φλ) =

∫
λ2

2 |∇φ|
2 − λ3

4 |φ|
4 + λ6

6 |φ|
6 dx.

In particular, E(φλ)→ 0 as λ→ 0, which shows that Emin(m) ≤ 0 for all m ≥ 0.
The Gagliardo–Nirenberg–Hölder inequality (3.2) with parameter α = 1 gives

‖u‖4L4
x
≤ 8

3

( M(u)
M(Q1)

)1/2‖u‖3/2L6
x
‖∇u‖3/2L2

x

when the optimal constant is written in the form (3.5). Consequently, using Young’s
inequality (with powers 4

3 and 4),

(4.2)
E(u) ≥ 1

2‖∇u‖
2
L2
x

+ 1
6‖u‖

6
L6
x
− 2

3

( M(u)
M(Q1)

)1/2‖∇u‖3/2L2
x
‖u‖3/2L6

x

≥
[
1−

( M(u)
M(Q1)

)1/2][ 1
2‖∇u‖

2
L2
x

+ 1
6‖u‖

6
L6
x

]
.

From (4.2) we see that E(u) > 0 whenever 0 < M(u) < M(Q1). Notice that
combined with the preceding analysis, this completes the proof of part (ii) of the
theorem.

By the same analysis we see that E(u) ≥ 0 when M(u) = M(Q1). Moreover,
E(Q1) = 0, as can be seen from (2.27). This settles part (iii) of the theorem.

6E

-
M0

s s
M(Q1)

Figure 4.1. The shaded area indicates feasible mass/energy pairs.
Dots and solid lines indicate boundary points that are achieved;
broken lines indicate boundary points that are not achieved.
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Next we show that Emin(m) < 0 whenever m > M(Q1). Observe that if u ∈
H1(R3) and uλ(x) := λ−1/2u(x/λ), then

(4.3) M(uλ) = λ2M(u) and E(uλ) = E(u)− λ−1
4 ‖u‖

4
L4
x
.

Choosing u = Q1, λ2 = m/M(Q1) > 1, and using that E(Q1) = 0, we deduce that
Emin(m) < 0.

Applying the same rescaling argument to a generic trial function shows that
m 7→ Emin(m) is non-increasing, as stated in the theorem.

Incidentally, if the infimum Emin(m) is achieved for some m > 0, then applying
the rescaling argument to an optimizer shows that the right derivative of Emin at
m is strictly negative. (This derivative exists by virtue of the concavity proved
below.) When combined with the results on the existence of extremizers proved
below, this justifies the claims made in Remark 4.2 .

Having shown that Emin(m) < 0 for m > M(Q1), we will now be able to prove
that the minimum is achieved for these values of m. To this end, let {un} be a
minimizing sequence for this variational problem (i.e., M(un) = m and E(un) →
Emin(m)). Using rearrangement inequalities, we see that un may be taken radially
symmetric, while the identity

(4.4) E(u) + 3
32M(u) =

∫
1
2 |∇u|

2 + 1
6 |u|

2
(
|u|2 − 3

4

)2
dx

shows that un is bounded in H1
x. Thus, passing to a subsequence, we may guarantee

that un converges to some v ∈ H1(R3) weakly in H1
rad and L6 as well as strongly

in L4. From weak lower semicontinuity of norms we deduce that

(4.5) E(v) ≤ Emin(m) and M(v) ≤ m.

Note that this guarantees E(v) < 0 and hence v 6≡ 0.
Actually, equality must hold in both parts of (4.5). If M(v) < m, then by

rescaling as in (4.3) we could produce a function vλ with E(vλ) < Emin(m) and
M(vλ) = m, which is clearly in violation of the definition of Emin(m). The same
violation would arise if M(v) = m but E(v) < Emin(m). In conclusion, this v
demonstrates that when m > M(Q1) the infimal energy value Emin(m) is actually
achieved. This completes the verification of part (iv) of the theorem.

Having finished the proof of the numbered parts of the theorem, it remains to
show that optimizers are solitons (when m 6= 0) and to demonstrate the concavity
and continuity of Emin(m). (We have already proved that Emin(m) is non-positive
and non-increasing.)

That optimizers for Emin are solitons follows immediately from the Euler–Lagrange
equation, dE + ω

2 dM = 0. Indeed, having chosen to write the Lagrange multiplier
as ω/2, we precisely recover (2.1). By the sharp rearrangement inequalities of [12]
we see that optimizers must be non-negative (after multiplication by a unimodular
constant) and spherically symmetric (about some point). Thus, by Lemma 2.1 and
Theorem 2.2, optimizers must be ground state solitons, up to symmetries. That
these solitons have β(Pω) ≥ 1 follows from (2.27) and the fact that Emin ≤ 0.

As we have shown that Emin is monotone, continuity follows from mid-point
concavity, which then implies concavity. Thus it remains only to show that

(4.6) 1
2Emin(m1) + 1

2Emin(m2) ≤ Emin

(
1
2m1 + 1

2m2

)
for all m1,m2 ≥ 0.

This will be effected by a moving hyperplane argument.
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Given u ∈ H1(R3) with M(u) = 1
2m1 + 1

2m2, choose a plane that partitions
the mass into parts m1/2 and m2/2. Reflecting one side or the other through the
chosen plane yields two functions v1 and v2 ∈ H1(R3) each of which is even with
respect to reflection in the plane and which obey M(v1) = m1 and M(v2) = m2.

Directly from the construction we have 1
2E(v1) + 1

2E(v2) = E(u). Taking the

infimum over all u ∈ H1(R3) with M(u) = 1
2m1 + 1

2m2 now yields (4.6). �

5. Rescaled solitons and the virial

The key new player in this section is the virial,

(5.1) V (u) :=

∫
|∇u(x)|2 + |u(x)|6 − 3

4 |u(x)|4 dx,

to be regarded as a functional on H1(R3). While not in perfect accord with the
historical meaning (see [16]), our use of the term ‘virial’ is consistent with the
modern usage as can be seen from the following virial identity :

(5.2)
d

dt
2 Im

∫
R3

u(t, x)x · ∇u(t, x) dx = 4V (u(t))

for any solution u(t) to (1.1).
Taking a linear combination of the Pohozaev identities (2.2) and (2.3) shows that

V (u) = 0 whenever u is a soliton solution to (1.1). Looking back to the manner
in which the Pohozaev identities were derived yields an alternate expression of the
vanishing of the virial for solitons, namely, for any u ∈ H1(R3),

(5.3) V (u) = dE
∣∣
u
(x · ∇u+ 3

2u) and dM
∣∣
u
(x · ∇u+ 3

2u) = 0.

As solitons are precisely the points u ∈ H1(R3) where dE + ω
2 dM = 0, we deduce

that solitons have zero virial.
Although the early sections of this paper focus on variational and elliptic prob-

lems, it is important to remember that Theorem 1.3 is a dynamical statement; we
wish to describe the long-time behaviour of solutions to (1.1) for an open set of
initial data. This focuses our attention on (5.2) as a dynamical substitute for the
Pohozaev identities.

For solutions that remain well-localized around a fixed point, such as non-moving
solitons, LHS(5.2) will be the time derivative of a bounded function; thus, by
integrating over long time intervals, we deduce that V (u(t)) vanishes in an averaged
sense. We will show below that V > 0 in a certain region R in the mass-energy
plane, which then precludes this sort of soliton-like behaviour.

It is far from immediate to see why solutions in the region R that merely fail to
scatter should remain both in one place and sufficiently well localized that one may
apply the argument just sketched. Indeed, much of the second half of the paper
is devoted to showing that the existence of a non-scattering solution in the region
R would guarantee the existence of another solution in the region R to which this
argument can be applied. This other solution will be constructed as a minimal
blowup solution.

It will take considerable effort to shoehorn our problem into an application
of (5.2). However, we have little choice. This is not a small-data problem; the
nonlinear effects are as strong as the linear effects. Indeed, there are soliton solu-
tions on the boundary of the region R; see Theorem 5.6. As a consequence, we
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6E

-
M

M(Q1)4
3
√

3
M(Q1)

��	
kink

R

Figure 5.1. Schematic depiction of the open set R ⊂ R2, based
on numerics. Note: the scale of the various features has been
drastically altered in order to make them all visible on one plot.

must exploit some fundamentally nonlinear information. The virial identity is the
only truly pertinent tool that we know.

With this motivating discussion complete, we now turn to the analysis of the
region R in the mass/energy plane where the virial is strictly positive, beginning
with some definitions.

Definition 5.1. For m > 0, we define

(5.4) EVmin(m) := inf
{
E(u) : u ∈ H1(R3), M(u) = m, and V (u) = 0

}
,

with the understanding that EVmin(m) = ∞ if no function u ∈ H1(R3) obeys both
M(u) = m and V (u) = 0. We then define

(5.5) R :=
{

(m, e) : 0 < m < M(Q1) and 0 < e < EVmin(m)
}
,

whereM(Q1) is the common mass of all soliton optimizers of the (α = 1)-Gagliardo–
Nirenberg–Hölder inequality, as in Section 4.

This definition does not make it immediately apparent that functions with mass/energy
belonging to the region R have positive virial; this will be shown in Theorem 5.2.

Theorem 4.1 shows that that the restrictions m < M(Q1) and e > 0 appearing
in (5.5) are purely for expository clarity; the set of u ∈ H1

x with (M(u), E(u)) ∈
R would be the same if they were omitted. Indeed, if m ≥ M(Q1), then the
minimal feasible energy with mass m is achieved by a soliton, which has zero virial.
Theorem 4.1 also shows that E(u) > 0 whenever 0 < M(u) < M(Q1).

The general features of R are shown in Figure 5.1. In Subsection 5.1, we study
the variational problem (5.4) and verify some of the features depicted in Figure 5.1.
Subsection 5.2 is devoted to constructing an exhaustion of R that will allow us to
prove Theorem 1.3 by performing induction on a single variable.

5.1. Description of the region R. Some of the basic structural properties of the
region R are rigorously justified in Theorem 5.2 below. Later in this subsection,
we will discuss the boundary of R more thoroughly; see Theorem 5.6.

Theorem 5.2. If (M(u), E(u)) ∈ R for some u ∈ H1(R3), then V (u) > 0.

EVmin(m) =∞ when 0 < m < 4
3
√

3
M(Q1),(5.6)

0 < EVmin(m) <∞ when 4
3
√

3
M(Q1) ≤ m < M(Q1), and(5.7)
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EVmin(m) = Emin(m) when M(Q1) ≤ m.(5.8)

For m ≥ 4
3
√

3
M(Q1), the infimum EVmin(m) is achieved and is both strictly de-

creasing and lower semicontinuous as a function of m.

Recall that Emin(m) denotes the infimal energy that is possible for H1 functions
with mass m. From Theorem 4.1 we know that Emin(m) = 0 for 0 ≤ m ≤ M(Q1)
and Emin(m) < 0 for m > M(Q1).

Before beginning the proof of Theorem 5.2, we first give two lemmas. Both are
based on straight-forward, but rather cumbersome, computations of the effect of
rescaling on the mass, energy, and virial of a function.

Lemma 5.3. Suppose u ∈ H1(R3) is not identically zero and that either
(i) V (u) < 0; or
(ii) V (u) = 0 and β(u) < 1

3 .

Then there exists λ > 1 so that uλ(x) := λ
3
2u(λx) obeys V (uλ) = 0, β(uλ) ≥ 1

3 , and

E(uλ) < E(u). Note that M(uλ) = M(u) and ‖∇uλ‖2L2 = λ2‖∇u‖2L2 > ‖∇u‖2L2 .

Proof. Direct computation shows that

V (uλ) = λ
d

dλ
E(uλ) = λ2

∫
|∇u|2 dx− 3

4λ
3

∫
|u|4 dx+ λ6

∫
|u|6 dx.(5.9)

Suppose V (u) < 0. From (5.9) we see that limλ→∞ V (uλ) = ∞. Thus, there is
at least one λ > 1 so that V (uλ) = 0. Let λ0 denote the smallest such λ, which
allows us to infer that V (uλ) < 0 for all λ ∈ [1, λ0). It then follows from (5.9) that
E(uλ) is decreasing on the interval [1, λ0), and so E(uλ0) < E(u).

By construction, ∂λV (uλ) ≥ 0 at λ = λ0. Combining this with V (uλ0) = 0 yields

0 ≤ 2λ0

∫
|∇u|2 − 9

4λ
2
0

∫
|u|4 + 6λ5

0

∫
|u|6 = −λ0

∫
|∇u|2 + 3λ5

0

∫
|u|6.

Thus β(uλ0) = λ4
0β(u) ≥ 1

3 . This proves part (i) of the lemma.
We turn now to part (ii) and so suppose that V (u) = 0 and β(u) < 1/3. Then

3
4

∫
|u|4 dx = [1 + β(u)]

∫
|∇u|2 dx and so (5.9) can be rewritten as

V (uλ) = λ
d

dλ
E(uλ) = λ2(1− λ)

(
1− β(u)λ− β(u)λ2 − β(u)λ3

)∫
|∇u|2 dx.(5.10)

As β(u) < 1/3, RHS(5.10) has negative derivative at λ = 1. Thus for λ > 1
sufficiently close to 1, we have V (uλ) < 0 and E(uλ) < E(u). Thus part (ii) now
follows by applying part (i). �

Lemma 5.4. Given m > 0 and u ∈ H1(R3) with V (u) = 0 and 0 < M(u) < m,
there exists v ∈ H1(R3) obeying

(5.11) M(v) = m, E(v) ≤ E(u)− m−M(u)
6M(u)

∫
|∇u(x)|2 dx, and V (v) = 0.

Proof. We will prove the lemma under the additional assumption that β(u) ≥ 1
3 .

This suffices because any u not obeying this hypothesis can be replaced by the
function uλ provided by Lemma 5.3(ii). The relations (5.11) remain true with the
original function u because E(uλ) < E(u) and ‖∇uλ‖L2 > ‖∇u‖L2 .

Little effort is required to check that for β(u) ≥ 1
3 and 1 < ρ <∞,

0 <
d

dρ

(1 + ρ2β(u))2

ρ(1 + β(u))2
=

(1 + ρ2β(u))(3β(u)ρ2 − 1)

ρ2(1 + β(u))2
≤ 3β(u)ρ2 − 1.
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Using this, we see that there is a unique 1 < ρ <∞ so that

(5.12) m = M(u)
(1 + ρ2β(u))2

ρ(1 + β(u))2
; moreover

m−M(u)

M(u)
≤ β(u)(ρ3−1)−(ρ−1).

Indeed, existence of such a ρ follows from the intermediate value theorem (and the
values at ρ = 1 and as ρ → ∞). Uniqueness follows from the positivity of the
derivative, while the second part of (5.12) follows from the upper bound on the
derivative and the fundamental theorem of calculus.

Using this value of ρ we then define

v(x) :=
√
ρλu(λx) with λ =

ρ(1 + β(u))

1 + ρ2β(u)
.

Elementary computations show that M(v) = m and V (v) = 0; indeed, this is
precisely how the parameters ρ and λ were chosen. To verify V (v) = 0, we exploit
the fact that V (u) = 0, which implies 3

4

∫
|u|4 dx = [1 + β(u)]

∫
|∇u|2 dx.

Similar computations give

E(v) = E(u)− 1
6

[
β(u)(ρ3 − 1)− (ρ− 1)

] ∫
|∇u(x)|2 dx

The energy bound stated in (5.11) now follows by combining this estimate with the
second part of (5.12). �

Proof of Theorem 5.2. Suppose u ∈ H1(R3) and (M(u), E(u)) ∈ R. We wish to
show that V (u) > 0. That V (u) 6= 0 follows from the definition of R. If, on the
other hand, V (u) < 0, then by Lemma 5.3(i) there is a rescaling uλ of u with the
same mass, E(uλ) < E(u) and V (uλ) = 0. This implies EVmin(M(u)) < E(u), so
contradicting the original assumption (M(u), E(u)) ∈ R.

Next we show that EVmin(m) = ∞ when 0 < m < 4
3
√

3
M(Q1). To do this, we

define
R(x) := 1√

2
Q1

(√
3

2 x
)
.

Later we will introduce a class of rescaled solitons that include this example; see
Lemma 5.5. Direct computation (cf. the proof of Lemma 5.5) shows that

(5.13) β(R) = 1
3 , V (R) = 0, and M(R) = 4

3
√

3
M(Q1).

As Q1 is an optimizer for the (α = 1)-Gagliardo–Nirenberg–Hölder inequality,
so too is R. This allows us to express the optimal constant as

C1 =
‖R‖4L4

‖R‖L2‖R‖3/2L6 ‖∇R‖3/2L2

=
16 · 31/4

9‖R‖L2

,

where the second equality follows by exploiting (5.13). Thus∫
|u|4 dx ≤ 16‖u‖L2

9‖R‖L2

(
3

∫
|u|6 dx

)1
4
(∫
|∇u|2 dx

)3
4

for all u ∈ H1(R3),

and so Young’s inequality (with powers 4 and 4
3 ) yields

(5.14) 3
4

∫
|u|4 dx ≤ ‖u‖L

2

‖R‖L2

∫
|∇u|2 + |u|6 dx for all u ∈ H1(R3).

This inequality immediately shows that V (u) > 0 whenever 0 < M(u) < M(R).
We have now completed the discussion of m < M(R). When m ≥ M(Q1) all

assertions follow from Theorem 4.1. This theorem shows that for such m, the
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minimal energy under the constraint M(u) = m is achieved by a soliton, and
hence by a function with zero virial. Thus EVmin(m) = Emin(m). Moreover, the
proof of this theorem shows that Emin(m) is continuous and strictly decreasing for
m ≥M(Q1).

We are now left to consider the middle interval M(R) ≤ m < M(Q1).
Applying Lemma 5.4 with u = R shows that EVmin(m) ≤ E(R) < ∞ for all

such m. In particular, it is possible to achieve V (u) = 0 with M(u) = m.
Using the classical Gagliardo–Nirenberg inequality from (3.1), we observe that

V (u) = 0 =⇒ ‖∇u‖2L2 ≤ 3
4‖u‖

4
L4 . ‖u‖L2‖∇u‖3L2 =⇒ ‖u‖L2‖∇u‖L2 & 1,

whenever u 6≡ 0. Combining this with (4.2) we deduce

E(u) &
[
1−

( M(u)
M(Q1)

)1/2] 1
M(u) whenever V (u) = 0 and M(u) < M(Q1).

This proves that EVmin(m) > 0 when M(R) ≤ m < M(Q1).
Next we show that EVmin(m) is strictly decreasing when M(R) ≤ m < M(Q1).

Given M(Q1) > m1 > m2 ≥ M(R), let {un} be a sequence with M(un) = m2,
V (un) = 0, and E(un) → EVmin(m2). As shown above, V (un) = 0 guarantees that
‖∇un‖2L2 ≥ c/m2, for an absolute constant c > 0. Thus by Lemma 5.4, there
is a corresponding sequence {vn} with M(vn) = m1, V (vn) = 0, and E(vn) ≤
E(un)− cm1−m2

6m2
2

. Sending n→∞, we deduce that EVmin(m1) < EVmin(m2).

Next we show that the infimum is actually achieved for M(R) ≤ m < M(Q1).
To this end, let un be a minimizing sequence at mass m. Replacing un by their
symmetric decreasing rearrangement does not affect the mass constraint, does not
increase the energy, but may result in V (un) < 0. However, by applying Lemma 5.3
we may still conclude that there is a minimizing sequence {un} comprising radially
symmetric functions.

By (4.4), our optimizing sequence {un} is bounded in H1(R3). Passing to a
subsequence (if necessary) we may ensure weak convergence in H1(R3) and L6(R3),
as well as norm convergence in L4(R3), due to radial symmetry. Let us denote the
limit by u∞.

From these modes of convergence it follows thatM(u∞) ≤ m, E(u∞) ≤ EVmin(m),
and V (u∞) ≤ 0. We will show that equality holds in all three cases; consequently,
u∞ is the sought-after optimizer.

If M(u∞) < m, we could conclude that EVmin(M(u∞)) ≤ E(u∞) ≤ EVmin(m),
which is inconsistent with the fact that EVmin is a strictly decreasing function, as
proved above. (Here we also invoke Lemma 5.3 if it happens that V (u∞) < 0.)
Thus M(u∞) = m. It follows then from Lemma 5.3 and the definition of EVmin as
an infimium that V (u∞) = 0 and E(u∞) = EVmin(m).

The only assertion of Theorem 5.2 that remains unproven is that of lower semi-
continuity. This will follow readily from the ideas already presented.

As EVmin(m) is decreasing, lower semicontinuity is equivalent to right continuity.
In this way, we see that failure of lower semicontinuity at a point m would guarantee
the existence of a sequence {mn} decreasing to m with EVmin(m) > limEVmin(mn).
Now let un be radially symmetric functions with M(un) = mn, V (un) = 0, and
E(un) = EVmin(mn). (We just proved the existence of such optimizers above.)
Passing to a subsequence we may assume that un → u∞ weakly in H1(R3) and
strongly in L4(R3). Using the lower semicontinuity of M , E, and V under such
convergence together with the strict monotonicity of EVmin(m), we then deduce
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that M(u∞) = m, V (u∞) = 0, and E(u∞) = limEVmin(mn), just as in the proof
of the existence of optimizers. This then falsifies the assertion that EVmin(m) >
limEVmin(mn). �

The appearance of R(x), a particular rescaling of Q1(x), in the proof of Theo-
rem 5.2 suggests that we will need to consider functions other than solitons if we
wish to understand the boundary of R. This is indeed the case, as will be borne
out by Theorem 5.6. Indeed, it will be shown that an optimizer in the variational
description of EVmin is either a soliton or a special type of rescaled soliton; more-
over both cases do occur. The statement and proof of Theorem 5.6 are simpler if
we present the basic properties of these special rescaled solitons first. This is the
purpose of the next lemma.

Lemma 5.5 (Rescaled solitons). Fix 0 < ω < 3
16 . Among all rescalings u(x) =

aPω(λx) of Pω with a > 0 and λ > 0 there is exactly one that obeys β(u) = 1
3 and

V (u) = 0, namely,

(5.15) Rω(x) :=
√

1+β(ω)
4β(ω) Pω

(
3[1+β(ω)]

4
√

3β(ω)
x
)
.

Moreover,

E(Rω) =
1

9
√

3β(ω)

∫
|∇Pω(x)|2 dx, M(Rω) =

16
√

3β(ω)

9[1 + β(ω)]2
M(Pω),(5.16)

M(Rω) ≤M(Pω) with equality iff β(ω) = 1
3 ,(5.17)

E(Rω) ≥ E(Pω) with equality iff β(ω) = 1
3 ,(5.18)

d
dωE(Rω) > 0, [β(ω)− 1] ddωM(Rω) ≥ 0 with equality iff β(ω) = 1,(5.19)

lim
ω↘0

E(Rω) = 1

3
√

3β(g)
M(g), and lim

ω↘0
M(Rω) =

16
√

3β(g)

9 M(g),(5.20)

where g is the unique positive radial solution to −∆g−g3+g = 0, as in Theorem 2.2.

Proof. Recall that β(u) was defined in (2.25) and that β(ω) := β(Pω). After a few
manipulations, this reveals that u(x) = aPω(λx) obeys

(5.21) β(u) = a4

λ2 β(ω).

Proceeding similarly, but also exploiting (2.26) and (2.27), yields

(5.22) V (u) = a2

λ

{
1 + a4

λ2 β(ω)− a2

λ2 [β(ω) + 1]
}∫
|∇Pω(x)|2 dx.

It is now an elementary matter to verify that (5.15) gives the only solution to the
system β(u) = 1

3 and V (u) = 0.
The formula for M(Rω) given in (5.16) follows directly from (5.15), while the

formula for E(Rω) is most easily found by mimicking (5.22).
Equality in (5.17) and (5.18) when β(ω) = 1

3 is immediate as Rω ≡ Pω when

β(ω) = 1
3 . That strict inequality holds in all other cases then follows from

d

dβ

16
√

3β

9(1 + β)2
=

8(1− 3β)

3
√

3β(1 + β)3
and

d

dβ

2

3(1− β)
√

3β
=

(3β − 1)

(3β)3/2(β − 1)2
.

Note that there is no need to use the second formula when β ≥ 1, for if β(ω) ≥ 1,
then (2.27) shows that E(Pω) ≤ 0, while (5.16) shows that E(Rω) > 0.
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It remains only to verify (5.19) and (5.20). Differentiating the first relation in
(2.26) with respect to ω and then using (2.6) gives

(5.23) 1
3

[
d
dωβ(ω)

]∫
|∇Pω|2 dx = −β−1

2 M(Pω) + ω d
dωM(Pω).

From this, (5.16), (2.6), and finally (2.7), we then deduce that

d
dωE(Rω) = 1

6β
√

3β

[
3β−1

2 M(Pω)− ω d
dωM(Pω)

]
> 0.

Using (2.26) we may rewrite (5.23) as follows:

M(Pω) ddωβ(ω) = 1+β(ω)
ω

[
−β−1

2 M(Pω) + ω d
dωM(Pω)

]
.

Proceeding as above, we deduce that

d
dωM(Rω) = 16

√
3β

9(1+β)2
d
dωM(Pω) + 8(1−3β)

3
√

3β(1+β)2

[
−β−1

2ω M(Pω) + d
dωM(Pω)

]
= 8(1−β)

3
√

3β(1+β)2

[
− 3β−1

2ω M(Pω) + d
dωM(Pω)

]
.

That [β(ω) − 1] ddωM(Rω) ≥ 0, as well as the cases of equality, now follow from
(2.7), which shows that the final expression in square brackets is negative.

As we have now shown that E(Rω) is increasing in ω, the limiting value as ω → 0
actually provides the infimum of the energies E(Rω). The stated value for this and
for the limiting mass follow from (5.16), (2.26), and Theorem 2.2(iv). �

Theorem 5.6. Suppose m ≥ 4
3
√

3
M(Q1) and u ∈ H1

x \ {0} obeys

(5.24) M(u) = m, E(u) = EVmin(m), and V (u) = 0.

(Theorem 5.2 guarantees that such a u exists precisely for these values of m.) Then
either u(x) = eiθRω(x + x0) or u(x) = eiθPω(x + x0) for some θ ∈ [0, 2π), some
x0 ∈ R3, and some 0 < ω < 3

16 that obeys β(ω) > 1
3 . Recall from Theorem 5.2 that

for all such m there is a function u obeying (5.24).
Furthermore, both cases necessarily occur on the boundary of R. Specifically,

there exists δ > 0 so that no soliton has mass < 4
3
√

3
M(Q1) + δ, while u cannot be

a rescaled soliton when m > M(Q1)− δ.

Before we begin the proof of this theorem, we discuss the fuller picture provided
by numerics. See Figures 5.2 and 5.3. We find that there is an intermediate mass

4

3
√

3
M(Q1) < m0 < M(Q1)

so that EVmin(m) is achieved solely by rescaled solitons Rω when m < m0, and solely
by solitons Pω when m > m0. (Numerics give m0 = 189.48.) The transition in
the type of minimizer is marked by a discontinuity in the derivative of EVmin and
so is depicted as a kink in Figure 5.1. Note that this kink is essentially invisible in
Figure 5.2; this is why we have included Figure 5.3.

The mass/energy curve of Rω crosses the mass/energy curve of Pω whenever
β(ω) = 1/3; indeed, Rω = Pω whenever β(ω) = 1/3. Our numerics show that the
mass/energy curves intersect exactly twice, once at m0 and once at the (unique)
point where β(ω) = 1/3. The intersection at m0 is transverse. At the point where
β(ω) = 1/3, the two curves cross; however, the formulas in Lemma 5.5 can be used
to show that both have the same tangent and curvature.
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Figure 5.2. Detail of the mass/energy curves of Pω, shown solid,
and Rω, shown dotted.

Excepting the point m0, we observe EVmin(m) to be a smooth curve. Let us
briefly describe what is needed to achieve a rigorous proof of this. It follows from
Theorem 2.2 that both Pω and Rω are analytic H1(R3)-valued functions of ω; thus
EVmin(m) is smooth except where d

dωM(Pω) or d
dωM(Rω) vanish or where the two

mass/energy curves touch.
From the proof of Lemma 5.5 and Conjecture 2.6, it would follow that d

dωM(Rω)

vanishes only once, namely, when Pω = Q1, which corresponds tom = 4
3
√

3
M(Q1) =

185.10. Recall that Conjecture 2.6 implies uniqueness of the optimizer Q1.
On the other hand Conjecture 2.3 implies that d

dωM(Pω) vanishes only once,
namely, at the minimal mass soliton. This corresponds to the cusp in Figures 2.1,
5.2 and 5.3. In this way, we see that the claimed shape of EVmin(m) follows from our
two conjectures along with the following assertion, which is supported by numerics:
The mass/energy curve of Rω intersects the lower branch of solitons at exactly one
point (which then serves to define m0) and there is no intersection with the upper
branch of solitons with m < m0.

Proof of Theorem 5.6. If u obeys (5.24), then it follows that the radially symmetric
rearrangement u∗ of u also obeys (5.24). To see this, we first observe that M(u∗) =
M(u), E(u∗) ≤ E(u) and V (u∗) ≤ V (u) = 0. By Lemma 5.3, we see that V (u∗) < 0
would be inconsistent with the definition of EVmin(m) as an infimum. Similarly, we
must have E(u∗) = E(u).

Below we will show that non-negative radially symmetric functions obeying
(5.24) must agree with some Pω or Rω. In particular, this can be applied to u∗.
As all level sets of Pω and Rω have zero (volume) measure, combining the strict
rearrangement inequalities of [12] with the arguments in the previous paragraph,
we may conclude that any u ∈ H1(R3) obeying (5.24) must agree with some Pω or
some Rω up to a translation and a phase rotation.

For the remainder of the proof we consider only u that are non-negative and
radially symmetric.
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Figure 5.3. Closer view of the mass/energy curves of Pω, shown
solid, and Rω, shown dotted. The horizontal axis denotes mass.
In order to reveal the fine detail of the intersection, a shear trans-
formation has been applied, namely, f(E,M) = E + 1

2ω1/3(M −
M(Pω1/3

)), where ω1/3 is determined numerically so that β(ω1/3) =

1/3 (cf. Table 2.2).

As u is a minimizer of the energy with constrained virial and mass, u must sat-
isfy the corresponding Euler–Lagrange equation, provided dV and dM are linearly
independent at the point u. We first consider the possibility that they are linearly
dependent. As it turns out, this is not an illusory scenario; a little thought shows
that this must occur at m = 4M(Q1)/(3

√
3), which is the minimal mass at which

it is possible to achieve zero virial.
As u 6≡ 0, so dM |u 6= 0. Thus linear dependence of dV and dM at u guarantees

(5.25) −∆u+ 3u5 − 3
2u

3 = cu,

for some c ∈ R. Pairing this equation with x · ∇u+ 3
2u yields∫

|∇u|2 + 3u6 − 9
8u

4 dx = 0, while V (u) :=

∫
|∇u|2 + u6 − 3

4u
4 dx = 0,

by hypothesis. Combining these immediately shows β(u) = 1
3 .

Making the change of variables u(x) = 1√
2
v(
√

3x
2 ) in (5.25), we find that v is a

non-negative radially symmetric solution to (2.5). Thus by Theorem 2.2, it follows
that v(x) = Pω(x) for some ω ∈ (0, 3

16 ).

As u is a rescaling of a soliton Pω with β(u) = 1
3 and V (u) = 0, it follows from

Lemma 5.5 that u = Rω, with the same value of ω. From the rescaling used above
we deduce from (5.15) that β(ω) = 1. In particular, β(ω) > 1

3 .
We now turn to the case that dV |u and dM |u are linearly independent. In this

case, u satisfies the Euler–Lagrange equation dE|u + µdV |u + νdM |u = 0, that is,

(5.26) −∆u+ u5 − u3 + µ(−2∆u+ 6u5 − 3u3) + 2νu = 0.
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If the Lagrange multiplier µ = 0, then (5.26) is precisely the defining equation
for a soliton (cf. (2.5)) with ω = 2ν. As u is non-negative and radially symmetric,
Theorem 2.2 guarantees that u = Pω0 for some ω0 ∈ (0, 3

16 ). That β(ω0) ≥ 1
3 follows

from Lemma 5.3 and the fact that u minimizes the energy subject to M(u) = m
and V (u) = 0.

To show that actually β(ω0) > 1
3 , we will use Lemma 2.7. Suppose instead that

β(ω0) = 1
3 . Combining (2.7) and (2.23) we see that ω 7→ E(Pω) is increasing at ω0;

however, this function converges to −∞ as ω → 3/16. Thus we may choose ω1 > ω0

so that E(Pω1
) = E(Pω0

) and E(Pω) ≥ E(Pω0
) on the intervening interval. By

Lemma 2.7 it then follows that M(Pω1) < M(Pω0). This contradicts the minimality
of u = Pω0 because EVmin is strictly decreasing, as shown in Theorem 5.2.

This leaves the case µ 6= 0. We first show that µ > 0, arguing by contradiction.
As dV and dM are linearly independent at u, there exists w ∈ H1(R3) so that

dV |u(w) < 0 and dM |u(w) = 0. Without loss of generality, we may assume that
M(w) = M(u). If µ < 0 then (5.26) implies dE|u(w) < 0. From these values of the
differentials, we see that uθ := cos(θ)u+ sin(θ)w obeys M(uθ) = M(u), V (uθ) < 0,
and E(uθ) < E(u) for small θ > 0. In view of Lemma 5.3, this contradicts the
minimality of u. Thus, either µ = 0, which was treated above, or µ > 0, which we
address next.

Under the change of variables u(x) = av(λx) with

(5.27) a2 =
1 + 3µ

1 + 6µ
, λ2 =

(1 + 3µ)2

(1 + 2µ)(1 + 6µ)
, and ω =

2ν(1 + 6µ)

(1 + 3µ)2
,

the Euler–Lagrange equation (5.26) becomes −∆v+v5−v3 +ωv = 0. Theorem 2.2
then allows us to conclude that v = Pω for some 0 < ω < 3

16 . By Lemma 5.5, to

see that u = Rω we need to show that β(u) = 1
3 . This follows by pairing (5.26)

with x · ∇u+ 3
2u and using V (u) = 0, as in the treatment of (5.25). Lastly, a short

computation shows

(5.28) β(ω) := β(Pω) = β(u)
1 + 6µ

1 + 2µ
>

1

3
.

Finally, we turn to the assertions of the second paragraph in the theorem.
Choose ω∗ ∈ (0, 3/16) so that Pω∗ has the least mass possible among solitons

(Theorem 2.2 guarantees that this is possible). By (2.7) we know that β(ω∗) >
1/3 and consequently M(Rω∗) < M(Pω∗), by (5.17). This shows that M(Pω∗) >

4M(Q1)/(3
√

3) and consequently, there exists δ > 0 so that no soliton has mass

smaller than 4M(Q1)/(3
√

3) + δ. Thus minimizers in this regime must be rescaled
solitons.

Next we exploit the fact that η := inf{E(Rω) : 0 < ω < 3/16} is positive (see
(5.20)) to show that the possibility u = Pω does indeed occur.

Let Pω1 denote an optimizer for (3.2) in the case α = 1. Thus M(Pω1) = M(Q1)
and E(Pω1

) = 0. We claim that there exists ε > 0 so that M(Pω) < M(Pω1
) for

ω1− ε < ω < ω1. Taking this for granted for a moment, we see from the continuity
of ω 7→ Pω that EVmin(m) → 0 as m ↗ M(Q1). In particular, there is some δ > 0
so that EVmin(m) < η for m > M(Q1) − δ, which guarantees that optimizers u of
EVmin(m) must be solitons (rather than rescaled solitons) on this interval.

It remains to verify the claim M(Pω) < M(Pω1
) for ω1 − ε < ω < ω1 and some

ε > 0. Note that since ω 7→ M(Pω) is real analytic, failure of this claim would
actually imply that d

dωM(Pω) < 0 on some interval of this type. By (2.23), this in
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turn implies that E(Pω) is increasing (and so negative) on this interval. Recall that
E(Pω)→ 0 from above as ω → 0. In this way, the assumption that our claim fails
leads to the existence of an interval [ω0, ω1] so that E(Pω) vanishes at the endpoints
and is non-positive on the interior. This allows us to apply Lemma 2.7 and deduce
that M(Pω0

) < M(Pω1
) = M(Q1). This contradicts Theorem 4.1, which showed

that M(Q1) is the least mass at which zero energy is feasible. �

5.2. Foliation of the region R. As noted earlier, this subsection is devoted to
the construction of a function D : H1(R3) → [0,∞] whose sublevel sets exhaust
R. There are many ways to do this; we choose one that is convenient for the
subsequent analysis. In particular, to ensure that it is conserved by the flow, we
will choose D(u) = D(M(u), E(u)). Note that property (v) below relies inherently
on the shape of R, specifically, the monotonicity of the function EVmin(m) proved
in Theorem 5.2. This property cannot be relaxed; it is precisely how our induction
on D(u) manifests a simultaneous induction on the quantities M(u) and E(u) that
are conserved by the flow.

Proposition 5.7 (Key properties of D(u)). There is a continuous function D :
H1(R3)→ [0,∞] with the following properties:

(i) D(u) = 0 if and only if u ≡ 0.
(ii) 0 < D(u) <∞ if and only if (M(u), E(u)) ∈ R.
(iii) D is conserved under the flow of the cubic-quintic NLS.
(iv) If 0 < D(u) <∞, then V (u) > 0.
(v) If M(u1) ≤M(u2) and E(u1) ≤ E(u2), then D(u1) ≤ D(u2).
(vi) If M(un) ≤ M0, E(un) ≤ E0, and D(un) → D(M0, E0), then actually

M(un)→M0 and E(un)→ E0.
(vii) Given 0 < D0 <∞, we have

(5.29) ‖u‖2
Ḣ1
x
∼D0

E(u) and ‖u‖2H1
x
∼D0

E(u) +M(u) ∼D0
D(u)

uniformly for all u ∈ H1(R3) with D(u) ≤ D0.

Proof. As noted above, D(u) will be chosen to depend only on M(u) and E(u),
which justifies (iii). Specifically, we define

(5.30) Rc := {(m, e) ∈ R2 : m ≥ 4
3
√

3
M(Q1) and e ≥ EVmin(m)

}
.

and then set

(5.31) D(u) := D
(
M(u), E(u)

)
:= E(u) +

M(u) + E(u)

dist
((
M(u), E(u)

)
,Rc

)
when (M(u), E(u)) 6∈ Rc and D(u) = ∞ otherwise. Note that Rc is not, strictly
speaking, the complement ofR. Rather, it is precisely the set of feasible mass/energy
pairs, other than (0, 0) and those in R.

From Theorems 4.1 and 5.2 we see that

(5.32) E(u) ≥ 0 whenever D(u) <∞.
Properties (i) and (ii) follow immediately. To obtain (iv), we then need merely
exploit the fact that V (u) > 0 on R; see Theorem 5.2.

Next we consider property (vii). Combining (5.32) and Emin(M(Q1)) = 0 shows
that

(5.33) D(u) ≥ M(u)
M(Q1)−M(u) and so 1−

√
M(u)
M(Q1) ≥

1
2D(u)+2 .
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From the second relation and (4.2) we then deduce

(5.34) 1
4D(u)+4‖u‖

2
Ḣ1
x
≤ E(u) ≤ D(u),

while by this and Sobolev embedding,

(5.35) E(u) . ‖u‖2
Ḣ1
x

+ ‖u‖6
Ḣ1
x
. ‖u‖2

Ḣ1
x

[
1 +D(u)4

]
.

Taken together, (5.34) and (5.35) show that E(u) and ‖u‖2
Ḣ1
x

are comparable, uni-

formly for D(u) ≤ D0.
Next observe that (4.4) and (5.35) yield

‖u‖2H1
x
≤ 2E(u) + 19

16M(u) . ‖u‖2H1
x

[
1 +D(u)4

]
,

which shows the analogous comparability of E(u) +M(u) and ‖u‖2H1 . To complete
the proof of (5.29), we need to show that these are comparable to D(u). From
(5.33) and (5.34) we have

E(u) +M(u) ≤ [1 +M(Q1)]D(u).

On the other hand, if D(u) ≤ D0 <∞, then

D(u) ≤ 4D0M(u)

M(Q1)
+ E(u) +

4[E(u) +M(u)]

M(Q1)
.

To see this we divide into two cases: If M(u) ≥ M(Q1)/4, then this follows from
D(u) ≤ D0 and E(u) ≥ 0. If M(u) ≤M(Q1)/4, we need only observe that

dist
(
(M(u), E(u)),Rc

)
≥ 4

3
√

3
M(Q1)−M(u) ≥ 1

4M(Q1).

This completes the proof of part (vii).
Lastly, we discuss the (strict) monotonicity relations (v) and (vi). These are

elementary from the structure of D(u) and the fact that

(5.36) dist
(
(m′, e′),Rc

)
≥ dist

(
(m, e),Rc

)
whenever m′ ≤ m and e′ ≤ e,

which follows from the monotonicity of EVmin(m). Note that we do not claim strict
monotonicity in (5.36). It is not true; part of the boundary of Rc is vertical.

Incidentally, lower semicontinuity of EVmin(m), which was shown in Theorem 5.2,
guarantees that Rc is a closed set. Thus the minimal distance is actually achieved
by a point in Rc. �

6. Small data scattering and perturbation theory

As discussed in the introduction, Zhang [76] proved global well-posedness of (1.1)
for initial data in H1(R3); moreover, she proved scattering for solutions whose mass
is sufficiently small depending on their kinetic energy. The goal of this section is to
develop several results of a similar flavour that will be needed to run the induction
on mass and energy argument of this paper. We begin with a more explicit version
of small data scattering:

Proposition 6.1 (Small data scattering). There exists η > 0 such that for u0 ∈
H1(R3) with D(u0) ≤ η, there exists a unique global solution u ∈ C(R;H1(R3)) to
(1.1) with initial condition u(0) = u0. Moreover, the solution satisfies the global
spacetime bound

(6.1) ‖u‖L10
t,x(R×R3) . ‖∇u0‖L2(R3).
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Consequently, the solution u scatters, that is, there exist asymptotic states u± ∈
H1(R3) such that

lim
t→±∞

‖u(t)− eit∆u±‖H1(R3) = 0.

Proof. The proof of existence involves a standard contraction mapping argument.
The main observation is that for η sufficiently small, the hypothesis D(u0) ≤ η
together with Proposition 5.7 parts (iii) and (vii) implies

‖u‖2L∞t L2
x

+ ‖∇u‖2L∞t L2
x
. η.

With

Φ(u)(t) := eit∆u0 − i
∫ t

0

ei(t−t
′)∆
(
|u|4u− |u|2u

)
(t′) dt′,

it is not difficult to see that Φ is a contraction on the ball B ⊂ L∞t H1
x∩L2

tH
1,6
x ∩L10

t,x

of radius C0η
1/2 for a sufficiently large absolute constant C0 > 0. The key estimates

appear already in the proof that Φ maps this ball to itself: for u ∈ B,

‖Φ(u)‖L∞t H1
x∩L2

tH
1,6
x ∩L10

t,x

. ‖〈∇〉u0‖L2 + ‖u‖4L10
t,x
‖〈∇〉u‖L2

tL
6
x

+ ‖u‖L∞t L2
x
‖u‖L10

t,x
‖〈∇〉u‖L2

tL
6
x

. η1/2 + (C0η
1/2)5 + η1/2(C0η

1/2)2 ≤ C0η
1/2,

provided η is sufficiently small and C0 is sufficiently large.
Proving scattering from finite global spacetime norms is standard; we omit the

details. Lastly, uniqueness in the larger class C(R;H1(R3)) can be proved by
exploiting endpoint Strichartz estimates; see, for example, [19, 44]. �

We will also need the following persistence of regularity result:

Lemma 6.2 (Persistence of regularity). Let u ∈ C(R;H1(R3)) be a solution to
(1.1) such that S := ‖u‖L10

t,x(R×R3) <∞. Then for any t0 ∈ R and k = 0, 1 we have∥∥|∇|ku∥∥
S0(R)

≤ C
(
S,M(u)

)∥∥|∇|ku(t0)
∥∥
L2
x
.

Proof. We divide R into O
(
(Sε )10

)
many subintervals Ij = [tj , tj+1] such that

‖u‖L10
t,x(Ij×R3) ≤ ε,

where ε > 0 is a small constant to be chosen later. Then by repeating the compu-
tation in the proof of Proposition 6.1, we have∥∥|∇|ku‖S0(Ij) .

∥∥|∇|ku(tj)‖L2
x

+ ‖u‖4L10
t,x

∥∥|∇|ku‖L2
tL

6
x

+ ‖u‖L∞t L2
x
‖u‖L10

t,x

∥∥|∇|ku‖L2
tL

6
x

.
∥∥|∇|ku(tj)‖L2

x
+ ε
(
ε3 +M(u)1/2

)∥∥|∇|ku‖S0(Ij),

where all spacetime norms are over Ij ×R3. Choosing ε = ε(M(u)) > 0 sufficiently
small, we obtain ∥∥|∇|ku‖S0(Ij) .

∥∥|∇|ku(tj)‖L2
x
.

Combining the subintervals Ij yields the claim. �

Our last result in this section is a stability result for (1.1). This is essential for
any induction on mass/energy argument.



44 ROWAN KILLIP, TADAHIRO OH, OANA POCOVNICU, AND MONICA VIŞAN

Proposition 6.3 (Perturbation theory). Let ũ : I × R3 → C be a solution to the
perturbed cubic-quintic NLS

i∂tũ+ ∆ũ = |ũ|4ũ− |ũ|2ũ+ e

for some function e. Suppose that

‖ũ‖L∞t H1
x(I×R3) ≤ E(6.2)

‖ũ‖L10
t,x(I×R3) ≤ L(6.3)

for some E,L > 0. Let u0 ∈ H1(R3) with ‖u0‖L2(R3) ≤M for some M > 0 and let
t0 ∈ I. There exists ε0 = ε0(E,L,M) > 0 such that if

‖u0 − ũ(t0)‖Ḣ1
x
≤ ε(6.4)

‖∇e‖
L

10
7
t,x(I×R3)

≤ ε(6.5)

for 0 < ε < ε0, then the unique global solution u to (1.1) with u(t0) = u0 satisfies

‖∇(u− ũ)‖S0(I) ≤ C(E,L,M)ε,(6.6)

where C(E,L,M) is a non-decreasing function of E,L, and M .

Proof. Without loss of generality, we may assume t0 = 0 ∈ I. By the usual combi-
natorial argument (see, for example, [19]) and Lemma 6.2, it suffices to prove the
proposition under the additional hypothesis

(6.7) ‖ũ‖L10
t,x

+ ‖∇ũ‖L2
tL

6
x
≤ η,

where η = η(M,E) > 0 is a small constant to be chosen later. From Theorem 1.1
we know that u exists globally; the point is to prove the estimate (6.6).

Let w := u− ũ and let A(t) := ‖w‖Ṡ1(I∩[−t,t]). Then by Strichartz, Hölder, (6.4),

(6.5), and (6.7), we obtain

A(t) . ‖u0 − ũ(t0)‖Ḣ1
x

+
∥∥∇(|u|4u− |ũ|4ũ)∥∥

L
10
9
t L

30
17
x

+
∥∥∇(|u|2u− |ũ|2ũ)∥∥

L
5
3
t L

30
23
x

+ ‖∇e‖
L

10
7
t,x

. ε+ ‖∇w‖L2
tL

6
x

[
‖ũ‖4L10

t,x
+ ‖w‖4L10

t,x

]
+ ‖∇ũ‖L2

tL
6
x

[
‖ũ‖3L10

t,x
‖w‖L10

t,x
+ ‖w‖4L10

t,x

]
+ ‖∇w‖L2

tL
6
x

[
‖ũ‖L∞t L2

x
‖ũ‖L10

t,x
+ ‖w‖L∞t L2

x
‖w‖L10

t,x

]
+ ‖∇ũ‖L2

tL
6
x
‖w‖L10

t,x

[
‖ũ‖L∞t L2

x
+ ‖w‖L∞t L2

x

]
. ε+ η4A(t) + ηA(t)4 +A(t)5 + η(M + E)A(t) + (M + E)A(t)2,

where all spacetime norms are over (I ∩ [−t, t])×R3. To obtain the last inequality
above we also used (6.2) and the conservation of mass for (1.1) to estimate

‖w‖L∞t L2
x
≤ ‖ũ‖L∞t L2

x
+ ‖u‖L∞t L2

x
≤ E + ‖u0‖L2 ≤ E +M.

Therefore, taking η sufficiently small depending on M and E and then using the
standard continuity argument to remove the restriction to [−t, t], we derive (6.6).

�
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7. Linear profile decomposition in H1(R3)

The goal of this section is to derive a concentration-compactness principle for the
linear Schrödinger propagator for bounded sequences of initial data in the inhomo-
geneous Sobolev space H1(R3). Specifically, we prove that any bounded sequence
in H1(R3) can be written as an asymptotically decoupling superposition of trans-
lations and rescalings of linear evolutions of fixed profiles plus a remainder whose
linear evolution converges to zero in the L10

t,x-norm. The fact that H1(R3) is not a
scale-invariant space makes the argument more complicated; in particular, limiting
profiles may not belong to H1(R3). On the other hand, working in H1(R3) guar-
antees that the profiles cannot live at arbitrarily large length scales; cf. λ∞ < ∞
in Proposition 7.2.

A linear profile decomposition for the linear Schrödinger propagator for bounded
sequences in the homogeneous Sobolev space Ḣ1(R3) was first obtained by Keraani
[41], relying on an improved Sobolev inequality proved by Gérard, Meyer, and Oru
[29]. We should also note the influential precursor [5] which treated the wave equa-
tion. A linear profile decomposition for the Schrödinger propagator for bounded
sequences in L2(Rd) can be found in [6, 14, 59].

The approach we follow here mirrors that in [48, 50], rather than [41]. In partic-
ular, we will build our linear profile decomposition based on an improved Strichartz
inequality, which states that if the linear evolution is large in the L10

t,x-norm, then
at least one frequency annulus contributes non-trivially. The improved Strichartz
inequality is used to find the correct scaling parameters in the linear profile decom-
position.

Lemma 7.1 (Improved Strichartz estimate). For f ∈ Ḣ1(R3) we have

‖eit∆f‖L10
t,x(R×R3) . ‖f‖

1
5

Ḣ1(R3)
sup
N∈2Z

‖eit∆PNf‖
4
5

L10
t,x(R×R3)

.(7.1)

Proof. By the square function estimate followed by the Hölder, Bernstein, Strichartz,
and Cauchy–Schwarz inequalities, we obtain

‖eit∆f‖10
L10
t,x
∼
∥∥∥∥( ∑

N∈2Z

|eit∆fN |2
) 1

2

∥∥∥∥10

L10
t,x

.
∑

N1≤···≤N5

∫
R

∫
R3

5∏
j=1

|eit∆fNj |2 dx dt

.
∑

N1≤···≤N5

‖eit∆fN1
‖L∞t,x‖e

it∆fN1
‖L10

t,x

( 4∏
j=2

‖eit∆fNj‖2L10
t,x

)
× ‖eit∆fN5

‖L10
t,x
‖eit∆fN5

‖L5
t,x

. sup
N∈2Z

‖eit∆fN‖8L10
t,x

∑
N1≤···≤N5

N
3
2

1 ‖eit∆fN1‖L∞t L2
x
N

1
2

5 ‖eit∆fN5‖
L5
tL

30
11
x

. sup
N∈2Z

‖eit∆fN‖8L10
t,x

∑
N1≤N5

(
log

N5

N1

)3

N
3
2

1 ‖fN1
‖L2

x
N

1
2

5 ‖fN5
‖L2

x

. sup
N∈2Z

‖eit∆fN‖8L10
t,x

∑
N1≤N5

(N1

N5

) 1
2−ε‖fN1

‖Ḣ1
x
‖fN5

‖Ḣ1
x
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. sup
N∈2Z

‖eit∆fN‖8L10
t,x(R×R3)‖f‖

2
Ḣ1
x
,

for any ε > 0. This completes the proof of the lemma. �

Our next result is an inverse Strichartz inequality, which says that if the linear
evolution is large, it must in fact contain a bubble of concentration at some point
in spacetime.

Proposition 7.2 (Inverse Strichartz inequality). Let {fn}n∈N ⊂ H1(R3) be a se-
quence such that

lim sup
n→∞

‖fn‖H1
x

= A <∞ and lim inf
n→∞

‖eit∆fn‖L10
t,x(R×R3) = ε > 0.

Passing to a subsequence if necessary, there exist

φ ∈ Ḣ1(R3), {λn}n∈N ⊂ (0,∞), {tn}n∈N ⊂ R, and {xn}n∈N ⊂ R3

such that all of the following hold: First λn → λ∞ ∈ [0,∞), and if λ∞ > 0 then
additionally φ ∈ L2(R3). Secondly,

λ
1
2
n

(
eitn∆fn

)
(λnx+ xn) ⇀ φ(x) weakly in

{
H1(R3), if λ∞ > 0,

Ḣ1(R3), if λ∞ = 0.
(7.2)

Furthermore, letting

φn(x) :=

{
λ
− 1

2
n e−itn∆

[
φ
(
x−xn
λn

)]
, if λ∞ > 0,

λ
− 1

2
n e−itn∆

[(
P≥λθnφ

)(
x−xn
λn

)]
, if λ∞ = 0,

(7.3)

with 0 < θ < 1 fixed, the following decoupling statements hold:

lim
n→∞

[
‖fn‖2Ḣ1

x
− ‖fn − φn‖2Ḣ1

x

]
= ‖φ‖2

Ḣ1
x
& A2

(
ε
A

) 15
4 ,(7.4)

lim
n→∞

[
‖fn‖2L2

x
− ‖fn − φn‖2L2

x
− ‖φn‖2L2

x

]
= 0.(7.5)

Proof. Passing to a subsequence, we may assume that

‖eit∆fn‖L10
t,x
≥ ε

2 and ‖fn‖H1
x
≤ 2A(7.6)

for all n ∈ N. By Lemma 7.1, we have

ε . ‖eit∆fn‖L10
t,x
. ‖fn‖

1
5

Ḣ1
x

sup
N
‖eit∆PNfn‖

4
5

L10
t,x
. A

1
5 sup

N
‖eit∆PNfn‖

4
5

L10
t,x

for all n ∈ N. Thus, for each n ∈ N there exists Nn ∈ 2Z such that

(7.7) ‖eit∆PNnfn‖L10
t,x
& ε

5
4A−

1
4 .

On the other hand, by Hölder, Strichartz, and (7.6),

‖eit∆PNnfn‖L10
t,x
≤ ‖eit∆PNnfn‖

2
3

L∞t,x
‖eit∆PNnfn‖

1
3

L
10
3
t,x

. ‖eit∆PNnfn‖
2
3

L∞t,x
‖PNnfn‖

1
3

L2
x

. ‖eit∆PNnfn‖
2
3

L∞t,x
N
− 1

3
n A

1
3 .(7.8)

Combining (7.7) and (7.8), we get

N
− 1

2
n ‖eit∆PNnfn‖L∞t,x & ε

15
8 A−

7
8 .(7.9)

Therefore, there exist tn ∈ R and xn ∈ R3 such that

N
− 1

2
n

∣∣[eitn∆PNnfn
]
(xn)

∣∣ & ε 15
8 A−

7
8 .(7.10)



THE CUBIC-QUINTIC NLS ON R3 47

We choose the spatial scales to be λn := N−1
n . We note that {λn}n∈N is a

bounded sequence; indeed, by (7.9), Bernstein’s inequality, and (7.6),

λ
− 1

2
n ε

15
8 A−

7
8 . ‖eitn∆Pλ−1

n
fn‖L∞x . λ

− 3
2

n ‖eitn∆Pλ−1
n
fn‖L2

x
. λ

− 3
2

n ‖fn‖L2
x
. λ

− 3
2

n A.

Thus, passing to a subsequence we may assume that λn → λ∞, where either 0 <
λ∞ . (Aε )

15
8 or λ∞ = 0.

It remains to find the profile φ. To this end, let hn(x) := λ
1
2
n (eitn∆fn)(λnx+xn)

as in LHS(7.2). By (7.6), we have

‖hn‖Ḣ1
x

= ‖fn‖Ḣ1
x
≤ 2A for all n ∈ N.(7.11)

Thus, passing to a subsequence, we can find φ ∈ Ḣ1(R3) such that hn ⇀ φ in

Ḣ1(R3). Moreover, if λn → λ∞ > 0, then

‖hn‖L2
x

= λ−1
n ‖fn‖L2

x
. λ−1

∞ A

for all large enough n. Thus by the uniqueness of weak limits and weak lower
semicontinuity of the norm, we get that in this case φ ∈ H1(R3). This proves (7.2).

As Ḣ1
x is a Hilbert space, the weak convergence of {hn} to φ in Ḣ1

x implies that

‖hn‖2Ḣ1
x
− ‖hn − φ‖2Ḣ1

x
− ‖φ‖2

Ḣ1
x

= 2 Re〈φ, hn − φ〉Ḣ1
x
→ 0.(7.12)

Combining this with the fact that

‖φ− P≥λθnφ‖Ḣ1
x
→ 0 when λn → 0

and performing a change of variables, we obtain the equality in (7.4).
To complete the proof of (7.4), we must prove the lower bound on ‖φ‖Ḣ1

x
. To

this end, let kN denote the kernel of the operator PN . As k̂Nn(ξ) = k̂1

(
ξ
Nn

)
and

λn = N−1
n , we have kNn(x) = λ−3

n k1

(
x
λn

)
. Thus

〈φ, k1〉 = lim
n→∞

∫
λ

1
2
n

(
eitn∆fn

)
(λnx+ xn)k1(x) dx

= lim
n→∞

∫
λ

1
2
n

(
eitn∆fn

)
(y)kNn(y − xn) dy = lim

n→∞
λ

1
2
n

[
eitn∆PNnfn

]
(xn).

Invoking (7.10), we derive

(7.13) |〈φ, k1〉| & ε
15
8 A−

7
8 .

On the other hand,

|〈φ, k1〉| ≤ ‖φ‖L6
x
‖k1‖L6/5

x
. ‖φ‖Ḣ1

x
.(7.14)

Combining (7.13) and (7.14) completes the proof of (7.4).
We now turn to (7.5). When λn → λ∞ > 0 and φ ∈ H1(R3), proceeding as in

(7.12) we obtain

‖hn‖2L2
x
− ‖hn − φ‖2L2

x
− ‖φ‖2L2

x
→ 0;

a simple change of variables now yields the claim. When λn → 0, we write

‖fn‖2L2
x
− ‖fn − φn‖2L2

x
− ‖φn‖2L2

x
= 2 Re〈fn − φn, φn〉L2

x

= 2 Re
〈
hn − P≥λθnφ, λ

2
nP≥λθnφ

〉
L2
x

= 2 Re
〈
hn − P≥λθnφ, λ

2
n|∇|−2P≥λθnφ

〉
Ḣ1
x
.



48 ROWAN KILLIP, TADAHIRO OH, OANA POCOVNICU, AND MONICA VIŞAN

As λn → 0 and 0 < θ < 1, we have∥∥|∇|−2λ2
nP≥λθnφ

∥∥
Ḣ1
x
. λ2(1−θ)

n ‖P≥λθnφ‖Ḣ1
x
. λ2(1−θ)

n ‖φ‖Ḣ1
x
→ 0,

and so (7.5) follows from the boundedness of {hn − P≥λθnφ}n∈N in Ḣ1(R3).
This completes the proof of the proposition. �

The following corollary allows us to assume that the scaling parameters λn and
the temporal parameters tn in Proposition 7.2 satisfy simple dichotomies.

Corollary 7.3. Passing to a further subsequence if necessary, we may choose the
parameters {λn}n∈N and {tn}n∈N in Proposition 7.2 such that

(i) λn ≡ 1 or λn → 0

(ii) tn ≡ 0 or
tn
λ2
n

→ ±∞.
(7.15)

Proof. Let λn and tn denote the scale and temporal parameters from Proposi-
tion 7.2. To ease notation, for λ > 0 let Dλ denote the dilation operator

(Dλf)(x) := λ−
1
2 f(λ−1x).

We first consider claim (i) in (7.15). If λn → 0, then there is nothing to prove.
Suppose therefore that λn → λ∞ > 0. In this case we may redefine λn ≡ 1,

provided we also replace the profile φ by φ̃ := Dλ∞φ. Indeed, as Dλn and D−1
λn

converge strongly to Dλ∞ and D−1
λ∞

, respectively, as operators on H1(R3), all the
requisite conclusions carry over.

We now turn to (ii). Passing to a subsequence, we may assume that tn
λ2
n
→ τ∞ ∈

[−∞,∞]. If τ∞ = ±∞, then there is nothing to prove. If τ∞ ∈ R, then we may

redefine tn ≡ 0, provided we also replace the profile φ by φ̃ := e−iτ∞∆φ. Indeed,
this is easily seen using the identity

e−itn∆Dλnφ = Dλn

[
e
−i tn

λ2n
∆
φ
]

and the strong continuity of eit∆ in H1
x. To see (7.5) when λn → 0, we also use

Bernstein’s inequality:∥∥e−itn∆DλnP≥λθnφ−DλnP≥λθne
−iτ∞∆φ

∥∥
L2
x

=
∥∥Dλn

[
e
−i tn

λ2n
∆ − e−iτ∞∆

]
P≥λθnφ

∥∥
L2
x

. λ1−θ
n

∥∥[e−i tnλ2n∆ − e−iτ∞∆
]
P≥λθnφ

∥∥
Ḣ1
x

. λ1−θ
n ‖φ‖Ḣ1

x
→ 0 as n→∞.

This completes the proof of the corollary. �

As explained in the introduction, to prove Theorem 1.3 we will run an induc-
tion argument on both the mass and the energy. To this end, we need to show
that the masses and the energies corresponding to two distinct profiles decouple
asymptotically. The asymptotic decoupling of the kinetic energies and the masses
will follow from (7.4) and (7.5), respectively. The asymptotic decoupling of the
potential energies will follow from the following lemma.

Lemma 7.4. Under the hypotheses of Proposition 7.2, we have

lim
n→∞

[
‖fn‖6L6

x
− ‖fn − φn‖6L6

x
− ‖φn‖6L6

x

]
= 0,(7.16)
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lim
n→∞

[
‖fn‖4L4

x
− ‖fn − φn‖4L4

x
− ‖φn‖4L4

x

]
= 0.(7.17)

Proof. Passing to a subsequence, we may assume that the conclusions of Corol-
lary 7.3 hold. As above, we will write Dλ for the dilation operator

(Dλf)(x) := λ−
1
2 f(λ−1x).

We start by proving the decoupling of the L6
x-norms. First, we consider the case

when tn
λ2
n
→ ±∞. Let ε > 0 and choose ψ ∈ S(R3) such that

‖ψ − φ‖Ḣ1
x
≤ ε.

Let

ψn(x) :=

{
e−itn∆ψ(x− xn), if λn ≡ 1,

e−itn∆[DλnP≥λθnψ](x− xn), if λn → 0.

By the dispersive estimate,

‖ψn‖L6
x
. 1
|tn|
∥∥Dλnψ

∥∥
L

6
5
x

. λ2
n

|tn|‖ψ‖L
6
5
x

→ 0 as n→∞.

On the other hand, by Sobolev embedding,∥∥φn − ψn∥∥L6
x
. ‖φ− ψ‖Ḣ1

x
. ε uniformly for n ∈ N.

Thus, for n large enough,
‖φn‖L6

x
. ε

and so, by the triangle inequality,∣∣∣‖fn‖L6
x
− ‖fn − φn‖L6

x

∣∣∣ . ε.
As ε > 0 was arbitrary, we obtain (7.16) when tn

λ2
n
→ ±∞.

Next, we consider the case when tn ≡ 0. By (7.2), hn(x) := [D−1
λn
fn](x+ xn) ⇀

φ(x) in Ḣ1
x. As ‖hn‖Ḣ1

x
= ‖fn‖Ḣ1

x
. A, invoking the Rellich–Kondrashov Theorem

and passing to a subsequence we conclude that hn → φ in L2
x(K) for any compact

set K ⊂ R3. Using a diagonal argument and passing to a further subsequence, we
deduce that hn → φ almost everywhere on R3. Thus by Lemma 1.7,

‖hn‖6L6
x
− ‖hn − φ‖6L6

x
− ‖φ‖6L6

x
→ 0 as n→∞.

Using also the fact that

‖P≥λθnφ− φ‖L6
x
→ 0 when λn → 0

and performing a simple change of variables, we obtain (7.16).
Next we consider the decoupling of the L4

x-norms. When λn → 0, the proof is
very simple; indeed, the claim follows from

‖φn‖L4
x
. ‖φn‖

1
4

L2
x
‖φn‖

3
4

Ḣ1
x

. λ
1
4
n‖P≥λθnφ‖

1
4

L2
x
‖φ‖

3
4

Ḣ1
x

. λ
1−θ
4

n ‖φ‖Ḣ1
x
→ 0 as n→∞.

When λn ≡ 1, we argue as for (7.16). One small difference appears in the case when
tn/λ

2
n → ±∞; in this case, we choose ψ ∈ S(R3) to approximate φ in H1

x (rather

than Ḣ1
x) and use the fact that by Gagliardo–Nirenberg, the L4

x-norm is controlled
by the H1

x-norm.
This completes the proof of the lemma. �

We are now ready to prove the main result of this section.
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Theorem 7.5 (Linear profile decomposition). Let {fn}n∈N be a bounded sequence
in H1(R3). Passing to a subsequence if necessary, there exists J∗ ∈ {0, 1, 2, . . . } ∪
{∞} such that for each finite 1 ≤ j ≤ J∗ there exist

φj ∈ Ḣ1
x \ {0}, {λjn}n∈N ⊂ (0, 1], {tjn}n∈N ⊂ R, and {xjn}n∈N ⊂ R3,

satisfying

λjn ≡ 1 or λjn → 0 and tjn ≡ 0 or tjn → ±∞.

If λjn ≡ 1, then additionally φj ∈ L2
x. Choosing 0 < θ < 1 and defining

φjn(x) :=

{[
eit

j
n∆φj

]
(x− xjn), if λjn ≡ 1,

(λjn)−
1
2

[
eit

j
n∆P≥(λjn)θφ

j
](x−xjn

λjn

)
, if λjn → 0,

(7.18)

for each finite 1 ≤ J ≤ J∗ we have the decomposition

fn =

J∑
j=1

φjn + wJn(7.19)

and the following statements hold:

lim
J→J∗

lim sup
n→∞

‖eit∆wJn‖L10
t,x(R×R3) = 0,(7.20)

e−it
j
n∆
[
(λjn)

1
2wJn(λjnx+ xjn)

]
⇀ 0 in Ḣ1

x for all 1 ≤ j ≤ J,(7.21)

sup
J

lim
n→∞

[
M(fn)−

J∑
j=1

M(φjn)−M(wJn)
]

= 0,(7.22)

sup
J

lim
n→∞

[
E(fn)−

J∑
j=1

E(φjn)− E(wJn)
]

= 0,(7.23)

lim
n→∞

[
λjn
λkn

+
λkn

λjn
+
|xjn − xkn|2

λjnλkn
+

∣∣tjn(λjn)2 − tkn(λkn)2
∣∣

λjnλkn

]
=∞ for all j 6= k.(7.24)

Proof. To keep our formulas within margins, we will use operators gjn defined by

(gjnf)(x) := (λjn)−
1
2 f
(x−xjn

λjn

)
or [(gjn)−1f ](x) := (λjn)

1
2 f
(
λjnx+ xjn

)
.

With this notation, we have

φjn =

{
gjne

itjn∆φj , if λjn ≡ 1,

gjne
itjn∆P≥(λjn)θφ

j , if λjn → 0.

To prove the theorem we will proceed inductively, extracting one bubble at a
time. To start, we set J = 0 and w0

n := fn. Now suppose we have a decomposition
up to level J ≥ 0 obeying (7.22), (7.23), and the j = J case of (7.21). (Conditions
(7.20), (7.21) with j < J , and (7.24) will be verified at the end.) Passing to a
subsequence if necessary, we set

AJ := lim
n→∞

‖wJn‖H1
x

and εJ := lim
n→∞

‖eit∆wJn‖L10
t,x
.

If εJ = 0, we stop and set J∗ = J . If not, we apply Proposition 7.2 to wJn . Thus,
passing to a subsequence in n we find φJ+1, {λJ+1

n }, {tJ+1
n }, and {xJ+1

n }, with

λJ+1
n ≡ 1 or λJ+1

n → 0 and tJ+1
n ≡ 0 or tJ+1

n → ±∞.
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Note that we renamed the time parameters given by Proposition 7.2 so that tJ+1
n :=

−λ−2
n tn. According to Proposition 7.2, the profile φJ+1 is defined as the weak limit

φJ+1 = w-lim
n→∞

(gJ+1
n )−1

[
e−it

J+1
n (λJ+1

n )2∆wJn
]

= w-lim
n→∞

e−it
J+1
n ∆[(gJ+1

n )−1wJn ].

Now define wJ+1
n := wJn − φJ+1

n . By the definition of φJ+1, we obtain (7.21) for
j = J + 1. Moreover, from Proposition 7.2 and Lemma 7.4 we also have

lim
n→∞

[
M(wJn)−M(wJ+1

n )−M(φJ+1
n )

]
= 0,

lim
n→∞

[
E(wJn)− E(wJ+1

n )− E(φJ+1
n )

]
= 0.

Combining this with the inductive hypothesis gives (7.22) and (7.23) at the level
J + 1.

Passing to a further subsequence and using Proposition 7.2, we obtain

(7.25) A2
J+1 = lim

n→∞
‖wJ+1

n ‖2H1
x
≤ A2

J .

Passing to a further subsequence if necessary, let

εJ+1 := lim
n→∞

‖eit∆wJ+1
n ‖L10

t,x
.

If εJ+1 = 0 we stop and set J∗ = J + 1; in this case, (7.20) is automatic. If
εJ+1 > 0 we continue the induction. If the algorithm does not terminate in finitely
many steps, we set J∗ =∞. In this case, (7.20) follows from the fact that εJ → 0
as J →∞. To demonstrate that εJ → 0, we combine (7.25) and (7.4) to obtain∑

J

A2
0

(
εJ
A0

) 15
4 .

∑
j

‖φj‖2
Ḣ1
x
≤ A2

0.

(Recall that A0 = lim supn ‖fn‖H1
x
<∞.)

Next we verify the asymptotic orthogonality condition (7.24); claim (7.21) with
j < J follows from a similar argument. We argue by contradiction. Assume (7.24)
fails to be true for some pair (j, k). Without loss of generality, we may assume that
this is the first pair for which (7.24) fails, that is, j < k and (7.24) holds for all
pairs (j, l) with j < l < k. Passing to a subsequence, we may assume

λjn
λkn
→ λ0 ∈ (0,∞),

xjn−x
k
n√

λjnλkn
→ x0, and

tjn(λjn)2−tkn(λkn)2

λjnλkn
→ t0.(7.26)

From the inductive relation

wk−1
n = wjn −

k−1∑
l=j+1

φln

and the definition of φk, we obtain

φk(x) = w-lim
n→∞

e−it
k
n∆[(gkn)−1wk−1

n ]

= w-lim
n→∞

e−it
k
n∆[(gkn)−1wjn]−

k−1∑
l=j+1

w-lim
n→∞

e−it
k
n∆[(gkn)−1φln].(7.27)

We will prove that these weak limits are all zero and so obtain a contradiction to
the nontriviality of φk.

We write

e−it
k
n∆[(gkn)−1wjn] = e−it

k
n∆(gkn)−1gjne

itjn∆[e−it
j
n∆(gjn)−1wjn]
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= (gkn)−1gjne
i
(
tjn−t

k
n

(λkn)2

(λjn)2

)
∆

[e−it
j
n∆(gjn)−1wjn].

Note that by (7.26),

tjn − tkn
(λkn)2

(λjn)2
=

tjn(λjn)2−tkn(λkn)2

λjnλkn
· λ

k
n

λjn
→ t0

λ0
.

Using this together with (7.26) we conclude that the adjoints of the operators

(gkn)−1gjne
i
(
tjn−t

k
n

(λkn)2

(λjn)2

)
∆

converge strongly in Ḣ1
x. Combining this with the J = j case of (7.21), we obtain

that the first term on RHS(7.27) is zero.
To complete the proof of (7.24), it remains to show that the second term on

RHS(7.27) is zero. For all j < l < k we write

e−it
k
n∆(gkn)−1φln = (gkn)−1gjne

i
(
tjn−t

k
n

(λkn)2

(λjn)2

)
∆

[e−it
j
n∆(gjn)−1φln].

Using the fact that

‖φl − P≥(λln)θφ
l‖Ḣ1

x
→ 0 when λln → 0

and arguing as for the first term on RHS(7.27), it suffices to show that

e−it
j
n∆(gjn)−1glne

itln∆φl ⇀ 0 weakly in Ḣ1
x.

Using a density argument, this reduces to

In := e−it
j
n∆(gjn)−1glne

itln∆φ ⇀ 0 weakly in Ḣ1
x,(7.28)

for all φ ∈ C∞c (R3). Note that we can rewrite In as follows:

In =
(
λjn
λln

) 1
2
[
e
i
(
tln−t

j
n

(λjn
λln

)2)
∆
φ
](

λjnx+xjn−x
l
n

λln

)
.

Recalling that (7.24) holds for the pair (j, l), we first prove (7.28) when the
scaling parameters are not comparable, that is,

lim
n→∞

λjn
λln

+
λln
λjn

=∞.(7.29)

By the Cauchy–Schwarz inequality,∣∣〈In, ψ〉Ḣ1
x

∣∣ . min
{
‖∆In‖L2

x
‖ψ‖L2

x
, ‖In‖L2

x
‖∆ψ‖L2

x

}
. min

{
λjn
λln
‖∆φ‖L2

x
‖ψ‖L2

x
,
λln
λjn
‖φ‖L2

x
‖∆ψ‖L2

x

}
,

which converges to zero as n → ∞, for all ψ ∈ C∞c (R3). This establishes (7.28)
when (7.29) holds.

Henceforth we may assume

lim
n→∞

λjn
λln

= λ1 ∈ (0,∞).

We now suppose that the time parameters diverge, that is,

lim
n→∞

|tjn(λjn)2−tln(λln)2|
λjnλln

=∞;

then we also have∣∣∣tln − tjn(λjnλln)2∣∣∣ =
|tln(λln)2−tjn(λjn)2|

λlnλ
j
n

· λ
j
n

λln
→∞ as n→∞.
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Under this condition, (7.28) follows from

λ
1
2
1

[
e
i
(
tln−t

j
n

(λjn
λln

)2)
∆
φ
](
λ1x+

xjn−x
l
n

λln

)
⇀ 0 weakly in Ḣ1

x,

which is an immediate consequence of the dispersive estimate.
Finally, we deal with the situation when

λjn
λln
→ λ1 ∈ (0,∞),

tln(λln)2−tjn(λjn)2

λjnλln
→ t1, but

|xjn−x
l
n|

2

λjnλln
→∞.

Then we also have tln − tjn(λjn)2/(λln)2 → λ1t1. In this case, the desired weak
convergence follows from the easily proved assertion

λ
1
2
1 e

it1λ1∆φ(λ1x+ yn) ⇀ 0 weakly in Ḣ1
x,

where

yn :=
xjn−x

l
n

λln
=

xjn−x
l
n√

λlnλ
j
n

√
λjn
λln
,

which diverges to infinity as n→∞.
This completes the proof of the theorem. �

8. Embedding the quintic NLS inside the cubic-quintic NLS

The next major milestone in proving the existence of minimal blowup solutions is
the development of a nonlinear profile decomposition. To do this, we must associate
to each profile in (7.19) a solution of the cubic-quintic NLS. In this section, we
consider those profiles for which λjn → 0 as n → ∞. What is special about these
profiles is that the long-time behaviour of the associated solutions to (1.1) can be
deduced from the main result in [19], namely:

Theorem 8.1 (Spacetime bounds for the defocusing quintic NLS, [19]). Let u0 ∈
Ḣ1(R3). Then there exists a unique global solution u to

i∂tu+ ∆u = |u|4u(8.1)

with initial data u(0) = u0. Moreover, the solution u satisfies

‖∇u‖S0(R) ≤ C
(
‖u0‖Ḣ1

x

)
.

Remark 8.2. An easy consequence of Theorem 8.1 is global spacetime bounds for
solutions defined by their scattering states. Specifically, given u+ ∈ Ḣ1

x there exists
a unique global solution u to (8.1) such that

‖u(t)− eit∆u+‖Ḣ1
x
→ 0 as t→∞;

moreover, the solution u satisfies

‖∇u‖S0(R) ≤ C
(
‖u+‖Ḣ1

x

)
.

A similar statement holds backward in time.

This result is pertinent to us because profiles with λjn → 0 are highly concen-
trated for n large and so the cubic nonlinearity is relatively weak. Indeed, this
precisely corresponds to the energy-subcriticality of the cubic nonlinearity. In this
section we use a perturbative argument to show that this heuristic can be made
rigorous. The exact information we will extract is dictated by the needs of the
proof of the Palais–Smale condition Proposition 9.1.
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Proposition 8.3. Let {λn}n∈N ⊂ (0,∞) be such that λn → 0, {tn}n∈N ⊂ R such

that either tn ≡ 0 or tn → ±∞, and let {xn}n∈N ⊂ R3. Given φ ∈ Ḣ1
x, let

φn(x) := λ
− 1

2
n [eitn∆P≥λθnφ]

(
x−xn
λn

)
for some 0 < θ < 1. Then for n sufficiently

large, the unique global solution un to (1.1) with initial data un(0) = φn satisfies

‖∇un‖S0(R) ≤ C
(
‖φ‖Ḣ1

x

)
.(8.2)

Furthermore, for every ε > 0, there exist Nε ∈ N and φε, ψε ∈ C∞c (R × R3) such
that ∥∥∥un(t, x)− λ−

1
2

n φε
(
t
λ2
n

+ tn,
x−xn
λn

)∥∥∥
L10
t,x(R×R3)

< ε,(8.3) ∥∥∥∇un(t, x)− λ−
3
2

n ψε
(
t
λ2
n

+ tn,
x−xn
λn

)∥∥∥
L

10
3
t,x(R×R3)

< ε,(8.4)

for all n ≥ Nε.

Proof. As (1.1) is space-translation invariant, without loss of generality we may
assume that xn ≡ 0.

As noted previously, to prove the proposition we will use a perturbative argu-
ment. Specifically, we will construct a solution ũn to the defocusing energy-critical
NLS that is an approximate solution to (1.1) with initial data asymptotically match-
ing φn. This solution will have good spacetime bounds thanks to Theorem 8.1.
Then using the stability result Proposition 6.3, we will deduce that for n sufficiently
large, the solution un inherits the spacetime bounds of ũn, thus proving (8.2).

If tn ≡ 0, we define wn and w to be the solutions to (8.1) with initial data
wn(0) = P≥λθnφ and w(0) = φ, respectively. If tn → ±∞, we define wn and w to

be the solutions to (8.1) which scatter in Ḣ1
x to eit∆P≥λθnφ and eit∆φ, respectively,

as t→ ±∞. By Theorem 8.1, we have

‖∇wn‖S0(R) + ‖∇w‖S0(R) ≤ C
(
‖φ‖Ḣ1

x

)
uniformly in n ∈ N.

The stability result [19, Lemma 3.10] allows us to deduce that

lim
n→∞

‖∇(wn − w)‖S0(R) = 0.

Indeed, if tn ≡ 0 this follows from the observation

‖wn(0)− w(0)‖Ḣ1
x

= ‖P≥λθnφ− φ‖Ḣ1
x
→ 0 as n→∞.

If instead tn → ±∞, to be able to apply [19, Lemma 3.10], it suffices to observe
that

lim
n→∞

lim
t→±∞

‖wn(t)− w(t)‖Ḣ1
x

= 0,

which follows from the construction of wn and w and the fact that λn → 0:

lim
n→∞

lim
t→±∞

‖wn(t)− w(t)‖Ḣ1
x

≤ lim
n→∞

lim
t→±∞

[
‖wn(t)− eit∆P≥λθnφ‖Ḣ1

x
+ ‖w(t)− eit∆φ‖Ḣ1

x
+ ‖P≥λθnφ− φ‖Ḣ1

x

]
= 0.

Next, by the Bernstein inequality,

‖P≥λθnφ‖L2
x
. λ−θn ‖φ‖Ḣ1

x

and so the persistence of regularity result [19, Lemma 3.12] implies that

(8.5) ‖wn‖S0(R) ≤ C
(
‖φ‖Ḣ1

x

)
λ−θn .
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We are now in a position to introduce the approximate solutions ũn to (1.1). For
n ∈ N, we define

ũn(t, x) := λ
− 1

2
n wn

(
t
λ2
n

+ tn,
x
λn

)
.

As (8.1) is time-translation and scaling invariant, ũn is also a solution to (8.1) and

‖∇ũn‖S0(R) = ‖∇wn‖S0(R) ≤ C
(
‖φ‖Ḣ1

x

)
.

Moreover, ũn(0) asymptotically matches the initial data un(0) = φn; indeed,

‖ũn(0)− φn‖Ḣ1
x

= ‖wn(tn)− eitn∆P≥λθnφ‖Ḣ1
x
→ 0 as n→∞.

To invoke the stability result Proposition 6.3 and deduce claim (8.2), it thus remains
to show that ũn has bounded mass (so (6.2) holds) and that ũn is an approximate
solution to (1.1), both as n→∞. By (8.5),

‖ũn‖S0(R) = λn‖wn‖S0(R) ≤ C
(
‖φ‖Ḣ1

x

)
λ1−θ
n → 0 as n→∞.

This bounds the mass of ũn and provides the key tool for bounding e := |ũn|2ũn:

‖∇e‖
L

10
7
t,x(R×R3)

. ‖∇ũn‖
L

10
3
t,x(R×R3)

‖ũn‖L10
t,x(R×R3)‖ũn‖

L
10
3
t,x(R×R3)

≤ C
(
‖φ‖Ḣ1

x
)λ1−θ
n ,

which converges to zero as n→∞. This completes the proof of (8.2).
Finally, we turn to (8.3) and (8.4). For ε > 0, approximate w by φε, ψε ∈

C∞c (R× R3) such that

‖w − φε‖L10
t,x(R×R3) <

ε
3 and ‖∇w − ψε‖

L
10
3
t,x(R×R3)

< ε
3

and take n sufficiently large so that

‖un − ũn‖
L10
t,x∩L

10
3
t H

1, 10
3

x

< ε
3 and ‖wn − w‖

L10
t,x∩L

10
3
t H

1, 10
3

x

< ε
3 .

The two claims now follow easily from the triangle inequality. �

9. Existence of a minimal blowup solution

As mentioned in the introduction, Theorem 1.3 is equivalent to L(D) < ∞ for
all 0 < D < ∞, where L(D) is defined as in (1.9). From the small data theory
Proposition 6.1, we know that L(D) <∞ for D � 1. Indeed, using also Lemma 6.2
and (5.29) we have

‖u‖L10
t,x(R×R3) + ‖∇u‖

L
10
3
t,x(R×R3)

. E(u)1/2(9.1)

for all global solutions u with D(u) � 1. Thus if Theorem 1.3 failed, there would
exist a critical Dc <∞ such that

L(D) <∞ for D < Dc and L(D) =∞ for D > Dc.(9.2)

The goal of this section is to prove the existence of a minimal blowup solution
to (1.1), that is, a solution u to (1.1) such that

Dc(u) = Dc and ‖u‖L10
t,x([0,∞)×R3) = ‖u‖L10

t,x((−∞,0]×R3) =∞.

To extract this minimal counterexample to Theorem 1.3, we will prove a Palais–
Smale condition for an increasingly bad sequence of almost counterexamples to our
theorem.
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Proposition 9.1 (A Palais–Smale condition). Let {un}n∈N be a sequence of global
solutions to (1.1) and {tn}n∈N ⊂ R be such that limn→∞D(un) = Dc and

lim
n→∞

‖un‖L10
t,x([tn,∞)×R3) = lim

n→∞
‖un‖L10

t,x((−∞,tn]×R3) =∞.(9.3)

Passing to a subsequence, there exists {xn}n∈N ⊂ R3 such that {un(tn, · +xn)}n∈N
converges in H1(R3).

Proof. By time-translation invariance, we may take tn ≡ 0.
By Proposition 5.7, we know that un(0) is bounded in H1

x and consequently we
may apply the linear profile decomposition Theorem 7.5 to write

(9.4) un(0) =

J∑
j=1

φjn + wJn .

To prove the proposition, we must show that there exists a single profile (i.e.,
J∗ = 1), that λ1

n ≡ 1, t1n ≡ 0, and that the error w1
n converges to zero in H1

x.
Passing to a further subsequence if necessary, we may assume M(un)→M0 and

E(un)→ E0. In particular, Dc = D(M0, E0).
Our first step is to introduce nonlinear profiles vjn associated to each φjn. Fix

j ≥ 1. If λjn ≡ 1 and tjn ≡ 0, then we define vj to be the global solution to (1.1)
with initial data vj(0) = φj . If λjn ≡ 1 and tjn → ±∞ as n → ∞, then we define
vj to be the global solution to (1.1) which scatters forward/backward in time to
eit∆φj in H1

x. In both cases, we define the global solutions

vjn(t, x) := vj(t+ tjn, x− xjn).

If λjn → 0 as n → ∞, we define vjn to be the global solution to (1.1) with initial
data vjn(0) = φjn given by Proposition 8.3.

As a consequence of our construction, in all cases above we have

(9.5)
∥∥vjn(0)− φjn‖H1

x
→ 0 as n→∞.

Thus, by the decoupling of mass (7.22) and energy (7.23), for each finite J ≤ J∗

we obtain

lim sup
n→∞

J∑
j=1

M(vjn) +M(wJn) ≤M0(9.6)

lim sup
n→∞

J∑
j=1

E(vjn) + E(wJn) ≤ E0.(9.7)

Note that by (5.29), the summands in (9.7) are non-negative (for n large); indeed,
as the profiles φj are non-trivial we actually have lim infn→∞E(vjn) > 0.

To continue, we discuss separately the following two cases:

Case 1: sup
j

lim sup
n→∞

M(vjn) = M0 and sup
j

lim sup
n→∞

E(vjn) = E0

Case 2: sup
j

lim sup
n→∞

M(vjn) < M0 or sup
j

lim sup
n→∞

E(vjn) < E0.

Case 1: By (9.6), (9.7), and the non-negativity of the summands in (9.7), in
this case there exists only one profile (i.e., J∗ = 1) and the decomposition (9.4)
simplifies to

(9.8) un(0) = φn + wn with lim
n→∞

‖wn‖H1
x

= 0.
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If λn ≡ 1 and tn ≡ 0, then we obtain the desired compactness conclusion. We
will show that all other scenarios contradict (9.3).

Suppose that λn ≡ 1 and tn → ∞ as n → ∞; the case when tn → −∞ can be
treated similarly. Using (9.8) together with Strichartz and the monotone conver-
gence theorem, we deduce that∥∥eit∆un(0)

∥∥
L10
t,x([0,∞)×R3)

≤
∥∥eit∆φn∥∥L10

t,x([0,∞)×R3)
+
∥∥eit∆wn∥∥L10

t,x([0,∞)×R3)

.
∥∥eit∆φ∥∥

L10
t,x([tn,∞)×R3)

+ ‖wn‖H1
x
→ 0 as n→∞.

Thus, using the stability result Proposition 6.3 with u = un and ũ = eit∆un(0), we
can deduce that un has negligible L10

t,x-norm on [0,∞)×R3. This contradicts (9.3).
Finally, suppose that λn → 0 as n→∞. From Proposition 8.3 we have

‖∇vn‖S0(R) ≤ C
(
‖φ‖Ḣ1

x

)
while by construction,

‖un(0)− vn(0)‖H1
x

= ‖wn‖H1
x
→ 0 as n→∞.

Thus, by the stability result Proposition 6.3, we derive a contradiction to (9.3).

Case 2: In this case there exists ε > 0 so that

sup
j

lim sup
n→∞

M(vjn) ≤M0 − ε or sup
j

lim sup
n→∞

E(vjn) ≤ E0 − ε.

Then for each finite J ≤ J∗, we must have M(vjn) ≤M0− ε/2 or E(vjn) ≤ E0− ε/2
for all 1 ≤ j ≤ J and n sufficiently large. Thus, by Proposition 5.7(vi) and the
inductive hypothesis (9.2), we get

‖vjn‖L10
t,x(R×R3) .Dc,ε 1

for all 1 ≤ j ≤ J and n sufficiently large. In fact, by (9.1), (9.7), and the finiteness
of Dc, we have

‖vjn‖L10
t,x(R×R3) + ‖∇vjn‖

L
10
3
t,x(R×R3)

.Dc,ε E(vjn)
1
2 .(9.9)

Combining this with the persistence of regularity result Lemma 6.2, we obtain

‖vjn‖
L

10
3
t,x(R×R3)

.Dc,ε M(vjn)
1
2(9.10)

for all 1 ≤ j ≤ J and n sufficiently large.
Next we define

(9.11) uJn(t) :=

J∑
j=1

vjn(t) + eit∆wJn .

We will prove that uJn are increasingly accurate approximate solutions to (1.1) with
uniform global spacetime bounds and that uJn(0) asymptotically matches the initial
data un(0). Then by the stability result Proposition 6.3, the solutions un must
satisfy uniform global spacetime bounds, which contradicts (9.3).

A key step in the plan described above is to prove that the nonlinear profiles
vjn decouple asymptotically (as n → ∞). Indeed, as (1.1) is a nonlinear equation,
the sum of solutions is no longer a solution; however, if the solutions vjn decou-
ple asymptotically, then we expect that uJn will be an approximate solution for n
large. We will show that the asymptotic decoupling of vjn is a consequence of the
asymptotic orthogonality relation (7.24).
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Lemma 9.2 (Asymptotic decoupling of nonlinear profiles). If j 6= k we have

lim
n→∞

[
‖vjnvkn‖L5

t,x
+ ‖vjn∇vkn‖

L
5
2
t,x

+ ‖∇vjn∇vkn‖
L

5
3
t,x

+ ‖vjnvkn‖
L

5
3
t,x

]
= 0,(9.12)

where all spacetime norms are over R× R3.

Proof. We first prove

(9.13) lim
n→∞

‖vjn∇vkn‖
L

5
2
t,x(R×R3)

= 0;

the first and third terms in (9.12) follow in a similar manner. We will discuss the
fourth summand afterwards.

Observe that for any small δ > 0 there exist φjδ, ψ
k
δ ∈ C∞c (R× R3) such that∥∥∥vjn(t, x)− (λjn)−

1
2φjδ

(
t

(λjn)2
+ tjn,

x−xjn
λjn

)∥∥∥
L10
t,x

≤ δ,∥∥∥∇vkn(t, x)− (λkn)−
3
2ψkδ

(
t

(λkn)2
+ tkn,

x−xkn
λkn

)∥∥∥
L

10
3
t,x

≤ δ,

for all n sufficiently large. When the spatial scale converges to zero, this follows
from Proposition 8.3; in the other case it follows directly from the definition of vjn
and vkn and (9.9). Thus, by Hölder’s inequality together with (9.9),

‖vjn∇vkn‖
L

5
2
t,x

.Dc,ε δ +
∥∥∥(λjn)−

1
2φjδ

(
t

(λjn)2
+ tjn,

x−xjn
λjn

)
(λkn)−

3
2ψkδ

(
t

(λkn)2
+ tkn,

x−xkn
λkn

)∥∥∥
L

5
2
t,x

.

As δ > 0 is arbitrary, to complete the proof of (9.13) it remains to show that

lim
n→∞

∥∥∥(λjn)−
1
2φjδ

(
t

(λjn)2
+ tjn,

x−xjn
λjn

)
(λkn)−

3
2ψkδ

(
t

(λkn)2
+ tkn,

x−xkn
λkn

)∥∥∥
L

5
2
t,x

= 0.(9.14)

If λjn ≡ 1 and λkn ≡ 1, then the asymptotic orthogonality condition (7.24) implies
that the supports of the two functions in (9.14) become disjoint in spacetime for n
large. Thus (9.14) holds in this case.

If λjn → 0 and λkn ≡ 1, then by Hölder’s inequality we estimate∥∥∥(λjn)−
1
2φjδ

(
t

(λjn)2
+ tjn,

x−xjn
λjn

)
ψkδ
(
t+ tkn, x− xkn

)∥∥∥
L

5
2
t,x

. (λjn)
3
2 ‖φjδ‖

L
5
2
t,x

‖ψkδ ‖L∞t,x ,

which converges to zero as n→∞. This proves (9.14) in this case.
If λjn ≡ 1 and λkn → 0, then by Hölder’s inequality we get∥∥∥φjδ(t+ tjn, x− xjn

)
(λkn)−

3
2ψkδ

(
t

(λkn)2
+ tkn,

x−xkn
λkn

)∥∥∥
L

5
2
t,x

. (λkn)
1
2 ‖φjδ‖L∞t,x‖ψ

k
δ ‖
L

5
2
t,x

,

which converges to zero as n→∞, thus proving (9.14) in this case.

It remains to treat the case when λjn → 0 and λkn → 0. If
λjn
λkn

+
λkn
λjn
→ ∞, then

we estimate∥∥∥(λjn)−
1
2φjδ

(
t

(λjn)2
+ tjn,

x−xjn
λjn

)
(λkn)−

3
2ψkδ

(
t

(λkn)2
+ tkn,

x−xkn
λkn

)∥∥∥
L

5
2
t,x

. min
{(

λjn
λkn

) 3
2 ‖φjδ‖

L
5
2
t,x

‖ψkδ ‖L∞t,x ,
(
λkn
λjn

) 1
2 ‖φjδ‖L∞t,x‖ψ

k
δ ‖
L

5
2
t,x

}
→ 0 as n→∞.

If instead
λjn
λkn
→ λ0 ∈ (0,∞), we use a change of variables to write∥∥∥(λjn)−

1
2φjδ

(
t

(λjn)2
+ tjn,

x−xjn
λjn

)
(λkn)−

3
2ψkδ

(
t

(λkn)2
+ tkn,

x−xkn
λkn

)∥∥∥
L

5
2
t,x
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=
(
λjn
λkn

) 3
2
∥∥∥φjδ(t, x)ψkδ((λjnλkn)2(

t− tjn(λjn)2−tkn(λkn)2

(λjn)2

)
,
λjn
λkn

(
x+

xjn−x
k
n

λjn

))∥∥∥
L

5
2
t,x

.

Using the asymptotic orthogonality condition (7.24), we see that either the temporal
or the spatial supports of the functions on the right-hand side above become disjoint
for n large. This proves (9.14) in this case.

We now turn to the fourth limit in (9.12). We want to show that

(9.15) lim
n→∞

‖vjnvkn‖
L

5
3
t,x

= 0.

When λjn ≡ 1 and λkn ≡ 1, this follows in the manner shown above, using (9.10) in
place of (9.9). Suppose now that λjn → 0; the case when λkn → 0 can be treated
similarly. By (9.5), (9.10) and Bernstein,

‖vjn‖
L

10
3
t,x(R×R3)

.Dc,ε ‖vjn(0)‖L2
x
.Dc,ε (λjn)1−θ‖φj‖Ḣ1

x
+ ‖vjn(0)− φjn‖L2

x
→ 0

as n→∞. Combining this with Hölder’s inequality and (9.10) yields (9.15) in this
case. �

The next three lemmas show that uJn obeys the hypotheses of the stability result
Proposition 6.3 for n large enough.

Lemma 9.3 (Asymptotic agreement of the initial data). For any finite J ≤ J∗,
lim
n→∞

‖uJn(0)− un(0)‖H1
x

= 0.

Proof. The result follows immediately from (9.4), (9.5), and (9.11). �

Lemma 9.4 (Uniform global spacetime bounds). We have

sup
J

lim sup
n→∞

[
‖uJn‖L10

t,x(R×R3) + ‖uJn‖
L

10
3
t H

1, 10
3

x (R×R3)

]
.Dc,ε 1.(9.16)

Proof. Fix J ≤ J∗. By Strichartz, Lemma 9.2, (9.9), (5.29), and (9.7), we obtain

‖uJn‖2L10
t,x
.

J∑
j=1

‖vjn‖2L10
t,x

+
∑
j 6=k

‖vjnvkn‖L5
t,x

+ ‖wJn‖2Ḣ1
x

.Dc,ε

J∑
j=1

E(vjn) +
∑
j 6=k

o(1) + E(wJn) .Dc,ε 1 + J2o(1) as n→∞.

Similarly,

‖∇uJn‖2
L

10
3
t,x

.
J∑
j=1

‖∇vjn‖2
L

10
3
t,x

+
∑
j 6=k

‖∇vjn∇vkn‖2
L

5
3
t,x

+ ‖wJn‖2Ḣ1
x

.Dc,ε

J∑
j=1

E(vjn) +
∑
j 6=k

o(1) + E(wJn) .Dc,ε 1 + J2o(1) as n→∞.

Thus,

sup
J

lim sup
n→∞

[
‖uJn‖L10

t,x(R×R3) + ‖∇uJn‖
L

10
3
t,x(R×R3)

]
.Dc,ε 1.

Finally, using (9.10) in place of (9.9), and (9.6) in place of (9.7), and arguing as
above we also obtain

sup
J

lim sup
n→∞

‖uJn‖
L

10
3
t,x(R×R3)

.Dc,ε 1.
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This completes the proof of the lemma. �

Lemma 9.5 (Approximate solution). With F (z) := |z|4z − |z|2z, we have

(9.17) lim
J→J∗

lim sup
n→∞

∥∥∥∇[i∂tuJn + ∆uJn − F (uJn)
]∥∥∥
L

10
7
t,x(R×R3)

= 0.

Proof. By (9.11), we have

i∂tu
J
n + ∆uJn − F (uJn) =

J∑
j=1

F (vjn)− F (uJn)

=

J∑
j=1

F (vjn)− F
( J∑
j=1

vjn

)
+ F

(
uJn − eit∆wJn

)
− F (uJn).(9.18)

By Hölder’s inequality, (9.9), (9.10), and Lemma 9.2, we obtain∥∥∥∇[F( J∑
j=1

vjn

)
−

J∑
j=1

F (vjn)
]∥∥∥
L

10
7
t,x

.J

J∑
j 6=k

[
‖vkn‖3L10

t,x
‖vkn∇vjn‖

L
5
2
t,x

+ ‖vjn‖3L10
t,x
‖vkn∇vjn‖

L
5
2
t,x

+ ‖vkn‖
L

10
3
t,x

‖vkn∇vjn‖
L

5
2
t,x

+ ‖vjn‖
L

10
3
t,x

‖vkn∇vjn‖
L

5
2
t,x

]
.J,Dc,ε o(1) as n→∞.

It thus remains to prove

lim
J→J∗

lim sup
n→∞

∥∥∥∇[F (uJn − eit∆wJn)− F (uJn)
]∥∥∥
L

10
7
t,x(R×R3)

= 0.(9.19)

By the chain rule and Hölder’s inequality, we estimate∥∥∥∇[F (uJn − eit∆wJn)− F (uJn)
]∥∥∥
L

10
7
t,x

. ‖eit∆wJn‖4L10
t,x
‖∇eit∆wJn‖

L
10
3
t,x

+ ‖eit∆wJn‖4L10
t,x
‖∇uJn‖

L
10
3
t,x

+ ‖uJn‖3L10
t,x
‖uJn∇eit∆wJn‖

L
5
2
t,x

+ ‖uJn‖3L10
t,x
‖eit∆wJn‖L10

t,x
‖∇uJn‖

L
10
3
t,x

+ ‖eit∆wJn‖L10
t,x
‖∇eit∆wJn‖

L
10
3
t,x

‖eit∆wJn‖
L

10
3
t,x

+ ‖eit∆wJn‖L10
t,x
‖eit∆wJn‖

L
10
3
t,x

‖∇uJn‖
L

10
3
t,x

+ ‖uJn‖
L

10
3
t,x

‖uJn∇eit∆wJn‖
L

5
2
t,x

+ ‖uJn‖
L

10
3
t,x

‖eit∆wJn‖L10
t,x
‖∇uJn‖

L
10
3
t,x

.

In view of (7.20), the Strichartz inequality together with (9.6) and (9.7), and
Lemma 9.4, to prove (9.19) it suffices to show

(9.20) lim
J→J∗

lim sup
n→∞

‖uJn∇eit∆wJn‖
L

5
2
t,x(R×R3)

= 0.

By the triangle inequality, the Strichartz inequality combined with (9.7), and (7.20),

lim
J→J∗

lim sup
n→∞

‖uJn∇eit∆wJn‖
L

5
2
t,x

≤ lim
J→J∗

lim sup
n→∞

∥∥∥( J∑
j=1

vjn

)
∇eit∆wJn

∥∥∥
L

5
2
t,x

+ lim
J→J∗

lim sup
n→∞

‖eit∆wJn‖L10
t,x
‖∇eit∆wJn‖

L
10
3
t,x

≤ lim
J→J∗

lim sup
n→∞

∥∥∥( J∑
j=1

vjn

)
∇eit∆wJn

∥∥∥
L

5
2
t,x

.
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By (9.9) and Lemma 9.2,∥∥∥ J∑
j=J′

vjn

∥∥∥2

L10
t,x

.
J∑

j=J′

‖vjn‖2L10
t,x

+
∑
j 6=k

‖vjnvkn‖L5
t,x
.

J∑
j=J′

E(vjn) +
∑
j 6=k

o(1) as n→∞.

Thus, by (9.7), for any η > 0 there exists a finite J ′ = J ′(η) such that

lim sup
n→∞

∥∥∥ J∑
j=J′

vjn

∥∥∥
L10
t,x(R×R3)

≤ η

for all J ≤ J∗. Combining this with Hölder, Strichartz, and (9.7), we see that

lim
J→J∗

lim sup
n→∞

∥∥∥( J∑
j=J′

vjn

)
∇eit∆wJn

∥∥∥
L

5
2
t,x(R×R3)

. η.

As η > 0 is arbitrary, to prove (9.20) (and so (9.19)), it remains to show

(9.21) lim
J→J∗

lim
n→∞

‖vjn∇eit∆wJn‖
L

5
2
t,x(R×R3)

= 0 for all 1 ≤ j < J ′.

We will present the details for (9.21) only for those j’s for which λjn → 0 as
n → ∞; the proof for j’s with λjn ≡ 1 is analogous. Fix therefore 1 ≤ j < J ′,
such that λjn → 0 as n → ∞. By Proposition 8.3, for any δ > 0 there exists

φjδ ∈ C∞c (R× R3) with compact support Kj
δ such that∥∥∥vjn − (λjn)−

1
2φjδ

(
t

(λjn)2
+ tjn,

x−xjn
λjn

)∥∥∥
L10
t,x

≤ δ.

Let w̃Jn(t, x) := (λjn)1/2[eit∆wJn ]((λjn)2(t − tjn), λjnx + xjn); by Strichartz, (9.7), and
(5.29) we have

‖∇w̃Jn‖
L

10
3
t,x

= ‖∇eit∆wJn‖
L

10
3
t,x

.Dc,ε 1 and ‖w̃Jn‖L10
t,x

= ‖eit∆wJn‖L10
t,x
.Dc,ε 1.

Thus, by Hölder’s inequality, commuting the dilation through the propagator, and
applying Lemma 1.8,

‖vjn∇eit∆wJn‖
L

5
2
t,x

. δ‖∇eit∆wJn‖
L

10
3
t,x

+
∥∥φjδ∇w̃Jn∥∥

L
5
2
t,x

.Dc,ε δ + C(δ)‖∇w̃Jn‖
1
2

L
10
3
t,x

‖∇w̃Jn‖
1
2

L2
t,x(Kj

δ )

.Dc,ε δ + C(δ, |Kj
δ |)‖e

it∆wJn‖
1
6

L10
t,x
‖∇wJn‖

1
3

L2
x
.

As δ > 0 is arbitrary, (9.21) follows by invoking (7.20). �

Writing Duhamel’s formula for uJn, an application of the Strichartz inequality
combined with Lemmas 9.3, 9.4, and 9.5, leads quickly to

lim sup
n→∞

‖uJn‖L∞t H1
x(R×R3) .Dc,ε 1 for all J sufficiently large.

Thus uJn satisfies the hypotheses of the stability result Proposition 6.3 for all n and
J sufficiently large, which allows us to deduce that

‖un‖L10
t,x(R×R3) .Dc,ε 1 for all n sufficiently large.

This contradicts (9.3), thus showing that Case 2 cannot occur. This completes the
proof of Proposition 9.1. �
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With the Palais–Smale condition in place, we are now ready to show the existence
of a minimal blowup solution.

Theorem 9.6 (Existence of a minimal blowup solution). Suppose that Theorem 1.3
failed. Then there exists 0 < Dc < ∞ and a global solution u to (1.1) satisfying
D(u) = Dc that blows up in both time directions in the sense that

‖u‖L10
t,x([0,∞)×R3) = ‖u‖L10

t,x((−∞,0]×R3) =∞.

Moreover, u is almost periodic in H1
x modulo translations, that is, the orbit {u(t) :

t ∈ R} is precompact in H1
x modulo translations.

Proof. Suppose that Theorem 1.3 fails. As discussed at the beginning of this sec-
tion, this implies the existence of a critical 0 < Dc <∞ such that

L(D) <∞ if D < Dc and L(D) =∞ if D > Dc,

where L(D) is defined as in (1.9). Thus, there exists a sequence of global solutions
{un}n∈N to (1.1) such that D(un)→ Dc and

lim
n→∞

‖un‖L10
t,x(R×R3) =∞.

Let tn ∈ R be the ‘median’ time of the L10
t,x-norm of un so that

‖un‖L10
t,x((−∞,tn]×R3) = ‖un‖L10

t,x([tn,∞)×R3) →∞ as n→∞.

As (1.1) is time-translation invariant, without loss of generality we may assume
that tn ≡ 0. Then

(9.22) lim
n→∞

‖un‖L10
t,x((−∞,0]×R3) = lim

n→∞
‖un‖L10

t,x([0,∞)×R3) =∞.

Invoking the Palais–Smale condition Proposition 9.1 and passing to a subsequence,
we find u0 ∈ H1

x such that un(0) converges to u0 in H1
x modulo translations. Using

the space-translation invariance of (1.1) and modifying un appropriately, we obtain
that un(0)→ u0 in H1

x. In particular, we have D(u0) = Dc.
Let u be the global solution to (1.1) with u(0) = u0. Combining (9.22) and the

stability result Proposition 6.3, we deduce that

‖u‖L10
t,x([0,∞)×R3) = ‖u‖L10

t,x((−∞,0]×R3) =∞.

Finally, we prove that u is almost periodic in H1
x modulo translations. Let

{u(τn)}n∈N be an arbitrary sequence in the orbit {u(t) : t ∈ R}. As the L10
t,x-norm

of u blows up both forward and backward in time and u is locally in L10
t,x, we have

that

‖u‖L10
t,x((−∞,τn]×R3) = ‖u‖L10

t,x([τn,∞)×R3) =∞.

The claim now follows by applying Proposition 9.1 to {u(τn)}.
This completes the proof of the theorem. �

Remark 9.7. A simple consequence of the almost periodicity in H1
x (modulo trans-

lations) of the solution u constructed in Theorem 9.6 together with Gagliardo–
Nirenberg and Sobolev embedding inequalities is the following: there exists x :
R→ R3 so that for all η > 0 there exists C(η) > 0 such that

sup
t∈R

∫
|x−x(t)|>C(η)

|∇u(t, x)|2 + |u(t, x)|6 + |u(t, x)|4 + |u(t, x)|2 dx ≤ η.(9.23)
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10. Impossibility of minimal blowup solutions

In this section, we complete the proof of Theorem 1.3. The argument is similar
to those in [22, 46].

Arguing by contradiction, we saw that failure of Theorem 1.3 implies the ex-
istence of a minimal blowup solution u as in Theorem 9.6. By Proposition 5.7,
D(u) = Dc < ∞ implies that V (u(t)) > 0 for all t ∈ R. We will show that in fact
the virial V (u(t)) is bounded away from zero uniformly for t ∈ R; this will then be
used to derive a contradiction to the fact that the solution u is global in time.

We start by showing that the momentum of a minimal blowup solution must be
zero. This is intuitively clear since a traveling solution must spend energy in order
to travel; however, a minimal blowup solution must use all its energy to drive the
blowup.

Proposition 10.1. Let u be a minimal blowup solution as in Theorem 9.6. Then
the momentum of u must be zero, that is,

P (u) := 2 Im

∫
R3

u(t, x)∇u(t, x) dx = 0.

Proof. For ξ ∈ R3, let ũ be the global solution to (1.1) given by the Galilei boost

ũ(t, x) := eix·ξ−it|ξ|
2

u(t, x− 2ξt).

Note that M(ũ) = M(u) and

E(ũ) = E(u) + 1
2ξ · P (u) + 1

2 |ξ|
2M(u).

If the momentum P (u), which is a conserved quantity, is not zero, then taking

ξ := − P (u)
2M(u) we obtain

E(ũ) = E(u)− |P (u)|2

8M(u)
< E(u).

Thus, by Proposition 5.7, we must have that D(ũ) < D(u) = Dc. As

‖ũ‖L10
t,x([0,∞)×R3) =‖u‖L10

t,x([0,∞)×R3) =∞=‖u‖L10
t,x((−∞,0]×R3) =‖ũ‖L10

t,x((−∞,0]×R3),

this contradicts the minimality of u as a blowup solution. �

Relying on Proposition 10.1, we next show that the spatial center function x(t)
from (9.23) is o(|t|) as t→ ±∞.

Proposition 10.2 (Control of x(t)). Let u be a minimal blowup solution as in
Theorem 9.6. Then the spatial center function x(t) from (9.23) satisfies

(10.1) |x(t)| = o(|t|) as t→ ±∞.
Proof. By the space-translation invariance of (1.1), we may assume that x(0) = 0.

We will prove (10.1) for t → ∞; the argument in the negative time direction is
similar. We argue by contradiction. Suppose that there exist δ > 0 and a sequence
tn →∞ such that

|x(tn)| > δtn for all n ≥ 1.

We note that standard arguments show that x(t) is bounded on compact sets;
indeed, the local constancy property (cf. (5.36) in [48, Lemma 5.18]) shows that
|x(t)| = O(t) for t large. Consequently, for n ∈ N there exists Tn ∈ [0, tn] such that

(10.2) sup
t∈[0,tn]

|x(t)| ≤ |x(Tn)|+ 1.
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Now let η be a small parameter to be chosen later. By (9.23),

(10.3) sup
t∈R

∫
|x−x(t)|>C(η)

[
|∇u(t, x)|2 + |u(t, x)|2

]
dx ≤ η.

For n ∈ N, we define

(10.4) Rn := C(η) + sup
t∈[0,Tn]

|x(t)|.

Note that by construction, C(η) ≤ Rn ≤ C(η) + |x(Tn)|+ 1.
Next, with φ ∈ C∞c (R) such that

φ(r) =

{
1, if r ≤ 1,

0, if r ≥ 2,
(10.5)

we define a truncated center of mass

XR(t) :=

∫
R3

xφ
( |x|
R

)
|u(t, x)|2 dx for R > 0.

By (10.3) and (10.4),

|XRn(0)| ≤
∣∣∣ ∫
|x|≤C(η)

xφ
(
x
Rn

)
|u(0, x)|2 dx

∣∣∣+
∣∣∣ ∫
|x|≥C(η)

xφ
(
x
Rn

)
|u(0, x)|2 dx

∣∣∣
≤ C(η)M(u) + 2ηRn ≤ C(η)

(
M(u) + 2η

)
+ 2η|x(Tn)|+ 2η.(10.6)

On the other hand, by the triangle inequality, (10.3), and (10.4), we have

|XRn(Tn)| ≥ |x(Tn)|M(u)− |x(Tn)|
∣∣∣ ∫

R3

(
1− φ

(
x
Rn

))
|u(Tn, x)|2 dx

∣∣∣
−
∣∣∣ ∫
|x−x(Tn)|≤C(η)

(
x− x(Tn)

)
φ
(
x
Rn

)
|u(Tn, x)|2 dx

∣∣∣
−
∣∣∣ ∫
|x−x(Tn)|≥C(η)

(
x− x(Tn)

)
φ
(
x
Rn

)
|u(Tn, x)|2 dx

∣∣∣
≥
(
M(u)− η

)
|x(Tn)| − C(η)M(u)− η

(
2Rn + |x(Tn)|

)
≥
(
M(u)− 4η

)
|x(Tn)| − C(η)

(
M(u) + 2η

)
− 2η.(10.7)

Hence taking η ≤ 1
8M(u), (10.6) and (10.7) yield that

(10.8) |XRn(Tn)−XRn(0)| &M(u) |x(Tn)| − C̃(η).

On the other hand, a direct computation using Proposition 10.1 gives

∂tXR(t) = 2 Im

∫
R3

[
φ
( |x|
R

)
− 1
]
∇u(t, x)u(t, x) dx

+ 2 Im

∫
R3

x
|x|Rφ

′( x
R

)(
x · ∇u

)
(t, x)u(t, x) dx.

Therefore, by the Cauchy–Schwarz inequality, (10.3), and (10.4), we obtain

|∂tXRn(t)| ≤ 6η for all t ≥ 0

and so, by the fundamental theorem of calculus,

(10.9) |XRn(Tn)−XRn(0)| ≤ 6ηTn.

Combining (10.8) and (10.9) with (10.2), we obtain

|x(tn)| − C̃(η) .M(u) 6ηtn.
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Recalling that |x(tn)| > δtn and taking η even smaller if necessary (depending on
M(u) and δ), we derive a contradiction by letting n→∞. �

Our next result is a uniform in time lower bound for V (u(t)), whenever u is a
minimal blowup solution as in Theorem 9.6.

Proposition 10.3. Let u be a minimal blowup solution as in Theorem 9.6. Then,
there exits δ > 0 such that

V (u(t)) =

∫
R3

|∇u(t, x)|2 − 3
4 |u(t, x)|4 + |u(t, x)|6 dx ≥ δ for all t ∈ R.

Proof. Suppose that no such δ > 0 existed. Then there exists a sequence {tn}n∈N ⊂
R such that V (u(tn)) → 0. By almost periodicity, there exists v0 ∈ H1

x such
that u(tn) converges to v0 in H1

x modulo translations. Combining this with the
continuity of the functionals D and V , we obtain that

D(v0) = D(u) = Dc ∈ (0,∞) and V (v0) = lim
n→∞

V (u(tn)) = 0,

which contradicts Proposition 5.7(iv). �

We now have all the necessary ingredients to complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Arguing by contradiction, we assume that the conclusion of
Theorem 1.3 does not hold. Then, by Theorem 9.6, we can find an almost periodic
minimal blowup solution u. In the following, we will show that such a solution
cannot exist.

With φ as in (10.5) andR ≥ 1, we define a truncation of the weighted momentum:

AR(t) = 2 Im

∫
R3

φ
( |x|
R

)
u(t, x)x · ∇u(t, x) dx.

By the Cauchy–Schwarz inequality and Proposition 5.7, we obtain

(10.10) |AR(t)| ≤ 4R‖u‖L∞t L2
x(R×R3)‖∇u‖L∞t L2

x(R×R3) .Dc R.

On the other hand, a straightforward computation yields

∂tAR(t) = −
∫
R3

[
8
|x|Rφ

′( |x|
R

)
+ 7

R2φ
′′( |x|

R

)
+ |x|

R3φ
′′′( |x|

R

)]
|u(t, x)|2 dx

+ 4

∫
R3

φ
( |x|
R

)
|∇u(t, x)|2 dx+ 4

∫
R3

|x·∇u(t,x)|2
|x|R φ′

( |x|
R

)
dx

+ 4

∫
R3

[
φ
( |x|
R

)
+ |x|

3Rφ
′( |x|
R

)]
|u(t, x)|6 dx

− 4

∫
R3

[
3
4φ
( |x|
R

)
+ |x|

4Rφ
′( |x|
R

)]
|u(t, x)|4 dx.

Therefore,

∂tAR(t) ≥ 4

∫
R3

|∇u(t, x)|2 − 3
4 |u(t, x)|4 + |u(t, x)|6 dx

+O
(

1
R2

∫
R≤|x|≤2R

|u(t, x)|2 dx
)

+O
(∫
|x|≥R

[
|∇u|2 + |u|6 + |u|4

]
(t, x) dx

)
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= 4V (u(t)) +O
(∫
|x|≥R

[
|∇u|2 + |u|6 + |u|4 + |u|2

]
(t, x) dx

)
.

To continue, we note that by Proposition 10.3 there exists δ > 0 such that

(10.11) V (u(t)) ≥ δ for all t ∈ R.

By (9.23), for η > 0 to be chosen later there exists C(η) > 0 such that

sup
t∈R

∫
|x−x(t)|>C(η)

|∇u(t, x)|2 + |u(t, x)|6 + |u(t, x)|4 + |u(t, x)|2 dx ≤ η.(10.12)

Moreover, by Proposition 10.2 we have that |x(t)| = o(t) as t → ∞ and so there
exists T0 = T0(η) ∈ R such that

(10.13) |x(t)| ≤ ηt for all t ≥ T0.

Now given T1 > T0, let

(10.14) R := C(η) + sup
t∈[T0,T1]

|x(t)|.

Note that {x : |x| ≥ R} ⊂ {x : |x− x(t)| ≥ C(η)} for t ∈ [T0, T1]. Therefore, using
(10.11) and (10.12) and choosing η sufficiently small depending on δ, we obtain

∂tAR(t) ≥ δ uniformly for t ∈ [T0, T1].

By the fundamental theorem of calculus combined with (10.10), (10.13), and (10.14),
we get

(10.15) δ(T1 − T0) ≤ AR(T1)−AR(T0) .Dc R .Dc C(η) + ηT1.

Choosing η = η
(
δ,Dc

)
sufficiently small and letting T1 → ∞, we derive a contra-

diction.
This completes the proof of Theorem 1.3. �
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[49] Rowan Killip, Monica Vişan, and Xiaoyi Zhang, Quintic NLS in the exterior of a strictly
convex obstacle. Amer. J. Math. 138 (2016), no. 5, 1193–1346.

[50] H. Koch, D. Tataru, and M. Vişan, Dispersive equations and nonlinear waves. Generalized

Korteweg–de Vries, nonlinear Schrödinger, wave and Schrödinger maps. Oberwolfach Sem-
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