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Abstract

Designing cryptographic protocols for use in the real world is a challenging

task, requiring a fine balance between practicality and security. Ad hoc con-

structions are often catastrophically broken, and even well-studied protocols

regularly do not stand up to the test of time. We look at some of the ways

cryptographic protocols are designed and analysed, applying these techniques

to a variety of real-word scenarios.

Our first scenario considers password storage, introducing a new primitive

called a verifiable, partially oblivious PRF. We analyse the suitability of this

primitive to the application in question, provide formal security proofs, and

evaluate an example instantiation.

The second scenario introduces a new security model to better understand

the domain of key rotation for authenticated encryption. This is an area highly

relevant to modern practices of storing data encrypted in the cloud. By intro-

ducing this new security model, we show that existing solutions fall short of

achieving any meaningful security properties, and suggest some simple fixes.

Finally, we implement and prove a new construction which meets our strongest

definition, and analyse its practicality.

Finally, to contrast with the computational approach in previous chapters,

we additionally consider symbolic approaches to security analysis, using the

formal verification tool Tamarin to prove security properties of the latest draft

of the TLS 1.3 specification. Our results show formal method complement other

approaches nicely, and provide a new perspective.
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Chapter 1

Introduction

This chapter gives an overview of the thesis. We provide the motivation for our

research and describe the contributions of this thesis. In this chapter, we also present

the overall structure of the thesis.

1.1 Motivation

This thesis is motivated by taking the exciting research produced in recent years by

the cryptographic community, and applying it to real-world applications. However,

the journey from novel cryptographic invention to a fully-specified, production-ready

implementation is a long one. Great care must be taken at each step along the path

to prove the resultant scheme meets the desired properties.

Furthermore, not all paths start from the same place. In the design of Pythia, a

modern PRF service, we start with a novel cryptographic primitive, resulting in a

simple two-party protocol and investigate applications in which this protocol turns

out to be of great use.

On the other hand, sometimes the starting point is the application itself. Of par-

ticular importance is when cryptography is already being used to fulfil a certain

requirement with neither a careful study of the assumed security properties nor

their implications.

We identified key rotation for authenticated encryption as one such area. The current

methods to achieve rotation are simple, ad-hoc constructions with no formal backing.

We rectify this by taking a thorough theoretical approach to security, and propose

a model in which to properly analyse these constructions. This approach identified
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1.1 Motivation

limitations of the existing approaches used in practice, and we suggested some simple

tweaks to achieve higher levels of security.

Finally, in contrast with the previous examples which are novel and previously unex-

plored, we studied TLS, one of the most widely used cryptographic protocols. More

specifically, we analysed the proposed specification for the latest version, TLS 1.3.

Our methodology focused on the use of symbolic methods to analyse protocol spec-

ifications, highlighting a number of important considerations and ultimately influ-

encing the final specification.

We expand on each of these examples in what follows.

1.1.1 Password Storage

Conventional cryptographic services such as hardware-security modules (HSMs) and

software-based key-management systems offer the ability to apply a pseudorandom

function (PRF) such as HMAC to inputs of a client’s choosing. These services are

used, for example, to harden stored password hashes against offline brute-force at-

tacks, and are used by Facebook for this purpose [149].

We propose a modern PRF service called Pythia designed to provide all of the

benefits of a local pseudorandom function, while offering a significantly more flexible,

and practical deployment scenario.

The keystone of Pythia is a new cryptographic primitive called a verifiable partially-

oblivious PRF that reveals a portion of an input message to the service but hides the

rest. We give a construction that additionally supports efficient bulk rotation of pre-

viously obtained PRF values to values under new keys. Performance measurements

show that our construction, which relies on bilinear pairings and zero-knowledge

proofs, is highly practical. We also give accompanying formal definitions and proofs

of security.

We implement Pythia as a multi-tenant, scalable PRF service that can scale up

to hundreds of millions of distinct client applications on commodity systems. In

our prototype implementation, query latencies are 15 ms in local-area settings and

throughput is within a factor of two of a standard HTTPS server. We further report

on implementations of two applications using Pythia, showing how to bring its

12



1.1 Motivation

security benefits to a new enterprise password storage system and a new brainwallet

system for Bitcoin.

1.1.2 Key Rotation for Authenticated Encryption

A common requirement in practice is to periodically rotate the keys used to encrypt

stored data. Systems used by Amazon and Google do so using a hybrid encryption

technique which is eminently practical but has questionable security in the face of

key compromises and does not provide “full” key rotation. Meanwhile, symmetric

updatable encryption schemes (introduced by Boneh et al. [60]) support full key

rotation without performing decryption: ciphertexts created under one key can be

rotated to ciphertexts created under a different key with the help of a re-encryption

token. By design, the tokens do not leak information about keys or plaintexts and

so can be given to storage providers without compromising security. But the prior

work of Boneh et al. addresses relatively weak confidentiality goals and does not

consider integrity at all. Moreover, as we show, a subtle issue with their concrete

scheme obviates a security proof even for confidentiality against passive attacks.

We present a systematic study of what we call updatable Authenticated Encryption.

We provide a set of security notions that strengthen those in prior work. These no-

tions enable us to tease out real-world security requirements of different strengths

and build schemes that satisfy them efficiently. We show that the hybrid approach

currently used in industry achieves relatively weak forms of confidentiality and in-

tegrity, but can be modified at low cost to meet our stronger confidentiality and

integrity goals. This leads to a practical scheme that has negligible overhead beyond

conventional authenticated encryption (AE). We then introduce re-encryption indis-

tinguishability, a security notion that formally captures the idea of fully refreshing

keys upon rotation. We show how to repair the scheme of Boneh et al., attain-

ing our stronger confidentiality notion. We also show how to extend the scheme to

provide integrity, and we prove that it meets our re-encryption indistinguishability

notion. Finally, we discuss how to instantiate our scheme efficiently using off-the-

shelf cryptographic components (authenticated encryption, hashing, elliptic curves).

We report on the performance of a prototype implementation, showing that fully

secure key rotations can be performed at a throughput of approximately 139 kB/s.

13



1.1 Motivation

Although our work on updatable AE may give the impression of a natural process

to define a security model for key rotation, in reality the model was the result of a

lengthy process, iterating between strong security definitions, and practical concerns.

In the process, we ruled out many constructions which were flawed in subtle ways,

and established a common set of techniques for achieving security. It is certain that

without this rigorous process to define security as tightly and securely as possible,

we would not have arrived at the final construction.

1.1.3 Transport Layer Security (TLS)

The TLS protocol is intended to enable secure end-to-end communication over inse-

cure networks, including the Internet. Unfortunately, this goal has been thwarted a

number of times throughout the protocol’s tumultuous lifetime, resulting in the need

for a new version of the protocol, namely TLS 1.3. Over the past three years, in an

unprecedented joint design effort with the academic community, the TLS Working

Group of the IETF has been working steadily to enhance the security of TLS.

We contribute to this effort by constructing the most comprehensive, faithful, and

modular symbolic model of the TLS 1.3 release candidate to date, and use the

Tamarin prover to verify the claimed TLS 1.3 security requirements, as laid out in

revision 21 of the specification. In particular, our model covers all handshake modes

of TLS 1.3.

Our analysis reveals a previously unreported unexpected behaviour, which we expect

will inhibit strong authentication guarantees in some implementations of the proto-

col. In contrast to previous models, we provide a novel way of making the relation

between the TLS specification and our model explicit: we provide a fully annotated

version of the specification that clarifies what protocol elements we modelled, and

precisely how we modelled these elements. We anticipate this model artefact to be

of great benefit to the academic community and the TLS Working Group alike.

We also provide details of our prior work to model revision 10 of the specification.

At the time, we further extended our model to incorporate the desired delayed client

authentication mechanism, and uncovered a potential attack in which an adversary

is able to successfully impersonate a client during a PSK-resumption handshake.

14



1.2 Thesis Structure

In the context of this thesis, this work showcases symbolic modelling as an alternate

approach to the analysis of protocols. Our model of TLS 1.3 is highly sophisticated,

modelling many different components and, most importantly, the interaction be-

tween these components in a single framework. This comprehensive approach aims

to unearth any awkward flaws which arise from incompatible assumptions across

diverse parts of the protocol. For example, the aforementioned attack resulted from

a sequence of events including unilateral authentication, session resumption, and

bilateral authentication.

1.2 Thesis Structure

Chapter 2 includes a brief background on some important concepts and definitions

in the areas of both computational and symbolic analysis. These are not designed

to be comprehensive introductions, but rather serve as a solid foundation for the

rest of the thesis. In particular, this chapter will introduce many of the customs and

conventions used in the rest of the thesis.

Chapter 3 discusses the Pythia PRF service. We start with the creation of a new

cryptographic primitive – a verifiable, partially-oblivious PRF – which serves as the

core primitive of Pythia, and define a new model to capture the desired security

properties that it should possess. We detail a concrete instantiation of Pythia which

satisfies these security notions and is practically applicable. Finally, we analyse the

applicability of Pythia to two real-world use cases: password hardening and brain-

wallets.

Chapter 4 covers the area of key rotation for authenticated encryption. We start

with an exposition of the problem itself, and the unsuitability of current approaches

to provide meaningful security guarantees. We define a new set of security properties

and provide constructions achieving these goals. Finally, we analyse our implemen-

tations of these constructions.

In contrast with the previous chapters, in Chapter 5 we apply symbolic analysis

techniques. The object of our analysis is the TLS 1.3 protocol specification. and we

present our early results on revision 10 as well as the latest work on revision 21 –

suggested to be close to the final specification.
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1.3 Associated Publications

In the course of my PhD, I have been fortunate to work on some diverse projects,

and with many talented collaborators. In the following, I will expand on my role

in each of these pieces of work, but wish to emphasise that all work was a fully

collaborative effort, and could not have been possible without the contributions of

all co-authors.

• Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, Thomas Ris-

tenpart, and Cornell Tech. “The Pythia PRF service”. In: Proceedings of the

24th USENIX Conference on Security Symposium. USENIX Association. 2015,

pp. 547–562.

I became involved on this project after discussing the application of key- homo-

morphic PRFs to password hardening with Thomas Ristenpart. Coincidentally,

his team had been working on precisely this area (a PRF-based password hard-

ening service), and the addition of key rotation offered great benefits. There-

fore, I was invited to join the work, and was tasked with proving the security

of our scheme, as well as helping to expand on the applications.

• Adam Everspaugh, Kenneth G. Paterson, Thomas Ristenpart, and Samuel

Scott. “Key Rotation for Authenticated Encryption”. In: Advances in Cryp-

tology – CRYPTO 2017, Part III. Ed. by Jonathan Katz and Hovav Shacham.

Vol. 10403. Lecture Notes in Computer Science. Santa Barbara, CA, USA:

Springer, Heidelberg, Germany, Aug. 2017, pp. 98–129.

This work was the result of a lengthy project to determine a suitable formula-

tion of updatable encryption. The main theoretical aspects of the work were

due to frequent discussions between Kenny Paterson, Thomas Ristenpart, and

I. Adam Everspaugh was later invited to join the work, primarily to help with

the practical implementations together with myself, but was also involved in

finalising some of the theoretical aspects.

• Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. “Auto-

mated Analysis and Verification of TLS 1.3: 0-RTT, Resumption and Delayed

Authentication”. In: 2016 IEEE Symposium on Security and Privacy. San Jose,

CA, USA: IEEE Computer Society Press, May 2016, pp. 470–485
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Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van

der Merwe. “A Comprehensive Symbolic Analysis of TLS 1.3”. In: Proceed-

ings of ACM CCS 2017: 24th Conference on Computer and Communications

Security. 2017.

These two papers were the result of a long and extremely fruitful project,

initially started when Thyla van der Merwe and I were employed at Mozilla

as interns and tasked by Eric Rescorla to help analyse the security of the TLS

1.3 specification.

A large portion of the modelling effort was undertaken by Thyla and I while

at Mozilla, which I continued after the conclusion of our 3-month internships.

We were supported by Cas Cremers and Marko Horvat in initially learning

the Tamarin tool, and with frequent discussions on aspects of the theory and

modelling.

The major rewrite of the model for our second paper was largely performed

by myself, supported by my co-authors, and we additionally invited Jonathan

Hoyland to help with this effort. As part of this rewrite, I also produced the

side-by-side documentation, which has been well-received as a transparency

tool.

Additionally, the following work was conducted in the course of this PhD, but is not

included in this thesis:

• Simon R. Blackburn and Sam Scott. “The discrete logarithm problem for expo-

nents of bounded height”. In: LMS Journal of Computation and Mathematics

17 (Special Issue A Jan. 2014), pp. 148–156. issn: 1461-1570.

• Martin R Albrecht, Rachel Player, and Sam Scott. “On the concrete hardness

of learning with errors”. In: Journal of Mathematical Cryptology 9.3 (2015),

pp. 169–203.
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In this chapter, we introduce some of the basic definitions, notation and concepts

used throughout the thesis.

2.1 Notation

We express constructions, protocols, and security games in pseudocode. The games

themselves are written as procedures, which can be thought of as being run by the

challenger. The adversary A is typically given a set of oracles, written A(O1,O2,... ). In

keeping with the pseudocode approach, we sometimes will refer to array lookups of

the form A[i], and use object notation P.foo to represent the variable or procedure

foo owned by P .

In the procedures, we write x← 0 for variable assignment and x←$S for sampling

x from some set S (uniformly unless a distribution is specified). The same notation

y ← f(x) and y←$ f(x) are respectively used to represent that y is returned by the

function f(x) deterministically, or from the randomised function f(x) with some

implicit source of randomness.

We write x = y for the logical check “is x is equal to y”.

The symbol ⊥ is used to represent a generic failure within pseudocode.
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2.2 Computational Analysis

In this section we provide examples of the computational approach to cryptographic

analysis, also commonly referred to as provable security.

This is a broad topic, and here we primarily provide examples which are relevant

for later chapters.

Many cryptographic definitions and security models fit within one of a few common

paradigms. The benefit of re-using common paradigms is similar to that of re-using

common notation: people already familiar with the field are able to quickly grasp

new concepts.

We give a few simple definitions here as an example of the typical syntax and struc-

ture of definitions used throughout this thesis. For a more detailed introduction,

we emphasise that a reader should consult an introductory text such as Katz and

Lindell [119].

2.2.1 Concrete Security

In this thesis, we try to follow the approach of Bellare and Rogaway to provable

security, that of practice-oriented provable-security as discussed by Bellare in an

invited talk and accompanying article [27], and by Rogaway in [169].

One aspect of this is concrete security, which aims to provably quantify the security

of a scheme. This is typically achieved through security reductions, which say that

the strength of a scheme is related to the strength of its components; the reduction

may additionally be constructive, in which case breaking the target scheme produces

a concrete adversary attacking an underlying primitive. A distinguishing feature of

this approach is that the theorem statement gives a lower bound on the amount of

time an attacker would take to break a particular instantiation of a scheme.

The alternative approach is considering asymptotic security, in which schemes should

be secure if a polynomial-time adversary cannot break it. Theorem statements are

quantified over families of schemes, with some security parameter. The implication

being that one can simply increase the security parameter to increase the difficulty
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of breaking scheme. The concrete approach is more suitable for practice-oriented

work, and hence this thesis.

In this thesis, we strongly favour game-based definitions. In such definitions, a certain

security property is encapsulated by setting up an experiment in which an adversary

must fulfil a certain condition in order to “win”.

For example, the classical notion of “left-or-right” encryption, also known as IND-

CPA (indistinguishability of encryption against chosen-plaintext attacks), which we

define in the following section, can be formulated by defining a game in which the

adversary needs to guess a hidden bit b. Here the “win” condition is whether or not

the adversary guesses b correctly.

We define the advantage to be the probability that an adversary wins in a partic-

ular security game. The advantage is parametrised by the specific game, the target

scheme, and frequently, the resources of the attack. The resources includes quantities

such as the number of queries made, the computation time, or the total length of

messages sent.

We informally use the term security level of a scheme to refer to the upper bound

over all advantage terms, parametrised by the required resources.

A security reduction is a relation between two advantage terms. We commonly use

reductions to produce bounds on a class of adversaries in relation to another ad-

versary. In particular, a reduction can be used to show that the security level of a

certain scheme is purely dependent on the security of a certain primitive.

Two security games are said to be equivalent if there exists a security reduction

showing equality between adversaries of the two games for any given scheme.

2.2.2 Symmetric Encryption

We do not cover all the details of symmetric encryption, nor intend this to be a com-

prehensive introduction, but present these definitions as a guide to the definitional

syntax used throughout. A thorough introduction to symmetric encryption can be

found in the lecture notes of Bellare [26].

20



2.2 Computational Analysis

We start with a basic definition of a symmetric encryption scheme.

Definition 1 (Symmetric encryption scheme). A symmetric encryption scheme Π =

(K, E ,D) is a tuple of algorithms with the following properties:

• K() → k. Outputs a secret key k. In many cases k is sampled uniformly at

random from a keyspace, and we write k←$K for convenience.

• E(k,m) → C. On input a secret key k and message m ∈ {0, 1}∗, outputs a

ciphertext C ∈ {0, 1}∗∪{⊥}. We sometimes write C←$ Ek(m) for convenience.

• Dec(k,C)→ m. On input a secret key k and ciphertext C ∈ {0, 1}∗ outputs a

message m ∈ {0, 1}∗ ∪ {⊥}. We sometimes write m←$Dk(C) for convenience.

Recall that ⊥ is the generic error symbol, representing either an encryption or de-

cryption failure, in which case no other information is returned.

A symmetric encryption scheme should have the correctness property, which means

that for all keys k←$K, all messages m, and any ciphertext C←$ Ek(m), it should

be the case that Dk(C) = m whenever C 6=⊥.

Confidentiality

The IND-CPA security game, which we introduce in the following, is one of the

fundamental security definitions in cryptography. Although having a simple formu-

lation, it captures a strong definition of confidentiality for symmetric encryption.

The general idea is that the adversary provides two messages (of the same length)

for encryption, one of which is subsequently chosen and encrypted by an oracle. The

adversary is tasked with determining which message was encrypted.

On first appearance, it is not clear that this is a “good” definition of confidentiality.

It does not appear to say anything about the capability of the adversary to learn

anything about the plaintext, given an encrypted message. This property is more

directly captured by a notion called semantic security. However, it can be shown

that the IND-CPA game is equivalent to semantic security, the intuition being that

if the adversary can learn anything about which message was encrypted, then they
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can use this advantage to distinguish ciphertexts in the IND-CPA game. For more

details on semantic security and a formal proof of the relation, we refer to [26].

This scenario hints towards the power of provable security. We have a strong defini-

tion of security – semantic security. On the other hand, we have another definition

with a simpler formulation. By showing their equivalence, we can use the simple

formulation, safe in the knowledge that proving one implies the other.

In the following, we give a formal definition of the IND-CPA game, and corresponding

notion of security.

Definition 2 (IND-CPA Game). Let Π = (K, E ,D) be a symmetric encryption

scheme. In the IND-CPA game, a bit b is sampled from {0, 1}, and a random key

k←$K is generated. The adversary A is given access to an encryption oracle Enc,

which returns on input (m0,m1) the encryption of the message mb under key k. The

game outputs true if the adversary at the end of the game correctly returns the bit

b′ = b.

The game is more formally described in Figure 2.1

The advantage Advind-cpa
Π for an adversary A in the IND-CPA game attacking Π is

the probability that the adversary correctly guesses the bit b:

Advind-cpa
Π (A) = 2 · Pr[IND-CPA⇒ true]− 1.

In the definition of the IND-CPA game we assume the adversary only queries Enc

for messages (m0,m1) of (pairwise) equal length.

Note that the scaling applied to the success probability is a common trick to nor-

malise the advantage to a value between 0 and 1, representing respectively that

the adversary has either no chance of winning better than guessing, or that they

correctly return the bit b with certainty.

For a scheme to be secure in the sense of IND-CPA, we require that for all adversaries

A, the advantage Advind-cpa
Π (A) is sufficiently small as to be practically infeasible.

The advantage of the adversary is often proportional to the number of queries made,

or the length of those queries (whether measured in bits or blocks). In this case,
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IND-CPA

k←$K
b←$ {0, 1}
b′←$AEnc()

return (b′ = b)

Enc(m0,m1)

return E(k,mb)

INT-CTXT

k←$K
win← false

S ← ∅
A(Enc,Dec)()

return win

Enc(m)

C ←$ E(k,m)

S ← S ∪ C
return C

Dec(C)

m← D(k,C)

if m 6=⊥ ∧C 6∈ S then

win← true

return m

Figure 2.1: Left: The IND-CPA game. Right: The INT-CTXT game.
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we may also parametrise the advantage over these terms. For example, we define

Advind-cpa
Π,q (A) to be the advantage of an adversary A making at most q queries to

the Enc oracle.

Suppose, for example, we only consider adversaries A making at most q queries,

where each query is precisely one block, and suppose we show that for all such ad-

versaries Advind-cpa
Π,q (A) ≤ q2

2n , where n is the key-length. If n is 64, then an adversary

would need to make at least 232 queries to achieve distinguishing advantage 1. In

many scenarios, this would be insufficiently secure. For a simple encryption scheme,

this might represent 232 × 64b = 32GiB of encryptions. This is certainly within the

realms of a realistic scenario.

On the other hand, if the advantage term is q
2n and n is 128, then even 264 queries

results in a distinguishing advantage of just 1
264

. This is almost certainly secure for

most realistic scenarios.

Hence we do not consider IND-CPA security to be a fixed, absolute notion, but

rather a quantitative term. Instead, we produce results which measure the security

a scheme achieves under different threat models, which helps to inform protocol

designers about precisely how secure a scheme is.

Integrity

Another important definition for symmetric encryption schemes is the notion of

integrity. For example, INT-CTXT (integrity of ciphertexts) requires that the ad-

versary produce a valid ciphertext distinct from any previously seen, when given

access to encryption and decryption oracles.

Definition 3 (INT-CTXT Game). Let Π = (K, E ,D) be an encryption scheme. In

the INT-CTXT game, an adversary A is given access to oracles Enc, Dec, to which

it can make encryption and decryption queries respectively.

The INT-CTXT game outputs true if the adversary at some point during the game

queries the Dec oracle with a ciphertext C, such that C was not previously output

by a query to Enc, and C is a valid ciphertext, i.e., D(k,C) 6=⊥.

The game and associated oracles are depicted in Figure 2.1.
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The advantage Advint-ctxt
Π for an adversary A in the INT-CTXT game attacking Π

is the probability that the INT-CTXT game outputs true

Advint-ctxt
Π (A) = Pr[INT-CTXT⇒ true] .

A scheme Π is secure in the sense of INT-CTXT if for any adversaryA, the advantage

Advint-ctxt
Π (A) is “small”. As before, we define Advint-ctxt

Π,q (A) to be the advantage of

an adversary making at most q queries to the Enc and Dec oracles.

Authenticated Encryption

Finally, to complete this short section on security definitions for symmetric encryp-

tion, we combine the previous two into a single all-in-one definition - the authenti-

cated encryption game due to [171, 167]:

Definition 4 (Authenticated Encryption Game). Let Π = (K, E ,D) be a symmetric

encryption scheme.

We define the oracles used in the AE-ROR game as follows:

• Enc: takes as input a bit string m and produces Ek(m) when b = 0, and

produces a random string of the same length otherwise.

• Dec: takes as input a bit string C and produces Dk(C) when b = 0, and returns

⊥ otherwise.

In the AE-ROR game, the hidden values b ∈ {0, 1} and k←$K are sampled uniformly

at random at the start of the game. The adversary A is given access to the Enc and

Dec oracles and must output a bit b′. The game outputs true when b = b′. We further

require that the adversary does not submit outputs from the Enc oracle to the Dec

oracle.

We define the advantage of A in the AE-ROR game for π to be:

Advae
Π (A) = 2 · Pr

[
AE-RORAπ ⇒ true

]
− 1.
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Then the security of Π in the AE-ROR is the upper bound of Advae
Π (A) over all

adversaries A.

As usual, when quantifying the advantage over, for example, number of queries, we

define Advae
Π,q(A) to be the advantage of an adversary A making at most q queries

to either the Enc or Dec oracles.

In the above AE-ROR game, there are two small modifications from the IND-CPA

and INT-CTXT games. First, instead of the bit b determining whether the encryp-

tion is m0 or m1 (left-or-right), we have that b determines whether a true encryption

E(k,m) is returned or a randomly generated string (real-or-random). It can be shown

that the real-or-random formulation (called IND$-CPA) is equivalent to IND-CPA,

in that the security is within a constant factor of two [28], when Π is a length-regular

scheme.

Additionally, instead of requiring that the adversary needs to submit a valid, distinct

ciphertext to the Dec oracle, when b = 1 we replace Dec with an oracle which simply

returns ⊥ and restrict the adversary from never querying the oracle with a previously

seen ciphertext. The probability that the adversary distinguishes the two cases is

precisely equal to the probability of winning the INT-CTXT game.

Hence it is trivial to show that AE-ROR security implies both IND-CPA and INT-

CTXT security.

Note that although this is a convenient definition to use for authenticated encryp-

tion, current use of authenticated encryption (with associated data) takes additional

inputs in the form of a nonce and header data. In practice, randomised schemes are

constructed by using nonces, and thus this formulation helps cover nonce-misuse (i.e.

repeated nonces) which is not necessarily covered by abstracting away this concern

and treating Π as a randomised scheme. More details can be found in the original

work by Rogaway and Shrimpton [170].

Furthermore, we omit details on any recent developments in the study of authenti-

cated encryption, including, for example, tidiness [151] and length-regularity [24].
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2.2.3 Pseudorandom Functions

One of the most fundamental primitives in use in cryptography is the pseudorandom

function (PRF). In this thesis, we frequently make use of PRFs and variants thereof

as a building block for constructing larger systems and protocols.

Definition 5 (Pseudorandom Function). Let F be a function F : K × X → Y,

where we denote the restriction of F to a single k ∈ K by Fk : X → Y.

We say that F is a pseudorandom function if k, chosen uniformly at random, Fk

is indistinguishable from a function f chosen uniformly at random from the set of

functions f : X → Y.

Concretely, define the PRF-ROR game in which an adversary has access to a real-

or-random PRF oracle RoR. When the hidden bit b = 0, the oracle returns Fk(x),

and when b = 1, the oracle returns f(x), where k←$K and f ←$ {f : X → Y} are

generated uniformly at random at the start of the game.

The adversary wins the PRF-ROR game if at the end of the game they return the

correct bit b′ = b.

We define the advantage of an adversary A, making at most q queries, in attacking

the pseudorandom function F to be

Advprf-ror
F,q (A) = 2 · Pr[PRF-ROR⇒ true]− 1.

PRFs are useful building blocks in many primitives. As a simple example, and one

which will be used frequently in later chapters, we show how to build a symmetric

encryption scheme from a PRF.

Definition 6. PRF-CTR encryption scheme Let F be a PRF, F : K × {0, 1}n →
{0, 1}n. Then define the symmetric encryption scheme ΠF as follows:

• KeyGen(): outputs a random key k←$K.
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• Enc(k,m): on input m ∈ {0, 1}n`, write m = (m1, . . . ,m`) for mi ∈ {0, 1}n,

and return C = (m1⊕F (k, 1),m2⊕F (k, 2), . . . ,m`⊕F (k, `)) where ` is written

as an n-bit value.

• Dec(k,C) : recovers m from blocks mi = Ci ⊕ F (k, i) for 1 ≤ i ≤ `.

Note that we restrict the plaintext space of ΠF to {0, 1}n` with ` < 2n for simplicity.

For this scheme, we show that confidentiality depends on the security of the PRF

F , a standard result.

Theorem 1. Let ΠF be the PRF-CTR encryption scheme as defined above.

Then for any adversary A attacking ΠF in the IND$-CPA game, making only a

single query of length at most 2n blocks, there exists an adversary B in the PRF-ROR

game such that

Advind$-cpa
ΠF ,q

(A) = Advprf-ror
F,q (B).

Proof. We prove this theorem by directly constructing an adversary B. B simulates

the IND$-CPA game for ΠF by using its RoR oracle as F in the computation of

Enc. When A returns the guess b′, B uses this as its guess in the PRF-ROR game.

Suppose the hidden bit in the PRF-ROR game is 0, then B returns encryptions of

the form Enc(m) = (m0 ⊕ F (k, 0), . . . ,m` ⊕ F (k, `)). This perfectly simulates the

IND$-CPA game with bit b = 0.

Alternatively, suppose the hidden bit in the PRF-ROR game is 1, then B returns

encryptions of the form Enc(m) = (m0 ⊕ f(0), . . . ,m` ⊕ f(`)).

Given that the adversary only makes a single Enc query of length at most 2n, f

is queried at most once for each input value, and since f is a random function,

the outputs of f are uniformly and independently random values. Therefore the

challenge ciphertext is distributed identically to a randomly sampled string.

This shows that using the RoR oracle to simulate message encryptions precisely

matches the IND$-CPA game, and therefore the probability that A outputs the

correct bit is precisely its advantage in the IND$-CPA game. Since B outputs the
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same bit as A, B’s output is then correct whenever A’s is, we may conclude that

Advind$-cpa
Π,q (A) = Advprf-ror

F,q (B).

This theorem has an important restriction: the security only holds for the encryption

of a single message. This assumption was crucial to show that applying the PRF was

equivalent to a one-time pad. In order to relax this requirement, there are a couple

of options: we can either choose a random IV to start the counter, in which case the

reduction would then need to include the probability of two intervals overlapping;

or we can make the scheme stateful and continue incrementing the counter. The

former results in a lossy reduction, and the latter implies significant implementation

difficulties.

2.2.4 Random Oracle Model

The random oracle model (ROM) was introduced by Bellare and Rogaway [35] and

has since become a widely used and accepted paradigm.

Definition 7 (Random Oracle [35]). A random oracle R is a map from {0, 1}∗ to

{0, 1}∞ chosen by selecting each bit of R(x) uniformly and independently for every

x.

In practice, the oracle R will be used to provide multiple generators G : {0, 1}∗ →
{0, 1}∞ and random hash functions H : {0, 1}∗ → {0, 1}n, where some appropriate

encoding method is used to make each generator or function produce independent

outputs. Of course, in practice protocols do not and cannot make use of infinite

output, but rather the syntax {0, 1}∞ represents the idea that any arbitrary length

output can be produced.

The random oracle model (ROM) itself is not a concrete definition, but a common

paradigm used to express the idea that a well-chosen hash function can fulfil the

role of a random oracle. Using the ROM in proofs entails proving that a particular

scheme is secure, assuming that a random oracle is made available to all parties
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(in particular, the adversary can freely query the random oracle). A concrete im-

plementation of the scheme would then use a hash function instead of the random

oracle.

Use of the ROM can be contentious. In [72], it was shown that there exist several

carefully constructed cryptosystems which are secure in the random oracle model

but completely broken when instantiated with any hash function.

These cryptosystems are very contrived. The intuition is that for every input x, the

algorithm checks whether (x,H(x)) is in some set S. If true, then it does something

clearly insecure, e.g. returns the secret key. Suppose we let S be the set of all possible

pairs of values (x, h(x)) for x ∈ {0, 1}∗ and h from the set of all possible hash

functions we are selecting from. Then if H is a random oracle, it is unlikely to

satisfy that relation for any choice of h, However, clearly if H is from that set of

hash functions, then (x,H(x)) ∈ S will be true.

Nonetheless, the existence of such constructions raises serious doubts about the

legitimacy of the ROM. However, the ROM remains a widely used paradigm, with

the caveat that care must be taken to ensure constructions do not rely on (the

absence of) specific features of the underlying hash functions.

2.2.5 Diffie–Hellman

The Diffie–Hellman (DH) problem dates back to the very beginning of public-key

cryptography [89]. Since then, many variants of the DH problem have been con-

structed as base assumptions for various cryptosystems.

Two of the most common DH variants are the computational Diffie–Hellman (CDH)

and the decision Diffie–Hellman (DDH) problems.

Definition 8 (CDH Game). Let G be a group of order p.

In the CDH game, an adversary is given a tuple (g, gx, gy) where g is a generator of

G and x, y are sampled uniformly at random from Zp.

The adversary wins if they output a value h such that h = gxy.
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For an adversary A, we define the advantage as

Advcdh
G (A) = Pr[A(g, gx, gy) = gxy ] .

Definition 9 (DDH Game). Let G be a group of order p.

In the DDH game, a bit b←$ {0, 1} is sampled uniformly at random, and the adver-

sary is given the tuple (g, gx, gy, gz) where g is a generator of G and x, y are sampled

uniformly at random from Zp, and z is either xy, when b = 0, or another uniformly

random exponent from Zp, when b = 1.

The adversary outputs a guess b′ for the hidden bit, and the DDH game returns true

if b′ = b.

For an adversary A, we define the advantage as

Advddh
G (A) = 2 · Pr[DDH⇒ true]− 1.

It can easily be shown that for all adversaries A, there exists an adversary B such

that Advddh
G (B) ≥ Advcdh

G (A). Given a DDH sample (g, gx, gy, gz), the adversary B
uses A as an oracle on (g, gx, gy) to compute gxy and returns b = 0 if gz = gxy,

winning the DDH game whenever A is able to construct gxy and hence wins in the

CDH game.

However, the other direction is still unknown in general, and in certain Gap-DH

groups DDH is easy, whereas CDH is still conjectured to be hard [118].

A summary of other known results for these two problems can be found in [58].

Currently, both problems are assumed to be difficult to solve in certain groups, and

conjectured to be equivalent to solving the discrete logarithm problem. It is easy to

see that solving the discrete logarithm problem (given h = gx find x) implies an

efficient algorithm for both DDH and CDH.

We often state a priori, for example, “where G is a group in which the DDH as-

sumption holds”, and in the security reduction we will see the Advddh
G term present.

However, care must be taken to consider the concrete security of this construction,

as we would with any other reduction. For example, the attack on TLS in [6] per-
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formed just a single expensive pre-computation step to allow for solving the discrete

logarithm problem in a fixed group, which could then be used to attack multiple

subsequent connections.

As before, the concrete security level is contextual. In the previous example, the

group size was 512-bits, which resulted in a pre-computation effort of approximately

10 years of CPU time (roughly 260 operations). This could be seen as prohibitive to

attack a single connection in real-time, but as an amortised effort to attack multiple

future connections, suddenly the attack becomes very efficient.

This is just the beginning of hardness assumptions stemming from the DH prob-

lem, others include: the Gap-DH problem [153]; DH style assumptions in bilinear

groups [59]; strong and oracle variants [1]; and one-more variants [56]. Finally, we

refer the reader to [58] for more security properties and uses of DDH.

Applications

Although initially conceived as a mechanism for exchanging keys, the DH problem

has become the core assumption in many cryptosystems and protocols.

Here, we consider two important uses of DH: authenticated key exchange, and con-

structing a PRF.

Station-to-Station Protocol

The station-to-station (STS) protocol was proposed by Diffie, van Oorschot, and

Wiener [90] as a simple authenticated key exchange protocol, using the power of the

DH problem and a public-key infrastructure (PKI) in order to exchange keys.

The intuition is as follows: suppose Alice and Bob send each other DH shares gx and

gy respectively. Then the CDH problem states that the adversary cannot compute

gxy, and going further the DDH problem states that they cannot distinguish gxy

from a random value gz. However, Alice and Bob can easily compute gxy by using

their private exponents to compute (gy)x and (gx)y respectively.

Therefore, against a passive adversary, this is a reasonable key exchange protocol,

under the assumption that the DDH problem is hard. However, suppose the adver-
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Alice(g, kA, pkB) Bob(g, kB , pkA)

x←$Zp

gA ← gx gA

y←$Zp

gB ← gy

gB, CB = EK(sign((gB, gA), kB)) K ← gyA

K ← gxB

CA = EK(sign((gA, gB), kA))

if ver(DK(CB), pkB) if ver(DK(CA), pkA)

return K return K

else else

return ⊥ return ⊥

Figure 2.2: The basic station-to-station (STS) protocol.

sary plays the role of an active man-in-the-middle (MITM). Then it can relay values

gy
′

to Alice and gx
′

to Bob, leading them to compute keys gxy
′

and gx
′y. At this

point, the adversary can compute both keys and eavesdrop on any communication

protected using keys derived from these exchanged values.

The STS protocol solves this by use of a PKI. Informally, when using a PKI, we

assume there exists a mechanism to distribute long-term keys, bound to the par-

ticipants’ identities. Hence the STS protocol enhances the vanilla DH key exchange

by exchanging certificates and signing appropriately. In the following, let kA denote

private signing keys, and pkA denote public verification keys. We write sign(x, kA)

to denote signing the message x using key kA using some signature scheme (the

details of which we omit for simplicity), and ver(S, pkA) verification of the signature

S using the public key pkA. Furthermore let g be a public generator of the group G
or order p. The protocol is depicted in Figure 2.2.
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PRF Construction in the Random Oracle Model

As mentioned in Section 2.2.3, we commonly make use of PRFs in our constructions

and examples. One simple instantiation of a PRF comes from Naor, Pinkas and

Reingold [152], and relies on the DDH assumption, and the random oracle model.

Definition 10 (DDH-ROM Pseudorandom Function). Let G be a group of order

p in which the DDH assumption holds, and let H : {0, 1}∗ → G be a hash function

modelled as a random oracle.

Then define the DDH-ROM PRF as F : Zp × {0, 1}∗ → G by F (k,m) = H(m)k.

Theorem 2. Let F be the DDH-ROM PRF as described previously. For any PRF-ROR

adversary A, making at most q random oracle and RoR queries, distinguishing F

from a random function f , there exists an adversary B acting as a DDH distinguisher

such that

Advprf-ror
F (A) ≤ q · Advddh

G (B).

The following proof relies on the programmability of the random oracle used. This

is a useful trick which allows us to set the random oracle for an input-output pair,

provided the output is still distributed uniformly at random. For more information

on this technique, see [106].

We give the proof in full as an introduction to the style of proofs used throuhgout

this thesis, and as an expanded version of the proof sketch given in [152].

Proof. We prove this with a series of q hybrid game hops.

Each game starts by generating a random PRF key k.

In game G0, on each query mi to the random oracle H, generate a random value ri

and program the response as H(mi) := gri .

On each query m∗ to RoR, look up the value of H(m∗) programmed in H (generating

a new entry if necessary), and return (gr
∗
)k.

This perfectly simulates the PRF-ROR game for A, with the hidden bit b = 0.
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Game Gi is identical to game Gi−1 for 1 ≤ i ≤ q + 1, except on calling the PRF

oracle RoR for the i-th query value mi, we replace the output with a randomly

sampled value.

Finally, in game Gq, all outputs for RoR are generated uniformly at random, per-

fectly simulating the PRF-ROR game, with hidden bit set to b = 1.

The definition of the advantage of A in the PRF-ROR game is given by

Advprf-ror
F (A) = |2 · Pr[PRF-ROR⇒ true ]− 1|

= |(Pr[A ⇒ 0 | b = 0] + Pr[A ⇒ 1 | b = 1])− 1|

= |Pr[A ⇒ 0 | b = 0]− Pr[A ⇒ 0 | b = 1]|.

Let Si represent the event that A outputs 0 in game Gi. From the above, we have

that Advprf-ror
F (A) = |Pr[S0 ]− Pr[Sq ]|.

Using the triangle inequality, we can write:

|Pr[S0 ]− Pr[Sq ]| = |Pr[S0 ]− Pr[S1 ] + · · · − Pr[Sq−1 ] + Pr[Sq−1 ]− Pr[Sq ]|

≤ |Pr[S0 ]− Pr[S1 ]|+ · · ·+ |Pr[Sq−1 ]− Pr[Sq ]|.

Next, we construct a series of adversaries Bi who simulate the environment for A in

games Gi, Gi+1 for all 0 ≤ i ≤ q − 1.

At the start of the game, Bi calls the DDH oracle for the query tuple (gx, gy, z).

For messages mj with j 6= i, the adversary as before programs the random oracle

such that H(mj) = grk . Furthermore, RoR oracle queries are answered using (gy)rk ,

using y as the implicit PRF key.

However, for the i-th query, the oracle is programmed as H(mi) = gx, and the RoR

query is returned as z.

If the hidden bit in the DDH game is 0, then z = gxy, and this models game Gi.

On the other hand, if the hidden bit is 1, then z is a uniformly random value, which

simulates game Gi+1.
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When A returns a guess bit b′, Bi will use this as its guess in the DDH game. As

detailed above, Bi is correct when A outputs 0 in game Gi, and 1 in game Gi+1,

which corresponds to the events Si and ¬Si+1 respectively.

Hence we get Advddh
G (Bi) = |2 ·(1

2 Pr[Si ]+
1
2(1−Pr[Si+1 ]))−1| = |Pr[Si ]−Pr[Si+1 ]|.

This argument was general for all i such that 0 ≤ i ≤ q − 1, and inserting into the

previous formula, it can be seen that the sum
∑

i Adv
ddh
G (Bi) an upper bound of

Advprf-ror
F (A). Therefore there must exist at least one particular i such that

Advddh
G (Bi) ≥

1

q
Advprf-ror

F (A)

which can be rearranged to give the theorem statement.

2.3 Symbolic Analysis

In computational analysis, one might consider the fundamental component to be

the bitstring. In symbolic analysis, we instead treat variables as abstract quantities

represented symbolically. Although in this approach we lose some granularity of

proving – proof statements are binary as opposed to the quantitative nature of

concrete security – this abstraction allows us to leverage powerful symbolic analysis

tools to aid in producing proofs.

In recent years there have been a number of new tools created for modelling security

protocols symbolically. Some examples are Scyther [83], ProVerif [50], and Tamarin

[176].

We note that there are also tools to produce automated proofs in the computational

model, potentially offering the best of both approaches. One such example is Cryp-

toVerif [52]. However, we do not cover these here and more can be found about these

methods in [81] and [51].

In this section, we briefly introduce some core concepts of symbolic analysis, de-

scribed in the context of the Tamarin prover tool. This is not intended to be a

comprehensive introduction to symbolic analysis, but rather to provide some insight

into how such tools can be used to perform analysis of cryptographic protocols.
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2.3.1 Tamarin Prover

The Tamarin prover [176] is a symbolic modelling and analysis tool for security

protocols. Here we provide a brief introduction to Tamarin. For a more detailed

introduction, we suggest reading the Tamarin manual found at [180], or [176, 175,

144, 113] for more details about both the formal underpinnings of Tamarin, and

symbolic analysis in general.

The Tamarin semantics are based on multiset-rewriting. A Tamarin model defines

a transition system whose state is a multiset of facts. The allowed transitions are

specified by rules. At a very high level, Tamarin rules encode the behaviour of

participants, as well as adversarial capabilities. In modelling cryptographic protocols,

these rules play a role similar to oracles in Bellare-Rogaway style models.

Tamarin rules have a left-hand side (premises), actions, and a right-hand side (con-

clusions). The left-hand and right-hand sides of rules respectively contain multisets

of facts. Facts can be consumed (when occurring in premises) and produced (when

occurring in conclusions). Each fact can be either linear or persistent, the latter

marked with an exclamation point. While linear facts model limited resources that

cannot be consumed more times than they are produced, persistent facts model un-

limited resources, which can be consumed any number of times once they have been

produced.

A rule can only be executed if its left-hand side can be matched with facts that are

available for consumption in the current state. For instance, the Fresh rule depicted

here

rule Fresh:

[ ]--[ ]->[ Fr(∼x) ]

has no premises or actions, and every execution of it produces a single linear Fr(∼x)

fact. Note that only the Fresh rule can produce Fr facts, each of them unique. Use

of the ∼ symbol denotes a variable of the type Fresh. Other variable types include

Public, denoted by $, and Temporal, denoted by #. Fresh values are the quanta

of Tamarin, representing a unique discrete value. Any variable without any typing

information can be any one of the above types, or a combination of terms when used
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within an equation. We often omit marking variables as fresh where it is either clear

from the context, or unimportant for the exposition.

Actions do not influence the transitions, but are “logged” when rules are triggered as

a means of incrementally constructing observable action traces that in turn represent

a record of a specific execution. Actions (as part of action traces) form the glue

between the defined transition system and the property specification language.

2.3.2 Cryptographic primitives

As mentioned in the introduction, the symbolic modelling approach considers all

variables – inputs, outputs, keys, etc. – as abstract quantities, without a specific

length, set, or distribution to be sampled from. This results in the assumption that

cryptographic primitives are “perfect”. For example, it is not possible to mount

a brute force attack on encryption schemes to find the key, since the keyspace is

effectively infinite.

To instantiate a cryptographic primitive symbolically, we define the functionality

with a set of equations. Any potential flaws, weaknesses, or side-effects must be

explicitly defined.

For example, a function F is by default assumed to take arbitrary length inputs,

and return arbitrary length outputs. In the symbolic model variables are considered

abstractly, and concepts such as the bit length are undefined. Without defining any

additional information, this function F is a one-way function, since we have not

defined a function F−1.

Suppose we wish to model more properties about the output of these functions. We

do so by adding equations which define their behaviour. For example, Enc(k,m)

without any further information would be, as above, a one-way function, leaving m

unrecoverable. Hence we must describe how decryption takes place. In Tamarin,

symmetric encryption is modelled by writing the equation describing its functional-

ity:

sdec(senc(m, k), k) = m

where k is a shared secret key and m is a message.
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This means that symbolically, the term senc(m, k) can be combined with k as an

input to sdec to recover m.

Since k is an abstract variable, and the adversary can only learn information through

explicit rules or equations, it is impossible for them to learn k, and thus they cannot

compute sdec(_, k). Therefore the adversary can never learn m (other than already

knowing it beforehand).

Remark 1. The equation sdec(senc(m, k), k) = m for encryption is known as a

subterm convergent equation since the term m appears as a value within the left-

hand side. An example of an equation which is not subterm convergent is blinded

signatures

unblind(sign(blind(m, r), k), r) = sign(m, k)

because the sign(m, k) does not appear anywhere on the left-hand side. Recent

work has extended Tamarin to support such equations [97].

As certain primitives are used repeatedly across many cryptographic protocols, there

are built-in definitions for them. The Tamarin builtins include equational theories

for Diffie-Hellman group operations, asymmetric encryption, symmetric encryption,

digital signatures and hashing. The theory required to support Diffie-Hellman is

particularly interesting, and we cover it in more detail later.

The symmetric encryption builtin, for instance, could be used in this simple rule

that models sending encrypted data out to a network:

rule Send:

[Fr(∼k), Fr(∼data)]--[Send(∼data)]->[Out(senc(∼data,∼k))]

The use of the builtin Out fact, as depicted in the Send rule, denotes that a message

has been sent out to the network, i.e. senc(∼data,∼k) becomes known to the ad-

versary. Receiving a message from the network is denoted by the corresponding In

fact.

In other words, In(senc(∼data,∼k)) could be a premise of a rule which models

receiving encrypted data from the network.
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2.3.3 Dolev-Yao Attacker

In the previous section we introduced Out and In as two builtin facts, used to model

sending and receiving messages to and from the network respectively. We also stated

that the message itself becomes available to the adversary. This is due to the fact that

Tamarin (as is common in symbolic analysis) adheres to the Dolev-Yao attacker

model of [94].

A Dolev-Yao attacker has complete control over the network. In particular, any

message sent onto the network is given directly to the attacker, and the attacker is

responsible for delivering messages to participants. In between, the attacker has com-

plete freedom to disassemble and reassemble the message, change parts, or simply

drop the message entirely.

A priori, participants have no way of knowing who the message was originally sent

from, and to whom it was intended, since this information can be trivially forged by

the adversary.

If we wish to represent the existence of a secure channel between parties, we would

use regular facts, e.g. AuthMessage($A, $B, m) might represent securely sending

the message m from $A to $B. Since AuthMessage would be an instance of a fact,

these are directly passed between rules without being provided to the attacker.

This is commonly used as a convenient way to check the model for correctness. By

replacing all In and Out facts with AuthMessage, we can test the protocol in the

absence of an attacker.

2.3.4 Properties and Proofs

In the computational approach of Section 2.2, security properties were quantified

by the concrete advantage an adversary can achieve. However, in general there is

no concept of probabilistic nor computationally bounded adversaries for symbolic

tools. For example, in Tamarin results are binary. If a proof terminates, then the

property is either validated or falsified.

As described by Blanchet in [51], security properties largely fall into two categories:

trace and equivalence properties.
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Trace properties state that a certain event should not happen. For example. in the

INT-CTXT game, the adversary should not produce a valid, distinct ciphertext.

Equivalence properties, commonly known as indistinguishability in the computa-

tional setting, refer to the ability of an adversary to distinguish two views of a pro-

cess or protocol. For example, in the IND-CPA game, the adversary is challenged to

distinguish two worlds, one in which the LR oracle returns encryptions of m0, and

the other returning encryptions of m1.

Currently, most symbolic analyses have focused on proving trace properties, which

are better suited to the tools used. However, there has been some promising work

in proving equivalence relationships. For example, the Tamarin tool has recently

been extended to support proofs of equivalence [25].

Security properties as lemmas

Tamarin formulae are specified in a fragment of first-order logic and therefore offer

the usual connectives (where & and | denote and and or, respectively), quantifiers

All and Ex, and timepoint ordering <. In formulas, the prefix # denotes that the

following variable is of type timepoint. The expression Action(args)@t denotes that

Action(args) is logged in the action trace at point t, resulting from an instantiation

of a rule.

We use the Tamarin property language to encode different kinds of properties

as lemmas. These can include, for example, basic state reachability tests as well

as security properties. We follow the common Tamarin modelling approach, in

which lemmas closely resemble properties as defined in Bellare-Rogaway models.

For instance, where a Bellare-Rogaway definition will typically restrict the set of

oracle queries the adversary can make (e.g., it cannot query for a decryption of the

challenge ciphertext), in Tamarin we restrict the adversary in the statement of the

lemma.

A basic property that states the secrecy of n can be encoded as a simple lemma:

lemma Example_Property:

"All A y n #i. Send(A, n, y) @ i ==> not Ex #j. K(n) @ j"
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which says that for all actors A, sending message n using key y, at timepoint i, then

there does not exist a timepoint j such that the adversary knows n. In other words,

the adversary never learns n.

A more realistic lemma needs to account for the attacker model. For example, in the

presence of an attacker who can compromise symmetric keys, a formula resembling

not Revealed(y) @ k needs to be conjoined with the left-hand side of the above

property or it will be trivially false.

IND-CPA Security in Tamarin

We use IND-CPA as an example of specifying an equivalence relation in Tamarin.

For example, we might define IND-CPA using the following setup:

rule LR_Oracle:

[ !Key(k), Fr(r), In(m0), In(m1) ]

--[ ]

->[ Out(senc(<diff(m0, m1), r>, k)) ]

rule Enc:

[ !Key(k), Fr(r), In(m)]--[ ]->[ Out( senc(<m, r>, k) )]

Here the diff(.,.) term states that the two worlds created by selecting either of

the two values are indistinguishable. In the above, we are using the Tamarin syntax

<_, _> for tuples.

The above LR_Oracle rule specifies an oracle which takes as input a (persistent) key

fact, a fresh value r, and two adversarially-chosen inputs m0, m1. It produces an

encryption under the key k. Tamarin will effectively generate two models by using

the diff keyword. One representing the left world, and one for the right. Usual

properties and lemmas can be proved individually for each world. However, Tamarin

will also generate a new lemma, called lemma Observational_equivalence, which

we prove to show that the indistinguishability holds between the two worlds.

We also provide the adversary with a dedicated encryption oracle Enc.
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In this simple example, proving the property would not be very interesting. En-

cryption is modelled as a perfect primitive, so the only way the adversary could

distinguish the two would be learning the key k. Hence it is more common to prove

secrecy properties by proving the adversary cannot learn the key k with a trace

property.

INT-CTXT Security in Tamarin

Proving integrity of encryption has the same problems as the previous example.

Modelling encryption as a perfect primitive means the adversary cannot perform

bit manipulations to produce a forged ciphertext. However, it still gives an idea of

syntactically how we would formulate such a property.

Given an adversary with encryption and decryption oracles:

rule Enc_Oracle:

[ !Key(k), In(m), In(r) ]

--[ Enc(k, m, senc(<m, r>, k)) ]

->[ Out(senc(<m, r>, k)) ]

rule Dec_Oracle:

[ !Key(k), In(senc(<m, r>, k)) ]

--[ Dec(k, senc(<m, r>, k)) ]

->[ Out(m)]

Then the trace property for integrity of ciphertexts might be written as:

lemma INT_CTXT:

"All k c #i. Dec(k, c)@i

==> Ex m #j. Enc(k, m, c)@j"

The INT-CTXT property is specified by the lemma INT_CTXT which says for all keys

k and ciphertexts c such that the action Dec(k, c) was invoked at timepoint #i,

then there must have been a corresponding Enc(k, m, c) action at timepoint #j.

This states that the only way the adversary could submit a decryption query to the

oracle is by having previously having queried for it from the encryption oracle.
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This lemma would be trivially satisfied in any model which does not leak secret

keys. Note that we are using the pattern-matching form of symmetric encryption,

which instead of using the sdec equation for decryption requires that the input be

an encrypted value. This is a subtle distinction which allows us to better model

authenticated encryption.

Proof Traces

The verification algorithm of Tamarin is based on constraint solving and multiset-

rewriting techniques, which allows its users to prove intricate security properties in

complex protocols exhibiting branches and loops. One of the distinguishing features

of Tamarin is its support for global mutable non-monotonic state. Put simply,

non-monotonic state allows Tamarin to handle ephemeral information accurately,

and can model complex data structures such as databases. Tamarin also includes

an extensive graphical user interface that enables the visualisation and interactive

construction of proofs.

These features make Tamarin a good fit for the modelling and in-depth analysis of

highly complex protocols such as TLS 1.3, which we cover in depth in Chapter 5.

In Tamarin, a proof consists of showing that in all possible traces, the proposed

statement holds true.

For example, in the previous Example_Property, Tamarin would attempt to find

a contradiction, that is, a state when K(n)@j and Send(A, n, y). To achieve this,

Tamarin starts by considering all states at which Send(A, n, y) is true (this action

may appear in multiple locations), and performs a backwards-search until either:

it finds a contradiction, i.e. K(n)@j; the entire trace has been solved without a

contradiction; or some other previously proven property is triggered.

The last case is particularly important. Tamarin can use previous lemmas to prove

the current property. This means that intermediate proofs can be constructed before

proving the final property. Furthermore, the same idea is inherent in Tamarin’s

support for inductive proofs. This approach to proving was fundamental in our

TLS 1.3 work, detailed in Chapter 5.
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There are two methods to construct proofs in Tamarin. First of all, a heuristic-

driven automated mode which efficiently guides the backwards search. On termi-

nation, this automated search will either provide a proof of the correctness of the

statement, or a contradiction, representing an attack on the property. However, in

complex protocols it is common that Tamarin cannot necessarily produce a proof

automatically. In this case, the user can use Tamarin’s interactive mode to guide the

proof search. As the user acquires knowledge on proof strategies, these can then be

turned into new lemmas, which may be possible to prove automatically, an approach

also described in Chapter 5.

2.3.5 Authentication Properties

In 1997, Lowe [132] introduced a more granular set of authentication notions, ranging

from simple conditions stating simply that protocol participants at some point were

running the protocol, to full agreement on all data items.

These properties are particularly suitable for analysis using symbolic tools, and the

syntax used by Lowe for describing the authentication properties (a process algebra,

known as CSP) is close to the language used by Tamarin.

Here, we give a few examples of Lowe’s properties, as they could be expressed in

Tamarin. The weakest property specified is called aliveness:

Definition 11 (Aliveness [132]). We say that a protocol guarantees to an initiator

A aliveness of another agent B if, whenever A (acting as initiator) completes a run

of the protocol, apparently with responder B, then B has previously been running

the protocol.

In Tamarin, we might define this as follows:

lemma aliveness:

"All A B #i. Complete(A, ’initiator’, B)@i

==> Ex role peer #j. Running(B, role, peer)@j & #j < #i"

Note that although B is identified as running the protocol, their role and who they

are communicating with (i.e. the peer) are left unspecified.
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In comparison, a much stronger property is (non-injective) agreement:

Definition 12 (Agreement [132]). We say that a protocol guarantees to an initiator

A agreement with a responder B on a set of data items ds if, whenever A (acting

as initiator) completes a run of the protocol, apparently with responder B, then B

has previously been running the protocol, apparently with A, and B was acting as

responder in his run, and the two agents agreed on the data values corresponding

to all the variables in ds.

Again, specified in Tamarin, this might look like the following:

lemma agreement:

"All A B ds #i. Complete(A, ’initiator’, B, ds)@i

==> Ex #j. Running(B, ’responder’, A, ds)@j & #j < #i"

Other properties specified by Lowe include:

Injective agreement: Same as agreement, but requires that the matching action

(in the previous example, the Running action) is unique.

Full agreement: Agreement holds for all possible data items.

Recentness: Requires that the two participants are currently running the protocol.

May be achieved through agreement on fresh information, enforcing overlap-

ping protocol actions, or some form of timestamping.

2.3.6 Symbolic Diffie–Hellman

Earlier we described support for symbolic Diffie–Hellman as a particularly important

feature of Tamarin. Indeed, Diffie–Hellman is an essential part of many crypto-

graphic protocols. Tamarin support for DH was introduced in [176], and full details

of the formal theory can be found there.

Symbolically defining mathematical objects can be seen as a straightforward ex-

tension of the way basic functionality is defined. For example, we define algebraic

groups by specifying equations encapsulating the group axioms:

46



2.3 Symbolic Analysis

• Associativity: x ∗ (y ∗ z) ' (x ∗ y) ∗ z

• Commutativity: x ∗ y ' y ∗ x

• Identity: x ∗ 1 ' x

• Inverse: x ∗ x−1 ' 1, (x−1)−1 ' x

Similarly, DH groups are defined in Tamarin by defining the exponentiation oper-

ator (g, x) 7→ gx, and defining the set of exponents to be a multiplicative group as

above. Currently, Tamarin does not support addition in the exponent group, and

thus neither is it defined to multiply two group elements.

With this limited set of equations, we get the discrete logarithm and CDH assump-

tions for free: there is no defined method to take gx to x, nor to derive gx∗y from

gx, gy.

We need to take this a step further in order to make it inherently useful for Tamarin.

To use the CDH assumption effectively within a backwards-search strategy requires

the ability to deduce something like “if the adversary knows gxy, then they must

also know either x or y”. This would allow us to directly prove that the adversary

cannot learn a negotiated DH key without knowing either one of the private keys.

However, this is not necessarily the case, due to the existence of inverses. Suppose

y = x−1, then the adversary clearly knows gxy by just knowing g. Consider that this

can be made arbitrarily complex, by instead setting y = x−1 ∗ z and the adversary

instead knows z.

Addressing this is subtle and complex, the details of which can be found in [176].

The intuition is that an element can be reduced using a finite set of rules due to

Lankford [181, 114], using the technique of [79]. This by itself is not sufficient, and

Tamarin additionally uses a number of heuristics and constraints in order to ensure

that this process indeed results in a terminating algorithm.

2.3.7 Strengths and Weaknesses of Symbolic Analysis

Despite the fact that we have introduced a number of limitations with symbolic tools,

specifically with the Tamarin tool, none of these limitations are inherent weaknesses
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of the approach, but rather an obstacle to overcome. Consider that Tamarin is con-

stantly evolving. In its approximately 5-year lifetime, it has added rich support

for Diffie-Hellman equations [176], indistinguishability proofs in the form of obser-

vational equivalence [25], and the removing the restriction of subterm convergent

equations [97] opens up new possibilities.

As the tools improve, the limitations of symbolic analysis decreases and the benefits

become more and more apparent. Here we argue that symbolic analysis in its current

state is already a hugely beneficial tool for real-world protocols.

Real-world protocols are often constrained by multiple external factors, from com-

patibility with legacy systems, to engineering and efficiency goals. Due to this, it is

rare that a cryptographic protocol as initially conceived and analysed is the same

when ultimately specified and deployed in practice. As the protocol moves further

away from the initial design, and adds more functionality, components, and options,

it becomes harder to analyse the interaction of all of these parts.

Traditional pen and paper proofs rely on analysing components in isolation, and

then manually composing each part together. This can be an arduous task. Further

exacerbating this issue is that real-world protocols are often moving targets. One

particularly relevant example is our work in Chapter 5 focused on the TLS 1.3

protocol specification drafts. Currently numbering 21 drafts, always staying up-to-

date with TLS 1.3 is a tough proposition.

Symbolic tools can be used to produce automated analyses, and thus help to mitigate

some of the above pain points. As evidenced by our work on TLS 1.3 in Chapter 5,

Tamarin is capable of handling a large, complex protocol and all of its modes

in composition. Furthermore, large parts of our proving process for TLS 1.3 was

automated. This meant that when making changes to the model, we were able to

perform a significant portion of the analysis automatically.

Tamarin is still a relatively new tool, and tool primarily used by academics for

research, it is missing a number of quality-of-life features. For example, in devel-

oping our complex model of TLS 1.3, we relied on macros provided by an external

preprocessor to make the model more robust and modular. However, these are not

intrinsic limitations of the tool.
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On the other hand, a fundamental limitation of symbolic analysis tools is the inabil-

ity to offer the granular, concrete quantification of security levels we obtain using

computational analysis. This prevents symbolic tools from finding certain classes of

attacks.

Additionally, although one strength of symbolic analysis is the ability to reason about

protocols comprehensively, our TLS 1.3 analysis pushes the limits of Tamarin. Sim-

ple configuration options, or conditional paths, generally have the impact in doubling

the complexity of possible traces to be configured. This inhibits performing even

larger, more complex analyses (for example, combining TLS 1.2 and TLS 1.3 into a

single model). A potentially significant area of research would be to build support

for compositional proofs within Tamarin itself. Hence, removing the necessity to

manually stitch proofs together, and permitting more complex analyses.

Ultimately, the strength of Tamarin and other symbolic analyses is to complement

the computational approach. In particular, provable security can provide us with

a precise quantification of the security of certain primitives, and their use within

simple protocols. We can then move to the symbolic setting, to consider the use of

these primitives within a wider scope.

As symbolic analysis for cryptographic protocols matures, a potentially exciting

area of research could be looking at how to better express the failure modes of

cryptographic primitives symbolically, so that the concrete security bounds provided

by the computational approach can be directly mapped onto the results proven by

symbolic analysis.

2.4 Summary

This chapter introduced a variety of analysis techniques, both computational and

symbolic, and gave examples of how these can be used to analyse some simple

constructions.

We introduced techniques known collectively as practice-oriented provable security

for computational analysis suitable for analysing real-world protocols. The focus of

this methodology is to produce an explicit quantification of the security of a protocol,
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including the resources required by the hypothetical attacker and the reliance on

other assumptions and primitives.

In addition, we introduced symbolic analysis. In comparison with provable security,

symbolic analysis offers coarser results about the security of a system, usually a

simple binary answer. However, the extensive tooling produced to support symbolic

analysis offers the potential to automate significant parts of an analyses, and may

be particularly suitable for analysing complex, changing specifications.

In the rest of this thesis, we give examples of applying these two methodologies to

real-world scenarios, and showcase the benefits of both approaches.
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The Pythia PRF Service
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In this chapter, we detail and investigate the security and applications of a new

cryptographic primitive called a verifiable partially-oblivious PRF. We propose a

modern PRF service called Pythia designed to offer a level of flexibility, security

and ease-of-deployability lacking in prior approaches.

We give new formal definitions for the partially-oblivious PRF, and give proofs of

security for Pythia under these definitions. We also give a construction that ad-

ditionally supports efficient bulk rotation of previously obtained PRF values to new

keys. Performance measurements show that our construction, which relies on bilinear

pairings and zero-knowledge proofs, is highly practical.

3.1 Introduction

Security improves in a number of settings when applications can make use of a

cryptographic key stored on a remote system. As an important example, consider the
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compromise of enterprise password databases. Best practice dictates that passwords

be hashed and salted before storage, but attackers can still mount highly effective

brute-force cracking attacks against stolen databases.

Well-resourced enterprises such as Facebook [149] have therefore incorporated re-

mote cryptographic operations to harden password databases. Before a password is

stored or verified, it is sent to a PRF service external to the database. The PRF ser-

vice applies a cryptographic function such as HMAC to client-selected inputs under

a service-held secret key. Barring compromise of the PRF service, its use ensures

that stolen password hashes (due to web server compromise) cannot be cracked us-

ing an offline brute-force attack: an attacker must query the PRF service from a

compromised server for each password guess. Such online cracking attempts can be

monitored for anomalous volumes or patterns of access and throttled as needed.

While PRF services offer compelling security improvements, they are not without

problems. Even large organisations can implement them incorrectly. For example,

Adobe hardened passwords using 3DES but in ECB mode instead of CBC-MAC (or

another secure PRF construction) [98], a poor choice that resulted in disclosure of

many of its customers’ passwords after a breach. Perhaps more fundamental is that

existing PRF services do not offer graceful remediation if a compromise is detected

by a client. Ideally it should be possible to cryptographically erase (i.e., render useless

via key deletion) any PRF values previously used by the client, without requiring

action by end users and without affecting other clients. In general, PRF services are

so inaccessible and cumbersome today that their use is unfortunately rare.

In this section, we present a next-generation PRF service called Pythia to democra-

tise cryptographic hardening. Pythia can be deployed within an enterprise to solve

the issues mentioned above, but also as a public, multi-tenant web service suitable

for use by any type of organisation or even individuals. Pythia offers several security

features absent in today’s conventional PRF services that are critical to achieving

the scaling and flexibility required to simultaneously support a variety of clients and

applications. As we now explain, achieving these features necessitated innovations

in both cryptographic primitive design and system architecture.

Key features and challenges. We refer to an entity using Pythia as a client. For

example, a client might be a web server that performs password-based authentication
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for all of its end users. Intuitively, Pythia allows such a client to query the service

and obtain the PRF output Y = Fk(t,m) for a message m and a tweak t of the

client’s choosing under a client-specific secret key k held by the service. Here, the

tweak t is typically a unique identifier for an end user (e.g., a random salt). In

our running password storage example, the web server stores Y in a database to

authenticate subsequent logins.

Pythia offers security features that at first glance sound mutually exclusive. First,

Pythia achieves message privacy for m while requiring clients to reveal t to the

server. Message privacy ensures that the PRF service obtains no information about

the message m; in our password-storage example, m is a user’s password. At the same

time, though, by revealing t to the PRF service, the service can perform fine-grained

monitoring of related requests: a high volume or otherwise anomalous pattern of

queries on the same t would in our running example be indicative of an ongoing

brute-force attack and might trigger throttling by the PRF service.

By using a unique secret key k for each client, Pythia supports individual key

rotation should the value Y be stolen (or feared to be stolen). With traditional PRF

services and password storage, such key rotation is a headache, and in many settings

impractical, because it requires transitioning stored values Y1, . . . , Yn (one for each

user account) to a new PRF key. The only way to do so previously was to have all

n users re-enter or reset their passwords. In contrast, the new primitive employed

for Fk in Pythia supports fast key rotation: the server can erase k, replace it with

a new key k′, and issue a compact (constant-sized) token with which the client can

quickly update all of its PRF outputs. This feature also enables forward-security in

the sense that the client can proactively rotate k without disrupting its operation.

Pythia provides other features as well, but we defer their discussion to Section 3.2.

Already, those listed above surface some of the challenging cryptographic tensions

that Pythia resolves. For example, the most obvious primitive on which to base

Pythia is an oblivious PRF (OPRF) [108], which provides message privacy. But for

rate-limiting, Pythia requires clients to reveal t, and existing OPRFs cannot hide

only a portion of a PRF input. Additionally, the most efficient OPRFs (c.f., [117])

are not amenable to key rotation. We discuss at length other related concepts (of

which there are many) in Section 3.9.

53



3.1 Introduction

Partially-oblivious PRFs. We introduce partially oblivious PRFs (PO-PRFs)

to rectify the above tension between fine-grained key management and bulk key

management and achieve a primitive that supports batch key rotation. We give a PO-

PRF protocol in the random oracle model (ROM) similar to the core of the identity-

based non-interactive key exchange protocol of Sakai, Ohgishi, and Kasahara [174].

This same construction was also considered as a left-or-right constrained PRF by

Boneh and Waters [63]. That said, the functionality achieved by our PO-PRF is

distinct from these prior works and new security analyses are required. Despite

relying on pairings, we show that the full primitive is fast even in our prototype

implementation.

In addition to a lack of well-matched cryptographic primitives, we find no support-

ing formal definitions that can be adapted for verifiable PO-PRFs. (Briefly, previous

definitions and proofs for fast OPRFs rely on hashing in the ROM before outputting

a value [70, 117]; in our setting, hashing breaks key rotation.) We propose a new

assumption (a one-more bilinear decisional Diffie-Hellman assumption), give suit-

able security definitions, and prove the security of the core primitive in Pythia

under these definitions. Our new definitions and technical approaches may be of

independent interest.

Using Pythia in applications. We implement Pythia and show that it offers

highly practical performance on Amazon EC2 instances. Our experiments demon-

strate that Pythia is practical to deploy using off-the-shelf components, with com-

bined computation cost of client and server under 12 milliseconds. A single 8-core

virtualised server can comfortably support over 1,000 requests per second, which is

already within a factor of two of a standard HTTPS server in the same configuration.

(Our Pythia implementation performs all communication over TLS.) We discuss

scaling to handle more traffic volume later in this chapter; it is straightforward given

current techniques.

We demonstrate the benefits and practicality of Pythia for use in a diverse set of

applications. First is our running example above: we build a new password-database

system using a password “onion” that combines parallelised calls to Pythia and

a conventional key hashing mechanism. Our onion supports Pythia key rotation,

hides back-end latency to Pythia during logins (which is particularly important
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when accessing Pythia as a remote third-party service), and achieves high security

in a number of compromise scenarios.

Finally, we show that Pythia provides valuable features for different settings apart

from enterprise password storage. We implement a client that hardens a type of

password-protected virtual-currency account called a “brainwallet” [64]; use of Pythia

here prevents offline brute-force attacks of the type that have been common in Bit-

coin.

Our prototype implementation of Pythia is built with open-source components and

itself is open-source. We have also released Amazon EC2 images to allow companies,

individuals, and researchers to spin-up Pythia instances for experimentation.

3.2 Overview and Challenges

We now give a high-level overview of Pythia, the motivations for its features, what

prior approaches we investigated, and the threat models we assume. First we fix

some terminology and a high-level conceptual view of what a PRF service would

ideally provide. The service is provisioned with a master secret key msk. This will

be used to build a tree that represents derived sub-keys and, finally, output values.

See Figure 3.1, which depicts an example derivation tree associated with Pythia

as well as which portions of the tree are held by the server (within the large box)

and which are held by the client (the leaves). Keys of various kinds are denoted by

circles and inputs by squares.

From the msk we derive a number of ensemble keys. Each ensemble key is used

by a client for a set of related PRF invocations — the ensemble keys give rise to

isolated PRF instances. We label each ensemble key in the diagram by K[w]. Here

w indicates a client-chosen ensemble selector. An ensemble pre-key K[w] is a large

random value chosen and held by the server. Together, msk and K[w] are used to

derive the ensemble key kw = HMAC(msk, K[w]). A table is necessary to support

cryptographic erasure of (or updates to) individual ensemble keys, which amounts

to deleting (or updating) a table entry.

Each ensemble key can be used to obtain PRF outputs of the form Fkw(t,m) where

F is a (to-be-defined) PRF keyed by kw, and the input is split into two parts. We
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Figure 3.1: Diagram of PRF derivations enabled by Pythia. Everything inside the
large box is operated by the server, which only learns tweaks and not the shaded
messages.

call t a tweak following [130] and m the message. Looking ahead t will be made

public to Pythia while m will be private. This is indicated by the shading of the

PRF output boxes in the figure.

Deployment scenarios. To motivate our design choices and security goals, we

relay several envisioned deployment scenarios for Pythia.

Enterprise deployment : A single enterprise can deploy Pythia internally, giving

query access only to other systems they control. A typical setup is that Pythia fields

queries from web servers and other public-facing systems that are, unfortunately, at

high risk of compromise. PRF queries to Pythia harden values stored on these

vulnerable servers. This is particularly suited to storing check-values for passwords

or other low-entropy authentication tokens, where one can store Fkw(t,m) where t

is a randomly chosen, per-user identifier (a salt) and m is the low-entropy password

or authentication token. Here w can be distinct for each server using Pythia.

Public cloud service: A public cloud such as Amazon EC2, Google Compute Engine,

or Microsoft Azure can deploy Pythia as an internal, multi-tenant service for their

customers. Multi-tenant here means that different customers query the same Pythia

service, and the cloud provider manages the service, ensemble pre-key table, etc. This
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enables smaller organisations to obtain the benefits of using Pythia for other cloud

properties (e.g., web servers running on virtual machine instances) while leaving

management of Pythia itself to experts.

Public Internet service: One can take the public cloud service deployment to the

extreme and run Pythia instances that can be used from anywhere on the Inter-

net. This raises additional performance concerns, as one cannot rely on fast intra-

datacenter network latencies (sub-millisecond) but rather on wide-area latencies

(tens of milliseconds). The benefit is that Pythia could then be used by arbitrary

web clients, for example we will explore this scenario in the context of hardening

brainwallets via Pythia.

One could tailor a PRF service to each of these settings, however it is better to design

a single, application-agnostic service that supports all of these settings simultane-

ously. A single design permits reuse of open-source implementations; standardised,

secure-by-default configurations; and simplifies the landscape of PRF services.

Security and functionality goals. Providing a single suitable design requires

balancing a number of security and functionality goals. The most obvious require-

ments are for a service that: provides low-latency protocols (i.e., single round-trip

and amenable for implementation as simple web interfaces); scales to hundreds of

millions of ensembles; and produces outputs indistinguishable from random values

even when adversaries can query the service. To this list of basic requirements we

add:

• Message privacy : The PRF service must learn nothing about m. Message pri-

vacy supports clients that require sensitive values such as passwords to remain

private even if the service is compromised, or to promote psychological accept-

ability in the case that a separate organisation (e.g., a cloud provider) manages

the service.

• Tweak visibility : The server must learn tweak t to permit fine-grained rate-

limiting of requests1. In the password storage example, a distinct tweak is

1In principle, the server need only be able to link requests involving the same t, not learn t.
Explicit presentation of t is the simplest mechanism that satisfies this requirement.
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assigned to each user account, allowing the service to detect and limit guessing

attempts against individual user accounts.

• Verifiability: A client must be able to verify that a PRF service has correctly

computed Fkw for an ensemble selector w and tweak/message pair t,m. This

ensures, after first use of an ensemble by a client, that a subsequently com-

promised server cannot surreptitiously reply to PRF queries with incorrect

values. This matters, for example, if an attacker compromises the communi-

cation channel but not the server’s secrets (msk and K[w]). Such an attacker

must not be able to convince the client that arbitrary or incorrect values are

correct.

• Client-requested ensemble key rotations: A client must be permitted to request

a rotation of its ensemble pre-key K[w] to a new one K̂[w]. The server must be

able to provide an update token ∆w to roll forward PRF outputs under K[w] to

become PRF outputs under K̂[w], meaning that the PRF is key-updatable with

respect to ensemble keys. Additionally, ∆w must be compact, i.e., constant

in the number of PRF invocations already performed under w. Clients can

mandate that rotation requests be authenticated (to prevent malicious key

deletion). A client must additionally be able to transfer an ensemble from one

selector w to another selector w′.

• Master secret rotations: The server must be able to rotate the master secret

key msk with minimal impact on clients. Specifically, the PRF must be key-

updatable with respect to the master secret key msk so that PRF outputs

under msk can be rolled forward to a new master secret m̂sk. When such a

rotation occurs, the server must provide a compact update token δw for each

ensemble w.

• Forward security: Rotation of an ensemble key or master secret key results in

complete erasure of the old key and the update token.

Two sets of challenges arise in designing Pythia. The first is cryptographic. It turns

out that the combination of requirements above are not satisfied by any existing

protocols we could find. Ultimately we realised a new type of cryptographic primitive

was needed that proves to be a slight variant of oblivious PRFs and blind signatures.

We discuss the new primitive, and our efficient protocol realising it, in the next
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section. The second set of challenges surrounds building a full-featured service that

provides the core cryptographic protocol, which we treat in Section 3.4.

3.3 Partially-oblivious PRFs

We introduce the notion of a (verifiable) partially-oblivious PRF. This is a two-party

protocol that allows the secure computation of Fkw(t,m), where F is a PRF with

server-held key kw and t,m are the input values. The client can verify the correctness

of Fkw(t,m) relative to a public key associated to kw. Following our terminology, t

is a tweak and m is a message. We say the PRF is partially oblivious because t is

revealed to the server, but m is hidden from the server.

Partially oblivious PRFs are closely related to, but distinct from, a number of exist-

ing primitives. A standard oblivious PRF [108], or its verifiable version [117], would

hide both t and m, but masking both prevents granular rate limiting by the server.

Partially blind signatures [2] allow a client to obtain a signature on a similarly par-

tially blinded input, but these signatures are randomised and the analysis is only

for unforgeability which is insufficient for security in all of our applications.

We provide more comparisons with related work in Section 3.9 and a formal defi-

nition of the new primitive in Section 3.6. Here we will present the protocol that

suffices for Pythia. It uses an admissible bilinear pairing e : G1 × G2 → GT over

groups G1,G2,GT of prime order q, and a pair of hash functions H1 : {0, 1}∗ → G1

and H2 : {0, 1}∗ → G2 (that we will model as random oracles). More details on

pairings are provided in Section 3.6. A secret key kw is an element of Zp. The PRF

F that the protocol computes is:

Fkw(t,m) = e
(
H1(t), H2(m)

)kw .
This construction coincides with the Sakai, Ohgishi, and Kasahara [174] construction

for non-interactive identity-based key exchange, where t and m would be different

identities and kw a secret held by a trusted key authority. Likewise, this construc-

tion is equivalent to the left-or-right constrained PRF of Boneh and Waters [63].

The contexts of these prior works are distinct from ours and our analyses will neces-
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PRF-Cl(w, t,m) PRF-Srv(msk)

r←$ Zq

x← H2(m)r w, t, x

x̃← e(H1(t), x)

kw ← HMAC(msk, K[w])

pw ← gkw

y ← x̃kw

pw, y, π π←$ ZKP(DLg(pw) = DLx̃(y))

if pw matches ∧ π verifies then

return y1/r

else

return ⊥

Figure 3.2: The partially-oblivious PRF protocol used in Pythia. The value π is
a non-interactive zero-knowledge proof that the indicated discrete logs match. The
client also checks that pw matches ones seen previously when using selector w.

sarily be different, but we note that all three settings similarly exploit the algebraic

structure of the bilinear pairing.

The client-server protocol that computes Fkw(t,m) in a partially-oblivious manner

is given in Figure 3.2. There we let g be a generator of G1. We now explain how the

protocol achieves our requirements described in the last section.

Blinding the message: In our protocol, the client blinds the message m, hid-

ing it from the server, by raising it to a randomly selected exponent r←$ Zq.

As e
(
H1(t), H2(m)r

)
= e

(
H1(t), H2(m)

)r
, the client can unblind the output y of

PRF-Srv by raising it to 1/r. This protocol hides m unconditionally, as H2(m)r is

a uniformly random element of G2.

Verifiability: The protocol enables a client to verify that the output of PRF-Srv

is correct, assuming the client has previously stored pw. The server accompanies the

output y of the PRF with a zero-knowledge proof π of correctness.
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PRF-Cl(w, t,m) PRF-Srv(msk)

w, t,m

x̃←H3(t‖m)

kw ← HMAC(msk, K[w])

pw ← gkw

y ← x̃kw

pw, y, π π←$ ZKP(DLg(pw) = DLx̃(y))

if pw matches ∧ π verifies then

return y

else return ⊥

Figure 3.3: The unblinded PRF protocol supported by Pythia. Differences from the
partially-oblivious protocol in Figure 3.2 are shown in bold.

Specifically, for a public key pw = gkw , where g is a generator of G1, the server proves

DLg(pw) = DLx̃(y). Standard techniques (see, e.g., Camenisch and Stadler [71])

permit efficient zero-knowledge proofs of this kind in the random oracle model. For

example: the prover picks v←$ Zq and then computes t1 = gv and t2 = x̃v and

c ← H3(g, pw, x̃, y, t1, t2). Let u = v − c · · · k. The proof is π = (c, u). The verifier

computes t′1 = gu ·pcw and t′2 = x̃uyc. It outputs true if c = H3(g, pw, x̃, y, t
′
1, t
′
2). The

notable computational costs for the server are one pairing and one exponentiation

in GT ; for the client, one pairing and two exponentiations in GT . Furthermore, the

client’s pairing can be pre-computed while waiting for the server’s reply.

Efficient key updates: The server can quickly and easily update the key kw for a

given ensemble selector w by replacing the table entry s = K[w] with a new, randomly

selected value s′, thereby changing kw = HMAC(msk, s) to k′w = HMAC(msk, s′).

It can then transmit to the client an update token of the form ∆w = k′w/kw ∈ Zq.

The client can update any stored PRF value Fkw(t,m) = e
(
H1(t), H2(m)

)kw by

raising it to ∆w; it is easy to see that Fkw(t,m)∆w = Fk′w(t,m).

The server can use the same mechanism to update msk, which requires generating

a new update token for each w and pushing these tokens to clients as needed.
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Unblinded variants. For deployments where obliviousness of messages is unnec-

essary, we can use a faster, unblinded variant of the Pythia protocol that dispenses

with pairings shown in Figure 3.3.

The only changes are that the client sends m to the server, there is no unblinding

of the server’s response, and, instead of computing

x̃← e(H1(t), x)

the server computes

x̃← H3(t‖m) .

All group operations in this unblinded variant are over a standard elliptic curve

group G = 〈g〉 of order q and we use a hash function H3 : {0, 1}∗ → G.

An alternative unblinded construction would be to have the server apply the Boneh-

Lynn-Shacham short signatures [62] to the client-submitted t‖m; verification of cor-

rectness can be done using the signature verification routine, and we can thereby

avoid ZKPs. This BLS variant may save a small amount of bandwidth.

These unblinded variants provide the same services (verifiability and efficient key

updates) and security with the obvious exception of the secrecy of the message m.

In some deployment contexts an unblinded protocol may be sufficient, for example

when the client can maintain state and submit a salted hash m instead of m directly.

In this context, the salt should be held as a secret on the client and never sent to

the server.

3.4 The Pythia Service Design

Table 3.1 gives the high-level API exposed by Pythia to a client. We now describe

its functions in terms of the lifecycle of an ensemble key. We assume a security

parameter λ specifying symmetric key lengths; a typical choice would be λ = 128.

We defer to later sections the underlying client-server protocols and to Section 3.5

details on key lifecycle management options, additional API calls for token manage-

ment and ensemble transfer, and a discussion of master secret key rotation.
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Command Description

Init(w [, options]) Create table entry K[w]
(for ensemble key kw)

Eval(w, t,m) Return PRF output
Fkw(t,m)

Reset(w, authtoken) Update K[w] (and thus
kw); return update token
∆w

GetAuth(w) Send one-time authenti-
cation token authtoken
to client

Table 3.1: The basic Pythia API.

Ensemble initialisation. To begin using the Pythia service, a client creates an

ensemble key for selector w by invoking Init(w [, options]). Pythia generates a fresh,

random table entry K[w]. Recall that ensemble key kw = HMAC(msk, K[w]). So Init

creates kw as a byproduct.

Ideally, w should be an unguessable byte string. (An easily guessed one may allow

attackers to squat on a key selector, thereby mounting a denial-of-service (DoS)

attack.) For some applications, as we explain below, this is not always possible. If

an ensemble key for w already exists, then the Pythia service returns an error to

the client. Otherwise, the client receives a message signifying that initialisation is

successful.

Init includes a number of options we detail in Section 3.5.

PRF evaluation. To obtain a PRF value, a client can perform an evaluation query

Eval(w, t,m), which returns Fkw(t,m). Here t is a tweak and m is a message. To

compute the PRF output, the client and server perform a one-round cryptographic

protocol (meaning a single message from client to server, and one message back). We

present details in Section 3.3, but remind the reader that t is visible to the server in

the client-server protocol invoked by Eval, while m is blinded.

The server rate-limits requests based on the tweak t, and can also raise an alert if

the rate limit is exceeded. We give example rate limiting policies in Section 3.7.
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Ensemble-key reset. A client can request that an ensemble key kw be reset

by invoking Reset(w). This reset is accomplished by overwriting K[w] with a fresh,

random value. The name service returns a compact (e.g., 256-bit) update token ∆w

that the client may use to update all PRF outputs for the ensemble. It stores this

token locally, encrypted under a public key specified by the client, as explained

below.

Note that reset results in erasure of the old value of kw. Thus a client that wishes

to delete an ensemble key kw permanently at the end of its lifecycle can do so with

a Reset call.

Reset is an authenticated call, and thus requires the following capability.

Authentication. To authenticate itself for API calls, the client must first in-

voke GetAuth, which has the server transmit an (encrypted) authentication token

authtoken to the client out-of-band. The token expires after a period of time deter-

mined by a configuration parameter in Pythia. Our current implementation uses

e-mail for this, see Section 3.5 for more details. Of course, in some deployments one

may want authentication to be performed in other ways, such as tokens dispensed by

administrators (for enterprise settings) or simply given out on a first-come-first-serve

basis for each ensemble identifier (for public Internet services).

3.4.1 Implementation

We implemented a prototype Pythia PRF service as a web application accessed over

HTTPS. All requests are first handled by an nginx web server with uWsgi as the

application server gateway that relays requests to a Django back-end. The PRF-Srv

functionality is implemented as a Django module written in Python. Storage for the

server’s key table and rate-limiting information is done in MongoDB.

We use the Relic cryptographic library [15] (written in C) with our own Python

wrapper. We use Barreto-Naehrig 254-bit prime order curves (BN-254) [23]. These

curves provide roughly 128-bits of security.
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In our experiments the service is run on a single (virtual) machine, but our software

stack permits components (web server, application sever, database) to be distributed

among multiple machines with updates to configuration files.

For the purpose of comparison, we implemented three variants of the Pythia service.

The first two are the unblinded protocols described in Section 3.3. In these two

schemes, the client sends m in the clear (possibly hashed with a secret salt value

first) and the server replies with y = H1(t‖m)k. In the first scheme, denoted UNB,

the server provides p = gk1 and a zero-knowledge proof where g1 is a generator of G1.

The second scheme, denoted BLS, uses a BLS signature for verification. The server

provides p = gk2 where g2 is a generator of G2 and the client verifies the response by

computing and comparing the values: e(y, g2) = e(H1(t‖m), p).

Our partially-oblivious scheme is denoted PO.

For the evaluation below we use a Python client implementing PRF-Cl for all three

schemes using the same libraries indicated above for the server and httplib2 to

perform HTTPS requests.

3.4.2 Performance

For performance and scalability evaluation we hosted our Pythia server implemen-

tation on Amazon’s Elastic Compute Cloud (EC2) using a c4.xlarge instance which

provides 8 virtual CPUs (Intel Xeon third generation, 2.9GHz), 15 GB of main

memory, and solid state storage. The web server, nginx, was configured with basic

settings recommended for production deployment including one worker process per

CPU.

Latency. We measured client query latency for each protocol using two clients:

one within the same Amazon Web Service (AWS) availability zone (also c4.xlarge)

and one hosted at the University of Wisconsin–Madison with an Intel Core i7 CPU

(3.4 GHz). We refer to the first as the LAN (local-area network) setting and the

second as the WAN (wide-area network) setting. In the LAN settings we used the

AWS internal IP address. All queries were made over TLS and measurements include

the time required for clients to blind messages and unblind results (PO), as well as
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Time (µs)
Group Group Op Exp Hashing

G1 5.7 175 77
G2 6.7 572 210
GT 9.8 1145 –

pairing operation (e) takes 1005 µs

Table 3.2: Time taken by each operation in BN-254 groups. Hashing times are for
64-byte inputs.

Server Op Time (ms)

Table 1.2
Rate-limit 0.9

UNB BLS PO

Sign 0.3 0.3 1.5
Prove 0.5 0.3 2.5

Client Op UNB BLS PO

Blind - - 0.3
Unblind - - 1.2
Verify 0.9 2.0 4.0

Table 3.3: Computation time for major operations to perform a PRF evaluation. Ta-
ble retrieves K[w] from database; Rate-limit updates rate-limiting record in database;
and Sign generates the PRF output;

verify proofs provided by the server (unless indicated otherwise). All machines used

for evaluation were running Ubuntu 14.04.

Microbenchmarks for group operations appear in Table 3.4.2 and Table 3.3 shows

the timing of individual operations that comprise a single PRF evaluation. All results

are mean values computed over 10,000 operations. These values were captured on

an EC2 c4.xlarge instance using the Python profiling library line profiler. The most

expensive operations, by a large margin, are exponentiation in Gt and the pairing

operation. By extension, PO sign, prove, and verify operations become expensive.

We measured latencies averaged over 1,000 PRF requests (with 100 warmup re-

quests) for each scheme and the results appear in Table 3.4. Computation time

dominates in the LAN setting due to the almost negligible network latency. The

WAN case with cold connections (no HTTP KeepAlive) pays a performance penalty

due to the four round-trips required to set up a new TCP and TLS connection.

While even 400 ms latencies are not prohibitive in our applications, straightforward

engineering improvements would vastly improve WAN timing: using TLS session
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Latency (ms)
LAN WAN

Scheme Cold Hot No π Cold Hot No π

UNB 7.0 3.8 2.4 389 82 80
BLS 7.9 4.9 2.4 392 85 80
PO 14.9 11.8 5.2 403 96 84

RTT ping 0.1 82

Table 3.4: Average latency to complete a PRF-Cl with client-server communication
over HTTPS. LAN: client and server in the same EC2 availability zone. WAN:
server in EC2 US-West (California) and client in Madison, WI. Hot connections
made with HTTP KeepAlive enabled; cold connections with KeepAlive disabled. No
π: KeepAlive enabled; prove and verify computations are skipped.

resumption, using lower-latency secure protocol like QUIC [172], or even switching

to a custom UDP protocol (for an example one for oblivious PRFs, see [29]).

Throughput. We used the distributed load testing tool autobench to measure

maximum throughput for each scheme. We compare to a static page containing a

typical PRF response served over HTTPS as a baseline. We used two clients in the

same AWS region as the server. All connections were cold: no TLS session resumption

or HTTP KeepAlive. Results appear in Figure 3.4. The maximum throughput for a

static page is 2,200 connections per second (cps); UNB and BLS 1,400 cps; and PO

1,350 cps. Thus our Pythia implementation can handle a large number of clients on

a single EC2 instance. If needed, the implementation can be scaled with standard

techniques (e.g., a larger number of web servers and application servers on the front-

end with a distributed key-value store on the back-end).

Storage. Our implementation stores all ensemble pre-key table (K) entries and

rate-limiting information in MongoDB. A table entry is two 32 byte values: a SHA-

256 hash of the ensemble selector w and its associated value K[w]. In MongoDB

the average storage size is 195 bytes per entry (measured as the average of 100K

entries), including database overheads and indexes. This implementation scales easily

to 100 M clients with under 20 GB of storage.

To rate-limit queries, our implementation stores tweak values along with a counter

and a timestamp (to expire old entries) in MongoDB. Tweak values are also hashed

using SHA-256 which ensures entries are of constant length. In our implementation

each distinct tweak requires an average of 144 bytes per entry (including overheads
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Figure 3.4: Throughput of PRF-Srv requests and a static page request over HTTPS
measured using two clients and a server hosted in the same EC2 availability zone.
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and indexes). Note however that rate limiting entries are purged periodically as

counts are only required for one rate-limiting period. Our implementation imposes

rate-limits at hour granularity. Assuming a maximum throughput of 2,000 requests

per second, rate-limiting storage never exceeds 1 GB.

All told, with only 20 GB stored data, Pythia can serve over 100 M clients and

perform rate-limiting at hour granularity. Thus fielding a database for Pythia can

be accomplished on commodity hardware.

3.5 Additional Pythia API Details

Many Pythia-dependent services can benefit from additional API features and calls

beyond the primary ones discussed previously. (For example, the Pythia password

onion system in Section 3.7 uses the Transfer API call.) We detail these other API

features in this section.

Key-management options. The client can specify a number of options in the

call Init regarding management of the ensemble key kw. The client can provide a

contact email address to which alerts and authentication tokens may be sent. (If no

e-mail is given, no API calls requiring authentication are permitted at present and

no alerts are provided. Later versions of Pythia will support other authentication

and alerting methods.)

The client can specify whether kw should be resettable (default is “yes”). The client

can specify a limit on the total number of Fkw queries that should be allowed before

resetting K[w] (default is unlimited) and/or an absolute expiration date and time in

UTC at which point K[w] is deleted (default is no time-out). Either of these options

overrides the resettable flag. The client can specify a public key pkcl for a public-key

encryption scheme under which to encrypt authentication tokens and update tokens

(for Reset, Transfer, as described below, and for master secret key rotations). Finally,

the client can request that alerts be sent to the contact email address in the case

of rate limit violations. This option is ignored if no contact email is provided. The

options are summarised in Table 3.5.
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Selector option Description

Email Contact email for selector

Resettable Whether client-requested rota-
tions allowed

Limit Establish rate-limit per t

Time-out Date/time to delete kw
Public-key Key under which to encrypt and

store update and authentication
tokens

Alerts Whether to email contact upon
rate limit violation

Table 3.5: Optional settings for establishing key selectors in Pythia.

Command Description

Transfer(w,w′ [, options]) Creates new ensemble
w′; outputs update to-
ken ∆w→w′ ; resets kw

SendTokens(w, authtoken) Sends stored update to-
kens to client

PurgeTokens(w, authtoken) Purges all stored up-
date tokens for ensem-
ble w

Table 3.6: The Pythia API. The individual calls are explained in detail in the text.

Pythia also offers some additional API calls, given in Table 3.6, which we now

describe.

Ensemble transfer. A client can create a new ensemble w′ (with the same options

as in Init) while receiving an update token that allows PRF outputs under ensemble

w to be rolled forward to w′. This is useful for importing a password database to

a new server. The Pythia service returns an update token ∆w→w′ for this purpose

and stores it encrypted under pkcl. For the case w′ = w, this call also allows optional

updates on an existing ensemble w.

Update-token handling. The Pythia service stores update tokens encrypted

under pkcl, with accompanying timestamps for versioning. The API call SendTokens

causes these to be e-mailed to the client, while PurgeTokens causes update-token

ciphertexts to be deleted from Pythia.

Note that once an update token is deleted, old PRF values to which the token was not

applied become cryptographically erased — they become random values unrelated
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to any messages. A client can therefore delete the key associated with an ensemble

by calling Reset and PurgeTokens.

Master secret rotations. Pythia can also rotate its master secret key msk to a

new key msk′. Recall that ensemble keys are computed as kw = HMAC(msk, K[w]),

so rotation of msk results in rotation of all ensemble keys. To rotate to a new msk′,

the server computes kw for all ensembles w with entries in K, and stores δw encrypted

under pkcl. If no encryption key is set, then the token is stored in the clear. This is

a forward-security issue while it remains, but only for that particular key ensemble.

At this point msk is safe to delete. Clients can be informed of the key rotation via

e-mail.

Subsequent SendTokens requests will return the resulting update token, along with

any other stored update tokens for the ensemble. If multiple rotations occur be-

tween client requests, then these can be aggregated in the stored update token for

each ensemble. This is trivial if they are stored in the clear (just multiply the new

token against the old) and also works if they are encrypted with an appropriately

homomorphic encryption scheme such as ElGamal [101].

3.6 Formal Security Analyses

We provide formal security notions for partially oblivious PRFs, and proofs of se-

curity relative to them for our scheme from Section 3.3. We note that we do not

cover all of the proposed features. In particular, we do not cover verifiability, nor

the security of key rotations as part of our security analysis.

A more comprehensive treatment of partially-oblivious functions in the context of

password hardening can be found in the follow-up work by Lai et al. [125], which we

discuss further in Section 3.9.

Partially-oblivious PRFs. A partially oblivious PRF protocol Π = (KeyGen,

PRF-Cl,PRF-Srv, F ) consists of the following. The key generation algorithm KeyGen

outputs a public key and private key pair (pk, sk). We assume that from sk one can

compute pk easily. The PRF-Srv algorithm takes input the secret key sk and a client
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request message (a bit string) and returns a server response message (another bit

string). The client algorithm PRF-Cl takes inputs a tweak t and message m, can

make a single call to PRF-Srv, and outputs a value. Finally we associate to the

protocol a keyed function Fsk : {0, 1}∗×{0, 1}∗ → {0, 1}∗. A scheme is correct if ex-

ecuting PRF-ClPRF-Srvsk(·)(t,m) with fresh coins matches Fsk(t,m) with probability

one. In words, the protocol computes the appropriate function of t,m.

Bilinear pairing setups. Let G1,G2,GT be groups all of order p that have as-

sociated to them an admissible bilinear pairing e : G1 × G2 → GT . Recall that

for generators g1 ∈ G1, g2 ∈ G2, there exists a generator gT ∈ GT such that

e(gα1 , g
β
2 ) = gαβT for all α, β ∈ Zp. As shorthand for below we refer to a pairing

setup G = (g1, g2, gT ,G1,G2,GT , e) and assume some compact description of G as

a bit-string where appropriate.

The scheme. The partially-oblivious PRF at the core2 of our bilinear pairing

scheme from Section 3.3 is as follows for some fixed pairing setup G. Let H1 :

{0, 1}∗ → G1 and H2 : {0, 1}∗ → G2 be hash functions that we will later model

as random oracles.

Key generation KeyGen picks a random exponent sk and computes a public key

pk = gsk1 . The PRF-Cl(t,m) algorithm computes a mask r←$ Zp and sends t and

x = H2(m)r to the server. The PRF-Srv(sk, t, x) computes y = e(H1(t), x)sk and

a ZKP π that DLg1(pk) = DLx̃(y) where x̃ = e(H1(t), x). It sends pk, y, π to the

client, who verifies the ZKP, deletes it, and then outputs y1/r. The correctness of the

scheme follows from the correctness of the ZKP and the properties of the pairing.

The ZKP is used to ensure that a malicious server responds as per the protocol.

In the following security analyses we focus primarily on malicious clients, and for

simplicity analyse a simpler version of the protocol that omits the ZKP. The proofs

found below can be extended to the full protocol by applying the zero-knowledge

security of the proof systems that we use (i.e., use the zero-knowledge simulator to

produce fake, but realistic-looking to the client, proofs).

2For brevity we omit key selectors here, and instead focus on analysing security for a single key
instance. Assuming properly generated keys for each selector, one can show that security for a single
key instance implies security for many.

72



3.6 Formal Security Analyses

Game om-UNPAΠ

(pk, sk)←$ KeyGen

c← 0

(t1,m1, σ1), . . . , (t`,m`, σ`)←$APRF-Srv

if ∃i 6= j . (ti,mi) = (tj ,mj) then

return false

return (∧i(σi = Fsk(ti,mi)) ∧ c < `)

PRF-Srv(t, Y )

c← c+ 1

return PRF-Srvsk(t, Y )

Figure 3.5: Security game for one-more unpredictability.

3.6.1 Unpredictability Security

We define a one-more unpredictability security notion. It modifies one-more unforge-

ability [160] to be suitable for the setting of unpredictable functions (as opposed to

publicly verifiable signatures). The game is shown in Figure 3.5. We associate to

any protocol Π, adversary A, and query number q the one-more-unpredictability

advantage defined as

Advom-unp
Π,q (A) = Pr

[
om-UNPAΠ,q ⇒ true

]
.

The probability here (and for games defined later below) is over all random coins

used by the procedures and the adversary. The event refers to the probability that

the value returned by the main procedure is true. In words, the definition requires

that an adversary cannot produce ` outputs of the PRF using less than ` queries

on partially-blinded inputs to the server. One can easily extend this notion to deal

with full blinded inputs as well, but we will not need this.

This notion of security is sufficient for Pythia in applications where the output of

the protocol is not stored, but rather used as an unforgeable credential such as with

our hardened Brainwallet application (Section 3.8).

The security of our scheme is based on the following one-more bilinear computational

Diffie-Hellman (BCDH) problem, an extension of the one-more CDH assumption

given by Boldyreva [56]. To the best of our knowledge this assumption is new, but
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Game om-CDHBG

sk←$ Zp

qh, q1,t, q2,t ← 0

(i1, j1, σ1), . . . , (i`, j`, σ`)←$ATarg1,Targ2,Help(G, gsk1 )

if qh ≥ ` then

return false

if ∃α . (iα > q1,t) ∨ (jα > q2,t) then

return false

if ∃α 6= β . (iα, jα) = (iβ , jβ)

return false

return ∀α . e(Xiα , Yjα)sk = σα

Targ1

q1,t ← q1,t + 1

Xq1,t ←$ G1

return Xq1,t

Targ2

q2,t ← q2,t + 1

Yq2,t ←$ G2

return Yq2,t

Help(Z)

qh ← qh + 1

return Zsk

Figure 3.6: Security game for a one-more BCDH assumption for bilinear pairing
setting G = (g1, g2, gt,G1,G2,GT , e).

it is a straightforward adaptation of previous one-more assumptions [32, 56] to our

setting. For a pairing setup G, game om-CDHG is defined in Figure 3.6. In words,

the adversary gets a group element gsk1 ∈ G1 as well as target oracles Targ1,Targ2

that return random group elements in G1,G2 respectively. Finally the adversary

can query a helper oracle Help that raises GT elements to the k. To win, it must

compute ` values e(Xi, Yj)
sk for ` larger than the number of helper queries and

each Xi, Yj a unique pair of (distinct) values returned by the target oracle. Let

Advom-bcdh
G (B) = Pr

[
om-CDHBG ⇒ true

]
.

We have the following theorem establishing the one-more unpredictability of our

scheme The proof is essentially identical to the proof of Boldyreva’s blind signa-

tures [56].

Theorem 3. Let Π be the simplified partially oblivious PRF protocol for a pairing

setup G and H1, H2 modelled as random oracles. Then for any one-more unpre-

dictability adversary A making at most q PRF-Srv queries, we give in the proof

below a one-more CDH adversary B such that
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Advom-unp
Π (A) ≤ Advom-bcdh

G (B),

where B runs in time that of A plus O(q ) group operations.

Proof. We assume without loss of generality that A never repeats a query to ei-

ther random oracle and makes a random oracle H1(ti) and H2(mi) query for each

(ti,mi, σi) triple it outputs. The adversary B will work as follows when given inputs

G, X and access to oracles Targ1,Targ2,Help. First, it runs A. Whenever A makes

an H1(t) query, B queries Targ1 to obtain a G1-element that we will denote X[t],

sets ct to be the number of H1 queries so far (including the current), and returns

X[t] to A. Whenever A makes an H2(m) server query, B queries Targ2, obtains a

G2-element that we will denote Y [m], sets dm to be the number of H2 queries so far

(including the current), and returns Y [m] to A. Whenever A makes a PRF-Srv(t, Y )

query, the adversary B computes Z ← e(H1(t), Y ), and then queries Z to its helper

oracle Help to obtain a value σ ∈ GT . It returns σ to A.

Eventually A outputs a series of triples (t1,m1, σ1), . . . , (tq,mq, σq). At this point

adversary B outputs the sequence of pairs (ct1 , dm1 , σ1), . . . , (cmq , dmq , σq).

Suppose A wins its game. Then it made at most q− 1 queries to PRF-Srv and so B
makes at most q− 1 queries to Help. It is also the case that all predictions by A are

for unique tag, message pairs, meaning that B’s output will also be for unique pairs

of targets. Finally, it is clear that correct predictions σi are also BCDH solutions.

3.6.2 Pseudorandomness Security

Unpredictability security, like unforgeability, is not sufficient in all applications. In

particular, it could be that a protocol produces unforgeable outputs but each out-

put leaks everything about the message. So in our use of Pythia for storage of

hardened password hashes we need something more. Ideally we would prove a ver-

sion of oblivious PRF security suitably adapted for the partially oblivious setting.

However, we do not believe our schemes can be proven secure relative to such no-

tions since they require “programming” the PRF outputs. One might adapt our

schemes to meet them, but the most efficient adaptation — considering instead

F̃k(t,m) = H(t‖m‖e(H1(t), H2(m))k) as in [117] — prevents one from performing
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key updates. At the same time, we could find no attacks that exploit the algebraic

structure revealed by storing the unhashed output. This leaves the question of what

level of security can be proven about our scheme.

We introduce a new notion called one-more PRF security. Intuitively for a scheme

that meets it, an attacker that interacts q − 1 times with PRF-Srv still cannot

distinguish one more evaluation of Fk from a random point. This appears to capture

the security properties we require in the web server compromise case: even if the

adversary breaks in, it can only distinguish from random points as much of the

stored hardened hashes as queries to PRF-Srv.

To build up some intuition towards a formal notion, consider giving an adversary

two oracles. The first is a real-or-random function oracle RoR and the second is an

oracle for the server’s implementation of the protocol PRF-Srv. In a normal PRF

game one would simply have RoR reply either always with Fk(t,m) upon query t,m

or always with a fresh random point. (Assume the adversary never repeats a query

to RoR.) But this game is trivial to win because the adversary can simply use the

PRF-Srv oracle to compute Fk(t,m) and check if it matches the value returned by

RoR(t,m). We might want to somehow restrict queries to PRF-Srv but there seems

no way to do this given the ability of clients to blind their messages.

Instead we take a different route, adapting the concept of one-more unpredictability

to a pseudorandomness setting. Let Π be a partially-oblivious PRF protocol. The

game om-PRFΠ is defined in Figure 3.7. It gives the adversary a challenge oracle

RoR to which it can query (t,m) pairs. The oracle flips a fresh challenge bit and

responds accordingly. We restrict attention to adversaries that never repeat a query

to RoR. Finally the adversary gets access to a PRF-Srv oracle. The adversary’s task

is to determine all of the challenge bits, and we measure this by asking that it guess

the XOR of them. This XOR measure is borrowed from the multi-instance security

notions3 of Bellare, Ristenpart, and Tessaro [33]. We associate to an adversary A
and Π the advantage measure defined by

Advom-prf
Π (A) =

∣∣2 · Pr
[
om-PRFAΠ ⇒ true

]
− 1
∣∣ .

3Our one-more notions are not measuring multi-instance security in the sense of [33] as the same
key underlies all challenges.
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Game om-PRFAΠ,ν

(pk, k)←$ KeyGen

q, c← 0

(i1, . . . , i`, b
′)←$ARoR,PRF-Srv

if ` > q OR c ≥ ` then

return false

if ∃α 6= β . iα = iβ then

return false

return b′ =
⊕̀
α=1

~b[iα]

RoR(t,m)

q ← q + 1

~b[q]←$ {0, 1}
Z1 ← Fk(t,m)

Z0←$ Rng

return Z~b[i]

PRF-Srv(t, Y )

c← c+ 1

return PRF-Srvk(t, Y )

Figure 3.7: Security game for one-more pseudorandomness.

Note that for any correct protocol Π there exists an efficient adversary that can

win the game with probability 1/2 by querying RoR once on (1, t,m) for arbitrary

t,m and outputting (1, b′) for randomly chosen b′. Hence the advantage measure is

scaled as shown. The use of XOR ensures that even if one can solve q− 1 challenges

(e.g., using the PRF-Srv oracle) determining b′ for q challenges requires gaining some

advantage over the remaining challenge bit.

Relationship with PRF security. This one-more PRF notion is a strict strength-

ening of the conventional PRF security. Consider the following formulation of PRF

security due originally to Goldreich, Goldwasser and Micali [111]. An adversary A
is given access to two oracles, one that returns Fk(t,m) on query t,m of their choos-

ing, and one that upon query t∗,m∗ of the adversary’s choosing flips a bit b and

returns either Fk(t
∗,m∗) or a random point according to the bit. We allow A to

make multiple queries to the first oracle but only a single to the second.

We now sketch a proof showing that PRF security as defined above is implied by

one-more PRF security. Consider any such PRF adversary A against Fk(t,m). We

can build a one-more PRF adversary B whose advantage upper bounds A’s PRF

advantage, as follows. To any Fk(t,m) query by A, the adversary B first queries

t,m to its own RoR oracle and also runs PRF-Cl(t,m) using its PRF-Srv oracle in

order to compute Fk(t,m). It determines the challenge bit for this RoR query and

returns Fk(t,m). When A makes a query to its second oracle, the challenge oracle,

adversary B queries its RoR oracle and returns the result. When A outputs a bit

b′, the adversary B outputs b′ XOR’d with each of the already-solved challenge bits.
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It is easy to analyse this formally and show that B wins whenever A would in the

PRF game.

Relationship with unpredictability. Showing that one-more PRF security is

strictly stronger than one-more unpredictability is straightforward. Consider an ad-

versary A who computes ` tuples (ti,mi, σi), where σi = F (ti,mi), and c < ` queries

to PRF-Srv. An adversary B can use A to win the om-PRF game with the same

advantage by forwarding queries to the corresponding oracle, and wins the game by

setting bi based on whether RoR(ti,mi) = σi.

However, given a one-more unpredictable function F , the function F ′(t,m) :=

F (t,m)‖m is still unpredictable, but can be trivially distinguished.

Analysing our scheme. We now analyse the security of our partially-oblivious

PRF scheme from Section 3.3. To do so we introduce a new hardness assumption

that is a generalisation of the bilinear Decisional Diffie-Hellman (BDDH) assumption

underlying the conventional PRF security of Fk(t,m) = e(H1(t), H2(m))k. (The

latter is a corollary of a result due to Boneh and Waters [63].) The new assumption

is analogous to the one-more BCDH assumption given above.

Fix some pairing setting G = (g1, g2, gt,G1,G2,GT , e) and refer to the game shown

in Figure 3.8. The game tasks the adversary B in distinguishing one more BDDH

instance than the number of helper queries it makes. That is, the adversary is given

a value gk1 and target oracles Targ1,Targ2 which give back random points in G1 and

G2. The adversary can query a challenge oracle Chal(i, j), which gives back either

e(X,Y )k for X,Y each being previously returned by the respective target oracles

(if the challenge bit is one) or gives back a random point Z ∈ GT (if the challenge

bit is zero). Later we will often allow an adversary to query Chal(X,Y ), with the

implied meaning hopefully obvious. The helper oracle returns Zk for any queried Z,

effectively allowing the attacker to trivially solve a single BDDH instance. We define

advantage of an adversary B against a setup G by

Advom-cdh
G (B) =

∣∣2 · Pr
[
om-CDHBG ⇒ true

]
− 1
∣∣
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Game om-CDHBG

k←$ Zp

qch, q1,t, q2,t, c← 0

(i1, . . . , i`, b
′)←$ BChal,Targ1,Targ2,Help(G, gk1 )

if ` > qchORc ≥ ` then

return false

if ∃α 6= β . iα = iβ then

return false

return b′ =
⊕̀
α=1

~b[iα]

Chal(i, j)

if q1,t < iORq2,t < j then

return ⊥
qch ← qch + 1

~b[qch]←$ {0, 1}
Z1 ← e(g1, g2)γ1[i]·γ2[j]·k

Z0←$ GT
return Zqch

Targ1

q1,t ← q1,t + 1

γ1[q1,t]←$ Zp

return g
γ1[q1,t]
1

Targ2

q2,t ← q2,t + 1

γ2[q2,t]←$ Zp

return g
γ2[q2,t]
2

Help(Z)

c← c+ 1

return Zk

Figure 3.8: Game for the one-more BDDH assumption for bilinear pairing setting
G = (g1, g2, gt,G1,G2,GT , e).

Note that if B makes two Targ queries, makes a single Chal(1, 1), and never uses

Help, then this is exactly the classic BDDH assumption. Thus this assumption is

stronger than BDDH. Results from [65] and [67] suggest that one-more problems of

this type are possibly easier, but the verdict is still out.

We have the following theorem.

Theorem 4. Let Π be the partially-oblivious PRF scheme for pairing setup G and

with H1, H2 modelled as random oracles. Let adversary A be a one-more PRF ad-

versary making q queries to RoR(·, ·), h1 queries to H1, h2 queries to H2, and c < q

queries to PRF-Srv. Then we give in the proof below a one-more BDDH adversary

B such that

Advom-prf
Π (A) ≤ Advom-cdh

G (B) .
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Adversary B runs in time that of A plus O(h1 + h2 + c) group or pairing operations,

makes at most q challenge queries, c helper queries, h1 queries to Targ1 and h2

queries to Targ2.

Proof. This proof follows much the same steps as the one-more unpredictable proof

given previously. As before, we assume without loss of generality that A makes all

queries to H1 and H2 at the start, and never makes redundant queries. We construct

an adversary B for the om-PRF game as shown in Figure 3.9.

Adversary B responds to any query to HSim1(t) with a point X[t] ∈ G1, where X[t]

is sampled from Targ1. Similarly, for queries to HSim2(m), B returns a point Y [m]

sampled from Targ2.

Whenever A queries RoRSim(t,m), B calls the challenge oracle Chal(X[t], Y [m]),

and returns the response to A. Notice that this challenge precisely matches the

expected real or random challenge.

Furthermore, on queries (t, Y ) to SrvSim, B computes e(H1(t), Y ), and submits this

value to the Help oracle.

In this way, B accurately simulates all queries in the om-PRF game.

Finally, suppose A outputs a tuple (i1, i2, . . . , i`) and a bit b′. Then B outputs the

same tuple, and bit. If A wins its game, then it has distinguished ` real or random

instances of the PRF, with c < ` queries to the PRF-Srv oracle. It is easy to see

that B has also distinguished ` challenges with c < ` queries to the Help oracle.

3.6.3 Relationship with Fully Oblivious PRFs

Jarecki et al. [117] propose a universally composable model of verifiable, oblivious

pseudorandom functions. This model is close to the functionality required for our

PRF service. However, these constructions do not support key updates because hash

functions are applied to several values in the course of the protocol. Hashing destroys

any algebraic structure that could be exploited to enable key rotation.
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adversary BChal,Targ,Help(G,K)

pk ← e(g1,K)

(i1, . . . , i`, b
′)←$ARoRSim,SrvSim,HSim1,HSim2(pk)

return (i1, . . . , i`, b
′)

RoRSim(t,m)

return Chal(X[t], Y [m])

HSim1(t)

X[t]← Targ1()

return X[t]

HSim2(m)

Y [m]← Targ2()

return Y [m]

SrvSim(t, Y )

c← c+ 1

return Help(e(X[t], Y ))

Figure 3.9: Adversary B used in proof of Theorem 4.

We informally summarise the ideal functionality Fv-OPRF of the Jarecki et al. model

as follows:

1. First, Fv-OPRF performs the key-generation and parameter registering functions

(for example, distributing public keys).

2. A user U submits a message x and a server S to evaluate the message. Com-

munication is initiated with the server S.

3. The oblivious PRF protocol takes place between U and S. This is equivalent

to the PRF-Srv protocol.

4. When both U and S have finished communicating, a flag is generated which

denotes whether the verifiable property is satisfied.

5. U learns the value y which is set to be the output of the PRF on x.

Moreover, the following must hold:

• The output y should be indistinguishable from a randomly chosen value.

• The server S evaluates inputs on at most as many points which are received

by U .
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This is a simplified version of the functionality from [117], where it is described

in the universal composability framework. Under the UC framework, adversarial

capabilities include statically corrupting both users and servers, and complete control

over the communication channel.

The security is measured by the probability that an environment can distinguish

whether it is interacting with the real world (as defined above), or a simulated

version of the ideal world.

Using this simplified version, we prove the following.

Proposition 1. Let Fv-OPRF be a verifiable, oblivious PRF as described above, and

let Π be the partially oblivious PRF derived from Fv-OPRF. Then for any adversary

A against the one-more pseudorandomness of Π we construct an adversary B such

that

∣∣∣∣Advom-prf
Π,q (A)− 1

2

∣∣∣∣ ≤ Advvoprf
Fv-OPRF

(B).

Proof. (Sketch) For every query to the PRF-Srv oracle from A, B simulates the same

functionality in the v-OPRF game. For the RoR queries, the v-OPRF adversary

chooses to return either the actual evaluation of the query, or a random value with

probability 1/2.

If B is interacting with the ideal world, then all RoR queries will be random, even

though half of the queries are ‘real’. In this case, A cannot win with probability

better than 1/2.

On the other hand, if B is interacting with the simulation, then half of the RoR

queries are true evaluations of the function Fv-OPRF. Therefore, this is an accurate

simulation of the om-PRF game, and A wins with probability Advom-prf
Π,q (A).

Therefore, if A wins, then B assumes it must be the real world, and distinguishes

the two with the desired probability.

This result is unsurprising and not coincidental. Both definitions target the same

security notion. However, when attempting to extend our constructions into the UC
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model described by Jarecki et al., we encounter an issue: without the final random

oracle, we are unable to force the PRF-Srv queries to match up with the correct

outputs.

On the other hand, we claim that wrapping the PRF-Srv response in a hash function

as in the Jarecki et al. constructions, then the following is true:

Conjecture 1. Let Π be a partially oblivious PRF, H be a hash function modelled as

a random oracle, and Π′ be the functionality derived by matching the functionality

of Π to a vOPRF. The final output is H(t,m, Fk(t,m)).

Then for all adversaries A, we can construct an adversary B such that

Advvoprf
Π′ (A) ≤

∣∣∣∣Advom-unp
Π (B)− 1

2

∣∣∣∣ .
The intuition is that due to the unpredictability of Π, the random oracle outputs of

H can be programmed to correspond to PRF outputs in the correct way.

3.7 Password Onions

Web servers and other systems frequently store passwords in hashed form. A pass-

word onion is the result of additionally invoking a PRF service to harden the hash. In

currently suggested onions, one sequentially combines local hashing and application

of the PRF service.

We now present a service that we have implemented on top of Pythia for manag-

ing password onions. First, we describe the limitations of contemporary systems as

exemplified by a recently disclosed architecture employed by Facebook [150]. Then

we show how our password-onion system, which was easily engineered on top of

Pythia, can address these limitations.

In what follows, we use the term “client” or “web server” to denote the server

performing authentication and storing derived values from passwords and “PRF

server” to denote the Pythia service.
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PW-Onion(pw)

h1 ← MD5(pw)

sa←$ {0, 1}160

h2 ← HMAC[SHA-1](h1, sa)

h3 ← PRF-Cl(h2) = HMAC[SHA-256](h2,msk)

h4 ← scrypt(h3, sa)

h5 ← HMAC[SHA-256](h4)

Figure 3.10: The Facebook password onion. PRF-Cl(h2) invokes the Facebook PRF
service HMAC[SHA-256](h2,Ks) with PRF-service secret key Ks.

3.7.1 Facebook Password Onion

An example of a contemporary system, used by Facebook, is given in Figure 3.10.

This figure is of “archaeological” interest. It appears that vulnerabilities in MD5 led

to the addition of a layer of processing under SHA-1; when vulnerabilities were found

in SHA-1, Facebook then added layers of SHA-256. As we explain later, full-blown

replacement of MD5 and SHA-1 with SHA-256 was not easily accomplished. Their

PRF service applies HMAC using a service-held secret and returns the result. In this

architecture, an adversary that compromises the web server and the password hashes

it stores must still mount an online attack against the PRF service to compromise

accounts. This is a big advance on the hashing-only practices that are commonly

used.

The Facebook architecture nevertheless has some shortcomings. It is easy to see

from Figure 3.10 that Facebook’s system, like most contemporary PRF services,

lacks several important features present in Pythia. One is message privacy: the

Facebook PRF service applies HMAC to h2. This is the salted hash of the password,

and so learning the salt as well as compromising the PRF service suffices to re-enable

offline brute-force attacks. This threat is avoided by Pythia due to blinding.

Another feature is batch key updates. In fact, the Facebook PRF service does not

permit autonomous key updates at all, in the sense of an update to msk that can

be propagated into PRF output updates. Should the client (password database) be

compromised, the only way to reconstitute a hash in an existing password onion is to

wait until a user logs in and furnishes pw. It is not clear whether the Facebook PRF

service performs granular rate-limiting, although no such capability is indicated
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in [149]. Pythia, as we shall see, addresses all of these issues by design in our

password onion system.

The Facebook onion also presents a subtle performance issue. By applying crypto-

graphic primitives serially, the time to hash a password equals the time for local

computations, call it tlocal, plus the time for the round-trip PRF service call, call

it tprf . An attacker that compromises the web service and PRF service incurs no

network latency, and thus may gain a considerable advantage in guessing time over

an honest web server. In our Pythia-based password onion service, we address this

issue by observing that it is possible to avoid serialisation of key derivation func-

tions on the web server and the PRF service call. That is, we introduce in our

Pythia-based service the idea of parallelisable password onions.

3.7.2 Pythia Password Onion

The onion algorithm we construct for Pythia is shown in Figure 3.11. For Pythia,

the output of PRF-Cl is an element of a group GT . To use this service, a web server

stores (h, sa) upon password registration; it verifies a proffered password pw′ by

checking that UpParOnion(w, sa, pw′) = h. Written out we have that:

h = uz = e(H1(sa), H2(pw))kwz.

This design ensures that the key update functions in the Pythia API may be used

to update onions as well. For example, to update an ensemble key kw to k′w, the

service computes and furnishes to the web server an update token ∆w = k′w/kw.

The web server may compute h∆w for each stored value h.

The client also computes a password-based key-derivation function (PBKDF) of their

own, representing the algorithm they would have traditionally used on the client-

side. This ensures that even a full compromise of the PRF service and password

database results in security degrading gracefully to that of the password hashing

algorithm.

Parallelisation. Password verification here is parallelisable in the sense that z and

u may be computed independently and then combined. Such parallel implementation
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UpParOnion(w, sa, pw)

z ← PBKDF(pw, sa)

u← PRF-Cl(w, sa, pw)

h← uz

return (h, sa)

Figure 3.11: An updatable, parallelisable password onion. PRF-Cl returns elements
of a group G. The value w is a unique PRF-service identifier for the web server (e.g.,
a random 256-bit string) and sa is a random per-user salt value.

of the onion achieves a password verification latency of max{tlocal, tprf} (plus a single

exponentiation), as opposed to tlocal + tprf in a serialised implementation.

A web server generally aims to achieve a verification latency equal to some latency

target T that is high enough to slow offline brute-force attacks, but low enough not

to burden users. For a parallelised onion a web server can meet its latency target by

setting tlocal, tprf ≈ T . At the same time an offline attacker that has compromised

the web server and Pythia must perform about tlocal+tF > T work to check a single

password guess, where tF is the computation time of Fkw (i.e., tprf minus network

latency). An attacker can parallelise, but her total work still goes up relative to the

serial onion approach for the same latency target T .

We estimate the security improvement of parallel onions over serial onions using our

benchmarks from Section 3.4.2. We fix a login latency budget of T = 300 ms. This

is the default setting for Python’s bcrypt and scrypt modules, though all PBDKFs

are tunable so one can choose T to be any value desired. The latency costs for

a Pythia query with hot connections are 12 ms (LAN) and 96 ms (WAN). If one

performs computations serially with a fixed T then PBKDF computations need to

be reduced by 4% (LAN) and 32% (WAN) compared to the parallel approach. In the

event that the Pythia server and password database are compromised, the serial

onion enables speedup of offline dictionary attacks by the same percentages.

Rate limiting and logging. The transparency of tweaks enables the Pythia

PRF service in this setting to execute any of a wide range of rate-limiting policies

with per-account visibility (in contrast to what may be in Facebook an account-

blind PRF service). As an example demonstrating the flexibility of our architecture,

in our implementation Pythia performs a tiered rate-limiting: for a given account
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(t), it limits queries to at most 10 per hour per account, and at most 300 per month.

(In expectation, guessing a random 4-digit PIN would require 1.4 years under this

policy.) It logs violations of these thresholds. In a production environment, it could

also send alerts to security administrators.

We emphasize that a wide range of other rate-limiting policies is possible. We also

point out that Pythia’s rate limiting supplements that normally implemented at

the web server for remote login requests. Pythia performs rate limiting and may

issue alerts even if the web server is compromised.

Key update. The key update calls in the Pythia API, and the ability to ro-

tate either kw or msk efficiently, propagates up to the password onion service. Key

updates instantly invalidate the web server’s existing password database—a useful

capability in case of compromise. A compromised database becomes useless to an

attacker attempting to recover passwords, even with the ability to query Pythia.

Using a key update token, the web server can then recover from compromise by

refreshing its database.

We created a client simulator with MongoDB and the mongoengine Python module.

With this we benchmarked key updates with 100,000 database entries. The client

requested a key update from Pythia, received the update token ∆w, and updated

each database entry. The complete update required less than 1 ms per entry, and

terminated in less than 97 seconds for all 100,000 entries. For a larger database we

assume updates scale linearly, and so an update for 1 million users completes in

under 17 minutes.

The web server need not lock the database to perform updates; it can execute them

in parallel with normal login operations. Doing so does require additional versioning

information for each entry to indicate the version of kw (in the simplest form, whether

or not it has received the latest update).

Database replication. Password databases can be replicated with a key transfer

using the API call Transfer (see Section 3.5). In this replication each new copy uses a

unique ensemble key selector and thus a cryptographically independent PRF service

key. Given a database w, {(sa1, h1), . . . , (sad, hd)} with d users, the administrator
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invokes Transfer(w,w′) to obtain a token ∆w→w′ . The client computes h′i = h
∆w→w′
i

for i ∈ [1 . . . d] and sends the new database (w′, {(sa1, h
′
1), . . . , (sad, h

′
d)}) to the new

server. The client does not modify salt values, which allows Pythia to link online

guessing attacks carried out from multiple compromised web servers. Replication in

this way costs database copy time plus 1 ms per entry to apply the update token,

thus making it in the order of minutes for hundreds of thousands of users.

3.8 Hardened Brainwallets

Brainwallets are a common but dangerous way to secure accounts in the popular

cryptocurrency Bitcoin, as well as in less popular cryptocurrencies such as Lite-

coin. Here we describe how the Pythia service can be used directly as a means to

harden brainwallets. This application showcases the ease with which a wide variety

of applications can be engineered around Pythia.

How brainwallets work. Every Bitcoin account has an associated private / pub-

lic key pair (sk, pk). The private key sk is used to produce digital (ECDSA) signa-

tures that authorise payments from the account. The public key pk permits verifi-

cation of these signatures. It also acts as an account identifier; a Bitcoin address is

derived by hashing pk (under SHA-256 and RIPEMD-160) and encoding it (in base

58, with a check value).

Knowledge of the private key sk equates with control of the account. If a user loses

a private key, she therefore loses control over her account. For example, if a high

entropy key sk is stored exclusively on a device such as a mobile phone or laptop, and

the device is seized or physically destroyed, the account assets become irrecoverable.

Brainwallets offer an attractive remedy for such physical risks of key loss. A brain-

wallet is simply a password or passphrase P memorised by a Bitcoin account holder.

The private key sk is generated directly from P . Thus the user’s memory serves as

the only instrument needed to authorise access to the account.

In more detail, the passphrase is typically hashed using SHA-256 to obtain a 256-

bit string sk = SHA-256(P ). Bitcoin employs ECDSA signatures on the secp256k1

elliptic curve; with high probability (≈ 1 − 2−126), sk is less than the group order,
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and a valid ECDSA private key. (Some websites employ stronger key derivation

functions. For example, WrapWallet by keybase.io [142] derives sk from an XOR of

each of PBKDF2 and scrypt applied to P and permits use of a user-supplied salt.)

Since a brainwallet employs only P as a secret, and does not necessarily use any

additional security measures, an attacker that guesses P can seize control of a user’s

account. As account addresses are posted publicly in the Bitcoin system (in the

“blockchain”), an attacker can easily confirm a correct guess. Brainwallets are thus

vulnerable to brute-force, offline guessing attacks. Numerous incidents have come to

light showing that brainwallet cracking is a significant threat [64].

3.8.1 A Pythia-hardened Brainwallet

Pythia offers a simple, powerful means of protecting brainwallets against offline

attack. Hardening P in the same manner as an ordinary password yields a strong

key P̃ that can serve in lieu of P to derive sk.

To use Pythia, a user chooses a unique identifier id, e.g., her e-mail address, an

account identifier acct, and a passphrase P . The identifier acct might be used to

distinguish among Bitcoin accounts for users who wish to use the same password for

multiple wallets. The client then sends (w = id, t = id‖acct,m = P ) to the Pythia

service to obtain the hardened value Fkw(t,m) = P̃ . Here, id is used both as an

account identifier and as part of the salt. Message privacy in Pythia ensures that

the service learns nothing about P . Then P̃ is hashed with SHA-256 to yield sk. The

corresponding public key pk and address are generated in the standard way from

sk [46].

Pythia forces a would-be brainwallet attacker to mount an online attack to compro-

mise an account. Not only is an online attack much slower, but it may be rate-limited

by Pythia and detected and flagged. As the Pythia service derives P̃ using a user-

specific key, it additionally prevents an attacker from mounting a dictionary attack

against multiple accounts. While in the conventional brainwallet setting, two users

who make use of the same secret P will end up controlling the same account, Pythia

ensures that the same password P produces distinct per-user key pairs.
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Should an attacker compromise the Pythia service and stealmsk and K, the attacker

must still perform an offline brute-force attack against the user’s brainwallet. So in

the worst case, a user obtains security with Pythia at least as good as without it.

Additional security issues. A few subtle security issues deserve brief discussion:

• Stronger KDFs: To protect against brute-force attack in the event of Pythia

compromise, a resource-intensive key-derivation function may be desirable, as

is normally used in password databases. This can be achieved by replacing the

SHA-256 hash of P̃ above with an appropriate KDF computation, or alterna-

tively using an onion approach described in Section 3.7.

• Denial-of-service: By performing rate-limiting, Pythia creates the risk of tar-

geted denial-of-service attacks against Bitcoin users. As Bitcoin is pseudony-

mous, use of an e-mail address as a Pythia key-selector suffices to prevent

such attacks against users based on their Bitcoin addresses alone. Users also

have the option, of course, of using a semi-secret id. A general DoS attack

against the Pythia service is also possible, but of similar concern for Bitcoin

itself [47].

• Key rotation: Rotation of an ensemble key kw (or the master key msk) induces

a new value of P̃ and thus a new (sk, pk) pair and account. A client can handle

such rotations in the näıve way: transfer funds from the old address to the new

one.

• Catastrophic failure of Pythia: If a Pythia service fails catastrophically, e.g.,

msk or K is lost, then in a typical setting, it is possible simply to reset users’

passwords. In the brainwallet case, the result would be loss of virtual-currency

assets protected by the server—a familiar event for Bitcoin users [143]. This

problem can be avoided, for instance, using a threshold implementation of

Pythia, as mentioned in Section 3.8.2 or storing sk in a secure, offline manner

like a safe-deposit box for disaster recovery.
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3.8.2 Threshold Security

In order to gain both redundancy and security, we give a threshold scheme that can

be used with a number of Pythia servers to protect a secret under a single password.

This scheme uses Shamir’s secret sharing threshold scheme [178] and gives (k, n)

threshold security. That is, initially, n Pythia servers are contacted and used to

protect a secret s, and then any k servers can be used to recover s and any adversary

that has compromised fewer than k Pythia servers learns no information about s.

Preparation. The client chooses an ensemble key selector w, tweak t, password

P , and contacts n Pythia servers to compute qi = PRF-Cli(w, t, P ) mod p for

0 < i ≤ n. The client selects a random polynomial of degree k − 1 with coefficients

from Z
∗
p where p is a suitably large prime: f(x) =

∑k−1
j=0 x

jaj . Let the secret s = a0.

Next the client computes the vector Φ = (φ1, ..., φn) where φi = f(i)− qi. The client

durably stores the value Φ, but does not need to protect it (it’s not secret). The

client also stores public keys pi from each Pythia server to validate proofs when

issuing future queries.

Recovery. The client can reconstruct s if she has Φ by querying any k Pythia

servers giving k values qi. These qi values can be applied to the corresponding Φ

values to retrieve k distinct points that lie on the curve f(x). With k points on a

degree k−1 curve, the client can use interpolation to recover the unique polynomial

f(x), which includes the curve’s intercept a0 = s.

Security. If an adversary is given Φ, w, t, the public keys pi, a ciphertext based on

s, and the secrets from m < k Pythia servers, the adversary has no information that

will permit her to verify password guesses offline. Compared to [178], this scheme

reduces the problem of storing n secrets to having access to n secure OPRFs and

durable (but non-secret) storage of the values Φ and public keys pi.

Verification. Verification of server responses occurs within the Pythia protocol.

If a server is detected to be dishonest (or goes out of service), it can be easily

replaced by the client without changing the secret s. To replace a Pythia server that
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is suspected to be compromised or detected as dishonest, the client reconstructs the

secret s using any k servers, executes Reset operations on all remaining servers: this

effects a cryptographic erasure on the values Φ and f(x). The client then selects a

new, random polynomial, keeping a0 fixed, and generates and stores an updated Φ′

that maps to the new polynomial.

3.9 Related Work

We investigated a number of designs based on existing cryptographic primitives

in the course of our work, though as mentioned none satisfied all of our design

goals. Conventional PRFs built from block ciphers or hash functions fail to offer

message privacy or key rotation. Consider instead the construction H(t‖m)kw for H :

{0, 1}∗ → G a cryptographic hash function mapping onto a group G. This was shown

secure as a conventional PRF by Naor, Pinkas, and Reingold assuming decisional

Diffie-Hellman (DDH) is hard in G and when modeling H as a random oracle [152].

It supports key rotations (in fact it is key-homomorphic [60]) and verifiability can be

handled using non-interactive zero-knowledge proofs (ZKP) as in Pythia. But this

approach fails to provide message privacy if we submit both t and m to the server

and have it compute the full hash.

One can achieve message-hiding by using blinding: have the client submit X =

H(t‖m)r for random r ∈ Z|G| and the server reply with Xkw as well as a ZKP

proving this was done correctly. The resulting scheme is originally due to Chaum

and Pedersen [78], and suggested for use by Ford and Kaliski [107] in the context of

threshold password-authenticated secret sharing (see also [19, 69, 137, 88]). There

an end user interacts with one or more blind signature servers to derive a secret

authentication token. If G comes equipped with a bilinear pairing, one can dispense

with ZKPs. The resulting scheme is Boldyreva’s blinded version [56] of BLS signa-

tures [62]. However, neither approach provides granular rate limiting when blinding

is used: the tweak t is hidden from the server. Even if the client sends t as well, the

server cannot verify that it matches the one used to compute X and attackers can

thereby bypass rate limits.

To fix this, one might use Ford-Kaliski with a separate secret key for each tweak.

This would result in having a different key for each unique w, t pair. Message privacy
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is maintained by the blinding, and querying w, t,H(t′‖m)r for t 6= t′ does not help an

attacker circumvent per-tweak rate limiting. But now the server-side storage grows

in the number of unique w, t pairs, a client using a single ensemble w must now track

N public keys when they use the service for N different tweaks, and key rotation

requires N interactions with the PRF server to get N separate update tokens (one

per unique tweak for which a PRF output is stored). WhenN is large and the number

of ensembles w is small as in our password storage application, these inefficiencies

add significant overheads.

Another issue with the above suggestions is that their security was only previously

analysed in the context of one-more unforgeability [160] as targeted by blind sig-

natures [77] and partially blind signatures [2]. (Some were analysed as conventional

PRFs, but that is in a model where adversaries do not get access to a blinded server

oracle.) The password onion application requires more than unforgeability because

message privacy is needed. (A signature could be unforgeable but include the entire

message in its signature, and this would obviate the benefits of a PRF service for

most applications.) These schemes, however, can be proven to be one-more PRFs,

the notion we introduce, under suitable one-more DDH style assumptions using the

same proof techniques found in Section 3.6.

Fully oblivious PRFs [108] and their verifiable versions [117] also do not allow

granular rate limiting. We note that the Jarecki, Kiayias, and Krawczyk construc-

tions of verifiable OPRFs [117] in the RO model are essentially the Ford-Kaliski

protocol above, but with an extra hash computation, making the PRF output

H ′(t‖m‖H(t‖m)kw). Our notion of one-more unpredictability captures the neces-

sary requirements on the inner cryptographic component, and might modularise

and simplify their proofs. Their transform is similar to the unique blind signature to

OPRF transformation of Camenisch, Neven, and shelat [70]. None of these efficient

oblivious PRF protocols support key rotations (with compact tokens or otherwise)

as the final hashing step destroys updatability.

The setting of capture-resilient devices shares with ours the use of an off-system

key-holding server and the desire to perform cryptographic erasure [136, 135]. They

only perform protocols for encryption and signing functionalities, however, and not

(more broadly useful) PRFs. They also do not support granular rate limiting and

master secret key rotation.
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Our security analysis only covers the core cryptographic components of Pythia,

and future work would be needed to show the security of the API. Recent work

relevant in this area is [179].

Our main construction coincides with prior ones for other contexts. The Sakai,

Ohgishi, and Kasahara [174] identity-based non-interactive key exchange protocol

computes a symmetric encryption key as e(H1(ID1), H2(ID2))k for k a master se-

cret held by a trusted party and ID1 and ID2 being the identities of the parties.

See [156] for a formal analysis of their scheme. Boneh and Waters suggest the same

construction as a left-or-right constrained PRF [63]. The settings and their goals

are different from ours, and in particular one cannot use either as-is for our applica-

tions. Näıvely one might hope that returning the constrained PRF key H1(t)kw to

the client suffices for our applications, but in fact this totally breaks rate-limiting.

Security analysis of our protocol requires new techniques, and in particular security

must be shown to hold when the adversary has access to a half-blinded oracle —

this rules out the techniques used in [156, 63].

Key-updatable encryption [60] and proxy re-encryption [54] both support key rota-

tion, and could be used to encrypt password hashes in a way supporting compact

update tokens and that prevents offline brute-force attacks. But this would require

encryption and decryption to be handled by the hardening service, preventing mes-

sage privacy.

Verifiable PRFs as defined by [145, 133, 92, 91] allow one to verify that a known

PRF output is correct relative to a public key. Previous verifiable PRF constructions

are not oblivious, let alone partially oblivious.

Threshold and distributed PRFs [146, 152, 91] as well as distributed key distribution

centres [152] enable a sufficiently large subset of servers to compute a PRF output,

but previous constructions do not provide the granular rate limiting and key ro-

tation we desire. However, it is clear that there are situations where applications

would benefit from a threshold implementation of Pythia, for both redundancy

and distribution of trust, as discussed in Section 3.8.2 for the case of brainwallets.

Since the publication of our work, there have been a number of works expanding on

the idea of using a partially-oblivious PRF for password hardening. Two particularly

interesting works are by Schneider et al. [177], and by Lai et al. [125]. The former
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proposed weakening the requirement for the service to copy the functionality of a

PRF, and instead considers a new primitive called partially-oblivious commitment

schemes.

The work by Lai et al. in [125] extends both our work, and the previously described

work by Schneider et al., resulting in a more comprehensive set of security notions

for password hardening. Furthermore, [125] introduces a new password hardening

construction capable of meeting these security notions, and furthermore satisfies the

design goals set forwards in our original work.

However, one limitation of both of these approaches, is the lack of flexibility. Al-

though password hardening is one particularly attractive use case for a PRF service

such as Pythia, the existence of a generic PRF service could potentially have greater

use cases in the future than initially envisioned.

3.10 Conclusion

We presented the design and implementation of Pythia, a modern PRF service.

Prior works have explored the use of remote cryptographic services to harden keys

derived from passwords or otherwise improve resilience to compromise. Pythia,

however, transcends existing designs to simultaneously support granular rate lim-

iting, efficient key rotation, and cryptographic erasure. This set of features, which

stems from practical requirements in applications such as enterprise password stor-

age, proves to require a new cryptographic primitive that we refer to as a partially

oblivious PRF.

Unlike a (fully) oblivious PRF, a partially oblivious PRF causes one portion of an

input to be revealed to the server to enable rate limiting and detection of online

brute-force attacks. We provided a bilinear-pairing based construction for partially

oblivious PRFs that is highly efficient and simple to implement (given a pairings

library), and also supports efficient key rotations. A formal proof of security is unob-

tainable using existing techniques (such as those developed for fully oblivious PRFs).

We thus gave new definitions and proof techniques that may be of independent in-

terest.
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We implemented Pythia and show how it may be easily integrated it into a range of

applications. We designed a new enterprise “password onion” system that improves

upon the one recently reported in use at Facebook. Our system permits fast key

rotations, enabling practical reactive and proactive key management, and uses a

parallelisable onion design which, for a given authentication latency, imposes more

computational effort on attackers after a compromise. We also explored the use of

Pythia to harden brainwallets for cryptocurrencies.
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Chapter 4

Key Rotation for Authenticated En-
cryption
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In this chapter, we study the area of key rotation for encrypted data, stored by a third

party. We take a twofold approach, developing new security notions strengthening

prior work, and propose a new updatable encryption scheme which achieves our

strongest notions.

The proposed security notions are the result of a careful balancing process, on one

side is the desire to produce the strongest possible security notion, while on the other

side we balance against realistic concerns, and achievable goals.

4.1 Introduction

To cryptographically protect data while stored, systems use authenticated encryp-

tion (AE) schemes that provide strong message confidentiality as well as ciphertext
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integrity. The latter allows detection of active attackers who manipulate ciphertexts.

When data is stored for long periods of time, good key management practice dictates

that systems must support key rotation: moving encrypted data from an old key to

a fresh one. Indeed, key rotation is mandated by regulation in some contexts, such

as the payment card industry data security standard (PCI DSS) that dictates how

credit card data must be secured [157]. Key rotation can also be used to revoke old

keys that are compromised, or to effect data access revocation.

Deployed approaches to key rotation. Systems used in practice typically sup-

port a type of key rotation using a symmetric key hierarchy. Amazon’s Key Man-

agement Service [18], for example, enables users to encrypt a plaintext M under

a fresh data encapsulation key via Cdem = Enc(Kd,M) and then wrap Kd via

Ckem = Enc(K,Kd) under a long-term key K owned by the client. Here Enc is an au-

thenticated encryption (AE) scheme. By analogy with the use of hybrid encryption

in the asymmetric setting, we refer to such a scheme as a KEM/DEM construc-

tion, with KEM and DEM standing for key and data encapsulation mechanisms,

respectively; we refer to the specific scheme as AE-hybrid.

The AE-hybrid scheme then allows a simple form of key rotation: the client picks a

fresh K ′ and re-encrypts Kd as C ′kem = Enc(K ′,Dec(K,Ckem)). Note that the DEM

key Kd does not change during key rotation. When deployed in a remote storage

system, a client can perform key rotation just by fetching from the server the small,

constant-sized ciphertext Ckem, operating locally on it to produce C ′kem, and then

sending C ′kem back to the server. Performance is independent of the actual message

length. The Google Cloud Platform [112] uses a similar approach to enable key

rotation.

To our knowledge, the level of security provided by this widely deployed AE-hybrid

scheme has never been investigated, let alone formally defined in a security model

motivated by real-world security considerations. It is even arguable whether AE-

hybrid truly rotates keys, since the DEM key does not change. Certainly it is unclear

what security is provided if key compromises occur, one of the main motivations for

using such an approach in the first place. On the other hand, the scheme is fast

and requires only limited data transfer between the client and the data store, and

appears to be sufficient to meet current regulatory requirements.
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Updatable encryption. Boneh, Lewi, Montgomery, and Raghunathan (BLMR) [61]

(the full version of [60]) introduced another approach to enabling key rotation that

they call updatable encryption. An updatable encryption scheme is a symmetric

encryption scheme that, in addition to the usual triple of (KeyGen,Enc,Dec) algo-

rithms, comes with a pair of algorithms ReKeyGen and ReEnc. The first, ReKeyGen,

generates a compact rekey token given the old and new secret keys and a target

ciphertext, while the second, ReEnc, uses a rekey token output by the first to rotate

the ciphertext without performing decryption. For example, AE-hybrid can be seen

as an instance of an updatable encryption scheme in which the rekey token output

by ReKeyGen is C ′kem and where ReEnc simply replaces Ckem with C ′kem. BLMR

introduced an IND-CPA-style security notion in which adversaries can additionally

obtain some rekey tokens. Their definition is inspired by, but different from, those

used for CCA-secure proxy re-encryption schemes [73]. Given its obvious limitations

when it comes to key rotation, it is perhaps surprising that the AE-hybrid con-

struction provably meets the BLMR confidentiality notion for updatable encryption

schemes.

BLMR also introduced and targeted a second security notion for updatable encryp-

tion, called ciphertext independence. It demands that a ciphertext and its rotation

to another key are identically distributed to a ciphertext and a rotation of another

ciphertext (for the same message). The intuition is that this captures the idea that

true key rotation should refresh all randomness used during encryption. This defi-

nition is not met by the AE-hybrid construction above. But it is both unclear what

attacks meeting their definition would prevent, and, relatedly, whether more intuitive

definitions exist.

BLMR gave a construction for an updatable encryption scheme and claimed that it

provably meets their two security definitions. Their construction cleverly combines

an IND-CPA KEM with a DEM that uses a key-homomorphic PRF [152, 61] to

realise a stream cipher. This enables rotation of both the KEM and the DEM keys,

though the latter requires a number of operations that is linear in the plaintext

length. Looking ahead, their proof sketch has a bug and we provide strong evidence

that it is unlikely to be fixable. Moreover, BLMR do not yet target or achieve any

kind of authenticated encryption goal, a must for practical use.
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Our contributions. We provide a systematic treatment of AE schemes that sup-

port key rotation without decryption, a.k.a. updatable AE.

Specifically, we provide a new security notion for confidentiality, UP-IND, that

is strictly stronger than that of BLMR [61], a corresponding notion for integrity,

UP-INT (missing entirely from BLMR but essential for practice), and a new no-

tion called re-encryption indistinguishability (UP-REENC) that is strictly stronger

and more natural in capturing the spirit of “true key rotation” than the ciphertext

indistinguishability notion of BLMR.

Achieving our UP-REENC notion means that an attacker, having access to both a

ciphertext and the secret key used to generate it, should not be able to derive any

information that helps it attack a rotation of that ciphertext. Thus, for example, an

insider with access to the encryption keys at some point in time but who is then

excluded from the system cannot make use of the old keys to learn anything useful

once key rotation has been carried out on the AE ciphertexts. Teasing out the correct

form of this notion turns out to be a significant challenge in our work.

Armed with this set of security notions, we go on to make better sense of the land-

scape of constructions for updatable AE schemes. Table 4.1 summarises the security

properties of the different schemes that we consider. Referring to this table, our

security notions highlight the limitations of the AE-hybrid scheme: while it meets

the confidentiality notion of BLMR, it only satisfies our UP-IND and UP-INT no-

tions when considering a severely weakened adversary who has no access to any

compromised keys. We propose an improved construction, KSS, that satisfies both

notions for any number of compromised keys and which is easily deployable via small

adjustments to AE-hybrid. KSS uses a form of secret sharing to embed key shares

in the KEM and DEM components to avoid the issue of leaking the DEM key in

the updating process, and adds a cryptographic hash binding the KEM and DEM

components to prevent mauling attacks. These changes could easily be adopted by

practitioners with virtually no impact on performance, while concretely improving

security.

However, the improved scheme KSS cannot satisfy our UP-REENC notion, because

it still uses a KEM/DEM-style approach in which the DEM key is never rotated.

The BLMR scheme might provide UP-REENC security, but, as noted above, its

security proof contains a bug which we consider unlikely to be fixable. Indeed, we
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show that proving the BLMR scheme confidential would imply that one could also

prove circular security [48, 68] for a particular type of hybrid encryption scheme

assuming only the key encapsulation is IND-CPA secure. Existing counter-examples

of IND-CPA secure, but circular insecure, schemes [3, 76] do not quite rule out such

a result. But the link to the very strong notion of circular security casts doubt on the

security of this scheme. One can easily modify the BLMR scheme to avoid this issue,

but even having done so the resulting encryption scheme is still trivially malleable

and so cannot meet our UP-INT integrity notion.

We therefore provide another new scheme, ReCrypt, meeting all three of our security

notions: UP-IND, UP-INT and UP-REENC. We take inspiration from the previous

constructions, especially that of BLMR: key-homomorphic PRFs provide the ability

to fully rotate encryption keys; the KEM/DEM approach with secret sharing avoids

the issue of leaking the DEM key in the updating process; and finally, adding a

cryptographic hash to the KEM tightly binds the KEM and DEM portions and

prevents ciphertext manipulation. We go on to instantiate the scheme using the

Random Oracle Model (ROM) key-homomorphic PRF from [152], having the form

H(M)k, where H is a hash function into a group in which DDH is hard. This

yields a construction of an updatable AE scheme meeting all three of our security

notions in the ROM under the DDH assumption. We report on the performance

of an implementation of ReCrypt using elliptic curve groups, concluding that it is

performant enough for practical use with short plaintexts. However, because of its

reliance on exponentiation, ReCrypt is still orders of magnitude slower than our KSS

scheme (achieving only UP-IND and UP-INT security). This, currently, is the price

that must be paid for true key rotation in updatable encryption.

Summary. In summary, the main contributions of this chapter are:

• To provide the first definitions of security for AE supporting key rotation

without exposing plaintext.

• To explain the gap between existing, deployed schemes using the KEM/DEM

approach and “full” refreshing of ciphertexts.

• To provide the first proofs of security for AE schemes using the KEM/DEM

approach, namely AE-hybrid and KSS.
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Scheme Section Tokens CT dep. UP-IND UP-INT UP-REENC

AE-hybrid† 4.5.1 uni-dir. depend. 7 7 7

KSS∗ 4.5.3 uni-dir. depend. 3 3 7

XOR-KEM∗ 4.6 bi-dir. indep. 3 7 7

BLMR 4.8 uni-dir. depend. 7 7 7

ReCrypt∗ 4.9 uni-dir. depend. 3 3 3

Table 4.1: Summary of schemes studied. † In-use by practitioners today. * Introduced
in this work.

• To detail the first updatable AE scheme, ReCrypt, that fully and securely

refreshes ciphertexts by way of key rotations without exposing plaintext. We

implement a prototype and report on microbenchmarks, showing that rotations

can be performed in less than 10µs per byte.

4.2 Updatable AE

We turn to formalising the syntax and semantics of AE schemes supporting key ro-

tation. Our approach extends that of Boneh et al. [61] (BLMR), the main syntactical

difference being that we allow rekey token generation, re-encryption, and decryption

to all return a distinguished error symbol ⊥. This is required to enable us to later

cater for integrity notions. We also modify the syntax so that ciphertexts include two

portions, a header and a body. In our formulation, only the former is used during

generation of rekey tokens (while in BLMR the full ciphertext is formally required).

Definition 13 (Updatable AE). An updatable AE scheme is a tuple of algorithms

Π = (KeyGen, Enc, ReKeyGen, ReEnc, Dec) with the following properties:

• KeyGen()→ k. Outputs a secret key k.

• Enc(k,m)→ C. On input a secret key k and message m, outputs a ciphertext

C = (C̃, C) consisting of a ciphertext header C̃ and ciphertext body C.

• ReKeyGen(k1, k2, C̃) → ∆1,2,C̃ . On input two secret keys, k1 and k2, and a

ciphertext header C̃, outputs a rekey token or ⊥.

• ReEnc(∆1,2,C̃ , (C̃, C)) → C2. On input a rekey token and ciphertext, outputs

a new ciphertext or ⊥. We require that ReEnc is deterministic.
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Figure 4.1: Interaction between client and cloud during a ciphertext-dependent
update. Client retrieves a small ciphertext header, and runs ReKeyGen to produce
a compact rekey token ∆. The cloud uses this token to re-encrypt the data. At the
end of the update, the data is encrypted using k2, and cannot be recovered using
only k1.

• Dec(k,C) → m. On input a secret key k and ciphertext C outputs either a

message or ⊥.

Of course we require that all algorithms are efficiently computable. Note that, in

common with [61], our definition is not in the nonce-based setting that is widely used

for AE. Rather, we will assume that Enc is randomised. We consider this sufficient

for a first treatment of updatable AE; it also reflects common industry practice as

per the schemes currently used by Amazon [18] and Google [112]. We relegate the

important problem of developing a parallel formulation in the nonce-based setting

to future work. Similarly, we assume that all our AE schemes have single decryption

errors, cf. [57], and we do not consider issues such as release of unverified plaintext,

cf. [11], tidiness, cf. [151] and length-hiding, cf. [155].

Correctness. An updatable AE scheme is correct if decrypting a legitimately gen-

erated ciphertext reproduces the original message. Of course, legitimate ciphertexts

may be rotated through many keys, complicating the formalisation of this notion.

Definition 14 (Correctness). Fix an updatable AE scheme Π. For any message m

and any sequence of secret keys k1, . . . kT output by running KeyGen T times, let

C1 = (C̃1, C1) = Enc(k1,m) and recursively define for 1 ≤ t < T

Ct+1 = ReEnc(ReKeyGen(kt, kt+1, C̃t), Ct).

Then Π is correct if Dec(kT , CT ) = m with probability 1.
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Compactness. We say that an updatable AE scheme is compact if the size of both

ciphertext headers and rekeying tokens are independent of the length of the plaintext.

In practice the sizes should be as small as possible, and for the constructions we

consider these are typically a small constant multiple of the key length.

Compactness is important for efficiency of key rotation. Considering the abstract

architecture in Figure 4.1, header values must be available to the key server when

rekey tokens are generated. Typically this will mean having to fetch them from

storage. Likewise, the rekey token must be sent back to the storage system. Note

that there are simple constructions that are not compact, such as the one that sets

C̃ to be a standard authenticated encryption of the message and in which ReKeyGen

decrypts C̃, re-encrypts it, and outputs a “rekeying token” as the new ciphertext.

Ciphertext-dependence. As formulated above, updatable AE schemes require

part of the ciphertext, the ciphertext header C̃, in order to generate a rekey token.

We will also consider schemes for which C̃ is the empty string, denoted ε. We will

restrict attention to schemes for which encryption either always outputs C̃ = ε or

never does. In the former case we call the scheme ciphertext-independent and, in the

latter case, ciphertext-dependent. When discussing ciphertext-independent schemes,

we will drop C̃ from notation, e.g., writing ∆i,j instead of ∆i,j,C̃ .

However, we primarily focus on ciphertext-dependent schemes which appear to of-

fer more flexibility and achieve stronger security guarantees (though it is an open

question whether a ciphertext-independent scheme can achieve our strongest se-

curity notion). We do propose a very lightweight ciphertext-independent scheme

included in Section 4.6, but we show it achieves strictly weaker confidentiality and

integrity notions. One can generically convert a ciphertext-independent scheme into

a ciphertext-dependent one, simply by deriving a ciphertext-specific key using some

unique identifier for the ciphertext. We omit the formal treatment of this trivial

approach.

Directionality of rotations. Some updatable AE schemes are bidirectional, mean-

ing rekey tokens can be used to go forwards or backwards.
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We only consider bi-directionality to be a feature of ciphertext-independent schemes.

Formally, we say that a scheme is bidirectional if there exists an efficient algorithm

Invert(·) that produces a valid rekey token ∆j,i when given ∆i,j as input.

Schemes that are not bidirectional might be able to ensure that an adversary cannot

use rekey tokens to “undo” a rotation of a ciphertext. We will see that ciphertext-

dependence can help in building such unidirectional schemes, whereas ciphertext-

independent schemes seem harder to make unidirectional. This latter difficulty is re-

lated to the long-standing problem of constructing unidirectional proxy re-encryption

schemes in the public key setting.

Relationship to proxy re-encryption. Proxy re-encryption targets a different

setting than updatable encryption (or AE): the functional ability to allow a cipher-

text encrypted under one key to be converted to a ciphertext decryptable by another

key. The conversion should not leak plaintext data, but, unlike key rotation, it is not

necessarily a goal of proxy re-encryption to remove all dependency on the original

key, formalised as indistinguishability of re-encryptions (UP-REENC security) in

our work. For example, previous work [80, 115] suggests twice encrypting plaintexts

under different keys. To rotate, the previous outer key and a freshly generated outer

key is sent to the proxy to perform conversion, but the inner key is never modified.

Such an approach does not satisfy the goals of key rotation.

That said, any bidirectional, ciphertext-independent updatable AE ends up also

being usable as a symmetric proxy re-encryption scheme (at least as formalised

by [61]).

4.3 Motivating Scenarios

Fundamentally, updatable encryption schemes should maintain at minimum the

same level of security as regular authenticated encryption schemes. However, when

proposing security notions supporting key rotation, we need to consider the various

parties in the protocol, and possible compromise scenarios.

Here we detail some motivating examples to provide an intuition of desirable security

properties. We elaborate on a number of concerns which an effective key rotation
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must address. For each of these requirements, we identify where current mechanisms

are lacking, highlighting the need for a new encryption primitive.

4.3.1 Untrusted Server

In general, cloud service providers are trusted to act honestly in accordance with

their contractual obligations. A completely malicious service provider who simply

deletes all encrypted data is not considered within the scope of updatable encryption.

We consider the storage service to be a protocol participant who follows the protocol

honestly, but may attempt to infer additional information about, for example, the

plaintext or secret keys used by the client.

Therefore, we wish to capture attacks in which information is revealed either di-

rectly, or indirectly, from the cloud storage provider. This includes, for example, the

multitude of attacks ([166, 13, 183] to name a few) which are capable of retrieving

data used in co-located virtual machines. It also includes cloud providers that have

been compromised or compelled by law to reveal client information. As such, our

resultant security model permits the attacker access to legitimate ciphertexts.

This setting rules out trivial implementations which rely on the cloud to perform

encryption and decryption.

4.3.2 Client-Side Security

One consideration for performing proactive key rotations is whether the additional

risk introduced by the key rotation mechanism outweighs the risk present by using

the same cryptographic keys for a long time. This is a key principle in [22].

Therefore, it is important that the key rotation mechanism requires a minimal

amount of cryptographic computation by the client. Given that the client has al-

ready shown an affinity for outsourcing resources to the cloud, it is unlikely that

they will have the desire nor resources to perform this computation securely.

For example, using the naive re-encryption method – decrypting the entire ciphertext

and re-encrypting locally – results in regular intervals at which the data will be
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residing as plaintext. If a large corpus of ciphertext must be updated (megabytes or

more), performing all computations inside a hardware security module is likely not

feasible.

When designing our security models, we include the ability for the adversary to play

the role of the client in a key rotation, receiving all the information from the server

that the client would typically receive.

4.3.3 Key Revocation

There are many reasons for why key rotation is an important part of the long-term

security of encrypted data. Some examples can be found in [22]. In general, these

can be divided into two distinct concerns: to reduce the impact of compromised or

disclosure of keys; and to revoke legitimate access to data. Both scenarios require

recovering security after a particular party has had access to cryptographic keys

used.

A motivating example for this is used in [173]:

Consider an employee with access to sensitive documents necessary

for his work. One day, this employee is terminated and has his access

revoked. Now, this employee with insider knowledge of the organization’s

systems, and who has retained his old key, may attempt to penetrate the

database server and decrypt all the files that he once had access to.

Following on from the construction given in the introduction, and looking ahead to

Section 4.5, consider an updatable encryption scheme which uses a authenticated en-

cryption scheme π = (K, E ,D) and encrypts data via Enc(k1,m) = (E(k1, x), E(x,m)).

That is, a fresh data-encryption key x is generated on each encryption, which en-

crypts the message and is itself encrypted by the long-term key k1.

As we will see in Section 4.5, this scheme permits key rotation by simply re-encrypting

the encapsulated key x.

Therefore, an updated ciphertext is of the form (E(k2, x), E(x,m)). It is clear that

an adversary only with knowledge of k2 cannot recover the message m.
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However, a notable shortcoming of this scheme is that temporary access to a cipher-

text while in possession of the key allows the adversary to exfiltrate the encapsulated

key x. Since this value x is compact - usually linear in the security parameter - it is

significantly easier to store the value x instead of the ciphertext.

Furthermore, knowledge of x is sufficient to decrypt and retrieve the message m at

a later date, regardless of any subsequent re-encryptions. In practice, this scenario

is a realistic concern, since the client is unable to recover security after a temporary

breach.

This shows that while it is relatively easy to construct a scheme which appears to

perform key revocation efficiently, a more nuanced definition is needed to capture

the realities of key revocation scenarios.

This example forms the core of our strongest notion of updatable encyption, further

detailed in Section 4.7, and this example forms the basis of many of our construc-

tions.

Put together, these examples suggest a security model in which the adversary can

compromise both clients and servers, with access to keys and ciphertexts. As we will

see in the following section, capturing these abilities requires subtle definitions of

security.

4.4 Confidentiality and Integrity for Updatable Encryption

Updatable AE should provide confidentiality for messages as well as integrity of ci-

phertexts, even in the face of adversaries that obtain rekey tokens and re-encryptions,

and that can corrupt some number of secret keys. Finding definitions that rule out

trivial wins — e.g., rotating a challenge ciphertext to a compromised key, or obtain-

ing sequences of rekey tokens that allow such rotations — is delicate. We provide a

framework for doing so.

Our starting point will be a confidentiality notion which improves significantly upon

the previous notion of BLMR by including additional attack vectors, and strength-

ening existing ones.
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For ciphertext integrity, we develop a new definition, building on the usual INT-

CTXT notion for standard AE [31]. Looking ahead, we will target unidirectional

schemes that simultaneously achieve both UP-IND and UP-INT security.

We will follow a concrete security approach in which we do not strictly define se-

curity, but rather measure advantage as a function of the resources (running time

and number of queries) made by an adversary. Informally, schemes are secure if no

adversary with reasonable resources can achieve advantage far from zero.

4.4.1 Message Confidentiality

The confidentiality game UP-IND is shown in the leftmost column of Figure 4.2.

The adversary’s goal is to guess the bit b. Success implies that a scheme leaks

partial information about plaintexts. We parametrise the game by two values t and

κ. The game initialises t + κ secret keys, κ of which are given to the adversary,

and t are kept secret for use in the oracles. We label the keys by k1, . . . , kt for the

uncompromised keys, and by kt+1, . . . kt+κ for the compromised keys. We require at

least one uncompromised key, but do not necessarily require any compromised keys,

i.e. t ≥ 1 and κ ≥ 0. We leave consideration of equivalences between models with

many keys and few keys and between models with active and static key compromises

as interesting problems for future work.

The game relies on two subroutines InvalidRK and InvalidRE to determine if a re-

keygen and re-encryption query, respectively, should be allowed. These procedures

are efficiently computed by the game as a function of the adversarial queries and

responses. This reliance on the transcript we leave implicit in the notation to avoid

clutter. Different choices of invalidity procedures gives rise to distinct definitions of

security, and we explain two interesting ones in turn. Note that an invalid query

(as determined by InvalidRE) still results in the adversary learning the ciphertext

header, giving greater power to the adversary. We believe this to be an important

improvement both in practice and theoretically over previous models, which consider

only a partial compromise. The full compromise of a client results in the adversary

playing the role of the client in the key update procedure, during which the server

will return the ciphertext header. In practice, it is likely that an adversary who has

initially breached the client would use this access to query related services.
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UP-IND

b←$ {0, 1}
k1, . . . , kt+κ←$KeyGen()

b′←$AO(kt+1, . . . , kt+κ)

return (b′ = b)

Enc(i,m)

return Enc(ki,m)

ReKeyGen(i, j, C̃)

if InvalidRK(i, j, C̃) then return ⊥
∆i,j,C̃ ←$ReKeyGen(ki, kj , C̃)

return ∆i,j,C̃

ReEnc(i, j, (C̃, C))

∆i,j,C̃ ←$ReKeyGen(ki, kj , C̃)

C ′ = (C̃ ′, C
′
)← ReEnc(∆i,j,C̃ , (C̃, C))

if InvalidRE(i, j, C̃) then return C̃ ′

else return C ′

LR(i,m0,m1)

if i > t then return ⊥
C ←$Enc(ki,mb)

return C

UP-INT

win← false

k1, . . . , kt+κ←$KeyGen()

AO(kt+1, . . . , kt+κ)

return win

Enc(i,m)

return Enc(ki,m)

ReKeyGen(i, j, C̃)

return ReKeyGen(ki, kj , C̃)

ReEnc(i, j, (C̃, C))

∆i,j,C̃ ←$ReKeyGen(ki, kj , C̃)

C ′ ← ReEnc(∆i,j,C̃ , (C̃, C))

return C ′

Try(i, C)

if InvalidCTXT(i, C) then return ⊥
M ← Dec(ki, C)

if M = ⊥ then return ⊥
win← true

return M

Figure 4.2: Confidentiality and integrity games for updatable encryption security.
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Invalidity procedures. For the invalidity constraints used in UP-IND, we target

a strong definition, while preventing the adversary from trivially receiving a challenge

ciphertext re-encrypted to a compromised key.

We use the ciphertext headers to determine whether a ciphertext has been derived

from a challenge ciphertext. It is natural to use only the headers since these will

be processed by the client when performing an update. We define a procedure

DerivedLR(i, C̃) that outputs true should C̃ have been derived from the ciphertext

header returned by an LR query.

Definition 15 (LR-derived headers). We recursively define function DerivedLR(i, C̃)

to output true iff any of the following conditions hold:

• C̃ was the ciphertext header output in response to a query LR(i,m0,m1)

• C̃ was the ciphertext header output in response to a query ReEnc(j, i, C ′) and

DerivedLR(j, C̃ ′) = true

• C̃ is the ciphertext header output by running ReEnc(∆j,i,C̃′ , C
′) where ∆j,i,C̃′

is the result of a query ReKeyGen(j, i, C̃ ′) for which DerivedLR(j, C̃ ′) = true.

The predicate DerivedLR(i, C̃) is efficient to compute and can be computed locally by

the adversary. The most efficient way to implement it is to grow a look-up table T,

indexed by a key identifier and a ciphertext header, whose entries are sets of cipher-

texts. Any query to LR(i,m0,m1) updates the table by adding the returned cipher-

text to the set T[i, C̃] where C̃ is the oracle’s returned ciphertext header value. For a

query ReEnc(j, i, C ′), if T[j, C̃ ′] is not empty, then it adds the returned ciphertext to

the set T[i, C̃∗] for C̃∗ the returned ciphertext header. For a query ReKeyGen(j, i, C̃ ′)

with return value ∆j,i,C̃′ , apply ReEnc(∆j,i,C̃′ , C) for all ciphertexts C found in entry

T[j, C̃ ′] and add appropriate new entries to the table. In this way, one can maintain

the table in worst-case time that is quadratic in the number of queries and compute

in constant time DerivedLR(i, C̃) by simply checking if T[i, C̃] is non-empty. If any

call to ReKeyGen or ReEnc in DerivedLR or the main oracle procedure returns ⊥, then

the entire procedure returns ⊥.
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Note that DerivedLR relies on ReEnc being deterministic, a restriction we made in

Section 4.2. To complete the definition, we specify the invalidity procedures that use

DerivedLR as a subroutine:

• InvalidRK(i, j, C̃) outputs true if j > t and DerivedLR(i, C̃) = true. In words, the

target key is compromised and i, C̃ derives from an LR query.

• InvalidRE(i, j, C̃) outputs true if j > t and DerivedLR(i, C̃) = true. In words, the

target key is compromised and i, C̃ derives from an LR query.

We denote the game defined by using these invalidity procedures by UP-IND. We

associate to an UP-IND adversary A and scheme Π the advantage measure:

Advup-ind
Π,κ,t (A) = 2 · Pr

[
UP-INDAΠ,κ,t ⇒ true

]
− 1 .

This notion is very strong and bidirectional schemes cannot meet it.

Theorem 5. Let Π be a bidirectional updatable encryption scheme. Then there exists

an UP-IND adversary A that makes two queries and for which

Advup-ind
Π,κ,t (A) = 1,

for any κ ≥ 1 and t ≥ 1.

Proof. We explicitly define the adversary A. It makes a query to C1 = LR(1,m0,m1)

for arbitrary messages m0 6= m1 and computes locally Ct+1 = Enc(kt+1,m1). It

then makes a query ∆t+1,1,C̃t+1
= ReKeyGen(t + 1, 1, C̃t+1). It computes C ′ =

ReEnc(Invert(∆t+1,1,C̃t+1
, Ct+1, C1), C1) locally and then decrypts C ′ using kt+1. It

checks whether the result is m0 or m1 and returns the appropriate bit.

BLMR confidentiality. In comparison, we define invalidity procedures corre-

sponding to those in BLMR’s security notion.

• InvalidBLMRRK(i, j, C̃) outputs true if i ≤ t < j or j ≤ t < i and outputs false

otherwise. In words, the query is not allowed if exactly one of the two keys is

compromised.
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• InvalidBLMRRE(i, j, C̃) outputs true if j > t and false otherwise. In words, the

query is not allowed if the target key kj is compromised.

We denote the game defined by using these invalidity procedures by UP-IND-BI (the

naming will become clear presently). We associate to an UP-IND-BI adversary A,

scheme Π, and parameters κ, t the advantage measure:

Advup-ind-bi
Π,κ,t (A) = 2 · Pr

[
UP-IND-BIAΠ,κ,t ⇒ true

]
− 1 .

A few observations are in order. First, it is apparent that the invalidity procedures for

the BLMR notion are significantly stronger than ours, leading to a weaker security

notion: the BLMR procedures are not ciphertext-specific but instead depend only

on the compromise status of keys. We will show that this difference is significant. In

addition, the corresponding BLMR definition did not consider leakage of the cipher-

text header when InvalidBLMRRE returns true. Second, for ciphertext-independent

schemes in which C̃ = ε always, the BLMR definition coincides with symmetric proxy

re-encryption security (as also introduced in their paper [61]). Third, the BLMR con-

fidentiality notion does not require unidirectional security of rekey tokens because

it has the strong restriction of disallowing attackers from obtaining rekey tokens

∆i,j,C̃ with i > t (so the corresponding key is compromised), but with j < t (for

an uncompromised key). Thus, in principle, bidirectional schemes could meet this

notion, explaining our naming convention for the notion. Finally, the BLMR notion

does not require ciphertext-specific rekey tokens because the invalidity conditions

are based only on keys and not on the target ciphertext.

Detailed in Section 4.6 is a bidirectional scheme that is secure in the sense of

UP-IND-BI. This result and the negative result that no bidirectional scheme can

achieve UP-IND given above (Theorem 5) yields as a corollary that UP-IND-BI

security is strictly weaker than UP-IND security. This illustrates the enhanced

strength of our UP-IND security notion compared to the corresponding BLMR no-

tion, UP-IND-BI.

Given that bidirectional, ciphertext-independent schemes have certain advantages

in terms of performance and deployment simplicity, practitioners may prefer them

in some cases. For that flexibility, one trades off control over the specificity of rekey

tokens, which could be dangerous to confidentiality in some compromise scenarios.
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4.4.2 Ciphertext Integrity

We now turn to a notion of integrity captured by the game UP-INT shown in

Figure 4.2. The adversary’s goal is to submit a ciphertext to the Try oracle that

decrypts properly. Of course, we must exclude the adversary from simply resubmit-

ting valid ciphertexts produced by the encryption oracle, or derived from such an

encryption by way of re-encryption queries or rekey tokens.

In a bit more detail, in the Try oracle, we define a predicate InvalidCTXT which

captures whether the adversary has produced a trivial derivation of a ciphertext

obtained from the encryption oracle. This fulfils a similar role to that of the InvalidRE

and InvalidRK subroutines in the UP-IND game.

For the unidirectional security game UP-INT, we define InvalidCTXT(i, C = (C̃, C))

inductively, outputting true if any of the following conditions hold:

• i > t, i.e. ki is known to the adversary

• (C̃, C) was output in response to a query Enc(i,m)

• (C̃, C) was output in response to a query ReEnc(j, i, C ′) and furthermore

InvalidCTXT(j, C ′) = true

• (C̃, C) is the ciphertext output by running ReEnc(∆j,i,C̃′ , C
′) for C ′ = (C̃ ′, C

′
)

where ∆j,i,C̃′ was the result of a query ReKeyGen(j, i, C̃ ′) and furthermore

InvalidCTXT(j, C ′)) = true.

This predicate requires the transcript of queries thus far; to avoid clutter we leave

the required transcript implicit in our notation. The definition of InvalidCTXT is

quite permissive: it defines invalid ciphertexts as narrowly as possible, making our

security notion stronger. Notably, the adversary can produce any ciphertext (valid

or otherwise) using a corrupted key ki, and use the ReKeyGen oracle to learn a token

to update this ciphertext to a non-compromised key. Only the direct re-encryption

of the submitted ciphertext is forbidden.
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We associate to an updatable encryption scheme Π, an UP-INT adversary A, and

parameters κ, t the advantage measure:

Advup-int
Π,κ,t (A) = Pr

[
UP-INTAΠ,κ,t ⇒ true

]
.

4.5 Practical Updatable AE Schemes

We first investigate the security of updatable AE schemes built using the KEM/DEM

approach sketched in the introduction and Section 4.3. Such schemes are in widespread

use at present, for example in AWS’s and Google’s cloud storage systems [18, 112],

yet have received no formal analysis to date. We produce the AE-hybrid construction

as a formalism of this common practice.

Using the confidentiality and integrity definitions from the previous section, we dis-

cover that this construction offers very weak security against an adversary capable

of compromising keys. Indeed, we are only able to prove security when the number

of compromised keys κ is equal to 0. Given the intention of key rotation this is a

somewhat troubling result.

On a positive note, we show a couple of simple tweaks to the AE-hybrid which fix

these issues. The resultant scheme, named KSS, offers improved security at little

additional cost.

4.5.1 Authenticated Encryption

In the following constructions we make use of authenticated encryption (AE) schemes

which we define here.

Definition 16 (Authenticated encryption). An authenticated encryption scheme

π is a tuple of algorithms (K, E ,D). K is a randomised algorithm outputting keys.

We denote by Ek(·) the randomised algorithm for encryption by key k and by Dk(·)
decryption. Decryption is a deterministic algorithm and outputs the distinguished

symbol ⊥ to denote a failed decryption.
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In keeping with our definitional choices for updatable AE, we consider randomised

AE schemes rather than nonce-based ones.

We use the all-in-one authenticated encryption security definition from [171].

Definition 17 (Authenticated Encryption Security). Let π = (K, E ,D) be an au-

thenticated encryption scheme. Let Enc, Dec be oracles whose behaviours depends

on hidden values b ∈ {0, 1} and key k←$K. Enc takes as input a bit string m and

produces Ek(m) when b = 0, and produces a random string of the same length oth-

erwise. Dec takes as input a bit string C and produces Dk(C) when b = 0, and

produces ⊥ otherwise.

Let AE-RORAπ be the game in which an adversary A has access to the Enc and Dec

oracles and must output a bit b′. The game outputs true when b = b′. We require

that the adversary not submit outputs from the Enc oracle to the Dec oracle.

We define the advantage of A in the AE-ROR security game for π as:

Advae
π (A) = 2 · Pr

[
AE-RORAπ ⇒ true

]
− 1.

Unless otherwise stated, our AE schemes will be length-regular, so that the lengths

of ciphertexts depend only on the lengths of plaintexts. This ensures that the above

definition also implies a standard “left-or-right” security definition.

4.5.2 (In-)Security of AE-hybrid Construction

Figure 4.3 defines an updatable AE scheme, AE-hybrid, for any AE scheme π =

(K, E ,D). This is a natural key-wrapping scheme that one might create in the ab-

sence of security definitions. It is preferred by practitioners because key rotation

is straightforward and performant. Using this scheme means re-keying requires con-

stant time and communication, independent of the length of the plaintext. In fact, we

note that this scheme sees widening deployment for encrypted cloud storage services.

Both Amazon Web Services [18] and Google Cloud Platform [112] use AE-hybrid to

perform key rotations over encrypted customer data.
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Enc(k,m)

x←$K
C̃ ←$ E(k, x)

C ←$ E(x,m)

return (C̃, C)

ReKeyGen(k1, k2, C̃)

x = D(k1, C̃)

if x = ⊥ return ⊥
∆1,2,C̃ ←$ E(k2, x)

return ∆1,2,C̃

Dec(k, (C̃, C))

x = D(k, C̃)

if x = ⊥ return ⊥
m = D(x,C)

return m

KeyGen : return k←$K
ReEnc(∆1,2,C̃ , (C̃, C)) : return C′ = (∆1,2,C̃ , C)

Figure 4.3: Algorithms for the AE-hybrid updatable AE scheme.

We demonstrate severe limits of AE-hybrid: when keys are compromised confiden-

tiality and integrity cannot be recovered through re-encryption. Later we will demon-

strate straightforward modifications to AE-hybrid that allow it to recover both con-

fidentiality and integrity without impacting performance.

Theorem 6 (UP-IND Insecurity of AE-hybrid). Let π = (K, E ,D) be a symmetric

encryption scheme and Π be the updatable AE scheme AE-hybrid using π as defined

in Figure 4.3.

Then there exists an adversary A making two queries such that Advup-ind
Π,κ,t (A) = 1

for all κ ≥ 1 and t ≥ 1.

Proof. We construct a concrete adversary A satisfying the theorem statement.

A makes an initial query to LR(1,m0,m1) for distinct messages m0 6= m1 and

receives challenge ciphertext C∗ = (E(k1, x), E(x,mb)). A subsequently queries the

re-encryption oracle for ReEnc(1, t + 1, C∗). kt+1 is corrupted and thus InvalidRK

returns true, so the adversary receives the re-encrypted ciphertext header C̃ ′ =

E(kt+1, x).

The adversary decrypts x = D(kt1 , C̃
′), computes mb = D(x,C

∗
) and checks whether

mb = m0 or m1.

The best one can achieve with this scheme is to prove security when κ = 0, that

is, security is not degraded beyond the underlying AE scheme when the adversary
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does not obtain any compromised keys. However, such a weak security notion is not

particularly interesting, since the intention of key rotation is to recover security in

the face of key compromises.

Theorem 7 (UP-IND security of AE-hybrid with no key compromise). Let π =

(K, E ,D) be a symmetric encryption scheme and Π be the updatable AE scheme AE-

hybrid using π as defined above. Then for any adversary A for the game UP-IND,

there exists an adversary B for the AE security game where:

Advup-ind
Π,0,t (A) ≤ 2(t+ 1) · Advae

π (B)

for all t ≥ 1.

Proof. We argue using a series of games that the advantage of any adversary in

the UP-IND game for AE-hybrid is bounded by the advantage in the AE security

game for the underlying AE scheme π. The first game, G0, is the UP-IND game for

AE-hybrid using the underlying scheme π. For 1 ≤ i ≤ t, in game Gi we modify the

LR oracle by dropping one key ki, and instead replacing C̃ with a random string

of the same length (and store the C̃ and x value) used to answer the query. The

ReKeyGen and ReEnc oracles use these stored values to respond.

Let Si be the event that Gi outputs true. We claim that for 0 < i ≤ t, there exists

B such that:

|Pr[Si−1]− Pr[Si]| ≤ Advae
π (B).

We construct this B by replacing the random string selection for oracle queries with

key index i with calls to the Enc oracle in the AE security game for π. When the

hidden bit b̂ in the AE game is 0, then B perfectly simulates game Gi−1 for key ki

and when b̂ = 1, then B perfectly simulates game Gi.

Similarly, in game Gt+1 the ciphertext body C is replaced by a random string of the

same length and again we have:

|Pr[St]− Pr[St+1]| ≤ Advae
π (B).
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And we construct B in the same way as before, replacing C in the LR oracle with

a call to the AE encryption oracle. Depending on the value of the hidden bit in the

AE security game, either Gt or Gt+1 is perfectly simulated.

Combining our two claims above we see that:

|Pr[S0]− Pr[St+1]| ≤ (t+ 1) · Advae
π (B).

Finally, observe that the adversary in game Gt+1 learns nothing about the encrypted

message mb, since it is given only random strings. Hence Pr[St+1 ] = 1
2 and we

conclude:

Advup-ind
Π,0,t (A) = 2 · Pr[S0 ]− 1

= 2 · (Pr[S0]− Pr[St+1] + Pr[St+1 ])− 1

≤ 2(t+ 1) · Advae
π (B) .

Unsurprisingly, AE-hybrid is also trivially insecure in the UP-INT sense when κ ≥ 1.

Theorem 8 (UP-INT insecurity of AE-hybrid). Let π = (K, E ,D) be a symmetric

encryption scheme and Π be the updatable AE scheme AE-hybrid using π as defined

in Figure 4.3.

Then there exists an adversary A making two queries and one Try query such that

Advup-int
Π,κ,t (A) = 1 for all κ ≥ 1 and t ≥ 1.

Proof. We construct a concrete adversary A satisfying the theorem statement.

A first queries Enc(1,m) to obtain an encryption C = (E(k1, x), E(x,m)), and sub-

sequently queries ReEnc(1, t + 1, C), receiving the re-encrypted ciphertext C ′ =

(E(kt+1, x), E(x,m)). Since A has key kt+1, A recovers x = D(kt+1, C̃
′) by perform-

ing the decryption locally.
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Finally, A constructs the ciphertext C∗ = (C̃, E(x,m′)) for some m′ 6= m and queries

Try(1, C∗). Since C∗ is not derived from C and k1 is not compromised, UP-INT

outputs true.

As before, we can only prove UP-INT security of AE-hybrid when κ = 0.

Theorem 9 (UP-INT Security of AE-hybrid with no key compromise). Let π =

(K, E ,D) be a symmetric encryption scheme and Π be the AE-hybrid scheme using

π as defined above. Then for any adversary A for the game UP-INT there exists an

adversary B for the AE security game where:

Advup-int
Π,0,t (A) ≤ (t+ 1) · Advae

π (B)

for all t ≥ 1.

Proof. We use the same sequence of games as in the previous proof, leveraging the

integrity properties of authenticated encryption.

In game Gi for 1 ≤ i ≤ t, for any query (j, C) to the Try oracle where j ≤ i, the

decryption of the ciphertext header C̃ will always decrypt to ⊥, unless C̃ was a

previously generated random string output by the encryption oracle.

Hence in game Gt, the adversary can only win by re-using a previously seen header

C̃ which is associated to a DEK x, and constructing a distinct message body C
′
.

Between games Gt and Gt+1, we again replace the ciphertext body by a call to the

AE encryption oracle. Game Gt corresponding to the real world, and Gt+1 to the

random world.

As stated previously, the adversary can only win (i.e. produce a distinct, unique

ciphertext) by submitting a distinct, valid ciphertext body. However, in Gt+1, the

decryption oracle always returns ⊥ and hence the adversary wins with probability

0. Finally, we conclude:

Advup-int
Π,0,t (A) ≤ (t+ 1) · Advae

π (B) .

120



4.5 Practical Updatable AE Schemes

Enc(k,m)

x, y←$K
r←$ {0, 1}λ

χ = x⊕ y
C

2←$ E(x,m)

τ ←$h(r ‖ x ‖ h(C
2
))

C̃ ←$ E(k, χ ‖ τ)

return (C̃, (r, y, C
2
))

ReKeyGen(k1, k2, C̃)

(χ ‖ τ) = D(k, C̃)

y′←$K
return (y′, E(k2, χ⊕ y′ ‖τ))

Dec(k, (C̃, C))

(χ ‖ τ) = D(k, C̃)

if (χ ‖ τ) = ⊥
return ⊥

r = C
0

x = χ⊕ C1

if τ 6= h(r ‖ x ‖ h(C
2
))

return ⊥

m = D(x,C
2
)

return m

KeyGen() : return k ← K
ReEnc(∆1,2,C̃ , (C̃, C)) : return (∆1

1,2,C̃
, (C

0
, C

1 ⊕∆0
1,2,C̃

, C
2
))

Figure 4.4: Algorithms for the KSS updatable AE scheme.

4.5.3 Improving AE-hybrid

We make small modifications to AE-hybrid and show that the resulting construc-

tion has both UP-IND and UP-INT security. These modifications include masking

the DEM key stored inside the ciphertext header (to gain UP-IND security), and

including an encrypted hash of the message (for UP-INT). We note that these modi-

fications are straightforward to implement on top of the AE-hybrid scheme and have

only minimal impact on the scheme’s performance.

Let (K,E ,D) be an AE scheme and h a hash function with `h output bits. Then we

define KSS (KEM/DEM with Secret Sharing) in Figure 4.4.

The motivation behind KSS is as follows:

First, apply a secret sharing scheme to the DEM key, in this case simply implemented

using XOR as x 7→ (x ⊕ y, y). One half is stored encrypted inside the ciphertext

header, and the other share is stored with the ciphertext body.

On each re-keygen/re-encryption update the secret shares by generating a random

value y′ and computing (x ⊕ y ⊕ y′, y ⊕ y′). Note that knowing two shares from

different epochs is not sufficient to recover the secret.
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This is sufficient to achieve UP-IND security, however, achieving UP-INT security is

a more subtle problem. Although using secret sharing to split the DEM key allows

the UP-IND proof to go through, it also introduces malleability of the DEM key.

This malleability undermines the generic AE properties. As an illustration of this

issue, suppose the AE scheme produces keys which have an additional redundant bit.

The adversary can easily flip a bit of the ciphertext value y, leaving the decryption

unaffected. Similar issues arise whenever attempting to rely on the integrity of the

ciphertext encryption in other schemes. Furthermore, in UP-INT, the adversary is

able to learn the DEM key x.

Our solution is to bind the ciphertext body to the ciphertext header by storing

commitments to various values. In the definition of KSS, we have simply used the

ROM commitment scheme x 7→ (r, h(r‖x)). In KSS, we use this scheme to commit

to the values of the DEM key x, and the ciphertext body C
2
.

Theorem 10 (UP-IND Security of KSS). Let π = (K, E ,D) be a symmetric encryp-

tion scheme and Π be the updatable AE scheme KSS using π as defined in Figure 4.4.

Then for any adversary A for the game UP-IND, making at most q queries to the

LR oracle, there exists an adversary B for the AE security game where:

Advup-ind
Π,κ,t (A) ≤ 2(t+ q) · Advae

π (B)

for all κ ≥ 0, t ≥ 1.

Proof. We argue using a series of games that the advantage of any adversary in

the UP-IND game for KSS is bounded by the advantage in the AE security game

for the underlying AE scheme π. The first game, G0, is the UP-IND game for KSS

using the underlying scheme π. For 1 ≤ i ≤ t, in game Gi we replace all ciphertext

headers encrypted under key ki and instead return a random string of the same

length used to answer the query. The value of the returned ciphertext header C̃ is

stored along with the encrypted value (χ ‖ τ) in order to simulate later calls to

ReEnc and ReKeyGen.

Let Si be the event that Gi outputs true. We claim that for 0 < i ≤ t, there exists

B such that:

|Pr[Si−1 ]− Pr[Si ] | ≤ Advae
π (B).
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We construct B by using the Enc oracle in the AE security game for π to encrypt

ciphertext headers. When the hidden bit b̂ in the AE game is 0, then B perfectly

simulates game Gi−1 for key ki and when b̂ = 1, then B perfectly simulates game Gi.

B simply returns as a guess b̂ = 1 if the adversary is correct. Any difference between

the success probabilities in Gi−1 and Gi results in an advantage for the adversary.

Now, we observe that the adversary in game Gt cannot learn anything about the

DEM key x used to encrypt a challenge. Even through a re-encryption to a corrupted

key, the most the adversary can learn is the value χ′ = x ⊕ y′, where y′ is in the

ciphertext body and unobtainable by the adversary.

Hence consider another set of hybrids Gj for t < j ≤ t+q, where the adversary makes

at most q queries to the left-or-right oracle LR. In the same spirit as the previous

hybrids, we construct an AE adversary such that |Pr[Sj−1 ] − Pr[Sj ] | ≤ Advae
π (B),

this time replacing the encryption of the DEM during a challenge query with the

output of the AE encryption oracle.

Finally, observe that in game Gt+q, all outputs from LR oracle are of the form

(C̃, r, y, z) where C̃, r, y, z are all random strings, revealing nothing about the in-

put message. Hence the adversary can learn nothing from oracle queries and so

Pr[St+q ] = 1
2 and we conclude:

Advup-ind
Π,κ,t (A) = 2 · Pr[S0 ]− 1

= 2 · (Pr[S0 ]− Pr[S1 ] + Pr[S1 ] + · · · − Pr[St+q ] + Pr[St+q ])− 1

≤ 2(t+ q) · Advae
π (B) .

As we will see in the following theorem, collision resistance of the hash function

is sufficient to provide UP-INT security, since the hash is integrity-protected by

the AE encryption of the KEM. The hash is encrypted to avoid compromise of the

ciphertext header being sufficient to distinguish messages.

We achieve collision resistance by assuming h to be a random oracle. However, this

assumption could be avoided by either re-using the DEM key x to additionally key

the hash function.
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Theorem 11 (UP-INT Security of KSS). Let π = (K, E ,D) be a symmetric en-

cryption scheme, h be a cryptographic hash function modelled as a random oracle

with output length `h, and Π be the updatable AE scheme KSS using π and h as

defined in Figure 4.4. Then for any polynomial-time adversary A, making at most

qh queries to the random oracle h, there exists an adversary B for the AE security

game where:

Advup-int
Π,κ,t (A) ≤ t · Advae

π (B) +
q2
h

2`h
,

for all κ ≥ 0, t ≥ 1.

Proof. We use the same sequence of games as in the previous proof, leveraging the

integrity properties of authenticated encryption.

In game Gi for 1 ≤ i ≤ t, for any query (j, C) to the Try oracle where j ≤ i, the

decryption of the ciphertext header C̃ will always decrypt to ⊥, unless C̃ was a

previously generated random string output by the encryption oracle.

Hence in game Gt, the adversary can only win by re-using a previously seen header

C̃.

Therefore, the adversary can only win by submitting a ciphertext of the form:

(C̃, C
′
), where C

′ 6= C, the ciphertext body returned in the same query as C̃.

Let C = (r, y, C
2
) and thus we require C

′
= (r′, y′, E(χ ⊕ y′,m′)) for any of r′ 6= r,

y′ 6= y or E(χ⊕y′,m′) 6= C
2
. Note that the adversary can learn the values of x, y used

in C by querying ReKeyGen(i, t+ 1, C̃) and receiving E(kt+1, χ ‖ τ), (r, y, E(x,m)).

From this, they can simply decrypt and learn x = χ⊕ y

First of all, the ciphertext header contains a commitment to the values x and h(C
2
).

The implication is that the adversary should be unable to modify either x or C
2

without breaking the commitment scheme. Since KSS uses a simple random oracle

commitment scheme, we directly reduce security to the probability of finding a

collision in h.

The probability that the adversary finds inputs r′, x′, C
′2

such that h(r′‖x′‖h(C
′2

)) =

h(r‖x‖h(C
2
)) and at least one value is distinct, is given by

q2h
2`h

. Note that this

captures the adversary finding either a collision h(C
2
) = h(C

′2
), or of the entire

commitment.

124



4.6 XOR-KEM: A Bidirectional Updatable AE Scheme

Otherwise, the adversary must leave the values r, x, C
2

unchanged. x is derived by

computing x = χ⊕ y, where χ is stored in the ciphertext header and, as established

earlier, is unchanged. Hence, the adversary cannot modify y without modifying x.

Therefore, we see that the adversary can only win when finding a collision in h,

and so the probability that the adversary wins in Gt+1 is bounded by this, and we

conclude that:

Advup-int
Π,κ,t (A) ≤ t · Advae

π (B) +
q2
h

2`h
.

One interesting aspect of this proof is that we do not rely on the non- malleability of

Π over the ciphertext body for security. This is achieved through the AE-encryption

of the commitment of the ciphertext. Hence, KSS could be relaxed slightly by al-

lowing any IND-CPA scheme for the ciphertext body.

4.6 XOR-KEM: A Bidirectional Updatable AE Scheme

The AE-hybrid and KSS schemes are unidirectional and ciphertext-dependent. This

means that in practice the client must fetch, from storage, ciphertext headers prior

to computing rekey tokens for updating ciphertexts. It would be simpler to utilise a

ciphertext-independent scheme that has rekey tokens that work for any ciphertext

encrypted with a particular key. This would make the re-encryption process “non-

interactive”, requiring that the key holder only push a single rekey token to the place

where ciphertexts are stored. Given the obvious performance benefits that such a

scheme would have, we also provide such a scheme, called XOR-KEM. This scheme

is exceptionally fast, and is built from a (non-updatable) AE scheme that is assumed

to be secure against a restricted form of related-key attack (RKA). This latter notion

adapts the Bellare-Kohno RKA-security notions for block ciphers [30] to the setting

of AE schemes. To the best of our knowledge, this definition is novel, and RKA

secure AE may itself be of independent interest as a primitive. However, the XOR-

KEM scheme cannot meet our integrity notions against an attacker in possession

of compromised keys. (And because of its bidirectionality, XOR-KEM also provides

the counter-example that we used to separate UP-IND-BI and UP-IND security in

Section 4.4.1.)

125



4.6 XOR-KEM: A Bidirectional Updatable AE Scheme

Let (K,E ,D) be an AE scheme. Then we define the ciphertext-independent scheme,

XOR-KEM, as follows:

• KeyGen(): return k ← K

• Enc(k,m): x← K; C ← (x⊕ k, E(x,M)); return C

• ReKeyGen(k1, k2): return ∆1,2 = k1 ⊕ k2

• ReEnc(∆1,2, C = (C0, C1)): C ′ ← (∆1,2 ⊕ C0, C1); return C ′

• Dec(k,C = (C0, C1)): return D(C0 ⊕ k,C1)

The XOR-KEM scheme has a similar format to the AE-hybrid scheme above. How-

ever, instead of protecting the DEM key x by encrypting it, we instead XOR it

with the secret key k. The resulting scheme becomes a bidirectional, ciphertext-

independent scheme, and one that has extremely high performance and deployabil-

ity.

Note that although the value x⊕ k fulfils a similar purpose as the ciphertext header

in AE-hybrid, since this value is not needed in re-keying, it resides in the ciphertext

body.

Theorem 12 (UP-IND-BI Security of XOR-KEM). Let π = (K, E ,D) be a sym-

metric encryption scheme and let Π be the updatable AE scheme XOR-KEM built

using π as above. Then for any UP-IND-BI adversary A against Π, there exists an

AE adversary B against π such that:

Advup-ind-bi
Π,κ,t (A) ≤ 2 · Advae

π (B)

for all κ ≥ 0, t ≥ 1.

Proof. We consider a sequence of games G0, . . . , Gq+1, where q is the number of

queries made by A to its LR oracle.

Let game G0 correspond to the regular UP-IND-BI game. Let Si correspond to the

event that game Gi outputs true.
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In game G1, a key x∗←$K is generated at the start of the game. This is used to

encrypt the message in the first query made to the LR oracle. That is, on input

(i,m0,m1), the LR oracle computes:

x←$K; C←$ (x⊕ ki, E(x∗,mb)) ,

and returns C.

All other queries are answered as in G0. The adversary has the same view in both

games, unless the adversary recovers ki (in which case the adversary can win with

one extra query). Either way, we have Pr[S0 ] = Pr[S1 ].

For 1 < τ ≤ q, game Gτ is identical to Gτ−1 except for the adversary’s τ -th LR

query. There, encryption is computed as:

xτ ←$K; C←$ (xτ ⊕ ki, E(x∗,mb)),

where x∗ is the same key generated at the start of G1. As before, these games are

identical to the adversary, and therefore Pr[Sτ ] = Pr[Sτ−1 ].

In game Gq+1, we replace encryption by x∗ with randomly sampled values. It

is straightforward to construct an adversary B in the AE-ROR game such that

|Pr[Sq+1 ]− Pr[Sq ] | ≤ Advae
π (B).

Finally, in Gq+1 the adversary can learn nothing about which mb is encrypted,

therefore Pr[Sq+1 ] = 1
2 . Combining the above, we get the stated result.

XOR-KEM does not provide integrity guarantees in the face of compromised keys:

an attacker who learns both C = Enc(k1,m) and C ′ = ReEnc(∆1,t+1,C̃ , C) can derive

k1.

For ciphertext integrity of bidirectional schemes, we modify the InvalidCTXT con-

ditions to check whether the ciphertext is a re-encryption using a bidirectional

rekey token. We call this new predicate InvalidCTXTBI which returns true whenever

InvalidCTXT returns true, and additionally returns true if:
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• (C̃, C) is the ciphertext output by running ReEnc(Invert(∆j,i), C
′) for C ′ =

(C̃ ′, C
′
), where ∆j,i was the result of a query ReKeyGen(j, i), and when it

holds that InvalidCTXTBI(i, C
′)) = true.

We refer to the security game using InvalidCTXTBI as UP-INT-BI.

Unfortunately, proving that XOR-KEM even achieves UP-INT-BI security for no

compromised keys (κ = 0) is not straightforward. It is clear that the adversary

can produce trivial manipulations of the ciphertext header: C̃ ⊕ z = (x ⊕ k) ⊕ z =

(x⊕ z)⊕ k. Thus, to prove UP-INT-BI security additionally requires us to assume

that the AE scheme π used in the construction is secure against related-key attacks,

in which the adversary can access the encryption and decryption functions of π

under XOR-offsets of the unknown key.

Definition 18 (Related-Key Secure AE). Let (K, E ,D) be an authenticated encryp-

tion scheme with keyspace SK and let Φ be a set of functions Φ = {φ : SK → SK}.
Let the Φ-restricted RKA security game be the game in which the adversary has

access to a pair of oracles Enc,Dec which, on input (φ, x), φ ∈ Φ, return for b = 0:

Enc(φ, x) = E(φ(k), x), Dec(φ, x) = D(φ(k), x),

and for b = 1:

Enc(φ, x) = $(·), Dec(φ, x) =⊥,

where k←$K and b←$ {0, 1} are sampled at the start of the game.

The RKAAπ,Φ game for encryption scheme π, family of functions Φ, and adversary A
outputs true if the adversary outputs the correct bit b at the end of the game.

We define the advantage of an adversary A by:

Advrka-ae
π,Φ (A) = 2 · Pr

[
RKA-AEAπ,Φ ⇒ true

]
− 1.

Theorem 13 (UP-INT-BI Security of XOR-KEM). Let π = (K, E ,D) be a symmet-

ric encryption scheme with keyspace {0, 1}n and let Π be the updatable AE scheme

XOR-KEM built using π as defined above. Furthermore, let Φ be the set of permu-

tations Φ := {XOR∆ : ∆ ∈ {0, 1}n} where XOR∆ : {0, 1}n → {0, 1}n denotes the

function XOR∆(k) = k ⊕∆.
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Then for any adversary A for the game UP-INT, there exists an adversary B for

the Φ-restricted RKA security game where:

Advup-int-bi
Π,0,t (A) ≤ Advrka-ae

π,Φ (B)

for all t ≥ 1.

Proof. Let game G0 be the original UP-INT-BI game.

Let game G1 be identical to G0, except we replace all encryption queries with random

strings, and condition on the event that every query (i, C) the adversary makes to

the Try oracle does not result in setting the win flag to true.

We show that |Pr[S0 ]−Pr[S1 ] | ≤ Advrka-ae
π,Φ (B). To see this, we construct an adver-

sary B which simulates the UP-INT-BI game.

For every encryption query to the underlying encryption scheme E , the adversary

instead makes a call to the RKA oracle Enc(XORx,m), where x is as usual sampled

uniformly at random for each ciphertext.

In effect, the key used for encrypting the data is K+x where K is the key randomly

generated in the RKA game.

When b = 0 in the RKA game, encryption queries are returned as E(K+x,m). This

perfectly simulates G0.

When b = 1, decryption queries are all replaced by ⊥. Therefore, every (i, C) submit-

ted to the Try oracle was either seen before, and hence InvalidCTXTBI(i, C) returns

true, or results in a call to Dec(XORx(i), C) which returns ⊥.

Therefore this perfectly simulates game G1.

Finally, Pr[S1 ] = 0, and thus we get the stated result.

We conjecture that an authenticated encryption scheme achieving this new notion

could be obtained by using a RKA-secure PRF to build a CTR mode cipher, with

the PRF also serving as the MAC in encrypt-then-mac mode.
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4.7 Indistinguishability of Re-encryptions

The KSS scheme in Section 4.5.3 achieves message confidentiality and ciphertext

integrity, even though the actual DEM key is not modified in the course of performing

a rotation. Modifying the scheme to ensure the DEM key is also rotated is non-trivial,

requiring either significant communication complexity (linear in the length of the

encrypted message) between the key server and storage, or the introduction of more

advanced primitives such as key-homomorphic PRFs. The question that arises is

whether or not changing DEM keys leaves KSS vulnerable to attacks not captured

by the definitions introduced thus far.

BLMR’s brief treatment of updatable encryption attempts to speak to this issue by

requiring that all randomness be refreshed during a rotation. Intuitively this would

seem to improve security, but the goal they formalise for this, detailed below, is

effectively a correctness condition (i.e., it does not seem to account for adversarial

behaviours). It does not help clarify what attacks would be ruled out by changing

DEM keys.

Exfiltration attacks. We identify an issue with our KSS scheme (and the other

schemes in the preceding section) in the form of an attack that is not captured by

the confidentiality definitions introduced so far.

Consider our simple KSS scheme in the context of our motivating key server and

storage service application (described in Section 4.3). Suppose an attacker compro-

mises for some limited time both the key server and the storage service. Then for

each ciphertext (C̃, C) encrypted under a key k1, the attacker can compute the DEM

key y ⊕ χ = x and exfiltrate it.

Suppose the compromise is cleaned up, and the service immediately generates new

keys and rotates all ciphertexts to new secret keys. For the KSS scheme, the resulting

ciphertexts will still be later decryptable using the previously exfiltrated DEM keys.

Although a confidentiality issue — the attacker later obtains access to plaintext

data they should not have — our UP-IND security notion (and, by implication, the

weaker BLMR confidentiality notion) do not capture these attacks. Technically this

is because the security game does not allow a challenge ciphertext to be encrypted to
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a compromised key (or rotated to one). Intuitively, the UP-IND notion gives up on

protecting the plaintexts underlying such ciphertexts, as the attacker in the above

scenario already had access to the plaintext in the first phase of the attack.

One might therefore argue that this attack is not very important. All of the plaintext

data eventually at risk of later decryption was already exposed to the adversary

in the first time period because she had access to both the key and ciphertexts.

But quantitatively there is a difference: for a given ciphertext an adversary in the

first time period can exfiltrate just |x| bits per ciphertext to later recover as much

plaintext as she likes, whereas the trivial attack may require exfiltrating the entire

plaintext.

The chosen-message attack game of UP-IND does not capture different time periods

in which the adversary knows plaintexts in the first time period but “forgets them”

in the next. One could explicitly model this, perhaps via a two-stage game with

distinct adversaries in each stage, but such games are complex and often difficult

to reason about (cf., [165]). We instead develop what we believe is a more intuitive

route that asks that the re-encryption of a ciphertext should leak nothing about

the ciphertext that was re-encrypted. We use an indistinguishability-style definition

to model this. The interpretation of our definition is that any information deriv-

able from a ciphertext (and its secret key) before a re-encryption is not helpful in

attacking the re-encrypted version.

Re-encryption indistinguishability. We formalise this idea via the game shown

in Figure 4.5. The adversary is provided with a left-or-right re-encryption oracle,

ReLR, instead of the usual left-or-right encryption oracle, in addition to the usual

collection of compromised keys, a re-encryption oracle, encryption oracle, and rekey

token generation oracle. We assume that the adversary always submits ciphertext

pairs such that |C0| = |C1|.

To avoid trivial wins, the game must disallow the adversary from simply re-encrypting

the challenge to a corrupted key. Hence we define a DerivedReLR predicate, which is

identical to the DerivedLR predicated defined in Section 4.4 for UP-IND security,

except that it uses the ReLR challenge oracle. We give it in full detail in the next

definition.
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UP-REENC

b←$ {0, 1}
k1, . . . , kt+κ←$KeyGen()

b′←$AO(kt+1, . . . , kt+κ)

return (b′ = b)

Enc(i,m)

return Enc(ki,m)

ReKeyGen(i, j, C̃)

if InvalidRK(i, j, C̃) then

return ⊥
∆i,j,C̃ ←$ReKeyGen(ki, kj , C̃)

return ∆i,j,C̃

ReEnc(i, j, (C̃, C))

∆i,j,C̃ ←$ReKeyGen(ki, kj , C̃)

C ′ = (C̃ ′, C
′
)← ReEnc(∆i,j,C̃ , (C̃, C))

if InvalidRE(i, j, C̃) then

return C̃ ′

else

return C ′

ReLR(i, j, C0, C1)

if j > t or |C0| 6= |C1| then

return ⊥
for β ∈ {0, 1} do

∆i,j,C̃β
←$ReKeyGen(ki, kj , C̃β)

C ′β ← ReEnc(∆i, j, C̃β , Cβ)

if C ′β = ⊥ then return ⊥
return C ′b

Figure 4.5: The game used to define re-encryption indistinguishability.

Definition 19 (ReLR-derived headers). We define the function DerivedReLR(i, C̃)

recursively to output true iff C̃ 6= ε and any of the following conditions hold:

• C̃ was the ciphertext header output in response to a query ReLR(i, C0, C1).

• C̃ was the ciphertext header output in response to a query ReEnc(j, i, C ′) and

DerivedReLR(j, C̃ ′) = true.

• C̃ is the ciphertext header output by running ReEnc(∆j,i,C̃′ , C
′) where ∆j,i,C̃′

is the result of a query ReKeyGen(j, i, C ′) for which DerivedReLR(j, C̃ ′) = true.

Then the subroutines InvalidRK, InvalidRE used in the UP-REENC game output true

if DerivedReLR(i, C̃) outputs true and j > t. We associate to an updatable encryption

scheme Π, UP-REENC adversary A, and parameters κ, t the advantage measure:

Advup-reenc
Π,κ,t (A) = 2 · Pr

[
UP-REENCAΠ,κ,t ⇒ true

]
− 1 .

Informally, an updatable encryption scheme is UP-REENC secure if no adversary

can achieve advantage far from zero given reasonable resources (run time, queries,

and number of target keys).
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UP-REENC01m

k1, k2←$KeyGen()

C0←$Enc(k1,m), C1←$Enc(k1,m)

∆1,2,C̃1
←$ ReKeyGen(k1, k2, C̃1)

C ′1←$ ReEnc(∆1,2,C̃1
, C1)

return (C0, C
′
1)

UP-REENC00m

k1, k2←$KeyGen()

C0←$Enc(k1,m), C1←$Enc(k1,m)

∆1,2,C̃0
←$ ReKeyGen(k1, k2, C̃0)

C ′0←$ ReEnc(∆1,2,C̃0
, C0)

return (C0, C
′
0)

Figure 4.6: Re-encryption indistinguishability experiments from [61].

Notice that exfiltration attacks as discussed informally above would not apply to

a scheme that meets UP-REENC security. Suppose otherwise, that the exfiltration

still worked. Then one could build an UP-REENC adversary that worked as follows.

It obtains two encryptions of different messages under a compromised key, calculates

the DEM key (or whatever other information is useful for later decryption) and then

submits the ciphertexts to the ReLR oracle, choosing as target a non-compromised

key (j ≤ t). Upon retrieving the ciphertext, it uses the DEM key to decrypt, and

checks which message was encrypted. Of course our notion covers many other kinds

of attacks, ruling out even re-encryption that allows a single bit of information to

leak.

BLMR re-encryption security. BLMR introduced a security goal that we will

call basic re-encryption indistinguishability1. In words, it asks that the distribution

of a ciphertext and its re-encryption should be identical to the distribution of a

ciphertext and a re-encryption of a distinct ciphertext of the same message.

More formally we have a pair of experiments shown in Figure 4.6, each parametrised

by a message m. Then BLMR require that for all m and all ciphertext pairs (C,C ′):

|Pr[UP-REENC00m ⇒ (C,C ′)]− Pr[UP-REENC01m ⇒ (C,C ′)]| = 0,

where the probabilities are over the coins used in the experiments.

This goal misses a number of subtleties which are captured by our definition. Our

definition permits the adversary, for example, to submit any pair of ciphertexts to the

1BLMR called this ciphertext independence, but we reserve that terminology for schemes that
do not require ciphertexts during token generation as per Section 4.2.
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ReLR oracle. This includes ciphertexts which are encryptions of distinct messages,

and even maliciously formed ciphertexts which may not even decrypt correctly. It

is simple to exhibit a scheme that meets the BLMR notion but trivially is insecure

under ours2.

On the other hand, suppose a distinguisher exists that can with some probability

ε distinguish between the outputs UP-REENC00m and UP-REENC01m for some

m. Then there exists an adversary against our UP-REENC notion which achieves

advantage ε. This can be seen by the following simple argument. The adversary gets

C←$Enc(1,m), C ′←$Enc(1,m) and submits the tuple (1, 2, C, C ′) to its ReLR or-

acle and receives a re-encryption of one of the ciphertexts, C∗. The adversary then

runs the distinguisher on (C,C∗) and outputs whatever the distinguisher guesses. If

the distinguisher is computationally efficient, then so too is the UP-REENC adver-

sary. Thus our UP-REENC notion would be stronger than a computational version

of the BLMR notion.

4.8 Revisiting the BLMR Scheme

The fact that the simple KEM/DEM schemes of Section 4.5 fail to meet re-encryption

security begs the question of finding new schemes that achieve it, as well as UP-IND

and UP-INT security. Our starting point is the BLMR construction of an updatable

encryption from key-homomorphic PRFs. Their scheme does not (nor did it attempt

to) provide integrity guarantees, and so trivially does not meet UP-INT. But before

seeing how to adapt it to become suitable as an updatable AE scheme, including

whether it meets our stronger notions of UP-IND and UP-REENC security, we first

revisit the claims of UP-IND-BI security from [61].

As mentioned in the introduction, BLMR claim that the scheme can be shown secure,

and sketch a proof of UP-IND-BI security. Unfortunately the proof sketch contains

a bug, as we explain below. Interestingly, revelation of this bug does not lead to a

direct attack on the scheme, and at the same time we could not determine if the

2Such a scheme can be constructed by starting with a scheme that satisfies both security notions
and adding a “counter” component to ciphertexts that records how many re-encryptions have been
performed to obtain that ciphertext; one now exploits the property that any pair of ciphertexts
can be input to the ReLR oracle in our UP-REENC game, while only fresh ciphertexts C0, C1 are
rotated in the BLMR notion.
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proof could be easily repaired. Instead we are able to show that a proof is unlikely

to exist.

Our main result of this section is the following: giving a proof showing the BLMR

UP-IND-BI security would imply the existence of a reduction showing that (stan-

dard) IND-CPA security implies circular security [48, 68] for a simple KEM/DEM

style symmetric encryption scheme. The latter seems quite unlikely given the known

negative results about circular security [3, 76], suggesting that the BLMR scheme is

not likely to be provably secure.

First we recall some basic tools that BLMR use to build their scheme.

Definition 20 (Key-homomorphic PRF [61]). Consider an efficiently computable

function F : K×X → Y such that (K,⊕) and (Y,⊗) are both groups. We say that the

F is key-homomorphic if for every k1, k2 ∈ K and every x ∈ X , F (k1, x)⊗F (k2, x) =

F (k1 ⊕ k2, x).

To define security, let game PRF-ROR1AF be the game that selects a key k←$K and

then runs an adversary A that can adaptively query to an oracle that returns Fk

applied to the queried message. The adversary outputs a bit. Let game PRF-ROR0AF

be the game in which an adversary A can adaptively query an oracle that returns

a random draw from Y. The adversary outputs a bit. We assume that A, in either

game, never queries the same value twice to its oracle. We define the PRF-ROR

advantage of A as

Advprf-ror
F (A) =

∣∣Pr
[
PRF-ROR1AF ⇒ 1

]
− Pr

[
PRF-ROR0AF ⇒ 1

]∣∣ .
A simple example of a secure key-homomorphic PRF in the ROM is the function

F (k, x) = k ·H(x) where Y = G is an additive group in which the decisional Diffie–

Hellman assumption holds. This construction is originally due to Naor, Pinkas, and

Reingold [152].

As an application of key-homomorphic PRFs, BLMR proposed the following con-

struction. The construction follows a similar approach to the AE-hybrid scheme, but
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KeyGen()

k←$KG()

return k

Enc(k,m)

x←$K
C̃ ←$ E(k, x)

C = (m1 + F (x, 1), . . . , m` + F (x, `))

return C = (C̃, C)

ReKeyGen(ki, kj , C̃)

x = D(ki, C̃)

x′←$K
C̃ ′ = E(kj , x

′)

∆i,j,C̃ = (C̃ ′, x′ − x)

return ∆i,j,C̃

ReEnc(∆i,j,C̃ , C)

(C̃, C) = C

(C̃ ′, y) = ∆i,j,C̃

C
′

= (C1 + F (y, 1), . . . , C` + F (y, `))

return C = (C̃ ′, C
′
)

Dec(k,C)

(C̃, C) = C

x = D(k, C̃)

m = (C1 − F (x, 1), . . . , C` − F (x, `))

return m

Figure 4.7: The BLMR scheme.

by using a key-homomorphic PRF in place of regular encryption the data encryption

key can also be rotated.

Definition 21 (BLMR scheme). Let π be a symmetric-key IND-CPA encryption

scheme π = (KG, E ,D). Furthermore, let F : K × X → Y be a key-homomorphic

PRF where (K,+) and (Y,+) are groups, and where the elements of X can be

represented as integers. The BLMR scheme is the tuple of algorithms (KeyGen, Enc,

ReKeyGen, ReEnc, Dec) depicted in Figure 4.7.

Note that encryption in the BLMR scheme is a key wrap followed by CTR mode

encryption using the wrapped key x and PRF F . For simplicity of presentation we

have assumed that a message m can be represented by a sequence m1, . . . ,m` of

elements of Y.

4.8.1 Negative Result about Provable UP-IND Security of BLMR

BLMR sketch a proof for the security of this construction in the UP-IND-BI model

(as we refer to it). However, the proof misses a subtle point: the interaction with

the ReKeyGen oracle behaves similarly to a decryption oracle and the informal ar-

gument given that the IND-CPA security of the KEM is sufficient to argue security
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Game 1-circular

b←$ {0, 1}
k←$KG()

if b = 1 then

C ←$Enc(k, k)

else

U ←$ {0, 1}n

C ←$Enc(k, U)

b′←$A(C)

return (b = b′)

E(k,m)

return E(k,m)‖ 0

D(k,C‖ b)

if (b = 0) then

return D(k,C)

else

return k ⊕D(k,C)

Figure 4.8: Left: The 1-circular security game. Right: Definition of E ,D used in the
proof of Theorem 14.

BLR,ReKeyGen

U ←$ {0, 1}n

(C̃‖0, C)←$ LR(1, U, 0n)

(C̃ ′‖0, C ′)←$ReKeyGen(1, 1, C̃‖ 1)

b′←$A(C̃ ′‖0, C + C
′
)

return b′

Figure 4.9: Adversary B for UP-IND using as a subroutine the adversaryA attacking
1-circular security of EncBad.

is wrong. In fact, the BLMR scheme seems unlikely to be provably secure even

in our basic security model. To argue this, we show that proving security of the

BLMR scheme implies the 1-circular security of a specific KEM/DEM construction.

Figure 4.8 depicts the security game capturing a simple form of 1-circular security

for an encryption scheme π = (KG, E ,D).

While our main result here (Theorem 14), can be stated for the BLMR scheme

as described earlier, for the sake of simplicity we instead give the result for the

special case of using a simple one-time pad DEM instead of the key-homomorphic

PRF. This is a trivial example of what BLMR call a key-homomorphic PRG, and

their theorem statement covers this construction as well. We will show that proving

security for this special case is already problematic, and this therefore suffices to call

into question their (more general) theorem. Thus encryption becomes Enc(k,m) =

(E(k, r), r⊕m) where E is an IND-CPA secure KEM. We assume |m| = n. We then

have ReKeyGen(k1, k2, C̃) = (E(k2, r
′), r′⊕D(k1, C̃)). We have the following theorem:
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Theorem 14. Let E be an IND-CPA-secure symmetric encryption scheme. If there

exists a reduction from BLMR UP-IND-BI-security to the IND-CPA security of E,

then there exists a reduction that shows that Enc is 1-circular secure.

Proof. We start by introducing a slight variant of E , denoted E , shown in Figure 4.8.

It adds a bit to the ciphertext3 that is read during decryption: if the bit is 1

then decryption outputs the secret key XOR’d with the plaintext. Let EncBad

be the same as Enc above but using E , i.e., EncBad(k,m) = E(k, r), r ⊕ m and

ReKeyGenBad(k1, k2, C) = E(k2, r
′), r′ ⊕D(k1, C).

If E is IND-CPA then E is as well. Thus if E is IND-CPA, then the security claim

of BLMR implies that EncBad is UP-IND-BI. We will now show that UP-IND-BI

security of EncBad implies the 1-circular security of EncBad. In turn it is easy to see

that if EncBad is 1-circular secure then so too is Enc, and, putting it all together,

the claim of BLMR implies a proof that IND-CPA of E gives 1-circular security of

Enc.

It remains to show that UP-IND-BI security implies EncBad 1-circular security. Let

A be a 1-circular adversary against EncBad. Then we build an adversary B against

the UP-IND security of EncBad. It is shown in Figure 4.9. The adversary makes an

LR query on a uniform message and the message 0n. If the UP-IND-BI challenge

bit is 1 then it gets back a ciphertext C1 = (E(k1, r)‖0, r ⊕ U) and if it is 0 then

C0 = (E(k1, r)‖0, r). Next it queries ReKeyGen oracle on the first component of

the returned ciphertext but with the trailing bit switched to 1. It asks for a rekey

token for rotating from k1 back to k1. The value returned by this query is equal to

E(k1, r
′)‖0, r′⊕k1⊕r. By XOR’ing the second component with the second component

returned from the LR query the adversary gets finally a ciphertext that is, in the

left world, the encryption of k1 under itself and, in the right world, the encryption

of a uniform point under k1. Adversary B runs a 1-circular adversary A on the final

ciphertext and outputs whatever A outputs.

The above result uses 1-circular security for simplicity of presentation, but one can

generalise the result to longer cycles with additional queries.

3Notice that this scheme is not tidy in the sense of [151]. While that does not affect the implica-
tions of our analysis — BLMR make no assumptions about tidiness — finding a tidy counter-example
is an interesting open question.

138



4.9 An Updatable AE Scheme with Re-encryption Indistinguishability

The result is relative, only showing that a proof of BLMR’s claim implies an-

other reduction between circular security and IND-CPA security for the particular

KEM/DEM scheme Enc above. It is possible that this reduction exists, however

it seems unlikely. Existing counter-examples show IND-CPA schemes that are not

circular-secure [122]. While these counter-examples do not have the same form as

the specific scheme under consideration, it may be that one can build a suitable

counter-example with additional effort.

4.9 An Updatable AE Scheme with Re-encryption Indistin-

guishability

We first point out that one can avoid the issues raised in Section 4.8 by replacing

the IND-CPA KEM with a proper AE scheme. This does not yet, however, address

integrity of the full encryption scheme. To provide integrity overall, we can include

a hash of the message in the ciphertext header.

This amended construction — which we refer to as ReCrypt — is detailed in

Figure 4.10. It uses an AE scheme π = (KG, E ,D), a key-homomorphic PRF F :

K×X → Y, a hash function h : {0, 1}∗ → Y, and a commitment scheme com. Here

(K,+) and (Y,+) are groups. A message m is assumed to be a sequence m1, . . . ,m`

of elements in Y. When we come to discuss specific instantiations in Section 4.9.2,

we will explain how to modify the scheme to handle messages that are binary strings.

We also assume that elements of X can be represented by integers (as in the BLMR

scheme).

The motivation behind the construction of ReCrypt is the same as for KSS: the ci-

phertext header uses AE to guarantee the integrity and confidentiality of its contents,

which includes a secret-shared DEM key, and a commitment. The key difference is

that the encryption mechanism for the ciphertext body uses key-homomorphic PRFs

to allow updating, and the commitment scheme is similarly updatable.

We do not cover commitment schemes in detail, but defer to the lecture notes by

Bellare for a modern definition [26].
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Enc(k,m)

x, y←$K
χ = x+ y

for 1 ≤ l ≤ `
C

2

l = ml + F (x, l)

z = h(m)

(τ0, r0)←$ com(x)

(τ1, r1)←$ com(z)

C̃ ←$ E(k, χ ‖ τ0 ‖ τ1)

return (C̃, ((r0, r1), y, C
2
))

ReKeyGen(k1, k2, C̃)

(χ ‖ τ0 ‖ τ1) = D(k1, C̃)

x′, y′←$K
χ′ = χ+ x′ + y′

(τ ′0, r
′
0)←$ com(x′)

(τ ′1, r
′
1)←$ com(0)

return (x′, y′, r′0, r
′
1, E(k2, χ

′ ‖τ0 · τ ′0 ‖ τ1 · τ ′1))

ReEnc(∆i,j,C̃ , (C̃, C))

(x′, y′, r′0, r
′
1, C̃

′) = ∆i,j,C̃

((r0, r1), y, C
2
) = C

for 1 ≤ l ≤ `

C
′2
l = C

2

l + F (x′, l)

C
′

= ((r0 + r′0, r1 + r′1), y + y′, C
′2

)

return (C̃ ′, C
′
)

Dec(k, (C̃, C))

if D(k, C̃) = ⊥
return ⊥

(χ ‖ τ0 ‖τ1) = D(k, C̃)

((r0, r1), y, C
2
) = C

x = χ− y
for 1 ≤ l ≤ `

ml = C
2

l − F (x, l)

z = h(m)

if open(τ0, x, r0) 6= 1 ∨ open(τ1, z, r1) 6= 1

return ⊥
return m

KeyGen() : return k ← K

Figure 4.10: The ReCrypt scheme. Note that use of the commitment scheme requires
a trusted setup to provide public parameters which we omit for simplicity.
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Definition 22 (Commitment Scheme). A commitment scheme CS = (P, com, open)

is a tuple of algorithms where P outputs public parameters p, com takes as input

the params p, a source of randomness, and a message, and produces a commitment c

and a decommital key (or opening key) d. open takes p, c,m, d, as input and returns

1 if the commitment is valid, or 0 otherwise.

For simplicity, we often leave the public parameters p implicit. We write (c, d)←$ com(m),

or c← com(m; d), where the latter represents deterministically computing the com-

mitment for a fixed opening key d.

A commitment scheme is said to be hiding if an adversary cannot learn the message

m from a commitment c = com(p,m). This is formally quantified by an adversary

A playing a left-or-right style game with advantage Advcs-hide
CS (A).

A commitment scheme is said to be binding if it is hard to find a collision in com-

mitment values such that open(p, c,m, d) = open(p, c,m′, d′) = 1 with m′ 6= m or

d 6= d′. This is formally quantified by a collision finding adversary A with advantage

Advcs-bind
CS (A).

For ReCrypt, we additionally require the commitment scheme to be homomorphic.

For example, the commitment scheme due to Pedersen [158] has this property:

com(x; r) · com(y; s) = gxhr · gyhs = gx+yhr+s = com(x + y; r + s). Homomor-

phic commitment schemes are also considered in [82, 110]. Note that [110] used

homomorphic commitments in the context of multiparty, verifiable secret-sharing,

which is in essence the same composite property we require.

For use of the Pedersen scheme, we would additionally need a trusted setup to

provide the values g, h as public parameters. However, note that these are never

needed by the server, and thus the client only needs to trust their own generation

of these values.

In the remainder of this section we show that the new scheme meets our strongest

security notions for updatable encryption. We then assess the viability of using

this scheme in practice, discussing how to instantiate F for high performance and

reporting on performance of the full scheme.
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4.9.1 Security of ReCrypt

We state three security theorems for ReCrypt: UP-IND, UP-INT, and UP-REENC

notions. The proof of UP-INT relies on the collision resistance of the hash h, while

the other two proofs do not. For simplicity, and because we will later instantiate

the PRF F in the Random Oracle Model (ROM), we model h as a random oracle

throughout our analysis. This modelling of h could be avoided using the approach

of Rogaway [168], since concrete collision-producing adversaries can be be extracted

from our proofs. Note also that the almost key-homomorphic PRF construction

in the standard model presented by BLMR would not achieve UP-REENC since

the number of re-encryptions is leaked by the ciphertext, allowing an adversary to

distinguish two re-encryptions.

Theorem 15 (UP-IND security of ReCrypt). Let π = (KG, E ,D) be an AE scheme,

F : K × X → Y be a key-homomorphic PRF, h : {0, 1}∗ → Y be a hash function,

CS be a homomorphic commitment scheme, and let Π be the ReCrypt scheme as

depicted in Figure 4.10.

Then for any adversary A against Π, making at most q queries to the LR oracle,

there exist adversaries B, C, D such that

Advup-ind
Π,κ,t (A) ≤ 2t · Advae

π (B) + 2q · Advprf-ror
F (C) + Advcs-hide

CS (D)

for all κ ≥ 0, t ≥ 1.

Proof. We split the proof into two parts. The first part uses the AE security of π to

show that the value of x used to key the key-homomorphic PRF is hidden from the

adversary. The second part uses the fact that F is a PRF to show indistinguishability

holds, given that the adversary cannot learn x.

Let G0 be the original UP-IND game. For 1 ≤ i ≤ t, Game Gi is the same as

Gi−1, except we replace the encryption E(ki, χ ‖ com(x; r0) ‖ com(h(m), r1)) with

a random string c and store the tuple (x, y, r0, r1,m) as a lookup in the table C
indexed by the random string c. For queries to ReKeyGen(i, j, C̃), if C̃ = c for some

previously returned c, then compute r′0, r
′
1, x
′, y′ as usual and either:
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• if j ≤ i, return (x′, y′, r′0, r
′
1, c
′) for some random c′, storing the value (x +

x′, y + y′, r0 + r′0, r1 + r′1,m), or

• if j > i, return (x′, y′, r′0, r
′
1, E(kj , x+y+x′+y′ ‖ com(x+x′; r0+r′0) ‖ com(h(m), r1+

r′1))).

If C̃ has not been previously seen, return ⊥. These modifications are shown in

Figure 4.11.

Let Si be the event that A outputs the correct bit in game Gi. Then we can construct

an adversary B such that |Pr[Si ] − Pr[Si−1 ] | ≤ Advae
π (B). To see this, notice that

by replacing the E(ki, ·) and D(ki, ·) functions with calls to an instance of the AE

game for Π, in the real world, we get Gi−1, and the random world corresponds to

Gi.

In game Gt, suppose the attacker queries the LR oracle to receive a challenge cipher-

text C. Then the header C̃ will be equal to some random string r, while the body

C consists of the randomness for the commitment scheme (r0, r1), the key mask y,

and the message encrypted by the PRF F keyed by some value x. Note that the

use of AE forces the adversary to submit only previously seen ciphertext headers to

oracles with i ≤ t.

From re-keygen queries, the attacker can learn the fresh values of r′0, r
′
1, x
′, y′. How-

ever, these are insufficient to learn anything about the value of x used to encrypt

the message; the adversary can only learn at most one half of the secret-shared key.

Similarly, re-encryption queries where the target key j is uncompromised, i.e., j ≤ t,
the adversary receives a fresh ciphertext encrypted under x′ with no way of learning

x′.

On the other hand, if j > t, the invalidity condition InvalidRE will be true, so the

adversary learns the ciphertext header. This is of the form E(kj , χ ‖ (τ0.τ1))). Since

the adversary possesses kj , they may decrypt the ciphertext header. However, x is

still masked by y.

Next, we use the hiding property of the commitment scheme. In game Gt+1, we

replace all messages used in commitments for queries to uncompromised keys j ≤ t
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with random strings. We use the difference in success probabilities for games Gt and

Gt+1 to construct the distinguished D against the commitment scheme CS.

From here, we proceed with a further q hybrid game hops, at each hop embedding

a PRF challenger.

Suppose the adversary makes q queries to the LR oracle, then we define games

Gt+2, . . . Gt+q+1 such that in game Gt+u+1, for 1 ≤ u ≤ q, for the adversary’s u-th

query to the LR oracle, we replace the usage of F (x, l) by a uniformly random value

rl.

This is equivalent to replacing F (x, l) in the LR oracle by the PRF challenge oracle,

denoted f(l). Suppose K is the key used by the PRF challenger. When the PRF

challenge is from the real world, the computed encryption is of the form ml+F (x, l)+

f(l) = ml + F (K + x, l).

Since we showed that the value of x is unknown to the adversary for challenge

ciphertexts, this change perfectly models the game Gt+u.

On the other hand, if f is a random function, then outputs are distributed precisely

as the random values rl chosen beforehand, corresponding to game Gt+u+1. Hence,

we use any difference in win probabilities between Gt+u and Gt+u+1 to construct a

PRF adversary C.

Furthermore, the computation of re-keying tokens and re-encryptions does not re-

move the PRF mask r from the ciphertext: if j is uncorrupted, then we compute

C l +F (x′, l) = ml +F (x+ x′ +K, l); otherwise, either InvalidRE or InvalidRK will be

false, and the oracle returns ⊥ for the ciphertext body.

Similarly, the adversary can also obtain the ciphertext header containing an encryp-

tion of x+ x′ + y + y′, τ0, and τ1. However, we replaced the commitments in game

Gt+1 with random values, thus these do not reveal anything about the message, and

neither does the value of χ′.

Hence in game Gt+q+1, both the message and the hash are perfectly masked by the

PRF values, and the adversary cannot win with a probability greater than 1
2 . Hence,
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we conclude that:

Advup-ind
Π,κ,t (A) = |2 · Pr[S0 ]− 1|

≤ 2t · Advae
π (B) + 2q · Advprf-ror

F (C) + Advcs-hide
CS (D)

for all κ ≥ 0, t ≥ 1.

Enc(i,m)

x, y←$K
z = h(m)

(τ0, r0)←$ com(x)

(τ1, r1)←$ com(z)

c←$ {0, 1}|C̃|

Ci[c] = (x, y, r0, r1,m)

for 1 ≤ l ≤ `
C

2

l = ml + F (x, l)

return (c, ((r0, r1), y, C
2
))

ReKeyGen(i, j, C̃)

if Ci[C̃] =⊥ return ⊥
(x, y, r0, r1,m)← Ci[C̃]

x′, y′←$K
χ′ = x+ y + x′ + y′

if j ≤ i then

c←$ {0, 1}|C̃|

Cj [c] = (x+ x′, y + y′, r0 + r′0, r1 + r′1,m)

return ∆i,j,C̃ = (x′, y′, r′0, r
′
1, c)else

(τ ′0, r
′
0)←$ com(x+ x′)

(τ ′1, r
′
1)←$ com(h(m))

C̃ ′←$ E(kj , (χ
′, τ))

return (x′, y′, r′0 − r0, r′1 − r0, E(k2, χ
′ ‖τ ′0 ‖ τ ′1))

Dec(i, (C̃, C))

if Ci[C̃] =⊥ return ⊥
(x, y, r0, r1,m)← Ci[C̃]

((r′0, r
′
1), y′, C

2
) = C

x′ = x+ y − y′

if open(com(x; r0), x′, r′0) 6= 1

return ⊥
for 1 ≤ l ≤ `
m′l = Cl − F (x, l)

if open(com(h(m); r1), h(m′), r′1) 6= 1

return ⊥
return m′

Figure 4.11: The replacement algorithms used in game Gi for the proofs of secu-
rity for the ReCrypt construction. For the i-th key, encryption/decryption by Π is
replaced by random strings r of the same length and a lookup.

Theorem 16 (UP-INT security of ReCrypt). Let π = (KG, E ,D) be an AE scheme,

F : K × X → Y be a key-homomorphic PRF, h be a cryptographic hash function
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modelled as a random oracle with outputs in Y, CS be a homomorphic commitment

scheme, and let Π be the ReCrypt scheme as depicted in Figure 4.10.

Then for any adversary A against Π, there exists adversaries B, C such that

Advup-int
Π,κ,t (A) ≤ 2t · Advae

π (B) + Advcs-bind
CS (C) +

q2
h

|Y|

for all κ ≥ 0, t ≥ 1, where the adversary makes q queries to h.

Proof. Apply the same t transformations shown in Figure 4.11, which substitutes

encryption by π with random strings for uncorrupted keys. Decryption is then sim-

ulated by using a lookup of previously returned values. Let Si be the event that A
outputs the correct bit in game Gi.

In game Gt+1, we replace the opening of the commitment in Dec verification verify

that x′ = x and m′ = m. These two games are identical, unless the adversary

submits for verification a ciphertext C = (C̃, C) such that C̃ has previously been

generated for the tuple (x, y, r0, r1m) but either y′ 6= y and therefore x′ = χ− y′ 6=
x or y′ = y but C, decrypts using x to a message m′ such that m′ 6= m but

open(com(h(m); r0), h(m′), r′0) = 1.

First of all, suppose that h(m′) 6= h(m). Then we can bound the probability that the

adversary constructs such a ciphertext by constructing an adversary C which creates

a colliding commitment pair in the binding game. This probability is quantified by

Advcs-bind
CS (C.

Otherwise, we must have that h(m) = h(m′), i.e. the adversary finds a collision in h.

By modelling h as a random oracle, we can bound the probability that the adversary

making q queries to the random oracle, succeeds in finding suitable values of m, and

m′ by q2/|Y|. Therefore |Pr[St+1 ]− Pr[St ] | ≤ Advcs-bind
CS (C) + q2/|Y|.

Finally, we need to show that the adversary cannot create ciphertext body C
′ 6= C

which correctly decrypts given the above modifications. From the commitments,

the adversary cannot modify y, since x is recomputed as x′ = χ − y′, and the

value of x is verified. Furthermore, modifying r0 or r1 would similarly invalidate the

previous assumption that the adversary does not find colliding commitment values.

This leaves the encrypted plaintext C
2

= ml + F (x, l). Since m,x are fixed by the
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previous game hops, this value is uniquely determined since Y is a group, and hence

ml + F (x, l) + ε− F (x, l) = ml ⇐⇒ ε = 0.

Hence we have shown that in game Gt+1 all of the ciphertext components are non-

malleable and we have the probability of the adversary winning in game Gt+1 is

0.

Therefore, the advantage of A is:

Advup-int
Π,κ,t (A) ≤ t · Advae

π (B) + Advcs-bind
CS (C) +

q2

|Y|
.

Finally, we prove that ReCrypt meets our re-encryption indistinguishability notion.

Theorem 17 (UP-REENC security of ReCrypt). Let π = (KG, E ,D) be an AE

scheme, F : K × X → Y be a key-homomorphic PRF, CS be a homomorphic com-

mitment scheme, and let Π be the ReCrypt scheme as depicted in Figure 4.10.

Then for any adversary A against Π, there exist adversaries B, C such that

Advup-reenc
Π,κ,t (A) ≤ 2t · Advae

π (B) + 2q · Advprf-ror
F (C) + Advcs-hide

CS (D)

for all κ ≥ 0, t ≥ 1.

Proof. Apply the same t steps as used in the previous proof, shown in Figure 4.11.

Then we have the ciphertext headers replaced with random strings, and the re-keygen

process is simulated by recording inputs previously seen.

Hence, in game Gt, the adversary cannot learn anything about the PRF key x used

in the challenge.

In game Gt+1, we replace the commitment values in the ciphertext header with

random values. As in the UP-IND proof, the hiding property of CS bounds the

difference between the success probabilities of games Gt and Gt+1 by Advcs-hide
CS (D).

As before, we construct a series of q hybrid game hops to embed instances of the

PRF game. For an adversary making q calls to the ReLR oracle, and 1 ≤ u ≤ q,
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we define game Gt+u+1 to replace computation of F (x+ x′, l) by uniformly random

values rl.

In game Gt+u, computation of re-encryption is equivalent to using F (K + x + x, l)

from the PRF challenge oracle, and game Gt+u+1 is equivalent to uniformly ran-

dom values from f(l). Hence the difference in success probability between Gt+u and

Gt+u+1 gives the advantage of an adversary C in the PRF game.

Finally, in game Gt+q+1, the re-encrypted ciphertext is perfectly masked by the

random values rl, both the commitment opening values and the shared DEM key is

refreshed with uniformly random values, and hence we conclude that the adversary

cannot guess b with any better probability than guessing.

The same computation as before results in:

Advup-reenc
Π,κ,t (A) ≤ 2t · Advae

π (B) + 2q · Advprf-ror
F (C) + Advcs-hide

CS (D) .

4.9.2 Implementation and Performance

We dedicate the remainder of this section to analysis of the viability of ReCrypt for

use in practice.

We first must instantiate the key-homomorphic PRF used by ReCrypt. While BLMR

suggest using a standard model construction, a more efficient route is to use the

classic ROM construction due originally to Naor, Pinkas, and Reingold [152]. Here

one uses F (k, x) = k ·H(x) where H is modelled as a random oracle H : X → G,

X is any suitable set (bit-strings of some fixed length, for example), and (G,+) is a

group in which the decisional Diffie–Hellman (DDH) assumption holds. We will use

as group G of subset of the points on an elliptic curve E(Fp) defined over a prime

field. In our implementation we use the specific curve Curve25519 [36], which has

p = 2255 − 19.

For the commitment scheme, we used Pedersen commitments [158] of the form

com(x; r) = gxhr, where the public parameters are p = (g, h). The security of

this construction relies on the discrete logarithm problem. It is assumed that the
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adversary cannot solve logg h. We also use Curve25519 as the group here, and hence

we have com(x; r) = xP + rQ for base points p = (P,Q).

We use SHA256 for the hash function h and AES128-GCM for the AE scheme π.

Message encoding. Recall that encryption is done block-wise as C l = ml +

F (x, l), where it was assumed that messages m are already represented as sequences

over the group G. To make a practical scheme for encrypting data represented as

bitstrings, we therefore require an encoding function σm : {0, 1}n → G for some

block length n. Padding can be used to ensure messages are of length a multiple

of n.

For a suitable message encoding function, we require the function and its inverse to

be efficiently computable. In order to avoid side-channel leakage on plaintexts, we

require the function to be amenable to constant-time implementation. In addition,

security mandates that σ−1
m can be implemented in such a way that it rejects on

input any element that it is outside the range of σm. For otherwise, σ−1
m may not act

as a bijection on its inputs; the existence of two points P, P ′ on the curve such that

σ−1
m (P ) = σ−1

m (P ′) might then allow an adversary to construct a ciphertext forgery.

We use the Elligator function [37] to realise σm. For elliptic curve groups includ-

ing Curve25519 [36], the Elligator function produces an injective mapping from

{0, 1, . . . , p−1
2 } to points on the curve. The inverse mapping returns elements of the

form r, p − r; we obtain a bijection by inverting the map and taking as output the

value that is less than p−1
2 .

Using Elligator, the natural block size for messages would be blog (p− 1)−1c = 254

bits, which is not an integral number of bytes. However, splitting bytes would have

a deleterious impact on performance, and so we actually work with a 31 byte (248

bit) block size. Hence, on recovering the message using σ−1
m , we must additionally

check that the top byte is zero.

Hashing to the curve. In order to instantiate the key-homomorphic PRF, we

require a hash function H outputting elements in the group G. Here we are less

concerned about side-channel attacks because the inputs to H in our scheme are

not secret. The natural way to build H would be to take a regular hash function
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h : {0, 1}∗ → {0, 1}n, modelled as a random oracle, and apply any encoding function

σm, resulting in H(x) := σm(h(x)). However, for the function H to additionally

act like a random oracle, we would require at least that σm maps uniformly to

elements in G, imposing additional requirements on σm. We therefore require a

second encoding function σh for constructing the key-homomorphic PRF, and require

that σh composed with a random oracle h is indifferentiable [140] from a random

oracle.

An in-depth treatment of indifferentiable hashing onto elliptic curves appears in [66].

For simplicity, we opted to use their general approach: σh(m) = f(h1(m))+h2(m)·G.

Here h1 and h2 are cryptographic hash functions suitable to be modelled as random

oracles, instantiated in our implementation by SHA-256 with appropriate domain

separation. The function f needs to be what [66] refer to as a weak encoding function.

Elligator satisfies the necessary properties, as it is polynomial time computable, the

probability of any point being output is either 0 or 2/#G, and it is samplable by

simply picking from ±f−1(P ) for any P ∈ E(Fp).

Point compression. Curve25519 supports an x-coordinate-only Montgomery lad-

der for scalar multiplication. Since we want to unambiguously add points rather than

just computing scalar multiples, we need to work with both x and y coordinates.

Therefore, we used the twisted Edwards form of Curve25519, implemented in [131],

which in turn is based on [128]. We also used the latter to guide our Elligator im-

plementation.

We save bandwidth using point compression. When a curve point is serialised, only

the y coordinate and the sign of the x coordinate (1-bit) needs to be recorded. Since

the y coordinate requires less than the full 32 bytes, we are able to serialise points

as 32 byte values. Each 32 byte serialised value represents 31 bytes of plaintext,

giving a ciphertext expansion of 3%. Upon deserialisation, the x coordinate must be

recomputed. This requires computing a square root, taking approximately 20µs. Of

course this cost could be avoided by instead serialising both x and y coordinates.

This would create a 64 byte ciphertext for each 31 bytes of plaintext, an expansion

of 106%. We consider that to be unacceptable.
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ReCrypt Time per CPU
Operation 1 block 1 KB 1 MB 1 GB cycles/byte

Encrypt 353µs 8.5 ms 8.9 s 2.5 hours 30.7 K
ReEnc 239µs 7.3 ms 7.2 s 2.0 hours 26.3 K
Decrypt 328µs 7.7 ms 7.5 s 2.2 hours 27.9 K

ReKeyGen (total) 178µs 2.3 M

Table 4.2: Processing times for ReCrypt operations measured on a 3.8GHz CPU. 1
block represents any plaintext ≤ 31 bytes. Number of iterations: 1000 (for 1 block,
1 KB), 100 (for 1 MB) and 1 (for 1 GB). Cycles per byte given for 1MB ciphertexts.

Microbenchmarks. We built our reference implementation using the Rust [139]

programming language. Our implementation is single-threaded and we measured

performance on an Intel CPU (Haswell), running at 3.8GHz in turbo mode.

Table 4.2 shows wall clock times for ReCrypt operations over various plaintext sizes.

As might be expected given the nature of the cryptographic operations involved, per-

formance is far from competitive with conventional AE schemes. For comparison,

AES-GCM on the same hardware platform encrypts 1 block, 1 KB, 1 MB and 1 GB

of plaintext in 15µs, 24µs, 9 ms, and 11 s, respectively. KSS has performance deter-

mined by that of AES-GCM, while the performance of the ReCrypt scheme is largely

determined by the scalar multiplications required to evaluate the PRF. Across all

block sizes there is a 1000x performance cost to achieve our strongest notion of

security.

Discussion. Given the performance difference, ReCrypt is best suited to very

small or very valuable plaintexts (ideally, both). If the plaintext corpus is moderately

or very large, cost and performance may prohibit practitioners from using ReCrypt

over more performant schemes like KSS that give strictly weaker security. To make

this discussion concrete, we consider two examples in more detail.

For privacy and security reasons, regulation mandates that credit card numbers

must be stored in encrypted form [157]. These include the recommendation that

a mechanism must be in place to rotate keys on a regular basis and in the face of

known or suspected compromise. Given the sensitive nature of payment information,

the naive solution of decrypting and encrypting the data to rotate keys exposes it

to some risk, since it makes the data available in plaintext form for at least a period

of time. Similarly, NIST guidelines [22] recommend balancing the risk introduced

by the re-encryption process with the benefits offered by key rotation. On the other
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hand, our updatable AE schemes enable secure rotation of keys using an untrusted

storage service.

Consider a payment system with, say, 1 billion credit card entries. The storage

required for encrypted credit card numbers using ReCrypt is about 30 GB (assuming

one block per entry). Projecting from performance measurements in Table 4.2, a full

key rotation across the this dataset requires 60 CPU-hours: a significant amount of

computation, but potentially not prohibitive given infrequent rotations and many

available CPUs. The time to decrypt a single entry is sub-millisecond; this is small

compared to processing time for a credit card transaction.

As a second example we consider long-term storage of static data, commonly known

as “deep” or “cold” storage. Such data is accessed infrequently, yet data owners

may still desire (or be required to) periodically rotate the encryption keys used for

protecting the data. In such cases it may be more convenient for the data owner

to allow the storage provider to rotate the encryption keys using a system local

to the data, as opposed to the data owner retrieving the data and performing the

re-encryption.

For a rough estimation of costs, we compute the cost of performing re-encryption

using ReCrypt on Amazon Web Service’s Elastic Compute Cloud (AWS EC2). Using

the price per CPU-hour of an AWS EC2 instance of 0.05 $/hour (USD)4, we compute

the cost to perform updates using ReCrypt as 0.10 $/GB. For small- to medium-sized

data sets or for data sets that are particularly valuable (e.g. financial information),

this cost may be justified. However, for moderately-sized to large data sets, the cost

may be prohibitive and clients may favour basic security schemes like KSS.

4.10 Conclusion and Open Problems

We have given a systematic study of updatable AE, providing a hierarchy of security

notions meeting different real-world security requirements and schemes that satisfy

them efficiently. Along the way, we showed the limitations of currently deployed

approach, as represented by AE-hybrid, improved it at low cost to obtain the KSS

4This rate is based on the lowest per-CPU cost on AWS as of June 2017. Namely, an m4.16xlarge
instance available in the AWS US-East (Ohio) region which provides 64 CPUs and is available on-
demand for 3.20 $/hour.
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scheme meeting our UP-IND and UP-INT notions, identified a flaw in the BLMR

scheme, repaired it, and showed how to instantiate the repaired scheme in the ROM.

Through this, we arrived at ReCrypt, a scheme that is secure in our strongest se-

curity models (UP-IND, UP-INT and UP-REENC). We implemented ReCrypt and

presented basic performance benchmarks for our prototype. The scheme is slower

than the hybrid approaches but offers true key rotation.

Our work puts updatable AE on a firm theoretical foundation and brings schemes

with improved security closer to industrial application. While there is a rich array

of different security models for practitioners to chose from, it is clear that achieving

strong security (currently) comes at a substantial price. Meanwhile, weaker but still

useful security notions can be achieved at almost zero cost over conventional AE.

It is an important challenge to find constructions which lower the cost compared

to ReCrypt without reducing security. But it seems that fundamentally new ideas

are needed here, since what are essentially public key operations are intrinsic to our

construction.

From a more theoretical perspective, it would also be of interest to study the exact

relations between our security notions, in particular whether UP-REENC is strong

enough to imply UP-IND and UP-INT. There is also the question of whether a

scheme that is UP-REENC is necessarily ciphertext-dependent. Finally, we reiterate

the possibility of formulating updatable AE in the nonce-based setting.
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Tamarin Analysis of TLS 1.3
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In this chapter, we apply the symbolic analysis tool Tamarin to the in-progress TLS

1.3 specification. We detail our approach to cover the TLS 1.3 specification with

unprecedented detail, closely modelling the specification. Furthermore, we provide a

thorough exploration of the stated goals of the TLS specification, and our interpre-

tation of these goals as formal properties.

5.1 Introduction

The Transport Layer Security (TLS) protocol is the de facto means for securing

communications on the World Wide Web. Initially released as Secure Sockets Layer

(SSL) by Netscape Communications in 1995, the protocol has been subject to a

number of version upgrades over the course of its 20-year lifespan. Rebranded as

TLS when it fell under the auspices of the Internet Engineering Task Force (IETF)

in the mid-nineties, the protocol has been incrementally modified and extended. In

the case of TLS 1.2 and below, these modifications have taken place in a largely
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retroactive fashion; following the announcement of an attack [55, 182, 147, 120,

75, 21, 20], the TLS Working Group (WG) would either respond by releasing a

protocol extension (a Request For Comments (RFC) intended to provide increased

functionality and/or security enhancements) or by applying the appropriate “patch”

to the next version of the protocol. For a more detailed analysis of the development

and standardisation of TLS see [154].

Prior to the announcement of the BEAST [99] and CRIME [100] attacks of 2011 and

2012, respectively, such a strategy was valid given the frequency with which versions

were updated, and the limited number of practical attacks against the protocol.

Post-2011, however, the heightened interest in the protocol and the resulting flood

of increasingly practical attacks against it [10, 9, 43, 116, 99, 100, 141, 17, 148, 38, 7,

138, 109, 45, 44] rendered this design philosophy inadequate. Coupled with pressure

to increase the protocol’s efficiency (owing to the release of Google’s QUIC Crypto

[127]), the IETF started drafting the next version of the protocol, TLS 1.3, in the

Spring of 2014. Unlike the development of TLS 1.2 and below, the TLS WG adopted

an “analysis-prior-to-deployment” design philosophy, welcoming contributions from

the academic community before official release. There have been substantial efforts

from the academic community in the areas of program verification– analysing im-

plementations of TLS [39, 42], the development of computational models– analysing

TLS within Bellare-Rogaway style frameworks [96, 124, 129, 95, 105, 121], and the

use of formal methods tools such as ProVerif [53] and Tamarin [176] to analyse

symbolic models of TLS [14, 113, 40]. All of these endeavours have helped to both

find weaknesses in the protocol and confirm and guide the design decisions of the

TLS WG.

The TLS 1.3 draft specification however, has been a rapidly moving target, with large

changes being effected in a fairly regular fashion. This has often rendered much of

the analysis work ‘outdated’ within the space of few months as large changes to the

specification effectively result in a new protocol, requiring a new wave of analysis.

In this work, we follow the evolution of our tool-supported symbolic verification of

TLS 1.3, stretching from the initial work by Horvat for draft-06 described in [113]

all the way to the near-final draft of TLS 1.3, adding to the large effort by the TLS

community to ensure that TLS 1.3 is free of the many weaknesses affecting earlier

versions, and that it is imbued with security guarantees befitting such a critical
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protocol. We note that most of the cryptographic mechanisms in the current TLS 1.3

draft are stable, and other than fluctuations surrounding the zero-Round-Trip-Time

(0-RTT) mechanism [134], we do not expect substantial changes to come.

We primarily focus on the final version of the model, covering draft-21. The pre-

vious work on draft-10, and in particular the experience acquired from building

the first version of the model, was essential in producing the final model. However,

in many ways the final model obsoletes the original, since it is more sophisticated,

more accurate and more relevant due to the changes to the specification.

5.1.1 Contributions

Our main contributions in this work are as follows:

1. Our first complete model covers draft-10 of the TLS specification, modelling

the possible interactions of the available handshake modes. This work was

published as [85].

2. Our draft-10 model uncovered an attack on a proposed addition to the spec-

ification, resulting in a tightening of the security of TLS 1.3.

3. The next generation of model covers the latest specification of TLS 1.3 (at the

time of writing, draft-21) that similarly considers all the possible interac-

tions of the available handshake modes, including PSK-based resumption and

0-RTT. Its fine-grained, modular structure greatly extends and refines the cov-

erage of our previous symbolic models. We also note that our model is highly

flexible and can easily accommodate the removal of the 0-RTT mechanism,

should the need arise. This work was published as [84].

4. We prove the majority of the specified security requirements of TLS 1.3, in-

cluding the secrecy of session keys, perfect forward secrecy (PFS) of session

keys (where applicable), peer authentication, and key compromise imperson-

ation resistance. We also show that after a successful handshake the client and

server agree session keys and that session keys are unique across handshakes.

5. We uncover a behaviour that may lead to security problems in applications

that assume that TLS 1.3 provides strong authentication guarantees.
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6. We provide a novel way of exhibiting the relation between the specification and

our model: we provide an annotated version of the TLS 1.3 specification that

clarifies which parts are modelled and how, and which parts were abstracted.

This provides an unprecedented level of modelling transparency and enables a

straightforward assessment of the faithfulness and coverage of our model. We

anticipate that this output will be of great benefit to the academic community

analysing TLS 1.3, as well as the TLS Working Group as it provides a clear and

easy-to-understand mapping between the TLS 1.3 specification and a TLS 1.3

model.

All our Tamarin input files, proofs, and the annotated TLS 1.3 specification that

shows the relation between the RFC and the model, can be downloaded from [12]

and [16].

5.1.2 Related Work

As mentioned, there has been a great deal of work conducted in the complementary

analysis spheres pertinent to TLS 1.3. Of most interest to this work are the symbolic

analyses presented in [14] and [40].

The work in [14] is an analysis of TLS 1.3 by the Cryptographic protocol Evaluation

towards Long-Lived Outstanding Security (CELLOS) Consortium using the ProVerif

tool. Announced on the TLS WG mailing list at the start of 2016, it showed the

initial (EC)DHE handshake of draft 11 to be secure in the symbolic setting. In

comparison to our work, this analysis covers only one handshake mode of a draft

that is now somewhat outdated.

The ProVerif models of draft 18 presented by Bhargavan et al. in [40] include most

TLS 1.3 modes, and cover rich threat models by considering downgrade attacks (both

with weak cryptography and downgrade to TLS 1.2). However, unlike our work,

they do not consider all modes, as they do not consider the post-handshake client

authentication mode. While they cover relative strong authentication guarantees

(which led to the discovery of an unknown key share attack), their analysis did not

uncover the potential mismatch between client and server view that we describe in

Section 5.6.2.
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5.1.3 Chapter Organisation

This chapter is organised as follows. In Section 5.2 we describe the TLS 1.3 protocol

and the security properties claimed in the specification. Section 5.3 describes our

Tamarin model and provides a few Tamarin prover fundamentals. In Section 5.4,

we describe our encoding of the security guarantees, followed by Section 5.6 where

we describe our results. Section 5.7 covers the relationship between our model and

the specification document, discussing how we provide a website that describes our

model side-by-side with the specification, giving us unprecedented modelling trans-

parency. We conclude in Section 5.8. with a discussion of our results and future

work.

5.2 TLS 1.3

In this section we provide a brief description of the TLS 1.3 protocol as is necessary

for understanding our symbolic model, and we outline the claimed security properties

and guarantees of the protocol.

5.2.1 New Mechanisms

The three years of effort that has gone into crafting and fine-tuning both the security

and efficiency mechanisms of TLS 1.3 is readily apparent in the large structural

departures from TLS 1.2. The two protocols have broadly similar goals but exhibit

many differences. For example, a full TLS 1.3 handshake requires one fewer round

trip before a client can transmit protected application data, and the new 0-RTT

mechanism allows less sensitive application data to be sent by the client as part of

its first flight of messages.

TLS 1.3 has three key exchange modes, namely, Diffie–Hellman exchange (DHE),

PSK exchange, and PSK coupled with DHE. These modes enable useful features

like session resumption and the transmission of early application data. Additionally,

there are a number of handshake variants that allow for group renegotiation and the

sending of context-dependent, optional messages. Each of these variants has different

properties and offers different security guarantees.
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Furthermore, TLS 1.3 has three post-handshake mechanisms covering traffic key

updates, post-handshake client authentication, and the sending of new session tickets

(NSTs) for subsequent resumption via a PSK. The handshake protocol maintains a

rolling transcript, on which both parties must agree. This transcript takes the form

of a hash value of all of the handshake messages. Post-handshake messages, however,

are not included in this transcript resulting in different security properties for the

post-handshake mechanisms.

We analyse all of the TLS 1.3 key exchange modes, handshake variants, and post-

handshake mechanisms simultaneously, considering all possible interactions between

them. We provide a brief description of these components as well as associated

message flow diagrams.

Diffie–Hellman exchange (DHE)

The default mode of TLS 1.3 allows for ephemeral DH keys to be established either

over a finite field or using elliptic curves.

In an initial (EC)DHE handshake, as depicted in Figure 5.1, the client sends a

ClientHello message containing a random nonce, i.e. a freshly generated random

value, and a list of symmetric algorithms. The client also sends a set of DH key

shares and the associated groups, KeyShare, and potentially some other extensions.

Upon receipt of a ClientHello message, the server selects appropriate crypto-

graphic parameters for the connection and responds with a ServerHello message.

This message contains a server-generated random nonce, an indication of the se-

lected parameters and potentially some other extensions. The server also sends a

KeyShare message, along with an EncryptedExtensions message and optionally a

CertificateRequest message.

The KeyShare contains the server’s choice of group and its ephemeral DH key share.

The client and server key shares are used to compute handshake and application

traffic keys.

The EncryptedExtensions message contains material that is not necessary for de-

termining cryptographic parameters. For instance, the draft specification lists the

server name and the maximum TLS fragment length as possible values to be sent in
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Client Server

ClientHello
KeyShare

ServerHello
KeyShare

EncryptedExtensions
CertificateRequest*

Certificate
CertificateVerify

Finished

Certificate*
CertificateVerify*

Finished
[ApplicationData]

Figure 5.1: A full TLS 1.3 handshake.

this message. The CertificateRequest message indicates that the server requests

client authentication in the mutual authentication case.

The server will also send a Certificate message, containing the server’s certifi-

cate and a CertificateVerify message, which is a digital signature over the cur-

rent transcript. These two messages allow the client to authenticate server. The

server also sends a Finished message. This message is a Message Authentication

Code (MAC) over the entire handshake, providing key confirmation and binding the

server’s identity to the computed traffic keys.

The client responds with Certificate and CertificateVerify messages, if re-

quested, and then sends its own Finished message. These message flows are depicted

in Figure 5.1.

Pre-shared key (PSK)

In the event that a PSK has been established, a client and a server can begin

communicating without a DH exchange. This is potentially attractive for low-power
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environments, however, without a DHE the connection loses perfect forward secrecy

(PFS). In a PSK handshake, the server authenticates via a PSK.

PSK with DHE

By combining a PSK with DHE this mode maintains PFS whilst limiting the number

of expensive public key operations that the server needs to perform.

Group renegotiation

It can be the case that the groups sent by a client are not acceptable to the server. In

this case, the server may respond with a HelloRetryRequest message. This indicates

to the client which groups the server will accept, and provides the client with the

opportunity to respond with an appropriate key share before returning to the main

handshake.

New session ticket (NST)

After a successful handshake, the server can issue an NST at any time. These tickets

create a binding to a resumption-specific secret and can be used by the client as

PSKs in subsequent handshakes.

PSK binder

A PSK binder is a value that binds a PSK to the handshake where the PSK is

offered by a client in a ClientHello message and, if the PSK was generated by

a server in-band, to the handshake where it was generated. A ClientHello can

contain multiple binders arranged in a list, where each binder is computed over a

hash of the ClientHello message (without the binder list itself).

Session resumption and PSK

This handshake variant allows a client to use a key established out-of-band (OOB) to

start a new session, or to use an NST established in a previous handshake to resume

the session. This avoids the use of expensive public-key operations and in the case
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Client Server

ClientHello
KeyShare*

PSK
ServerHello
KeyShare*

PSK
EncryptedExtensions

Finished

Finished

[ApplicationData]

Figure 5.2: A PSK resumption handshake.

of a resumption, ties the security context of the new connection to the original

connection. Note that a server may reject a resumption attempt made by a client,

so the specification recommends that the client supplies an additional (EC)DHE

key share with its PSK when trying to resume a session. Figure 5.2 depicts a PSK

resumption handshake.

Zero round trip time (0-RTT)

A client can use a PSK to send application data in its first flight of messages,

reducing the latency of the connection. As noted in the TLS 1.3 draft specification,

this data is not protected against replay attacks. If the communicating entities wish

to take advantage of the 0-RTT mechanism, they should provide their own replay

protection at the application layer. A 0-RTT handshake is depicted in Figure 5.3.

Post-handshake client authentication

After a successful handshake, the server can send a CertificateRequest message.

If the client responds with an acceptable certificate, then the server might authenti-

cate the client. However, because the specification allows certificates to be rejected
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Client Server

ClientHello
KeyShare*

PSK
(ApplicationData)

ServerHello
KeyShare*

PSK
EncryptedExtensions

Finished

[ApplicationData]

Finished

[ApplicationData]

Figure 5.3: A 0-RTT handshake.

‘silently’, the client cannot be sure of its authentication status in general. We discuss

this in greater detail in Section 5.6.2.

Key update

After a successful handshake, either party can request an application data key up-

date. Because the read and write keys for application data are independent, either

party can immediately update their write key after requesting a key update.

Key derivation

A TLS 1.3 handshake will generate a set of keys on which both the client and server

agree. The specification defines a key schedule which uses the repeated application of

an HMAC-based key derivation function (HKDF) [123] to combine the secret inputs

with fixed labels so as to generate a set of independent keys.

The key schedule has two secret inputs, the (EC)DHE and the PSK. Depending on

the handshake mode, either one or both of these will be used. The key schedule also
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includes the transcript hash in the key derivation. Because the transcript includes

nonces, even if the secret inputs are repeated, the generated keys are guaranteed to

be independent.

5.2.2 Stated Goals and Security Properties

The TLS 1.3 handshake protocol is intended to negotiate cryptographic keys via the

mechanism of authenticated key exchange (AKE). These keys can then be used by

the record layer to provide critical security guarantees, including confidentiality and

integrity of messages. As stated in Section 5.2.1, TLS 1.3 makes use of independent

keys to protect handshake messages and application data messages: protection of the

handshake messages starts with the server’s EncryptedExtensions message, and in

the majority of handshake modes, protection of application data messages occurs

after the transmission of the server and client Finished messages, respectively. In

the case of a 0-RTT handshake, application data is protected with a PSK as part of

the client’s first flight of messages.

The TLS 1.3 specification [162, Appendix E.1] lists eight properties that the hand-

shake protocol is required to satisfy:

1. Establishing the same session keys. Upon completion of the handshake,

the client and the server should have established a set of session keys on which

they both agree.

2. Secrecy of the session keys. Upon completion of the handshake, the client

and server should have established a set of session keys which are known to

the client and the server only.

3. Peer authentication. In the unilateral case, upon completion of the hand-

shake, if a client C believes it is communicating with a server S, then it is

indeed S who is indeed executing the server role. An analogous property for

the server holds in the bilateral (mutual) authentication case.

4. Uniqueness of session keys. Each run of the protocol should produce dis-

tinct, independent session keys.
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5. Downgrade protection. An active attacker should not be able to force the

client and the server to employ weak cipher suites, or older versions of the TLS

protocol.

6. Perfect Forward Secrecy (PFS). In the case of compromise of either party’s

long-term key, sessions completed before the compromise should remain secure.

This property is not claimed to hold in the PSK key exchange mode.

7. Key compromise impersonation (KCI) resistance. Should an attacker

compromise the long-term key of party A, the attacker should not be able to

use this key to impersonate an uncompromised party in communication with

A.

8. Protection of endpoint identities. The identity of the server cannot be

revealed by a passive attacker that observes the handshake, and the identity

of the client cannot be revealed even by an active attacker that is capable of

tampering with the communication.

We model six out of the eight required properties, omitting downgrade protection

and the protection of endpoint identities. Also, as stated previously, 0-RTT mecha-

nisms allow for replay of early data across sessions. We discuss the reduced 0-RTT

security properties as well as the properties described above more fully in Section 5.4.

The draft specification refers to RFC 3552 [164] for an informal description of the

TLS 1.3 threat model. This model assumes a Dolev-Yao attacker [93]– an attacker

that can perform MITM attacks by being able to replay, insert, delete, and modify

messages at will. We consider a strictly more powerful attacker, as we will explain

in Section 5.4.1.

5.2.3 Changes Since draft-10

As mentioned, we previously modelled draft-10 of the TLS 1.3 specification. At

that point in time, there were many similarities to the latest version, with some

notable differences. We provide here an overview of some of those changes to help

contextualise our draft-10 work.
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First of all, the handshake modes were still in flux. In draft-10, the sending of

early data required a client to possess a semi-static (EC)DH value of the server.

This particular handshake mode was removed and replaced by a pre-shared key

(PSK) 0-RTT handshake mode– early data can now only be encrypted using a PSK.

In fact, the PSK mechanism has been greatly enhanced since draft-10 with new

PSK variants and binding values being incorporated in to the specification. Post-

handshake authentication was officially incorporated from draft-11 onwards and

a few drafts later, post-handshake authentication was enabled to operate with the

PSK handshake mode. Another change to be incorporated after draft-10 was the

inclusion of 0.5-RTT data - the server being able to send fully protected application

data as part of its first flight of messages.

Since many parts of the handshake were not yet finalised, we focused on the flexibility

of our model, and the ability to test out proposed changes. It is due to this approach

that we were able to detect a possible attack on one of the suggested changes.

Furthermore, at the time of draft-10, the required security properties of TLS 1.3

were very poorly established, consisting of a loose set of recommendations as opposed

to formal requirements.

5.3 Modelling the Protocol

We refer the readers to the introduction given in Section 2.3.1 for an introduction

to Tamarin and its features. These features make Tamarin a good fit for the

modelling and in-depth analysis of highly complex protocols such as TLS 1.3. In

particular, the support for branching allowed us to model the decisions that the

protocol participants can make during execution, the loops were instrumental in

covering repeated connections within a single session, and the main security aspects

of TLS 1.3 critically depend on Diffie-Hellman key exchange. The non-monotonic

state support enabled us to model branching without having to resort to custom-

tailored hacks or having to rely on the considerable over-approximation where all

branches can be considered simultaneously. Lastly, the visualisations of attacks found

by Tamarin provided us with a way to quickly identify potential problems, with

either the protocol or our model– the graphical user interface was a great asset in

guiding our TLS 1.3 verification workflow.
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We defer the details of our Tamarin model to Section 5.4, and note differences to

other TLS 1.3 models in the next section.

5.3.1 A Comprehensive Model

Using Tamarin’s modelling framework we devised a comprehensive symbolic model

of TLS 1.3 that captures the specified protocol behaviours, as well as unexpected

behaviours that arise from a complex interaction of an unbounded number of ses-

sions. Our model captures these behaviours in the presence of a powerful adversary.

We defer discussion of our adversary capabilities to Section 5.4.1.

Other TLS 1.3 analyses consider the constituent parts of TLS 1.3, viewing these as

separate protocols, and proceed to tie the individual proofs together with a composi-

tionality result. For instance, [40] considers the resumption mechanism as a separate

protocol in which both the client and the server take as input a symmetric value—

the PSK. If the PSK remains unknown to the attacker in every execution of the

resumption protocol, a gap remains to be filled before concluding that the full hand-

shake always completes without the attacker knowing the PSK. This gap is filled

by a manual compositionality proof. In our work, there is no need for such manual

proofs; composition is trivially satisfied by our comprehensive model, as Tamarin

considers all the possible interactions in proving each property.

draft-06

Our first model covered the draft-06 version of the specification, and is covered

in [113]. At that point in time, the specification was at an early stage, and did not

include, for example, the 0-RTT mechanisms. This model had some notable limita-

tions. For example, bilateral and mutual authentication modes were considered, but

only separately, i.e. all sessions of the same protocol role had the same authentication

status.

draft-10

Our draft-10 model was one of the first analyses of the TLS 1.3 specification to

cover a significant portion of the protocol.
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One particularly difficult component to model was the semi-static DH key shares,

which were used as part of the 0-RTT mechanism.

At the time, there was also discussion of allowing the client to authenticate after

a session resumption, either in the initial handshake, or using the post- handshake

authentication mechanism. We extended our draft-10 model to include this antic-

ipated feature, which we denoted draft-10+.

Characteristic of these models, and those which came before, is the use of macros

to define handshake messages. For example, we defined ClientHello to be the

pair of values nc,pc, representing the client’s nonce and “parameters”, which is

a placeholder value for the handshake values from which we abstract away. The

rule representing the first client message, i.e., the ClientHello message is depicted

in Figure 5.4. The use of macros to define message chunks is to aid in producing

a correct model - due to the nature of symbolic pattern matching, a typo can be

disastrous, and difficult to detect.

We show the resultant state machines in Figures 5.5, 5.6. Immediately, it is clear

that the TLS 1.3 state machines produce some complex transitions and considering

the composition of all of these modes is an intimidating task.

The benefit of our comprehensive approach was highlighted by the potential attack

we found, involving multiple handshake modes, and many handshake messages. The

details of the attack are covered in Section 5.5.

Current model

In the latest version, we opted to model TLS 1.3 with a significant increase in

fidelity to the draft specification. Such an approach resulted in an improved ability

to capture the full functionality of TLS, as well as an even broader class of realistic

attacks compared to our already fruitful draft-10 model.

Additionally, by closely matching our model to the specification and allowing for an

almost line-per-line comparison, we achieve full transparency regarding which parts

of the specification we abstract away from, and which assumptions our modelling

process relies on. We discuss the relation between our model and the RFC in detail

in Section 5.7.
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rule C_1:

let

// Default C1 values

tid = ∼nc

C = $C

S = $S

// Client Hello

nc = ∼nc
pc = $pc

// Client Key Share

ga = ’g’^∼a

messages = <ClientHello,ClientKeyShare>

in

[ Fr(nc)

, Fr(∼a)
]

--[ C1(tid)

, Start(tid, C, ’client’)

, Running(C, S, ’client’, nc)

, DH(C, ∼a)
]->

[ St_init(C,1, tid, C, nc, pc, S, ∼a, messages, ’no_auth’)

, DHExp(C, ∼a)
, Out(<C,ClientHello,ClientKeyShare>)

Figure 5.4: Rule C 1 in our Tamarin model of TLS 1.3 draft-10
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Figure 5.5: Partial client state machines for draft-10 as modelled in our Tamarin
analysis. The diagram represents the union of all the options for a client in
a single execution. Not depicted are the additional transitions representing a
client starting a new handshake using either a PSK established by C_3_NST or a
ServerConfiguration for a 0-RTT handshake. Note that the C_1_KC_Auth edge
may only occur once per handshake.
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Figure 5.6: Partial server state machines for draft-10 as modelled in our Tamarin
analysis. The diagram represents the union of all the options for a server in
a single execution. Not depicted are the additional transitions representing a
server starting a new handshake using either a PSK established by S_3_NST or
a ServerConfiguration for a 0-RTT handshake. Note that the S_2_Auth edge may
only occur at most once per handshake.
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Not only is our model more comprehensive than the Tamarin models that precede

it, it also incorporates the many changes to the TLS 1.3 specification that have

materialised since the development of these models. In the following sections, we

describe our modelling process, pointing out enhancements over the previous models.

5.3.2 Closely Modelling the Specification

As with our previous models, we employ the use of Tamarin rules to model state

transitions within the TLS 1.3 protocol. However, our state transitions are far more

fine-grained and modular in comparison to the draft-10 model, modelling the ef-

fective change in state as a result of transmission, receipt and processing of crypto-

graphic parameters. For instance, a basic, initial TLS 1.3 handshake invokes up to

21 different rules and the associated state transitions before post-handshake opera-

tions can commence. These state transitions are depicted in Figure 5.7, and corre-

spond to message flights and cryptographic processing as described in Section 5.2.1,

Figure 5.1. The full state diagram can be found at the end of the chapter in Figure 5.13.

Figure 5.8 show the updated client_hello rule in the current model, showing a

number of major changes from the previous model. For example, the messages have

been significantly expanded to include extensions. Furthermore, macros are used to

an even greater extent. The client state is now contained within the ClientState

macro - a tuple of all variables.

We also note the extensive use of macros in our model, which is enabled by the m4

preprocessor and allowed us to cover most of the specification, whilst syntactically

keeping our model close to it. For example, our ClientHello message is a macro

that expands to:

handshake_record(’1’,

ProtocolVersion,

ClientRandom,

’0’, // legacy_session_id

$cipher_suites,

’0’, // legacy_compression_methods

ClientHelloExtensions)
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recv client hello
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Figure 5.7: Partial state diagram for full TLS 1.3 handshake. Tamarin rules are
written in snake case on edges. The messages exchanged between entities are dis-
played in the middle along the dashed edges. Our full model contains many more
transitions, and can be found at the end of the chapter.
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rule client_hello:

let

// Initialise state variables to zero.

init_state()

// Client identity

C = $C

// Server identity

S = $S

// Client nonce

nc = ∼nc
// We reuse the client nonce to be a thread identifier

tid = nc

// Group, DH exponent, key share

g1 = $g1

g2 = $g2

sg = <g1, g2>

client_sg = <g1, g2>

g = g1

x = ∼x
gx = g^x

messages = <messages, ClientHello>

es = EarlySecret

in

[ Fr(nc), Fr(x)

]

--[ C0(tid),

Start(tid, C, ’client’),

running_client(Identity, C),

Neq(g1, g2),

DH(tid, C, x)

]->

[

State(C1, tid, C, S, ClientState),

DHExp(x, tid, C),

Out(ClientHello)

]

Figure 5.8: Tamarin code showing the client_hello rule in the final TLS 1.3 model.
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which reflects almost exactly how it is written in our Tamarin files. ClientRandom

is itself another macro, defined to be the value of the client nonce nc. In Tamarin’s

syntax, constants are enclosed by single quotes. Constructing the model in this

fashion enables a direct syntactic comparison to the specification. Previous Tamarin

models also employ macros, but the connection to the specification is much less

evident. For instance, in [85] ClientHello is defined to be the pair of values nc,pc,

representing the client’s nonce and “parameters”, which serves as a placeholder for

handshake values that are abstracted away.

In our model we have tried to define cryptographic components in a way that is rem-

iniscent of imperative programming. As in the specification, we compute the hand-

shake secret by computing the function HKDF-Extract(gxy,es), and the handshake

keys are computed by applying a Derive-Secret function to this value. This is not

strictly necessary due to the assumption of perfect cryptography, but it makes it

easier to connect our model to the specification.

5.3.3 Advanced Features

In our model we capture a number of complicated interactions and logic flows in-

herent to the TLS 1.3 handshake, greatly improving on preceding models, adding

features to the model which we consider to be ‘advanced’.

Group negotiation

We model the client and the server as having a limited ability to negotiate the group

used in the Diffie–Hellman key exchange.

In Tamarin, any value can be used as a group generator. Typically, the fixed (pub-

lic) constant ’g’ is used, which represents all parties agreeing to use a single group

ahead of time. On receiving a key share and storing it in the variable gx, we simu-

late checking that the element resides in this group by pattern matching the value

as ’g’^x = gx. Intuitively, this corresponds to checking that ∃x . gx = gx . This

matches neatly with the specification, which also requires checking the DH share is

not in a small subgroup.
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In Tamarin’s syntax, variables that are always instantiated with public values are

prefixed by $. In our model, the client starts with a pair of public values $g1,$g2

that represent two supported groups, and offers these to the server along with a cor-

responding key share for $g1. Similarly, the server starts with a supported group $g.

The model allows the server to return a HelloRetryRequest to the client, enforcing

that $g is not equal to $g1, and expects the client to return instead a key share that

matches $g2.

This interaction enables a much greater coverage of DH key exchange with respect

to previous versions of the Tamarin model, and opens up the possibility of future

extensions to this work. One such extension would be to model a weak group by

permitting the attacker to reveal the corresponding DH exponents.

Handshake flows

One of the most complex elements inherent to modelling TLS 1.3 is the vast num-

ber of possible state machine transitions. After a session resumption, the server can

choose between using the PSK only, or using the PSK along with a DH key share.

Alternatively, the server might reject the PSK entirely, and fall back to a regular

handshake, or request that the client use a different group for the DH exchange. Ad-

ditionally, there are several complex messages that can be sent in the post-handshake

state: client authentication requests, new session tickets, and key update requests.

Since all of the above interactions can happen asynchronously, the resulting model

becomes very complex and requires sophisticated handling logic. A number of com-

plicated protocol flows, involving any number of sequential handshake modes and

post-handshake extensions can, and will, transpire and we deal with this eventuality

by modelling all possible handshake modes in a very modular fashion. Other models

are, by and large, not capable of capturing complicated protocol flows.
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5.4 Encoding the Threat Model and the Security Properties

5.4.1 Threat Model

We consider an extension of the Dolev-Yao (DY) attacker [93] as our threat model.

The DY attacker has complete control of the network, and can intercept, send, replay,

and delete any message. To construct a new message, the attacker can combine any

information previously learnt, e.g., decrypting messages for which it knows the key, or

creating its own encrypted messages. We assume perfect cryptography, which implies

that the attacker cannot encrypt, decrypt or sign messages without knowledge of the

appropriate keys. In order to consider different types of compromise, we additionally

allow the attacker to do the following:

• compromise the long-term keys of protocol participants,

• compromise their pre-shared keys, whether created out-of-band (OOB) or

through a new session ticket (NST), and

• compromise their DH values.

Note that TLS 1.3 is not intended to be secure under the full combination of all

these types of compromise. For example, session key secrecy can be broken by an

attacker who eavesdrops on the communication and compromises the DH values of

a single protocol participant.

A natural approach is to weaken the attacker model by adding realistic constraints

until either the claimed security goals of the protocol are achieved, or the corre-

sponding attackers become weaker than the ones we expect to face in practice. This

workflow requires us to express, with high granularity, exactly what needs to be

protected and when each of the claimed TLS 1.3 properties can be expected to hold.

We now give our formal definitions of the TLS 1.3 security properties mentioned in

Section 5.2, noting where each property is covered in our model.
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5.4.2 Security Properties

We encode the claimed security properties of TLS 1.3 as lemmas in the specification

language of Tamarin. Here we discuss the relationship between the lemmas we prove

in the model, and the desired properties in the specification. We note that there is

some overlap between the material in the stated goals expressed in Section 5.2.2.

For example, the requirement for PFS is effectively a modifier to the requirement

for secret session keys. Where possible, we prove these properties via distinct lemmas

to aid in the comprehension of the model. However, it is also possible to combine

many of the properties into a single, more complex lemma.

Establishing the same session keys

The definition of this first property is taken from [74], where it is referred to as

a consistency property. However, there is ambiguity in the circumstances that are

necessary and sufficient for two protocol participants to establish the same keys.

An answer to this question is typically given through the well-established practice

of defining session partnering [34, 74, 126]. One possible way to do so is to assign

session identifiers in terms of a value (or pair of values) on which the two parties

agree. We opted for the least restrictive session identifier, namely the pair of nonces

generated by the client and the server. Therefore, if a partnered client and server

complete the handshake, then they must agree on session keys.

We consider this property with respect to an attacker that can compromise all session

keys except for those that are identical to that of the test session, i.e. the session in

which the attacker attempts to obtain information about the key [74, 126].

Secrecy of the session keys

The secret_session_keys lemma is used to prove property (2) in Section 5.2.2.

The secret_session_keys lemma we prove appears in full detail in Figure 5.9. The

intuition for this lemma is that if an actor believes it has established a session key

with an authenticated peer, then the attacker does not know the key. However, given

the capabilities of the attacker, this will not hold without imposing some restrictions.

This is why the additional clauses are required.
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1lemma secret_session_keys:

2 "All tid actor peer wkey rkey peer_auth_status #i.

3 SessionKey(tid, actor, peer, <peer_auth_status, ’auth’>, <wkey, rkey>)@i &

4 not (Ex #r. RevLtk(peer)@r & #r < #i) &

5 not (Ex tid3 x #r. RevDHExp(tid3, peer, x)@r & #r < #i) &

6 not (Ex tid4 y #r. RevDHExp(tid4, actor, y)@r & #r < #i) &

7 not (Ex resumption_ms #r. RevealPSK(actor, resumption_ms)@r) &

8 not (Ex resumption_ms #r. RevealPSK(peer, resumption_ms)@r)

9 ==> not Ex #j. K(read_key)@j"

Figure 5.9: The secret session keys lemma.

The five conditions stated in the depicted lemma are generally repeated across all

lemmas, and encapsulate the basic assumption we make about our attacker. We

describe them in more detail here: The first imposes the restriction that the long-

term signing key of the peer is not compromised1. This restriction can additionally

be understood to signify that the actor is communicating with an honest peer, since

the attacker can effectively simulate a party when in possession of its long-term key.

Furthermore, it should be noted that the attacker is still allowed to compromise the

peer’s long-term key (LTK) after the session key is established. Hence we show that

the session keys achieve PFS with respect to the LTK.

The second and third clauses bar the attacker from revealing any DH exponents

generated by the client or the server from before the session key was established. The

attacker may reveal exponents that are generated after the session key is established.

The last two clauses specify that the attacker cannot compromise a PSK associated

with either the actor or the peer. Note that the attacker is restricted from revealing

these PSKs even after the session key has been established, which corresponds to

the proviso in the specification that the PSK-only exchange mode does not provide

PFS. We discuss this in more detail in Section 5.4.2.

Peer Authentication

The specification defines this property somewhat informally, as a form of authenti-

cation whereby both parties should agree on the identity of their peer. Looking at

this more formally through the lens of Lowe’s hierarchy of authentication [132], this

definition corresponds to weak agreement. In particular, we note that this does not

1We remind the reader that both the client and the server are equipped with long-term signing
keys, and the corresponding public key certificates, for the purposes of authentication.

178



5.4 Encoding the Threat Model and the Security Properties

1lemma entity_authentication [use_induction, reuse]:

2"All tid actor peer nonces cauth_status #i.

3 CommitNonces(tid, actor, ’client’, nonces)@i &

4 CommitIdentity(tid, actor, ’client’, peer, <cauth_status, ’auth’>)@i &

5 not (Ex #r. RevLtk(peer)@r & #r < #i) &

6 not (Ex tid3 x #r. RevDHExp(tid3, peer, x)@r & #r < #i) &

7 not (Ex tid4 y #r. RevDHExp(tid4, actor, y)@r & #r < #i) &

8 not (Ex resumption_ms #r. RevealPSK(actor, resumption_ms)@r & #r < #i) &

9 not (Ex resumption_ms #r. RevealPSK(peer, resumption_ms)@r & #r < #i)

10 ==> (Ex tid2 #j. RunningNonces(tid2, peer, ’server’, nonces)@j & #j < #i)"

Figure 5.10: The entity authentication lemma.

imply recentness—the requirement that the peer is currently running the protocol—

nor does it specify whether any other values should be agreed upon.

We initially model this property via our entity_authentication lemma. Entity

authentication is modelled in two parts so as to capture the distinction between

the bilateral (mutual) and unilateral authentication cases. Authentication in the

unilateral case means that if a client completes a TLS handshake, apparently with

a server, then the server previously ran a TLS handshake with the client, and they

both agree on certain data values of the handshake, including the identity of the

server and the nonces used. Note that this is already a stronger property than is

stipulated in the specification. Here we prove non-injective agreement on the nonces,

which additionally provides recentness since both parties contribute a fresh nonce

to the handshake. The unilateral entity authentication lemma we prove appears in

Figure 5.10.

The intuition for this lemma is that if a client believes it has agreed on a pair of

nonces with a server, then the server was, at some point prior, running the protocol

with those nonces. We again find the necessary restrictions on the attacker to achieve

this property. The property can only hold if the attacker does not acquire any of

the secrets prior to the client agreeing on nonces. While one might expect that only

the legitimacy of the signing key is necessary for authentication, if the attacker is

able to obtain the PSK through compromising cryptographic material, or the PSK

directly, then the attacker is able to resume a session and impersonate the peer.

In addition to entity authentication, we consider a transcript agreement property,

where the value agreed upon is a hash of the session transcript. This provides us with

near-full agreement. However, there are a couple of notable omissions. Firstly, the

protocol technically continues after the initial handshake, although none of these
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delayed handshake messages are included in the session transcript. Secondly, we

observed that the actors do not necessarily agree on the current authentication

status of the handshake, a situation we cover in more detail in Section 5.6.2.

Finally, we also prove an injective variant of mutual transcript agreement, which TLS

naturally achieves by agreeing on fresh nonces. Hence, we show that TLS achieves

a relatively strong authentication notion: mutual agreement on a significant portion

of the state with recentness.

Uniqueness of the session keys

We prove in the straightforward way that for any two session keys generated, if they

match then they must be from the same session. This holds without any restriction on

the attacker, since it is a straightforward consequence of the actor generating a fresh

nonce for each session. We do not prove anything about whether two session keys

are related, since this trivially follows from the assumption of perfect cryptography.

Downgrade protection

The specification cites the work by Bhargavan et al. [41] for downgrade protection.

This definition is not directly equivalent to any of Lowe’s classical agreement meth-

ods; it only requires that both parties negotiate the same configuration parameters

that they would do without the presence of an attacker. Specifically, we observe that

agreeing on the parameters (in the sense of non-injective agreement) is sufficient to

achieve this, but not necessary. Therefore, within our model we prove that TLS

achieves downgrade protection through our authentication lemmas.

However, we note that this does not accurately capture the spirit of downgrade

protection, due to the fact that we assume all cryptographic primitives are perfect

and we do not model previous versions of TLS.

Forward secrecy with respect to long-term keys

The PFS property was briefly mentioned in the context of the long-term signing

keys and the secrecy of session keys. However, in those cases, we did not cover the

requirement for forward secrecy with regards to the PSK. We have an additional
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lemma secret_session_keys_pfs which captures that, in either a full DHE or

PSK-DHE handshake, the secrecy of the session keys does not depend on the PSK

remaining secret after the session is concluded.

To achieve this, we modify secret_session_keys as depicted in Figure 5.9, by

adding a condition for the key-exchange mode, not psk_ke_mode = psk_ke, and

loosening the restrictions on the adversary such that the RevealPSK action is only

forbidden for any time point #r < #i. In proving this lemma, we show that the

session keys are forward secure after a DHE.

Key Compromise Impersonation (KCI) resistance

Observant readers will notice that the only restriction on compromising long-term

keys is that the peer’s LTK must not be compromised. None of our security properties

rely on the actor’s LTK being hidden from the adversary2. Applying this fact to the

authentication properties, therefore, additionally shows that the protocol, as given

in the draft specification, achieves KCI resistance.

5.5 Enabling Client Authentication in PSK Mode

While draft-10 did not at the time appear to permit certificate-based client authen-

tication in PSK mode (and in particular in resumption using a PSK), we extended

our model as specified in one of the proposals for this intended functionality [161].

By enabling client authentication either in the initial handshake, or with a post-

handshake signature over the handshake hash, our Tamarin analysis finds an attack.

The result is a violation of client authentication, as the adversary can impersonate

a client when communicating with a server.

5.5.1 The Attack

We note that the attack as described here is for the delayed authentication setting,

but can easily be adapted for authentication as part of the handshake.

2A minor exception to this is that the adversary cannot use the actor’s long-term key to imper-
sonate the actor to themselves since in this case, the actor is also the peer.
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Client Alice Charlie

(As server Charlie) (As client Alice)

Server Bob

Reuse psk idInitial handshake 1
Client not authenticated, PSK1 exchanged

Initial handshake 2
Client not authenticated, PSK2 exchanged

Generate nc

Start PSK1 resumption Start PSK2 resumptionReuse nc, psk id

client random = nc
session ticket = psk id

client random = nc
session ticket = psk id

Generate ns

Accept PSK2 resumptionAccept PSK1 resumption Recompute Finished

Reuse ns server random = nsserver random = ns

PSK1 resumption done PSK2 resumption doneRecompute Finished

Compute session
keys based on
PSK1

Compute session
keys based on
PSK1, PSK2

Compute session
keys based on
PSK2

Client authentication requestClient authentication request Re-encrypt

Client authentication Client authenticationRe-encrypt

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id,CertAlice, . . .)

Certificate = CertAlice

CertificateVerify =
sign(nc, ns, psk id,CertAlice, . . .)

Alice is in a session with me (Bob).

Only Alice knows the session keys.

Application data exchange

Charlie impersonates Alice

Figure 5.11: Client impersonation attack on TLS 1.3 draft-10 if delayed client au-
thentication allowed in PSK mode. The attack involves two handshakes, two resump-
tions, and a client authentication request. A full explanation is given in Section 5.5.1.
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We now describe the attack depicted in Figure 5.11 in more detail: Alice plays the

role of the victim client, and Bob the role of the targeted server. Charlie is an active

man-in-the-middle adversary, whom Alice believes to be a legitimate server. In the

interest of clarity we have omitted message components and computations which are

not relevant to the attack. The full attack can be reproduced using our code at [16].

The attack proceeds in three main steps, each involving different TLS subprotocols.

Step 1: Establish legitimate PSKs

In the first stage of the attack, Alice starts a connection with Charlie, and Charlie

starts a connection with Bob. In both connections, a PSK is established. At this

point, both handshakes are computed honestly. Alice shares a PSK denoted PSK1

with Charlie, and Charlie shares a PSK denoted PSK2 with Bob.

Note that Charlie ensures the session ticket (psk id) is the same across both con-

nections by replaying the value obtained from Bob.

Step 2: Resumption with matching freshness

In the next step, Alice wishes to resume a connection with Charlie using PSK1.

As usual, Alice generates a random nonce nc, and sends it together with the PSK

identifier, psk id.

Charlie re-uses the value nc to initiate a PSK-resumption handshake with Bob, using

the same identifier, psk id. Bob responds with a random nonce ns, and the server

Finished message, computed using PSK2.

Charlie now re-uses the nonce ns, and recomputes the server Finished message

using PSK1. Alice returns her Finished message to Charlie, who recomputes it

using PSK2.

At this point, Alice and Charlie share session keys (i.e., application traffic keys)

derived from PSK1, and Charlie and Bob share session keys derived from PSK2.

Note that the keys that Charlie shares with Alice and with Bob respectively, are

distinct.
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Step 3: Delayed client authentication

Following the resumption handshake, Charlie attempts to make a request to Bob over

their established TLS channel. The request calls for client authentication, so Charlie

is subsequently prompted for his certificate and verification3. Charlie re-encrypts

this request for Alice.

To compute the verification signature, Alice uses the session_hash value, which is

defined as the hash of all handshake messages excluding Finished messages. In

particular, the session hash will contain nc, ns, and the session ticket psk id.

Notice that this session hash will match the one of Charlie and Bob. Therefore, this

signature will also be accepted by Bob. Hence, Charlie re-encrypts the signature

for Bob, who accepts Alice’s certificate and verification as valid authentication for

Charlie.

Charlie has therefore successfully impersonated Alice to Bob, and even has full

knowledge of the session keys. This enables Charlie to impersonate Alice in future

communication with Bob, allowing him to fake messages or to access confidential

resources, for instance, and violate the secrecy of messages that Bob tries to send to

Alice. Thus, the attack completely breaks client authentication.

5.5.2 Underlying Cause and Mitigation

The above attack is possible due to the absence of a strong binding of the client

signature to the server identity. Therefore, the attacker is able to reuse the signature

it receives to impersonate the client to a server. The second component of the attack

is that the attacker is able to force the two resumption sessions to have matching

transcripts.

This suggests several potential ways to mitigate the attack. The most direct route

would be to include the server certificate in the handshake hash. A similar fix is

done in the 0-RTT case, where the server certificate is bound to the semi-static DH

share. However, this is not ideal, because it complicates the out-of-band mechanism.

3This is one of the main use cases for the delayed client authentication mode [161].
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Another potential route might be to implement an explicit authentication step as

part of the PSK mechanism.

In parallel to our analysis, the TLS Working Group has proposed several modi-

fications to draft-10 in the move towards draft-11. One of these proposals is

PR#316 [163] (which takes a different approach to [161]), which explicitly allows

client authentication in the context that we analyse. Additionally, PR#316 redefines

the client signature based on a new Handshake Context value, which includes the

server Finished message. Intuitively, this new definition appears to address the at-

tack because the adversary will need to force the Finished messages to match across

the two sessions. However, the Finished message is bound to the PSK, which is de-

rived from a previously authenticated session, whether using certificates or out-of

band mechanisms.

Our discussions with members of the TLS Working Group reveal that they were

previously not aware of the possibility of our attack, and the resulting strict necessity

for a stronger binding between the client certificate and the security context that

emerges from combining the PSK mode with client authentication.

5.5.3 Resulting Fix

After a few iterations, the entire PSK resumption process was entirely revamped.

Now, on a resumption, the client includes a PSK binder value in the ClientHello

message (using an extension). This indeed creates this strong binding we previously

suggested; the binder value is dependent on the hash of the entire transcript, and

thus the adversary will not be able to re-use the signature across two connections.

5.6 Analysis and Results

In this section we provide a detailed description of our analysis of the TLS 1.3

draft-21, including a discussion of our results and an exploration of an authenti-

cation anomaly uncovered by our work.

In general we find that TLS 1.3 meets the properties outlined in the specification that

our modelling process was able to capture. We show that TLS 1.3 enables a client
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and a server to agree on secret session keys and that these session keys are unique

across, as well as within, handshake instances. Our analysis shows that PFS of session

keys holds in the expected situations, i.e., in the (EC)DHE and PSK+(EC)DHE

handshake modes. We also show that TLS 1.3, by and large, provides the desired

authentication guarantees in both the unilateral and mutual authentication cases.

The situation in which this is not the case is covered in the section to follow.

We remind the reader that our model does not truly cover downgrade protection,

or the protection of endpoint identities at this time. A treatment of downgrade

protection across TLS protocol versions would require modelling the earlier versions

of TLS in a way that is consistent with the TLS 1.3 model as developed here.

To consider the downgrade protection of cipher suites, we would need to relax our

current assumption of perfect cryptography through rules that, for instance, allow for

an attacker to learn the payload of a particular kind of encrypted messages without

knowing the key. In spite of the fact that these additional considerations would

substantially complicate the model and the proof process, our model is perfectly

suited to their inclusion and could form the basis of future work.

5.6.1 Positive Results

We now present our results for TLS 1.3, commenting on our proof methods and

findings.

Proof strategies

For models as complex as TLS 1.3, proving lemmas in Tamarin is a multi-stage

process, and proving complex lemmas directly is often infeasible. For protocol models

of this size the proof trees can become very large. Tamarin provides a number of

features that allow complex proofs to be broken down into more manageable sections.

Writing sublemmas provides hints to the Tamarin constraint solving algorithm,

allowing it to solve complex sections of a larger proof directly, making the overall

proof more manageable. For the TLS 1.3 model, we used several types of lemmas.

Helper lemmas can be used to quickly solve repetitive sections of a larger proof

without repeatedly unrolling the entire subtree. Typing lemmas provide hints to the

Tamarin engine about the potential sources of messages, reducing the branching of
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a proof tree. Inductive lemmas instruct Tamarin to prove the lemmas inductively,

allowing us to break out of loops in the protocol, which otherwise can produce infinite

proof trees. Proving the main properties of TLS 1.3 required many helper lemmas,

of all of these types.

The Tamarin engine can also use heuristics to auto-prove lemmas, which proved

invaluable in quickly re-proving large sections of properties after making changes to

the model. By investing time in writing auto-provable sublemmas, we could flexibly

incorporate changes made to the specification without having to restart our analysis

from scratch.

The more complex lemmas used in our analysis of TLS 1.3, however, required manual

proving in the Tamarin interactive prover. We note that by manual proving in this

context we mean manually guiding the Tamarin prover through a proof by using

the Tamarin graphical user interface.

Using the m4 preprocessor to generate restricted subsets of the model we were able to

prototype lemmas in a simpler environment without expending unnecessary effort.

To give an indication of the number of helper lemmas required, and the relation-

ship between all of our lemmas, we have constructed a ‘lemma map’, displayed in

Figure 5.12. The map also indicates which lemmas were auto-proved by Tamarin,

and which ones needed manual guidance for Tamarin to prove them.

In total, the most recent modelling effort represents approximately three months

worth of work. However, the vast majority of that was the process of writing lemmas

to break down the overall proving effort into smaller, autoprovable chunks. With

these lemmas in place, proving the entire model took about one week of work, and

significant computing resources. The model itself takes over 10GB RAM just to load,

and can easily consume 100GB RAM in the course of a proof. In one instance, an

automatically-computed proof was almost one million lines long. Once the proofs

have been produced, they can be verified in the space of about a day, although still

requiring a vast amount of RAM.
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Findings

We summarise our results in Table 5.1. For each property discussed in Sections 5.2

and 5.4, we indicate our findings. We use ∗ to indicate that the property holds in

most situations. Cases in which the property does not hold to the expected degree,

are covered in sections to follow. We also list the applicable Tamarin lemma(s).

Property proven Lemma(s)

(1) Same session keys session_key_agreement

(2) Secret session keys secret_session_keys

(3) Peer authentication∗
entity_authentication

mutual_entity_authentication

(4) Unique session keys unique_session_keys

(6) Perfect forward secrecy secret_session_keys_pfs

(7)
Key compromise
impersonation

entity_authentication

mutual_entity_authentication

Table 5.1: TLS 1.3 Tamarin results

5.6.2 Possible Mismatch Between Client and Server View

During the development of our model, and in particular the analysis of the post-

handshake client authentication, we encountered a possible behaviour that suggested

that TLS 1.3 fails to meet certain strong authentication guarantees.

While there are many definitions of authentication, the common thread among

strong authentication guarantees is that both parties share a common view of the

session, i.e. that they agree on exchanged data, keys, etc. During our analysis of the

post-handshake client authentication, it became apparent that the client does not

receive any explicit confirmation that the server has successfully received the client’s

response. Due to the asynchronous nature of the post-handshake client authentica-

tion, the client may keep receiving data from the server, and will not be able to

determine if the server has received its authentication message. As a consequence,

the client cannot be sure whether the server sent the data under the assumption

that the client is authenticated.

We formally modelled this property by adding a variable to the client and the server

that records the current status of the connection, and in particular, if the connection

is unilaterally or mutually authenticated. We discovered that even when the server
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Figure 5.12: Lemma Map. Lemma names with a white background indicate where
manual interaction via the Tamarin visual interface was required. The remaining
lemmas were automatically proven by Tamarin, without manual interaction. An
arrow from one category to another implies that the proof of the latter depends on
the former. The Properties box contains the main TLS 1.3 properties.
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asks for a post-handshake client authentication, and the client responds, the client

cannot be sure that the server considers the channel to be mutually authenticated.

In concurrent work by Bhargavan et al. [40], a similar issue was uncovered for the

0.5-round trip time (RTT) case. A discussion with the TLS 1.3 working group re-

vealed that an equivalent problem also exists within the main handshake. During

the main handshake, the server can request a client certificate, and may decide to re-

ject the certificate (for example because it violates certain domain-specific policies),

but still continue with the connection as if the certificate were accepted. Therefore,

the client cannot be sure (after what appears to be a main handshake with mutual

authentication) that the server considers the client to be authenticated. Thus, this

phenomenon leaves the client in the dark about whether or not the server considers

it to be authenticated, even though the server asked for a certificate and the client

supplied it.

To see why this may become a problem at the application level, consider the following

application. Imagine a client and a server that implement TLS 1.3, where the server

has the following policy: any data received over a mutually authenticated connection

are stored in a secure database; all data received over connections where the client

is not authenticated are stored in an insecure log. The client connects, the server

requests a certificate, which the client duly provides, but the server rejects and

continues regardless. Since the server rejected the certificate, it continues to store

incoming messages in the insecure log. However, the client may assume it has been

authenticated, and start sending sensitive data, which ends up in the insecure log.

The TLS working group has decided not to fix this behaviour for TLS 1.3, and has

not introduced any mechanism that informs the client of the server’s view of the

client’s authentication status. If a client wants to be sure that the server considers

it to be authenticated, this needs to be dealt with at the application layer. We

anticipate that some client applications will incorrectly assume that sending a client

certificate and obtaining further server messages indeed guarantees that the server

considers the connection to be mutually authenticated. As we have shown, this is

not the case in general, and may lead to serious security issues despite there being

no direct violation of the specified TLS 1.3 security requirements.

190



5.7 The Relation Between Our Model and the TLS 1.3 Specification

5.7 The Relation Between Our Model and the TLS 1.3

Specification

While there have been many academic analyses of various drafts of TLS 1.3 [40,

96, 14, 124, 129, 95, 105, 121, 113], they all (explicitly or implicitly) consider only

part of the specification. Most analyses, even those that claim to be “complete” do

not consider all possible modes, and many manual cryptographic analyses consider

modes only in isolation (and not their interaction). This is caused by the inherent

complexity of analysing TLS 1.3 and is not a problem in itself; rather, it justifies

the need for multiple approaches.

However, we are of the opinion that readers, regardless of whether or not they

are experts in the field, should be able to easily deduce the exact coverage of a

given analysis. To ensure this, we provide an unprecedented level of transparency

concerning the relationship between our model and the RFC (the draft specification)

by creating a website [12] that contains an annotated version of the RFC.

For example, the website shows how the concrete data structures of TLS 1.3 are

mapped into abstract term structures. Additionally, we annotate the prose, describ-

ing the possible behaviours so as to indicate which Tamarin rules model them. The

annotations also show exactly which details we do not model (and often list the

reasons why).

We used these annotations ourselves during the development of our model to keep

track of the parts of the specification that we had already modelled, and how we

modelled them, which also simplified the task of keeping track of updates to the

specification, something which proved incredibly useful given the rapid pace at which

the draft specification would undergo changes.

Our annotated RFC has a number of desirable features:

• Readers can check which parts we abstracted, and how, without having to

reinvent the mapping between the Tamarin model and the RFC themselves.

In other words, one can read through our website to see what is covered, and

how it is covered, without having to understand Tamarin’s formalism.
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• If the specification is updated or changed, we can immediately track where the

model should be changed.

We encourage other analyses of TLS 1.3 to follow a similar transparent approach,

which would help the community to better understand which details from the specifi-

cation might still need to be covered. We envision this will enable a faster convergence

of confidence in all the details of the standard.

5.8 Conclusions

In this work we modelled the current draft of the TLS 1.3 specification within the

symbolic analysis framework of the Tamarin prover, and used the tool to verify the

majority of the security guarantees that TLS 1.3 claims to offer its users.

We focus on ruling out complex interaction attacks by considering an unbounded

number of concurrent connections, and all of the TLS 1.3 handshake modes. We

cover both unilateral and mutual authentication, as well as session key secrecy in

all of the TLS 1.3 handshake modes with respect to a Dolev-Yao attacker. We also

capture more advanced security properties such as perfect forward secrecy and key

compromise impersonation. Our Tamarin model covers substantially more interac-

tions than previous analyses due to its modularity.

Besides verifying that draft 21 of the TLS 1.3 specification meets the claimed se-

curity properties in most of the handshake modes and variants, we also discover an

unexpected authentication behaviour which may have serious security implications

for implementations of TLS 1.3. This unexpected behaviour, at a high level, implies

that TLS 1.3 provides no direct means for a client to determine its authentication

status from the perspective of a given server. As a server may treat authenticated

data differently to unauthenticated data, the client may end up in position in which

its sensitive data gets processed as non-sensitive data by the server.

During the course of our analysis we also developed a line-by-line modelling aide

that accurately captured which parts of the specification we were able to model, and

which parts were abstracted. This artefact allows us to easily assess the faithfulness

and coverage of our model, and also makes our model highly amenable to all kinds

of extensions, especially with respect to the security properties and threat model.
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5.8 Conclusions

We expect that this artefact may serve as a comprehensive informational aide to

academic researchers and well as the TLS Working Group.
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Figure 5.13: Part 1 of the full state diagram for Tamarin model, showing all rules
covered in the initial handshake (excluding rules dealing with record layer).
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Chapter 6

Concluding Remarks

In this thesis, we have covered a range of real-world cryptographic scenarios and pro-

tocols, from password storage, to the ubiquitous TLS. A common theme throughout

has been understanding how to apply cryptographic analysis techniques in order to

prove that a certain design meets its stated goals.

Unravelling this short statement reveals a number of complex interactions. For ex-

ample, there is a constant back-and-forth between adequately stating the goals of

an application, and designing a specific implementation to meet those goals.

In the case of key rotation for authenticated encryption in Chapter 4, there was

already a pre-existing belief that key rotation was an essential part of secure data

storage, but without any formal understanding of what constituted a secure re-

encryption. By formally describing security goals for this scenario, we were able to

evaluate existing schemes, understand their flaws and propose new schemes. This

process helped to elucidate certain requirements that sounded obvious, but were

difficult to precisely state, such as “a re-encryption should look like a fresh encryp-

tion”.

In the course of designing our AE models, we uncovered an interesting question:

whether the scheme should rely on the security of ciphertext headers. For the sake

of designing a strong model, we opted to permit the adversary to recover ciphertext

headers, modelling a temporary compromise of the “client” service. Taking the time

to consider all possible adversarial behaviours results in asking these kinds of ques-

tions, for example, under what model does it make sense for an adversary to obtain

some state or variable?
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Similarly, the design of the TLS specification has included lengthy discussions on

what the requirements and goals of TLS are, and to what extent it meets those

objectives. The development of TLS has led to new research avenues, aiming to

understand how each small, and seemingly innocuous, component can impact the

security of the protocol. As the protocol evolves to meet these new requirements, so

does the research community in producing new, stronger standards for it to attain.

On the other hand, this thesis has also scratched the surface of what the avail-

able analysis mechanisms are, and how they can contribute in different ways to the

analysis of a protocol or specification. In Chapters 3 and 4, we used traditional

computational techniques to prove our implementations were secure. However, in

Chapter 5, we instead relied on formal methods in the form of the Tamarin prover

to analyse the latest TLS 1.3 draft.

Comparing the two approaches as they were used in this thesis, the computational

analysis provided us a very “high-level” view of the security of a protocol. We con-

sider the base elements, and prove their security is based on well-established (or

even brand new) cryptographic assumptions. Both Pythia and ReCrypt relied on

the security of key-homomorphic PRFs, and ultimately reduced to variants of the

DDH assumption.

Constructing a concrete implementation of ReCrypt in Chapter 4 showed how some-

times this high-level analysis leads to complications in practice. When building a

protocol out of primitives such as key-homomorphic PRFs, it is common to make

assumptions such as “messages are members of the group X”. In practice, we often

work with bitstrings, and must prove the security of the round trip from a bitstring

to a group element, applying the protocol, and back to a bitstring. Hence we also

needed to propose an encoding function from bitstrings to group elements. It was not

obvious here what was required from the encoding function, and required additional

thought and investigation.

This exemplifies how, despite having a computational proof, there are still many

ways in which a protocol can be theoretically unsound. To leave the description of

ReCrypt without detailing this necessity would almost certainly lead to a inexperi-

enced developer implementing an unsound protocol.
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In contrast, the symbolic approach using Tamarin cannot necessarily provide guar-

antees on the same level as the computational proofs. Indifferentiability for example

is currently being added to Tamarin, but seems unobtainable for complex proto-

cols in the short-term. Where symbolic analysis excels, is the holistic analysis of the

protocol. In Chapter 3, we detailed an entire API for use in the password storage ser-

vice. However, the computational analysis only covered one small component of the

service - the PRF queries. This leaves an analytical chasm, between a production-

ready implementation and the original prototype, and symbolic analysis tools can

help to fill this gap.

Furthermore, the symbolic approach helps to identify any incorrect assumptions

made about the model or scenario. A priori, nothing is held to be true, and thus

Tamarin is able to invoke surprising combinations of behaviours which may not

have been possible before. In [85], we found an attack on an early version of TLS

not through directing Tamarin to find the attack, but because while trying to prove

basic properties about the handshake, it became clear that there was an equation

which could not be satisfied. This was part of a complex inductive proof, cross-

ing multiple handshake modes and involving many messages. It is possible that a

computational analysis may have missed such an attack, by making a simplifying

assumption across handshake modes which would ignore this possibility.
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[45] Karthikeyan Bhargavan and Gaëtan Leurent. “Transcript collision attacks:

Breaking authentication in TLS, IKE, and SSH”. In: Network and Distributed

System Security Symposium–NDSS 2016. 2016.

[46] Technical background of version 1 Bitcoin addresses. https://en.bitcoin.

it/wiki/Technical_background_of_version_1_Bitcoin_addresses.

[47] Bitcoin Wiki, “Weaknesses”. https://en.bitcoin.it/wiki/Weaknesses.

[48] John Black, Phillip Rogaway, and Thomas Shrimpton. “Encryption-Scheme

Security in the Presence of Key-Dependent Messages”. In: SAC 2002: 9th

Annual International Workshop on Selected Areas in Cryptography. Ed. by

Kaisa Nyberg and Howard M. Heys. Vol. 2595. Lecture Notes in Computer

Science. St. John’s, Newfoundland, Canada: Springer, Heidelberg, Germany,

Aug. 2003, pp. 62–75.

[49] Simon R. Blackburn and Sam Scott. “The discrete logarithm problem for

exponents of bounded height”. In: LMS Journal of Computation and Math-

ematics 17 (Special Issue A Jan. 2014), pp. 148–156. issn: 1461-1570.

[50] Bruno Blanchet. “An Efficient Cryptographic Protocol Verifier Based on Pro-

log Rules”. In: Proceedings of the 14th IEEE Workshop on Computer Security

Foundations. CSFW ’01. Washington, DC, USA: IEEE Computer Society,

2001, pp. 82–.

[51] Bruno Blanchet. “Security protocol verification: Symbolic and computational

models”. In: Proceedings of the First international conference on Principles

of Security and Trust. Springer-Verlag. 2012, pp. 3–29.
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