Supplemental information for:

Testing the applicability of optically stimulated luminescence dating to Ocean Drilling Program cores.

S.J. Armitage and R.C. Pinder

Section S1. Authigenic uranium content and ²³⁰Th ingrowth calculations

The environmental dose rate for MIS 6-5e samples from core 658B was calculated using a version of the Marine_{xs+auth} model described in Armitage (2015). Briefly, ²³⁸U and ²³²Th and bulk K concentrations were measured using ICP-MS. Authigenic uranium (U_{auth}) activity was calculated using Equation S1:

$$U_{auth} = {}^{238}U_{m} - 0.8 * {}^{232}Th_{m}$$
(Eq. S1)

where ${}^{238}U_m$ and ${}^{232}Th_m$ are the measured activities of ${}^{238}U$ and ${}^{232}Th$ respectively (Yu et al., 1999). The remaining uranium (${}^{238}U_m$ -U_{auth}) is assumed to be detrital (U_{det}) and in secular equilibrium with all its decay products.

Armitage (2015) approximated the dose rate due to U_{auth} by assuming secular equilibrium from $^{238}U_{auth}-^{234}U_{auth}$, and no dose from the decay products of $^{234}U_{auth}$. This approximation was valid since limited ingrowth of 230 Th (230 Th_{in}) from $^{234}U_{auth}$ would have occurred for the relatively young (0-50 ka) samples presented in that study. Conversely, for MIS 6-5e samples presented here, appreciable 230 Th ingrowth will have occurred during burial. Since 230 Th has no long-lived decay products, 230 Th_{in} may be assumed to be in secular equilibrium with those decay products for the purposes of calculating a dose rate. In addition, since $^{234}U_{auth}$ is itself in secular equilibrium with $^{238}U_{auth}$ (half-life ~4.5 Ga), 230 Th_{in} is in secular equilibrium with the entire 238 U decay series. Consequently, the dose rate per unit activity due to 230 Th_{in} is identical to that for $^{238}U_{det}$.

²³⁰Th_{in} activity as a proportion of U_{auth} activity (*A*) at time *t* may be calculated using Equation S2:

$$A = l - e^{-\lambda t}$$
(Eq. S2)

where λ is the ²³⁰Th decay constant. Consequently, for a sample with an unknown age, ²³⁰Th ingrowth would require a time dependant dose rate calculation. However, for a known age sample, the mean ²³⁰Th_{in} content may be calculated, and incorporated into the dose rate calculation as a time independent dose rate contribution. This may be done by repeatedly calculating *A* for a relatively small time step (in this case 250 years) from *t* = 0 to the known age of the sample, and taking the mean value (\overline{A}). Since *A* is the ²³⁰Th_{in} activity as a proportion of U_{auth} activity, and the dose rate per unit activity due to ²³⁰Th_{in} is identical to that for ²³⁸U_{det}, the effects of ²³⁰Th ingrowth upon dose rate may be accounted for reducing U_{auth} activity by the mean ²³⁰Th_{in} activity i.e. \overline{A} . Consequently, for the purposes of the Marine_{xs+auth} model described by Armitage (2015), a corrected value of U_{auth} may be calculated using Equation S3:

Corrected
$$U_{auth} = U_{auth} * (1-\overline{A})$$
 (Eq. S3)

For the samples presented in Section 5, values of \overline{A} range from 0.40 at 123 ka to 0.44 at 140 ka. Dose rate data are presented in Tables S1 and S2.

Table S1: Water and radioisotope concentrations for MIS6-5e samples from Core 658B. In addition, all samples were assumed to have 230 Th_{xs} and 231 Pa_{xs} activities of 36.6±9.3 Bq/kg and 3.38±0.87 Bq/kg at burial. These data are used to generate the dose rates presented in Table S2.

Core depth (m)	Water (%)	²³⁸ U (ppm)	²³² Th (ppm)	K (%)
19.39	47.0±5.0	10.76±0.07	3.88±0.05	0.91±0.03
19.90	46.6±5.0	9.00±0.09	3.77±0.06	0.97 ± 0.04
19.90	46.6 ± 5.0	9.00±0.09	3.77±0.06	0.97 ± 0.04
20.40	46.2±5.0	6.83±0.14	4.54 ± 0.04	1.08 ± 0.05
20.65	46.1±5.0	5.60±0.09	4.65 ± 0.05	1.02 ± 0.03
20.90	45.9±5.0	5.39±0.05	4.52±0.03	1.20 ± 0.04
21.17	45.8 ± 5.0	5.35±0.07	4.89±0.06	1.10 ± 0.04
21.39	45.7±5.0	4.28±0.03	5.91±0.09	1.21±0.05
	Core depth (m) 19.39 19.90 20.40 20.65 20.90 21.17 21.39	Core depth (m) Water (%) 19.39 47.0±5.0 19.90 46.6±5.0 19.90 46.6±5.0 20.40 46.2±5.0 20.65 46.1±5.0 20.90 45.9±5.0 21.17 45.8±5.0 21.39 45.7±5.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table S2: Equivalent dose, dose rate and age data for MIS6-5e samples from Core 658B. OSL ages were calculated using the Marine_{xs+auth} dose rate model described in Section S1 (Armitage, 2015). Uncertainties are based on the propagation, in quadrature, of errors associated with individual errors for all measured quantities. In addition to uncertainties calculated from counting statistics, errors due to 1) beta source calibration (3%) Armitage and Bailey, 2005, 2) ICP-MS/Gamma spectrometer calibration (3%), 3) dose rate conversion factors (3%) and 4) attenuation factors (3%) have been included Murray and Olley, 2002. $D_{r(sup-auth)}$ is the dose rate due to ²³⁸U_{auth} in equilibrium to ²³⁴U and the ²³⁸U_{detrital} and ²³²Th decay series in equilibrium plus the ⁴⁰K dose rate. For the purposes of calculating $Dr_{(sup-auth)}$, ²³⁸U_{auth} activities were corrected for ²³⁰Th ingrowth during burial using Equation S3. \overline{A} is the mean ingrown ²³⁰Th activity during the burial period for each sample as a proportion of U_{auth} activity. $D_{tof(xs)}$ is the total dose due to ²³⁰Th_{xs} and ²³¹Pa_{xs} since burial.

sample as a proportion of O _{auth} activity. D _{tot(xs)} is the total dose due to Th _{xs} and Ta _{xs} since burlat.									
Sample	De	Dr(sup-auth)	\overline{A}	D _{tot(xs)}	Age (ka)		Ratio		
	(Gy)	(Gy/ka)		(Gy, total)	OSL	$\delta^{18}O$	$(OSL/\delta^{18}O)$		
69B	242±9	1.88 ± 0.15	0.40	28.2±5.2	113±10	123±4	0.92 ± 0.08		
71A	230±12	1.76±0.13	0.41	28.4±5.3	114 ± 10	127±4	0.90 ± 0.08		
71B	235±9	1.76±0.13	0.41	28.8±5.3	117±9	127±4	0.92 ± 0.08		
73B	226±16	1.70 ± 0.11	0.42	28.8±5.3	116±11	132±4	0.88 ± 0.09		
74B	224±10	1.55±0.09	0.43	30.0±5.6	125±9	134±4	0.94 ± 0.07		
75B	241±9	1.65 ± 0.09	0.43	30.4±5.6	128±8	136±4	0.94 ± 0.07		
76B	246±11	1.61±0.09	0.44	31.1±5.8	134±9	138±4	0.97 ± 0.07		
77A	262±10	1.65 ± 0.08	0.44	31.8±5.9	139±9	140±4	0.99 ± 0.07		

Table S3: Energy emission per unit decay and dose rates for the ²³²Th decay series.

Isotope	Half-life (a)	Energy Release (MeV)			Dry dose rate (Gy/ka per Bq/kg)		
		α	β	γ	α	β	γ
²³² Th	1.4050E+10	4.00	0.011	0.001	0.02024	0.00006	0.00001
²²⁸ Ra	5.7500E+00	-	0.009	0.000	-	0.00005	0.00000
²²⁸ Ac	7.0157E-04	-	0.417	0.860	-	0.00211	0.00435
²²⁸ Th	1.9120E+00	5.41	0.019	0.003	0.02733	0.00010	0.00002
²²⁴ Ra	1.0021E-02	5.67	0.002	0.010	0.02868	0.00001	0.00005
²²⁰ Rn	1.7619E-06	6.29	-	0.001	0.03179	-	0.00000
²¹⁶ Po	4.5948E-09	6.78	-	0.000	0.03427	-	0.00000
²¹² Pb	1.2138E-03	-	0.172	0.144	-	0.00087	0.00073
²¹² Bi	1.1512E-04	2.18	0.503	0.104	0.01100	0.00255	0.00053
²¹² Po (0.641)	9.4747E-12	5.63	-	-	0.02847	-	-
²⁰⁸ Tl (0.359)	5.8046E-06	-	0.214	1.214	-	0.00108	0.00614
Full ²³² Th series		35.95	1.349	2.337	0.18177	0.00682	0.01181

Table S4: Energy emission per unit decay and dose rates for the ²³⁸U decay series.

Isotope	Half-life (a)	Energy Release (MeV)			Dry dose rate (Gy/ka per Bq/kg)			
		α	β	γ	α	β	γ	
²³⁸ U	4.4680E+09	4.19	0.007	0.001	0.02120	0.00004	0.00001	
²³⁴ Th	6.5911E-02	-	0.059	0.008	-	0.00030	0.00004	
234 Pa _m	2.2023E-06	-	0.810	0.016	-	0.00410	0.00008	
234 Pa _(0.0016)	7.6368E-04	-	0.001	0.001	-	0.00001	0.00001	
²³⁴ U	2.4558E+05	4.76	0.012	0.001	0.02406	0.00006	0.00001	
²³⁰ Th	7.5418E+04	4.66	0.013	0.001	0.02358	0.00007	0.00001	
²²⁶ Ra	1.6002E+03	4.77	0.004	0.007	0.02414	0.00002	0.00004	
²²² Rn	1.0457E-02	5.49	-	0.000	0.02775	-	0.00000	
²¹⁸ Po	5.8940E-06	6.00	-	-	0.03034	-	-	
²¹⁴ Pb	5.1018E-05	-	0.291	0.239	-	0.00147	0.00121	
214 Bi	3.7709E-05	0.00	0.654	1.475	0.00001	0.00331	0.00746	
²¹⁴ Po	5.1968E-12	7.69	-	0.000	0.03886	-	0.00000	
²¹⁰ Pb	2.2213E+01	-	0.033	0.005	-	0.00017	0.00002	
²¹⁰ Bi	1.3721E-02	-	0.389	-	-	0.00197	-	
²¹⁰ Po	3.8026E-01	5.30	0.000	0.000	0.02682	0.00000	0.00000	
Full ²³⁸ U series		42.87	2.273	1.755	0.21675	0.01149	0.00887	
Total incl. & post ²³⁴ U		38.68	1.396	1.730	0.19555	0.00706	0.00874	
Total incl. & post ²³⁰ Th		33.92	1.384	1.728	0.17149	0.00700	0.00874	
Total pre- ²³⁴ U		4.19	0.878	0.026	0.02120	0.00444	0.00013	

Table S5: Energy emission per unit decay and dose rates for the ²³⁵U decay series.

Isotope	Half-life (a)	Energy Release (MeV)			Dry dose rate (Gy/ka per Bq/kg)			
		α	β	γ	α	β	γ	
²³⁵ U	7.0400E+08	4.11	0.029	0.164	0.02080	0.00015	0.00083	
²³¹ Th	6.9870E-02	-	0.146	0.023	-	0.00074	0.00012	
²³¹ Pa	3.2760E+04	4.92	0.032	0.040	0.02489	0.00016	0.00020	
²²⁷ Ac	2.1770E+01	0.07	0.012	0.001	0.00036	0.00006	0.00000	
227 Th _(0.986)	5.1143E-02	5.81	0.050	0.154	0.02936	0.00025	0.00078	
223 Fr _(0.014)	4.1828E-05	0.00	0.000	0.001	0.00002	0.00000	0.00000	
²²³ Ra	3.1294E-02	5.66	0.068	0.135	0.02863	0.00034	0.00068	
²¹⁹ Rn	1.2548E-07	6.75	0.007	0.058	0.03414	0.00003	0.00029	
²¹⁵ Po	5.6436E-11	7.39	-	-	0.03737	-	-	
²¹¹ Pb	6.8636E-05	-	0.450	0.064	-	0.00227	0.00032	
²¹¹ Bi	4.0688E-06	6.55	0.013	0.047	0.03311	0.00007	0.00024	
²¹¹ Po	1.6351E-08	0.02	-	-	0.00010	-	-	
²⁰⁷ Tl	9.0691E-06	-	0.495	0.002	-	0.00250	0.00001	
Full ²³⁵ U series		41.30	1.303	0.689	0.20879	0.00659	0.00348	
Total incl. & post ²³¹ Pa		37.19	1.128	0.501	0.18799	0.00570	0.00253	

Table S6: Energy emission per unit decay and dose rates for ⁴⁰K and ⁸⁷Rb.

Isotope	Half-life (a)	Energy Release (MeV)			Dry dose rate (Gy/ka per 1% nat. K or 50 ppm nat. Rb)		
		α	β	γ	α	β	γ
40 K	1.248E+09	-	0.499	0.156	-	0.799	0.249
⁸⁷ Rb	4.810E+10	-	0.082	-	-	0.018	-
Total		-	0.581	0.156	-	0.817	0.249

References

Armitage, S.J., 2015. Optically stimulated luminescence dating of Ocean Drilling Program core 658B: Complications arising from authigenic uranium uptake and lateral sediment movement. Quat Geochronol 30, 270-274.

Armitage, S.J., Bailey, R.M., 2005. The measured dependence of laboratory beta dose rates on sample grain size. Radiat Meas 39, 123-127.

Murray, A.S., Olley, J.M., 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria 21, 1-16.

Yu, E.F., Liang, C.H., Chen, M.T., 1999. Authigenic uranium in marine sediments of the Benguela current upwelling region during the last glacial period. Terrestrial, Atmospheric and Oceanic Sciences 10, 201-214.