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Abstract 18 

A vision model is designed using low-level vision principles so that it can perform as a 19 

surrogate human observer.  In a camouflage assessment task, using military patterns in an 20 

outdoor environment, human performance at recognition and detection is compared with 21 

the surrogate human observer.   This involved field data acquisition and subsequent image 22 

calibration, a human experiment, and the design of the vision model.  Human and machine 23 

performance, at recognition and detection, of military patterns in two environments was 24 

found to correlate highly.   25 
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1. Introduction 36 

Military personnel and equipment need protection from detection during conflict. 37 

Camouflage is the primary method to achieve this, through coloured textures that match 38 

the background and/or disrupt the object’s outline (Hartcup 2008; Talas et al. 2017). 39 

Assessment of effectiveness can be carried out in a number of ways. The most intuitive 40 

method is to use human participants as observers. Such an apparently straightforward 41 

procedure, however, is not only limited by uncontrollable conditions, such as the weather, it 42 

is also impractical given the large variety of objects/patterns that one might want to 43 

evaluate and the range of environments one might want them to be assessed in. Field trials 44 

are also expensive and, if the camouflage is being designed for use in hostile theatres of 45 

war, may not even be possible. They also do not lend themselves to precise isolation of 46 

exactly what leads to the failure of camouflage, something that a paired comparison of 47 

otherwise identical target-present and target-absent scenes would allow. Photo-simulation 48 

attempts to overcome weather constraints and accessing inaccessible environments, and 49 

sometimes the location of conflict, by using synthetic imagery. Recent advances in synthetic 50 

rendering are impressive; however current methods are still computationally expensive and 51 
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the images are unrealistic at small spatial scales due to the current limitations of simulating 52 

realistic ray scattering. Furthermore, human experiments are necessarily subjective and do 53 

not readily allow evaluation of camouflage against autonomous systems perhaps operating 54 

using different spectral wavebands from the human visible. A computational approach is 55 

therefore required to overcome the limitations of assessing camouflage using human 56 

observers. Such a computational model should be ideally designed, in the first instance, in 57 

accordance the human visual system, since it will be performing the task of a human 58 

observer and, if it is to replace subjective assessment, needs to be compared to human 59 

performance. More generally, however, such a system could be adapted to have a different 60 

‘front end’ (e.g. infra-red, hyperspectral). Therefore it is surprising that a biologically 61 

motivated design for the assessment of camouflage has not been implemented. 62 

This omission means that the confidence and extendibility of current models and metrics 63 

are low, falling short in ability to cope with high dynamic range (i.e. natural) (Bhajantri and 64 

Nagabhushan, 2006; Hecker, 1992; Sengottuvelan et al., 2008), semi-automatic labelling or 65 

tracking of the target (Chandesa et al., 2009), non-probabilistic and non-scalable distance 66 

metrics to high dimensional data or multiple observations given many images (Birkemark, 67 

1999; Heinrich and Selj, 2015; Kiltie et al., 1995). Human behavioural data needs to be 68 

recorded to assess the coherence between human and model observers. This requires 69 

tasking human and model observers with the same experiment, based on a stimulus set 70 

from the real world: outdoor environments and militarily relevant objects. 71 

 72 

2. Method 73 

An experiment was devised so that human participants and a model observer could both be 74 

tasked with it; allowing for direct comparison.  This method section is broken down into the 75 
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three components that comprise this study: (i) images of objects placed in real world scenes 76 

were photographed and calibrated, (ii) a human experiment, using a protocol from 77 

psychophysics, recorded unbiased performance for recognition and detection of these 78 

objects, (iii) the design of the visual observer model, and modelling the discrimination task.  79 

 80 

2.1  Stimuli 81 

Targets were photographed in two outdoor environments in the UK: Leigh Woods National 82 

Nature Reserve in North Somerset (2°38.6’ W, 51°27.8’ N), which is mixed deciduous 83 

woodland, and Woodbury Common in Devon (3°22' W, 50°40' N), a heathland used for 84 

Royal Marine training. A replica military PASGT helmet (Personnel Armor System for Ground 85 

Troops, the US Army’s combat helmet until the mid-2000’s) was the chosen object used in 86 

the experiment and visibility was manipulated by changes in helmet covers varying in both 87 

colour and textural appearance (Figure 1). The camouflage patterns worn by the helmet 88 

were United Nations Peacekeeper Blue (UN PKB), Olive Drab, Multi-Terrain Pattern (MTP, as 89 

used by the British Army since 2012), Disruptive Material Pattern (DPM, the dominant 90 

British Army pattern prior to the adoption of MTP), US Marine Pattern (MarPat) and, for the 91 

Woodbury Common experiment, Flecktarn (as used by the Bundeswehr, the German Army). 92 

These patterns were chosen not for the purpose of evaluation per se, but to reflect a range 93 

of styles (e.g. unpatterned Olive Drab, DPM as a subjective human design, MTP and MarPat 94 

based on spatio-chromatic analysis of natural scenes, but MarPat being ‘digital’ or 95 

pixellated), with UN PKB as a high visibility control.  For the computational approach to be 96 

useful, the spectrum of visibility across the patterns should be highly correlated in the 97 

model and human observers. Scene locations were selected on a meandering transect 98 

through the habitats, at 20 m intervals and alternating left and right. If the predetermined 99 
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side was inaccessible or inappropriate due to occlusions then the opposite side of the 100 

transect path was used, and if neither side was accessible the interval was ignored and the 101 

next location in the transect was used. At each location the object was placed in a 3 × 3 grid 102 

resulting in nine images. The distance of each row of the grid was 3.5, 5 and 7.5 metres. The 103 

scene was also divided into 3 arcs: left, middle and right. The combination of distance and 104 

left-right positioning mean that, in the subsequent tests on humans, the location of the 105 

target within the scene was unpredictable. This resulted in nine images of each helmet per 106 

location for analysis, plus a scene including a Gretag-Macbeth Color Checker chart (X-Rite 107 

Inc., Grand Rapids, Michigan, USA) for calibration. The orientation of the helmet in each 108 

photograph was set an angle drawn randomly from the uniform distribution {0, 45, 90, 135, 109 

180, 225, 270, 315°}. For efficiency of implementation, the list of random angles was 110 

generated before going into the field. Each scene was also photographed without a helmet 111 

present. Photographs were taken using a Nikon D80 digital SLR (Nikon Ltd., Tokyo, Japan) 112 

with focal length 35mm, exposure 1/30 and F-Number 16. RAW images (Nikon NEF format) 113 

were captured and these were subsequently converted to uncompressed 8-bit TIFF and 114 

calibrated. Images were calibrated by recording luminance and chromatic spectral values of 115 

the Grettag Macbeth colour chart in the field using a Konica Minolta Chroma Meter CS - 116 

100A colour and luminance meter (Konika, Tokyo, Japan). This process was repeated three 117 

times to ensure to average over the natural variation in lighting from moment to moment. 118 

The spectral values were transformed to the CIE sRGB colour space after first converting 119 

them to the CIE XYZ colour space. The process was then repeated in the lab from a 120 

projected image from the projector. A cubic polynomial approximated the relationship 121 

between the two sets of RGB measurements. Images were then calibrated using the 122 

coefficients of the polynomial for each RGB channel. Not only does this procedure avoid 123 
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having a colour chart in every single image, but also it calibrates the entire pipeline in a 124 

single step: calibrating the camera, projector and images individually could result in over-125 

fitting or multiplicative errors. 126 

 127 

 128 

 129 

2.2 Human Experiment 130 

 131 

2.2.1 Participants and Materials 132 

A human experiment using 22 participants for the Leigh Woods dataset and another 20 133 

participants for the Woodbury Common dataset was conducted.  Each of the two 134 

experiments had an equal proportion of each gender and participants received university 135 

course credits for their participation. Images were projected onto a 190 × 107cm  136 

screen (Euroscreen, Halmstad, Sweden) from 310cm using a 1920 × 1080 pixel HD (contrast 137 

ratio 300,000:1) LCD Projector (PT-AE7000U; Panasonic Corporation, Kadoma, Japan). 138 

Participants were seated at a distance of 255 cm from the screen and therefore images 139 

subtended 41° horizontally and 24° vertically.  140 

 141 

2.2.2 Procedure 142 

At the start of each block participants were informed which helmet to search for by 143 

presenting an image of the helmet; only one camouflage type was present in any one block. 144 

There were 27 and 22 trials per block respectively for Leigh Woods and Woodbury Common, 145 

and the order of patterns across blocks and replicates within blocks were separately 146 

randomised for each participant. A trial consisted of sequentially presenting two scenes for 147 
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250 ms with a 250ms blank screen, of luminance and chromaticity equal to the mean of all 148 

the test images, immediately followed by a 250 ms cue screen, prior to each scene. One of 149 

the scenes presented contained a helmet and the other did not, the order being 150 

randomised. The participant’s task was a two alternative force choice, reporting which of 151 

the two scenes contained the helmet. Responses were given using the number keys one and 152 

two on the keyboard, reporting the first scene or the second scene respectively during a 153 

1000 ms response period after each pair of scenes. There were four general conditions of 154 

viewing, the factorial combination of two levels of colour information and two levels of 155 

location cueing. Cueing was of interest to separate effects of pattern recognition from 156 

detection, because the model was initially designed for recognition. Colour was of interest 157 

because it has been suggested that camouflage is more effective when there is chromatic as 158 

well as spatial noise (Melin et al., 2007; Morgan et al., 1992). In the first cueing condition, 159 

(‘cued’), participants were cued to the location of the helmet.  In the scene that did not 160 

contain the helmet, this cue’s location was a random selection of one of nine possible pre-161 

determined target locations. In the second condition, (‘uncued’), the cue was presented in 162 

the centre of the screen for both scenes. The spatial cue was a white circle, 50 pixel 163 

diameter, 5 pixel line width, circle that was presented for 250ms. The whole experiment was 164 

repeated in greyscale and colour. As with pattern, the order of conditions for each 165 

participant was randomised. 166 

 167 

 168 
 169 

 170 

 171 

 172 
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 173 

 174 

 175 

 176 

 177 

2.3 The Surrogate Observer Model 178 

 179 

2.3.1 The Model Framework 180 

The model is a four-stage process as outlined below. By modelling low level visual 181 

processing, a side effect of the features chosen produces Gaussian variation from small 182 

metric distortions.  The resultant Gaussian variation can then be approximated using a 183 

mixture of multivariate Gaussian distributions. The centre of each Gaussian distribution 184 

stores a familiar view. Probabilistic principal components (Tipping and Bishop, 1999b) 185 

describes the variability in an interpretable way to recognise unseen and unfamiliar views. 186 

Estimating the density and evaluating the maximum posterior probability determines the 187 

object class. This method turns the difficult problem of learning a complex invariant 188 

representation of an object into the simple problem of estimating parameters of a mixture 189 

of multivariate Gaussian distributions.  190 

 191 

1. Filter Images with a Log Gabor Filter Bank 192 

Grey scale images are cropped to a square and resized to 128×128 pixels, preserving the 193 

aspect ratio of the object. They are then filtered by a log Gabor wavelet filter bank. This first 194 
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stage captures the early linear properties of the visual system. Whilst 2D Gabors can be 195 

used to approximate simple cells (Daugman, 1985; Jones and Palmer, 1987), we know that 196 

(i) simple cells are tuned to spatial frequency with a Gaussian bell-shaped tuning curve on a 197 

log frequency scale (De Valois et al., 1982; Field, 1987) and (ii) the Gabor filter has a D.C. 198 

component. The power in natural images is dominated by the D.C. component (Field, 1987), 199 

and given that the cosine Gabor is sensitive to it and the sine Gabor is not, it will corrupt any 200 

computation of phase information in the next stage. The solution to both these problems is 201 

to employ log Gabors instead, which do not have a D.C. component (Kovesi, 1999). 202 

 203 

2. Process the Filtered Output 204 

Next we compute local energy and phase from the filtered output in stage 1. Stage 2 205 

accounts for two non-linear properties of the visual system, illumination invariance and shift 206 

invariance. The energy is logged; the effect is two fold: (i) the energy is positive, and not 207 

symmetrical for Gaussian approximation in the fourth stage; and (ii) introducing logarithms 208 

will turn differences in illumination into additive offsets. Denoting the response of the real 209 

and imaginary filters as R(x,y) and I(x,y), where x and y indicate the index in the image and 210 

atan2 computes the four quadrant arc tangent, log local energy and phase can be computed 211 

as Energy = ln|R(x,y)+iI(x,y)|+c and Phase = atan2(I(x,y),R(x,y)), where c is a small 212 

constant, 0.05, to avoid the undefined logarithm of zero and | is the absolute. The absolute 213 

is the magnitude of the real, cosine log Gabor, and imaginary, sine log Gabor, filters. The 214 

sum of the squared filter responses is the magnitude, since 𝑠𝑖𝑛$ + 𝑐𝑜𝑠$ = 1. The energy 215 

loses local position, but confers some translational invariance and therefore small shifts are 216 

turned into small variations.  Local energy represents lines as symmetrical Gaussians.  217 
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Therefore the variance of these features are Gaussian through small metric distortions such 218 

as shift and object pose.   219 

 220 

Phase angles will cycle from to π to −π as the distortion moves through sampling locations, 221 

resulting in correlated variation. Phase information is a polar, circular variable; in order to 222 

use this feature for Gaussian approximation one must convert this feature into Cartesian 223 

space. Therefore the sine and cosine of the phase are computed, doubling the number of 224 

dimensions required for phase information. Concatenating this sampled local logged energy, 225 

sine and cosine phase information creates the feature vector. 226 

 227 

3. Sample the Local Energy and Phase. 228 

A hexagonal lattice, of equal size to the image, is placed over the image and the local energy 229 

and phase is sampled at the centres of each hexagon. A hexagonal lattice provides optimal 230 

sampling where samples are equidistant from each other (Yfantis et al., 1987). Phase angles 231 

vary less at larger spatial scales and therefore to avoid over complete and redundant 232 

sampling, hexagonal lattices at larger spatial scales have fewer hexagons.  233 

 234 

4. Evaluate Recognition Decision Using Bayes’ Rule 235 

The Gaussian variation computed in stage 2 can now be approximated. A unimodal 236 

distribution can represent a single view of an object. A mixture of Gaussians can model a 237 

multimodal distribution where multiple views of an object are learnt. The dimensions of 238 

each Gaussian component should represent local variation of that the view. The 239 

concatenation of the local energy and phase results in a high-dimensional feature vector 240 

and therefore a mixture of probabilistic components (Tipping and Bishop, 1999a,b) or a 241 
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mixture of factor analysers (Ghahramani and Hinton, 1996) provides a local subspace for 242 

each Gaussian component and approximates the high dimensional covariance structure. To 243 

evaluate the recognition of an object, a model is created explicitly for each class. Likelihoods 244 

are computed for each explicit class and the posterior probability that an unseen object 245 

came from each object class is then evaluated using Bayes’ rule, P(A|B) = P(A)P(B|A). Where 246 

P(A|B) is the posterior probability that the data A is from the object class B and P(B|A) is the 247 

likelihood of data A under the object class B. The prior probability P(A) equal for each object 248 

class and this therefore cancels out. 249 

 250 

2.3.2 Modelling the 2AFC Recognition Task 251 

Human participants were tasked with recognising a helmet given two different images.  One 252 

of the images contained a helmet and the other did not.  For a direct comparison, both 253 

observers need to be tasked in a similar way.  Ten-fold cross-validation was used to assess 254 

the model’s accuracy.  However, instead of evaluating a single image at a time, two images, 255 

one with a helmet and one without, were both evaluated under both background and 256 

helmet models.  Therefore each image needs to be evaluated under both models producing 257 

four likelihoods (Fig. 5). There are the two scenarios; either the helmet is in image A or it is 258 

in image B. In the first scenario the helmet is in image A, where there is a high likelihood 259 

that it came from the helmet model and so the likelihood that image B came from the 260 

background class will therefore have a high likelihood. Bayes’ rule will integrate over the 261 

mutually exclusive probabilities as shown in the diagram above by incorporating the four 262 

likelihoods P(A|Helmet), P(A|Background), P(B|Helmet) and P(B|Background).  Using Bayes’ 263 

rule, the probability that image A is a helmet is simply:  264 
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 (𝐻𝑒𝑙𝑚𝑒𝑡|𝐴) = 34𝐴5𝐻𝑒𝑙𝑚𝑒𝑡6×3(8|89:;<=>?@A)
34𝐴5𝐻𝑒𝑙𝑚𝑒𝑡6×34𝐵5𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑6I34𝐵5𝐻𝑒𝑙𝑚𝑒𝑡6×3(J|89:;<=>?@A) . 265 

 266 

 267 

 268 

2.3.3 Modelling the Detection Task 269 

The model is trained on a series of crops. If the model is presented with an image of the 270 

target at a different spatial scale, i.e. the object does not fill the crop, it would be unable to 271 

recognise the object. To accommodate scale, likelihoods are computed for both the helmet 272 

and background classes at different spatial scales, at intervals of 10 ranging from the 273 

smallest helmet to the largest helmet across all images. Weightings are computed for each 274 

scale using Bayes’ rule by evaluating which scale is most probable from the helmet class 275 

whilst evaluating that the other spatial scales belong to the background class. The 276 

weightings are multiplied with the likelihoods from each scale and summed. In short this 277 

procedure integrates probabilities over all spatial scales into a single likelihood for 278 

classification. This probabilistic approach, graphically demonstrated below where A and B 279 

denote two different sized crops at location in an image, is superior over simply taking the 280 

maximum, because the maximum only considers one model and if two scales are likely 281 

under the probabilistic approach the maximum would be too brittle and would ignore one 282 

of the likely scales. Equations below 1 - 6, show how Bayes’ rule integrates the likelihoods 283 

over all the spatial scales, denoting two spatial scales A and B.  Detection was modelled 284 

using leave-one-out cross-validation instead of the 2AFC approach. This was because there 285 

were too few scenes to compare the helmet scenes with. Problematically, if one were to 286 

compare likely peaks between two scenes, one scene would always have the same area of 287 
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interest and this would be compared to many helmets. Leave-one-out cross-validation also 288 

provides a straightforward way to manipulate the training data so that the model did not 289 

see any of the scene whilst detecting the helmet.  290 

 291 

 292 

1.			𝑃(𝐻𝑒𝑙𝑚𝑒𝑡|𝐴, 𝐵) = 	
𝑃(𝐴|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐵|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

𝑃(𝐴|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐵|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) + 	𝑃(𝐵|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐴|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) 293 

 294 

2.		𝑃(𝐻𝑒𝑙𝑚𝑒𝑡|𝐵, 𝐴) = 	
𝑃(𝐵|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐴|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

𝑃(𝐴|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐵|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) + 	𝑃(𝐵|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐴|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) 295 

 296 

3.																																					𝐿1 = 𝑃(𝐴|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐻𝑒𝑙𝑚𝑒𝑡|𝐴,𝐵) + 	𝑃(𝐵|𝐻𝑒𝑙𝑚𝑒𝑡) × 𝑃(𝐻𝑒𝑙𝑚𝑒𝑡|𝐵, 𝐴) 297 

4.															𝐿2 = 𝑃(𝐴|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) × 𝑃(𝐻𝑒𝑙𝑚𝑒𝑡|𝐴,𝐵) + 	𝑃(𝐵|𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) × 𝑃(𝐻𝑒𝑙𝑚𝑒𝑡|𝐵, 𝐴) 298 

 299 

	5.																																																𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑡ℎ𝑎𝑡	ℎ𝑒𝑙𝑚𝑒𝑡	𝑖𝑠	𝑎𝑡	(𝑥, 𝑦) = 	
𝐿1

𝐿1 + 𝐿2
 300 

          6                          𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑡ℎ𝑎𝑡	ℎ𝑒𝑙𝑚𝑒𝑡	𝑖𝑠	𝑎𝑏𝑠𝑒𝑛𝑡	𝑎𝑡	(𝑥, 𝑦) = 	 Y$
YZIY$

 301 

 302 

Equations 1-6 elaborate an example of how the model evaluates over spatial scale, where A 303 

and B denote two images each at a different spatial scale.  304 

 305 

2.3.4 Colour 306 

There are three main issues to consider when including colour: i) colour in the periphery, ii) 307 

efficient feature combination of texture and colour and iii) appropriate choice of colour 308 

space for measuring the distance between colours. The representation of short, medium 309 

and long wavelength receptors on its own is insufficient because computed distances in the 310 

colour space do not correlate with human perception (Tkaclic and Tasic, 2003; Wyszecki and 311 
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Stiles, 1982). Projections in the CIE Lab colour space are consistent with the judgements of 312 

human observers and are appropriate for discrimination purposes (Renoult et al., 2015). The 313 

model is a surrogate human observer. Whilst recognition accuracy should be high, similar to 314 

human observers, it should not be able to recognise camouflaged objects all the time. The 315 

aim of the model is not to break camouflage and achieve perfect recognition. Therefore, 316 

instead of opting to use the CIE Lab colour space, the Macleod-Boynton chromaticity space 317 

is used. The Macleod-Boynton colour space is another opponency colour space that is 318 

particularly good at discriminating large chromatic differences (Renoult et al., 2015). 319 

Modelling the detection of camouflaged helmets therefore is being treated as evaluating 320 

saliency, which this colour space has been shown to be successful at (Tatler et al., 2005). 321 

Colour is perceived differently in the periphery, because there are fewer cone receptors 322 

outside of the fovea (Hubel, 1995).  The receptive field sizes in the periphery increase with 323 

eccentricity (Abramov et al., 1991), and therefore for objects to appear chromatically similar 324 

as if they were in the fovea, they must be spatially larger (Hansen et al., 2009; Vakrou et al., 325 

2005). Given that an object is big enough to be scaled, the upper bound of eccentricity has 326 

been found to be 40° to 50° (Abramov et al., 1991; Hansen et al., 2009), after which it has 327 

not been found to be possible to simulate chromaticity as if it were in the fovea. An object 328 

that subtends 2° of visual angle has been found to appear approximately chromatically 329 

similar as if were in the fovea up to 20° away. Therefore colour patterns in the periphery can 330 

be simulated by low-pass-filtering the image (Mullen, 1985). Given the approximate 331 

appearance of foveal chromaticity with eccentricity up to 20° (half of the display), of objects 332 

that subtend 2° of visual angle, the scene was convolved with a Gaussian, whose standard 333 

deviation was measured to be 1° of visual angle, which was chosen so that it was 334 

comfortably smaller than 2°. It must be noted that the Gaussian blur is only an 335 
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approximation and does not accommodate larger receptive fields as objects are more 336 

distant. The brightness varies the most across an image. Without processing the luminance, 337 

the mixture of Gaussians will have to explain this large variation, which will result in noisy 338 

likelihoods. The luminance information across all images could be normalised between one 339 

and zero, however that would no longer be Gaussian and, because we are only interested in 340 

chromaticity and not luminance, the luminance channel was excluded and was therefore 341 

not modelled. Excluding the luminance channel is straightforward to do using some colour 342 

spaces such as hue, saturation and value (HSV), where luminance is represented in the 343 

channel named value, or opponency colour spaces such as the Macleod and Boynton or Lab, 344 

where again the luminance is represented in its own channel. Removing the luminance 345 

channel is a standard method to avoid the large variance of brightness in images (Cai and 346 

Goshtasby, 1999; Shadeed et al., 2003). Instead of concatenating colour onto the feature 347 

vector of energy and phase, another Gaussian mixture model was trained for colour, 348 

allowing probabilities of colour and texture to be independent and a full covariance 349 

structure of colour to be modelled rather than a mixture of factor analysers. For each 350 

posterior map, the probabilities in the region where the target was located were logged and 351 

the maximum was taken. The log probabilities were plotted against human performance to 352 

visualise the correlation. 353 

 354 

 355 

3. Results 356 

Human data was not normally distributed and therefore a Generalised Linear Mixed 357 

(Effects) Model with binomial error and logit link function was used to generate 358 



17 
 

interpretable means and error for analysis.   Figures 6 - 9 compare the model accuracy with 359 

that of human accuracy and below in table 1 are the correlation coefficients between the 360 

model and human observers for each condition.  Correlations coefficients are very high, all 361 

above 0.85 with the exception of detection in Woodbudy Common in colour.  362 

 363 

 364 

Condition Correlation 

Leigh Woods 

Recognition 0.90 

Detection Greyscale 0.93 

Detection Colour 0.89 

Woodbury Common 

Recognition 0.91 

Detection Greyscale 0.87 

Detection Colour 0.68 

Table 1. The correlation coefficients between the model and human participants at 3 different 365 
conditions in two different environments, Leigh Woods and Woodbury Common 366 
 367 

 368 

4. Discussion 369 

This paper has described and validated a visual recognition system that is designed to 370 

behave in a similar way to humans.  The principles of its design are based upon low-level 371 

visual processing in the primary visual cortex.  Although it is well-known that Gabor filters 372 

can approximate simple cells found in the primary visual cortex, and simple models using 373 

Gabor filters can achieve high recognition accuracy on simple datasets (Pinto et al., 2008), 374 
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we present physiological evidence and a computational argument for the use of log Gabor 375 

filters.  Such applicability of a surrogate human observer is high, because using human 376 

participants is impractical given a variety of viewpoints, environments and objects.  This 377 

paper also defined a task that would allow a direct comparison between the biologically 378 

motivated visual observer and human participants.  The analysis of the behaviour from both 379 

observers provides the necessary evidence to assess whether the model is an adequate 380 

surrogate for a human observer. The task was to estimate the accuracy with which 381 

camouflaged objects, military helmets with different coverings, could be detected and 382 

recognised. The selection of a single object class with different colour patterns, rather than 383 

an array of different objects, avoided the problem of object choice and allowed visibility to 384 

be easily controlled through only coloration and textural properties. The visibilities of the 385 

objects were unknown prior to the experiment because, to our knowledge, they had never 386 

been evaluated in the two environments nor directly compared. However, a priori, the UN 387 

PKB helmet was expected to be easy to detect, the Olive Drab harder to detect and the 388 

three (Leigh Woods) or four (Woodbury Common) patterned camouflages hardest to detect. 389 

It was essential that the visibility of the patterns varied. If human recognition and detection 390 

for all camouflaged objects was at ceiling performance, or all the patterns were equally 391 

visible, then we would lack any evidence that the model reflects what human subjects find 392 

difficult and what they find effortless. There were clear differences in detectability of the 393 

patterns to human subjects (Figs. 6 and 7) and the patterns do indeed provide a spectrum of 394 

conspicuousness that is sufficient to draw conclusions from. The two different environments 395 

did not contain bright blue elements and the texture of the pattern was smooth and 396 

therefore UN PKB was, as predicted, very visible and the motivation for its inclusion as a 397 

control was vindicated. Olive Drab is also texturally smooth and its colouration is 398 
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perceptually much closer to the environments used than UN PKB. The cost of pattern design 399 

is expensive and if a simple olive green drab were effective this would have implications for 400 

the design of camouflage. The other chosen patterns’ visibilities could not be as easily 401 

predicted as UN PKB, because they have never previously been compared in the two 402 

environments. The PAGST helmet, the standard issue for the US Armed Forces from the 403 

1980s to 2000s), was chosen as a typical item of camouflaged military equipment but 404 

unvarying in shape (unlike a soldier or combat uniform) and easily portable.  It is difficult to 405 

predict how the model might perform with larger objects such as vehicles because these 406 

objects would have to be placed much further away from the camera and so the spatial 407 

scale of the background textures relative to the object would change. However, given the 408 

success of the model in this task and the multiresolution nature of log Gabor filters, there 409 

are grounds for thinking it has general applicability.  The primary function of camouflage is 410 

to avoid detection in plain sight by enemies. But it is also the case that friendly personnel 411 

need to identify peers, and therefore there is a trade-off in visibility and identification such 412 

that one needs not to be easily visible (to avoid attack) and yet remain identifiable (to avoid 413 

friendly fire) (Talas et al. 2017). The framework elaborated here, where classification was 414 

evaluated in a paired manner, helmet versus background, can be easily extended for this 415 

problem as a multi-class classification task. 416 

 417 

The model is an automatic and inexpensive process of evaluating camouflage given an 418 

environment. This utility of a surrogate human observer is in removing human participants 419 

from the process. A prime example of an experiment, in the context of camouflage, 420 

involving using human participants or even wild animals (blue jays), as predators searching 421 

for artificial prey, simulating natural evolution (Bond and Kamil, 2002, 2006; Reynolds, 422 
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2011).  Using human participants as predators is not a limitation to simulate evolution, 423 

because natural selection in the wild can be rapid (Endler, 1986).  However, human 424 

participants can be removed from the process, providing an objective and less expensive 425 

means of testing different environments and prey.  Automating this procedure with a 426 

comprehensive vision model has a large impact for the design of camouflage patterns. 427 

 428 

 429 

5. Conclusion 430 

A surrogate human observer has been designed, and its behavior was compared with 431 

human participants.   Its behavior correlated highly with human participants.  There is large 432 

applicability for such a surrogate human observer, where it is impractical to use human 433 

participants.  We have shown in a military application, an inexpensive and automated 434 

objective assessment of camouflage effectiveness is possible in a real world setting.   435 
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Figure legends 559 
 560 
Asterix * denotes Figure to be in colour 561 
 562 
*Figure 1. Example cropped helmet images from real world scenes 563 
 An example of each camouflaged helmet cropped for recognition purposes. From left to 564 
right the patterns that the helmet wears are DPM, MarPat, MTP, UN PKB, Olive drab and 565 
Flecktarn. The top row are the helmets from Leigh Woods and the bottom row are helmets 566 
from Woodbury Common. Flecktarn was only used in Woodbury Common. 567 
 568 
*Figure 2.  Human experiment storyboard 569 
Storyboard for one trial in the experiment. Sequence is in alphabetical order.  Duration of 570 
each interval was 250msec.  Either C or F contains the helmet.  Intervals A and D cue the 571 
participant to the spatial location of the helmet.   Intervals B and E present a blank interval of 572 
average chromaticity across all scenes.  At the end of the sequence, participants are asked 573 
which scene the helmet was in and are given 1000msec to respond.  The procedure is 574 
identical for the uncued condition however the spatial cued in A and D are uninformative. 575 
 576 
*Figure 3.  Example Leigh Woods scenes  577 
Two example scenes from the Leigh Woods environment. The left column and the 578 
right column are two different scenes. The top two scenes do not contain a helmet. The 579 
middle two contain a UNPKB helmet. The bottom two contain the DPM helmet. 580 
 581 
*Figure 4.  Example Woodbury Common scenes  582 
Two example scenes from the Woodbury Common environment. The left column and the right 583 
column are two different scenes. The top two scenes do not contain a helmet. The middle two 584 
contain a UNPKB helmet. The bottom two contain the DPM helmet. 585 
 586 
Figure 5.  Graphical illustration at modelling the 2AFC procedure 587 
To model the 2AFC task that humans were given, likelihoods under both models are 588 
computed for both images. 589 
 590 
Figure 6.  Human and model recognition accuracy: Leigh Woods 591 
Leigh Woods model accuracy at recognition in greyscale plotted against human 592 
accuracy at recognition in greyscale. Correlation coefficient: 0.937. Error bars are 95% 593 
confidence intervals. 594 
 595 
Figure 7.  Human and model recognition accuracy: Woodbury Common 596 
Woodbury Common model accuracy at recognition in greyscale plotted against 597 
human accuracy at recognition in greyscale. Correlation coefficient: 0.859. 598 
 599 
Figure 8.  Human and model detection accuracy: Woodbury Common 600 
Model and Human Accuracy at Detection in Leigh Woods. Left: Texture Only, Right: Colour and 601 
texture. Error bars are 95% confidence intervals. 602 
 603 
Figure 9.  Human and model detection accuracy: Woodbury Common 604 
Model and Human Accuracy at Detection in Woodbury Common. Left: Texture Only, Right: Colour and 605 
texture. Error bars are 95% confidence intervals. 606 
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Fig. 3613 
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Fig. 4616 
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Fig. 5 619 
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Fig. 6622 
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Fig. 7625 
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Fig. 8 628 
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