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Abstract In this paper, we present a method for autonomously detecting and
extracting region(s)-of-interest (ROI) from surveillance videos using trajectory-
based analysis. Our approach, localizes ROI in a stochastic manner using cor-
related probability density functions that model motion dynamics of multiple
moving targets. The motion dynamics model is built by analyzing trajectories
of multiple moving targets and associating importance to regions in the scene.
The importance of each region is estimated as a function of the total time
spent by multiple targets, their instantaneous velocity and direction of move-
ment whilst passing through that region. We systematically validate our model
and benchmark our technique against competing baselines through extensive
experimentation using public datasets such as CAVIAR, ViSOR, and CUHK
as well as a scenario-specific in-house surveillance dataset. Results obtained
have demonstrated the superiority of the proposed technique against a few
popular existing state-of-the-art techniques.
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1 Introduction & Related Work

The rapid deployment of CCTV-based surveillance systems has led to a sig-
nificant increase in the volume of video data, thus making visual analytic
solutions for surveillance a key example of big-data analysis. Such abundance
in data availability with diverse variability has motivated researchers to focus
into autonomous scene understanding. While it is important to improve upon
existing models of target detection, tracking and recognition, however, high
level semantic analysis through behavioral understanding cannot be ignored.
This is the need of today’s society to deal with complex scenarios for real-
time situation awareness. Visual analysis has become an integral part of many
applications. Behavior [2], activity [16,25,31], and semantics [29,30] analysis,
anomalous activity detection [22, 27, 32, 33], visual surveillance [36] and video
summarization [14], scene segmentation [20] or interest area localization [24],
and video object retrieval [11], Visual attention detection [34], are some of
them to name.

One of the foremost steps in scene recognition and understanding is region(s)-
of-interest (ROI) detection. A ROI can be considered as a region that encloses
semantically homogeneous information held within a cognitive boundary. Ex-
isting methods of ROI detection support static image-based as well as video-
based analysis. Some of these methods include, low-level human visual mod-
els [10], visual attention-based models [21], saliency-based methods [1, 19],
Visual Salience [13], Video attention [12,15] etc. ROI detection techniques are
often challenged by high variability in monitoring conditions as well as diversi-
ties in the targets appearance and pose. Broadly, ROI detection techniques can
be categorized into bottom-up feature-based and top-down knowledge-based
approaches [8]. Approaches in the former category aim to localize structural
features that are invariant to the aforementioned diversities and use them
to detect ROI. Popular approaches under this category include, background
subtraction guided salient area detection method [24], SIFT based region local-
ization methods [9], HoG based methods [26], and salience guided methods [1].
In contrast, the top-down approaches usually start building the scene model
using contextual or scene-level information [20].

Lately, ROI has been proven to be highly correlated with target movements
within a scene. In other words, from the point-of-view of visual surveillance,
location of an object /target in the scene is perceived as interesting when a
large number of targets approach toward some specific areas of a scene. In
such cases, trajectories of the targets can be analyzed to detect such visual
elements in a scene that usually attract targets. In existing video analytic-
based approaches, static objects present in a scene are usually neglected and
left-out as a part of the background or detected using global object-specific
models. However, it is important to acknowledge that the movements of tar-
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Localization of Region of Interest in Surveillance Scene 3

Fig. 1 A functional block diagram of the proposed ROI localization methodology.

gets in unconstrained environment is mainly governed by the presence of such
object(s)-of-interest or region(s)-of-interest. By identifying such regions where
static objects are located, it is possible to refine the existing decision making
processes used in behavior and activity analysis.

In this paper, we have proposed a technique to detect and localize ROI that
influence the motion characteristics of other moving targets. A block diagram
of the proposed methodology is presented in Figure 1. The rest of the paper
is organized as follows. In Section 2, we begin by outlining the main contribu-
tions and distinguishing aspects of our work with respect similar techniques
available in the literature. A theoretical model of target behavior with a re-
search hypothesis and a novel trajectory analysis technique to validate the
hypothesis, are presented in Section 3. In Section 4, we present the experi-
mental validation of our proposed method against baselines. We also present
the effect of key system parameters on our proposed model and demonstrate
the superiority of the proposed strategy when compared to other baseline tech-
niques. Finally, the research hypothesis has been empirically verified before we
conclude in Section 5.

2 Contributions & Distinguishing Aspects

The fundamental purpose of this work is to illustrate a mechanism for ROI
localization that allows automatic scene segmentation and thus facilitates mak-
ing informed decisions on the behavioral understanding of moving targets
within a given scene. One key novelty of our method is the integration of
behavioral semantics of targets into a theoretical assumption that is based on
the distribution of importance of areas using a statistical model of target mo-
tion and their interactions. We argue that, the velocity of a target gradually
decreases as it approaches toward an object of interest within the scene. It
has been observed that, short as well long term analysis are necessary to de-
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4 Sk. Arif Ahmed et al.

Fig. 2 Examples of real life events (taken from ViSOR, CAVIAR, and In-HOUSE datasets)
demonstrating variation in velocity throughout a target’s interaction with some object of
interest.

tect such velocity changes. Our observations over multiple target trajectories
on real-life scenarios has validated the previous claim that a target gradually
slows down as it approaches an object of interest within the scene. We present
a summary of such observations in Figure 2 on publicly available datasets,
where decreasing color saturation highlights the decrease in velocity of mov-
ing objects.

In addition, the importance of various regions (represented as blocks) of
a surveillance scene is estimated using on an entry-exit model through the
correlated measurements of time spent between entry-to-exit, their instanta-
neous velocity changes, and direction of movements. Preliminary results using
the same model without the incorporation of the directional component has
already been reported in [4]. Thus the hypothesis of this study focuses on the
inclusion of direction for the estimation of the importance of blocks, thereby
producing a vector flow field of the target in order to improve the accuracy of
localization of the objects of interest and hence the ROI.

3 Proposed Methodology

The method outlined in this research is based on the following underlying
principles and assumptions that govern the movements of targets within an
unconstrained surveillance environment:

– Targets are allowed to move freely within a surveillance scene and their
movements are only restricted by the scene boundary, presence of other
moving targets, and presence of static objects of interest.

– Motion dynamics of targets in a scene is mainly influenced by the natural
rules of interaction between salient targets and static objects of interest.

– Whilst approaching a static objects of interest or other moving objects, a
target usually follows a pattern that can be modeled using simplistic, yet
powerful set of primitive features computed from instantaneous velocity
and direction of movement.
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Localization of Region of Interest in Surveillance Scene 5

3.1 Theoretical Model and Problem Formulation

In this subsection, a theoretical model representing the action of a target as
it approaches toward a static object of interest, has been introduced. For ease
of explanation, let us consider a single static object of interest present in a
surveillance scene. Given no restrictions on its movements, a target can access
the object of interest from any direction. However, it usually follows the short-
est route as depicted in Figure 3.1. Let the scene be divided into rectangular
blocks of regions as shown in Figure 3.2 and the possible movements (outer
block to inner block) be as given in Figure 3.3-3.6. In such cases, the path
possibly includes the following intermediate blocks; C1, C2, C3 assuming the
target is initially positioned in one of the outer-layer blocks, e.g. B1, ..., B5.
However, it can reach out to an inner-layer block from any of the immediate
outer-layer blocks in various ways. For example, if its initial location is B1, it
must go through block C1 as depicted in Figure 3.3 considering shortest route.
The other possibilities are shown through Figures 3.7-3.8.

Considering the above scenario, a theoretical formulation of the problem
can be obtained as described below. Assume that the probability of a target
being present inside one of the outer-layer blocks be given as P . According
to Figures 3.3-3.6, a target can reach out to one of the inner-layer blocks in
three possible ways. Therefore, probability of reaching to any of the inner-
layer blocks is three times the probability (i.e. 3P ) of the present outer-layer
block. Thus, a target can reach to the object of interest through eight pos-
sible ways. Figures 3.7-3.8 explain this assumption considering a three-layer
scenario. Without loss of generality, the model can easily be extended to any
desired number of layers and the probability values can be computed.

3.2 Research Hypothesis

Assuming a surveillance scene is tiled into non-overlapping rectangular blocks,
probability of a target τ visiting a block, say b, is denoted by pτ (b) = Pτ (X =
b), where pτ (b) ≥ 0, ∀b subject to the condition given in (1)

N∑
b=1

pτ (b) = 1. (1)

Probability that a particular block, say b, be categorized as interesting is
given in (2), where I denotes the importance of b and N represents total num-
ber of blocks present in the scene.

p(b = ROI) =
N

max
i=1

I(b) (2)

Now, the importance of a block can be estimated using parameters such as
time spent and change in instantaneous velocity. However, the resultant direc-
tion of a block (θ) also plays an important role. The overall direction of a block
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6 Sk. Arif Ahmed et al.

3.1 A typical geometry of the
environment with single object
of interest.

3.2 Division of the area into a
rectangular blocks assuming the
object of interest is located at
the centre.

3.3 Movement through
C1.

3.4 Movement through C1 and
C2.

3.5 Movement through C1

and C3.
3.6 Movement through C2.

3.7 Importance of blocks. 3.8 Importance of all surrounding blocks
of ROI.

3.9 Representation of access frequency as a pdf of importance.

Fig. 3 Estimation of importance of intermediate blocks around the ROI and theoretical
estimation of importance of these blocks in terms of access frequency while the target ap-
proaches the region of interest.
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Localization of Region of Interest in Surveillance Scene 7

represents the total number of dominant directions toward its eight neighbors.
Using above three parameters, the importance of a block is formulated as given
in (3), where f1 and f2 are functions representing linear combinations of these
parameters.

I(b) ∝ f1(gτb , v
τ
b ) ? f2(θτb ) (3)

Therefore, given a set of trajectories representing target movements inside a
surveillance scene, we hypothesize that:

– The correlation coefficients between motion dynamics features including a)
the total time spent, b) instantaneous velocity, and c) degree of the block,
are indicative of the importance of a given block. The more the value, the
more the importance of that block.

– Stochastic modeling of such a system can be approximated using the the-
oretical assumption shown in Figure 3.9.

3.3 Feature Extraction

In this section, we describe the method of ROI localization. In order to facili-
tate the extraction of useful features, we first extract target trajectories using
the method proposed in [3]. However, it has been observed that, raw trajec-
tories often contain errors due to varying illumination conditions, occlusions,
etc. In order to remove such outlier points from the trajectory set, a simple
but effective heuristic has been adopted. A point on the trajectory is removed
when a significant deviation is observed from its usual path. This is done as
follows. Let, p(xi, yi) and p(xi+1, yi+1) represent the successive locations of a
point on the trajectory at time ti and ti+1, respectively. We remove the lo-
cation p(xi+1, yi+1) from the trajectory if

√
(xi+1 − xi)2 + (yi+1 − yi)2 > T ,

where T is a threshold that can be estimated empirically. Next, a set of key
features are extracted from these refined trajectories to estimate the impor-
tance of a block. To begin with, we divide the scene into rectangular blocks
of uniform dimension as shown in Figure 3(b). Assume that T represents the
set of ` trajectories available for training, e.g. T = {γ1, γ2..., γ`}, where (4)
denotes a trajectory of length |mj |.

γj = [(x1, y1), (x2, y2), ......, (xmj
, ymj

)] (4)

We extract three primitive features namely, a) total time spent by the tar-
gets inside a block (global visit count), b) instantaneous velocity of the targets
(average instantaneous velocity), and c) direction of movement (degree of a
block) whilst passing through a region. These parameters are used in combi-
nation to estimate the importance of a block or region.

Global Visit Count: Number of times a block (b) is visited by various tar-
gets is an important parameter in the present context. We refer this feature as
the global visit count (gb). Initially, the value is set to zero and subsequently
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8 Sk. Arif Ahmed et al.

4.1 Examples of two
trajectory segments,
e.g. t1 and t2 entering
and exiting a block.

4.2 Direction of the
segment t1 inside the
block.

4.3 Direction of the
segment t2 inside the
block.

4.4 Dominant direc-
tion of the block with
respect to t1 and t2.

Fig. 4 Estimation of dominant direction of an individual block with respect to its neigh-
borhood.

its value is increased each time a target enters into b. A final estimate of gb is
available once all trajectories are processed.

Average Instantaneous Velocity: It is one of our fundamental assumptions
that, instantaneous velocity decreases as the target approaches an object of
interest. Therefore, average instantaneous velocity (vτ ) is computed. To ac-
complish this, we first computed the minimum vmin and maximum vmax of
the velocity using (5) and (6), where pl and pl+1 denote successive points on
a trajectory γj bounded by 0 < l < |γj |.

vτmin = min |pl − pl+1| (5)

vτmax = max |pl − pl+1| (6)

In the next step, [vτmax − vτmin] is divided into uniformly spaced non-
overlapping segments of equal length and a histogram of instantaneous velocity
is generated. Finally, the largest bin is used to estimate the average instan-
taneous velocity. This mechanism successfully removes any bias that may be
induced due to the presence of fast moving segments in a trajectory.

Degree of a Block: To estimate the degree (both out-degree and in-degree

inclusive), first we compute the dominant direction θ̂ of a block. Dominant
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Localization of Region of Interest in Surveillance Scene 9

direction is found using the method depicted in Figure 3.3. Assume tar-
gets have accessed a specific block, say b, through several segments. Let, a
trajectory segment (sj) be represented with a set of spatial locations e.g.
[(x1, y1), (x2, y2), (x3, y3), ....(xz, yz)]. The direction of the segment with re-
spect to the block’s centre is considered as the angle of sj with the x-axis.
This can be computed using (7)

θ
sj
b = tan−1[

|yz − yz|
|xz − xz|

]
180o

π
. (7)

Next, θb is quantized to the closest value of the following eight directions,
e.g. (0o, 45o, 90o, 135o, 180o, 225o, 270o, 315o) out of which the direction that
has majority number of votes, is selected as the dominant direction of b. Fi-
nally, the degree of a block (db) is computed based on the number of incoming
dominant directions from its neighboring blocks. This measure provides an
estimate of the activity around that block under consideration from all direc-
tions. It is expected that the degree will be higher if an object of interest is
present inside the block. This parameter also helps to neutralize errors that
might have occurred due to malicious activities such as a person spending
more time inside an unimportant block.

3.4 Computation of Block Importance

We describe the computation of the block importance as a 3-step process. The
details of these steps are below mentioned.

– Discarding Rarely Visited Blocks: In order to compute the importance
of blocks in an efficient manner, we first filter out some of the rarely visited
blocks, usually considered unimportant, using the global visit count fea-
tures. First, the minimum and maximum of gb∀b are estimated. Then, an
approach similar to the average velocity estimation described in the previ-
ous section is adopted to construct a histogram. All such blocks where the
value of gb∀b is less than the average value of the largest bin, are discarded.
This essentially discards those blocks where the targets might have visited
rarely or not visited at all.

– Block Popularity Index: In the next step, we estimate the popularity of
a block based on the average instantaneous velocity of the moving targets
inside is. This is based on the assumption that a target usually moves
slower than its average velocity as it approaches towards an area of interest.
Therefore, the instantaneous velocity (vτj ) of a target is expected to be
lower than its average velocity (vτ ). The popularity index of a block b
is computed recursively using the following update equation (8), assuming
that the initial popularity index for all blocks is set to zero, i.e. ρb = 0, ∀b ∈
M , where ρb represents the popularity index of the block b.

ρb = ρb +
vτ − vτj
vτ

(8)
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10 Sk. Arif Ahmed et al.

Finally, ρb is normalized with global visit count and a metric, we refer to as
“per visit index” (wb) is computed using (9). This metric incorporates the
importance of each block combining velocity as well as time information.

wb = ∀bρb
gb

(9)

– Computation of Block Importance: The importance of a block can be
computed through independent analysis using of wb and db. However, our
systematic experimentation and analysis has revealed that the values of wb
and db are highly correlated with each other. Before demonstrating this
correlation, we first describe the independent analysis on these variables
wb and db, wherein, we convert these estimates into a probability distribu-
tion. For example, let wb be normalized to get the probability of a target
being inside block b where its values is taken as pw(b) and corresponding
distribution is given in (10)

pw(b) = Pw(B = b) where pw(b) > 0,∀b and

∑
∀b

pw(b) = 1. (10)

Similarly, we normalize db to get the probability of a target being inside
block b and a pdf as described by (11) is assumed.

pd(b) = Pd(B = b) where pd(b) > 0,∀b and

∑
∀b

pd(b) = 1 (11)

However, the peaks these distributions are likely to be distorted due to
measurement noise. In order to adequately suppress such noise and pre-
serve sharp peaks, a zero-phase bi-direction filter has been applied. The
zero-phase bi-direction filter is well known for removing noise introduced
during feature extraction [17]. Such a filter is usually implemented us-
ing a rectangular finite impulse response, r(.) and the filtering operation
is performed in both forward and reverse directions as described in equa-
tions (13-14)

p̂w(b) = (pw ∗ r)(b) =

+∞∑
−∞

pw(m)r(b−m) (12)

p̂
′

w = reverse(p̂w)

ˆ̂pw(b) = (p̂
′

w ∗ r)(b) =

+∞∑
−∞

p̂
′

w(m)r(b−m)

ṗw = reverse(ˆ̂pw)
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Localization of Region of Interest in Surveillance Scene 11

p̂d(b) = (pd ∗ r)(b) =

+∞∑
−∞

pd(m)r(b−m) (13)

p̂
′

d = reverse(p̂d)

ˆ̂pd(b) = (p̂
′

d ∗ r)(b) =

+∞∑
−∞

p̂
′

d(m)r(b−m)

ṗd = reverse(ˆ̂pd).

Finally, given a set of real valued discrete time samples, say pw(b), we get
a smoothed signal ṗw(b) which can be used to detect sharp peaks.

3.5 ROI Localization

We have observed a strong correlation exists between distributions ṗw and ṗd.
Therefore, a simple cross correlation between wb and db can be computed as an
evidence. Note that, wb is estimated on a per-block basis and its value can be
quantized into M levels. As, db is already represented using 8 discrete levels,
we can divide both of these feature spaces into M × 8 subspace and compute
the statistics for each interval. Using this sub-space analysis, we demonstrate
correlation between wb and db. Finally, the block importance is estimated
using (14)

p(b = ROI) = argmax
ṗw?ṗd

(14)

argmax
ṗw?ṗd

≡ 1

n− 1

n∑
i=1

(ṗw,i − ṗw)

σṗw

(ṗd,i − ṗd)
σṗd

.

A high correlation in a particular interval indicates that both the features
agree about the existence of a peak. Therefore, corresponding blocks repre-
senting the peak of the distribution can be considered as the location of an
interesting object. However, several peaks may be observed in the presence of
multiple interesting objects inside a scene.

4 Results and Discussions

In this section, we discuss various systematic experiments carried out to evalu-
ate our proposed algorithm and benchmark it against state-of-the-art baseline
methods using three publicly available surveillance datasets and a scenario
specific in-house dataset.
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4.1 Datasets and Baselines

Four datasets have been been considered for experimental validation. Three
of them, namely, CAVIAR [5], ViSOR1, and Grand Central Station Dataset
(CUHK) [35] are well known public datasets often used by the surveillance re-
search community. In addition, a set of scenario-specific in-house videos were
also used during evaluation. Although those datasets are not recorded for re-
gion of interest,We have found some clips to test our hypothesis; we search and
picked video clips of 240 seconds duration from the CAVIAR dataset. In these
clips, 2 or 3 moving targets can be seen moving freely. These targets interact
with interesting static objects such as a vending machine and a bookshelf. In
contrast, the ViSOR dataset contains outdoor videos [28]. These videos are
long sequences, typically of 40-60 minutes in duration. Grand central station
dataset or CUHK dataset [35] was recorded inside an underground station. It
is a 34 minutes long video with nearly 700 number of curtailed trajectories. We
have merged these curtailed trajectories and created a set of 40 clean trajecto-
ries. In addition to above three datasets, we have tracked human movements
inside a laboratory environment, which we refer as the In-HOUSE dataset.

ROI in respect of a scene may be different due to the objective of the In-
terest. Last few years a handfull of method prposed by so many researchers
with a similar goal; to identify region of interest in a video sequence. Re-
gion of Interest may be in image level, like object localization and moving
object localization; or may be in video level(i.e image and motion mixed) like,
scene classification, Abandoned Object localization etc. We present compar-
isons against relevant baseline algorithms having a similar objective of e.g. ROI
localization. Image-guided ROI localization is primarily based on extracting
salience locations or visual attention features that indicate the presence of a
ROI. In contrast, video-based techniques use spatio-temporal correlation to
detect interesting locations. For comparison with image-guided techniques, we
have selected salience-map based interest area localization method discussed
in [7, 18, 23], and a saliency-combined visual attention based model presented
in [1]. It is to be noted that, above methods do not consider the temporal as-
pects. They are primarily designed using spatio-visual features. For example,
Rahtu et al. [23] have proposed an image and video object segmentation tech-
nique that combines salience with a conditional random field (CRF) model to
localize interest areas. The DRFI based method proposed by Jiang et al. [7] has
been applied on several video frames of the selected datasets and a compari-
son has been presented. A similar approach has been adopted while comparing
the results against the method proposed in [18] and [1]. In order to compare
with existing video-guided methods , we have used the abandoned object de-
tection2 and the trajectory clustering based method proposed by Bharath et
al. [1]. We present comparative results with above state-of-the-art techniques

1 http://www.openvisor.org
2 http://www.mathworks.in/help/vision/examples/abandoned-object-detection.html.
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Localization of Region of Interest in Surveillance Scene 13

5.1 Surveillance scene
with superimposed target
trajectories.

5.2 Localization of the ROI using wb.

5.3 Localization of the ROI using db. 5.4 Localization of areas using a combina-
tion of wb and db.

5.5 Localized ROI using
the proposed methodol-
ogy.

Fig. 5 Localization of ROI using the proposed method applied a sample video clip from
the ViSOR dataset.

to demonstrate the superiority of the proposed algorithm. A summery on those
algorithm can be found in Table 1.

4.2 Experimental Results using Various Datasets

To begin with, we have applied wb and db independently for localizing ROI
on the scenes from CAVIAR, ViSOR, CUHK, and In-HOUSE datasets. In
the next phase, a combination of wb and db as described in section 3, is used
for localization. Figure 5 presents results of localization in ViSOR scene. It
is evident from Figure 5.5 that, the inclusion of direction into block impor-
tance computation has significantly improved the accuracy of localization as
compared to velocity based localization. We extend a similar analysis using
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ROI
Method

Input Application ROI

[6]
Video as a Sequence

of Frames
Abandoned object detection. Abandoned Object

[7] Frames Object Segment Object Present in Scene

[23]
Image Sequence and
Motion Information

Image and motion based
ROI detection.

Moving Object
Segmentation

[1]
Video as Frame

Sequence
Understand Scene by identifying

Object Locaton
Moving Object Location

[18] Frame as Image Unique Image Patch Identification Objects in Image

Proposed Scene as a Video
Long term activity based

ROI detection
Interest Region of
Moving Objects

Table 1 ROI detection Methods

6.1 Localization of areas of interest using a combination of
wb and db on CAVIAR videos.

6.2 Identification of
ROI (reading desk) on
the scene.

6.3 Identification of
ROI (ATM machine)
on the scene.

Fig. 6 Localization of interest areas using the proposed method applied on videos of
CAVIAR dataset.

the videos taken from CAVIAR, CUHK, and In-HOUSE datasets. Results of
such analysis are presented in Figures 6-8. As depicted in Figures 6.2-6.3, the
scene representing CAVIAR contains two ROI, e.g. book shelf, and vending
machine. The proposed algorithm was able to localize both. Presence of peaks
over these regions proves our claim (refer to Figure 6.1).

The results on the CUHK dataset are presented in Figure 7. It may be
observed from Figure 7.1 that the trajectory density around the central portion
of the scene is high as compared to the surrounding areas. This is because,
a large number of targets visited the central lounge area. We have divided
the scene into 10 × 10 blocks and the variations of importance across these
blocks are presented in Figures 7.2-7.4. We have also verified that, though
both features perform consistently, the combined feature set performs more
accurately to localize the ROI in comparison to the ground truth.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Localization of Region of Interest in Surveillance Scene 15

7.1 Background of the CUHK grand cen-
tral dataset and overlaying of 40 clean
trajectories constructed from 700 cur-
tailed trajectories.

7.2 Localization of areas of interest using
db.

7.3 Localization of areas of interest using
wb.

7.4 Localization of areas of interest using a
combination of wb and db.

Fig. 7 Localization of ROI using CUHK dataset videos.

The results of ROI localization (e.g. center table) using In-HOUSE dataset
are presented in Figure 8. It is clear that the proposed algorithm successfully
localizes the center table while rejecting a similar high density areas (marked
with rectangular box of black boundary).

In addition to the qualitative analysis as above, we have also performed a
visual analysis on target trajectories to support the results already obtained.
For example, the presence of a probable ROI can be verified from the plots of
trajectories (x-axis represents the cumulative frame number and y-axis repre-
sents block number) as shown in Figure 9.1 and we have highlighted relevant
time-sequences that correspond to locations of the ROI. Localizing such seg-
ments through time-series analysis may not be trivial since such segments
may also appear due to several other reasons. However, our proposed algo-
rithm was successful in correctly localizing those blocks where targets spent
time due to the presence of other static objects of interest. A few snapshots
revealing targets visiting the centre table in the IN-HOUSE dataset are shown
in Figure 9.2.

4.3 Effect of Model Parameters

It has been observed that our proposed algorithm is sensitive to block size. We
have carried out analysis by varying block size to understand its impact on
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8.1 Trajectory density and corre-
sponding locations denoting prob-
able ROI.

8.2 Peak representing the area of the
centre table that was found using wb and
db in combination.

8.3 Localization of a probable ROI
of In-HOUSE surveillance scene.

8.4 Location of an area that was
detected as ROI using wb feature
only, whereas the same was re-
jected when wb and db were used
in combination.

Fig. 8 Localization of ROI using the proposed method applied on videos of In-HOUSE
dataset.

9.1 Temporal localization of the ROI (center table) from the cumu-
lative trajectory constructed by concatenating target trajectories of
In-HOUSE dataset.

9.2 Some of the key frames extracted from the videos when users are
passing through the center table.

Fig. 9 Localization of the ROI, e.g. center table, in videos of In-HOUSE dataset.
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Localization of Region of Interest in Surveillance Scene 17

10.1 Block size = 5× 5. 10.2 Block size = 9× 9.

10.3 Block size = 15× 15.

Fig. 10 Localization of ROI in videos of In-HOUSE dataset with varying block sizes.

the accuracy of localization. The distribution of block importance for varying
block sizes, e.g. 5 × 5, 9 × 9, and 15 × 15, are presented in Figure 10. It is
evident that the peaks representing probable ROI become more obvious as
block size reduces. A larger block size effectively reduces the total number of
inter-block movements, thus resulting in peaks with larger variance. However,
if the block size is reduced beyond a scene-specific threshold, more dense peaks
may be observed. This will essentially make the localization inaccurate. After
experimental cross validation, a grid size of 9×9 has been found to be optimal
for the datasets used in our experiments.

4.4 Comparative Performance Analysis

We have compared our results against popular baselines mentioned earlier. In
Figures 11.2-11.4, results using baseline techniques are presented. It may be
observed that, salience based techniques [7, 18,23] fail to identify the ROIs in
CAVIAR dataset.

Results using baseline techniques applied on videos are presented in Fig-
ure 12.1-12.3. After carefully analyzing the results obtained using the baseline
algorithms, it is possible to conclude that our proposed algorithm was more
successful in detecting ROI while rejecting the false positives (e.g. locations
with high trajectory density), as against the chosen baseline techniques.
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11.1 Scenes of various datasets used in comparisons.

11.2 Technique proposed by Rathu et al. [23].

11.3 Technique proposed by Jiang et al. [7].

11.4 Salience guided interest point segmentation proposed in [18].

Fig. 11 Comparative performance analysis of the proposed ROI localization algorithm
against popular image-guided interest area localization techniques.

4.5 Verification of the Theoretical Model

We have verified the results obtained using our proposed methodology with
the theoretical model described in section 3.1 using Kullback-Leibler Diver-
gence (KLD). KLD can be computed for a pair of probability distributions
using (15), where ṗ(I(b)) and pT (I(b)) represent probability distribution of
the importance of blocks and the theoretical formulation in section 3.1, re-
spectively.

DKL( pT (I(b)) || ṗ(I(b)) ) =
∑
y

ln

(
pT (I(b))

ṗ(I(b))

)
pT (I(b)) (15)

The quantity is often used for feature selection in classification problems,
where P (y) and ṗ(I(b)) represent conditional distributions of the feature un-
der two different classes. To verify the hypothesis, the distribution shown in
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Localization of Region of Interest in Surveillance Scene 19

12.1 Abandoned object detection in videos proposed in [6].

12.2 Trajectory density based interest point localization.

12.3 Method proposed by Bharath et al. [1].

Fig. 12 Comparative performance analysis of the proposed ROI localization algorithm
against popular video-guided interest area localization techniques.

Table 2 Divergence values using varying grid configurations and combination of features.

KL Divergence(DKL)
Feature Varying Grid Configurations

5× 5 9× 9 15× 15 20× 20
wb 0.6956 0.5497 0.9619 0.8668
wd 0.7863 0.6142 0.9128 0.9347

wb and wd 0.5195 0.4872 0.8725 0.8208

Figure 3.9 was taken as pT (I(b)) and the distributions shown in Figure 10
were considered as ṗ(I(b)). We computed divergence values using varying grid
sizes with independent as well as combined features and the measured values
are presented in Table 2.

The smaller the coefficient, the more accurate the matching. Therefore,
our analysis confirms that the results of our algorithm is in agreement with
the theoretical model when the scene is divided into 9 × 9 blocks. It can be
observed that, performance improves significantly when metric of importance
is computed jointly using wb and wd as against independent features. This
has also been verified through correlation coefficients: pT (I(b)) and ṗ(I(b)).
Correlation coefficients with varying block sizes are presented in Table 3.

It may be noted from the above results that both metrics unanimously
agree upon 9× 9 block size to be most suitable choice for the present analysis.
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Table 3 Correlation coefficient(ρ) values using varying grid configurations and combination
of features.

Correlation coefficient(ρ)
Feature Varying Grid Configurations

5× 5 9× 9 15× 15 20× 20
wb 0.01 0.77 0.63 0.37
wd 0.21 0.65 0.52 0.19

wb and wd 0.17 0.81 0.67 0.29

5 Conclusion and Future Work

In this paper, a technique for localizing ROI by analyzing motion trajectories
of moving targets, has been proposed. The proposed method is based on max-
imizing the correlation of motion dynamics features. A theoretical assumption
about the natural target motion inside as unconstrained environment, has
been proposed and further statistically validated using various publicly avail-
able video surveillance datasets. The results of our experiments demonstrate
the ability of the proposed methodology to localize key areas in a given scene.
It is anticipated that, the proposed work has good potential to throw insight
into human behavior understanding in the context of visual surveillance.

Several extension of the present work are possible. For example, the scene
can be labeled based on the importance value of the blocks and the back-
ground can be segmented into meaningful regions. Feature describing these
local regions can be extracted and they can be used in the decision making
process. We also plan to introduce a Bayesian framework where likelihood and
prior distribution parameters can be estimated from ground truth data. That
is, Equations (8), (9) and (10) can be modified accordingly. Additionally, the
posterior probability (pw(b)) can be normalized using the summed evidence
(equivalent to the function of term pw(b)). A similar formulation can also be
used for posterior calculation of pd(b). It is anticipated that, such extensions
will further strengthen the principle of our algorithm.
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