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Abstract
To understand the impact of high frequency trading (HFT) systems on financial
market dynamics, a series of controlled real-time experiments involving humans
and automated trading agents were performed. These experiments fall at the inter-
disciplinary boundary between the more traditional fields of behavioural economics
(human-only experiments) and agent based computational economics (agent-only
simulations). Experimental results demonstrate that: (a) faster financial trading
agents can reduce market efficiency—a worrying result given the race towards zero-
latency (ever faster trading) observed in real markets; and (b) faster agents can lead
to market fragmentation, such that markets transition from a regime where humans
and agents freely interact, to a regime where agents are more likely to trade be-
tween themselves—a result that has also been observed in real financial markets. It
is also shown that (c) realism in experimental design can significantly alter market
dynamics—suggesting that, if we want to understand complexity in real financial
markets, it is finally time to move away from the simple experimental economics
models first introduced in the 1960s.

John Cartlidge
Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland
Road, Bristol, BS8 1UB, UK, e-mail: john.cartlidge@bristol.ac.uk

Dave Cliff
Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland
Road, Bristol, BS8 1UB, UK, e-mail: csdtc@bristol.ac.uk

∗ Contact author: john@john-cartlidge.co.uk

1

mailto:john.cartlidge@bristol.ac.uk
john.cartlidge@bristol.ac.uk
mailto:csdtc@bristol.ac.uk
csdtc@bristol.ac.uk
mailto:john@john-cartlidge.co.uk


2 Modelling financial markets using human-agent experiments

1 Introduction

In recent years, the financial markets have undergone a rapid and profound transfor-
mation from a highly regulated human-centred system, to a less-regulated and more
fragmented computerised system containing a mixture of humans and automated
trading systems (ATS)—computerised systems that automatically select and exe-
cute a trade with no human guidance or interference. For hundreds of years, finan-
cial trading was conducted by humans, for humans, via face-to-face (or latterly tele-
phone) interactions. Today, the vast majority of trades are executed electronically
and anonymously at computerised trading venues where human traders and ATS in-
teract. Homogeneous human-only markets have become heterogeneous human-ATS
markets, with recent estimates suggesting that ATS now initiate between 30% and
70% of all trades in the major US and European equity markets [25].

As computerisation has altered the structure of financial markets, so too the dy-
namics (and systemic risk) have changed. In particular, trading velocity (the num-
ber of trades that occur in unit time) has dramatically increased [25]; stocks and
other instruments exhibit rapid price fluctuations (fractures) over subsecond time-
intervals [36]; and wide-spread system crashes occur at astonishingly high speed.
Most infamously, the flash crash of May 6th 2010 saw the Dow Jones Industrial Av-
erage (DJIA) plunge around 7% ($1 trillion) in 5 minutes, before recovering most
of the fall over the proceeding 20 minutes [21, 37]. Alarmingly, during the crash,
some major company stocks (e.g., Accenture) fell to just one cent, while others
(e.g., Hewlett-Packard) increased in value to over $100,000. These dynamics were
unprecedented, but are not unique. Although unwanted, flash crashes are now an
accepted feature of modern financial markets.2

To accurately model financial systems, it is now no longer sufficient to consider
human traders only; it is also necessary to model ATS. To this end, we take a bottom-
up, agent-based experimental economics approach to modelling financial systems.
Using purpose built financial trading platforms, we present a series of controlled
real-time experiments between human traders and automated trading agents, de-
signed to observe and understand the impact of ATS on market dynamics. Con-
ducted at the University of Bristol, UK, these experiments fall at the interdisci-
plinary boundary between the more traditional fields of experimental economics
(all human participants) and agent based computational economics (all agent sim-
ulation models) and offer a new insight into the effects that agent strategy, agent
speed, human experience, and experiment design have on the dynamics of hetero-
geneous human-agent markets.

Results demonstrate that: (a) the speed of financial agents has an impact on
market efficiency—in particular, it is shown that faster financial trading agents can
lead to less efficient markets, a worrying result given the race towards zero-latency
(ever faster trading) observed in real markets; (b) faster agents can lead to mar-

2 Flash crashes are now so commonplace that during the writing of this chapter, a flash crash
occurred in the FX rate of the British Pound (GBP). On Oct 7 2016, GBP experienced a 6% drop
in two minutes, before recovering most of the losses [53]—a typical flash crash characteristic.
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ket fragmentation, such that markets transition from a regime where humans and
agents freely interact, to a regime where agents are more likely to trade between
themselves—a result that has also been observed in real financial markets; (c) exper-
iment design, such as discrete-time (where participants strictly act in turns) versus
real-time systems (where participants can act simultaneously and at any time), can
dramatically affect results, leading to the conclusion that, where possible, a more re-
alistic experiment design should be chosen—a result that suggests it is finally time
to move away from Vernon Smith’s traditional discrete time models of experimental
economics, first introduced in the 1960s.

This chapter is organised as follows. Section 2 (Motivation) introduces the argu-
ment that financial systems are inherently complex ecosystems that are best mod-
elled using agent-based approaches rather than neoclassical economic models. Un-
derstanding the causes and consequences of transient non-linear dynamics—e.g.,
fractures and flash crashes that exacerbate systemic risk for the entire global finan-
cial system—provides the primary motivation for this research. In Section 3 (Back-
ground), the agent-based experimental economics approach—i.e., human-agent fi-
nancial trading experiments—is introduced and contextualised with a chronologi-
cal literature review. Section 4 (Methodology) introduces the trading platform used
for experiments, and details experiment design and configuration. Empirical re-
sults presented in Section 5 (Results) demonstrate market fragmentation—a signifi-
cantly higher proportion of agent-only and human-only trading in markets contain-
ing super-humanly fast agents. Since the experimental market we construct is too
constrained to exhibit fractures directly, in Section 6 (Discussion) we interpret this
result as proxy evidence for the robot phase transition associated with fractures in
real markets. In Section 7 (Conclusion), conclusions are drawn, and some avenues
for future research are outlined.

2 Motivation

There exists a fundamental problem facing financial market regulators—current un-
derstanding of the dynamics of financial systems is woefully inadequate; there is
simply no sound theoretical way of knowing what the systemic effect of a structural
change will be [7]. Therefore, when policy makers introduce new market regulation,
they are effectively trial and error testing in the live markets. This is a concerning
state of affairs that has negative ramifications for us all; and it provides adequate
motivation for the research presented here.

In this section, it is argued that our lack of understanding is a symptom of the
dominant neoclassical economic paradigms of rational expectations and oversimpli-
fied equilibrium models. However, a solution is proposed. It has been compellingly
argued elsewhere that economic systems are best considered through the paradigm
of complexity [41]. Agent-based models—dynamic systems of heterogeneous inter-
acting agents—present a way to model the financial economy as a complex system
[22] and can naturally be extended to incorporate human (as living agent) inter-
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actions. In addition, the converging traditions of behavioural [38] and experimen-
tal [48] economics can address non-rational human behaviours such as overconfi-
dence and fear using controlled laboratory experiments. Here, we present a hybrid
approach—mixed human-agent financial trading experiments—that we believe of-
fers a path to enlightenment.

2.1 Complex Economic Systems

Neoclassical economics relies on assumptions such as market efficiency, simple
equilibrium, agent rationality, and Adam Smith’s invisible hand. These concepts
have become so ingrained that they tend to supersede empirical evidence, with
many economists subliminally nurturing an implicit Platonic idealism about mar-
ket behaviour that is divorced from reality. As Robert Nelson argued in his book,
Economics as Religion, it is almost “as if the marketplace has been deified” [42].
Consequently, no neoclassical framework exists to understand and mitigate wild
market dynamics such as flash crashes and fractures. It is necessary, therefore, to de-
velop “a more pragmatic and realistic representation of what is going on in financial
markets, and to focus on data, which should always supersede perfect equations and
aesthetic axioms” [7]. Disturbingly, despite global capitalism’s existential reliance
on well functioning financial markets, there exists no mature models to understand
and predict issues of systemic risk [14]. Policy makers, therefore, are essentially
acting in the dark; with each new regulatory iteration perturbing the market in unan-
ticipated ways.

Fuelled by disillusionment with orthodox models, and a desire to address the
inadequacies of naı̈ve policy making, there is a trend toward alternative economic
modelling paradigms: (1) Non-equilibrium economics focuses on non-equilibrium
processes that transform the economy from within, and include the related and sig-
nificantly overlapping fields of evolutionary economics (the study of processes that
transform the economy through the actions of diverse agents from experience and
interactions, using an evolutionary methodology, e.g., [43]), complexity economics
(seeing the economy not as a system in equilibrium, but as one in motion, perpet-
ually constructing itself anew, e.g., [2]), circular and cumulative causation (CCC)
(understanding the real dynamic and self-reinforcing aspects of economic phenom-
ena, e.g., [5]), and network effects and cascading effects (modelling the economy as
a network of entities connected by inter-relationships) [3, 6, 20, 46]; (2) Agent-based
models potentially present a way to model the financial economy as a complex sys-
tem, while taking human adaptation and learning into account [7, 22, 23, 41]; (3)
Behavioural economics addresses the effects of social, cognitive, and emotional fac-
tors on the economic decisions of individuals [3, 38]; (4) Experimental economics
is the application of experimental methods to study economic questions. Data col-
lected in experiments are used to test the validity of economic theories, quantify the
effects, and illuminate market mechanisms [48].
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Following this movement away from traditional economic models, in the re-
search presented here, markets are modelled using an approach that straddles the
interdisciplinary boundary between experimental economics and agent based com-
putational economics. Controlled real-time experiments between human traders and
automated financial trading agents (henceforth, referred to simply as agents; or al-
ternatively as robots) provide a novel perspective on real-world markets, through
which we can hope to better understand, and better regulate for, their complex dy-
namics.

2.2 Broken Markets: Flash Crashes and Subsecond Fractures

As algorithmic trading has become common over the past decade, automated trad-
ing systems (ATS) have been developed with truly super-human performance; as-
similating and processing huge quantities of data, making trading decisions, and
executing them, on subsecond timescales. This has enabled what is known as high-
frequency trading (HFT), where ATS take positions in the market (e.g., by buying a
block of shares) for a very short period of perhaps one or two seconds or less, be-
fore reversing the position (e.g., selling the block of shares); each such transaction
may generate relatively small profit measured in cents, but by doing this constantly
and repeatedly throughout the day, steady streams of significant profit can be gener-
ated. For accounts of recent technology developments in the financial markets, see
[1, 29, 40, 44].

In February 2012, Johnson et al. [35] published a working paper—later re-
vised for publication in Nature Scientific Reports [36]—that immediately received
widespread media attention, including coverage in New Scientist [26], Wired [39],
and Financial News [45]. Having analysed millisecond-by-millisecond stock-price
movements over a five year period between 2006 and 2011, Johnson et al. ar-
gued that there is evidence for a step-change or phase transition in the behaviour
of financial markets at the subsecond time-scale. At the point of this transition—
approximately equal to human response times—the market dynamics switch from
a domain where humans and automated robot (i.e., agent) trading systems freely
interact with one another, to a domain newly-identified by Johnson et al. in which
humans cannot participate and where all transactions result from robots interact-
ing only among themselves, with no human traders involved.3 Here, we refer to
this abrupt system-wide transition from mixed human-algorithm phase to a new all-
algorithm phase, the robot phase transition (RPT).

At subsecond timescales, below the robot transition, the robot-only market ex-
hibits fractures—ultrafast extreme events (UEEs) in Johnson et al.’s parlance, akin
to mini flash-crashes—that are undesirable, little understood, and intriguingly ap-

3 The primary reason for no human involvement on these timescales is not because of granularity
in decision making—i.e., limitations in human abilities to process information, e.g., [12]—but
rather that humans are simply too slow to react to events happening, quite literally, in the blink of
an eye.
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pear to be linked to longer-term instability of the market as a whole. In Johnson et
al.’s words, “[w]e find 18,520 crashes and spikes with durations less than 1500 ms
in our dataset. . . We define a crash (or spike) as an occurrence of the stock price
ticking down (or up) at least ten times before ticking up (or down) and the price
change exceeding 0.8% of the initial price. . . Their rapid subsecond speed and re-
covery. . . suggests [UEEs are] unlikely to be driven by exogenous news arrival” [36].

In other words, while fractures are relatively rare events at human time scales—
those above the RPT—at time scales below the RPT, fractures are commonplace, oc-
curring many thousands of times over a five year period (equivalent to more than ten
per day when averaged uniformly). This is interesting. The price discovery mech-
anism of markets is generally assumed to be driven by the actions of buyers and
sellers acting on external information, or news. For instance, the announcement of
poor quarterly profits, a new takeover bid, or civil unrest in an oil producing region,
will each affect the sentiment of buyers and sellers, leading to a shift in price of
financial instruments. The prevalence of ATS means that markets can now absorb
new information rapidly, so it is not unusual for prices to shift within (milli)seconds
of a news announcement. However, fractures are characterised by a shift in price fol-
lowed by an immediate recovery, or inverse shift (e.g., a spike from $100 to $101;
returning to $100). To be driven by news, therefore, fractures would require multiple
news stories to be announced in quick succession, with opposing sentiment (posi-
tive/negative) of roughly equal net weighting. The speed and frequency of fractures
makes this highly unlikely. Therefore, fractures must be driven by an endogenous
process resulting from the interaction dynamics of traders in the market. Since frac-
tures tend to occur only below the RPT, when trading is dominated by robots, it is
reasonable to conclude that they are a direct result of the interaction dynamics of
HFT robot strategies.

What Johnson et al. have identified is a phase transition in the behaviour of mar-
kets in the temporal domain caused by fragmentation of market participants—i.e.,
at time scales below the RPT, the only active market participants are HFT robots,
and the interactions between these robots directly results in fractures that are not
observed over longer time scales above the RPT. Intriguingly, however, Johnson et
al. also observe a correlation between the frequency of fractures and global insta-
bility of markets over much longer time scales. This suggests that there may be a
causal link between subsecond fractures and market crashes. “[Further, data] sug-
gests that there may indeed be a degree of causality between propagating cascades
of UEEs and subsequent global instability, despite the huge difference in their re-
spective timescales . . . [Analysis] demonstrates a coupling between extreme market
behaviours below the human response time and slower global instabilities above it,
and shows how machine and human worlds can become entwined across timescales
from milliseconds to months . . . Our findings are consistent with an emerging ecol-
ogy of competitive machines featuring ‘crowds’ of predatory algorithms, and high-
light the need for a new scientific theory of subsecond financial phenomena” [36].

This discovery has the potential for significant impact in the global financial
markets. If short term micro-effects (fractures) can indeed give some indication of
longer-term macro-scale behaviour (e.g., market crashes) then it is perhaps possible
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that new methods for monitoring the stability of markets could be developed—e.g.,
using fractures as early-warning systems for impending market crashes. Further, if
we can better understand the causes of fractures and develop methods to avoid their
occurrence, then long-term market instability will also be reduced. This provides
motivation for our research. To understand fractures, the first step is to model the
RPT.

Here, we report on using a complementary approach to the historical data anal-
ysis employed by Johnson et al. [35, 36]. We conduct laboratory-style experiments
where human traders interact with algorithmic trading agents (i.e., robots) in min-
imal experimental models of electronic financial markets using Marco De Luca’s
OpEx artificial financial exchange (for technical platform details, see [19, pp. 26–
33]). Our aim is to see whether correlates of the two regimes suggested by Johnson
et al. can occur under controlled laboratory conditions—i.e., we attempt to synthe-
sise the RPT, such that we hope to observe the market transition from a regime of
mixed human-robot trading, to a regime of robot-only trading.

3 Background

Experimental human-only markets have a rich history dating back to Vernon Smith’s
seminal 1960’s research [48]. “Before Smith’s experiments, it was widely believed
that the competitive predictions of supply/demand intersections required very large
numbers of well-informed traders. Smith showed that competitive efficient out-
comes could be observed with surprisingly small numbers of traders, each with no
direct knowledge of the others’ costs or values” [32]. This was a significant finding,
and it has spawned the entire field of experimental economics; whereby markets are
studied by allowing the market equilibration process to emerge from the interacting
population of actors (humans and/or agents), rather than assuming an ideal market
that is trading at the theoretical equilibrium. By measuring the distance between
the experimental equilibrium and the theoretical equilibrium, one can quantify the
performance of the market. Further, by altering the rules of interaction (the market
mechanism) and varying the market participants (human or agent), one can begin
to understand and quantify the relative effects of each. This is a powerful approach
and it is one that we adopt for our experimental research.4

The following sections present a detailed background. Section 3.1 introduces the
continuous double auction mechanism used for experiments; Section 3.2 provides
metrics for evaluating the performance of markets; and Section 3.3 presents a review
of previous human-agent experimental studies.

4 For a more thorough background and literature review, refer to [19, pp. 6–25].
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3.1 The Continuous Double Auction

An auction is a mechanism whereby sellers and buyers come together and agree on
a transaction price. Many auction mechanisms exist, each governed by a different
set of rules. In this chapter, we focus on the Continuous Double Auction (CDA),
the most widely used auction mechanism and the one used to control all the world’s
major financial exchanges. The CDA enables buyers and sellers to freely and inde-
pendently exchange quotes at any time. Transactions occur when a seller accepts a
buyer’s bid (an offer to buy), or when a buyer accepts a seller’s ask (an offer to sell).
Although it is possible for any seller to accept any buyer’s bid, and vice-versa, it
is in both of their interests to get the best deal possible at any point in time. Thus,
transactions execute with a counter party that offers the most competitive quote.

Vernon Smith explored the dynamics of CDA markets in a series of Nobel Prize
winning experiments using small groups of human participants [47]. Splitting par-
ticipants evenly into a group of buyers and a group of sellers, Smith handed out a
single card (an assignment) to each buyer and seller with a single limit price writ-
ten on each, known only to that individual. The limit price on the card for buyers
(sellers) represented the maximum (minimum) price they were willing to pay (ac-
cept) for a fictitious commodity. Participants were given strict instructions to not bid
(ask) a price higher (lower) than that shown on their card, and were encouraged to
bid lower (ask higher) than this price, regarding any difference between the price on
the card and the price achieved in the market as profit.

Experiments were split into a number of trading days, each typically lasting a few
minutes. At any point during the trading day, a buyer or seller could raise their hand
and announce a quote. When a seller and a buyer agreed on a quote, a transaction
was made. At the end of each trading day, all stock (sellers assignment cards) and
money (buyer assignment cards) was recalled, and then reallocated anew at the start
of the next trading day. By controlling the limit prices allocated to participants,
Smith was able to control the market’s supply and demand schedules. Smith found
that, typically after a couple of trading days, human traders achieved very close to
100% allocative efficiency; a measure of the percentage of profit in relation to the
maximum theoretical profit available (see Section 3.2). This was a significant result:
few people had believed that a very small number of inexperienced, self-interested
participants could effectively self-equilibrate.

3.2 Measuring Market Performance

An ideal market can be perfectly described by the aggregate quantity supplied by
sellers and the aggregate quantity demanded by buyers at every price-point (i.e., the
market’s supply and demand schedules; see Fig. 1). As prices increase, in general
there is a tendency for supply to increase, with increased potential revenues from
sales encouraging more sellers to enter the market; while, at the same time, there is
a tendency for demand to decrease as buyers look to spend their money elsewhere.
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Fig. 1 Supply and Demand curves (here illustrated as straight lines) show the quantities supplied
by sellers and demanded by buyers at every price-point. In general, as price increases, the quantity
supplied increases and the quantity demanded falls. The point at which the two curves intersect is
the theoretical equilibrium point; where Q0 is the equilibrium quantity and P0 is the equilibrium
price.

At some price-point, the quantity demanded will equal the quantity supplied. This
is the theoretical market equilibrium. An idealised theoretical market has a market
equilibrium price and quantity (P0, Q0) determined by the intersection between the
supply and demand schedules. The dynamics of competition in the market will tend
to drive transactions toward this partial equilibrium point.5 For all prices above P0,
supply will exceed demand, forcing suppliers to reduce their prices to make a trade;
whereas for all prices below P0, demand exceeds supply, forcing buyers to increase
their price to make a trade. Any quantity demanded or supplied below Q0 is called
intra-marginal; all quantity demanded or supplied in excess of Q0, is called extra-
marginal. In an ideal market, all intra-marginal units and no extra-marginal units are
expected to trade.

In the real world, markets are not ideal. They will always trade away from equi-
librium at least some of the time. We can use metrics to calculate the performance
of a market by how far from ideal equilibrium it trades. In this chapter, we make use
of the following metrics:

Smith’s Alpha

Following Vernon Smith [47], we measure the equilibration (equilibrium-finding)
behaviour of markets using the coefficient of convergence, α , defined as the root
mean square difference between each of n transaction prices, pi (for i = 1 . . .n)
over some period, and the P0 value for that period, expressed as a percentage of the
equilibrium price:

5 The micro-economic supply and demand model presented only considers a single commodity, ce-
teris paribus, and is therefore a partial equilibrium model. The market is considered independently
from other markets, so this is not a general equilibrium model.
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α =
100
P0

√
1
n

n

∑
i=1

(pi −P0)2 (1)

In essence, α captures the standard deviation of trade prices about the theoretical
equilibrium. A low value of α is desirable, indicating trading close to P0.

Allocative Efficiency

For each trader, i, the maximum theoretical profit available, π∗
i , is the difference

between the price they are prepared to pay (their limit price) and the theoretical
market equilibrium price, P0. Efficiency, E, is used to calculate the performance of
a group of n traders as the mean ratio of realised profit, πi, to theoretical profit, π∗

i :

E =
1
n

n

∑
i=1

πi

π∗
i

(2)

As profit values cannot go below zero (traders in these experiments are not allowed
to enter into loss-making deals; although that constraint can easily be relaxed), a
value of 1.0 indicates that the group has earned the maximum theoretical profit
available, π∗

i , on all trades. A value below 1.0 indicates that some opportunities
have been missed. Finally, a value above 1.0 means that additional profit has been
made by taking advantage of a trading counterparty’s willingness to trade away from
P0. So, for example, a group of sellers might record an allocative efficiency of, say,
1.2 if their counterparties (a group of buyers) consistently enter into transactions at
prices greater than P0; in such a situation, the buyers’ allocative efficiency would
not be more than 0.8.

Profit Dispersion

Profit dispersion is a measure of the extent to which the profit/utility generated by a
group of traders in the market differs from the profit that would be expected of them
if all transactions took place at the equilibrium price, P0. For a group of n traders,
profit dispersion is calculated as the root mean square difference between the profits
achieved, πi, by each trader, i, and the maximum theoretical profit available, π∗

i :

πdisp =

√
1
n

n

∑
i=1

(πi −π∗
i )

2 (3)

Low values of πdisp indicate that traders are extracting actual profits close to profits
available when all trades take place at the equilibrium price P0. In contrast, higher
values of πdisp indicate that traders’ profits differ from those expected at equilibrium.
Since zero-sum effects between buyers and sellers do not mask profit dispersion, this
statistic is attractive [28].
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Delta Profit

Delta profit is used to calculate the difference in profit maximising performance
between two groups, x and y, as a percentage difference relative to the mean profit
of the two groups, πx, πy:

∆P(x− y) =
2(πx −πy)

πx +πy
(4)

Delta profit directly measures the difference in profit gained by two groups. In a
perfect market, we expect ∆P(x−y)= 0, with both groups trading at the equilibrium
price P0. A positive (negative) value indicates that group x secures more (less) profit
than group y. Using this measure enables us to determine which, if either, of the two
groups competitively outperforms the other.

3.3 Human vs. Agent Experimental Economics

In 1993, after three decades of human-only experimental economics, a landmark
paper involving a mix of traditional human experimental economics and software-
agent market studies was published in the Journal of Political Economy by Gode
and Sunder (G&S) [28]. G&S were interested in understanding how much of the ef-
ficiency of the CDA is due to the intelligence of traders, and how much is due to the
organisation of the market. To test this, G&S introduced a very simple Zero Intelli-
gence Constrained (ZIC) trading agent that generate random bid or ask prices drawn
from a uniform distribution, subject to the constraint that prices generated cannot be
loss-making—i.e., sell prices are equal or above limit price, buy prices are equal or
below limit price. G&S performed a series of ZIC-human experiments, with results
demonstrating that the simple ZIC agents produced convergence towards the theo-
retical equilibrium and had human-like scores for allocative efficiency (equation 2);
suggesting that market convergence toward theoretical equilibrium is an emergent
property of the CDA market mechanism and not the intelligence of the traders. In-
deed, G&S found that the only way to differentiate the performance of humans and
ZIC traders was by using the their profit dispersion statistics (equation 3). These
results were striking and attracted considerable attention.

In 1997, Dave Cliff [13] presented the first detailed mathematical analysis and
replication of G&S’s results. Results demonstrated that the ability of ZIC traders to
converge on equilibrium was dependent on the shape of the market’s demand and
supply curves. In particular, ZIC traders were unable to equilibrate when acting in
markets with demand and supply curves very different to those used by G&S. To ad-
dress this issue, Cliff developed the Zero Intelligence Plus (ZIP) trading algorithm.
Rather than issuing randomly generated bid and ask prices in the manner of ZIC,
Cliff’s ZIP agents contain an internal profit margin from which bid and ask prices are
calculated. When a buyer (seller) sees transactions happen at a price below (above)
the trader’s current bid (ask) price, profit margin is raised, thus resulting in a lower
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(higher) bid (ask) price. Conversely, a buyer’s (seller’s) profit margin is lowered
when order and transaction prices indicate that the buyer (seller) will need to raise
(lower) bid (ask) price in order to transact [13, p.43]. The size of ZIP’s profit margin
update is determined using a well established machine learning mechanism (de-
rived from the Widrow-Hoff Delta rule [56]). Cliff’s autonomous and adaptive ZIP
agents were shown to display human-like efficiency and equilibration behaviours in
all markets, irrespective of the shape of demand and supply.

Around the same time that ZIP was introduced, economists Steve Gjerstad and
his former PhD supervisor John Dickhaut independently developed a trading al-
gorithm that was later named GD after the inventors [27]. Using observed market
activity—frequencies of bids, asks, accepted bids and accepted asks—resulting in
the most recent L transactions (where L = 5 in the original study), GD traders cal-
culate a private, subjective “belief” of the probability that a counterparty will accept
each quote price. The belief function is extended over all prices by applying cubic-
spline interpolation between observed prices (although it has previously been sug-
gested that using any smooth interpolation method is likely to suffice [19, p.17]). To
trade, GD quotes a price to buy or sell that maximises expected surplus, calculated
as price multiplied by the belief function’s probability of a quote being accepted
at that price. Simulated markets containing GD agents were shown to converge to
the competitive equilibrium price and allocation in a fashion that closely resembled
human equilibration in symmetric markets, but with greater efficiency than human
traders achieved [27]. A modified GD (MGD) algorithm, where the belief function
of bid (ask) prices below (above) the previous lowest (highest) transaction price was
set to probability zero, was later introduced to counter unwanted price volatility.

In 2001, a series of experiments were performed to compare ZIP and MGD in
real-time heterogeneous markets [52]. MGD was shown to outperform ZIP. Also
in 2001, the first ever human-agent experiments—with MGD and ZIP competing
in the same market as human traders—were performed by Das et al., a team from
IBM [15]. Results had two major conclusions: (a) firstly, mixed human-agent mar-
kets were off-equilibrium—somehow the mixture of humans and agents in the mar-
ket reduce the ability of the CDA to equilibrate; (b) secondly, in all experiments
reported, the efficiency scores of humans was lower than the efficiency scores of
agents (both MGD and ZIP). In Das et al.’s own words, “. . . the successful demon-
stration of machine superiority in the CDA and other common auctions could have
a much more direct and powerful impact—one that might be measured in billions
of dollars annually” [15]. This result, demonstrating for the first time in human-
algorithmic markets that agents can outperform humans, implied a future financial
market system where ATS replace humans at the point of execution.

Despite the growing industry in ATS in real financial markets, in academia there
was a surprising lack of further human-agent market experiments over the following
decade. In 2003 and 2006, Grossklags & Schmidt [30, 31] performed human-agent
market experiments to study the effect that human behaviours are altered by their
knowledge of whether or not agent traders are present in the market. In 2011, De
Luca & Cliff successfully replicated Das et al.’s results, demonstrating that GDX
(an extension of MGD, see [51]) outperforms ZIP in agent-agent and agent-human
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markets [17]. They further showed that Adaptive Aggressive (AA) agents—a trad-
ing agent developed by Vytelingum in 2006 that is loosely based on ZIP, with sig-
nificant novel extensions including short-term and long-term adaptive components
[54, 55]—dominate GDX and ZIP, outperforming both in agent-agent and agent-
human markets [18]. This work confirmed AA as the dominant trading-agent algo-
rithm. (For a detailed review of how ZIP and AA have been modified over time, see
[49, 50].) More recent human-agent experiments have focused on emotional arousal
level of humans, monitoring heart rate over time [57]; and monitoring human emo-
tions via EEG brain data [8].

Complementary research comparing markets containing only humans against
markets containing only agents—i.e., human-only or agent-only markets rather than
markets in which agents and humans interact—can also shed light on market dy-
namics. For instance, Huber, Shubik, and Sunder (2010) compare dynamics of three
market mechanisms (sell-all, buy-all, and double auction) in markets containing all
humans against markets containing all agents. “The results suggest that abstracting
away from all institutional details does not help understand dynamic aspects of mar-
ket behaviour and that inclusion of mechanism differences into theory may enhance
our understanding of important aspects of markets and money, and help link conven-
tional analysis with dynamics” [33]. This research stream reinforces the necessity
of including market design in our understanding of market dynamics. However, it
does not offer the rich interactions between humans and ATS that we observe in real
markets, and that only human-agent interaction studies can offer.

4 Methodology

In this Section, the experimental methodology and experimental trading platform
(OpEx) are presented. Open Exchange (OpEx) is a real-time financial-market simu-
lator specifically designed to enable economic trading experiments between humans
and automated trading algorithms (robots). OpEx was designed and developed by
Marco De Luca between 2009-2010 while he was a PhD student at the University
of Bristol, and since Feb. 2012 is freely available for open-source download from
SourceForge, under the terms of the Creative Commons Public License.6 Fig. 2
shows the Lab-in-a-box hardware arranged ready for a human-agent trading exper-
iment. For a detailed technical description of the OpEx platform, refer to [19, pp.
26–33].

At the start of each experiment, 6 human participants were seated at a termi-
nal around a rectangular table—with three buyers on one side and three sellers
opposite—and given a brief introduction and tutorial to the system (explaining the
human trading GUI illustrated in Fig. 3), during which time they were able to make
test trades among themselves while no robots were present in the market. Partic-
ipants were told that their aim during the experiment was to maximise profit by

6 OpEx download available at: www.sourceforge.net/projects/open-exchange

www.sourceforge.net/projects/open-exchange
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Fig. 2 The Lab-in-a-box hardware ready to run an Open Exchange (OpEx) human versus agent
trading experiment. Six small netbook computers run human trader Sales GUIs, with three buyers
(near-side) sitting opposite three sellers (far-side). Net-book clients are networked via Ethernet
cable to a network switch for buyers and a network switch for sellers, which in turn are connected
to a router. The central exchange and robots servers run on the dedicated hardware server (standing
vertically, top-left), which is also networked to the router. Finally, an Administrator laptop (top
table, centre) is used to configure and run experiments. Photograph: c© J. Cartlidge, 2012.

Fig. 3 Trading GUI for a human buyer. New order assignments (or permits) arrive over time in
the Client Orders panel (top-left); and listed in descending order by potential profit. Assignments
are selected by double-clicking. This opens a New Order dialogue pop-up (top-centre) where bid
price and quantity are set before entering the new bid into the market by pressing button BUY.
The market Order Book is displayed top-right, with all bids and asks displayed. Bid orders that the
trader currently has live in the market are listed in the Orders panel (middle); and can be amended
from here by double-clicking. When an order executes it is removed from the orders panel and
listed in the Trades history panel (bottom). For further GUI screen shots, refer to [9, Appendix C].
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trading client orders (assignments; or alternatively named permits to distinguish
that traders will simultaneously have multiple client orders to work, whereas in the
traditional literature, a new assignment would only be received once the previous
assignment had been completed) that arrive over time. For further details on the
experimental method, refer to [9, pp. 9–11].

Trading Agents (Robots)

Agent-robots are independent software processes running on the multi-core hard-
ware server that also hosts the central exchange server. Since agents can act at any
time—there is no central controller coordinating when, or in which order, an agent
can act—and since the trading logic of agents does not explicitly include temporal
information, in order to stop agents from issuing a rapid stream of quotes, a sleep
timer is introduced into the agent architecture. After each action, or decision to not
act, an agent will sleep for ts milliseconds before waking and deciding upon the
next action. We name this the sleep-wake cycle of agents. For instance if ts = 100,
the sleep-wake cycle is 0.1 seconds. To ensure agents do not miss important events
during sleep, agents are also set to wake (i.e., sleep is interrupted) when a new
assignment permit is received and/or when an agent is notified about a new trade
execution. The parameter ts is used to configure the “speed” of agents for each ex-
periment.

Trading agents are configured to use the Adaptive Aggressive (AA) strategy logic
[54, 55], previously shown to be the dominant trading agent in the literature (see
Section 3.3). AA agents have short term and long term adaptive components. In the
short term, agents use learning parameters β1 and λ to adapt their order aggressive-
ness. Over a longer time frame, agents use the moving average of the previous N
market transactions and a learning parameter β2 to estimate the market equilibrium
price, p̂0. The aggressiveness of AA represents the tendency to accept lower profit
for a greater chance of transacting. To achieve this, an agent with high (low) ag-
gression will submit orders better (worse) than the estimated equilibrium price p̂0.
For example, a buyer (seller) with high aggression and estimated equilibrium value
p̂0 = 100 will submit bids (asks) with price p > 100 (price p < 100). Aggressive-
ness of buyers (sellers) increases when transaction prices are higher (lower) than
p̂0, and decreases when transaction prices are lower (higher) than p̂0. The Widrow-
Hoff mechanism [56] is used by AA to update aggressiveness in a similar way that
it is used by ZIP to update profit margin (see Section 3.3). For all experiments re-
ported here, we set parameter values β1 = 0.5, λ = 0.05, N = 30, and β2 = 0.5. The
convergence rate of bids/asks to transaction price is set to η = 3.0.

Exploring the Effects of Agent Speed on Market Efficiency: April–June 2011

All experiments were run at the University of Bristol between April and July 2011
using postgraduate students in non-financial but analytical subjects (i.e., students
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Table 1 Permit schedule for market efficiency experiments. Six permit types are issued to each
market participant, depending on their role. For each role (e.g., Buyer 1), there are two traders: one
human (Human Buyer 1) and one robot (Robot Buyer 1). Thus, there are 12 traders in the market.
Permit values show limit price—the maximum value at which to buy, or minimum value at which
to sell—and the time-step they are issued (in parentheses). The length of each time-step is 10s,
making one full permit cycle duration 170s. During a 20-minute experiment there are 7 full cycles.

1 2a 3 4 5 6

Buyer 1 350 (0) 250 (4) 220 (7) 190 (09) 150 (14) 140 (16)
Buyer 2 340 (1) 270 (3) 210 (8) 180 (10) 170 (12) 130 (17)
Buyer 3 330 (2) 260 (4) 230 (6) 170 (11) 160 (13) 150 (15)
Seller 1 50 (0) 150 (4) 180 (7) 210 (09) 250 (14) 260 (16)
Seller 2 60 (1) 130 (3) 190 (8) 220 (10) 230 (12) 270 (17)
Seller 3 70 (2) 140 (4) 170 (6) 230 (11) 240 (13) 250 (15)

a Type 2 permits were accidentally issued to Buyer1/Seller1 at time-step 4 rather than time-step 5.

with skills suitable for a professional career in finance, but with no specific trading
knowledge or experience). Participants were paid £20 for participating and a fur-
ther £40 bonus for making the most profit, and £20 bonus for making the second
highest profit. Moving away from the artificial constraint of regular simultaneous
replenishments of currency and stock historically used, assignment permits were
issued at regular intervals. AA agents had varying sleep-wake cycle: ts = 100, and
ts = 10,000. We respectively label these agents AA-0.1 to signify a sleep-wake cy-
cle of 0.1s, and AA-10 to signify a sleep-wake cycle of 10s. A total of 7 experiments
were performed, using the assignment permit schedules presented in Table 1. The
supply and demand curves generated by these permits are shown in Fig. 4. We can
see that for all experiments, P0 = 200 and Q0 = 126. Since each human only partici-
pates in one experiment, and since trading agents are re-set at the beginning of each
run, traders have no opportunity to learn the fixed value of P0 over repeated runs.
For further details of experimental procedure, see [11].

Exploring the Robot Phase Transition (RPT): March 2012

Twenty-four experiments were run on 21st March, 2012, at Park House Business
Centre, Park Street, Bristol, UK. Participants were selected on a first-come basis
from the group of students that responded to adverts broadcast to two groups: (1)
students enrolled in final year undergraduate and postgraduate module in computer
science that includes coverage of the design of automated trading agents; (2) mem-
bers of the Bristol Investment Society, a body of students interested in pursuing a
career in finance. We assume that these students have the knowledge and skills to
embark on a career as a trader in a financial institution. Volunteers were paid £25
for participating, and the two participants making the greatest profit received an iPad
valued at £400. To reduce the total number of participants required, each group were
used in a session of six separate experiments. Therefore, 24 experiments were run
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Fig. 4 Stepped supply and demand curves for permit schedule defined in Table 1. Curves show
the aggregate quantity that participants are prepared to buy (demand) and sell (supply) at every
price point. The point at which the two curves intersect is the theoretical equilibrium point for the
market: P0 = 200 is the equilibrium price; and Q0 is the equilibrium quantity. As there are two
traders in each role—one human and one robot—each permit cycle Q0 = 2×9 = 18; and over the
seven permit cycles of one full experiment, Q0 = 18×7 = 126. The market is symmetric about P0.

using the 24 participants. Between experiments, human participants rotated seats,
so each played every role exactly once during the session of 6 experiments. Human
roles were purposely mixed between experiment rounds to reduce the opportunity
for collusion and counteract any bias in market role. Once again, agents used the
AA algorithm with varying sleep-wake cycle; and assignment orders were released
into the market at regular intervals.

Table 2 presents the assignment permit schedules used for each experiment, and
the full supply and demand curves generated by these permits are plotted in Fig. 5.
At each price point—i.e., at each step in the permit schedule—two assignment per-
mits are sent simultaneously to a human trader and to a robot trader, once every
replenishment cycle. For all experiments, permits are allocated in pairs symmet-
ric about P0 such that the equilibrium is not altered; and the inter-arrival time of
permits is 4s. Cycles last 72s and are repeated 8 times during a 10 minute experi-
ment. Therefore, over a full experiment there are 2×8 = 16 permits issued at each
price point. The expected equilibrium number of trades for the market, Q0, is 144
intra-marginal units. Each experiment, P0 is varied in the range 209–272 to stop hu-
mans from learning the equilibration properties of the market between experiments.
Agents are reset each time and have no access to data from previous experiments. In
cyclical markets, permits are allocated in strict sequence that is unaltered between
cycles. In random markets, the permit sequence across the entire run is randomised.
For further details on experimental procedure, see [9, 10].
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Table 2 Permit schedule for RPT experiments. Six permit types are issued to each market partici-
pant, depending on their role. For each role, there is one human and one robot participant. Permit
values show limit price−P0. Thus, for e.g., if P0 = 100, a permit of type 4 to Buyer1 would have a
limit price of 91. For buyers, limit prices are the maximum value to bid; and for sellers, limit prices
are the minimum value to ask. Numbers in brackets show the time-step sequence in which permits
are allocated. Thus, after 11 time-steps, Buyer2 and Seller2 each receive a permit of type 4. For all
experiments, the inter-arrival time-step between permits is 4 seconds. Permits are always allocated
in pairs, symmetric about P0. In cyclical markets, the sequence is repeated 8 times: the last permits
are issued to Buyer3 and Seller3 at time 576s; and the experiment ends 24s later. In non-cyclical or
‘random’ markets, the time-step of permits is randomised across the run. Participants receive the
same set of permits in both cyclical and random markets, but in a different order.

1 2 3 4 5 6

Buyer 1 77 (1) 27 (4) 12 (7) -9 (10) -14 (13) -29 (16)
Buyer 2 73 (2) 35 (5) 8 (8) -5 (11) -22 (14) -25 (17)
Buyer 3 69 (3) 31 (6) 16 (9) -1 (12) -18 (15) -33 (18)
Seller 1 -77 (1) -27 (4) -12 (7) 9 (10) 14 (13) 29 (16)
Seller 2 -73 (2) -35 (5) -8 (8) 5 (11) 22 (14) 25 (17)
Seller 3 -69 (3) -31 (6) -16 (9) 1 (12) 18 (15) 33 (18)

Fig. 5 Stepped supply and demand curves for an entire run of the RPT experiments, defined by
the permit schedules shown in Table 2. Curves show the aggregate quantity that participants are
prepared to buy (demand) and sell (supply) at every price point. The point at which the two curves
intersect is the theoretical equilibrium point for the market: Q0 = 144 is the equilibrium quantity;
and P0 is the equilibrium price. Each experiment the value of P0 is varied in the range 209–272 to
avoid humans learning a fixed value of P0 over repeated trials. The market is symmetric about P0.



Modelling financial markets using human-agent experiments 19

Fig. 6 Time series of quote and trade prices from a cyclical market containing AA-0.1 agents.
The dotted horizontal line represents the theoretical market equilibrium, P0. Vertical dotted lines
indicate the start of each new permit replenishment cycle.

5 Results

Here, we present empirical results from the two sets of experiments: (a) exploring
the robot phase transition, performed in March 2012; and (b) exploring the effects of
agent speed on market efficiency, performed in April–June 2011. Throughout this
section, for detecting significant differences in location between two samples we
use the nonparametric Robust Rank-Order (RRO) test and critical values reported
by Feltovich [24]. RRO is particularly useful for small sample statistics of the kind
we present here, and is less sensitive to changes in distributional assumptions than
the more commonly known Wilcoxon-Mann-Whitney test [24].

5.1 Exploring the Robot Phase Transition: March 2012

Experiments were run using AA agents with sleep-wake cycle times (in seconds)
ts = 0.1 (AA-0.1), ts = 1 (AA-1), ts = 5 (AA-5), and ts = 10 (AA-10). Of the 24
runs, one experienced partial system failure, so results were omitted. Runs with
agent sleep time 5s (AA-5) are also omitted from analysis where no significant
effects are found. For further detail of results, see [9, 10].
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5.1.1 Market Data

OpEx records time-stamped data for every exchange event. This produces rich
datasets containing every quote (orders submitted to the exchange) and trade (orders
that execute in the exchange) in a market. In total, we gathered 4 hours of trading
data across the four one-hour sessions, but for brevity we explore only a small set of
indicative results here; however, for completeness, further datasets are presented in
[9, Appendix A]. Fig. 6 plots time series of quotes and trades for a cyclical market
containing AA-0.1 agents. The dotted horizontal line represents the theoretical mar-
ket equilibrium, P0, and vertical dotted lines indicate the start of each new permit
replenishment cycle (every 72s). We see the majority of trading activity (denoted
by filled markers) is largely clustered in the first half of each permit-replenishment
cycle; this correlates with the phase in which intra-marginal units are allocated and
trades are easiest to execute. After the initial exploratory period, execution prices
tend toward P0 in subsequent cycles. In the initial period, robots (blue diamonds for
sellers; blue inverted triangle for buyers) explore the space of prices. In subsequent
periods, robots quote much closer to equilibrium. Agent quotes are densely clus-
tered near to the start of each period, during the phase that intra-marginal units are
allocated. In contrast, humans (red squares for sellers; red triangles for buyers) tend
to enter exploratory quotes throughout the market’s open period.

5.1.2 Smith’s α

We can see the equilibration behaviour of the markets more clearly by plotting
Smith’s α for each cycle period. In Fig. 7 we see mean α (±95% confidence in-
terval) plotted for cyclical and random markets. Under both conditions, α follows
a similar pattern, tending to approx 1% by market close. However, in the first pe-
riod, cyclical markets produce significantly greater α than random markets (RRO,
p < 0.0005).This is due to the sequential order allocation of permits in cyclical mar-
kets, where limit prices farthest from equilibrium are allocated first. This enables
exploratory shouts and trades to occur far from equilibrium. In comparison, in ran-
dom markets, permits are not ordered by limit price, thus making it likely that limit
prices of early orders are closer to equilibrium than they are in cyclical markets.

5.1.3 Allocative Efficiency

Tables 3 and 4 display the mean allocative efficiency of agents, humans, and the
whole market grouped by agent type and market type, respectively. Across all group-
ings, E(agents) > E(humans). However, when grouped by robot type (Table 3),
the difference is only significant for AA-0.1 and AA-5 (RRO, 0.051 < p < 0.104).
When grouped by market type (Table 4), E(agents) > E(humans) is significant in
cyclical markets (RRO, 0.05 < p < 0.1), random markets (RRO, 0.05 < p < 0.1),
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Fig. 7 Mean α (±95% confidence interval) plotted using log scale for results grouped by market
type. In cyclical markets, α values are significantly higher than in random markets during the
initial period (RRO, p < 0.0005). In subsequent periods all markets equilibrate to α < 1% with no
statistical difference between groups.

Table 3 Efficiency and profit for runs grouped by robot type. Agents achieve greater efficiency
E(agents)> E(humans), and greater profit ∆P(agents−humans)> 0, under all conditions.

Robot Type Trials E(agents) E(humans) E(market) ∆P(agents−humans)

AA-0.1 6 0.992 0.975 0.984 1.8%
AA-1 5 0.991 0.977 0.984 1.4%
AA-5 6 0.990 0.972 0.981 1.8%
AA-10 6 0.985 0.981 0.983 0.4%
All 23 0.989 0.976 0.983 1.34%

and across all 23 runs (RRO, 0.01 < p < 0.025). These results suggest that agents
outperform humans.

In Table 3, it can be seen that as sleep time increases the efficiency of agents
decreases (column 3, top-to-bottom). Conversely, the efficiency of humans tends to
increase as sleep time increases (column 4, top-to-bottom). However, none of these
differences are statistically significant (RRO, p > 0.104). In Table 4, efficiency of
agents, humans, and the market as a whole are all higher when permit schedules
are issued cyclically rather than randomly, suggesting that cyclical markets lead to
greater efficiency. However, these differences are also not statistically significant
(RRO, p > 0.104). Finally, when comparing E(agents) grouped by robot type using
only data from cyclical markets (data not shown), AA-0.1 robots attain a signifi-
cantly higher efficiency than AA-1 (RRO, p = 0.05), AA-5 (RRO, p = 0.05), and
AA-10 (RRO p = 0.1); suggesting that the very fastest robots are most efficient in
cyclical markets.
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Table 4 Efficiency and profit for runs grouped by market type. Agents achieve greater efficiency
E(agents)> E(humans), and greater profit ∆P(agents−humans)> 0, under all conditions.

Market Type Trials E(agents) E(humans) E(market) ∆P(agents−humans)

Cyclical 12 0.991 0.978 0.985 1.32%
Random 11 0.987 0.974 0.981 1.36%
All 23 0.989 0.976 0.983 1.34%

Table 5 Profit dispersion for runs grouped by market type. Profit dispersion in random markets is
significantly lower than in cyclical markets for agents πdisp(agents), humans πdisp(humans), and
the whole market πdisp(market).

Market Type Trials πdisp(agents) πdisp(humans) πdisp(market)

Cyclical 12 89.6 85.4 88.6
Random 11 50.2 57.2 55.6
All 23 70.0 71.9 72.8

5.1.4 Delta Profit

From the right-hand columns of Tables 3 and 4, it can be seen that agents achieve
greater profit than humans under all conditions, i.e., ∆P(agents−humans)> 0. Us-
ing data across all 23 runs, the null hypothesis H0 : ∆P(agents− humans) ≤ 0 is
rejected (t-test, p = 0.0137). Therefore, the profit of agents is significantly greater
than the profit of humans, i.e., agents outperform humans across all runs. Differ-
ences in ∆P(agents−humans) between robot groupings and market groupings are
not significant (RRO, p > 0.104).

5.1.5 Profit Dispersion

Table 5 shows the profit dispersion of agents πdisp(agents), humans πdisp(humans),
and the whole market πdisp(market), for runs grouped by market type. It is clear
that varying between cyclical and random permit schedules has a significant effect
on profit dispersion, with random markets having significantly lower profit disper-
sion of agents (RRO, 0.001 < p < 0.005), significantly lower profit dispersion of
humans (RRO, 0.025 < p < 0.05), and significantly lower profit dispersion of the
market as a whole (RRO, 0.005 < p < 0.01). These results indicate that traders
in random markets are extracting actual profits closer to profits available when all
trades take place at the equilibrium price, P0; i.e., random markets are trading closer
to equilibrium, likely due to the significant difference in α during the initial trading
period (see Section 5.1.2. When grouping data by robot type (not shown), there is
no significant difference in profit dispersion of agents, humans, or markets (RRO,
p > 0.104).
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Fig. 8 Box plot showing the percentage of homogeneous counterparty executions (i.e., trades be-
tween two humans, or between two agents). In a fully mixed market, there is an equal chance that
a counterparty will be agent or human; denoted by the horizontal dotted line, H0. When agents act
and react at time scales equivalent to humans (i.e., when sleep time is 1s or 10s), counterparties
are selected randomly—i.e., there is a mixed market and H0 is not rejected (p > 0.1). However,
when agents act and react at super-human timescales (i.e., when sleep time is 0.1s), counterparties
are more likely to be homogeneous—H0 is rejected (p < 0.0005). This result suggests that, even
under simple laboratory conditions, when agents act at super-human speeds the market fragments.

5.1.6 Execution Counterparties

Let aa denote a trade between agent buyer and agent seller, hh a trade between hu-
man buyer and human seller, ah a trade between agent buyer and human seller, and
ha a trade between human buyer and agent seller. Then, assuming a fully mixed
market where any buyer (seller) can independently and anonymously trade with any
seller (buyer), we generate null hypothesis, H0: the proportion of trades with homo-
geneous counterparties—aa trades or hh trades—should be 50%. More formally:

H0 :
Σaa+Σhh

Σaa+Σhh+Σah+Σha
= 0.5

In Fig. 8, box-plots present the proportion of homogeneous counterparty trades
for markets grouped by robot type (AA-0.1, AA-1, and AA-10); the horizontal dot-
ted line represents the H0 value of 50%. It can clearly be seen that the proportion
of homogeneous counterparty trades for markets containing AA-0.1 robots is sig-
nificantly greater than 50%; and H0 is rejected (t-test, p < 0.0005). In contrast, for
markets containing AA-1 and AA-10 robots, H0 is not rejected at the 10% level of
significance. This suggests that for the fastest agents (AA-0.1) the market tends to
fragment, with humans trading with humans and robots trading with robots more
than would be expected by chance. There also appears to be an inverse relation-
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Fig. 9 Mean Smith’s α (±95% confidence interval) plotted using log scale for results grouped
by robot type. In markets containing fast AA-0.1 robots, α values are significantly higher than in
markets containing slow AA-10 robots. After the initial period, all markets equilibrate to α < 10%.

ship between robot sleep time and proportion of homogeneous counterparty trades.
RRO tests show that the proportion of homogeneous counterparty trades in AA-0.1
markets is significantly higher than AA-1 markets (p < 0.051) and AA-10 markets
(p = 0.0011); and for AA-1 markets the proportion is significantly higher than AA-
10 (p < 0.104). For full detail of RRO analysis of execution counterparties, see [9,
Appendix A.2.1].

5.2 Effect of Agent Speed on Market Efficiency: April–June 2011

Experiments were run using AA agents with sleep-wake cycle times (in seconds)
ts = 0.1 (AA-0.1) and ts = 10 (AA-10). A total of 8 experiments were performed.
However, during one experiment, a human participant began feeling unwell and
could no longer take part; so results for this trial are omitted. Here, we present
results of the remaining 7 experiments. For further detail of results, see [11].

5.2.1 Smith’s α

Fig. 9 plots mean α (±95% confidence interval) for each permit replenishment cy-
cle, grouped by robot type: AA-0.1 and AA-10. Under both conditions, α > 10%
in the initial period, and then equilibrates to a value α < 10%. For every period, i,
mean value αi is lower for markets containing AA-10 robots than it is for markets
containing AA-0.1 robots. Using RRO, this difference is significant at every period:
α1 (p < 0.029), α2 (p < 0.029), α3 (p < 0.029), α4 (p < 0.029), α5 (p < 0.114), α6
(p < 0.057), α7 (p < 0.029). This suggests that markets with slower agents (AA-10)
are able to equilibrate better than markets with faster agents (AA-0.1).
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Table 6 Efficiency and profit for runs grouped by robot type. Agents achieve greater efficiency
E(agents) > E(humans), and greater profit ∆P(agents− humans) > 0, when robots are fast AA-
0.1. In contrast, humans achieve greater efficiency E(humans) > E(agents), and greater profit
∆P(agents−humans)< 0, when robots are slow AA-10.

Trials E(agents) E(humans) E(market) ∆P(agents−humans)

AA-0.1 3 0.966 0.906 0.936 3.2%
AA-10 4 0.957 0.963 0.960 −0.3%

Table 7 Profit dispersion for runs grouped by market type. In markets with slow AA-10
robots, profit dispersion of agents πdisp(agents), humans πdisp(humans), and the whole market
πdisp(market) is significantly lower than in markets with fast AA-0.1 robots.

Trials πdisp(agents) πdisp(humans) πdisp(market)

AA-0.1 3 105 236 185
AA-10 4 100 164 139

5.2.2 Allocative Efficiency and Delta Profit

Table 6 presents mean allocative efficiency and delta profit for runs grouped by
robot type. The efficiency of agents is similar under both conditions, with no sta-
tistical difference (RRO, p > 0.114). However, runs with slow AA-10 robots re-
sult in significantly higher efficiency of humans, (RRO, 0.114 < p < 0.029), and
significantly higher efficiency of the whole market, (RRO, 0.114 < p < 0.029). In
markets containing slower AA-10 robots, humans are able to secure greater profit
than agents ∆P(agents−humans)< 0; whereas in markets containing fast AA-0.1
robots, agents secure more profit than humans ∆P(agents− humans) > 0. How-
ever, the difference in delta profit between the two groups is not significant (RRO,
p > 0.114).

These data provide evidence that markets containing fast AA-0.1 robots are less
efficient than markets containing slow AA-10 robots. However, this does not imply
that AA-10 outperform AA-0.1, as their efficiency shows no significant difference.
Rather, we see that humans perform more poorly when competing in markets con-
taining faster trader-agents, resulting in lower efficiency for the market as a whole.

5.2.3 Profit Dispersion

Table 7 presents profit dispersion for runs grouped by robot type. In markets
containing fast AA-0.1 robots, profit dispersion is significantly higher for agents
(RRO, p < 0.114), humans (RRO, p < 0.114), and the market as a whole (RRO,
0.029 < p < 0.057). These data provide evidence that fast AA-0.1 agents result in
higher profit dispersion than slow AA-10 agents; an undesirable result.
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6 Discussion

Here we discuss results presented in the previous section. First, in Section 6.1 we
summarize the main results that hold across all our market experiments presented in
Section 5.1. Subsequently, in Section 6.2 we discuss potentially conflicting results
from experiments presented in Section 5.2. Finally, in Section 6.3 we discuss results
that demonstrate significant differences between cyclical and random markets.

6.1 Evidence for the Robot Phase Transition (RPT)

Results in Section 5.1.2 show that, across all markets, α values start relatively
high (α ≈ 10%) as traders explore the space of prices, and then quickly reduce,
with markets tending to an equilibration level of α ≈ 1%. This suggests that the
market’s price-discovery is readily finding values close to P0. Further, in Sec-
tions 5.1.3 and 5.1.4, agents are shown to consistently outperform humans, secur-
ing greater allocative efficiency E(agents)> E(humans), and gaining greater profit
∆P(agents − humans) > 0. These results demonstrate a well-functioning robot-
human market trading near equilibrium, with robots out-competing humans. This is
an interesting result, but for our purpose of exploring the RPT described by [35, 36]
it only serves as demonstrative proof that our experimental markets are perform-
ing as we would expect. The real interest lies in whether we can observe a phase
transition between two regimes: one dominated by robot-robot interactions, and one
dominated by human-robot interactions. We seek evidence of this by observing the
proportion of homogeneous counterparties within a market; that is, the number of
trade executions that occur between a pair of humans or a pair of robots, as a propor-
tion of all market trades. Since traders interact anonymously via the exchange, there
can be no preferential selection of counterparties. Therefore, every buyer (seller) has
an equal opportunity to trade with every seller (buyer), as long as both have a pend-
ing assignment. The experimental market is configured to have an equal number of
robot traders and human traders, and an equal number of identical assignments are
issued to both groups. Hence, in the limit, we should expect 50% of trade counter-
parties to be homogeneous (both robot, or both human), and 50% to be heteroge-
neous (one robot and one human), as traders execute with counterparties drawn at
random from the population.

From Section 5.1.6, our results demonstrate that for markets containing AA-0.1
robots (with sleep-wake cycle ts = 100ms; faster than human response time), the
proportion of homogeneous counterparties is significantly higher than we would ex-
pect in a mixed market; whereas for markets containing robots AA-1 (ts = 1,000ms;
a similar magnitude to human response time) and AA-10 (ts = 10,000ms; slower
than human response time), the proportion of homogeneous counterparties cannot
be significantly differentiated from 50%. We present this as tentative first evidence
for a robot-phase transition in experimental markets with a boundary between 100
milliseconds and 1 second; although, in our experiments the effects of increasing
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robot speed appear to give a progressive response rather than a step-change. How-
ever, we feel obliged to caveat this result as non-conclusive proof until further ex-
periments have been run, and until our results have been independently replicated.

The careful reader may have noticed that the results presented have not demon-
strated fractures—ultrafast series of multiple sequential up-tick or down-tick trades
that cause market price to deviate rapidly from equilibrium and then just as quickly
return—phenomena that [35, 36] revealed in real market data. Since we are con-
straining market participants to one role (as buyer, or seller) and strictly controlling
the flow of orders into the market and limit prices of trades, the simple markets we
have constructed do not have the capacity to demonstrate such fractures. For this
reason, we use the proportion of homogeneous counterparties as proxy evidence for
the robot phase transition.

6.2 Fast Agents and Market Efficiency

Results presented in Section 5.2 compare markets containing fast AA-0.1 robots
to markets containing slower AA-10 robots. It is shown that markets containing
fast AA-0.1 robots have higher α (Section 5.2.1), lower allocative efficiency (Sec-
tion 5.2.2), and higher profit dispersion (Section 5.2.3). Together, these facts suggest
that when agents act at super-human speeds, human performance suffers, causing
an overall reduction in the efficiency of the market. The reason for this could be,
perhaps, that the presence of very fast acting agents causes confusion in humans,
resulting in poorer efficiency. If an analogous effect occurs in real financial markets,
it may imply that high frequency trading (HFT) can reduce market efficiency.

However, these findings largely contradict the findings presented in Section 5.1
and discussed in Section 6.1; where market equilibration α (Section 5.1.2), mar-
ket efficiency (Section 5.1.3), and profit dispersion (Section 5.1.5) are shown to be
unaffected by robot speed. The reason for this disparity is primarily due to an unan-
ticipated feature (a bug) in the behaviour of AA agents used in the experiments of
Section 5.2, that was not discovered at the time (for details see [9, pp. 25–26] and
[50, p. 8]). These AA agents included a spread jumping rule such that agents will
execute against a counterparty in the order-book if the relative spread width (the dif-
ference in price between the highest bid and the lowest ask, divided by the mean of
the highest bid and lowest ask) is below a relative threshold of MaxSpread = 15%.
This is a large, unrealistic threshold; and it was reduced to MaxSpread = 1% for
experiments presented in Section 5.1.

It is reasonable to infer that the spread jumping behaviour of AA agents is directly
responsible for the higher α values presented in Section 5.2.1; compared with results
for non spread jumping agents shown in Section 5.1.2.7 However, when considering

7 Some of the variation in α between results presented in Section 5.1.2 and Section 5.2.1 may
be explained by the different permit schedules used for the two experiments (compare Tables 1
and 2). However, previous results from a direct comparison using an identical permit schedule to
Table 2 show that MaxSpread = 15% results in higher α than MaxSpread = 1% [9, Appendix
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market efficiency (Section 5.2.2), the explanation is not quite so simple. Despite
the bug existing in the agent, efficiency for agents is largely unaffected when agent
speed is increased; whereas human efficiency drops from a level comparable with
agents when sleep-wake cycle time is 10s, to 6% lower than agents when agents act
with 0.1s sleep-wake cycle time. Therefore, the effect of the bug on efficiency only
affects humans, and does so only when agents act at super-human speeds. We also
see a similar affect on the magnitude of profit dispersion (Section 5.2.3), such that
πdisp(humans) is 76% higher in AA-0.1 markets compared with AA-10 markets,
whereas πdisp(agents) is only 5% higher.

This slightly counter-intuitive result is perhaps again further evidence for the
RPT. When agents act at super-human speeds, fragmentation in the market means
that agents are more likely to trade with other agents. While agents that execute a
trade due to the spread jumping bug will lose out, the agent counterparty to the trade
will gain; thus cancelling out the negative efficiency effects for agents overall. Hu-
man efficiency, however, is negatively affected by the resulting market dynamics,
as the market trades away from equilibrium. A similar phenomena has also been
observed in a recent pilot study performed at the University of Nottingham Ningbo
China (UNNC) in July 2016, using a different agent (ZIP) and performed on a dif-
ferent experimental platform (ExPo2—details forthcoming in future publication).8

In the pilot study, agents were allowed to submit loss-making orders into the market
(i.e., agent quote price was not constrained by assignment limit price). Interestingly,
when agents acted at human-speeds (10s sleep-wake cycle), markets equilibrated as
expected. However, when agents acted at super-human speeds (0.1s sleep-wake cy-
cle), the market did not equilibrate to P0. This demonstrates that when agents act on
human timescales, i.e., above the RPT, the equilibration behaviour of humans can
dampen idiosyncratic agent behaviour. However, at super-human timescales (i.e.,
below the RPT), the cumulative effects of agent behaviour dominate the market.
Therefore, as we move from timescales above the RPT to below the RPT, the mar-
ket transitions from a more efficient to a less efficient domain.

We see similar effects occur in real markets, for example Knight Capital’s fiasco,
previously dubbed elsewhere as the Knightmare on Wall Street. On August 1st 2012,
Knight Capital—formerly the largest US equities trader by volume, trading an av-
erage of 128,000 shares per second—started live trading their new Retail Liquidity
Provider (RLP) market making software on NYSE. Within 45 minutes, RLP exe-
cuted 4 million trades across 154 stocks; generating a pre-tax loss of $440 million.
The following day, Knight’s share price collapsed over 70%. Knight subsequently
went into administration, before being acquired by Getco, a smaller rival, forming
KCG Holdings (for further details, see [4]). It is widely accepted that Knight’s fail-
ure was due to repurposing, and inadvertently releasing, deprecated test code that
began executing trades deliberately designed to move the market price. In the live
markets, and at high frequencies well above the RPT, this resulted in Knight’s RLP
effectively trading with itself, but at a loss on either side of the trade. The parallel

B]. Although, a more recent study [16] suggests the opposite result, so there is some uncertainty
around this effect.
8 ExPo: The Exchange portal: www.exchangeportal.org

www.exchangeportal.org
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here with spread-jumping AA agents is clear; if RLP acted at much lower frequen-
cies, below the RPT, it is likely, perhaps, that the market could have dampened the
instability caused. Of further interest is that the market perturbance caused by RLP
percolated across a large number of stocks as other automated trading systems re-
acted to the behaviour. This demonstrates how single stock fractures below the RPT
can have wider market impact over longer timescales.

6.3 Realism in Market Experiments: Artefacts or Evidence?

The cyclical-replenishment permit schedules presented in Section 4 approximate
real-world markets more poorly than random-replenishment permit schedules. In
real markets, demand and supply does not arrive in neat price-ordered cycles. For
that reason, where results from cyclical markets (presented in Section 5.1) show
a significant effect that is not also present in random markets, we interpret it as
an indication that introducing artificial constraints into experimental markets for
ease of analysis runs the risk of also introducing artefacts that, because they are
statistically significant, can be misleading.

The following relationships were all observed to be statistically significant in
cyclical markets and not statistically significant in random markets; providing fur-
ther support for the argument for realism in artificial-market experiment design,
previously advanced at length in [19]:

1. Cyclical-replenishment markets have significantly greater α in the first period of
trade (see Section 5.1.2). This is a direct consequence of cyclical-replenishment
allocating orders in a monotonically decreasing sequence from most profitable
to least profitable. As such, the first orders allocated into the market have limit
prices far from equilibrium. Since the market is empty, there is no mechanism
for price discovery other than trial-and-error exploration; leading to large α . In
random-replenishment markets, the initial orders entering the market are drawn
at random from the demand and supply schedules. This leads to lower bounds on
limit prices and hence lower α . Subsequently, price discovery is led by the order
book, resulting in lower α that is statistically similar in both cyclical and random
markets.

2. In cyclical-replenishment markets, the efficiency of AA-0.1 robots is signifi-
cantly higher than the efficiency of the other robot types (see Section 5.1.3).
While there is some evidence of an inverse relationship between robot sleep time
and robot efficiency across all markets, we infer that this difference is an artefact
of cyclical replenishment until further experimental trials can confirm otherwise.

3. In cyclical-replenishment markets, profit dispersion is significantly higher for
agents, humans, and the market as a whole (see Section 5.1.5). Since lower profit
dispersion is a desirable property of a market, this suggests that the relatively
high profit dispersion observed in previous cyclical-replenishment experiments
[11, 19] is an artefact of the experimental design.
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7 Conclusion

We have presented a series of laboratory experiments between agent traders and
human traders in a controlled financial market. Results demonstrate that, despite the
simplicity of the market, when agents act on super-human timescales—i.e., when
the sleep-wake cycle of agents is 0.1s—the market starts to fragment, such that
agents are more likely to trade with agents, and humans are more likely to trade
with humans. In contrast, when agents act on human timescales—i.e., when the
sleep-wake cycle of agents is 1s, or above—the markets are well mixed, with agents
and humans equally likely to trade between themselves and between each other. This
transition to a fragmented market from a mixed market intriguingly appears to be
linked to market inefficiency, such that below the threshold of human reaction times
(i.e., at 0.1s timescale) any idiosyncratic agent behaviours can adversely perturb the
market; whereas above the threshold (i.e., at timescales of 1s and above) human
interactions help to dampen market perturbations, ensuring better equilibration and
efficiency.

This behaviour has parallels with the real financial markets, and in particular, we
present this as tantalising evidence for the robot phase transition (RPT), discovered
by Johnson et al. [35, 36]. In Johnson et al.’s words, “a remarkable new study by
Cliff and Cartlidge provides some additional support for our findings. In controlled
lab experiments, they found when machines operate on similar timescales to humans
(longer than 1s), the ‘lab market’ exhibited an efficient phase (c.f. few extreme price-
changes events in our case). By contrast, when machines operated on a timescale
faster than the human response time (100 milliseconds) then the market exhibited
an inefficient phase (c.f. many extreme price-change events in our case)” [36].

In the final quarter of 2016, a new exchange node containing the first ever in-
tentional delay was introduced in the United States. To achieve a delay of 350 mi-
croseconds in signal transmission, the exchange embedded a 38-mile coil of fibre
optic cable. The desired intention is to “level out highly asymmetric advantages
available to faster participants” in the market [34]. However, the impact this might
have at the system level are unknown. To address this, Johnson declares that more
academic studies need to focus on subsecond resolution data; and he identifies the
work we have reported here as one of the few exceptions in the literature that at-
tempts to understand subsecond behaviours [34].

This work is presented as a demonstration of the utility of using experimen-
tal human-agent laboratory controlled markets: (a) to better understand real-world
complex financial markets; and (b) to test novel market policies and structures be-
fore implementing them in the real world. We hope that we are able to encourage the
wider scientific community to pursue more research endeavour using this method-
ology.
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Future Work

For results presented here, we used De Luca’s OpEx experimental trading software,
running on the Lab-in-a-box hardware; a self-contained wired-LAN containing net-
worked exchange server, netbooks for human participants, and an administrator’s
laptop. This platform is ideally suited for controlled real-time trading experiments,
but is designed for relatively small-scale, synchronous markets where participants
are physically co-located. If experiments are to be scaled up, to run for much longer
periods and to support large scale human participation, an alternative platform ar-
chitecture is required. To this end, development began on ExPo—the Exchange
Portal—in 2011. ExPo has a Web service architecture, with humans participating
via interaction through a Web browser (see [50]). This enables users to connect to
the exchange via the Internet, and participate remotely. Immediately, ExPo negates
the requirement for specific hardware, and enables long-term and many-participant
experimentation, with users able to leave and return to a market via individual
account log-in. Currently, an updated version—ExPo2—is under development at
UNNC, in collaboration with Paul Dempster. As with OpEx and ExPo, ExPo2 will
be released open-source to encourage replication studies and engagement in the
wider scientific community.

In [8] a detailed proposal for future research studies is presented. In particular,
future work will concentrate on relaxing some experimental constraints; such as
enabling agents to trade on their own account, independent of permit schedules.
This relaxation—effectively changing the function of agents from an agency trader
(or “broker”) design, to a proprietary “prop” trader design—should enable the emer-
gence of more realistic dynamics, such as Johnson et al.’s UEE price swing fractures.
If we are able to reproduce these dynamics in the lab, this will provide compelling
evidence for the RPT. Further, market structures and regulatory mechanisms such as
financial circuit breakers, intentional network delays, and periodic (rather than real-
time) order matching at the exchange, will be tested to understand the impact these
have on market dynamics. In addition, preliminary studies to monitor human emo-
tional responses to market shocks, using EEG brain data, are underway. Hopefully
these studies can help us better understand how emotional reactions can exacerbate
market swings, and how regulatory mechanisms, or trading interface designs, can
be used to dampen such adverse dynamics.
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