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 6 

Abstract 7 

Understanding airborne survival and decay of microorganisms is important for a 8 

range of public health and biodefence applications including epidemiological and risk 9 

analysis modelling. Techniques for experimental aerosol generation, retention in 10 

aerosol phase and sampling require careful consideration and understanding so that 11 

they are representative of the conditions the bioaerosol would experience in the 12 

environment. This review explores current understanding of atmospheric transport in 13 

relation to advances and limitations of aerosol generation, maintenance in the 14 

aerosol phase and sampling techniques. Potential tools for the future are examined 15 

at the interface between atmospheric chemistry, aerosol physics and molecular 16 

microbiology that could explore heterogeneity and variability at the single droplet and 17 

single microorganism level within a bioaerosol. The review highlights the importance 18 

of method comparison and validation in bioaerosol research, and the benefits 19 

application of novel techniques could bring to increased understanding of 20 

aerobiological phenomena in diverse research fields, particularly during the 21 

progression of atmospheric transport where complex interdependent 22 

physicochemical and biological processes are occurring within bioaerosol particles.  23 
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 24 

INTRODUCTION 25 

Aerosols injected into the atmosphere from the biosphere (bioaerosols) account for a 26 

significant portion of all atmospheric aerosols (1).  Despite their low numbers relative 27 

to other natural aerosol, bioaerosols (whose sources include microorganisms 28 

contained within windblown dust and sea spray) are speculated to impact climate 29 

through behaving as efficient cloud condensation nuclei (2-3).  Biological aerosols 30 

are also important from the perspective of human health being intimately involved in 31 

the transmission of many respiratory pathogens (4, 5).  32 

Risk analysis modelling aims to develop predictive models of transmission and 33 

infection based on laboratory generation of aerosols containing respiratory 34 

pathogens. These experimental models are invaluable for understanding epidemic 35 

transmission, developing infection control measures and advising bioterror 36 

preparedness for public health (6-8). Effective risk modelling requires an in depth 37 

understanding of experimental aerosol techniques and their potential impact on the 38 

final outcome, whether that is aerosol decay, transmission rate or infectious dose. 39 

This article reviews the current understanding, advances and limitations in laboratory 40 

aerobiological studies where the relationship between microorganism preparation, 41 

aerosol generation, evaporation, transport and fate cumulatively may affect the final 42 

outcome of inhalational infection or survival in the environment.  In this review, the 43 

term “bioaerosol” will be limited to refer explicitly to infectious aerosol droplets 44 

containing living species, specifically bacteria and viruses; the study of this subset of 45 

bioaerosol comes with its own unique set of challenges that need to be recognized 46 

and addressed. The PubMed database was searched to identify relevant studies 47 
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using the strings: aerosol AND survival, bioaerosol AND generation, bioaerosol AND 48 

sampling. The terms bacteria and virus were interchanged for the term survival in the 49 

first search string; only published studies were included. References with no relation 50 

to bioaerosol as defined as ‘infectious aerosol droplets’ (e.g. fungal spores, pollen) 51 

were generally discarded unless the technology could be applied to the field. 52 

Retrieved studies were also reviewed for additional references. Although intrinsically 53 

linked to the general theme of this review, the development of inhalational animal 54 

models to replicate human disease is considered outside the scope and readers are 55 

directed to an extensive literature in this field (9-11).  56 

 57 

AEROSOL GENERATION, SAMPLING AND POST-PROCESSING 58 

CONSIDERATIONS 59 

Aerosol generation and sampling prior to microbiological analysis are conducted for 60 

a range of bioaerosol related research activities (e.g. determination of aerosol decay 61 

rates and inhalational infectious dose, efficacy of decontamination strategies, and 62 

evaluation of bioaerosol sampling technologies). These dynamic processes can 63 

cause damage due to shear forces acting on the microbial cells (12-27). Table 1 64 

outlines some major aerosol generators and samplers used in aerobiological studies 65 

and the operating mechanisms. The majority of studies use reflux aerosol generators 66 

in conjunction with impingement to collect the generated aerosol. This system can be 67 

safely used in biocontainment laboratories for inhalational challenges and aerosol 68 

fate studies. However, comparative studies show that refluxing nebulizers produce 69 

the greatest loss of physiological function as a function of time in bacteria (16, 19-21, 70 

24). The loss of function has been linked to membrane damage (13, 20, 24), release 71 
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of ions into media (e.g. PO4
2-; 28), cell fragmentation (15, 23), reduction in ATP 72 

activity (29) and magnitude of associated electrical charge (30) as the bacteria 73 

remaining in the nebulizer repeatedly pass through the devices nozzle. Similar 74 

effects are observed for viruses (25). Repair of bacterial cells damaged by 75 

nebulization appears to be an energy dependent process with a requirement for 76 

divalent cations although independent of de novo RNA or protein synthesis (13, 31); 77 

it is unlikely that repair occurs in viruses due to their reliance on host cell factors for 78 

protein transcription and translation. In contrast, it has been reported that damage is 79 

reduced in non-refluxing aerosol generators where the microorganisms pass through 80 

the nozzle once (16, 24).  81 

Sampling methods for airborne microorganisms include impingement, impaction, 82 

filtration, cyclonic separation, and electrostatic precipitation. This review will not 83 

cover all bioaerosol samplers, rather selecting the main sampling mechanisms and 84 

representative sampler models. The reader is directed to a couple of comprehensive 85 

reviews on bioaerosol sampling for further detail (32, 33). Each sampling technique 86 

has advantages and disadvantages for sampling microbial aerosols (Table 1) with 87 

the potential to cause microbial damage. Dependent on the microbe this damage 88 

may be transient: for example, impingement (AGI-30; 15 to 60 min) caused structural 89 

damage to Pseudomonas fluorescens cells with recovery achieved on non-selective 90 

media (15). Aerosol sampling times for determining infectious dose and aerosol 91 

decay rates generally range from 1-10 min which minimize the effects of microbial 92 

damage (22, 34). However, for infectious aerosols, few comparative studies of the 93 

bioefficiency of different sampling mechanisms. Where studies comparing samplers 94 

have been conducted, differences between microbial structures influence sampler 95 

bioefficiency; for example, infectivity and culturability differences were observed 96 
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between bacteriophages and influenza A virions sampled by the SKC biosampler 97 

and NIOSH cyclone (25, 35). Similar species dependent effects have been observed 98 

for bacteria in sampling bioefficiency; in particular Bacillus endospores tend to be 99 

less affected by aerosol sampling method (15, 17, 21, 22). One reason for 100 

differences in sampler bioefficiency is variation in sampling velocities that for 101 

impingement reaches 260 m·s-1, ten-fold greater than other samplers (36; Table 1). 102 

Secondly, the rapid rehydration that occurs during sampling can be detrimental to 103 

microorganisms (37-39). 104 

Minimising stresses occurring during aerosol generation and sampling is hence 105 

critical to accurate representation of aerosol decay and infectivity. Aerosol 106 

generation stresses can be reduced by using single-pass devices that reduce the 107 

probability of a microorganisms being damaged (24). Depending on sampler choice, 108 

maximising recovery of microbes can be achieved in a number of ways. Prolonged 109 

sampling times is a consistent cause of reduced viability and hence collection times 110 

across all types of samplers and should be minimized (22, 40). The cell membrane is 111 

a major site of damage for Gram negative bacteria being aerosolised as sampled, 112 

demonstrated by increased sensitivity to hydrolytic enzymes (12). Impingement 113 

requires collection into liquid which can be optimised to reduce osmotic shock and 114 

maximise repair and recovery. For example, addition of compatible solutes and 115 

scavenging enzymes (i.e. trehalose, raffinose, polyhydric alcohols, betaine and 116 

catalase) can facilitate survival following the stresses associated with aerosol 117 

generation, transport and sampling (38, 41-46). Particle bounce and viability loss in 118 

impactors for vegetative Bacillus subtilis and Escherichia coli cells was reduced by 119 

applying a thin film of mineral oil significantly enhancing collection efficiency (47). 120 

Filtration methods provide high physical collection efficiencies, but bioefficiency can 121 
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be dependent on filtration time and post-processing procedures (21, 24, 48, 49). A 122 

major problem with filtration samplers is continued drawing of air through the filter 123 

desiccates collected microorganisms in a time-dependent manner. However, 124 

filtration onto gelatin membranes provides a medium that retains moisture and can 125 

be placed into warm media to recover collected microorganisms providing good 126 

bioefficiency (21, 24). 127 

Post-sampling enumeration and storage are additional considerations. Enumeration 128 

can introduce error as organisms can be sensitive to impaction onto an agar surface 129 

(50), sensitive to the plating media (15) and the process of spread plating (51-53). 130 

Direct methods such as microscopy or flow cytometry in conjunction with various 131 

dyes or quantitative polymerase chain reaction (PCR) can indicate physiological 132 

activity of the collected microorganisms (15, 17, 54). Storage temperature, sampling 133 

solution and length of time can prompt microbial replication (or death) causing 134 

misrepresentation of the actual viability of the sampled bioaerosol (48). Samples 135 

should be processed as soon as possible after aerosol sampling; however this is 136 

highly dependent on the microorganism as for example, Bacillus endospores have 137 

been demonstrated to be less affected by storage temperature (4 and 25 °C) 138 

compared to Escherichia coli; however compared to immediate enumeration, both 139 

species had increased counts after extended periods of storage at 25 °C (10 and 24 140 

h for B. subtilis and E. coli respectively) indicating significant disaggregation and/or 141 

multiplication in the collection medium, which in this case was sterile deionized water 142 

containing a small quantity of detergent (48). 143 

The data indicates that the method of aerosol generation can damage the 144 

microorganism at the subcellular level, at the very least subtly, and influence 145 

resultant estimates of microbial viability in the aerosol phase. None of these 146 
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mechanisms are entirely representative of the natural transmission mechanisms of 147 

respiratory pathogens e.g. coughing and sneezing followed by deposition in the 148 

respiratory tract (4, 5). The complexity of fluid fragmentation and droplet formation of 149 

oro-respiratory secretions during coughs and sneezes has recently been elucidated 150 

with the viscoelastic properties of respiratory secretions playing a defining role in 151 

final droplet size (55, 56). Viscoelasticity of respiratory secretions will change with 152 

anatomical location (e.g. nasal, bronchial) and disease state (e.g. chronic bronchitis, 153 

sinusitis, cystic fibrosis) as a result of changes in mucin content which will also affect 154 

droplet sizes (57, 58). Natural aerosol transmission events are likely to be less 155 

violent than the aforementioned aerosol generation processes. Therefore, selection 156 

and validation of experimental regimes (aerosol generator, spray fluid composition 157 

and sampling) to minimize microbial damage, promote maximal recovery and most 158 

closely replicate the natural event being modelled, is important for interpretation of 159 

aerosol data used in risk analysis models. Based on this review, and more extensive 160 

reviews on sampling methodology (32, 33) it is apparent that given the variability in 161 

microorganisms responses to the stresses of aerosol generation and collection, then 162 

it is advisable to perform method validation for each particular microorganism. 163 

Testing a range of aerosol generators and samplers to ensure the behaviour of the 164 

microorganism within the system is understood facilitates appropriate selection of 165 

apparatus and methodology to maximise recovery during enumeration. 166 

AEROSOL TRANSPORT AND PHYSICAL PROCESSING 167 

The physicochemical properties of bioaerosol particles govern all of the biological 168 

processes within.  The conditions in a bioaerosol particle that a microorganism will 169 

experience can be dramatically different than in bulk liquid; the solute concentrations 170 

commonly reach supersaturation (59), while the rate of water transport within the 171 
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droplet can vary by orders of magnitude (60).  Both of these properties are regulated 172 

by total water present in the droplet. Thus a detailed understanding of the 173 

hygroscopic properties of a bioaerosol as a function of solute composition (including 174 

biological species itself) is critical for understanding and predicting longevity and 175 

overall infectivity. 176 

The typical trajectory in RH for a respiratory pathogen would be high at the point of 177 

dispersion (>95%) to low during atmospheric transport (ambient relative humidity, 178 

RH) to high upon inhalation (>95%) (61). During its lifetime, the water activity (aw) 179 

within a droplet equilibrates with the atmospheric RH through either the addition or 180 

removal of water (62). From droplets larger than 100 nm in size, the water activity is 181 

equal to the gas phase RH at equilibrium. The rate at which this mass flux occurs 182 

and the final particle size attained are a reflection of the temperature and humidity of 183 

the gas phase of the aerosol and the droplet solute (63, 64). Importantly, all 184 

microorganisms require water for activity as critical enzyme driven biochemical 185 

reactions (e.g. respiration). Interestingly, in studies looking at osmotic tolerance in 186 

bulk liquid phase, depending on bacterial species, multiplication and growth is 187 

inhibited at aw values of 0.86 – 0.97 with further reductions inducing dormancy or 188 

eventually reducing viability (65, 66). 189 

The hygroscopic behaviour of any multicomponent aerosol is dependent on the 190 

relative abundance of each chemical species in the solute, where each component 191 

will contribute a proportion to the uptake or loss of water (62). This paradigm holds 192 

true for bioaerosol, for example it has been shown that the solute concentration 193 

affects the hygroscopic growth of aerosolized B. subtilis and Pseudomonas 194 

fluorescens vegetative cells (67). However, to study the hygroscopic behaviour of 195 

aerosol where the aim is to generate predictive models, much information about the 196 
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solute is required.  The relative abundance of each component within the aerosol is 197 

mandatory (68-72), as is a detailed understanding of how the various components 198 

within the solute interact with one another (73).  While this is somewhat straight 199 

forward with regards to non-biological aerosol, it remains a major challenge in 200 

bioaerosols. For example, infected individuals coughing and sneezing will produce 201 

larger droplets with different concentrations of mucus and other organic and 202 

inorganic solutes compared to healthy individuals (58). Similarly, in laboratory 203 

studies, microbial culture conditions (liquid broth, solid agar and nutrient 204 

composition) and growth phase affect the concentration and types of nutrients 205 

present in the spray suspension and these factors influence aerosol survival (25, 74-206 

78). Indeed, survival of a viral simulant, the bacteriophage MS2, differed in human 207 

derived saliva, artificial saliva and cell culture medium, with greatest decay observed 208 

in human derived saliva (79). This has been observed for other viruses and bacteria 209 

upon comparing survival after aerosolization from body fluids (natural or synthetic) 210 

and culture medium (80-83).  This highlights the caution needed in extrapolation of 211 

results from the experimental to in vivo situations being modelled in risk analysis. 212 

The primary challenge in experimental studies of the factors that regulate the 213 

hygroscopic behaviour of bioaerosol is to control and know the complete composition 214 

of the bioaerosol droplets.  For example, a simple factor such as control of the 215 

number of organisms per droplet/particle is not trivial using conventional 216 

aerosolization processes.  To attempt to address this specific issue in studies of 217 

laboratory generated bioaerosols, a particular size is selected for a nebulized and 218 

dried bioaerosol sample allowing estimation of the number of species per droplet 219 

prior to hygroscopic analysis (16). For more complex (and atmospherically relevant) 220 

bioaerosol, the hygroscopic behaviour of anthropogenic bioaerosol has been 221 
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estimated indirectly (84, 85).  In these studies, the relative growth in bioaerosol 222 

particle size with increases in RH was estimated through correlation analysis 223 

between the temporal size distributions (aerodynamic diameter) of airborne fungi 224 

with meteorological information (RH). 225 

Thermodynamic models to predict the hygroscopic behaviour of aerosol (e.g. 226 

Universal Quasichemical Functional Group Activity Coefficients; UNIFAC) have been 227 

used for bioaerosols to limited success (59, 86).  Generally, these models are able to 228 

predict the hygroscopic behaviour of large and complex organic molecules through 229 

parameterization of the functional groups present (such as carboxylic acids; 87).  230 

Even though, organically, bioaerosol consists primarily of sugar alcohols and highly 231 

polar sugars (88), it remains unclear the extent to which these models can be used 232 

to predict the hygroscopic behaviour of bioaerosols (89).  The reason for this is that 233 

even when the relative abundances of functional groups and chemical species within 234 

a single bioaerosol droplet are known, the accumulation of noncovalent interactions 235 

between these species is not; the presence of cellular membranes within the droplet 236 

could kinetically limit the hygroscopic behaviour of all the chemical species within the 237 

aerosol. 238 

The limited number of comprehensive studies that explicitly study the 239 

physicochemical properties of bioaerosol is problematic.  Their absence has 240 

constrained the means by which the longevity of suspended bioaerosol can be 241 

investigated. 242 

 243 

DETERMINING BIOAEROSOL LONGEVITY 244 
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Bioaerosol longevity is simply the length of time in which a biological species will 245 

remain either infectious or viable while suspended as a single particle. In an ideal 246 

experiment, the entire composition of the target bioaerosols would be explored; as 247 

discussed in previously sections this is technically challenging due to the selectivity 248 

of samplers and the heterogeneity of bioaerosol composition. Despite this, numerous 249 

studies on bioaerosol longevity have been published. 250 

Techniques for investigating survival of bioaerosols in vitro (Table 2) tend to either 251 

maintain the particles in the air column (i.e. ‘dynamic bioaerosols’) or captured on 252 

fine substrate such as spider silk or glue fibres (i.e. ‘captured bioaerosols’). The 253 

rotating drum is probably the standard procedure used for aerosol longevity studies 254 

based on Goldberg and colleagues seminal design (90). Modifications have 255 

permitted greater control (e.g. in situ monitoring of parameters) and accessibility to a 256 

range of environmental parameters (e.g. temperature, UV, volatile organic 257 

compounds), and the suspension of larger aerosol particle sizes for sufficiently long 258 

periods of time (91-94). Methods based on capturing bioaerosols on microfibers 259 

derived from spider escape silk and glue gun fibres have been utilised with success 260 

(78, 95-97). Comparative studies on filoviruses have demonstrated that microthread 261 

captured bioaerosols decay at a similar rate as those held dynamically within rotating 262 

vessels (34, 98).  263 

The methods for retention of microorganisms in the aerosol phase have been used 264 

extensively to determine biological decay in the airborne state as a function of time 265 

and a range of environmental conditions (Table 3). The aerosol is sampled at time 266 

intervals and the number of viable microorganisms enumerated enabling calculation 267 

of aerosol decay rate. Sampling method and subsequent microbiological processing 268 

and enumeration can alter the number of recovered microorganisms (15, 17, 21, 22). 269 
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Therefore it is important to minimize microbial stress during aerosol collection to 270 

facilitate accurate calculation of the decay rate. During method validation, it is 271 

important to differentiate biological decay from physical losses due to deposition on 272 

the walls of the vessel or removal from the microthreads due to turbulence (or the 273 

presence of antimicrobial substances on the silk). Physical loss in aerosol systems is 274 

determined by using physical tracers that will not biologically decay such as Bacillus 275 

spores, chemicals (e.g. fluorescein) or polymer beads (21, 99, 100). The decay rates 276 

of the target microorganism and the physical tracer can be compared and the true 277 

biological decay rate determined. 278 

A disadvantage of these techniques is that they sample bulk aerosol and it is difficult 279 

to develop an appreciation of microenvironment heterogeneity occurring within 280 

individual aerosol droplets from the physicochemical and biological perspective. For 281 

example, each individual aerosol droplet is likely to have a different chemical 282 

composition, exacerbated by differences in particle size that manifest themselves 283 

biologically on the microorganisms incorporated within the droplets. Such differences 284 

may be a source of variability in how microbes respond and survive aerosol 285 

transport. 286 

 287 

ENVIRONMENTAL FACTORS AFFECTING MICROBIAL LONGEVITY DURING 288 

ATMOSPHERIC TRANSPORT AND BACTERIAL SURVIVAL MECHANISMS 289 

A large number of environmental and meteorological factors can influence microbial 290 

survival during aerosol transport (Table 3), and to provide greater context for 291 

interpretation of results the environmental features of the sampling site should be 292 

described. The fate of the microorganism is likely dictated by its physiological status 293 
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which is a combinatorial consequence of the atomisation process (e.g. spray device, 294 

cough, sneeze) with the associated evaporative stresses of aerosol transport and 295 

rehydration during inhalation (or sampling into liquid). The mechanisms by which the 296 

microorganisms perish have been partially elucidated and depend on the 297 

composition of the droplet and surrounding atmosphere. 298 

Atmospheric oxidants (e.g. reactive oxygen and nitrogen species, sulphur dioxide, 299 

ozone) will impact on microbial longevity by either directly acting on the organism or 300 

with constituents within the aerosol droplet (101, 102). Presence of oxygen has been 301 

demonstrated to have a deleterious effect on airborne coliform bacteria, particularly 302 

at RH less than 40%, and hypothesised to be due to production of reactive oxygen 303 

species (ROS) by Maillard reactions (31, 103). Maillard reactions are amino-carbonyl 304 

reactions occurring between amino groups on proteins and reducing sugars that 305 

cause oxidation of macromolecules and death in microorganisms (104). In airborne 306 

microorganisms, these reactions may be the cause of oxidative damage to critical 307 

enzymes (44, 105-107), phospholipids and nucleic acids causing metabolic 308 

imbalance, destabilisation of membranes and reducing repair activity (31). 309 

Interestingly, recently Maillard chemistry has been implicated as a source of organic 310 

compounds within atmospheric aerosols altering particle viscosity and hence the 311 

diffusivity rate of water and reactive gases (108). Bioaerosols (including virus, 312 

vegetative bacteria, spores and peptides) subjected to atmospheric ozone 313 

concentrations and variations in RH showed temporal changes in fluorescence 314 

spectra related to oxidation and hydrolysis of tryptophan (109-111).  Although 315 

survival is generally greater at higher RH (>80%), certain values (i.e. 70-85% RH for 316 

E. coli B; 41, 44) produce a large decrease in aerosol survival (41, 107, 112, 113). 317 

Likewise, RH dependent changes in salt concentrations and pH within droplets 318 
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influence virus viability causing conformational changes in surface proteins and 319 

membrane fluidity affecting infectivity (114). 320 

Solar irradiation and atmospheric pollutant gases (including open air factor; OAF) are 321 

two further environmental parameters that can significantly affect longevity in the 322 

aerosol phase. Solar irradiation markedly decreased viability compared to control 323 

conditions that simulate the night (46, 78, 115-118). Particle size-dependent survival 324 

against solar irradiation has been observed with bacterial clusters persisting for 325 

longer periods (78, 117). Terrestrial solar spectral irradiance varies through the day, 326 

with season and with geographical location (119). The UV wavelengths are of most 327 

importance for inactivating microorganisms (116, 117), where UV-A and UV-B reach 328 

the troposphere with the potential to cause a variety of DNA genomic lesions and 329 

damage to nucleic acids, proteins and lipids due to generation of reactive oxygen 330 

species (120-121). It is important that studies using both simulated and natural solar 331 

irradiation report variables such as solar intensity as accurately as is reasonably 332 

possible to facilitate data interpretation and standardisation between laboratories. 333 

Atmospheric constituents such as various pollutant gases and secondary organic 334 

aerosols (SOAs; Table 3) have been demonstrated to have significant deleterious 335 

effects on aerosol longevity (31, 93, 122, 123-130). Many of these may contribute to 336 

a phenomenon known as ‘open air factor’ (OAF) where aerosolized microorganisms 337 

exposed to open climatic conditions decay more rapidly than those in enclosed 338 

laboratory vessels subjected to similar temperature and RH (31, 123-125, 129, 130).  339 

The precise nature of OAF is not fully understood but is hypothesised to involve a 340 

number of highly reactive products (e.g. hydroxyl radicals) from photochemical 341 

interactions between ozone and unsaturated hydrocarbons from anthropogenic (e.g. 342 

engine-related alkenes) and non-anthropogenic sources (e.g. plant turpenes) (31, 343 
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123). The reactive species rapidly oxidise and degrade macromolecules such as 344 

lipids, proteins and nucleic acids (31, 131). The effect of OAF is enhanced at high 345 

humidity (80-90% RH) for both E. coli and Micrococcus albus (123). Such humidity 346 

effects warrant investigation, possibly relating to the increased water content of 347 

aerosol particles at higher humidity. 348 

How microbes regulate and survive aerosol transport is undetermined. Evidence 349 

suggests that the ability for transcription and translation to occur in the environment 350 

of an evaporating droplet is reduced (31, 132, 133). Evaporation and rehydration of 351 

aerosol particles imparts osmotic and desiccative stress on the microbe reflective of 352 

the humidity of the surrounding atmosphere and composition of the particle. The 353 

molecular response of many bacterial species to osmotic stress and desiccation is 354 

well documented from research understanding survival in food matrices, aquatic and 355 

marine systems and terrestrial environments (66). Hyperosmotic stress (i.e. 356 

increased aw) causes a reduction in cytoplasmic volume as water exits the 357 

bacterium; concomitantly cell growth and respiration cease as the bacterium adapts 358 

to the hyperosmotic conditions. Initially charged solutes (e.g. K+ ions, glutamate) are 359 

accumulated via specific uptake mechanisms (66, 134-136). Interestingly, inability to 360 

control efflux of K+ ions correlated with decreased survival in aerosolised E. coli cells 361 

(28, 137). Synthesis of compatible solutes (e.g. trehalose) or uptake from the 362 

surrounding media (e.g. glycine betaine, proline) stabilises proteins, enzymes and 363 

membrane phospholipids enable critical biochemical processes to continue in 364 

hyperosmotic stressed bacteria. As the bacterial cell stabilises, a number of proteins 365 

are synthesised prompting repair of DNA damage, scavenging of reactive oxygen 366 

species and degradation of misfolded proteins (66, 134-136). Osmotically adapted 367 

cells often show cross-tolerance to other stresses such as high temperature and 368 
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oxidative shock (138). Recently, E. coli subjected to rapid downshift in aw (0.993 to 369 

0.960) in media was demonstrated to control protein misfolding by transient 370 

expression of the RpoE and RpoH regulons in conjunction with the RpoS regulon to 371 

facilitate prolonged adaptation to the hyperosmotic conditions (139). 372 

The molecular studies described above have all been conducted in bulk solution 373 

phase and expose the microorganisms to hyperosmotic stress. Microorganisms will 374 

be exposed to hyperosmotic conditions within an evaporating droplet (i.e. low aw 375 

conditions), enabling speculation that similar molecular mechanisms play role in 376 

bacterial survival within evaporating aerosol droplets. As will be discussed later, 377 

advances in atmospheric chemistry and single cell genomic techniques means that 378 

investigation of whether similar molecular mechanisms occur in an aerosol droplet as 379 

a function of evaporation rate and droplet composition are on the horizon. 380 

Importantly, if airborne microorganisms can induce adaptive responses promoting 381 

survival then there is the potential that colonisation and infection of the respiratory 382 

tract is primed whilst the bacteria are transported in the atmosphere. Any induced 383 

virulence factors would offer attractive targets for combating respiratory infection.  384 

 385 

NEW TECHNIQUES FOR ADVANCING AEROSOL SCIENCE AND 386 

AEROBIOLOGY 387 

Bioaerosols, even when produced under controlled laboratory conditions, are 388 

complex. They are generally polydisperse in terms of both physicochemical and 389 

biological properties, and the heterogeneity in the nature of the bioaerosol evolves 390 

with time and distance from the source. Technological advances in the fields of 391 

aerosol science and molecular biology are timely to facilitate multidisciplinary 392 
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approaches to understand heterogeneity at the single droplet and single 393 

microorganism level (including microbial aggregates) and to explore the 394 

fundamentals of biological decay and survival in aerosol droplets. 395 

Optical techniques such as optical tweezers and electrodynamic balances where 396 

single aerosol droplets can be captured and levitated within an electric field for 397 

periods of time (seconds to days) have been extensively used in atmospheric 398 

chemistry to investigate heterogeneous chemistry, phase separation, hygroscopicity 399 

and ice nucleation activity using analytical techniques including Raman 400 

microspectroscopy (140-145). Utilisation of these techniques for biological aerosol 401 

has been limited to date. However, optically trapped single biological cells in solution 402 

produce characteristic Raman scattering signatures (146-149) and E. coli exposed to 403 

1-butanol resulted in spectroscopic and anisotropic detection of real-time phenotypic 404 

changes in fatty acid composition and membrane fluidity (149). Although these 405 

studies were conducted in liquid bulk solution rather than aerosol droplets, it 406 

exemplifies the power of the technology. Furthermore, such techniques are being 407 

used to explore individual aerosol particles containing microorganisms, fungal spores 408 

and pollen (150-152). The electrodynamic balance technique has been used to 409 

accurately deposit single particles containing respiratory syncytial virus onto airway 410 

epithelial cells enabling the cellular response to infection to be analysed (153). This 411 

technique enables interaction at the air-cell interface with single aerosol particles, a 412 

more representative scenario than the air-liquid interface studies commonly 413 

conducted for in vitro infection studies. It is a technique that seems applicable 414 

although currently rarely applied to understanding the heterogeneity of bioaerosols at 415 

the single droplet and microorganism level.  416 
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Microbial cells respond to environmental stimuli by regulating gene expression 417 

resulting in modulation of the quantities and composition of functional proteins 418 

available to combat a particular stressful condition. Transcriptional analysis and 419 

insertional mutagenesis have been used to identify bacterial genes regulated in 420 

response to stresses associated with aerosol survival such as desiccation, and 421 

osmotic pressure (136, 154). Currently, these techniques have not been applied to 422 

aerosolised microbial populations, however it can be hypothesised that similar 423 

responses may be expected and warrant exploration. The relative abundance of 424 

particular proteins critical to aerosol survival will vary from cell to cell. Exploring this 425 

heterogeneity at the single cell level is complicated due to the relatively low 426 

abundance of stress-responsive proteins. However, the last five years have seen 427 

significant advances in molecular techniques enabling exploration of the genomic, 428 

proteomic or 155-158). Techniques for isolating single cells such as flow cytometry 429 

and microfluidics can be combined with techniques such as PCR and next-430 

generation sequencing for probing the transcriptional response of single cells (159). 431 

Indeed, single cell genomic techniques have been applied to understanding airborne 432 

metagenomes in urban settings (160, 161). Application to aerosolised populations in 433 

a laboratory setting would seem straightforward. However, care in experimental 434 

design would be needed to discriminate the true effects of aerosol transport and the 435 

stresses of aerosol generation and sampling. 436 

These emerging technologies have the potential to dramatically impact numerous 437 

areas of bioaerosol science. They will lead to improved parameterization of the 438 

fundamental properties of bioaerosol, such as the interplay between environmental 439 

conditions with species longevity and/or gene expression. This data will lead to 440 

better predictions of disease dynamics in areas such as general industrial hygiene, 441 
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animal husbandry, hospital design and biosecurity. Furthermore, the data collected 442 

from these laboratory based instruments will inform conventional research of 443 

environmental samples. 444 

 445 

CONCLUDING REMARKS 446 

Experimental factors affect the microbiological sample taken forward for 447 

quantification of infectious dose or biological decay rate. Therefore a thorough 448 

understanding of the sampling and enumeration process is critical to interpretation of 449 

the final data set. Furthermore, no single aerosol generation or sampling method is 450 

likely to suit all purposes (i.e. size selectivity, species sensitivity), therefore the 451 

experimental apparatus should be selected based on the hypothesis and 452 

microorganism being tested and the data interpreted alongside the caveats 453 

associated with the methodology. For experiments designed to generate data for 454 

input into risk analysis determination of human inhalational exposure then it is 455 

recommended that aerosol generators, samplers (and collection fluid) be used that 456 

cause minimal damage or promote maximal recovery of the microorganisms during 457 

collection to prevent underestimation of risk estimates. 458 

Fundamental questions remain regarding aerosol transmission of respiratory 459 

pathogens, particularly the underlying mechanisms of survival and/or death during 460 

aerosol transport and the role the microenvironment of the droplet plays as it 461 

evaporates then rehydrates during inhalation. However, as outlined in this review, 462 

advances in distinct scientific fields could support a systematic dissection of the 463 

biological response of microorganisms within compositionally controlled aerosol 464 

droplets within specific atmospheric conditions. It is envisaged that within the next 465 
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ten years multidisciplinary approaches combining existing and novel techniques in 466 

atmospheric chemistry, aerobiology and molecular biology will converge and begin to 467 

dissect and empirically understand the mechanisms of microorganisms survival and 468 

decay in the aerosol state and the effect on infectivity and disease transmission.469 
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TABLE 1 Methods used to generate and sample microbial aerosols useful for aerosol fate and inhalational infection research.  993 
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Mechanism Apparatus 

examples 

Description 

 

References(

s) 

Aerosol generation 

Reflux 

nebulization 

(1-, 3-, 6-jet 

versions 

commonly used) 

Collison 

nebulizer, Wells 

atomizer, TSI 

9302, FK-8 

aerosol gun, 

Aeroneb Lab 

• Refluxing two-fluid atomizer operating by venturi effect and wall impaction. Liquid 

recirculation occurs every 6 seconds in the 3-jet version (135). 

• Increased jet numbers increase the rate of aerosol generation and recirculation. 

Reservoir evaporation occurs over time causing concentration effects. 

• Generally used for liquids, although the Wells atomizer was used for dry powders. 

Particle sizes are small, 0.7–2.2 µm. 

• Forces associated with reflux nebulization can cause deagglomeration of 

aggregates causing an observed increase in bacterial concentration in the spray 

suspension. 

14, 16, 20, 

23-25, 79, 80, 

99, 122, 162-

167 

Non-reflux 

nebulization 

Single-pass 

aerosolizer 

• Atomisation as above minus wall impaction and recirculation 24 

Aerosol bubbling SLAGb and 

variants 

• Liquid dripped onto a membrane is broken into droplets by air flow through the 

membrane. 

• Droplets burst due to increased pressure gradient between the inside and outside 

16, 24, 26 

 on F
ebruary 19, 2018 by U

niversity of B
ristol Inform

ation S
ervices

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/


DSTL/JA100134 
 

46 
 

of the device generating small aerosol particles. 

Centrifugal 

atomization 

Spinning top 

aerosol 

generator 

• Centrifugal forces moves liquid applied to a rotating disc towards the edges 

producing ligands that break into droplets 

168 

Flow-focussing FFAGc, C-Flow 

nebulizer 

• Liquid flows through an orifice forming microjets that break-up into particles by 

aerodynamic suction of an accelerated air stream. 

• Good monodispersity of droplets can be achieved. 

20, 24, 169 

Aerosol sampling 

Impingement Impingersd (AGI-

4, AGI-30, Model 

7541 AGI); SKC 

biosampler 

• Aerosol accelerates through critical orifice causing inertial impaction into liquid. 

• Efficiency is affected by physical parameters (e.g. sampling flow rate, nozzle 

number and angle, distance of nozzle from the liquid, solution type and volume, 

particle bounce, prolonged sampling time (liquid evaporation, increased damage) 

and binding of microorganisms to the collection vessel wall. 

• Reaerosolization can occur due to liquid bubbling. 

• Addition of glass beads can increase virus collection efficiency 

• SKC biosampler possesses three angled nozzles creating a gentler swirling 

17, 18, 21, 

22, 170-178 
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motion of the bioaerosol during collection. 

• AGI-30 impaction velocity reaches 265 m·s-1; much reduced in other samplers. 

Impaction Single or 

multistage 

impactors: 

Andersen, 

Mercer, Ultimate, 

MAS-100, 

Burkard 

• Operate at constant flow rates, with air flowing through an orifice causing inertial 

impaction of particles too large to remain entrained in the air flow; size 

fractionation possible. 

• Collection can be onto a range of different substrates (e.g. agar plates, gelatin 

coated slides or filters). 

• Substrate choice can affect collection efficiency due to effects on microbial 

viability and particle bounce. 

• In the Burkard and 6th stage of the Andersen impactors, impaction velocities 

reach 12 and 24 m·s-1 respectively. 

21, 22, 47, 

179-181 

Filtration/ 

impaction 

Gelatin filter, 

nitrocellulose, 

polycarbonate 

• Greater physical sampling efficiencies. Biological sampling efficiency may be 

lower due to sensitivity of the collected microorganisms to air drawn past the 

filter. 

• Elution of material from the filter surface (e.g. vortexing, shaking, solution volume 

and type) can influence efficiency. 

21, 22, 48, 49
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 994 

a = Note that the list is merely representative and not exhaustive. Researchers are recommended to conduct rigorous validation of 995 

the aerosol experimental system for each individual micro-organism tested; b = sparging liquid aerosol generator; c = flow focussing 996 

aerosol generator; d = all-glass impinger997 

Direct capture Microthreads • Particles collected onto fine microthreads (e.g. spider silk, glue thread) wound on 

to a frame. 

78, 96-98, 

123-125 

Cyclonic 

separation 

NIOSH cyclonic 

biosampler 

• Air flow drawn into a cylindrical container is rotated causing larger particles to 

deposit and collect on the walls by centrifugal forces. 

25, 35 

Electrostatic 

precipitation 

Ionizers e.g. 

AS150; Model 

3100 aerosol 

sampler 

• Airborne particles electrically charged and subjected to electric field causing 

gentle deposition velocity onto collection substrate. 

• Bioefficiency for spores greater than for Gram-negative bacteria. 

• Impaction velocities reach 0.01 - 1 m·s-1.  

30, 36, 182 

Animal inhalation Rodent, primates • Aerosol particles regionally deposit due to inertial impaction, sedimentation, 

diffusion, interception and electrostatic effects in the respiratory tract. 

•  Deposition is a function of airway geometry and particle properties (e.g. size, 

shape, density, hygroscopicity). 

183 
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TABLE 2 Examples of experimental techniques used to study fate of microorganisms 998 

in aerosol 999 

Device Mechanism Aerosol 

statea 

Outdoor 

use? 

References(s) 

Rotating 

drum 

Rotational speed of drum 

prevents aerosol from settling 

for period of time dependent 

on particle size 

Dynamic N 

34, 82, 83, 

93, 94, 99, 

111, 126, 

163, 184 

 

Microthread 

Aerosol captured on spider 

microthreads or glue fibres 

wound around a metal frame 

that can be slotted into an 

exposure apparatus. 

Captured Y 
78, 96-98, 

123-125, 130 

Sphere Steel sphere with mixing fans Dynamic N 
124, 185 

 

Aerosol 

chamber 

Large chambers with mixing 

fans 
Dynamic N 

186 

 

Greenhouse No mixing fan Dynamic Y 187,188 

a = Dynamic refers to particles maintained as a buoyant aerosol, whilst captured 1000 

refers to aerosol particles immobilised on a substrate.  1001 

 1002 

 1003 
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TABLE 3 Atmospheric, environmental and microbial factors affecting survival and 1004 

infectivity in airborne microorganisms 1005 

Factor Description References(s)a 

Relative humidity 

(RH) 

Generally studies range from 20 to 90% 

RH 

41, 45, 76, 80, 82, 

99, 100, 113, 115, 

163, 184, 189-193 

Temperature 
Wide ranges studied from sub-zero to 50 

°C 

80, 164, 191, 192, 

194 

Solar radiation 
Variability in spectra examined but 

inclusive of UV-A and UV-B wavelengths 

46, 78, 115-118, 

188 

 

Oxygen 
Generation of ROSb during aerosol 

transport 

44, 105-107, 165, 

195 

Ozone 
Reactive with pollutant gases and 

pinenes 
122, 186 

Pollutant gases 

‘Open air factor’ 

CO, SO2, NO2, ethene, cyclohexene 

SOAsc (e.g. alkenes, turpenesd) 

31, 93, 122-126, 

127-131, 185 

Wet / dry 

preparation 
Droplets or dried particles 

76, 112, 163, 189, 

196 

Growth phase Exponential, stationary 31, 165 

Particle size 
Microbial aggregates have greater 

survival than single microorganisms 

31, 78, 130, 195 

 

Aerosol age 
Infectivity decreased prior to culturability 

with extended time in aerosol 
197-199 

 on F
ebruary 19, 2018 by U

niversity of B
ristol Inform

ation S
ervices

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/


DSTL/JA100134 
 

51 
 

a = reference list is reflective and not exhaustive; b = reactive oxygen species; c = 1006 

secondary organic aerosol; d = turpenes are volatile cyclic unsaturated hydrocarbon 1007 

molecules released by plants 1008 
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