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Abstract 

 

The increasing collaboration between physicists and biologists in recent years has led to 

a series of breakthroughs enabled, in part, by the use of lasers in biological experiments. 

Once such recent development is the biological laser where a living cell containing a 

fluorescent protein or dye acts as a laser gain medium. This thesis presents work designed 

to develop the idea of the living laser leading to their implementation as a research tool. 

This work has consisted of two main areas of research; microfluidics and biological 

lasers. 

 

The use of microfluidics enables the miniaturisation of many existing types of biological 

diagnostics. In this thesis devises are demonstrated for use in temperature sensing and 

flow cytometry. These were fabricated through the use of Ultrafast Laser Inscription 

(ULI) and selective chemical etching. As part of this work we have also investigated the 

integration of silver nanoparticles into microfluidic devices, using photo-reduction, for 

the enhancement of Raman sensing. 

 

Several types of living laser have been fabricated containing different fluorescent dyes 

and Enhanced Green Fluorescent Protein (eGFP). Lifetime extension has been achieved 

using vitamin C and work has been conducted towards demonstrating calcium sensing 

inside cells. As an alternative to the dyes used in these experiments we have also 

investigated the use of upconverting nanoparticles. 
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1. Introduction: Microfluidics and Biological Lasers 

1.1 Development of the Laser 

 

The laser can perhaps be viewed as one of the defining achievements of physics in the 

20th century. It is unique in how widely it has been adopted in the sciences, everyday life 

and public recognition of its impact on society. First proposed by Albert Einstein in 1917 

it remained only a concept until Theodore Maiman demonstrated the first Ruby laser in 

1960 [2]. 

Laser light is distinct from that available from other sources in that it is highly coherent 

and monochromatic and the many uses this enables has led to massive research and 

development of laser sources. Briefly their high coherence allows laser beams to 

propagate over large distances with low divergence and to be focused tightly with 

applications in areas such as range finding and microscopy. Their narrow wavelength 

emission leads to high signal to noise ratio and low dispersion enabling applications such 

as fibre optic telecommunications. 

Lasers can be operated in a number of ways. The ‘basic’ continuous wave laser emits a 

constant stream of light. An example of this which is widely used is the HeNe laser, 

common in teaching and experimental labs. It is relatively cheap to produce emitting light 

at 633 nm among other wavelengths. Q-switching involves changing the cavity loss of a 

laser allowing for a higher population inversion before lasing occurs and a pulsed 

emission with high peak powers. Mode locking techniques including saturable absorbers, 

acousto optic modulators and Kerr lensing can be used to produce ultra-short laser pulses 

by forcing a laser’s longitudinal modes to oscillate in phase with each other interfering to 

create a single pulse as short as a few femtoseconds. 

1.1.1 Use of lasers in biology 

 

There has been a large scale adoption of lasers in a variety of biological applications. 

They can be used for cutting and ablating in surgery as an alternative to traditional 

scalpels allowing for a contact free, and therefor sterile cut. In research they can be used 

for fluorescence imaging, multi-photon excitation, Raman, confocal microscopy and 

optical transfection, creating a temporary hole in their membrane which then self-heals 
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[3]. This has the advantage over other methods of being relatively non-invasive and 

selective. 

The optical trapping of cells using a highly focused laser beam gives the ability to move 

a cell in three dimensions either to position it with respect to others or to separate it from 

a population by moving it into a separate region of a microfluidic device or a micro 

capillary which can then be removed from the sample. 

1.1.2 The Laser and Material Processing 

 

One of the largest areas of adoption for the laser in industry has been for material 

processing; cutting, welding and patterning of materials. A commonly used laser for these 

applications is the CO2 laser. First produced in 1964 and emitting in the 10 µm region it 

is also used in research. It also has some medical applications due to its strong water 

absorption. 

The processing of materials using ULI using femtosecond lasers is a current area of 

research and used throughout this thesis to fabricated a range of photonic and microfluidic 

devices. Laser ablation, which can fabricated sub-micron surface features, was first 

demonstrated in 1994 [4] but while this is impressive, the modification is limited to the 

surface. Sub surface modification can be inscribed by focusing a femtosecond laser into 

a transparent media. At the focus of the beam the high peak intensities cause material 

modification the specifics of which are described in chapter 2. The potentially induced 

modifications are a change in refractive index, used for creating waveguides, nano-

gratings, used for selective chemical etching and voids. Compared to alternative methods 

of manufacturing, such as lithography, ULI allows for 3D fabrication and rapid 

prototyping without the need for clean room facilities. 

One of the main uses of ULI in laser research is the fabrication of compact waveguide 

lasers [5]. This is especially useful in materials which cannot easily be drawn into fibres 

of sufficient quality to form a fibre laser [6]. ULI waveguide devices can take advantage 

of the 3D capabilities of ULI to fabricate structures which would not be possible, or 

difficult, through other methods. One such example is surface waveguides where the 

waveguide is brought to the surface of the device to enable evanescent coupling to 

samples places on the surface, useful for sensing applications [7]. More novel devices 

developed using ULI include the photonic lantern which converts between single and 

multimode fibres with applications in telecoms for achieving high data rates [8]. The 
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combining the laser writing of waveguides with other types of structure inside substrates 

to form microfluidic devices is covered in the next section. 

1.1.3 Microfluidics 

 

Microfluidics is an area of research focused on techniques to miniaturise medical and 

biological diagnostics with the aim of improving throughput, decreasing required sample 

volumes and reducing costs. It is an expanding field with an increasing number of 

publications each year [9]. Two of the most widely used methods of creating 

microfluidics are 1. lithography in Polydimethylsiloxane (PDSM) and 2. ULI followed 

by selective chemical etching. In this thesis we focus on ULI methods of microfabrication 

where by carefully selecting laser parameters it is possible to fabricate nano-cracks in 

some materials [10] which can be etched to create microchannels. The advantage of ULI 

microfluidic manufacturing over other forms of production is that it allows for 3D 

fabrication, fast prototyping and does not require clean room facilities. While the devices 

presented in this thesis are fabricated in fused silica glass it is possible to create devices 

in a variety of glasses, crystals and plastics [11, 12]. 

Integrating both microfluidic channels and waveguides inside substrates allows for the 

combination of laser illumination and samples to fabricate a wide variety of devices. This 

can be used for simple illumination of a sample for fluorescence excitation [13] or heating 

of a sample. Alternatively, it is possible to use waveguides to deflect [14], trap, count [15] 

and stretch cells through the use of dual counter propagating waveguides [16]. Many 

traditional optical components such as mirrors and interferometers can be miniaturised 

and integrated into microfluidics [17, 18] resulting in smaller more rugged diagnostic 

methods. 

An interesting area of microfluidics is high speed cell sorting to separate cells from a 

population. Traditional cell sorting requires large expensive equipment limiting 

availability. Microfluidic cell sorting has been shown using imaging to identify cells 

before selecting which output they go to using a laser to divert them from a population 

[19]. Another method of cell sorting is to use their deformability. Small channels with a 

pressure difference along them only allow cells of a certain size or deformability to pass 

through [20]. This can be used to separate different types of cell or potentially identify 

diseased cells as their deformability can change based on health. 
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Using the 3D capabilities of ULI it is possible to expand on the abilities of other forms of 

fabrication. An example of this is flow focusing which has been demonstrated in PDMS 

devices in 2D where two streams of liquid compress a third between them to confine a 

sample in a narrow, useful for droplet generation [21]. Using ULI it is possible to fabricate 

a 3D flow focusing device where 4 streams of liquid surround a central 5th confining it in 

both the horizontal and vertical directions keeping the sample away from the channel 

surfaces [15]. This is useful both for reducing damage to cells from channel walls and 

confining their freedom of movement making focusing with microscopes or targeting 

with embedded waveguides easier. 

1.1.4 Fluorescent Dyes and Proteins in Biology 

 

Green Fluorescent Protein (GFP) has enabled a revolution in biological imaging leading 

to a Nobel Prize awarded in 2008 for those involved in its discovery and development, 

Osamu Shimomura, Martin Chalfie and Roger Tsien. The protein was discovered by 

Osamu Shimomura through a long term study to discover the mechanism by which the 

jellyfish Aequorea Victoria emits bioluminescence [22]. He carried out his work between 

the 1960s and 80s in which time he caught hundreds of thousands of jellyfish to discover 

that their florescence depends on two light emitting proteins. The first, Aequoren, emits 

blue light when exposed to calcium and the second, GFP, which emits green light when 

pumped with blue. Energy is transferred between the two through a non-radiative process 

leading to the jellyfish emitting green light. 

The idea that GFP could be transfected into other organisms was first proposed by 

Douglas Prasher and in collaboration with Martin Chalfie they successfully demonstrated 

this [23]. By attaching fluorescent proteins to areas of interest inside cells it is possible to 

image them and gain information about the processes occurring inside them. Wild Type 

Green Fluorescent Protein (WT-GFP) has proven to be very modifiable leading to the 

development of a large variety fluorescent proteins emitting throughout the visible 

spectrum for multicolour imaging [24]. Other developments include proteins whose 

emission gives information about cells as their emission varies with properties like pH or 

calcium levels. More novel developments are proteins which are photoactivatable or 

designed to kill cells by deliberately creating Reactive Oxygen Species (ROS). 

There is a fundamental limit to the resolution of optical microscopes and for a time it was 

thought this would never be overcome. The development of super-resolution fluorescence 
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microscopy techniques has led to another revolution in biological imaging as well as 

another Nobel Prize awarded in 2014 to Eric Betzig, Stefan Hell and William Moerner. 

These fluorescence techniques include Förster Resonance Energy Transfer (FRET) and 

Stimulated Emission Depletion (STED) microscopy. In FRET two different fluorescent 

proteins of are linked with a variable spacing. As they move closer together non radiative 

energy transfer between the two alters the emission wavelength allowing this ratio to be 

used as a ‘molecular ruler’. STED relies on the fact that for a single point source it is 

possible to determine its location statistically by taking a large number of measurements 

and averaging them. Various methods are used so that in a population of fluorophores 

only a small number are activated at any one time such as reducing pump power or using 

a higher energy to temporarily deplete them. 

Fluorescent proteins can be used as a laser gain medium in a similar way to dye lasers. 

This was first demonstrated in 2002 using WT-GFP in solution between two plane mirrors 

pumped with a Ti:Sapphire laser at 790 nm through two photon absorption [25]. The first 

living laser, defined here as a biological cell containing a gain medium, was demonstrated 

in 2011 by Gather and Yun [26] using Human Embryonic Kidney Cells (HEK293) 

transfected with eGFP. They placed the cells between two plane mirrors and pumped with 

nanosecond pulses from an Optical Parametric Amplifier (OPA) at 465 nm. The lasing 

did not damage the cells and multiple modes were observed in the emission. Biological 

lasers have potential as a tool for examining cells through enhancing signal to noise in 

experiments and the examination of the emitted modes which may give information about 

cell shape and health. 

1.2 Thesis Outline 

 

The work reported in this thesis was carried out by the student over the course of three 

years as part of EPSRC funding. A brief description of each chapter is given below. 

Chapter 2 

An overview of the theory needed for this thesis will be given focusing on the areas of 

ULI The inscription of waveguides and creation of microfluidic devices through selective 

chemical etching is covered, as is fluorescent proteins, dyes and the necessary laser 

physics to create a living laser. 
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Chapter 3 

Temperature sensing inside a microfluidic device was achieved using the fluorescence 

emission ratio between Rhodamine B and 110. This chapter will describe the fabrication 

of the device used and what the results reveal about the temperature distribution inside 

microfluidic devices. 

Chapter 4 

A multi-channel flow cytometer was fabricated using ULI and selective chemical etching 

for the imaging and counting of cells with the aim of improving the speed and availability 

of current diagnostic methods. The device will be described as well as the experiments 

conducted using whole blood and yeast cells. 

Chapter 5 

The emission of NaYF4:Er3+,Yb3+ upconverting nanorods was shown to have polarised 

emission allowing their orientation to be determined using a polariser and spectrometer. 

This technique was investigated by constructing a duel beam optical trap to position the 

nanorods. This has applications in biological sensing. 

Chapter 6 

Biological lasers were created using both fluorescent dyes and proteins. This section will 

detail the laser cavities used and their performance. Additional experiments were 

conducted to look at improving the lifetime of the laser using vitamin C and calcium 

sensing which may be used to improve the detectability of changes in fluorescence 

compared to current fluorescence techniques. 

Chapter 7 

Chapter 7 will offer concluding remarks on the work conducted in this thesis and thoughts 

on potential future work. 

1.3 Summary 

 

The recent development of a living laser shows that despite the field of laser physics being 

over 50 years old it is still possible to come up with new innovations. In this thesis we 
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examine how such a laser can be used in biological research to enhance current methods 

of examining cells. 

One of the largest applications of lasers has been in material processing where their high 

peak powers provide unique abilities in welding, cutting and patterning. ULI uses the high 

peak power and short pulses of femtosecond lasers to modify transparent materials at a 

scale not possible through traditional methods. We have used this technique to fabricate 

several devices in which novel sensing capabilities have been explored, for example 

temperature sensing and flow cytometry. 

Both these areas of research stem from the first demonstration of the laser by Theodore 

Maiman in the 1960s. His work has led to the development of a whole field of scientific 

study with applications in research, medicine, manufacturing and in peoples’ everyday 

lives, as well as this thesis, for which the author is grateful. 
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2. Review: Microfluidic Devices and Living Lasers 

 

Working in the area of biophotonics requires a researcher to gain knowledge spanning 

the fields of both physics and biology in order to be successful. This review section will 

cover topics including the use of femtosecond lasers to modify bulk glasses producing 

nano scale modification as well as the creation of biological lasers. 

2.1 Ultrafast laser inscription 

 

Glass is a uniquely useful material which has been used for millennia for the creation of 

decorations, containers and windows. Since the beginning of the fields of science and 

medicine it has been used to contain materials and perform reactions due to its properties 

such as being non-reactive with most chemicals, optically clear and the ease with which 

it can be moulded into different shapes. With the development of microfluidic devices for 

use in diagnosing and studying disease we would like to use glass as our construction 

material for the reasons given above. This requires new methods of fabrication as the 

traditional ways of shaping glass such as glass blowing, mechanical drills and saws fail 

at the micro and nano scale. 

A method of modifying materials at these scales is ULI. In ULI an ultrafast laser, with 

femtosecond scale pulse length, is focused into a material which is transparent to the laser 

wavelength. Due to the high irradiance at the focus the pulses are absorbed through multi 

photon processes leading to changes in structure. These changes can be used to produce 

waveguides for guiding light or etched with acid to fabricate microfluidic channels. The 

advantage of ULI over other methods of producing microfluidic devices is that it has the 

ability to work in 3 dimensions, does not require a clean room and can be rapidly modified 

as it works without the use of masks like in lithography. 

ULI has been used to fabricate waveguide lasers operating in the infrared and 

environment sensors. Microfluidic cell sorters and lasers have been shown. Our work, 

presented in this thesis, focuses on using ULI to produce fused silica microfluidic devices 

for temperature sensing and flow cytometry. The following sections will examine the 

theory relevant to fabricating such devices. 
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2.2 Energy Transfer 

 

From everyday experience we know that when a beam of light falls upon a surface there 

are several possibilities. The light may be reflected like on a mirrors surface, it may scatter 

like with paper, it may be absorbed leading to heating of the material or fluorescence and 

lastly it may be transmitted unaltered. The high peak powers of lasers allow for another 

option. When an ultrafast laser pulse is focused into a material transparent to the laser 

wavelength it can still be absorbed, despite having photon energy less than the bandgap 

of the material, through multi photon processes. 

An electron can absorb multiple photons, each with energy less than the bandgap, moving 

from the valance band to the conduction band through intermittent virtual energy levels. 

Alternatively, the high irradiance of the laser pulse may distort the electric field of the 

material allowing for an electron to tunnel between bands. These processes of 

photoionisation are illustrated in Figure 2.1 as well as an intermittent process which is a 

combination of the two. 

 

Figure 2.1: Possible methods of photoionisation of an atom when exposed to femtosecond 
pulses. a) the electron tunnels through the potential energy barrier, b) a combination of 
multiphoton absorption and tunnelling and c) multi photon absorption. 

 

The likelihood of an electron being ionised out of the valance band by either multi photon 

absorption or tunnelling is given by the Keldysh parameter [27], Equation 2.1, where γ is 

the adiabatic parameter, ω the laser frequency, e charge of an electron, me the mass of an 

electron, c speed of light, n0 refractive index, ε0 permittivity of free space, Eg the band 

gap of the material and I the laser intensity. When this value is smaller than 1.5 tunnelling 

processes will be responsible for most ionisation, above 1.5 multi photon absorption and 
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for around 1.5 a mixture of processes will occur. The laser systems and parameters used 

in our work give a γ of ~ 1, a combination of both tunnelling and multi photon absorption 

processes. 
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Equation 2.1 

 

An electron liberated from its parent atom may gain energy through the mechanism of 

inverse bremsstrahlung where it must simultaneously absorb a photon and collide with an 

atom for conservation of energy and momentum to be maintained [27, 28]. Avalanche 

ionisation where these electrons strike atoms liberating more electrons which in turn gain 

more energy results to an exponential increase in free electrons and energy absorbed from 

the laser pulse. This avalanche ionisation requires the laser pulse length to be of sufficient 

duration that several iterations of photon absorption and impact ionisation can occur 

absorbing the pulse energy. If it is very short, less than 10 fs [4], the pulse passes through 

the focal volume before a large percentage of its energy can be depleted. As the initial 

photoionisation that seeds avalanche ionisation does not depend on defects being present 

in the material the process is position independent leading to consistent results 

throughout. 

 

Figure 2.2: Time taken for various energy transfer mechanisms to occur in ULI. [4] 

 

The energetic electrons excited by the laser collide with each other and with atoms within 

the focal volume distributing energy between themselves. This process occurs over the 

space of around 1 ps before other processes dissipate the energy as shown in Figure 2.2. 
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Over several ns a shockwave is emitted from the excited core and thermal energy diffuses 

outwards. If the laser pulse imparts enough energy to melt the material it may leave 

behind modifications when it re-solidifies such as stress, the relocation of dopants or 

changes in the structure of molecules. 

In fused silica there are 3 type of modification possible dependent on laser pulse energy 

and length among other parameters as illustrated in Figures 2.3 and 2.4. The first type of 

modification, which starts at pulse energies of 50 nJ and pulse lengths of 40 fs, is a smooth 

change in refractive index. For slightly higher pulse length or energy nanogratings are 

formed. These are useful for fabricating microfluidic devices as they show faster etching 

than unmodified fused silica. The third type of modification which occurs at higher still 

pulse lengths and energies is a mixture of voids, nanogratings and smooth modification. 

While refractive index modification and voids may be expected after exposure to the laser 

the formation of nanogratings is more interesting and difficult to explain. The initial laser 

pulse ionises the atoms in the focal volume leading to an electron plasma. This then 

interferes with further pulses to create nanogratings perpendicular to the laser polarisation 

[29-31]. 

 

Figure 2.3: Etching regimes in fused silica. Regime 1) smooth modification, 2) Grating 
formation and 3) Mixed modification containing smooth modification and gratings. [10] 
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Figure 2.4: Etching regimes in fused silica. Regime a) smooth modification, b) Grating 
formation and c) Mixed modification containing smooth modification and gratings. [10] 

 

2.3 The Writing of ULI Devices 

 

In our work two laser systems were used to preform ULI. Both are femtosecond ytterbium 

fibre lasers; an IMRA µ-Jewel and a Fianium HE-1060-1J. Both lasers have variable 

repetition rate and pulse width as given in Table 2.1. As discussed in section 2.2 changing 

laser pulse energy, pulse length and polarisation alters the type of modification seen. 

Other parameters which influence modification are repetition rate, wavelength, objective 

NA, pulse front tilt, repeat scans and translation speed. This large number of variables 

makes finding optimum inscription parameters difficult, requiring large parameter scans. 

Parameter IMRA µ-Jewel Fianium HE-1060-1J 
Central Wavelength 1047 nm 1064 nm 

Pulsewidth ≥350 fs ≥300 fs 
Repetition Rate 0.1-5 MHz ≤1 MHz 

Table 2.1: Selected parameters for the two femtosecond lasers used for manufacturing 
ULI waveguides and microfluidic devices. 

 

Pulses from the lasers were focused into a sample mounted on air baring stages produced 

by Aerotech to allow positioning in 3 dimensions relative to the laser beam. These were 

ABL10100 linear stages and an AVL125 vertical stage with repeatability in positioning 
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of 50 nm and 300 nm respectively. The high positioning accuracy is required for 

fabricating microfluidics and waveguides as it determines the smallest features which can 

be produced. 

To control the laser power and polarisation incident on the sample the control optics 

shown in Figure 2.5 were used. A half waveplate and polarising beamsplitter for 

attenuating the beam followed by a half and quarter waveplate to give linear polarisation 

in a given direction or circular polarisation. A small amount of power was picked off from 

the beam to monitor the power and calibrated before each run. For switching the beam on 

and off, a high speed shutter with an open/close time of 1 ms was used. The beam is then 

focused into the sample through an objective. 

 

Figure 2.5: ULI inscription rig consisting of a femtosecond laser, polarisation control 
optics and an objective positioned above accurate translation stages. 

 

Instead of translating the sample relative to the laser beam it is possible to translate the 

laser beam relative to the sample using a spatial light modulator (SLM) or deformable 

mirror [32]. This has the advantage of requiring less investment and allowing for beam 

shaping but at the downside of only being able to modify material in a small area. 
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2.4 Waveguides 

 

The refractive index modification induced by ULI can be used for the writing of optical 

waveguides to guide light either for use as waveguide lasers or for the fabrication of 

optical devices. Both positive and negative changes in refractive index are obtainable 

depending on the material and inscription parameters used. For positive changes the 

modified region forms the core of the fibre while for negative it can form the cladding. 

Waveguides can be written in either the transverse or longitudinal direction as shown in 

Figure 2.6 depending on how the material is translated relative to the laser. 

 

Figure 2.6: The two methods of inscription left, transverse and right, longitudinal. 

 

The number of modes which can be supported in an optical waveguide is indicated by the 

V number, given by Equation 2.2, where the cut off for a single mode is 2.405. Values 

above this will support multiple modes. λ is the wavelength, a the radius of the waveguide 

and n the refractive index in the core and cladding. As an example in fused silica the 

refractive index is 1.45 and a modification of it 5x10-3 is achievable. For a wavelength of 

980 nm this gives a cut off radius of 3.1µm. 
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Equation 2.2 

 
 

For waveguides to have the same number of modes in the horizontal and vertical 

directions they must be symmetric. The circularity of the modified region is determined 
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by the NA of the objective lens used for inscription and will not typically be high enough 

to produce a circular modification. As an example this can be shown for a 1047 nm laser 

beam in fused silica, n=1.45, using Equations 2.3 and 2.4 where ZR is the Rayleigh length, 

w0 the beam waist and λ the wavelength. Setting ZR equal to w0 gives a required NA of 

1.9. The highest NA which can propagate in a given material is equal to its refractive 

index making this impossible for fused silica. 
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Equation 2.3 

 
   
 

2�� = 1.22
�

��
 

 
Equation 2.4 

 
 

This is only an issue for transverse modification where the horizontal dimension of the 

waveguide cross section is determined by the beam waist and the vertical component by 

the Rayleigh length. For longitudinal modification both the vertical and horizontal 

dimensions of the waveguide cross section are determined by the beam waist. To correct 

for the astigmatism in transverse waveguides several methods have been devised. 

 

Figure 2.7: Multiscan inscription in a glass to fabricate square waveguides. a) single scan 
with an oval shape and b) showing the combination of scans to fabricate a square 
waveguide. 

 

The multiscan method involves writing multiple lines of modification in parallel as 

illustrated in Figure 2.7. Changing the power therefore selects the height of the waveguide 

and the number of scans the width. A single mode waveguide will not necessarily be 

symmetric in both dimensions as the refractive index modification will be higher at the 

a b 
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centre of the laser focus than at the edges. This method requires precise stages with sub 

µm control of positioning. 

By shaping the input beam it is possible to alter the ratio of astigmatism between the 

horizontal and vertical directions in the focal spot. This can be achieved using either a slit 

[33] or a pair of cylindrical lenses [34]. The lenses have the advantage over the slit method 

of not reducing the laser power. 

2.5 Selective Etching 

 

Acids have been used to pattern glass for hundreds of years to produce frosted glass 

windows or decorations. The acid most commonly used for this, and in our work, is 

Hydrofluoric Acid (HF) which etches glass through the process given in Equation 2.5. It 

is one of the more dangerous acids which can be worked with, requiring specialist 

containers and safety equipment, but is one of the few acids which can etch fused silica 

at a high rate. 

 ���� + 6�� → ������ + 2��� Equation 2.5 
 

Materials exposed to femtosecond pulses and modified by ULI may be weakened leading 

to faster etching when exposed to acid compared to unmodified material. This effect alone 

in fused silica is not sufficient for fabricating detailed microfluidic devices. For such work 

we use the inscription of nanograting structures which give much better selectivity as acid 

travels along the cracks. As the nanogratings are written perpendicular to the direction of 

laser polarisation then the direction of etching must also be perpendicular to achieve the 

highest etch rate. Figures 2.8 and 2.9 show how the etch rate varies with both pulse energy 

and polarisation. For low pulse energies all polarisations give the same etching as this is 

below the threshold for nanograting formation. At slightly higher energies nanogratings 

are formed and a large increase in etching is observed for nanogratings parallel to the 

direction of etching. Very high pulse energies sees the etch rate for all polarisations 

increase as the material begins to ablate allowing the acid to flow along the modified 

regions. Selective etch rates of up to 280 times are achievable allowing for the fabrication 

of detailed microfluidic devices [35]. 
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Figure 2.8: Polarisation dependent etching in fused silica. In each image from top to 
bottom the polarisation orientation is 0°, 45° and 90° relative to the vertical axis. [35] 

 

 

Figure 2.9: SEM images for different inscription polarisations after exposure to HF in 
order to expose their features. For (a),(b) and (c) the inscription pulse energy was 300 nJ. 
For (d) the pulse energy was 900 nJ. [35] 
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Etching selectivity is important as it determines the size of microfluidic device which can 

be fabricated and therefore how many structures can be included. This is due to the fact 

that all etching begins at the surface of the device and works inwards. As the channels 

nearer the surface are exposed to acid for longer than those in the middle they will etch 

more and in extreme cases may even breach the surface of the glass chip. If all that is 

required is straight channels then it is possible to write a modification which diverges as 

it moves inwards from the surface. Thus this divergence balances with the exposure time 

giving straight channels at the expense of having a larger feature size in the centre of the 

device. 

Alternative etchants to HF such as Potassium Hydroxide (KOH) allow for higher 

selectivity at the expense of slower absolute etch rate. By using both etchants, in separate 

steps, it is possible to have both high etch rates and fine detail assuming small structures 

are only required in the centre of the device. KOH does not have as many safety 

considerations as HF but requires a heated bath for etching. Etching with any substance 

benefits from being conducted in a sonic bath as this aids with both dislodging material 

inside the device channels and replenishing the etchant inside them. 

After etching, channels will have a rough surface as can be seen in Figure 2.9 (d) both 

inside the channel and on the surface of the unmodified glass. This is due to the 

inhomogeneous cracks induced in the glass but also from imperfections already present 

due to the manufacturing processes, either formation, cutting or polishing [36]. This 

roughness can be reduced through the process of annealing where the glass is slowly 

brought up to the softening point, 1,700 °C for fused silica, then back down. This typically 

requires a pottery oven.  

2.6 Fluorescent Proteins and Dyes 

 

The history of the microscope stretches back thousands of years starting with the focusing 

of light through water in ancient times. The first optical microscopes developed in the 17 

hundreds allowed scientists to examine the microscopic world for the first time leading 

to advances in all areas of biology and medicine. Since this time there has been a drive 

and a demand to improve the resolution of microscopes with improvements in optics and 

illumination. 
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There are two issues with imaging cells which can be addressed with fluorescent dyes 

and proteins. The first is that cells generally are transparent to light with only changes in 

refractive index giving definition to their different features. By attaching a fluorophore to 

specific areas of a cell, for example staining the cytoskeleton, these features can be seen 

and if multiple colours are used a uniform cell becomes a multi-coloured well of 

information. The second issue is a fundamental one, the diffraction limit, a limit on the 

smallest feature which can be resolved with a given wavelength of light and objective. 

For 488 nm light and a 1.3 NA objective this is ~0.2 µm; much smaller than the typical 

size of a cell but much larger than what would be required to examine the smallest features 

of a cell or its proteins. Fluorescence imaging techniques, using genetically engineered 

fluorescent proteins, allow for the diffraction limit to be overcome. 

Apart from direct improvements in spatio-temporal imaging through the labelling of cells 

and resolution through breaking the diffraction limit there have been other developments 

in sensing which utilise fluorescent dyes and proteins. Some have been modified to react 

to a cells internal environment, for example its calcium levels or pH, changing either their 

emission wavelength or intensity allowing for these properties to be monitored. Other 

modifications allow for dyes to act as viability markers, by only being activated when 

passing through a functioning cell membrane, or to deliberately kill cells when exposed 

to light. 

Fluorescent dyes have been used as laser gain media for decades in laser laboratories as 

broad band visible laser sources. More recently fluorescent dyes and proteins have been 

shown to lase inside biological cells giving the prospect of adding to the above methods 

of looking at cells. As part of this thesis has worked towards creating living lasers using 

fluorescent dyes and proteins as the gain media the following sections will be used to set 

out how these media were discovered and developed [22, 26, 37]. 

2.6.1 Fluorescent Proteins 

 

With the discovery of GFP by Osamu Shimomura [22] and the demonstration that it could 

be transfected into other organisms [23] a whole field of biological imaging was born 

(Nobel Prize in chemistry 2008 to Osamu Shimomura, Martin Chalfie and Roger Tsien). 

While WT-GFP was the first fluorescent protein discovered efforts made to find more 

have been successful with others being found in corals, jellyfish, amphioxus, and 
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copepods. It is suspected that all these proteins share a common origin rather than being 

the result of convergent evolution [38]. 

An interesting feature of WT-GFP is that it has two absorption peaks, one at 395 nm and 

a second lower peak at 475 nm, while emitting with one maximum at 509 nm. This is due 

to a non-radiative process, excited state proton transfer, where energy from the 395 nm 

peak is transferred to the 475 nm peak before emission. 

All fluorescent proteins share a common shape with a central chromophore surrounded 

by an outer β-barrel which protects it from damage and interaction with the outside 

environment. Figure 2.10 shows this with the outer amino acids represented as ribbons. 

As well as protecting the chromophore the β-barrel restricts its movement reducing non-

radiative energy loss.  

Fluorescent proteins are highly modifiable with simple changes resulting in the 

development of colours being available throughout the visible spectrum, enhancements 

in brightness and specialist abilities such as deliberately killings cells and photoactivation. 

The fact that a single amino acid change can be used to change the emission of WT-GFP 

from green to yellow [37] shows how easy it is to modify and explains why there are so 

many variants available today. Figure 2.11 shows examples of the proteins available 

throughout the visible. 

In addition to enabling multi-colour fluorescence imaging, these proteins have been used 

to develop a number of imaging and analysis techniques. Using photobleaching the 

diffusion inside a cell can be monitored or the movement of tagged molecules may be 

tracked. Using proteins which respond to calcium or pH levels allows for these to be 

monitored. They even allow for the diffraction limit to be defeated through the use of 

super resolution fluorescence techniques such as FRET and STED amongst others [39, 

40]. 

Fluorescent proteins can be used as laser gain media as shown in various papers [25, 26]. 

In these examples, as in our work, pulsed pumping is used due to the short fluorescence 

lifetime of these proteins and dyes, which are on the order of a few nanoseconds [41, 42]. 

Pumping with pulses significantly shorter than the fluorescent lifetime has been shown to 

result in a lower threshold compared to nanosecond pumping for the protein DsRed due 

to the higher population inversion achieved before lasing occurs [43]. 
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The use of fluorophores inside a biological cell to realise a living laser can potentially 

inform us of the cell’s properties. A cell’s size, shape and refractive index will alter the 

laser emission. Lasing can also potentially enhance detectability in low signal 

experiments as it will increase the peak emission at a given wavelength compared to 

fluorescence. 

 

Figure 2.10: The structure of a fluorescent protein showing the protective outer β-barrel 
and inner chromophore. The specific variant is roGFP2. [37] 
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Figure 2.11: Fluorescent proteins absorption and emission spectra. [24] 

 

2.6.2 Fluorescent Dyes 

 

Dye lasers were one of the first types of laser to have a broad emission profile allowing 

for lasing throughout the visible spectrum as seen in Figure 2.12 for one dye line 

produced by Life Technologies Ltd. Due to this they were widely used but have since 

been mostly superseded by solid state lasers because of the difficulty in employing dye 

jet laser systems. 

Like fluorescent proteins, dyes can also be used with cells as a stain for imaging. In our 

work we use them as a gain media inside cells due to their high emission and ease of use 

compared to fluorescent proteins. Whereas the process of adding GFP to a cell can take 

several days, dyes can be added in under an hour. 
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Areas in which dye lasers are still used for research over solid state systems are those in 

which their liquid nature is needed. Examples of this are levitated dye droplet lasers which 

take advantage of whispering gallery modes within the droplets [44] and microfluidic dye 

lasers [45] which can be thought of as miniature versions of traditional large scale 

systems. 

 

Figure 2.12: A selection of fluorescent dyes available in the Alexa line from Life 
Technologies Ltd. 

 

2.7 Optical Tweezers 

 

Researchers investigating the behaviour of cells would like to be able to pick them up and 

move them around. To place one cell next to another then watch and see how they interact. 

Unfortunately, due to the scales involved such manipulation is not easy without causing 

damage to the cells involved. Optical tweezers are a method by which we can manipulate 

micro and nanometre scale objects noninvasively. The process involves tightly focusing 

a laser beam onto a cell which moves towards the point of maximum intensity. The cell 

can then be moved in 3 dimensions resulting in the positioning we desire. This process 

was discovered and investigated by A. Ashkin who reported on the initial trapping [46], 

3D levitation [47] and manipulation of live viruses and bacteria [48]. 

The method by which optical trapping works can be thought of simply as a force resulting 

from the divergence of light as it passes through a spherical object [49]. For a tightly 

focused laser beam this results in trapping in 3 dimensional as shown in Figure 2.13. The 

actual position at which the cell rests will be slightly below the focal point as there is a 

balance between the force the trap exerts and gravity. 
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Figure 2.13: Optical trapping of a spherical particle using ray tracing. a) particle to left of 
trap resulting in net force to the right, b) particle in centre of trap resulting in no net force 
and c) particle to right of trap resulting in force to the left. 

 

The optical trapping we have carried out in our work involved sub-micron sized particles. 

At this scale, smaller than the laser wavelength, the above ray method no longer applies 

and other explanations must be considered. For such a small particle it may be thought of 

as a dipole on which the electric field acts creating a gradient force drawing the particle 

toward the centre of the trapping beam [50, 51]. 

Multi-particle trapping can be used for measuring the force between particles, setting the 

separation for cell interaction experiments or simply positioning multiple particles at 

once.  Splitting the trapping laser using beam splitters and steering them individually or 

using a diffractive optic is effective but results in power losses limiting the total number 

of traps. An SLM may be used to create and arbitrary number of traps by quickly 

swapping between traps. 

In microfluidics optical traps have been constructed using embedded waveguides. As 

light diverges from the ends of the waveguides two are needed to form the trap, positioned 

opposite each other and counter propagating. The overlapping beams form a trap with a 

point of highest intensity between the two and particles are drawn to this point. Devices 

capable of rotating particles have been shown useful for imaging. By increasing the power 

in a dual beam trap, a cell can be stretched as a diagnostic method, because disease can 

affect a cell’s cytoskeleton, altering elasticity [16]. 

(a) (b) (c) 
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2.8 Silver Nanoparticles 

 

Raman spectroscopy is a powerful tool for the identification of molecules. It can be used 

to take the chemical ‘fingerprint’ of a substance uniquely identifying it. This has been 

used, for example, in the whiskey industry to check the authenticity of samples identifying 

fakes [52]. As Raman signals are typically weak, one of the main difficulties in taking 

measurements is separating the signal from that of the central laser wavelength. One way 

of enhancing the signal is Surface Enhancement of Raman Spectroscopy (SERS). The 

lasers electric field is enhanced near small metal surfaces which increases Raman signals 

making them easier to detect [53, 54]. Several metals provide suitable surfaces for SERS 

measurements including silver, gold, copper, aluminium, indium and platinum 

2.8.1 Silver Nanoparticles Background 

 

Silver nanoparticles, defined as having sizes between 1-100 nm, come in many different 

shapes ranging from spheres, to rods to cubes. They are widely used commercially as 

antimicrobials in products such as deodorants and water purification solutions but this 

leads to their release into the environment with questions over their effect on humans and 

wildlife. Evidence has shown that silver nanoparticles bioaccumulation with negative 

impacts on fish and other marine animals [55] as well as the potential for ill effects in 

humans [56]. 

The enhancement of Raman signals using silver nanoparticles in SERS has become a 

widely used technique amongst other possible substrates [53, 54]. In our work we aim to 

combine silver nanoparticles with 3 dimensional microfluidics to create high throughput 

SERS sensors. Work already conducted in this area indicates that such patterning is 

possible using a multi component fabrication process utilising a glass microchannel and 

PDMS cover [57]. 

2.8.2 Photoreduction 

 

The production of silver nanoparticles can be conducted through different methods 

depending on the desired quantity and application. Chemical synthesis of silver 

nanoparticles in solution can be performed through several methods, with the one used in 

our work involving silver nitrate and sodium citrate heated to around 100°C being one of 

the simpler methods. In this process the first nanoparticles to be formed are small, these 
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then grow as the reaction continues. This process can be arrested by adding ammonia to 

the solution resulting in more uniform particle size [58]. Physical and biological methods 

are also available [59]. 

Photoreduction of nanoparticles using a focused laser beam to heat the precursor 

chemicals is an alternative to heating the sample. This gives the advantage of selectively 

creating nanoparticles to pattern a surface. Using this process in conjunction with 

microfluidics enables the fabrication of high throughput SERS sensors [57, 60]. 

2.9 Summary 

 

Initially there was only one scientific discipline that of philosophy which over time 

divided into the main fields of Chemistry, Physics and Biology as it became impossible 

for one person to become an expert in them all. With the current trend to collaborative 

research it is now necessary for researchers to learn at least some things outside their main 

field and work with those who are experts in other disciplines. For a physicist this can be 

a fascinating process as we are exposed to the world of the cell and chemistry. 

This theory chapter has covered various topics relevant to the work undertaken in 

following sections. These sections will focus on individual projects undertaken to 

fabricate microfluidics and lasers with the aim of demonstrating useful applications for 

such devices. 
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3. Microfluidics Temperature Sensing 

3.1 Introduction: Temperature Sensing on Small Scales 

 

The field of microfluidics is still relatively new but it has seen massive interest in its short 

lifetime with potential applications in biological research and clinical point of care. These 

applications, such as reducing diagnostic cost and mimicking the in vivo environment of 

cells, have been extensively reviewed [9, 61, 62]. Our own interest in this area of research 

involves the use of microfluidics to fabricate devices for counting, Section 4, SERS 

analysis, and the culture of cells. As the field matures there is a need to develop tools for 

measuring the properties of such devices so we can predict how they will function. One 

of the key properties which requires measurement is temperature. This has implications 

for flow dynamics and cell health, especially for biological cells as even small variations 

in temperature can cause changes in cell function [63]. This is likely to be of particular 

importance for devices which use relatively high laser powers, 100’s of mW, which result 

in heating, such as optical cell sorters [19] and stretchers [16]. Traditionally we would 

use a thermometer for such measurements but for the scales involved in microfluidics it 

is likely that this would perturb the system being measured reducing the significance of 

the result to normal operating conditions. 

As this is a known problem in microfluidics several researchers have proposed the use of 

fluorescence thermometry as a solution. The technique uses quantum dots [64] or 

fluorescent dye [65] which reacts to temperature changes, shifting in either wavelength 

or intensity. The change in the dye emission relative to temperature is calibrated by 

measuring its response at known temperature settings. The calibrated emission can then 

be used to non-invasively measure temperature. This has proven successful but 

demonstrations to date have either focused on static conditions or not studied the effects 

flow has on temperature distribution. To fully understand the dynamics of the devices we 

fabricate, predict how they will affect cells inside them and optimise our experiments we 

need to know how flow alters temperature distribution. 

To investigate if it was possible to measure the effects of flow on temperature distribution 

through fluorescence thermometry we made use of ULI and HF etching to fabricate a 

single channel fused silica device, as set out in Section 2. As shown in Figure 3.1 it 

consisted of a single channel with two inlets and two waveguides for heating the channel. 

Utilising two rhodamine dyes to preform fluorescence thermometry and varying flow 
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conditions we found the technique to be effective for measuring temperature with a high 

degree of both spatial and temporal resolution. 

 

Figure 3.1: Wireframe diagram of device showing the inlets, waveguides and channels. 
There is a small gap between the channel and waveguides. 

 

Having established the measurement technique was capable of generating accurate 2D 

maps of temperature we broadened our examination making use of additional PDMS 

devices, showing that we could use fluorescence thermometry in other materials. PDMS 

devices are fabricated through lithography which has different advantages compared to 

ULI. PDMS devices have highly defined channel shape while ULI has 3D capability and 

integrated waveguides. Making use of a PDMS device with complex channel structure 

we examined how its shape affected the distribution of temperature inside it. Constructing 

a finite element computer simulation, we compared our results to those which would be 

expected based on theory. We found a good degree of correlation between our 

experimental measurements and the model further validating the technique. Looking at 

the temperature in several different devices we observed that the temperature distribution 

and stabilisation time is highly dependent on flow rate. This had implications for future 
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work using biological samples as we observed temperature changes of up to 20 °C for 

typical operating conditions. As many cell processes such as binding rates, molecular 

motor activity and cytoskeleton function depend on temperature this significant change 

in temperature will affect measured cell properties [63]. 

3.2 Fluorescence Thermometry 

 

Rhodamine is a family of dyes with a wide range of applications. In biological research 

it has uses such as staining mitochondria [66], measuring mercury ion levels [67] and 

SERS experiments [68]. It is used as a gain medium in dye lasers and in water tracing 

applications. In water tracing the dye’s fluorescence means it can be used in 

concentrations as low as 10 parts per trillion increasing the distance from source it can be 

tracked for, compared to non-fluorescent dyes. Depending on the variant used rhodamine 

can be orange, pink or red in colour with a bright fluorescence emission when excited by 

blue light. 

We chose Rhodamine dye for our investigation as others have reported it is effective for 

conducting fluorescence thermometry [69]. Two variants were used, rhodamine B and 

rhodamine 110. Rhodamine B changes emission intensity with temperature allowing us 

to determine temperature changes non-invasively by measuring the dyes emission. 

Rhodamine 110 does not change emission intensity with temperature so by monitoring 

its emission we will detect changes due to varying illumination levels and dye 

concentration. 

As the emission peaks of the two dyes are close to each other, 527 nm and 580 nm for 

110 and B respectively as seen in Figure 3.2, we can monitor both simultaneously using 

a spectrometer with the ratio between their peak emissions indicating temperature. This 

can be calibrated by heating the dyes to a known temperature. 
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Figure 3.2: Combined rhodamine dye 110 and B emission with each peak indicated. 

 

3.3 Device Design and Fabrication 

 

The fused silica devices used in our investigation were fabricated using ULI and HF 

etching. Fused silica was chosen as it is biocompatible, has high etching selectivity 

allowing for the creation of complex structures and can be modified to fabricate low loss 

waveguides for delivering light to the channel. The design is shown in Figure 3.1 

consisting of a single channel, two inlets and two waveguides. The channel is angled to 

approach the surface of the device, within 170 µm, to enable imaging with high 

magnification objectives which typically have short working distances. 

As our goal was to investigate heating inside the device we needed to heat it as much as 

possible to explore the maximum possible temperature range. Water absorption varies 

with wavelength as seen in Figure 3.3 with several peaks which we would like to match 

with our excitation source. Considering the wavelengths available to us we decided to use 

980 nm and 1450 nm with absorptions of 0.48 cm-1 and 32.7 cm-1 respectively. These are 

commonly available diode laser wavelengths. 
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Figure 3.3: Water absorption with 980 nm and 1450 nm indicated [70]. 

 

Waveguide fabrication depends on a number of inscription parameters as described in 

Section 2.4. Our goal when optimising these was to minimise waveguide loss to couple 

as much power as possible into the channel and single mode operation so that the channel 

was heated in a predictable manner. This presents a problem using a single waveguide as 

one which is single mode at 1450 nm will be multimode at 980 nm. The reverse is not 

true however and by using a single mode waveguide optimised for 980 nm we achieved 

single mode operation at each wavelength at the cost of additional loss at 1450 nm. The 

additional water absorption is more significant than the additional loss at 1450 nm leading 

to a net gain in power absorbed by the water. 

Optimising for single mode operation at 980 nm and low loss required a series of 

waveguides to be written using different laser parameters to find those which met these 

requirements. To narrow down the range of parameters we made use of the V number 

Equation 2.2 to predict the diameter at which they would operate on a single mode. Using 

a wavelength of 980 nm, the refractive index for fused silica being 1.45 and knowing the 

refractive index modification will be around 0.5 %, from our previous work on waveguide 

writing within the research group, we expect a diameter of less than 5.2 µm to be single 

mode. 

Even with this starting point there is still a large number of parameters available, laser 

power, repetition rate, number of scans, scan separation, objective NA and translation 

speed. This gives an indication as to why establishing ULI in new materials can be a time 
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consuming process. As fused silica is a well-studied material we drew on this knowledge 

base to select a repetition rate of 500 kHz, NA of 0.4, and scan separation of 0.35 µm 

leaving power, inscription speed and number of scans to be varied. 

Writing waveguides while varying these parameters produced a set of waveguides which 

were then inspected to measure loss and determine how many modes they supported. The 

modes of a waveguide can be observed by coupling a laser source into them and imaging 

the output. Translating the input relative to the waveguides excites different modes in the 

waveguide allowing these to be recorded. 

For loss measurements we measure insertion loss. It is defined as the difference in signal 

when a fibre connecting a laser to a detector is broken in two and a waveguide placed 

between the ends. We made use of a 980 nm diode laser coupled to a single mode fibre. 

This was positioned to couple light into the waveguides and the output collected using 

another single mode fibre connected to a KD optics power meter, DATS01HP. The 

equipment used for this is shown in Figure 3.4. 

 

Figure 3.4: Waveguide loss measurement setup with fibre coupled laser source, 980 nm, 
and detector, KD Optics. The fibres and waveguides were mounted on translation stages 
and aligned relative to each other to maximise the coupling of light between them. 

 

The insertion loss is the combination of several components as described in Table 3.1 and 

Figure 3.5. Insertion loss is simple to measure compared to the individual components so 

was used to optimise our waveguides. If the individual components of loss are required 

there are several methods of determining them. 

Those we have used are the cutback method where the insertion loss of the sample is 

measured then a portion of the sample removed. The insertion loss is re-measured with 

the difference between this reading and the previous one being the propagation loss of the 

removed length of sample. Knowing the propagation loss, we can then simply determine 

the other components. 
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The other method we used relies on the assumption that input and output coupling loss 

are the same. This is valid for single mode waveguides and fibres where the mode field 

diameter is the same. For this method the insertion loss is measured using single mode 

fibre input and output then measured again using a large core fibre for the output which 

collects all the light. The difference in loss is the coupling loss and once this is known the 

other components can be calculated. 

Coupling Loss - Coupling loss, as seen in Figure 3.19, is the loss due to 

mismatch between the mode field diameter of the optical fibre 

and waveguide. 

Propagation Loss - This is the loss due to scattering or absorption of light as it 

passes along the waveguide. 

Fresnel Loss - At every interface there will be a Fresnel loss. For nair=1 and 

nfused silica=1.45 this is 3.4%. This is significant as there are 4 

interfaces in the system. By adding index matching fluid, 

ndecane=1.41, this reflection is reduced to 0.02%. Decane is a 

derivative of petrol with uses in paint, varnishes and in optics 

for index matching. 

Divergence - As the light leaves the fibre it diverges. This will depend on 

the NA of the fibre. For our waveguides in air this is 8.35°. 

Placing the sample in decane reduces this to 5.91°. By placing 

the fibre close to the waveguides this loss is minimised. 

Within 1 µm the laser spot increases in diameter by only 4%. 

Table 3.1 
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Figure 3.5: Sources of loss in optical waveguides. 
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The insertion loss for waveguides inscribed with varying power and scans is shown in 

Figure 3.6. There is a clear relationship between loss and inscription power which can be 

explained by both the refractive index change and inscription height increasing with 

power until the v number equation condition is met, Equation 2.2. At even higher powers 

than those measured we would expect the loss to increase again as we transitioned from 

the refractive index modification inscription to damage regimes. Figure 3.7 shows how 

the insertion loss varies with number of scans, i.e. waveguide width. While the effect is 

not as pronounced as in Figure 3.6 there is still a correlation between scans and loss with 

the lowest loss being for 9 scans. The high loss for narrow waveguides can be explained 

by the v number equation. For wider waveguides there is increasing coupling loss as we 

attempt to couple an increasingly large multi-mode waveguide to a single mode fibre. 
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Figure 3.6: Waveguide insertion loss increasers with writing power. 
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Figure 3.7: Waveguide insertion loss varies with number of scans peaking around 9 scans. 

 

Measuring the loss of each waveguide we found the parameters which gave the lowest 

loss for single mode operation. The loss of this waveguide was then measured at 1450 nm, 

taking account of additional sources of loss at this wavelength due to the use of input fibre 

designed for 980 nm. The optimal parameters as well as losses are: 

Inscription power -  152 mW 

Translation speed -  1 mm.s-1 

Objective NA -  0.4 

Repetition rate -  500 kHz 

Pulse length -  360 fs 

Scans -  10 with a spacing of 0.35 giving a diameter of 3.15 µm. 

The inscription laser has a spot size of 3.2 µm making the 

modified region larger than that set by the writing code. 

Loss, 980 nm - 2 dB estimated over for the final device 

Loss, 1450 nm - 5.5 dB estimated over for the final device 

Table 3.2 
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To determine optimal etching parameters, we conducted a scan of possible values using 

an IMRA µ-Jewel femtosecond laser. From previous work we know that using a repetition 

rate of 500 kHz, pulse length of 360 fs and 0.4 NA objectives will give the highest etching 

selectivity [7, 11, 20]. This leaves power and translation speed to be inspected. Single 

lines were inscribed in a fused silica substrate with varying parameters then etched in HF 

to compare etching selectivity. From this we determined that the optimal inscription 

parameters were as follows: 

Inscription power -  300 mW 

Translation speed -  2 mm.s-1 

Objective NA -  0.4 

Repetition rate -  500 kHz 

Pulse length -  360 fs 

Table 3.3 

 

Using our optimised parameters for waveguides and etching we inscribed the design as 

shown in Figure 3.1. The design fits multiple times into a single fused silica substrate 

allowing us to take advantage of the fast prototyping abilities of ULI to fabricate multiple 

variations on the same design at once. These variations were in the size of the central 

channel and depth from the surface. The inscribed devices are shown in Figures 3.8 and 

3.9 where we can see the inlet channels and waveguides. While the parameters for 

inscription of regions to be etched are different to the waveguides it is still necessary to 

inset the waveguides to avoid them being exposed to the HF as they etch more quickly 

than unmodified fused silica. 
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Figure 3.8: Composite image showing the device inscribed in fused silica before etching. 
The border represents the device edges to give an indication of device size. 

 

 

Figure 3.9: Side view of the device before etching showing how the channel approaches 
the surface. The waveguide can be seen as a small spot in the centre of the channel. 
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After inscription the devices are etched in acid clearing the channel and inlets of fused 

silica. While etching selectivity of up to 280:1 is achievable [35], unmodified material 

will etch as well as that which has been modified so the process must be carefully 

monitored to prevent over etching, resulting in larger channel sizes or in extreme cases 

device loss when the channel breaches the device surface. Etching was conducted in 10% 

HF for around 12 hours, with each device being removed individually when it had 

completely etched. The devices produced are shown in Figures 3.1 and 3.11 where the 

channel and waveguide are indicated. The channel sizes after etching were: 

Parameter Minimum (µm) Maximum (µm) 

Channel height 27 57 

Channel width 13 35 

Depth from surface 61 102 

Table 3.4 

 

 

Figure 3.10: Top view of the microfluidic device after etching showing the microfluidic 
channel and unetched waveguides for delivering light. 
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Figure 3.11: Side view of the device after etching showing the channel approaches the 
surface of the glass chip. 

 

To allow our device to be connected to a syringe pump we attached microfluidic tubing, 

with an outer diameter of 360 µm and inner diameter 100 µm. The tubing was made of 

Polyether Ether Ketone (PEEK) which is chemically resistant, biocompatible and 

resistant to high temperatures. It was bonded to the inlets using Thorlabs N0A61 UV 

curing optical adhesive. The glue is liquid allowing it to be pulled into the inlet through 

capillary action then set using a UV lamp. 

When measuring waveguide loss, it was necessary to continually align into different 

waveguides. This is not required or desirable when using the final device so by bonding 

the input in place the device becomes alignment free during experiments. This is achieved 

using a v-groove purchased from SQS Vláknová optika consisting of a single mode 980 

nm fibre bonded to a piece of fused silica. The v-groove array was positioned as shown 

in Figure 3.12. It was aligned by passing a 980 nm laser through the v-groove into a 

waveguide then measuring the power out of the opposite waveguide. There is a large loss 

between the waveguides when the channel is empty due to scattering from the surface 

and divergence in the channel. This is reduced by passing water through the channel to 

closely match the refractive index of fused silica. While we use 980 nm as one of our 

heating wavelengths the total absorption is only around 0.2% when passing through 35 
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µm of water which is insignificant compared to sources of loss in the channels when they 

contain air. Once optimal alignment was achieved, maximising transmission, the v-

groove was bonded in place using Thorlabs N0A61 UV curing optical adhesive which is 

optically transparent at 980 nm and 1450 nm. 

 

Figure 3.12: Alignment of v-groove fibre input to the microfluidic device. 

 

3.4 Experimental Results 

 

After completing fabrication of the microfluidic devices they were transported to the 

Universidad Autónoma de Madrid where, in collaboration with researchers there, we took 

advantage of their microscope systems to preform fluorescence thermometry 

experiments. The aim of the experiments was to demonstrate that we can use fluorescence 

thermometry to observe the effect of flow on temperature distribution in microfluidic 

devices. 

Two microscope systems were used for these experiments. The first, a 

reflection/transmission microscope with a video camera to record fluorescence in the 

devices had fast acquisition time but could not provide accurately calibrated temperature 

readings as it did not record the wavelength of the emitted fluorescence. The second 

system was a confocal microscope connected to a Horiba Jobin Yvon iHR320 

spectrometer allowing for both high spatial accuracy and the calibration of readings using 
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rhodamine 110 as a background level. These microscopes will be referred to as the video 

and confocal microscopes from this point onwards. 

Using these systems, we first investigated our ability to measure temperature inside 

devices before looking at the effects of fluid flow on stabilisation time and temperature 

distribution inside devices. If the total change in temperature in the microfluidic channel 

is ΔT the stabilisation time is defined as the time taken to rise to 63% of this, the 1/e 

criteria. 

Making use of the video microscope system we placed devices in it then pumped 

Rhodamine B through them using a syringe pump, NE-1002X Programmable 

Microfluidics Syringe Pump with rates between 8 pL.hr-1 to 2.5 mL.min-1. The sample 

was illuminated using a UV lamp integrated into the microscope to excite the rhodamine 

B dye and suitable emission filters used before the camera so only the dye fluorescence 

was recorded. Readings were taken as videos then split into single frames as shown in 

Figure 3.13. (a) shows the fluorescence from the dye in the channel with no laser applied, 

(b) shows the dye when the laser is switched on with the dip indicating heating, (c) is the 

subtraction of (b) from (a) giving the change in fluorescence. As we only make use of one 

dye the readings are not calibrated but are sufficient to investigate the stabilisation time 

using arbitrary units of intensity. 
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Figure 3.13: Fluorescence dip when the channel is illuminated by the laser. (c) heat map 
image is a background subtraction of (a) from (b) showing the relative change in intensity 
across the channel. The laser used was 1450 nm at 400 mA. 
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The video microscope system was capable of generating 2D maps of temperature quickly 

being limited only by the camera frame rate, 10 Hz in our case. In contrast the confocal 

microscope required the sample to be translated relative to the microscope objective to 

build up a 2D map of the channel with a fluorescence reading being taken at each point. 

This process takes several seconds per point with the total time being determined by the 

number of data points required. 

The confocal microscope system is depicted in Figure 3.14 and consisted of the confocal 

microscope, computerised xyz positioning stages and a 488 nm diode laser pump source 

to excite fluorescence in the rhodamine dye. The microfluidic devices were placed in this 

system and a mixture of Rhodamine B and 110 pumped through them. Monitoring the 

fluorescence emission of both simultaneously we can detect changes in temperature as 

the rhodamine B will decrease in emission intensity when heated while the rhodamine 

110 will not so acts as a background signal to account for local changes in dye 

concentration or laser illumination. Calibration was conducted by adding a hot plate to 

the system and measuring the relative dye emissions at set temperatures. Comparing this 

to our data when heating with the laser gave temperature readings throughout the channel. 

 

Figure 3.14: Diagram of the experimental setup for exciting the dye fluorescence. 
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We took a series of measurement of fluorescence while varying laser power then 

calculated the dye ratio for each reading. An example of our raw data can be seen in 

Figure 3.15 where we see the dye emission changing with laser power. To calibrate our 

dye emission, finding the ratio for known temperatures, we used a hot plate to obtain the 

calibration curve shown in Figure 3.16. When using fluorescent dyes photobleaching is 

always a potential issue and in this case if could influence our results. If one of our dyes, 

rhodamine 110 or B, photobleaches more quickly than the other then this could result in 

a changing ratio between them. We do not believe this to be an issue due to the short 

exposure times with dye spending only a few ms in the focal region even for the lowest 

flow rates. Using our calibration curve to convert the emission ratio to temperature, as 

shown in Figure 3.17, gives a maximum heating of 19 °C for 230 mW of 1450 nm laser 

light. We see a linear relationship between laser power and temperature. This is the 

relationship we would expect until the temperature saturates at higher powers. 19 °C is a 

significant amount of heating enough to be of concern in any experiments using 

mammalian cell lines which must be maintained at 37°C [63]. Having demonstrated that 

we can use two dye fluorescence thermometry to measure temperature within devices we 

next decided to investigate the effects of flow rate on heating in a microfluidic channel. 
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Figure 3.15: Rhodamine 110 and B emission for different input laser powers. The ratio 
between the two emissions can be seen to vary with power. Flow rate 0.5 µL.min-1. 
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Figure 3.16: Temperature calibration cure used to convert dye intensity ratio to 
temperature. 

 

 

Figure 3.17: Temperature change as laser power is increased determined by the ratio 
between rhodamine 110 and B emission for a 1450 nm pump wavelength. Flow rate 0.5 
µL.min-1. 
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Stabilisation time is one of the most important properties we would like to know for a 

microfluidic device. Taking readings before temperature has stabilised inside a device is 

likely to lead to inconsistent results. This will be especially important in devices where 

there is constant heating and cooling such as optical cell sorters, where a laser is used to 

divert the path of cells. In such devices a laser is repeatedly switched on and off causing 

constant changes in temperature and fluidic currents inside the channel which may affect 

sorting efficiency. To investigate this, we used two PDMS single channel devices, bought 

commercially to both save time in fabrication and demonstrate measurement in an 

additional material. The time taken for the channel to thermally stabilise is predicted by: 

 
�� =

��

�
 

 
Equation 3.1 

 
 

where tT is the time required for temperature to rise to 63% of the final steady state 

temperature, L is the characteristic size of the system, the channel width or height, and K 

the thermal diffusely of the medium, 1.43 × 10-7 m2.s-1 for water. This equation assumes 

no convection currents or changes in contour conditions [71]. 

Using two devices with channel width of 100 µm and 200 µm we apply 980 nm light to 

the channel through 50x objective, as the devices do not have embedded waveguides, and 

record the temperature at the focal point of the objective. Equation 3.1 predicts that for 

these devices we should expect stabilisation times of 70 ms and 280 ms for 100 µm and 

200 µm channels respectively, a ratio of 4:1. Our experimental results in Figure 3.18 

show the expected trend of smaller channels stabilising more quickly with 180 ms and 

790 ms for the 100 µm and 200 µm channels respectively. The data do not match the 

predicted values though the ratio of 4.4:1 is in good agreement. Looking at the fitting of 

the data we see that the best fit is given by a double exponential as shown in the insert. 

There is both a fast and a slow component implying two processes are present. 
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Figure 3.18: Temperature inside microfluidic devices when heated with a laser beam. 
Data points are experimental readings while solid lines are double exponential fits. Inset, 
the two exponential components, pink and blue, of the 200 µm channel fit, red. 

 

Investigating this further we looked at the effect of flow rate on the stabilisation time. 

Varying the flow rate in the 100 µm channel we see in Figure 3.18 that the stabilisation 

time decreases as flow rate is increased and that the weighting of the two exponentials 

fitting the data changes. The relative weighting of two exponentials used to fit the data 

changes with flow rate as seen in the inset. At fast flowrates a fit using only the fast 

exponential can be used giving a stabilisation time of 80 ms closely matching our 

prediction from Equation 3.1 of 70 ms. From these results we conclude that the two 

exponentials in our fits represent the thermalisation time of the fluid for the fast 

component and the slow component is due to convection currents in the channel and 

changes in temperature contour conditions.  Fast flow rates then minimise the components 

from convection currents and contour changes leaving only the fast component. These 

results are of relevance for our future choice of channel size and flow rate as they have a 

significant impact on stabilisation time. 
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Figure 3.19: Stabilisation time for varying flow rate. At high flow rates data can be fit by 
a single exponential. Inset shows the contribution from the fast and slow exponentials. 

 

We next look at devices with more complex channel structures to see how our temperature 

measurement technique works for such devices and investigate how they behave under 

normal operating conditions. The device chosen is designed for the sorting of particles 

using an optical fibre to divert samples between two channels with the scattering force of 
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photons on the particles. Using 450 mW of 980 nm light we achieve a maximum sorting 

efficiency of 75% for microspheres as seen in Figure 3.20. Using these conditions, we 

examined temperature distribution over time using the confocal microscope system. The 

results, seen in Figure 3.21, show a maximum temperature change of 5 °C, enough to be 

of concern depending on the type of particle being sorted. We also see a significant 

change in temperature distribution depending on flow rate with it being localised to the 

area of laser illumination at 0.01 µm.min-1 but becoming asymmetric at 1 µm.min-1. This 

change in temperature distribution with flow rate is an interesting result we investigated 

further through the use of computer simulation. 

 

Figure 3.20: Optical cell sorter showing the trajectories of particles as they pass through 
the device. The fibre providing the optical force can be seen in the top of the image. 
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Figure 3.21: Time evolution of temperature distribution in an optical cell sorter for several 
flow rates. 

 

The effect of flow rate on temperature distribution was modelled using COMSOL 

Multiphysics 4.3 conjoined heat transfer module. The Navier–Stokes equation, the 

continuity equation and the heat transfer equation were coupled in COMSOL to solve the 

problem. Assumptions were that material properties were constant over the temperature 

range investigated, there was no slip at the walls and the fluid was incompressible. The 

purpose of this modelling was to predict what changes in temperature distribution would 

be expected through theory and to see how closely our experimental data matched this 

prediction. The experimental data for this comparison was taken using a 300 mW 980 nm 

laser with flow rates between 0 and 300 µL.min-1. The temperature measurements, seen 

in Figure 3.22 (a), show a decrease in heating with flow rate as more water passes the 

laser spot in a given time distributing its power over a larger volume. A notable effect 

which may not be expected is that the position of maximum intensity also changes with 

flow rate moving further down the channel as the rate is increased. This is of interest in 

experiments involving trapping of particles as it will impact particle heating. 

Laser 
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Comparing experimental results to the model we see in Figure 3.22 (b) that the predicted 

and measured temperature changes are the same within the errors of our measurement. 

We also see that our measurement of maximum intensity position matched that predicted 

by the model within error, Figure 3.22 (c). It moves downstream by up to 30 µm for a 

flow rate of 300 µL.min-1 which is larger than many of the samples we will look at in 

future experiments though smaller than some biological cell types. 

 

Figure 3.22: Temperature inside a single channel microfluidic device illuminated with 
300 mW of 980 nm light. (a) experimental data showing temperature change with flow 
rate, (b) comparison of predicted and actual temperature, (c) change in position of 
maximum intensity with flow rate. 
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3.5 Conclusion  

 

We are interested in understanding the microfluidic devices we fabricate, specifically how 

temperature distribution is affected by the flow rate inside them. To investigate this we 

used two dye fluorescence thermometry to measure the temperature inside devices 

fabricated in fused silica through ULI and HF etching and PDMS devices purchased 

commercially. We found the method to be effective in producing measurements with a 

high degree of temporal and spatial accuracy limited only by the microscope systems 

being used to conduct the reading. A comparison was made between experimental 

measurements of temperature in a microfluidic device and a COMSOL model. The 

prediction and measurement matched within experimental error indicating that the 

measurement technique is effective. 

Having established the technique worked we examined the effects of flow rate and 

observed, as would be expected, that the maximum change in temperature decreases as 

flow rate increases. The maximum change under typical operating conditions was 5 °C, 

enough to cause changes in biological cell function [63]. As this device is a cell sorter 

this result may be of concern for example for any human cell line which is intended to be 

separated then cultured as not maintaining a temperature of 37 C, or the cell experiencing 

over 40 C for a short period of time will decrease cells’ viability. Other conclusions are 

that the position of maximum intensity is not fixed at the point of maximum optical 

intensity but can actually move down the channel which may be of interest in any 

experiments involving optical trapping and heating of the trapped sample. From our 

results we see that the system can take up to a second to stabilise after laser power is 

changed, depending on channel size and flow rate. Readings taken in this time will vary 

depending on how far the process has progressed so the measurement should be taken 

several seconds after laser power or flow rate has been changed to allow the device’s 

temperature to stabilise. 

These results, showing our ability to measure temperature in microfluidic devices, will 

be of significant use in any future work involving biological samples, where heating may 

cause damage, or where temperature control is critical. This will also be of interest in 

devices which depend on well controlled fluid flow such as cell sorters where heating 

may affect the sorting efficiency through the creation of currents within the device. 
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4. Imaging Flow Cytometry 

4.1 Introduction: High Throughput Medial Diagnosis 

4.1.1 Flow Cytometers 

 

Flow cytometers are a well-established and widely used tool in both biological research 

and in commercial applications. They were first proposed in the 1960s [72] and as the 

name implies flow cytometers look at cells, or particles, in flow. A schematic of such a 

device is shown in Figure 4.1 where cells flow through a channel and are illuminated 

with a laser. To count cells and give an indication of their size the forward scattered light 

is recorded for each cell. To give an indication of cell complexity side scattered light is 

recorded. Through this simple technique it is possible to rapidly count and differentiate 

between cells in a population. For biological research additional analysis is conducted by 

making use of fluorescence stains, in the cell or on the cell surface, which are illuminated 

by the laser and recorded using optical filters before a detector. Many stains have been 

developed which bind to or are taken up by specific bacteria or cells and the stains can 

give an indication of cellular properties such as membrane integrity or glucose uptake 

[73]. Using these stains, it is possible to extremely accurately identify specific cells or 

properties of cells in a population with count rates as high as 100,000 cells per second [1]. 

Flow cytometers have been used for inspecting water quality where samples taken after 

each purification step in a purification system gives an indication of how effective each 

step has been. In one specific example flow cytometry was used to measure a decrease in 

cell population from 1x106 cells.ml-1 to below the experimental detection limit of 200 

cells.ml-1 [74] illustrating how flow cytometers can accurately count both large and small 

concentrations of cells in samples. 

Incorporating a microscope into a flow cytometer in addition to scatter and fluorescence 

measurements adds further functionality. Imaging flow cytometers, first proposed in 1979 

[75], give additional information about cell orientation, morphology and fluorescence 

location inside cells. 
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4.1.2 Microfluidic Flow Cytometers 

 

The fabrication of microfluidic devices which mimic or exceed the capabilities of current 

experimental equipment has been one of the aims of the field since its beginning. 

Applying microfluidics to flow cytometers has the potential to decrease their cost and 

size opening up their use to every research laboratory and to clinical point of care. 

Demonstrations to date have mostly made use of PDMS due to its widespread availability 

and ability to fabricate highly defined channels. Demonstrations of imaging flow 

cytometers manufactured using PDMS have achieved throughputs of up to 20,000 cells 

per second [76]. 

We are interested in using ULI to fabricate imaging flow cytometers in fused silica. The 

advantage of this over current examples is that fused silica is a more reusable and durable 

material than PDMS and therefore making use of fused silica could increase the viability 

of microfluidic flow cytometers in real world settings. It is more reusable as PDMS, 

unlike fused silica, absorbs some small molecules making them impossible to sterilise 

contaminating future experiments [77, 78]. 

Our proposed design for such a device is shown in Figure 4.2 where we have 2 inlets and 

8 channels. The use of multiple channels allows for multiplexing of imaging depending 

on how many channels fit within the field of view of the imaging microscope. We chose 

8 channels as, with our current channel separation, this is more than can be imaged by 

most high magnification objectives. 

 

Figure 4.2: Wireframe design of microfluidic flow cytometer. 

 

After fabricating the device, we tested its ability to capture images of cells. Using red 

blood cells, we achieved throughputs of up to 4,700 cells per second. In order to confirm 
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that our chosen material was more reusable than PDMS we made use of rhodamine dye 

flowing it through two similar devices then flushing with water. The residual fluorescence 

in the PDMS device was significantly greater convincing us that our reasoning was 

correct. 

4.1.3 3D Cell Imaging 

 

Having fabricated a microfluidic imaging flow cytometer and seen that it effectively 

counted and imaged cells we next considered how we could incorporate more features 

into the device, increasing its usefulness and further increasing the compactness of current 

diagnostics. 3D focal stack collection is such a feature which can be integrated into the 

device with only slight modification. 

The 3D imaging of cells, and also of cell clusters, is of use in a wide variety of applications 

where variation in shape can give information about cell health or where fluorescent stains 

have been added and it is necessary to observe its distribution throughout a cell. 3D 

images are typically built up using a series of points or sections of a cell such as in a 

confocal microscope system which rejects out of focus light. By scanning a cell in a 3D 

raster pattern an image is built up point by point. This process can be automated and 

provides a high degree of accuracy but is a slow method, relative to others which are 

available, potentially taking several minutes to image a single cell depending on the 

system used [79]. An alternative is the light sheet microscope where structured 

illumination is used to illuminate an entire plane of a cell or structure at once thereby only 

requiring the sample to be translated in one dimension to create a 3D image of the sample. 

This method has proved successful, and can be applied to wide fields of view, but sample 

preparation can also prove difficult and non-standard microscope systems are required. A 

third method, and the one we are interested in is to flow cells past a microscope system 

at an angle so that the cell transverses the focal plane. Multiple frames therefore show 

different planes of the cell which can be combined into a 3D focal stack. This method has 

been successfully demonstrated using blood samples to produce focal stacks of red blood 

cells and leukaemia cells with a sectioning resolution of 675 nm [80, 81]. 

This method, using tilted microfluidic channels, has the potential for high throughput 

automated generation of 3D focal stacks of cells. To date these devices have made use of 

microfluidic channels which are parallel to the overall microfluidic device, requiring the 

entire device to be tilted relative to the imaging microscope system. This is a small but 



58 
 

significant limitation as it requires the addition of rotation control to the microscope 

system which is not a standard feature and could potentially be costly or impossible to 

introduce depending on the manufacturer.  

 

Figure 4.3: Angled channel wireframe design of microfluidic device. 

 

Using the 3D freedom inherent to ULI device fabrication we can modify our device with 

an angled channel relative to the device surface allowing it to be flat mounted onto a 

microscope system. Our proposed modification is shown in Figure 4.3 where we 

introduce a small tilt to the central section of our device. Our device has multiple channels 

and it is possible to introduce a different tilt into each one. As the ideal case is one where 

a cells move its own height as it transverses the microscope field of view a device with 

multiple channel tilts would be of use if multiple sized cells are to be used. 

We fabricated devices using the new design then inspected their ability to create 3D focal 

stacks first using microspheres, which we know to be spherical with a diameter of 4 µm. 

This being successful we then imaged the nucleus of bovine sperm cells, measuring 

approximately 7 x 3 x 1 µm [82], producing 3D images with a vertical step size of ~15 nm. 

4.2 Device Design and Fabrication 

 

Our design for a flow cytometry device is shown in Figure 4.2. This was fabricated in 

fused silica through ULI and HF etching to take advantage of the chemical resistance of 

the material and 3D capabilities inherent to the method. The use of 8 parallel channels in 

the device allows us to record all simultaneously, in order to increase the throughput of 

the device. Depending on the field of view of the imaging objective used, the number of 

channels visible will vary and it was decided 8 channels were sufficient for most of the 

objectives we would use. The channels were angled to approach the surface so that 

objectives with low working distances could be used. 

As this work was conducted in collaboration with researchers at the Indian Institute of 

Science (IISc) we decided to look at red blood cells as Sickle cell disease is a disease is 
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relatively common in India compared to other countries, affecting up to 20% of people in 

some areas. Sickle cell disease is an inherited condition which affects the shape of red 

blood cells causing them to become misshapen, reducing their ability to carry oxygen and 

increasing risk of infections. It is currently diagnosed by either an automated full blood 

count using flow cytometry or manual inspection of a blood film on a microscope slide. 

The former method results in high throughput and provides histograms of cell shape while 

the latter method is able to identify abnormal cells with specific shapes but is much 

slower. The use of microfluidic imaging flow cytometry has the potential to provide high 

throughput, analyse the shape of cells providing additional information compared to 

normal flow cytometry, reduce costs and reduce the sample sizes required. Red blood 

cells have an average diameter of 7 µm so our channels should be slightly larger than this. 

A parameter scan was performed to find those parameters which produced the highest 

etching selectivity as described in, Section 2.5. The laser used was a Fianium HE-1060-

1J femtosecond laser and for the parameter scan a series of straight lines were inscribed 

in a fused silica substrate then etched in HF. From our previous work we know that a 

repetition rate of 500 kHz, pulse length of 330 fs and 0.4 NA objective will give the 

optimal results leaving power and translation speed to be investigated. Doing so we found 

the optimal parameters for etching to be: 

Inscription Power -  250 mW 

Writing Speed -  1 mm.s-1 

Repetition Rate -  500 kHz 

Pulse Length -  330 fs 

Objective NA -  0.4 

Table 4.1: Optimised inscription parameters for etching using a Fianium laser system. 

 

Using these parameters, devices were inscribed then etched for approximately 20 hours 

in 5% HF with the exact time varying between devices. Each device was removed when 

it had completed etching in order to achieve the desired central channel size. The devices 

are shown post etching in Figures 4.4 and 4.5 where the multiple channels, 4.4, and how 

they approach the surface, 4.5, are visible. 
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Figure 4.4: Top view of etched microfluidic device with 8 parallel channels. 

 

 

Figure 4.5: Side view of etched microfluidic device showing the channel approaching the 
surface. 
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Taking advantage of the fast prototyping abilities of ULI we varied the dimensions of 

each device to obtain a range of channel sizes after inscription. This was done by varying 

the number of scans in which make up each channel. There is additional variation due to 

the unique etching of each device. The final channel sizes were: 

Parameter Minimum (µm) Maximum (µm) 

Channel Height 16 35 

Channel Width 2 22 

Table 4.2: Channel sizes after etching. 

 

The majority of devices meet the requirement of a diameter over 7 µm necessary for red 

blood cells. While this is the minimum size we also wanted to limit the maximum size as 

well to reduce the variation in cell position relative to the focal plane of the imaging 

microscope. After etching, microfluidic tubing was bonded to the inlets of the device so 

it could be used with a syringe pump. The tubing was made from PEEK with an inner 

diameter of 100 µm and outer diameter 360 µm. For bonding we made use of Thorlabs 

MIL-A-3920 UV curing optical adhesive which is pulled into the inlets in its liquid state 

through capillary action before being set with a UV lamp. 

4.3 3D Focal Stack Microfluidics 

 

The initial devices shown in Figures 4.4 and 4.5 have a straight channel in their centre. 

These devices were used to perfect our flow cytometry technique and are not suitable for 

generating 3D focal stacks despite a portion of the channel connected to the inlet being 

angled. This is because it is inclined at a high angle meaning the cells would pass through 

the focus quickly limiting the number of sectional images that could be taken. Ideally a 

cell should move a distance equal to its own height vertically as it crosses the microscope 

field of view to maximise the number of imaged slices taken through the cell. 

In order to obtain the desired degree of movement for cells traveling through the central 

section of the device they were modified with a tilt as seen in Figure 4.3, this being 1°, 

2° or 5°. As before, a parameter scan was conducted, using an IMRA µ-Jewel 

femtosecond laser to determine optimal etching parameters. These were found to be: 
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Power -  350 mW 

Repetition Rate -  500 kHz 

Pulse Length -  360 fs 

Translation Speed -  1 mm.s-1 

Objective NA -  0.4 

Table 4.3: Optimal inscription parameters for etching using an IMRA laser system. 

 

The inscription laser spot size is smaller than our desired channel size so multiple parallel 

scans are used to construct it. It was observed that after etching this resulted in a residual 

set of lines being visible in the channels which hampered imaging. While increasing etch 

time would remove this as the acid moved into unmodified areas it would also result in 

larger channels which would be undesirable. To solve this, we investigated the effect of 

increasing the number of scans and found that increasing them removed the residual lines 

after etching. Having learnt this the change was incorporated into all future devices, where 

imaging or reducing scattering is important. Two other improvements were made for ease 

of device use. An inscription line was made below the centre of the channel to mark its 

position and lines numbering the device were added. This was previously done using a 

label attached to the inlet tubing but was found to occasionally become detached. 

Using our optimised etching parameters and incorporating these improvements into the 

devices we inscribed then etched them in 10% HF for approximately 13 hours. The 

resulting devices are shown in Figures 4.6 and 4.7 where the changes described above 

can be seen. The channel sizes varied and were measured to be: 

Parameter Minimum (µm) Maximum (µm) 

Channel Height 10 19 

Channel Width 40 43 

Table 4.4: Channel dimensions after microfluidic devices have been etched in 10% HF 
for approximately 13 hours showing the variation in channel size. 

 

As before PEEK tubing, inner diameter 100 µm and outer diameter 360 µm, was bonded 

to the inlets using Thorlabs MIL-A-3920 UV curing glue. It was necessary to use the 

minimum amount of glue possible so that the devices would sit flat on microscope 

translation stages. Excess glue extending beyond the base or top surface would result in 
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a random tilt and instability. To give an indication to the reader of the scale of completed 

devices one is shown in Figure 4.8 next to a ruler and 10 pence coin. 

 

Figure 4.6: Top view of etched angled microfluidic device. The vertical line in the middle 
of the diagram is below the channels to indicate the centre. 

 

 

Figure 4.7: Side view of etched angled microfluidic device. The tilt of the central region 
is 5°. 
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Figure 4.8: A completed device with ruler for scale. The coin is a British 10 pence. 

 

4.4 Experimental Results 

 

The completed devices were transported to the IISc and further investigations conducted 

in collaboration with researchers there to take advantage of their microscope facilities and 

expertise in image analysis. The aim of these experiments was to evaluate the device’s 

effectiveness for use in flow cytometry and 3D imaging.  

The flow cytometry devices were imaged using a simple microscope system as shown in 

Figure 4.9 consisting of an illumination system and microscope objective coupled with 

an imaging sensor. The goal in keeping this system as simple as possible was that it could 

be mass produced and distributed widely making use of disposable microfluidic chips to 

increase the availability of flow cytometry diagnostic techniques. Illumination was 

provided by an LED making use of Köhler illumination, which is a method that ensures 

the illumination source is defocused at the imaging plane to ensure an even illumination. 
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We made use of red blood cells in our investigation flowing samples through the device 

and recording videos using sensors. The cells were separated by centrifuge from whole 

blood obtained from the IISc health clinic. These samples were from healthy donors; 

further studies will examine blood from unhealthy donors for disease detection. Samples 

were pumped through our microfluidic device using a syringe pump, NE-1000 New Era 

Pump Systems. Device clogging proved to be an issue when passing thousands of cells, 

which had not been predicted. It was found that mounting the device vertically prolonged 

the lifetime of devices as when mounted horizontally gravity caused cells to fall and 

collect at the inlet and outlet. In future devices we will consider more thoroughly how 

they will operate over long periods of time with large numbers of cells or particles passing 

through them. 

The devices were imaged using the simple microscope system shown in Figure 4.9 and a 

number of imaging sensors utilised to see if we could meet the aim of producing a low 

cost, simple system. Projecting the images onto a screen was effective for aligning the 

system and the use of a standard Samsung camera, EK-GC100, was sufficient to capture 

videos of cells in flow. For the highest possible throughput of we made use of a Mikrotron 

EoSens MC1362 CMOS camera which has a framerate of 500 Hz, increasing if fewer 

pixels are read out. 

Videos were taken of cells in flow then transferred to a computer and separated into 

individual frames for use with MATLAB. Analysis consisted of preforming background 

subtraction on the frames to highlight cells then using thresholding to automatically 

identify them and determine their dimensions. To differentiate between cells and any 

debris present a minimum and maximum threshold for cell area was used, this being 

determined by measuring the average area of several hundred cells. A manual check 

showed that this method correctly identified around 95% of cells with the majority of 

errors being due to clumps of cells being misidentified as individual cells. This could be 

corrected in future work through the use of more sophisticated computer algorithms using 

edge detection [83]. 

The process is demonstrated in Figure 4.10 where we have an image without cells (a), an 

image with cells (b) and the subtraction of one from the other (c). A selection of different 

cells is given in (d) showing the slight variation in their size and shape. Red blood cells 

are expected to have a doughnut shape which we would expect to appear as either circular 

or oval in our frames depending on their orientation relative to the imaging objective but 

instead our images all appear circular. This may indicate that our cells are in non-ideal 
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conditions or that our microfluidic channels preferentially orientate the cells in a 

particular direction. 

 

Figure 4.10: Cells identified through image analysis. Scale bars are 10 µm. (c) is the 
resultant image obtained by subtracting (a) from (b). (d) is a selection of different cells. 
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As the frame rate of the camera used is dependent on the number of pixels read out we 

reduced the number of pixels to only those which showed the channel and ignored the 

surrounding areas. The flow rate of the syringe pump was then increased to the maximum 

rate which did not result in cells being missed between frames or blurred. Doing this we 

obtained a maximum count rate through a single channel of 4635 cells per second with a 

framerate of 2550 fps, exposure time of 10 µs and flow rate of 400 µL.hr-1. This is 

comparable to PDMS flow cytometry devices which have count rates of up to 20,000 

cells per second [76]. 

As we had achieved our aim of fabricating a fused silica flow cytometer we next moved 

on to a direct comparison of fused silica and PDMS looking at reusability and chemical 

resistance. During our experiments we found that after tens of thousands of cells have 

passed through a device it typically builds up some debris in the channel. This 

contamination would render the results from any repeat experiment using the same device 

invalid due to contamination. To remove the debris, we used hydrochloric acid though 

any chemical which does not react to glass but dissolves cells could be used. This is not 

possible in PDMS as it can absorb small molecules [77, 78]. To demonstrate this, we 

made use of two similar devices, one fused silica and one PDMS. Rhodamine B dye was 

pumped through each device as shown in Figure 4.11 where (a) and (b) show rhodamine 

B in the PDMS and fused silica device respectively. After pumping the rhodamine 

through the devices for several minutes the feed was replaced with water and flushed to 

clear the channels. The fluorescence of the devices was then observed to see if dye 

remained in the channel as seen in (c) PDMS and (d) fused silica. There is a clear 

difference in residual fluorescence indicating the PDMS device has absorbed dye into the 

material surrounding the channels. This convinces us that fused silica is indeed the more 

suitable material for this type of experiment and we will continue its use for long term 

experiments or multiple repeat experiments. 



69 
 

 

Figure 4.11: Fluorescence from fused silica and PDMS devices with Rhodamine B and 
after being flushed with water. (a) PDMS with dye, (b) Fused silica with dye, (c) PDMS 
flushed and (d) Fused silica flushed. Scale bars are 500 µm. There is a blockage in one of 
the channels in (b) due to cell debris. 
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Having found our microfluidic imaging flow cytometer was effective at counting cells we 

next decided to modify it to collect 3D focal stacks by angling the central channel. To 

determine if our device was effective we first made use of particles with a known shape 

and size. These were 4 µm microspheres, labelled with Fluorescence Isothiocyante 

(FITC), pumped through the device using a syringe pump, NE-1000 New Era Pump 

Systems. Flow rate was minimised to maximise the number of frames taken of each 

microsphere as it moved through the focus. Videos were recorded using a Zyla 5.5 camera 

set to 200 fps and 500 µs exposure. Videos were separated into individual frames, a small 

number of these are shown for a single microsphere in Figure 4.12 (a). In these images it 

is possible to see a slight change in shape as the microsphere moves through the focus but 

the presence of out of focus light distorts the image making the change difficult to see. 

It is assumed that the cells do not rotate during the short time in which images are taken. 

Microfluidic devices typically operate in the laminar flow regime so there is no turbulence 

in the channel which could cause the target particle to rotate. If there were some rotation 

this would lead to a distortion of the shape when separate images are combined into a 

single object. While it was not investigated at the time it could be determined if our 

assumption, that the particle does not rotate, is correct by increasing our field of view and 

using an asymmetric target such that any slight rotation would be detected over a larger 

distance of travel. 

To improve our raw images, we made use of blind deconvolution. This process estimates 

both the distortion due to the point spread function of the fluorescence microscope and 

the contribution from out of focus fluorescence [84]. The resulting images are shown in 

Figure 4.12 (b) where the change in radius as the microsphere moves through the 

microscope focus is now clearly apparent. A final step to remove artefacts generated by 

the deconvolution step gives our final images in Figure 4.12 (c). 

The resulting images were combined into a 3D focal stack by finding the centre point of 

each slice. This gives us an image of the microsphere as shown in Figure 4.13. Measuring 

the size of a group of several microspheres as shown in Figure 4.14 we determine their 

size to be 4.1±0.2 µm which is in good agreement with the manufacturers datasheet which 

gives a value of 4.2±0.2 µm. These results convince us of the accuracy of our imaging 

system. 
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Figure 4.12: (a) Raw images of fluorescent microspheres. (b) Deconvoluted focal stack. 
(c) Imaged after removal of artefacts. Scale bar 10 µm. 
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Figure 4.13: Composite image of 4 µm microsphere constructed from multiple imaged 
slices. 

 

 

Figure 4.14: Histogram of microsphere size as measured by our system. The measured 
size of 4.1±0.2 µm is in good agreement with the manufacturers datasheet which gives a 
value of 4.2±0.2 µm. 
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The cell we choose to image next is bovine sperm cell nuclei stained with 4’,6-diamidino-

2-phenylindole (DAPI) with relevance in animal research. These were flowed through the 

device and videos recorded as before. Analysing the data produces focal stacks with a 

separation between slices of ~15 nm with 226 slices making up a single nucleus as seen 

in Figure 4.15 . The expected size of bovine sperm cell nuclei is approximately 

7 x 3 x 1 µm. The resulting image matches our predicted structure and demonstrates that 

our device is capable of imaging biological cells with a high resolution. 

 

Figure 4.15: Composite image of 3 µm bovine sperm cell nucleus constructed from 
multiple images at different focuses. 

 

4.5 Conclusion 

 

The field of microfluidics offers the capability to improve upon current experimental 

equipment; miniaturising it, making it cheaper and improving availability. With this in 

mind we have applied our ULI fabrication techniques to flow cytometry which is widely 

used for cell counting, size analysis and investigation cell populations using fluorescent 

stains. 
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We fabricated a device consisting of channels optimised for use with red blood cells and 

using a basic microscope system observed count rates of up to 4635 cell per second. It is 

our hope that such devices may become available widely due to their low cost and ease 

of use compared to traditional flow cytometry systems. Our choice of fused silica was 

made as it is a more reusable and robust material than alternatives such as PDMS. We 

confirmed that this was the case using rhodamine dye and observed that a PDMS device 

suffered from significantly more staining that once made from fused silica. This 

convinces us that our choice of material is correct and that we should continue using it in 

future devices. 

To improve the usefulness of our device and demonstrate how microfluidics can 

miniaturise current experimental equipment we integrated another function, 3D focal 

stack collection, into our device. Using ULI we made use of its 3D capabilities to create 

angled channels which cause cells to move through the focus of a microscope system 

allowing image stacks of a particle in different focal planes to be collected. Using 

microspheres and bovine sperm cell nuclei we obtained focal stacks with resolution of ~ 

15 nm. This method of collecting focal stacks is faster and cheaper than current confocal 

and light sheet microscopy systems showing us the benefits of microfluidics in biological 

research. 
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5. Manipulating Objects with Dimensions Beyond the Resolution Limit of Light 

5.1 Introduction: Fluorescence Imaging and the Manipulation of Single Particles 

 

The use of fluorescent stains in biological imaging has added colour to what can at times 

seem like the monochrome world of the cell. Over time fluorophores have been developed 

which target specific areas of cells allowing objects of interest for example proteins to be 

tracked. Other fluorophores react to indicate cell health or behaviour for example 

monitoring calcium levels by changing emission intensity or wavelength. Methods have 

even been developed allowing us to gain information from below the diffraction limit, a 

possibility once thought impossible, through methods such as FRET and STED [39, 40]. 

For the above applications numerous fluorophores have been developed; dyes, proteins 

and quantum dots with emissions spanning the visible and near IR. While these are of 

tremendous use there are drawbacks which must be considered when deciding which to 

use. Dyes and proteins photobleach over time limiting the duration of experiments. They 

typically have broad emission spectrums which can hinder multi-colour labelling and they 

can only be excited in the UV or visible. The use of UV light can be damaging to cells 

and there are issues with scattering of light in the visible [85]. Qdots have narrow 

emission spectra and long lifetimes but are still excited in the UV and have additional 

problems with phototoxicity. While techniques have been developed to address the above 

issues, such as light sheet microscopy which can limit exposure times reducing 

photobleaching and the use of multi photon excitation to excite fluorophores using the 

infra-red light, these add complexity to experiments. 

Upconverting materials are an alternative to the fluorescent stains described above [86]. 

They have narrow emission spectra and low photobleaching like Qdots but with the 

advantage of being both biocompatible and excited in the infrared. While it is possible to 

excite visible fluorescence through two photon absorption in the infra-red but this requires 

high intensities potentially damaging the sample being examined. Instead of this 

upconverting materials convert the light through excited state absorption allowing lower 

intensities to be used while taking advantage of the transparency of cells at these 

wavelengths and low auto-fluorescence being generated in the sample [87]. 

Fluorophores in general are too small to image directly due to the diffraction limit. 

Upconverting nanorods are a subset of upconverting materials with non-uniform shape 

which may make it possible to determine their orientation though indirect means 
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overcoming this problem with applications in imaging and manufacturing, such as the 

labelling of products [87]. The shape of nanorods can lead to polarised emission. This 

process is not present in all types of nanorods and the mechanism can vary. For nanorods 

smaller than the wavelength of light being used for illumination there is attenuation of 

light polarised perpendicular to the long axis of the nanorods but not that parallel to it 

[88, 89]. For nanorods with a diameter less than ~10 nm there may be additional effects 

due to quantum confinement [90, 91]. For materials where these effects are present it has 

been shown that their orientation can be determined through methods such as frequency 

doubling, though to date these methods have been difficult to implement, limiting their 

use [92]. 

We hypothesised that it would be possible to use a simpler method to determine nanorod 

orientation through examining their emission using a polariser and spectrometer. To 

investigate if this was the case we obtained samples of NaYF4:Er3+,Yb3+ nanorods from 

collaborators at Universidad Autónoma de Madrid and Wrocław University of Science 

and Technology, Figures 5.1 and 5.2. They had lengths of 1100±200 nm and diameters 

of 140±20 nm. As their diameter is much greater than 10 nm the dominant effect resulting 

in polarised emission will be the attenuation of light polarised perpendicular to the long 

axis of the nanorod. In more detail, as set out in [88], it is possible to imagine the nanorod 

as an infinite cylindrical wire. If the wire is placed in an electric field the component 

parallel to it will not be attenuated at the interface, Equation 5.1, while the component 

perpendicular to the wire will be attenuated according to Equation 5.2. where E is electric 

field and � the permittivity. 

  
�ǁ = ��ǁ 

 
Equation 5.1 
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Equation 5.2 

 

Our first experiments made use of a single beam optical trap to demonstrate that we could 

trap single nanorods. Although this was successful we found that the nanorods orientated 

with their long axis parallel to the optical axis resulting in a uniform spectrum when 

sampling the emission, viewed through the objective, with a polariser. Moving to a dual 

beam optical trap, we were able to control their orientation of the nanorods in 3D. This in 

itself is important if we are to use the nanorods in experiments as it allows us to arrange 
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them in a controlled, pre-determined manner. Having rotated the nanorods in 3D we then 

observed that their emission varies when they are rotated relative to a polariser. This 

demonstration of a simple method of both rotating and determining the orientation of 

upconverting nanorods makes their use in both fluorescence imaging experiments and 

manufacturing much easier to implement. 

 

Figure 5.1: NaYF4:Er3+,Yb3+ nanorods. (a) SEM showing the asymmetric shape of the 

particles, (b) histograms showing the size distribution of our nanorod sample [93]. 
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Figure 5.2: NaYF4:Er3+,Yb3+ nanorods. (a) fluorescence emission of the nanorods when 

illuminated by a laser and (b) the excitation and emission wavelengths which are available 

from the Yb3+ and Er3+ ions [93]. 

 



79 
 

 

The NaYF4:2%Er3+,18%Yb3+ nanorods were synthesised through a published protocol 

[94]. First a lanthanide nitrate precursor salt (1.2 mM) was prepared by hydrothermal 

processing using microwave radiation. This was mixed with 14 mL deionised water, 

0.7 g, (17.5 mM) of NaOH, 7.1 g, (22.6 mM) of oleic acid (90 wt%), 10.0 g (21.7 mM) 

of ethanol and 0.3 g (7.2 mM) of NaF. This was stirred at room temperature for 30 minutes 

then placed in a microwave reactor for 8.5 hours hydrothermal processing at 250 °C at an 

average pressure under 25 atm, resulting in nanorod formation. These were collected 

through centrifuging the sample at 12,000 rpm for 15 minutes, the supernatant was 

removed and the particles washed with ethanol. 

5.2 Tweezer Setup and Pump Sources 

 

For manipulating nanorods we made use of two trapping setups, the theory of optical 

trapping is discussed in Section 2.7. Initially we made use of a single beam optical trap 

consisting of a 980 nm fibre coupled diode laser focused through a 100x 1.25 NA 

objective. This was sufficient to trap the nanorods but not to control them in 3D. For this 

we used a modified optical trap with two trapping spots. The modified design is shown 

in Figure 5.3. Our 980 nm laser did not have sufficient power to form two optical traps 

so a second laser was added, a 1064 nm Nd:YAG solid state laser, Ventus Laser Quantum 

Photonic Solutions. 

To combine the lasers, first the 980 nm light was collimated with an objective, and the 

1064 nm beam expanded using two lenses in order to match its beam diameter to that of 

the 980 nm beam. The 980 nm and 1064 nm beams were combined using a 50/50 

beamsplitter, resulting in a 50% power loss for each beam. A second beamsplitter was 

then used to split the combined beam as shown in Figure 5.3. In this configuration only 

the 980 nm light excites fluorescence in the sample while both the 980 nm and 1064 nm 

light contribute to the trapping force. Reflecting the beams off two silver mirrors 

recombines the beams with the overlap controlled by the mirror angle. Thus when focused 

through an objective two traps will be formed with their relative separation controlled by 

tilting the mirrors. While this setup allows for the controlled positioning of two traps, and 

thus a nanorod, it only does so in one axis. To enable true 3D control we would require 

the addition of focusing optics to move the trap position perpendicular to the imaging 

plane of the objective. 
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Figure 5.3: Dual beam optical trap with control over the position of each beam. The 
emission is detected using a polariser and spectrometer. 

 

The laser beams were focused into the sample through a 100x 1.25 NA oil immersion 

objective and the fluorescence viewed using a second objective below the sample. 
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Analysis of the emitted light was performed using a linear polariser, Thorlabs LPNIR050-

MP2, and spectrometer, HR2000, Ocean Optics. Not shown in the diagram are the 

camera, Thorlabs DCC1545M, and LED light source used for initial sample positioning 

Samples were placed in a microchannel of height 100 µm, Ibidi µ-Slide I 80106 and 

positioned on an xyz stage. The nanorods were diluted from their stock concentration to 

∼5×109 NRs per cm3 so that on average it took several minutes for a particle to enter the 

trap after the laser was switched on. This ensured that we could distinguish individual 

trapping events and that when using the dual beam trap a second nanorod was unlikely to 

enter the trap and disrupt out measurements over short timescales. 

5.3 Experimental Results 

 

In order to investigate the trapping of nanorods and determine their emission we must be 

able to detect single nanorods. This might prove difficult with some fluorescent dyes or 

proteins which can be faint or photobleach but the NaYF4:2%Er3+,18%Yb3+ nanorods 

give a very strong emission even from single particles. This in itself demonstrates why 

they are such good candidates for fluorescence imaging. To determine if we could detect 

individual nanorods we used a single beam optical trap with a power of 60 mW. Focusing 

this into the microchannel containing our nanorods and monitoring the emission we 

observed increases in fluorescence as shown in Figure 5.4 (b). The step increase in 

fluorescence visible on both the camera and spectrometer demonstrates we can identify 

individual trapping events and determine the number of particles in our trap, enabling us 

to perform experiments on individual particles. 
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While the single beam optical trap allowed us to trap nanorods we were not able to 

observe changes in their fluorescence spectrum when sampling their emission with a 

polariser. The reason for this is that when the nanorods enter the trap they orientate so 

that their long axis is parallel to the optical axis so when viewed through the objective 

lens they look like a point and are symmetric around the optical axis. The emission from 

a nanorod in a single optical trap is shown in Figure 5.5 (b). 

To orientate the nanorods with their long axis perpendicular to the optical axis we used a 

dual beam optical trapping setup, as described above. Using this setup, we first waited for 

a nanorod to diffuse into one of our two traps. We then moved the second trap inwards 

until we observed a change in emission indicating that the particle had rotated and was 

now in both traps. This process is shown in Figure 5.5, which shows both experimental 

data and pictorial representation of what is happening to the nanorod. The change in the 

camera image is slight, but observations made using a spectrometer show a clear change 

in in the emission spectrum. This simple method of determining nanorod orientation is 

straightforward and inexpensive to implement allowing for it to be incorporated into 

further experiments. This, combined with the ability to control the nanorod using a dual 

beam optical trap allows for the controllable positioning and rotating of nanorods. 

The emission seen in Figure 5.5 (d) is for when the polariser is aligned with the nanorod. 

The emission seen as the polariser or nanorod is rotated relative to the other is shown in 

Figure 5.6. In this figure we have rotated the nanorod perpendicular to the beam axis to 

demonstrate our control of its orientation. We found that for a trapping power of 80 mW 

per trap we were able to easily manipulate the particle. We are convinced by our results 

that we are able to control the particles’ orientation and to determine it by recording its 

emission. 
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Figure 5.6: Nanorod emission as observed through a polariser as the particle is rotated. 
Scale bar 1 µm. (a) nanorod parallel to the linear polariser, (b) nanorod at 45 degrees to 
polariser and (c) nanorod perpendicular to polariser. 

 

5.4 Conclusion 

 

In much of the work we have undertaken in this thesis we have made use of fluorescent 

dyes and proteins. In doing so we have found that despite being excellent sources for 

performing a variety of studies in microfluidics they have drawbacks such as 

photobleaching, damage from UV excitation and broad emission spectra. The alternative, 

Qdots, is suitable in some cases but can prove toxic to cells. 

In collaboration with others we were able to investigate the potential of NaYF4:Er3+,Yb3+ 

upconverting nanorods which do not suffer from these issues. Using a single beam optical 

trap, we were able to observe single trapping events over a long period of time thanks to 
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their bright emission and low photobleaching. Using a dual beam optical trap, we were 

able to rotate the nanorods in 3D and determine their orientation through their polarised 

emission. This is an improvement on other techniques of determining nanorod orientation 

as it is simply implemented using a polariser and spectrometer. This control of the 

particles and the ease with which their orientation can be determined convinces us that 

they will have applications in both fluorescence experiments and potentially in 

manufacturing. 
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6. Biological Laser 

6.1 Introduction: Sensing Using Living Lasers 

 

The first laser in 1960 made use of a ruby crystal and since this first demonstration the 

laser has taken many forms with each new type of laser leading to new applications. For 

example, the invention of the fibre laser led to a revolution in telecoms, the diode laser is 

used in projectors and gas lasers in manufacturing. Using a biological cell containing a 

gain medium to form a ‘living’ laser is a novel design first demonstrated by Gather and 

Yun in 2011 using HEK293 cells containing the florescent protein eGFP [26]. They 

demonstrated that a laser cavity made from such an unconventional object was possible 

and that the cell was unharmed by the lasing process. Different cells produced different 

transverse modes indicating that it may be possible to gain structural or even functional 

information about the cells through the lasing process. This initial demonstration made 

use of a plane-plane laser cavity, further investigations have demonstrated the use of 

microspheres inserted into cells [95, 96] or cells within liquid droplets forming 

whispering gallery mode resonators [97]. Living lasers and the nature of the fluorophores 

themselves are discussed in more detail in Sections 1.1.4 and 2.6. 

We have investigated the fabrication and potential applications of living lasers. We 

formed a laser cavity containing HEK293 cells expressing the fluorescent protein eGFP, 

that was used as the gain medium, and used a femtosecond laser as the pump source. As 

the fluorescence lifetime of eGFP, along with most fluorescent dyes and proteins, is on 

the order of nanoseconds [41, 42] we used a shorter excitation pulse in order to create a 

large population inversion in the protein pre lasing. This has previously been shown to be 

successful for a 1D random laser containing the fluorescent protein DsRed [43]. 

From our initial experiments we achieved lasing but eGFP was not an ideal gain media 

due to rapid photobleaching, limiting the time lasing could be maintained. Switching to 

the fluorescent dye Calcein AM we found it photobleached more slowly, allowing us to 

form and characterise a laser. Our lasing threshold was 300 pJ lower than the previously 

reported values of 850 pJ [26] though it is impossible to make a direct comparison 

between cavity designs and fluorophores. 

Traditional laser systems can be maintained for long periods of time, decades in the case 

of the humble HeNe laser. This is not the case in our laser, where we observed emission 

intensity decreasing rapidly over time with the longest recorded continuous emission 
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being 60s, at 1 kHz repetition rate, for HEK293 cells containing Calcein AM. This is an 

expected problem which hinders all fluorescence experiments and is caused by the dye 

photobleaching. To confirm that this was the case and not alternatively due to cell damage 

from the high peak intensities of our femtosecond pump source, we used a viability 

indicator, propidium iodide. This indicated that our cells were unharmed by the lasing 

process and that the reduction in emission is indeed due to photobleaching, where the 

fluorophore creates ROS damaging itself and the surrounding cell. Having identified the 

issue, we considered ways of improving laser lifetime. Vitamin C is an antioxidant 

capable of neutralising ROS. Adding this to cells we observed an improvement in 

lifetime, with the longest recorded emission lifetime being 140s; a significant increase. 

The fact that cells are not harmed by the lasing process, as indicated by our use of 

propidium iodide, is important if we are to use such lasers for gaining insight into cell 

behaviour. If the cells were damaged by the process, then clearly the results would be of 

significantly less or no use in understanding the behaviour of intact healthy cells. 

Having achieved lasing and increased the lifetime of our laser we next considered 

potential applications. A common issue in fluorescence experiments is poor signal to 

noise ratio where very small changes in emission are being monitored. Lasers are easier 

to detect than fluorescence having their emission concentrated into a smaller physical area 

and wavelength range. From our investigation we see this is indeed the case with lasing 

cells having a 30 times higher peak emission compared to fluorescing cells, when viewed 

on a spectrometer.  

Calcium levels inside cells are of interest as calcium ions are used in cell signalling. To 

monitor calcium levels, the fluorescent dye Fluo3 is used. Fluo3 increases in emission 

intensity as the level of calcium increases. We attempted to use HEK293 cells containing 

Fluo3 to investigate the effect lasing had on the detection of calcium level changes inside 

cells. Calcium levels were deliberately altered using caged calcium which is released 

upon exposure to UV light. While we were able to observe changes in fluorescence with 

calcium levels we were not able to achieve lasing from cells containing this dye. This is 

most likely due to its lower emission compared to Calcein AM and eGFP. From this we 

conclude that while it is possible to create cell lasers it may be more difficult to translate 

this into practical applications and that for such applications fluorophores must be found 

which meet the requirements of the experiments while also being good gain media. 
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6.2 Experimental Setup 

 

In order to demonstrate lasing from cells we must consider how the cell’s size impacts 

our choice of cavity. Traditional bulk laser systems have a variety of cavity configurations 

some of which are not suitable because of the size of our cell, being ~ 15 µm in diameter. 

While we may wish to use, for example, a bi-concave cavity design it would not be simple 

to place the cell at the focus of the mirror. Initial attempts to fabricate a cell laser made 

use of a plano-concave cavity with the cells resting on the plane mirror. It was found that 

aligning the cavity so that fluorescence was refocused onto the cell was difficult to 

achieve and we did not observe any lasing behaviour from them. Instead the final 

successful design we made use of consisted of a plane-plane cavity. This is in theory one 

of the most unstable cavity designs available, Equation 6.1. Setting the radius of curvature 

of the mirrors R1 = R2 = ∞ and the length to an arbitrary number gives a value of 1. Any 

slight misalignment of the plane-plane cavity will cause our resonating laser beam to 

‘walk’ out of the cavity over time. 

  

0 ≤ �1 −
�

��
� �1 −

�

��
� ≤ 1 

 

 

 
Equation 6.1 

 

While this is an issue it is not necessarily as significant as it at first appears. First, it has 

been shown that cells in such a cavity can act as focusing elements, increasing stability 

and giving rise to transverse modes [26, 98]. Second, by shortening the cavity length to 

the diameter of the cell we reduce the effect of this walk off increasing the number of 

bounces required before the resonating light no longer hits the gain media. 

The laser cavity was formed by two plane dielectric mirrors, Layertec, with peak 

reflectivity of >99.9% at 532 nm. These were positioned with their surfaces horizontal to 

the lab bench to act as a holder for our cells, which contain the gain media. The cells are 

placed on the lower of the two mirrors and the second mirror is lowered on top. To prevent 

any cell crushing, the cells were mixed with microsphere ‘pillars’, to both hold the mirrors 

apart and define the cavity length. A custom mount is used to hold the mirrors, with 

screws to press on the mirrors thus controlling alignment. The whole cavity is translated 

on an xyz mount in a microscope setup shown in Figure 6.1. Pump light is focused into 

the cavity through a long working distance aspheric objective, Newport 5720, in order to 

image through our 6 mm thick cavity mirrors. The emission of the cells is separated from 
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the pump light by a dichroic mirror then split between a CMOS camera, Thorlabs 

DCC1645C, and a spectrometer, SpectraPro 500i with PI-MAX gain intensified CCD 

detector. This setup allows us to image cells in the cavity and detect both their pre-lasing 

fluorescence and lasing emission. 

 

Figure 6.1: Simplified experimental setup where light is generated from an OPA system 
before being focused onto the laser cavity containing cells containing fluorescent dye. 

 

The alignment of the laser cavity is crucial and as such it was measured by reflecting a 

HeNe laser off the mirrors as depicted in Figure 6.2. The reflections from each mirror 

interfere with each other, giving an interference pattern as shown, with the number of 

fringes indicating alignment. The cavity is adjusted so only one fringe can be seen in the 

interference pattern, meaning the mirrors are aligned to within one wavelength across the 

cavity; 633 nm. Assuming the entire cavity is 25.4 mm across (the diameter of the mirror), 

this gives a value of 25 µradians; equivalent to rotating the adjuster on a standard 

kinematic mirror mount by approximately 1/300th of a revolution. To obtain even greater 

precision in the measurement we allowed the light reflected from the cavity to travel a 

large distance until the two reflections separated then calculated the angle between them 

using trigonometry to give the mirror alignment. While this method did indeed give 

greater precision it was judged to be impractical, as a distance of around 30 m was 

required to achieve the same result as the interference pattern method. Improving on this 

would require this distance to be doubled for every halving in the measured angle. 
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Figure 6.2: Cavity alignment using a HeNe Laser reflected off the cavity to measure the 
angle between the mirrors. 

 

Our pump laser consists of an OPA system from Spectra Physics. A Tsunami Ti: Sapphire 

femtosecond laser is amplified by a Spitfire chirped pulse regenerative amplifier. An 

OPA, 800C, is then used to tune the wavelength to the desired wavelength to maximise 

the absorption by our fluorophore. To avoid damage inside the crystal of the amplifier, 

the pulse is stretched before amplification as shown in Figure 6.3. The input pulse makes 

a double pass on a diffraction grating. This first stretches the pulse spatially then 

recompresses it to a point in space with the effect of stretching it in time. After this 

stretched pulse has been amplified it makes another double pass on a diffraction grating 

reversing the process to give an output of ~120 fs 800 nm pulses at 1 kHz with a pulse 

energy of 1 mJ. 

The OPA 800C performs difference frequency mixing in a β-Barium Borate (BBO) 

crystal to produce a signal and idler pulse as shown in Figure 6.4. The input pulse is split 

into three arms. The first is used to generate a white light supercontinuum. This is 

overlapped in the BBO crystal with the second pulse to form a seed for amplifications. 

This seed is overlapped in the BBo crystal on a second pass with the third pulse to give 

our final signal and idler. For our experiments we used the idler pulse operating at ~1900 

nm. This was frequency doubled twice in further BBO crystals to give blue pump light at 

a tuneable wavelength ~475 nm with the exact wavelength depending on the absorption 

maximum of our fluorophore. 



92 
 

 

 

 

F
ig

u
re

 6
.3

: 
S

pe
ct

ra
 P

h
ys

ic
s 

S
pi

tf
ir

e 
am

pl
if

ie
r 

w
it

h
 r

ep
et

it
io

n 
ra

te
 o

f 
1 

k
H

z 
an

d 
1 

m
J 

pu
ls

es
 a

t 
80

0 
nm

. 

 



93 
 

 

Figure 6.4: OPA 800 frequency conversion. We make use of the Idler output and BBO 
frequency doubling extension option to obtain visible pump light. 

 

In the following experiments we made use of three fluorophores; eGFP, Calcein AM and 

Fluo3. The first is a fluorescent protein derived from WT-GFP as set out in Section 2.6.1. 

Calcein AM (Life Technologies, Paisley, UK) is commonly used as a viability marker. It 

is initially non fluorescent and uncharged allowing it to enter cells but once inside them 
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the AM group is cleaved by intracellular esterases. This results in a fluorescent, charged 

form of the dye which exits the cell at a much lower rate than the uncharged form, 

resulting in accumulation inside the cells and a much lower concentration in the 

surrounding media. As intracellular esterases are only present inside living cells the dye 

acts as a viability marker showing us that cells are healthy, at the time the dye is added. 

Fluo3 is a calcium sensitive fluorescent dye which changes emission intensity, becoming 

brighter, in the presence of calcium. The absorption (dashed line) and emission (solid 

line) spectra for each of these fluorophores is shown in Figure 6.5. They generally absorb 

blue pump light and emit in the green. 

 

Figure 6.5: Absorption and emission spectra for the fluorescent dyes used in our 
experiments. Data from ThermoFisher Scientific. Dashed lines are absorption and solid 
lines are emission. 

 

To prepare cells with our chosen dye we used a variety of protocols initially based on 

manufacturers recommendations, then customised over time to improve cell brightness 

and viability. Our final protocols are given below though for any given experiment the 

exact concentrations and media used varied. For cells containing Fluo3 we also included 

caged calcium to control calcium levels as explained previously. 

HEK293 cells were typically plated, using a 6 well plate, and allowed to grow for between 

24-48 hours at 37 ℃ and 5% CO2 until optimal confluency was reached. The preparation 

of each fluorophore then varied: 
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HEK293 cells containing eGFP: 

Prepare 4µg GFP DNA in 250µl media and 10µl lipofectamine in 250 µl media in 

separate Eppendorf tubes. Leave these for 10 minutes at room temperature then mix 

together. Leave for an additional 30 minutes. Remove 500 µl medium from the wells and 

add the 500 µl of DNA/Lipofectamine. Incubate for 48 hours. 

HEK293 cells containing Calcein AM: 

Solubilise 50 µg Calcein with 25ul DMSO to produce a 2 mM stock. Dilute 10 µL of 

2mM Calcein in 2 mL of Versene producing a final concentration of 10 µM. Remove 

culture media from cells then add 2 mL of 10 µM Calcein per well. Incubate for 30 

minutes. Collect cells and centrifuge for 3 minutes at 500 g before re-suspending in 200 

µL EBSS. 

HEK293 cells containing Fluo3 and caged calcium: 

Rinse cells with 5 mL Versene, detach cells using 4 mL trypsin for 1-2 minutes, then 

add 8 mL DMEM phenol red free Centrifuge for 3 minutes at 500 g then re-suspend in 1 

mL of Ringer buffer. Add 5 µM of Fluo3 and 4 µM of Caged Ca2+ in DMSO. Incubate 

for 1 hours. Centrifuge for 3 minutes at 500 g then re-suspend in ringer buffer. 

6.3 Experimental Results 

6.3.1 Fluorescent Protein Laser 

 

To investigate the fabrication of cell lasers and investigate their applications we 

performed a series of experiments. To begin we made use of HEK293 cells containing 

eGFP to see if we could achieve lasing. Cells were prepared according to the protocol 

given above and placed in our laser cavity. Illuminating these with our pump laser we 

selected individual cells or groups and observed their emission as the pump energy was 

increased. We observed a variety of behaviours due to the variation in cell size and the 

concentration of eGFP contained in each cell. When the mirrors were unaligned we 

observed simple fluorescence emission like that given in Figure 6.5. Improving the 

alignment of our mirrors we began to observe amplified spontaneous emission as shown 

in Figure 6.6. There the individual emission peaks correspond to the longitudinal modes 

of the cavity and as such the spacing between them could be seen to change as the cavity 

length was changed by pressing down on the mirrors.  
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Figure 6.6: Amplified spontaneous emission from eGFP in a laser cavity with pump pulse 
energy ~ 6 µJ. The peaks of readings 1 and 2 between 500 and 600 nm are displaced 
relative to each other as cavity spacing changes. The peaks beyond 600 nm are not shifted 
as they are due to fluorescence outside the reflectivity region of the mirrors. 

 

Due to the broad emission spectrum of the protein we see multiple longitudinal modes as 

well as emission beyond 600 nm where the reflectivity of the mirrors decreases. The 

expected mode spacing can be calculated using Equation 6.2, where �� is mode spacing, 

� wavelength, n refractive index and L cavity length. Using 9 µm microspheres to define 

cavity length, setting � = 550 nm and n = 1.33 gives us a spacing between modes of 12.6 

nm. 

  

�� =
��

2��
 

 
 

Equation 6.2 
 

From our initial experiments looking at fluorescence from within the laser cavity we 

observe that while the microspheres define the cavity length, it is quite possible to crush 

them slightly during alignment, reducing the cavity spacing further. The cells themselves 

have an average size of ~15 µm so for short cavities they will be in contact with the 

mirrors, and very short cavities result in them rupturing. An alternative arrangement 

would be to use a longer cavity at which point the stability of the laser relies on cells 

acting as focusing elements in the cavity. 
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Searching through a large number of cells we locate some which lase. When this occurs 

we see a sudden intense emission follower by a rapid decay as shown in Figure 6.7 where 

we translate a cell into the location of the pump laser and see three longitudinal modes 

appear, theses rapidly decay and stop lasing. Cells were manually positioned in the beam 

so there are some changes in emission as the cell moves relative to the pump. The 

emission spectrum can be seen in Figure 6.8 where we see there is one dominant mode 

and two side modes. From these experiments, looking at a large number of cells, we 

deduced that transfection efficiency was the major factor with few cells having sufficient 

eGFP to form a laser. This issue and the rapid photobleaching led us to use a different 

fluorophore for future experiments. 

 

Figure 6.8: Laser spectrum from eGFP at time 12 s from Figure 6.7. There are 4 
longitudinal modes with the central peak at 532 nm dominating. 

 

6.3.2 Fluorescent Dye Laser 

 

Instead of using eGFP we instead made use of the fluorescent dye Calcein AM as it has 

similar excitation and emission peaks while being more fluorescent, evenly staining cells 

and photobleaching more slowly. Using this and performing experiments as before we 

were able to achieve lasing consistently and for longer periods, though the process still 
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required locating the cells with the highest concentration of dye. Cell lasing was 

maintained for up to 60s, at 1 kHz repetition rate before photobleaching prevented further 

lasing. 

The emission of a cell lasing is shown in comparison to fluorescence in Figure 6.9. Here 

we see the 3 longitudinal modes of the laser and that the peak emission is 30 times higher 

than fluorescence making detection easier for equivalent pump energy. The emission of 

a cell as pump energy is increased is shown in Figure 6.10 with a lasing threshold of 300 

pJ, lower than previously reported values of 850 pJ [26]. This low lasing threshold is 

explained by our use of a femtosecond pump source which creates a large population 

inversion in the dye before lasing occurs. 

 

Figure 6.9: Emission spectrum of a single cell emitting on 3 longitudinal modes (black) 
compared with the fluorescence spectrum from a cell not in a laser cavity (red). Incident 
pump pulse energies are 1.2 and 1.5 nJ for the lasing and fluorescing cell respectively. 
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Figure 6.10: Laser emission against pump pulse energy showing a threshold of 300 pJ. 

 

To understand how using a fs pump laser rather than ns, or indeed CW, we constructed a 

model of the system looking at the energy stored in the upper laser level against time for 

different input pulses. Increased storage of energy will lead to a lower input pulse energy 

requirement to obtain a population inversion and thus lasing. For our model we assume a 

Gaussian input pulse, 100% absorption and a 4 ns fluorescent lifetime. The results of this 

model are shown in Figure 6.11 for a 4 ns pump pulse We see that as the laser pulse is 

absorbed by the sample the stored energy peaks then decays through fluorescence 

emission. Plotting for a range of input pulse lengths in Figure 6.12 we see that pulse 

lengths shorter than the fluorescence lifetime leads to increased energy storage while 

those longer lead to decreased storage. This will have a correlation with lasing threshold. 

We conclude that using a pulse at least 10 time shorter than the fluorescence lifetime will 

lead to the best results with increasingly shorter pulses giving diminishing returns. 
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Figure 6.11: Energy stored in the upper state of the fluorescent dye over time. The data 
shown if for an input pulse length of 4 ns and a fluorescence lifetime of 4 ns. 
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Figure 6.12: Maximum energy stored in the upper state of the fluorescent dye plotted 
against input pulse length for a 4 ns fluorescence lifetime. Below around 100 ps there are 
diminishing returns from using a shorter pulse. 
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Upon imaging of the cells lasing, we observed that they typically only have one transverse 

mode, as would be expected from the cavity design, though we were able to excite other 

modes through careful positioning of the pump laser relative to the cell. This would 

indicate that the cell is acting as a lens in the cavity enabling different beam paths. This 

behaviour is shown in Figures 6.13and 6.14. 

 

Figure 6.13: Lasing emission from a single cell. Scale bar ~ 10 µm. 

 

 

Figure 6.14: Lasing modes from single cells. (a) LP0,1 and (b) LP2,1. Scale bar ~ 10 µm. 
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While the emission of our laser lasts up to 60 s it does decrease over time. This could be 

due to either photobleaching, a common issue when using fluorescent proteins and dyes, 

or from damage to the cell from the high peak power in our femtosecond pump source. 

To identify the cause, we used the viability indicator stain propidium iodide. This is a dye 

which is initially non fluorescent and cannot pass through the intact membrane of live 

cells. If the cells are dead or damaged however it can enter at which point it binds to DNA 

inside the cell becoming fluorescent as shown in Figure 4.13, where we have added 

ethanol to cells and thus killed them. 

 

Figure 6.15: Propidium iodide emission from cells exposed to ethanol demonstrating its 
ability to identify cells with damaged membranes. Scale bar ~ 20 µm. 

 

Cells were prepared containing both Calcein AM and propidium iodide. Using suitable 

filters, we observed the fluorescence from each before and after exposure to our pump 

laser. A group of cells is shown in Figures 6.16 and 6.17. In 6.16  (a) we see Calcein AM 

emission at the beginning while in 6.16 (b) we have bleached the central region. In 6.17  

(a) we see the propidium iodide emission before exposure and in 6.17 (b) after. There is 

no notable increase in emission indicating that the cells are unharmed by the exposure to 

our pump laser and that the decrease in Calcein AM emission is indeed due to 

photobleaching. 
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Figure 6.16: Cells containing Calcein AM before and after exposure to femtosecond 
pumping. 
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Figure 6.17: Cells containing propidium iodide before and after exposure to femtosecond 
pumping. 
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6.3.3 Life Extension Using Vitamin C 

 

The mechanism of photobleaching in fluorescent dyes and proteins is caused by the 

production of ROS when they fluoresce. This damages both the fluorophore itself and 

more broadly the cell containing it. To counter this and try to extend the life of our laser 

we made use of the well-known antioxidant, vitamin C. Adding this to the cells prior to 

placing them in the laser cavity, we observed an increase in average lifetime as seen in 

Figure 6.18. Without vitamin C our longest recorded laser emission was for 60 seconds, 

at 1 kHz repetition rate. With vitamin C we observed lasing for up 140 seconds. This is a 

dramatic improvement considering the simplicity of adding the vitamin to the cells. 

A comparison of cell lifetime using different concentrations of vitamin C is made in Table 

6.1. All data was collected on the same day using the same cells in succession to minimise 

variations between the cells but there will be differences in laser cavity alignment. Despite 

these limitations we see a trend of increasing cell lifetime with vitamin C concentration 

though further studies would be required to determine an optimal concentration. For the 

analysis lasing was defined as an emission at least 50% of the peak emission. 

 

Figure 6.18: Cell lasing lifetime with and without Vitamin C. Pump pulse energy is 1.8 
and 0.9 µJ respectively. 
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Concentration (mM) Lifetime (s) Standard deviation (s) 

0 11.4 6.4 

20 15.8 14.4 

50 81 66.9 

Table 6.1: Cell lasing lifetime for varying concentrations of vitamin C. 

 

6.3.4 Calcium Sensitive Dye Response 

 

Having demonstrated lasing and extended the lifetime of our laser we next investigated 

potential applications. The increase in detectability we observed in Figure 6.9 is of use in 

any experiment which currently suffers from poor signal to noise ratio. Such an example 

is the use of fluorescent dyes which respond to cell properties and leads to a very small, 

and difficult to detect, change in emission. Incorporating such a dye into a laser has the 

potential to result in a much more detectable change. 

For this experiment we made use of the calcium sensitive dye Fluo3 and caged calcium. 

The caged calcium is necessary to induce a change in the dye, though as an alternative 

there are some cells available which have predictable changes in calcium levels. Our 

microscope setup was modified to incorporate a UV source for uncaging the calcium in 

addition to the laser pump for the dye. 

Doing so and investigating concentrations of dye, caged calcium and UV exposure we 

observed brief increases in fluorescence for cells when the calcium was released as seen 

in Figure 6.19. This increased fluorescence over time as the cells regulate intracellular 

calcium concentrations. We were not able to achieve lasing using this system. We believe 

this is due to the low emission intensity of the dye compared to Calcein AM. 
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Figure 6.19: Fluorescence emission of Fluo3 when calcium is released into the cell. There 
is a brief fluorescence spike when UV light is applied which has been removed in the 
above graph. 

 

6.4 Conclusion 

 

The creation of a ‘living’ laser by including a fluorescent dye or protein inside a biological 

cell is a fascinating idea with the potential to significantly improve existing methods of 

fluorescence imaging while also enabling entirely new ways of examining cells. We 

decided to investigate these potential applications and how best to fabricate such lasers. 

We achieved lasing using both eGFP and Calcein AM contained in HEK293 cells with 

the latter giving a low lasing threshold of 300 pJ and lasting for up to 60s, at 1 kHz 

repetition rate. After this time our cell emission decreased until lasing no longer occurred. 

Using a fluorescent viability marker, we were able to show this is not due to damage 

being caused to the cell itself but through photobleaching of our fluorophore. To improve 

performance, we made use of vitamin C to remove neutralise ROS in our cells increasing 

lifetime up to 140s. 

Our lasing cells have 30 times higher peak emission compared to cells fluorescing making 

them easier to detect. This is potentially useful in any experiments which suffer from poor 

signal to noise ratio. To attempt to demonstrate this we used the fluorescent dye Fluo3 

which increases in emission with calcium concentrations. Despite repeated attempts we 

were not able to observe lasing from these cells, a result we conclude is due to its lower 
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emission compared to the previous dye used, even in the presence of large amounts of 

calcium. From this we conclude that while it is possible to fabricate cell lasers, the process 

is highly dependent on the fluorophore used and that this may conflict with the desire to 

choose those which simply respond to the desired cell properties.   
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7. Conclusions and Future Work 

7.1 Conclusion 

 

In this thesis we have investigated the fabrication and use of microfluidic devices and 

biological lasers with the aim of developing biophotonics applications for each. In 

Chapter 3 we show how temperature can be monitored inside microfluidic devices and 

investigate how flow rate alters the distribution of heat inside devices. In Chapter 4 we 

fabricate an imaging flow cytometer for examining red blood cells. This is expanded on 

to incorporate the ability to take 3D focal stacks of cells incorporating more functions 

into a single device. Chapter 5 discusses the trapping of upconverting nanorods in a dual 

beam optical trap. Using this we position the nanorods arbitrarily and determine their 

orientation by sampling their emission with a polariser. In Chapter 6 we describe the 

fabrication of a biological laser from HEK293 cells containing eGFP or Calcein AM. We 

investigate ways of improving laser lifetime and potential applications. The following 

sections will summarise each of these chapters and discuss potential future work. 

Chapter 3 

 

Determining temperature inside microfluidic devices is crucial as temperature will 

influence the health of any biological samples that flow through or are help within them. 

Optical cell sorters utilising waveguides or fibre integration, or devices used with optical 

tweezers are of particular interest as laser powers in the 100’s of mW are can be used. 

Traditionally we would use a thermometer to determine temperate but due to the scale of 

the devices being investigated this is likely to perturb the system, altering flow inside the 

device from normal operating conditions. Instead we monitored temperate by using two 

variants of Rhodamine dye to perform fluorescence thermometry. Rhodamine B 

decreases in emission intensity as temperature increases allowing us to monitor it while 

Rhodamine 110 remains constant acting as a reference level. Single channel devices were 

fabricated through ULI and selective chemical etching in fused silica. Additional PDMS 

devices were purchased to investigate different channel geometries and demonstrate that 

the method of temperature measurement worked in multiple materials. We successfully 

measured temperature inside these devices and observe that flow rate has a significant 

effect on the change in temperature and the distribution of temperature. Under typical 

operating conditions some of the devices underwent temperature increases of up to 20°C, 



111 
 

enough alter cell functions [63]. We conclude that fluorescence thermometry can be used 

in any microfluidic device and that there can be significant temperature increases with 

flow rate having a significant impact on both temperature change and distribution. 

Chapter 4 

 

Flow cytometry is a well-established tool for the analysis of cells giving information 

about number of cells, their size and shape. Through the addition of fluorescent stains, 

they can be used to investigate a wide variety of properties, such as identifying particular 

pathogens or highlighting specific areas or surface markers of cells. Taking advantage of 

the field of microfluidics, flow cytometers can be miniaturised thus increasing portability 

and decreasing cost. To investigate the uses of such devices we fabricated an imaging 

flow cytometer through ULI and selective chemical etching in fused silica. Using red 

blood cells, we achieved count rates of up to 4,700 cells per second, comparable to other 

demonstrations of such devices in PDMS. Fused silica is a more biocompatible and 

resilient material than PDMS which we demonstrated through the use of rhodamine dye 

comparing the staining of devices fabricated from fused silica and PDMS after use, 

showing significantly more staining of PDMS. Expanding on this work we incorporated 

the capability to take 3D focal stacks of cells into our device. This ability can give 

information about changes in cell shape, can determine cell health or the distribution of 

fluorescent stains throughout a cells. Using microspheres, we characterised the 

performance of our imaging system obtaining the expected spherical shape and a size of 

4.1±0.2 µm, in good agreement with the value 4.2±0.2 µm given by the manufacturer. To 

demonstrate the imaging of an actual cell we used bovine sperm cell nuclei stained with 

DAPI obtaining a resolution of ~ 15 nm, equal to 226 optical slices per cell. 

Chapter 5 

 

Every chapter in this thesis makes use of some form of fluorescent dye or protein. These 

are widely used in fluorescence imaging but have issues with photobleaching. An 

alternative is the use of Qdots but these have issues with phototoxicity. The development 

of a new class of materials, upconverting nanoparticles, has the potential to solve these 

issues which also provides benefits from being excited in the infrared rather than the 

visible or UV. We examine NaYF4:Er3+,Yb3+ nanorods which have the interesting 

property of having polarised emission. Sampling their emission using a polariser we 
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demonstrate the ability to determine the particles’ orientation, despite their sub diffraction 

limited size limiting our ability to image them directly. For this investigation we 

constructed a dual beam optical trap to capture and arbitrarily orientate individual 

nanorods. This successful method of determining nanorod orientation is simpler to 

implement than previous demonstrations making it more likely this technique could be 

used in applications such as security tagging or fluorescence experiments. 

Chapter 6 

 

Recently it has been demonstrated that it is possible to form a ‘living’ laser from a 

biological cell containing a fluorescent gain medium [26]. We investigate the fabrication 

and use of such lasers with the aim of enabling practical uses of interest in cell 

investigations. Using HEK293 cells containing eGFP and Calcein AM we successfully 

demonstrate lasing with a threshold of 300 pJ. This is lower than previously reported 

values most likely due to our use of femtosecond pumping. We determine that cells are 

unharmed by the lasing process using the viability indicator propidium iodide. This is 

clearly important if we are to propose using these cells to investigate cell function. From 

our experiments we observe that lasing only lasts a short period of time before 

photobleaching, with the longest continual lasing being 60 s, at 1 kHz repetition rate. To 

increase this, we use vitamin C, an antioxidant, to neutralise ROS in the cell slowing the 

process of photobleaching. This gives an improved lifetime of 140 s. Investigating 

potential applications we consider the monitoring of cell properties and how lasing could 

improve the sometimes small changes in fluorescent dyes which are sensitive to these 

properties. Fluo3 is such a dye which increases in emission as intracellular calcium levels 

increase. We attempt, but do not have success, in forming a laser using this dye and 

conclude that we do not have enough gain in the system to do so as the dye is less bright 

compared to Calcein AM and eGFP. From this investigation we determine that while it is 

possible to form cellular lasers, there is a requirement for bright fluorophores, and so any 

future work will need to identify those which have both bright emissions while also 

providing useful information about the cells containing them. 
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7.2 Future Work 

Microfluidic SERS 

 

Preliminary work was conducted looking at the incorporation of silver nanoparticles into 

microfluidic devices. As discussed in Section 2.8 sliver nanoparticles are capable of 

enhancing Raman signals so of interest in analysis of cells or molecules. The goal of such 

a device would be the rapid, accurate and sensitive identification, followed by sorting of 

cells. Devices containing silver nanoparticles were fabricated in a two-step process using 

the same IMRA µ-Jewel laser. ULI and selective chemical etching were used to fabricate 

the device then a solution of silver nitrate and sodium citrate was added. Focusing the 

laser into this solution results in patterning of silver nanoparticles on the surface of the 

channel. The process of inscription is shown in Figure 7.1. The results are shown in 

Figure 7.2 where we have (a) nanoparticles inside a microfluidic device and SEM images 

of nanoparticles on fused silica substrates in (b) and (c). 

 

Figure 7.1: An illustration of silver nanoparticles inscription. 
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Figure 7.2: Silver nanoparticles. (a) silver nanoparticles inside a microfluidic device. (b) 
and (c) SEM images of silver nanoparticles on a fused silica substrate. Scale bar in (b) 20 
µm and (c) 2 µm. 
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We found a wide range of laser parameters produced nanoparticles with the use of 

repeated overwrites of the same area giving the best results. These repeated overwrite 

scans gave an even distribution of nanoparticles and high Raman enhancement. Figure 

7.3 compares two regions inscribed using 400 and 600 scans with the translation speed of 

the laser being varied so that the total exposure time is the same. The enhancement is 

consistent within each region with 400 scans giving more enhancement compared to 600. 

Testing with Rhodamine 6G dye we were able to detect concentrations as low as 1 nM as 

shown in Figure 7.4. Further work would look at biological samples to demonstrate the 

ability to differentiate between cell types. 
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Figure 7.3: Repeat readings showing the difference in signal between silver nanoparticle 
regions, inscribed with 400 and 600 scans. Readings have been normalised for the 
613 cm-1 peak. 
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Figure 7.4: Raman signal for 1 nM Rhodamine 6G comparing compared to the 
background reading. 

 

Upconverting Nanorods 

 

The positioning and tracking of NaYF4:Er3+,Yb3+  upconverting nanorods demonstrated 

in this thesis is a first step towards their use in both biological research, for tracking 

objects which are too small to image conventionally, and manufacturing, for example in 

anti-counterfeiting. The use of upconverting nanorods to track sub diffraction limit sized 

objects would add the capability of determining orientation to current methods of 

determining position. As our method requires only the addition of a polariser to current 
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experimental setups it has the potential to be implemented easily and cheaply into existing 

microscopes. This suggested application is illustrated in Figure 7.5, where we have a 

bacterium with attached nanorod being tracked. To demonstrate this application our 

current experimental setup will require modification. It currently uses a stationary optical 

trap into which nanorods diffuse. In contrast it will now be necessary to search for and 

then track a cell as it moves freely in multiple dimensions. This will require the addition 

of motorised stages and computerised control. Once tracking has been achieved the 

particles orientation must be monitored with acquisition time faster than expected 

changes in sample rotation. This would require the addition of a motorised polariser and 

spectrometer. 

 

Figure 7.5: A cell being tracked with an embedded nanorod with its orientation and 
position being recorded over time. 

 

Counterfeiting is a major issue with both currency and high value products. Tagging such 

items with a nanorod barcode has the potential to discourage counterfeiting as it would 
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require specialist equipment to implement [99]. This requires a balance where the 

fabrication and detection of such a barcode is simple to implement in a lab based setting 

but not so simple that it can be easily implemented by counterfeiters. Previous methods 

of nanorod detection have been cost prohibitive to implement [92] while we believe our 

method achieves the correct balance between ease and complexity. To the best of our 

knowledge there has been no use of optical tweezers for manufacturing purposes, outside 

of research applications, and implementing such a system is likely to be challenging. 

Microfluidic Biological Laser 

 

In this thesis we have demonstrated the fabrication of biological lasers showing that it is 

possible to maintain lasing for over one hundred thousand pulses. This provides enough 

time to investigate changes in cell properties such as the monitoring of calcium levels. To 

achieve this, we used a plane-plane cavity configuration in which cells were manually 

targeted for lasing. This process is suitable for the investigation of small groups of cells 

and for monitoring individual cells over time but for the analysis of large populations a 

different approach is required. 

Examining large populations of cells, by analysing multiple single cells in parallel is 

important in biological research and in health care. Examples of this are investigating the 

natural variations within a single cell species, identifying the proportions of each species 

type in a mixed population and finding diseased cells amongst healthy ones. Such analysis 

is typically conducted using flow cytometry methods, which we investigate and discuss 

in Section 4. Incorporating cell lasing into such devices has the potential to provide 

increases in detectability, as shown in Section 6, or the introduction of new forms of 

analysis where the lasing emission itself gives information about the cells being 

investigated, for example cell size will change effective cavity length so by examining 

laser mode spacing it may be possible to determine this size. 

Determining wherever such analysis is achievable will require further investigation for 

which we propose the device shown in Figure 7.6. This is a microfluidic cell laser, similar 

in concept to microfluidic dye lasers formed using Bragg mirrors embedded in the channel 

[100] or coated fibre tips [101]. Such a device can be fabricated in fused silica using ULI 

and selective chemical etching which allows for the fabrication of Bragg waveguides in 

the device to act as cavity mirrors. Initially the work will focus on fabricating such a 

device and demonstrating that it can be used to investigate cell lasing with high 
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throughput of cells. Once this has been achieved further functions can be integrated into 

the device, one of the benefits of microfluidics being the creation of a ‘lab on a chip’; 

combining multiple functions into one chip. These additional function would be flow 

focusing to ensure cells are positioned consistently between the cavity mirrors and optical 

cell sorting, which would allow for cells of interest to be diverted to a separate output 

channel in the device. 

 

Figure 7.6: Microfluidic cell laser diagram with integrated Bragg waveguides acting as 
cavity mirrors. 

 

7.3 Summary 

 

In this thesis we have focused on the field of Biophotonics which combines the disciplines 

of biology and photonics to improve our understanding of cell function and disease. 

Through the fabrication of microfluidic devices and biological lasers we have 

investigated how these can be applied to these areas. Temperature is an important 

property to measure inside microfluidic devices as it impacts on cells function, health and 
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flow conditions inside the device. Using two dye fluorescence thermometry we 

demonstrated that we can measure temperature non-invasively and showed that flow rate 

has a significant effect on both temperature change and distribution. Flow cytometry is a 

widely used method of analysis large populations of cells and microfluidic flow 

cytometry offers the benefits of compact devices with low cost. Fabricating such a device 

we showed that we were able to obtain high quality 3D images of cells in a device which 

could be easily integrated into current microscopes. Upconverting nanorods were 

investigated as an interesting new fluorophore for fluorescence microscope. They have 

polarised emission which enables their orientation to be determined despite their sub 

diffraction limited size. We constructed a dual beam optical trap and demonstrated that 

we could both controllably position the particles and determine their orientation through 

the use of a simple polariser and spectrometer, improving on previous methods of 

determining nanorod orientation. Using biological cells containing fluorophores we 

fabricated living lasers and investigated their potential applications. We found that 

addition of vitamin C significantly increased their emission lifetime enabling longer 

investigations into their behaviour. All these techniques add to the repertoire of 

biophotonics techniques that enhance our understanding of the biomedical life sciences. 
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