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ABSTRACT 

Improvements in the autonomic and vascular systems are implicated in cardiovascular 

disease risk reduction. Baroreflex sensitivity (BRS) is composed of vascular and 

autonomic components. This study aimed to investigate between- and within-day 

reliability of BRS and its autonomic and vascular determinants in adolescents. Thirteen 

male adolescents (14.1 ±0.5 y) participated in this study. For between-day reliability, 

participants completed four experimental visits separated by a minimum of 48-h. For 

within-day reliability, participants repeated BRS assessments three times in the morning 

with one hour between the measures. BRS was evaluated using the cross-spectral gain 

(LFgain) between blood pressure and heart rate interval. BRS was further divided into: 

1) vascular component using arterial compliance (AC); and 2) autonomic component 

measured as LFgain divided by AC (LFgain/AC). LFgain, AC, and LFgain/AC presented 

between-day coefficient of variation (CV) of 20, 17, and 20%, respectively. Similarly, 

variables associated with blood pressure control such as, cardiac output, mean arterial 

pressure, heart rate and total peripheral resistance presented CVs ranging from 6 to 15%. 

Within-day reliability was poorer compared to between-day for LFgain (25%), AC 

(27%), and LFgain/AC (34%), as well as all hemodynamic variables (CVs from 11-22%, 

except heart rate with presented CV of 6%). The present study indicates suitable between- 

and within-reliability of BRS and its autonomic and vascular determinants, as well as 

hemodynamic variables associated with BRS, in adolescents. 

Keywords: youth, cardiovascular disease, blood pressure, between-day, within-day 
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INTRODUCTION 

Atherosclerosis starts in childhood and traditional cardiovascular disease (CVD) risk 

factors in this age group are associated with atherosclerotic progression in adolescence 

(Berenson, et al. 1998) and adulthood (Raitakari, et al. 2003). Improvements in traditional 

CVD risk factors following an intervention such as exercise, however, only partially 

explains CVD risk reduction with the existence of ~40% risk factor gap (Joyner, et al. 

2009). The American Heart Association recognizes that exploring novel CVD risk factors 

in youth will further contribute to the pathophysiological understanding and CVD 

management in this population (Balagopal, et al. 2011). As improvements in autonomic 

and vascular functions were found following an exercise intervention with no changes in 

traditional CVD risk factors in adolescents (Bond, et al. 2015), this highlights the 

importance of these systems as a target for interventions designed to modify CVD risk. 

The interplay between the vascular and autonomic systems can be assessed by measuring 

baroreflex sensitivity (BRS). BRS is the ability to regulate blood pressure (BP) and can 

be non-invasively assessed using spectral methods (Persson, et al. 2001). Specifically, 

oscillations in BP at a low frequency (0.05-0.15 Hz) are known to cause oscillations in 

inter-beat intervals (i.e. RR intervals) in the same frequency (Robbe, et al. 1987). In this 

scenario, BRS is the gain of the cross-spectrum (LFgain) between blood pressure and RR 

intervals expressed in ms·mmHg-1. Using common carotid (CCA) ultrasound images, 

BRS gain can be further divided into its vascular and autonomic components (Taylor, et 

al. 2014; Tzeng 2012). The underlying theory is that carotid distensibility is a surrogate 

of arterial wall stretching and baroreceptors stimuli (Bonyhay, et al. 1996; Hunt, et al. 

2001). It is then possible to quantify and express changes in CCA diameter per unit of 
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pressure (i.e. vascular determinant in µm·mmHg-1), and changes in RR per unit of CCA 

diameter (i.e. autonomic determinant in ms·µm-1).  

Separating the determinants of BRS can provide non-invasive mechanistic insight of 

physiological changes in the vascular and autonomic systems in children and adolescents. 

For instance, it has been suggested that throughout adolescence, the LFgain is maintained 

via improvements in the autonomic branch (Lenard, et al. 2004). While this study 

provided valuable insights on the maturation of vascular and autonomic systems, there is 

a dearth of information about test-retest reliability of BRS and its autonomic and vascular 

determinants. This lack of information is problematic, as reliability is necessary in 

informing sample size calculations and in the interpretation of results of interventions 

designed to modify CVD risk. In children, LFgain has been shown to have substantial 

absolute (i.e. coefficient of variation – CV <20%) and relative (i.e. intraclass coefficient 

of correlation (ICC) between 0.6-0.8) between-day reliability (Dietrich, et al. 2010). Less 

is known about within-day reliability, with one study including participants with a large 

age range (7-27 years old) showing a CV of 21.1% (Rudiger, et al. 2001). However, 

mixing adults and children in the same sample can limit the findings due to the known 

differences in BRS components between the groups (Lenard, et al. 2004). Additionally, 

no study has investigated the relative and absolute reliability of the autonomic and 

vascular BRS components in youth. 

The aim of this study was to assess between- and within-day reliability of BRS and its 

autonomic and vascular determinants in adolescents. In addition, as BRS ultimately 

regulates BP via changes in cardiac output (Q̇; the product of heart rate (HR and stroke 

volume (SV)), mean arterial pressure (MAP) and total peripheral resistance (TPR), the 
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within- and between-day reliability of these hemodynamic outcomes will also be 

investigated.  

METHODS 

Participants  

Thirteen male adolescents (14.0±0.5 years old) volunteered to take part in this study 

Participants, with assistance from their parents/guardians, completed a health 

questionnaire before participation and were free of conditions, such as asthma, congenital 

heart disease, hypertension, amongst others that could alter autonomic and vascular 

functions. All procedures conducted in the present investigation were approved by 

institutional Ethics Committee and assent and consent forms were obtained from 

adolescents and their parents/guardians, respectively. Two weeks before starting the 

experimental visits, participants were then familiarized to the BRS protocol. In this same 

visit, participants had their stature, body mass, skinfolds (to estimate body composition) 

and maximum oxygen uptake (VO2max) measured. VO2max was obtained and verified 

breath-by-breath (Cortex Metalyzer III B, Leipzig, Germany) using a combined 

incremental-supramaximal treadmill protocol (Barker, et al. 2014). Pubertal status for the 

sample was determined by self-assessment of secondary sexual characteristics (Morris, 

et al. 1980).  

Experimental Design  

To establish between-day reliability, participants completed four experimental visits 

separated by a minimum of 48-h, and with no longer than 2 weeks in between. For each 

visit, participants were driven to the laboratory following a 12-h overnight fast, and all 

measurements were performed between 8 and 9 am. For within-day reliability, in one of 

the four visits participants were randomly asked to complete the BRS protocol three times 
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with a one-hour interval in each measurement. Participants were instructed to avoid 

extraneous exercise and to wear accelerometers (GeneActive, UK) in the 48-h preceding 

testing. Accelerometer data were treated using freely available spreadsheets 

(www.geneactive.org), using 60 seconds epoch. Moderate-to-vigorous physical activity 

(MVPA) was obtained using population specific cut-offs (Phillips, et al. 2013). 

Participants were also asked to complete food diaries in the 48-h before reporting to the 

laboratory. From food diaries, total kilocalories and relative contribution from lipids, 

carbohydrate and protein were analysed (CompEat Pro, Nutrition Systems). Additionally, 

in the 48-h preceding visits 2-4 participants were instructed under parental supervision to 

keep a similar diet to the 48-h preceding visit 1.  

Baroreflex sensitivity protocol 

A finger pressure device (Finometer PRO, Netherlands) and a three-led ECG were fitted 

and the BRS protocol started after a 10-min supine rest in a temperature (21-24°C) and 

light controlled room. The BRS protocol consisted of: 1) measurement of brachial BP to 

calibrate Finometer BP assessment (Guelen, et al. 2008), which has been validated in 

paediatric groups (Tanaka, et al. 1994); 2) after BP calibration, CCA ultrasound images 

were recorded for 15 cardiac cycles; and 3) following CCA images, participants were 

instructed to pace breathing frequency at 12 cycles per minute for 5-min. This breathing 

frequency is known to increase autonomic modulation of heart rate in adolescents 

(Williams, et al. 2002), and also shifts breathing frequency above the LF range, as 

suggested when examining spontaneous BRS (Bothova, et al. 2010; Tzeng, et al. 2009). 

This 5-min period was used to calculate LFgain. All BRS measurement procedures were 

completed within ~ 20 min. 

Baroreflex sensitivity analysis  
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BRS analysis procedures in the present study were performed accordingly to previous 

validated methods (Chirico, et al. 2015; Lenard, et al. 2004; Robbe, et al. 1987; Saul, et 

al. 1991). ECG and BP were recorded simultaneously at 1000 Hz (PowerLab, 

ADInstruments). RR intervals and systolic blood pressure (SBP) data were extracted and 

saved for later analysis. Ectopic beats were automatically identified and linear 

interpolation with a low filter was applied when <3% error was present (Kubios v3.0) 

(Tarvainen, et al. 2014). SBP trace was visually checked and errors manually replaced by 

linear interpolation using adjacent SBP. Integrated gain (LFgain) of BRS was determined 

from the final five minutes of the BRS protocol. For this purpose, beat-to-beat RR interval 

and brachial reconstructed SBP were interpolated at 2 Hz and a Fast-Fourier 

Transformation was applied to obtain the power spectrum in the low frequency (LF: 0.04-

0.15 Hz) band. A cross-spectral transfer function was then applied and the mean cross-

spectrum (LFgain) in the range where the coherence was > 0.5 was expressed as the 

baroreflex gain in ms mmHg-1. This index was chosen due to its established validity 

compared to BRS assessment using vasoactive drugs (Di Rienzo, et al. 2001; Persson, et 

al. 2001).  

Vascular and autonomic determinants  

CCA images were recorded ~ 2 cm distal from the carotid bulb using a high-resolution (~ 

13 MHz) linear array transducer (Apogee, 1000, SIUI, China). The images were obtained 

over 15 cardiac cycles recorded at 15 frames per second. Subsequently CCA images were 

analysed using validated wall tracking software (Carotid Analyzer - Medical Imaging 

Applications LLC) (Mancini, et al. 2004) for determination of diastolic lumen diameter 

(DLD) and systolic lumen diameter (SLD). The average of 3-7 cardiac cycles with clear 

definitions of the near and far walls were used. During the 15 cardiac cycles, beat-to-beat 
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brachial reconstructed BP (Guelen, et al. 2008) was averaged and used to determine pulse 

pressure (PP). The vascular components of BRS were determined according to previously 

published literature as follows (Laurent, et al. 2006):  

Arterial strain (%) = ΔD/DLD 

Where ΔD is SLD minus DLD; 

Arterial compliance – AC (μm·mmHg-1) = ΔD/PP 

Where PP is the obtained pulse pressure; 

Arterial distensibility – AD (mmHg-1 x 10-3) = ΔCSA/PP·CSAmin 

Where CSA in the cross sectional CCA artery calculated as CSA = πr2 being r = 

diameter/2 and ΔCSA the maximal CSA minus minimal CSA (CSAmin).  

During the BRS protocol, beat-to-beat Q̇ was obtained from the Finometer and SV was 

calculated as Q̇ divided by the HR from the ECG trace. TPR was calculated as MAP 

divided by Q̇. Hemodynamic variables (Q̇, HR, SV, MAP and TPR) were averaged over 

the same 15 cardiac cycles used for analysis of the CCA outcomes and saved for later 

analysis. 

The autonomic and vascular determinants of BRS were determined according to previous 

study (Lenard, et al. 2004). Briefly, AC was considered as the vascular component of the 

BRS and expressed as μm·mmHg-1. To calculate the autonomic determinant, LFgain was 

divided by the AC and expressed as LFgain/AC in ms·μm-1.  

Statistical analyses  

Data are presented as mean and standard deviation (SD) unless otherwise stated. 

Differences between MVPA and food diary outcomes were compared using ANOVA 

with repeated measures. Sphericity was tested using Mauchly’s test and when violated 
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Greenhouse-Geisser correction was applied. SPSS version 22 was used for analyses, and 

an alpha level of 0.05 was considered significant.  

Following recommendations by Hopkins (2000), between- and within-day reliability 

were calculated as: 1) systematic error as changes in mean and tested using repeated 

measures ANOVA with least significance differences post hoc comparisons; 2) absolute 

reliability assessed as random error calculated as the within-subject variation expressed 

in absolute (typical error (TE)) and standardised (%CV) units; and 3) relative reliability 

calculated as test-retest correlation using Pearson’s correlation. Data were log 

transformed and analysed using freely available spreadsheets 

(http://sportsci.org/resource/stats/).  

RESULTS 

Between-day reliability  

Participant characteristics are presented in Table 1. From the 13 initial participants, two 

were not included in the CCA analysis due to technical issues with the ultrasound, and 

another did not complete one of the visits, for reasons unrelated to the study. The final 

number of participants included was 10. For the BRS measures, in addition to the 

participant excluded for not completing the visit, another was excluded due to errors being 

>3% in the ECG data. The number of participants included in the BRS between-day 

reliability was therefore 11.  

Physical activity and diet records are presented in Table 2. There were no differences for 

MVPA in the 48-h preceding the experimental visits. For this analysis, however, just 7 

participants had repeated data in the 4 visits. Similarly, energy intake and the proportion 

of the energy derived from carbohydrate, lipid and protein were not different between 

visits (all P>0.05).  
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Between-day reliability data are described in Table 3. There was no significant mean bias 

between the visits for any of the variables (all P>0.05). All variables had an absolute 

reliability between 2-20%, with the most reliable measurement being vessel diameter 

(DLD 2.4% and SLD 2.3%). All variables presented a relative reliability ranging between 

r=0.50 and r=0.91, except for PP (r=0.37).  

Within-day reliability  

Participant characteristics are presented in Table 1. From the 13 participants, one 

participant was excluded from the CCA analysis due to technical issues with the 

ultrasound. One participant excluded from BRS due to errors >3% in the ECG trace. The 

number of participants included in the within-day reliability was 12 (Table 1). 

Within-day reliability statistics are presented in Table 4. Systematic error was identified 

for DLD (P=0.02) and LSD (P=0.04) at 120-min post compared to baseline. Similarly, 

LFgain was higher at 120-min compared to 60-min (P=0.03). All variables had an 

absolute reliability between 2-34%, with the most reliable measures being vessel 

diameters (DLD 2.3% and SLD 2.2%) and HR (CV of 6%). All variables presented 

relative reliability ranging between r=0.50 and r=0.89, except for MAP (r=0.42).  

DISCUSSION 

This is the first study to investigate between- and within-day reliability of BRS 

assessment and its autonomic and vascular determinants, as well as the reliability of 

hemodynamic variables associated with BRS, in adolescents. The key findings of the 

present investigation were: 1) BRS and its autonomic and vascular determinants 

presented between-day CVs <20%; 2) vessel diameter presented the best between- and 

within-day reliability; 3) within-day BRS reliability was poorer compared to between-

days; and 4) hemodynamic variables presented between- and within-day CVs <20%.  
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Between-day reliability 

No between-days systematic error was observed for BRS and its autonomic and vascular 

components. In the present study, participants completed a habituation to the protocol in 

the weeks before the start of the study. This may have precluded a possible learning effect 

and caused no systematic changes in the BRS and its autonomic and vascular 

determinants. The present investigation conducted in a sample of healthy adolescents, 

showed poorer reliability (20% CV and r=0.63) of the LFgain compared to adults (CV of 

5.4% and ICC of 0.76) (Maestri, et al. 2009; Reynolds, et al. 2016). However, our 

reliability results are similar to that observed in 11-y olds of a CV of 13.8% and ICC of 

0.49 for the LFgain (Dietrich, et al. 2010). This highlights the importance of population-

specific studies investigating the reliability of BRS assessment.  

The observed CVs <20% contain biological and technical variability which might be 

augmented if important sources of errors before and during BRS assessment are not 

controlled. For instance, aiming to decrease biological variability participants were asked 

to keep a similar diet and physical activity in the days preceding data collection, and 

report to the laboratory at the same time of the day following an overnight fast. This was 

done because prior physical activity and diet can alter autonomic and vascular functions 

(Al Haddad, et al. 2009). Similarly, aiming to decrease technical errors, breathing 

frequency was kept outside LF range to increase reliability of BRS and autonomic 

modulation (Davies, et al. 1999; Pinna, et al. 2007), and participants were familiarized to 

this procedure before the experiment. Additionally, all data trace was free of >3% errors 

and all analysis performed by the same researches. The present study indicates that BRS 

assessed with LFgain presents acceptable between-day reliability in adolescents; 
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however, the above important factors before and during the measurements should be 

controlled or the error is likely to be larger. 

The present investigation is the first to calculate the magnitude of systematic and random 

error in the measurements of the autonomic and vascular BRS determinants in 

adolescents. The measures of the vascular determinant used were AC and AD, as 

previously reported in this population (Lenard, et al. 2004). AC and AD measures 

presented CVs of 16.8 and 17.2%, without any systematic error between visits (Table 3). 

The reliability observed for AC and AD measures reflect small between-day variation in 

vessel diameters, and the main source of errors in AC and AD calculation derived from 

PP measures. These results indicate that factors affecting PP should be minimised when 

designing studies to further improve reliability. For instance, due to hydrostatic pressure 

Finometer readings of PP at the finger level exacerbate the differences between systolic 

and diastolic pressure (Imholz, et al. 1998). To minimize this, participants were asked to 

keep their hands at the heart level during BRS protocol. The autonomic determinant 

measured using LFgain/AC presented an absolute and relative reliability of 19.8% CV 

and r=0.87, and did not systematically change between-days. Despite being calculated 

with a series of other measurements, this is the first study to demonstrate that LFgain/AC 

is a robust index that can be reliably used to investigate autonomic determinant of BRS 

in adolescents.  

Within-day reliability   

Notably all parameters (except vessel size) presented poorer within-day compared to 

between-day reliability. LDD, LSD and LFgain presented systematic changes 2-h after 

the initial measurement suggesting circadian changes are present. To our knowledge the 

current study is the first to report this observation in healthy adolescents. This is in 
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accordance with previous adult literature suggesting an increase in BRS and its autonomic 

and vascular determinants throughout day (Taylor, et al. 2011). The mechanisms 

underlying circadian changes are beyond the scope of the present investigation, but might 

involve a heightened sympathetic tone and vascular constriction in the early morning 

compared to late morning (Panza, et al. 1991). This might also explain the increased 

carotid diameter observed 120-min post compared to baseline. Similarly, random errors 

were exacerbated in the within-day protocol for all measures with the BRS autonomic 

component presenting CV of 34% and r=0.80. This arises from a sum of factors, such as 

PP, AC, and LFgain, which were altered between the time assessments. These results 

highlight that a control group is essential when changes throughout day are investigated 

(i.e. the effects of exercise or diet intervention on acute BRS changes), and that time of 

the day should be strictly controlled in between-days protocols.  

Reliability of hemodynamic outcomes 

BRS assessment and interpretation can be influenced by a diversity of factors. 

Specifically, BRS is the ability to adjust MAP by triggering a series of mechanisms to 

modulate Q̇ and TPR (Persson 1996). Poor reliability of MAP, Q̇ and TPR therefore 

would hamper BRS interpretation. In the present investigation MAP, Q̇, TPR, SV and HR 

presented CVs <15% between-days and <21% within-days. The main sources of error in 

these measurements would be technical and biological variations between days which 

would affect the observed CV. As all variables (except HR) are determined from finger 

plethysmography, technical errors can derive from positioning of the cuff, cuff size, and 

movements during the calibration, as well as possible differences in finger temperature 

between-days (Imholz, et al. 1998). In the current study, aiming to decrease technical 

errors cuff placement were performed by the same researcher, with adequate cuff size and 
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participants were thoroughly instructed to stay as quite as possible during BRS protocol 

and Finometer calibration. Additionally, room temperature was maintained in a narrow 

range between- and within-days. 

Limitations 

The present sample comprised only boys, and therefore studies involving girls are needed. 

There are considerable technical skills required to operate the ultrasound, as well as data 

processing, which might hamper the application of the BRS protocol. The autonomic gain 

calculated as the ratio between LFgain and AC although theoretically sound and 

previously used in this population (Lenard, et al. 2004), has not been validated. One 

alternative would be the use of methods with infusion of vasoactive drugs to test the 

neural component, however such methods raise ethical concerns for use in a pediatric 

population. Similarly, CCA measures were used with no information about aorta 

distensibility (Klassen, et al. 2016). Finally, we acknowledge that for AC and DC 

measurements it is desirable to assess PP at the carotid site, however, others have 

suggested that BP derived from Finometer is a valid measure of intra-arterial pressure 

(Guelen, et al. 2008), and our present results are comparable to methods measuring PP at 

the carotid site (Lenard, et al. 2004).   

Practical applications  

The current study provides practical information to aid interpretation of interventions, 

and in sample size calculation for future trials. Sample size can be calculated considering 

between-subject variation (i.e. pooled standard deviation) and the observed CV for each 

outcome. Applying the principle of Cohen’s effect sizes of 0.2 (small), 0.5 (moderate), 

and 0.8 (large) (Cohen 1977), and using Hopkins between and within variation formulas 

(available at http://sportsci.org/resource/stats/ssdetermine.html#long), the number of 
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participants needed to achieve statistical power of 0.80 at an alpha level 0.05 in a 

randomized controlled trial investigating changes in LFgain with a control and an 

experimental group will be 423, 63, and 22 per group, respectively. For AC, the number 

of participants needed is 537, 80, and 29 and for LFgain/AC the number of participants 

needed will be 191, 27, and 9. Finally, the calculated sample sizes should be inflated by 

20% considering possible data loss due to errors in the ECG and BP trace, as well as in 

images acquisition.     

CONCLUSION 

There was acceptable (i.e. CV<20%) between-day reliability of BRS and its autonomic 

and vascular determinants in male adolescents. Similarly, all components of the BP 

equation, namely MAP, Q̇, HR, SV and TPR, presented adequate between-day reliability. 

CCA diameter was the most reliable variable in the present study and the main source of 

error in the arterial distensibility and compliance coefficients was PP. Within-day 

reliability was poorer compared to between-days for all BRS and hemodynamic 

measurements, possibly due to circadian rhythm. The present results will help future 

research for sample size calculation and clinical interpretation of findings of 

interventional studies. Our results also highlight that a control group is essential when 

changes throughout day are investigated due to the observed diurnal variation.  
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Table 1: Participants characteristics  

 Between day reliability 

 All (n=13) CCA (n=10) BRS (n=11) 

Age (y) 14.0±0.5 14.1±0.3 14.1±0.4 

Stature (cm) 162.2±10.5 163.6±10.8 162.4±10.9 

Body Mass (kg) 46.6±13.2 52.1±14.2 49.9±14.1 

Body Fat (%) 12±4.7 12.7±4.8 12±4.8 

VO2max (mL·kg·min-1) 50.1±5.2 52.1±3 50.1±5.3 

Stage of maturation 

2=3 

3=1 

4=8 

5=1 

2=2 

3=1 

4=6 

5=1 

2=3 

3=0 

4=7 

5=1 

 Within day reliability 

 All (n=13) CCA (n=12) BRS (n=12) 

Age (y) 14.0±0.5 14±0.4 14±0.5 

Stature (cm) 162.2±10.5 161.7±10.8 161.7±10.7 

Body Mass (kg) 46.6±13.2 50.4±13.5 49.2±13.7 

Body Fat (%) 12±4.7 12.5±4.6 11.7±4.7 

VO2max (mL·kg·min-1) 50.1±5.2 50.9±5.3 50.6±5.3 

Stage of maturation 

2=3 

3=1 

4=8 

5=1 

2=3 

3=1 

4=7 

5=1 

2=3 

3=0 

4=8 

5=1 

CCA: Common carotid artery. BRS: Baroreflex sensitivity.  
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Table 2: Average physical activity and food consumption in the 48-h preceding the experimental visits 

  Day 1 Day 2 Day 3 Day 4 P 

n=7 MVPA (min·day-1) 116.1±56.1 99.8±51.3 126.1±29.7 132.2±75.1 0.46 

n=12 Total kcal (kcal·day-1) 2025±177 2150±178 1944±134 1975±114 0.68 

n=12 Carbohydrate (%) 51±2 50±2 50±2 51±2 0.72 

n=12 Lipids (%) 32±2 34±2 32±2 31±1 0.34 

n=12 Protein (%) 16±1 15±1 17±1 17±1 0.67 

MVPA: moderate-to-vigorous physical activity  
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Table 3: Between-day reliability of BRS gain and its autonomic and vascular determinants 

  Day 1 Day 2 Day 3 Day 4 
P value 

ANOVA 
r CV TE 

n=10 DLD (µm) 5288.0±278.5 5260.0±300.4 5190.0±313.6 5262.0±420.8 0.39 0.91 2.4 127.0 

n=10 SLD (µm) 6133.0±308.4 6129.0±337.5 6087.0±320.3 6115.0±448.4 0.78 0.90 2.3 143.5 

n=10 Delta diameter (µm) 845.0±126.8 869.0±128.3 897.0±144.6 853.0±154.3 0.32 0.80 7.7 63.0 

n=10 Diastolic CSA (mm) 22.0±2.3 21.8±2.5 21.2±2.6 21.9±3.4 0.40 0.91 4.9 1.1 

n=10 Systolic CSA (mm) 29.6±3.0 29.6±3.3 29.2±3.1 29.5±4.5 0.78 0.89 4.7 1.4  

n=10 Delta CSA (mm) 7.6±1.3 7.8±1.4 7.9±1.4 7.6±1.6 0.62 0.81 8.7 0.64 

n=10 Arterial Strain (%) 16.0±2.6 16.6±2.5 17.4±3.2 16.3±3.4 0.17 0.84 8.0 1.3 

n=10 AC (µm·mmHg-1) 18.9±4.5 20.0±3.6 19.3±3.9 19.7±5.0 0.85 0.50 16.8 3.1 

n=10 AD (10-3/mmHg) 7.7±1.8 8.3±1.5 8.1±1.9 8.2±2.7 0.80 0.60 17.2 1.3 

n=11 LFgain (ms·mmHg-1) 23.6±5.7 21.4±5.9 21.0±5.4 21.1±6.8 0.34 0.63 20.4 3.9 

n=9 LFgain/AC (ms·µm-1) 1.32±0.49 1.13±0.35 0.96±0.52 1.21±0.45 0.11 0.87 19.8 0.2 

n=11 HR (beats·min-1) 66±9 66±5 66±8 67±6 0.84 0.83 5.7 4 

n=11 Q̇ (L·min-1) 3.0±0.8 3.2±0.7 3.0±0.6 3.0±0.7 0.41 0.82 11.6 0.3 

n=11 SV (mL) 46.6±13.8 48.1±11.6 45.3±9.0 44.8±11.8 0.27 0.87 10.2 4.2 
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n=10 PP (mmHg) 46.0±8.2 43.9±6.3 47.0±4.0 44.2±7.3 0.45 0.37 14.7 5.9 

n=11 MAP (mmHg) 78.9±5.4 79.6±6.6 80.8±9.9 77.5±7.8 0.55 0.50 7.4 5.6 

n=11 TPR (units) 27.8±7.4 26.3±5.8 28.0±5.1 26.9±4.4 0.64 0.63 14.4 3.6 

LDD: lumen diastolic diameter; LSD: lumen systolic diameter; PP: pulse pressure; AC: arterial compliance; AD: arterial distensibility.  
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Table 4: Within-day reliability of BRS gain and its autonomic and vascular determinants 

  Baseline 60 min 120 min 
P value 

ANOVA 
r CV TE 

n=12 DLD (µm) 5220.0±329.9 5269.2±332.6 5360.8±373.0* 0.038 0.89 2.3 126.7 

n=12 SLD (µm) 6086.7±340.2 6135.0±346.1 6235.0±387.0* 0.051 0.87 2.2 134.0 

n=12 Delta diameter (µm) 866.7±126.1 865.8±125.8 874.2±138.1 0.93 0.79 7.3 60.3 

n=12 Diastolic CSA (mm) 21.5±2.7 21.9±2.8 22.7±3.2* 0.048 0.89 4.6 1.12 

n=12 Systolic CSA (mm) 29.2±3.3 29.7±3.3 30.7±3.4 0.06 0.88 4.4 1.39 

n=12 Delta CSA (mm) 7.7±1.3 7.8±1.3 8.0±1.4 0.56 0.80 8.1 0.61 

n=12 Arterial Strain (%) 16.7±2.8 16.5±2.7 16.4±3.0 0.85 0.82 7.9 1.2 

n=12 AC (µm·mmHg-1) 20.0±3.7 20.8±9.5 19.9±4.4 0.82 0.57 25.4 6.0 

n=12 AD (10-3/mmHg) 8.3±1.4 8.5±3.7 8.1±1.8 0.77 0.45 26.1 2.5 

n=12 LFgain (ms·mmHg-1) 21.7±5.8 20.3±7.9 24.4±8.2** 0.051 0.74 25.1 4.1 

n=11 LFgain/AC (ms·µm-1) 1.18±0.36 1.26±0.72 1.28±0.53 0.67 0.81 31.4 0.57 

n=12 HR (beats·min-1) 66±5 65±8 63±6 0.11 0.79 6.0 4 

n=12 Q̇ (L·min-1) 2.9±0.8 2.8±0.8 2.7±0.6 0.56 0.67 19.2 0.4 

n=12 SV (mL) 44.1±13.6 43.4±14.8 44.5±12.3 0.90 0.77 17.7 5.8 
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n=12 PP (mmHg) 44.4±9.0 46.4±14.0 44.9±9.3 0.77 0.63 22.0 7.4 

n=12 MAP (mmHg) 78.2±6.7 80.1±7.1 78.8±6.8 0.43 0.83 4.4 3.37 

n=12 TPR (units) 28.9±7.5 31.2±8.9 29.6±5.4 0.61 0.53 18.8 6.05 

LDD: lumen diastolic diameter; LSD: lumen systolic diameter; PP: pulse pressure; AC: arterial compliance; AD: arterial distensibility. 

*P<0.05 compared to baseline. **P<0.05 compared to 60-min. 
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