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ABSTRACT14

The implementation of state estimation techniques to water systems enables the hydraulic state15

of a given network to be computed at any time. However, errors in both measurements and model16

parameters can severely affect the quality of the state estimate, thus sensitivity analysis is crucial17

to assess its performance. The aim of this paper is to provide general explicit expressions for the18

sensitivities of the objective function and the primal variables of the state estimation problem with19

respect to both measurements and roughness parameters based on the perturbation of the Karush-20

Kuhn-Tucker (KKT) conditions. Additionally, among all the possible applications of sensitivity21

analysis, we present two specific forms of such analysis for water systems: identifiability of22

roughness parameters and linear state estimate approximation. The merit of these applications is23
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illustrated bymeans of a case study, which highlights the usefulness of compact sensitivity formulae24

to further understanding of state estimation solutions.25

Keywords: state estimation, sensitivity analysis, parameter identifiability, linear approximation26

INTRODUCTION27

As a result of the growing complexity ofwater networks, supervisory control and data acquisition28

(SCADA) systems are becoming essential tools in large urban areas. They are installed with the29

aim of collecting the available on-line information provided by the various sensors distributed30

throughout the network. In this context, state estimation techniques are a feasible approach to31

process the information provided by such platforms, as they have been implemented with the same32

purpose in the power supply field for many years (Schweppe andWildes 1970). The state estimation33

problem is formulated as a weighted least-squares (WLS) problem that minimises the difference34

between the available measurements and the estimates themselves, thus allowing the computation35

of the most likely hydraulic state of the network at a given time (Díaz et al. 2016b). Note that36

typical hydraulic models use the measurement setting given by head levels at tanks and demand37

measurements to estimate the flow in the network. In contrast, state estimation is a more versatile38

tool that enables to take into account different measurement settings and their corresponding noise39

with the same purpose.40

The state estimation problem has been tackled before in the context of water systems. Starting41

from the well-knownWLS approach (Bargiela 1985; Powell et al. 1988; Brdys and Ulanicki 2002),42

several authors have proposed modified algorithms with different aims, such as dealing with gross43

errors (Sterling and Bargiela 1984), introducing graph-based theory (Carpentier and Cohen 1991;44

Kumar et al. 2008) or considering bounds for the state estimation problem (Bargiela andHainsworth45

1989; Andersen et al. 2001), among others. More recently, Díaz et al. (2016a) consider the state46

estimation problem with mathematical programming techniques, which enables the inclusion of47

high precision measurements and upper and lower bounds for the variables of the state estimation48

problem.49

In any case, the state estimation problem can always be considered as an optimisation problem,50
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whose performance depends on: (1) how accurate measurements are, and (2) how well model51

parameters have been calibrated. To begin with, each measurement is subjected to noise as a52

result of the inaccuracy associated with its metering device, and estimations of demand, which53

are traditionally used to counteract the scarcity of instrumentation in water systems (i.e., pseudo-54

measurements based on historical records), are subjected to even greater uncertainties (Bargiela and55

Hainsworth 1989). Additionally, great effort has been made in the last decades to better calibrate56

network parameters (e.g. Walski (1983), Lansey and Basnet (1991), Kumar et al. (2010)), with57

many of them considering pipe roughness coefficients as the calibration parameters (e.g. Lansey58

et al. (2001), Kapelan et al. (2007)). It is important to highlight that the state estimation problem59

has traditionally assumed a previously calibrated hydraulic model (Díaz et al. 2016). Thus, errors60

in both measurements and parameters can severely affect the quality of the state estimates. This is61

why analysing state estimation sensitivity to both sources of uncertainty is a matter of interest.62

Sensitivity analysis is a technique that allows to understand how uncertain input sources can63

affect qualitatively or quantitatively the output of a given model (Saltelli et al. 2004). Four different64

approaches are normally distinguished to compute local sensitivity analysis in the context of water65

management: (1) finite differences, (2) automatic differentiation, (3) sensitivity equations, and66

(4) the adjoint method. A consistent literature review of these strategies in the water systems67

domain can be found in Piller et al. (2017), where the sensitivity equations approach is highlighted68

for its potential when explicit formulations can be derived. In this regard, Piller et al. (2017)69

present explicit formulas that improve the knowledge of the flow network solution and therefore70

enhance calibration and sampling design procedures. Vairavamoorthy and Ali (2005) and Fu et al.71

(2012) have enhanced optimal design of water systems by introducing sensitivity information to72

guide evolutionary algorithms. Concurrently, there is another approach in the literature to develop73

sensitivity analysis for optimisation problems based on the perturbation of the Karush-Kuhn-Tucker74

(KKT) conditions (Fiacco 1983; Conejo et al. 2006). The aim is to provide the sensitivities of the75

objective function and the primal and dual variable values with respect to model data (Castillo et al.76

2006).77
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The objective of this paper is twofold: firstly, to adapt the general explicit expressions obtained78

by perturbation of the KKT conditions to water systems, and secondly, to present some related79

applications: (1) characterise the identifiability of roughness parameters, and (2) provide a linear80

state estimate approximation based on an average state estimation result. The rest of the paper is81

organised as follows: first, the state estimation formulation is presented together with the derived82

sensitivity expressions. Subsequently, the aforementioned applications are presented in the context83

of water systems. Then, the potential of such applications is presented by means of a case study.84

Finally, some conclusions are drawn.85

STATE ESTIMATION SENSITIVITY ANALYSIS86

In this section the state estimation problem is formulated as a constrained WLS problem and87

the expressions for sensitivity analysis are derived. Afterwards, these general expressions are88

formulated for water systems.89

State Estimation Formulation90

The state estimation problem can bewritten as amathematical programming problem as follows:91

Minimize
x

J(x, z, θ) = 1
2
[z − h(x, θ)]T W [z − h(x, θ)] (1)92

subject to93

f (x, θ) = 0 : λ (2)94

where the objective function given by Eq. (1) is defined by the x ∈ Rn state variable vector; the95

z ∈ Rm measurement vector; the θ ∈ Rp parameter vector; the h : Rn × Rp → Rm nonlinear96

relationship of the state variables with respect to measurements and parameters according to the97

model equations; andW , which is the m ×m diagonal matrix for the measurement weights. In this98

work, roughness coefficients are considered the only model parameters, as done before by other99

experts for calibration purposes (e.g. Kapelan et al. (2007), Kumar et al. (2010)). Also, the state100

variable vector needs to be defined. The state variables are the minimum set of variables that enable101

to compute the state of the system (Brdys and Ulanicki 2002). It is common in state estimation102
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applications to consider nodal heads as the state variables of the system (Díaz et al. 2016). Note103

that, as mentioned before, the traditional state estimation approach assumes that the model has104

been previously calibrated, i.e. θ values are known inputs and only x values are to be determined.105

This implies that all sources of error are captured in model parameters and every other property106

of the system (e.g. connectivity, diameters, pump and valve statuses, etc.) is exactly known. For107

this reason, state estimation sensitivity analysis is of utmost importance. Note that h(x, θ) is used108

instead of h(x) because this work intends to assess the sensitivity of the problem with respect to109

both measurements and parameters. More specifically, this non-linear relationship can be expanded110

as:111

h(x, θ) →



hk = xi; i ∈ Vm
k

hk =
xi−xj

θ
1
b
ij

|xi − x j |
1
b−1; i j ∈ Lm

k

hk = −
∑

∀ j∈ΩI
i

xi−xj

θ
1
b
ij

|xi − x j |
1
b−1 +

∑
∀ j∈ΩO

i

xi−xj

θ
1
b
ij

|xi − x j |
1
b−1; i ∈ Vm

Qk


;∀k = 1, . . . ,m,

(3)112

where k is an index that represents the number of the measurement. Note that h(x, θ) considers113

three different types of measurements: head level (xi;∀i ∈ Vm
k ), water flow through a pipe that114

goes from node i to node j (∀i j ∈ Lm
k ), and water consumption at a demand node (∀i ∈ Vm

Qk
),115

respectively. Note that Vm
k , Lm

k and Vm
Qk

are sets of nodes that activate depending on the type of116

measurement of k. Additionally, θi j represents the flow resistance pipe coefficient and b = 1.852117

is the exponential flow coefficient for the Hazen-Williams equation. In this work, it is assumed118

that water flows from the lower to the higher numbering node, i.e. i < j. Two subsets ΩI
i and119

ΩO
i are defined for each node i corresponding to water inflows to node i from the rest of nodes120

connected to i through a pipe, and water outflows from node i to the rest of nodes connected to i121

through a pipe, respectively. Note that Eq. (3) is a flexible way of formulating the problem, and122

it enables to take into account the required headloss and continuity equations depending on the123

available measurements. Additionally, Eq. (2) represents the problem’s hydraulic constraints, with124

λ being the dual variable vector related to equality constraints. In this work, we consider demand at125
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transit nodes (∀i ∈ VT) to be null, i.e. nodes known to have zero consumption, as the only equality126

constraints, so Eq. (4) can be specified as:127

f (x, θ) → fi = −
∑

∀ j∈ΩI
i

xi−xj

θ
1
b
ij

|xi − x j |
1
b−1 +

∑
∀ j∈ΩO

i

xi−xj

θ
1
b
ij

|xi − x j |
1
b−1; ∀i ∈ VT. (4)128

Thus, the number of equality constraints c is equal to the number of transit nodes of the network129

(the cardinality ofVT).130

Additional equality constraints could be added if needed. Also, inequality constraints could131

be included in the formulation, as once the optimal solution of the state estimation problem x̂ is132

computed, binding inequality constraints must be considered equality constraints and non-binding133

ones are disregarded. In such a case, specific derivative formulations for each type of equality134

constraint should be defined.135

General Sensitivity Expressions136

Once solution x̂ to problem (1)-(2) has been found, a sensitivity analysis is undertaken. For137

this purpose, the first order optimality conditions are differentiated in such a way that the KKT138

optimality conditions hold. By developing the associated equations (see Conejo et al. (2006) for139

detail), the following sensitivity matrices are obtained:140


∂x
∂ z (n×m)

∂λ
∂ z (c×m)

 = −

Jxx (n×n) FT

x (n×c)

Fx (c×n) 0(c×c)


−1 

Jxz (n×m)

0(c×m)

 , (5)141


∂x
∂θ (n×p)

∂λ
∂θ (c×p)

 = −

Jxx (n×n) FT

x (n×c)

Fx (c×n) 0(c×c)


−1 

Jxθ (n×p)

Fθ (c×p)

 , (6)142

which provide the derivatives of the optimal state variables and dual variables of the equality143

constraints with respect to both measurements and parameters. Dimensions of each matrix are144

indicated in parenthesis. Note that in order for the sensitivities to be computed, the system of145

equations’ coefficient matrix must be invertible, i.e. the system must be observable (Díaz et al.146
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2016). The derivatives of the objective function with respect to measurements and parameters can147

be written as:148

∂J
∂ z (1×m)

= JT
z (1×m) + JT

x (1×n)
∂x

∂ z (n×m)
, (7)149

150
∂J
∂θ (1×p)

= JT
θ (1×p) + JT

x (1×n)
∂x

∂θ (n×p)
. (8)151

Sensitivities provide information about howmuch the optimal estimated variables x̂ or the objective152

function Ĵ changes when parameters θ or measurements z change one unit. Therefore, units153

of sensitivities correspond to the ratio between units of the variable whose sensitivity is being154

calculated, and the units of the parameter or measurement with respect to which sensitivities155

are being obtained. For instance, if units for head levels and flows within the state estimation156

problem are m and m3/h, respectively, the sensitivities of estimated head levels with respect to flow157

measurements are m/(m3/h).158

The main contribution of this work, which is to adapt these expressions to the reality of water159

networks, is now explained. Note that Eqs. (5)-(6) represent the derivatives of the state (i.e. the160

head levels) and dual variables with respect to measurements and parameters, but once these are161

obtained, the sensitivities of flows and demands can be inferred by applying the chain rule. Also,162

it is important to highlight that these expressions are a generalised version of those proposed by163

Piller et al. (2017), because they are suitable no matter the measurement setting as long as it is164

observable. Note that when only head levels at tanks and water demands are metered, problem165

(1)-(2) is equivalent to solving the flow network, and thus the sensitivities computed with Eqs.166

(5)-(6) are equivalent to those proposed by Piller et al. (2017) for demand driven models.167

Specific Expressions for Water Distribution Systems168

In order for these expressions to be specified for water systems, matrices Jx , Jxx and Fx from169

(5)-(8) can be obtained as follows:170

Jx (n×1) = ∇x J(x̂, z, θ) = ∂J
∂x j

����
x̂

=

m∑
i=1

[
−∂hi(x̂, θ)

∂x j

]T

Wii [zi − hi(x̂, θ)] = −HT
(n×m)W(m×m)(z− ẑ)(m×1),

(9)171
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Jxx (n×n) = ∇xx J(x̂, z, θ) = ∂2J
∂x j∂xk

����
x̂

=

m∑
i=1

�����������������[
−∂

2hi(x̂, θ)
∂x j∂xk

]T

Wii [zi − hi(x̂, θ)] +
[
−∂hi(x̂, θ)

∂x j

]T

Wii

[
−∂hi(x̂, θ)

∂xk

] = HT
(n×m)W(m×m)H(m×n),

(10)

172

Fx (c×n) = ∇x f (x̂, z, θ) =
∂ fi
∂x j

����
x̂

, (11)173

where H is the m × n available measurement Jacobian matrix, Fx is the c × n equality constraint174

measurement Jacobian matrix and ẑ = h(x̂, z, θ) refers to the value of the estimated measured175

variable. Second order derivatives are here disregarded for the computation of matrix Jxx because176

they have proven to have a negligible effect and sensitivity analysis is expected to be undertaken177

once the state estimation solution has been found. Note that this implies that outliers have been178

conveniently removed (Caro et al. 2011; Caro et al. 2013), hence there is no risk of assigning un-179

deserved importance to those second order derivatives. Components of the measurement Jacobian180

matrix for the construction of H can be computed as shown below:181

H →



∂hk
∂xl
= δil ; i ∈ Vm

k

∂hk
∂xl
=


1

θi jb|hk |b−1 if l = i

−1
θi jb|hk |b−1 if l = j

0 otherwise


; i j ∈ Lm

k

∂hk
∂xl
= −∑

∀ j∈ΩI
i

∂Qi j

∂xl
+

∑
∀ j∈ΩO

i

∂Qi j

∂xl
; i ∈ Vm

Qk


;∀l ∈ V;∀k = 1, . . . ,m, (12)182

where Qi j is an auxiliary variable that refers to water flows and can be written as:183

∂Qi j

∂xl
=


1

θi jb|
xi−xj
θi j
|
b−1
b

if l = i

−1
θi jb|

xi−xj
θi j
|
b−1
b

if l = j


∀i j ∈ L;∀l ∈ V (13)184
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with V and L representing the whole set of nodes and link elements in the system, respectively.185

On the other hand, the components of Fx can be obtained as:186

Fx → ∂ fi
∂xl
= −∑

∀ j∈ΩI
i

∂Qi j

∂xl
+

∑
∀ j∈ΩO

i

∂Qi j

∂xl
; ∀i ∈ VT; ∀l ∈ V (14)187

Similarly, matrices Jθ , Jxθ and Fθ can be obtained as:188

Jθ (p×1) = ∇θ J(x̂, z, θ) = ∂J
∂θlr

����
x̂

=

m∑
i=1

[
−∂hi(x̂, θ)

∂θlr

]T

Wii [zi − hi(x̂, θ)] = −PT
(p×m)W(m×m)(z− ẑ)(m×1),

(15)189

Jxθ (n×p) = ∇xθ J(x̂, z, θ) = ∂2J
∂x j∂θlr

����
x̂

=

m∑
i=1

�����������������[
−∂

2hi(x̂, θ)
∂x j∂θlr

]T

Wii [zi − hi(x̂, θ)] +
[
−∂hi(x̂, θ)

∂x j

]T

Wii

[
−∂hi(x̂, θ)

∂θlr

] = HT
(n×m)W(m×m)P(m×p),

(16)

190

Fθ (c×p) = ∇θ f (x̂, z, θ) =
∂ fi
∂θlr

����
x̂

, (17)191

where P is the m × p roughness Jacobian matrix. As before, second order derivatives have been192

neglected for the computation of Jxθ , and Fθ is the c × p equality constraint roughness Jacobian193

matrix. Also, note that θlr is here used in order to refer to the fact that roughness is a property of a194

pipe that goes from node l to node r , but θ represents a vector (i.e. not a matrix). Components of195
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the roughness Jacobian matrix for the construction of P can be computed as shown below:196

P →



∂hk
∂θlr
= 0; i ∈ Vm

k

∂hk
∂θlr
=


−|hk |b+1

b(xi−xj ) if l = i, r = j

0 otherwise

 ; i j ∈ Lm
k

∂hk
∂θlr
=


|Qlr |b+1

b(xl−xr ) if r = i

−|Qlr |b+1

b(xl−xr ) if l = i

0 otherwise


; i ∈ Vm

Qk



;∀lr ∈ L;∀k = 1, . . . ,m, (18)197

where Qlr can be obtained from Eq. (13). Also, Fθ components can be computed as:198

Fθ →
∂ fi
∂θlr

=


|Qlr |b+1

b(xl−xr ) if r = i

−|Qlr |b+1

b(xl−xr ) if l = i

0 otherwise


;∀lr ∈ L;∀i ∈ VT (19)199

Finally, matrices Jz and Jxz can be computed as:200

Jz (m×1) = ∇z J(x̂, z, θ) = ∂J
∂z j

����
x̂

=

m∑
i=1

Wii [zi − hi(x̂, θ)] = W(m×m)(z − ẑ)(m×1), (20)201

Jxz (n×m) = ∇xz J(x̂, z, θ) = ∂2J
∂x j∂zk

����
x̂

=

m∑
i=1

[
−∂hi(x̂, θ)

∂x j

]T

Wii = −HT
(n×m)W(m×m). (21)202

APPLICATIONS203

The general expressions derived for state estimation sensitivity analysis in water systems have204

interest on their own since they are explicit expressions that provide the value of the sensitivity205

of the primal variables, dual variables and objective function of the problem with respect to both206

measurements andmodel parameters. However, some other related applications can be derived from207

the computation of state estimation sensitivities in water systems. In this section, two applications208
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are briefly presented: (1) identifiability of roughness parameters, and (2) linear state estimate209

approximation. Note that in this work only the potential of the sensitivities of the objective function210

and the state variables is explored, but additional studies could focus on dual variables. According211

to the formulation presented in this work, λ represents how the objective function changes as the212

water demand at transit nodes varies, hence ∂λ
∂ z and ∂λ

∂θ indicate how that marginal is affected by213

measurements and model parameters. This is a subject for further research.214

Identifiability of roughness parameters215

The concept of identifiability analysis refers to the assessment of how well model parameters216

(in this case, roughness parameters) can be estimated based on existing measurements. Such217

analysis is not just a matter of evaluating if sufficient measurements exist to calibrate them (i.e.218

observability analysis), but rather how well they could be estimated considering the uncertainty of219

the measurement setting. In this regard, the derivative of the objective function with respect to220

roughness parameters ( ∂J
∂θ ) as given in Eq. (8) provides an insight of how susceptible the objective221

function is to changes in the roughness value, reflecting to what extent a given parameter could be222

adjusted in a calibration procedure. Therefore, this value can be used to rank the network pipes223

according to their importance for calibration, enabling to identify the pipes whose roughness value224

adjustment would better contribute to minimise the objective function. This information could225

be incorporated into calibration procedures, as it provides an additional criterion to, for example,226

guide evolutionary algorithms.227

Note that sensitivities would provide a more intuitive value if they were computed with respect228

to the roughness value instead of the flow resistance pipe coefficient θ. Therefore, if for example229

the Hazen-Williams headloss equation is being considered, the derivative of the objective function230

with respect to the roughness value C could be computed by simply applying the chain rule as231

follows:232

∂J
∂C
=
∂J
∂θ

∂θ

∂C
= −1.852

10.67L
D4.871C2.852

∂J
∂θ
, (22)233

when all terms expressed in SI units. Sensitivity expressions with respect to roughness value C234
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have been recently used for the calibration of networks based on multi-period state estimation (Díaz235

et al. 2017). Note that as mentioned before, the state estimation approach enables to cover more236

possibilities in terms of measurement settings than traditional calibration procedures (Kumar et al.237

2010).238

Linear state estimate approximation239

There are different methods to solve the state estimation problem. At present, the computational240

time associated with existing techniques is not extensive even for large systems. However, there241

may be situations in which a rough estimate may be sufficient, so it is not required to go through the242

expense of repeatedly evaluating the state estimation itself. For example, this may be the case of243

undertaking experiments (i.e. Monte Carlo method) to statistically evaluate how a particular aspect244

of the state estimation problem (output) varies with noisy measurements (input).245

In such scenario, the previously presented sensitivity analysis formulae have potential to ap-246

proximate the state estimate for different measured values as long as they are not subjected to gross247

errors and a linear approximation can be assumed. To begin with, the average hydraulic state can248

be estimated (x̂m) from the mean measured values (zm), and the associated average sensitivities249

can be computed. Note that the mean measured values can be assumed to be equal to the solution250

of the flow network, around which noisy measurements are generated. Then, the value of the state251

variables could be estimated by corrupting the average sensitivities by the deviation between the252

mean measured value and the particular measurement z that is to be analysed:253

x̂ = x̂m +
∂x

∂ z

����
x̂m

(z − zm). (23)254

Similarly, the chain rule could be applied to ∂x
∂ z in order to obtain ∂Q

∂ z and ∂q
∂ z , from which the255

updated values of flows (Q̂) and demands (q̂) can be computed analogously to Eq. (23). It must be256

highlighted that this simplification implies the assumption of a linear behaviour near the optimum.257

Its validity depends on the network response and uncertainty magnitude, which may be dubious at258

some locations that might be especially prone to non-linear behaviour. Nevertheless, it permits to259
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significantly reduce the computational cost associatedwith simulation experiments without severely260

affecting the quality of results, as it will be shown in the case study.261

CASE STUDY: HANOI NETWORK262

The purpose of this case study is to demonstrate state estimation sensitivity analysis in water263

systems, as well as to show the potential of the aforementioned applications. With this aim, the264

well-known Hanoi network (Fujiwara and Khang 1990) is adopted for illustration in this work.265

The network originally consists of 1 tank, 31 demand nodes and 34 pipes, but as in Díaz et al.266

(2016a), nodes 3, 16, 23 and 25 are considered in this paper as nodes with null demand (i.e. transit267

nodes) to introduce some hydraulic constraints. Appendix S1 contains detailed characteristics268

of this example. Hanoi system is considered in this work as a water transport network. Water269

transport networks are pipeline systems that provide water to large communities, e.g. District270

Metered Areas (DMA), where incoming flows are normally monitored. Therefore, they constitute271

the “main arteries” that enable large urban areas to be supplied with water, and they are bettered272

metered than conventional water distribution systems. For this reason, they are the first areas where273

state estimation techniques are being applied at present (Vrachimis et al. 2016). Consequently, it274

is here assumed that water demand is metered in each of the demand nodes, as it is likely to be the275

case if each of them were actual DMAs. Also, the water level at the tank (x1) and the pressure at276

node 30 (x30) are metered, i.e. one degree of redundancy exists. This detail is important because277

redundancy helps to identify the most likely hydraulic state of the system despite measurement278

noise. As the uncertainty of flow meters is normally dependent on the circulating flow rate, a noise279

σq = 2%q is here assumed, where q corresponds to water demands in Appendix S1. On the other280

hand, we assume σx = 0.01 bar for pressure meters, and σx = 0.01 m for water level meters, which281

are usual values for such metering devices.282

Identifiability of roughness parameters283

As commented before, the derivative of the objective function with respect to the Hazen-284

Williams roughness value ( ∂J
∂C ) provides an insight into howwell each of the pipes can be calibrated:285

the greater the value of such derivative, the more sensitive the objective function is to the roughness286
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value, i.e. the more crucial it is to adequately calibrate that particular roughness for a good287

adjustment of the model. Table 1 provides the network pipes sorted by | ∂J
∂C | and the value of288

this derivative under three scenarios: (1) considering a roughness value of 90% of the real value289

C = 0.9Creal for all pipes, (2) considering the exact roughness value C = Creal for all pipes, and290

(3) considering a roughness value of 1.1 times the real value C = 1.1Creal for all pipes.291

These results show that when a roughness value below Creal is used to solve the state estimation292

problem, the associated derivatives are mainly negative, which indicates that their roughness should293

be increased to reduce the objective function, i.e. to achieve a better state estimation result. Note294

that some of the pipes may have the sign changed as a result of measurement noise or because of295

negative flows (flow is considered positive when it goes from the lower to the higher numbering296

node). Sensitivity is almost null for the last ones, which mainly correspond to the two branches297

that come out of node 10 and 20 according to Figure 1. Similarly, if the adopted roughness is above298

the real value, derivatives are positive, whereas they become almost zero when the real value of299

roughness is being used. Therefore, values of such sensitivities clearly different from zero are a300

trustworthy indicator of deviations with respect to the real roughness value. This would indicate a301

need for recalibrating the system.302

Moreover, Table 1 shows that the relative importance of pipes is basically the same regardless303

of the roughness value being considered. This implies that even if the roughness assumed in304

the model is not correct, state estimation sensitivity analysis still provides information about the305

importance of each pipe, enabling identification of the most relevant pipes in terms of calibration.306

Figure 1 shows the relative importance of each pipe for the C = Creal scenario. In this figure, the307

thickness of those pipes whose sensitivity is above the 50% percentile threshold varies according308

to the ∂J
∂C value, whereas the rest of pipes are only dotted. It can be seen that pipes with greater309

circulating flows (near the source tank) have a better identifiability. Also, length and diameter are310

important according to Eq. (22). Note that even though a higher flow circulates through pipe 1-2,311

identifiability in 2-3 is greater than in pipe 1-2 due to the pipe length.312
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Linear state estimate approximation313

In this section, sensitivity analysis is used as an alternative to evaluate state estimation results314

under a Monte Carlo simulation of 1, 000 realizations. More specifically, state estimation results315

in terms of head levels are computed for this case study in two different ways: (1) solving the state316

estimation problem 1, 000 times viamathematical programming, and (2) solving the state estimation317

problem once (for themeanmeasurement configuration) and linearly approximating state estimation318

via sensitivity analysis using Eq. (23). Appendix S2 provides the mean and standard deviation of319

the estimated variables according to both methods, as well as the results of comparing such results320

by means of a two-sample Kolmogorov-Smirnov test with a confidence level of 95% for each head321

level in the network. This test shows that head level distributions are the same with both methods,322

thus proving that the linear approximation is valid to compute the state variables in the Hanoi323

network.324

Table 2 provides the average computational time required to implement each of the steps of the325

aforementioned linear state estimate approximation in a MatLab 7.12.0 (R2011a) 64-bits version326

and a 23.3 GAMS 64-bits version when run in an Intel(R) Core(TM) i7-6700 CPU 3.40 GHz 16327

GB RAM desktop computer. This table shows that the linear state estimate approximation is four328

orders of magnitude faster than solving state estimation via mathematical programming each time.329

To finish with, it must be noted that the linear approximation proposed in Eq. (23) could also330

be used as initialisation strategy when state estimation is implemented on-line. If measurements331

are available at consecutive times, the linear approximation via sensitivity analysis could be used332

to initialise the following time step based on the previous one as long as the time step is small333

enough (i.e. measurements are relatively close), thus accelerating the state estimation process itself.334

Nevertheless, the computational time required for sensitivity analysismay be inadmissible for online335

processing. According to Table 2, sensitivity analysis computation needs about 30% of the time336

required to execute an average state estimation process via mathematical programming. Therefore,337

30% extra time would be required to update the initialisation point for the subsequent time step338

at each time. Hence, if time steps are small, it may be worth just initialising each time step with339
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the solution of the previous one. This avoids the sensitivity analysis burden, whose computational340

needs are doomed to increase with the size of the network, i.e. the size of the matrices. For this341

reason, the linear state estimate approximation presented in this paper is especially recommended342

for repetitive processes like the aforementionedMonte Carlo experiment, where sensitivity analysis343

only has to be computed once.344

CONCLUSIONS345

Sensitivity analysis is a useful strategy to extract information around the optimum of any346

optimisation problem, as it is the case of state estimation applied to water systems. With this347

aim, general expressions for local state estimation sensitivity analysis in water systems are derived348

in this paper by perturbing KKT conditions. Explicit expressions for the objective function and349

primal and dual variables of the state estimation problem with respect to both measurements and350

roughness parameters are given here. Additionally, two applications of the information provided351

by sensitivity analysis are presented and illustrated with a case study.352

In this regard, sensitivity analysis enables to assess identifiability of the roughness value in the353

pipes of any water system and to rank them according to their relative importance for calibration354

purposes. In the case study presented in this work, the pipes near the source node are the most355

identifiable, hence they should be the target when calibrating the system. Moreover, sensitivity356

values clearly different from zero indicate that there is a deviation between the assumed roughness357

coefficient and the real one. These results would indicate that it is required to recalibrate the358

system. Secondly, sensitivity analysis is used here to provide a linear approximation of state359

estimation results in a Monte Carlo simulation, considerably accelerating the calculation process360

while providing similar results to ordinary state estimation via mathematical programming. Both361

applications present potential for gaining information and improving the understanding of the362

behaviour of the system when state estimation techniques are to be implemented.363

SUPPLEMENTAL DATA364

Appendixes S1-S2 are available online in the ASCE Library (www.ascelibrary.org).365
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TABLE 1. Identifiability of roughness parameters for Hanoi case study: Pipes sorted by | ∂J
∂C | under

different scenarios. Sensitivities are unitless.

C = 0.9Creal C = Creal C = 1.1Creal

Pipe ∂J
∂C Pipe ∂J

∂C Pipe ∂J
∂C

2 - 3 -18.9520 2 - 3 -0.0078 2 - 3 17.7988
20 - 23 -2.9722 20 - 23 -0.0010 20 - 23 2.8642
3 - 20 -2.2070 3 - 20 -0.0008 3 - 20 2.0309
1 - 2 -1.5589 1 - 2 -0.0006 1 - 2 1.4415
23 - 24 -1.3453 17 - 18 -0.0006 23 - 24 1.3407
17 - 18 -1.1325 18 - 19 -0.0005 17 - 18 1.1870
18 - 19 -1.0161 16 - 17 -0.0005 18 - 19 1.0871
16 - 17 -0.9382 23 - 24 -0.0004 16 - 17 0.9889
28 - 29 -0.7692 25 - 32 -0.0004 25 - 32 0.9113
25 - 32 -0.7336 28 - 29 -0.0003 28 - 29 0.7454
31 - 32 -0.5537 3 - 19 -0.0003 3 - 19 0.5564
24 - 25 -0.5394 5 - 6 -0.0002 16 - 27 0.5124
3 - 19 -0.5224 4 - 5 -0.0002 24 - 25 0.5006
23 - 28 -0.4713 16 - 27 -0.0002 31 - 32 0.4974
5 - 6 -0.4462 31 - 32 -0.0002 5 - 6 0.4219
4 - 5 -0.4400 7 - 8 -0.0002 23 - 28 0.4193
7 - 8 -0.4263 3 - 4 -0.0002 4 - 5 0.4115
16 - 27 -0.3809 23 - 28 -0.0002 7 - 8 0.3929
3 - 4 -0.3577 24 - 25 -0.0002 3 - 4 0.3330
8 - 9 -0.3113 8 - 9 -0.0002 8 - 9 0.2920
29 - 30 -0.2248 9 - 10 -0.0001 29 - 30 0.2689
14 - 15 0.2241 29 - 30 -0.0001 9 - 10 0.1964
9 - 10 -0.2046 14 - 15 0.0001 14 - 15 -0.1445
15 - 16 0.1647 15 - 16 0.0001 26 - 27 0.1158
6 - 7 -0.0983 6 - 7 -0.0001 15 - 16 -0.1139
25 - 26 0.0901 26 - 27 -0.0000 6 - 7 0.0933
26 - 27 -0.0724 30 - 31 -0.0000 30 - 31 0.0425
30 - 31 -0.0443 10 - 14 -0.0000 25 - 26 0.0405
10 - 14 0.0052 25 - 26 0.0000 10 - 14 0.0236
10 - 11 -0.0000 10 - 11 0.0000 11 - 12 0.0000
11 - 12 0.0000 11 - 12 -0.0000 10 - 11 -0.0000
12 - 13 -0.0000 20 - 21 0.0000 12 - 13 -0.0000
20 - 21 0.0000 12 - 13 -0.0000 20 - 21 -0.0000
21 - 22 -0.0000 21 - 22 -0.0000 21 - 22 -0.0000
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TABLE 2. Average computational time associated with linear state estimate approximation for
Hanoi network case study

Time (s)
State estimation via mathematical programming 0.7065
Sensitivity analysis computation 0.2345
Linear state estimate approximation from average state estimation 0.0001
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Fig. 1. Identifiability gradation for pipes with sensitivity above 50% percentile in Hanoi network
case study
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