
Author’s Accepted Manuscript

Ascorbic acid metabolism and functions: a
comparison of plants and mammals

Nicholas Smirnoff

PII: S0891-5849(18)30136-9
DOI: https://doi.org/10.1016/j.freeradbiomed.2018.03.033
Reference: FRB13680

To appear in: Free Radical Biology and Medicine

Received date: 17 November 2017
Revised date: 15 March 2018
Accepted date: 17 March 2018

Cite this article as: Nicholas Smirnoff, Ascorbic acid metabolism and functions: a
comparison of plants and mammals, Free Radical Biology and Medicine,
https://doi.org/10.1016/j.freeradbiomed.2018.03.033

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/153536239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com
https://doi.org/10.1016/j.freeradbiomed.2018.03.033
https://doi.org/10.1016/j.freeradbiomed.2018.03.033


1 
 

Ascorbic acid metabolism and functions: a comparison of 

plants and mammals 

 

Nicholas Smirnoff 

 

Biosciences, College of Life and Environmental Sciences, University of Exeter, 

Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK 

N.Smirnoff@exeter.ac.uk 

 

ABSTRACT 

Ascorbic acid is synthesised by eukaryotes, the known exceptions being primates 

and some other animal groups which have lost functional gulonolactone oxidase. 

Prokaryotes do not synthesise ascorbate and do not need an ascorbate supply, so 

the functions that are essential for mammals and plants are not required or are 

substituted by other compounds. The ability of ascorbate to donate electrons 

enables it to act as a free radical scavenger and to reduce higher oxidation states of 

iron to Fe2+. These reactions are the basis of its biological activity along with the 

relative stability of the resulting resonance stabilised monodehydroascorbate radical. 

The importance of these properties is emphasised by the evolution of at least three 

biosynthetic pathways and production of an ascorbate analogue, erythroascorbate, 

by fungi. The iron reducing activity of ascorbate maintains the reactive centre Fe2+ of 

2-oxoglutarate-dependent dioxygenases (2-ODDs) thus preventing inactivation. 

These enzymes have diverse functions and, recently, the possibility that ascorbate 

status in mammals could influence 2-ODDs involved in histone and DNA 

demethylation thereby influencing stem cell differentiation and cancer has been 

uncovered. Ascorbate is involved in iron uptake and transport in plants and animals.  

While the above biochemical functions are shared between mammals and plants, 

ascorbate peroxidase (APX) is an enzyme family limited to plants and photosynthetic 

protists. It provides these organisms with increased capacity to remove H2O2 
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produced by photosynthetic electron transport and photorespiration. The Fe reducing 

activity of ascorbate enables hydroxyl radical production (pro-oxidant effect) and the 

reactivity of dehydroascorbate (DHA) and reaction of its degradation products with 

proteins (dehydroascorbylation and glycation) is potentially damaging. Ascorbate 

status influences gene expression in plants and mammals but at present there is 

little evidence that it acts as a specific signalling molecule. It most likely acts 

indirectly by influencing the redox state of thiols and 2-ODD activity. However, the 

possibility that dehydroascorbylation is a regulatory post-translational protein 

modification could be explored.          

 

Abbreviations: 2-ODD, 2-oxolutarate-dependent dioxygenase; APX, ascorbate peroxidase; 

AO, ascorbate oxidase; DHA, dehydroascorbate (bicyclic); DHAR, dehydroascorbate 

reductase;  GLUT, DHA transporter; GSH, glutathione;  GSSG, glutathione disulfide; MDHA, 

monodehydroascorbate; MDHAR, monodehydroascorbate reductase; SOD, superoxide 

dismutase; SVCT, sodium-dependent ascorbate transporter; VDE, violaxanthin de-

epoxidase. 

 

Keywords: Ascorbic acid, Vitamin C; Hydrogen peroxide; Ascorbate peroxidase; 

Ascorbate oxidase; Gulonolactone oxidase; Galactonolactone dehydrogenase; 

Dehydroascorbate; Monodehydroascorbate; Dioxygenase; Iron reduction; 

Epigenetics; vtc mutants 

 

1. Introduction 

Ascorbic acid (ascorbate, vitamin C) is a simultaneously well-known and surprisingly poorly-

understood compound.  It is synthesised only by eukaryotes and, to date, chemical analyses 

have not provided strong evidence for its synthesis by prokaryotes. A number of animal 

groups, including primates, lack ascorbate biosynthesis capacity due to loss of function 

mutations in the biosynthetic enzyme gulono-1,4-lactone oxidase [1] but according to 

genome sequence analysis biosynthesis capacity may be lacking in other protist groups [2]. 

There has been much speculation about the reasons for loss of ascorbate biosynthesis 

capacity but no easily testable hypotheses have emerged.  It is essential for both plants and 

mammals but not for prokaryotes. This difference must reflect divergence between the 
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radical removal and redox systems or the enzyme cofactor requirements of eukaryotes and 

prokaryotes, unless the latter have an unidentified substitute “reductone”.  Additionally the 

requirement for ascorbate has driven the evolution of at least three different biosynthetic 

pathways and the production of D-erythroascorbate, a 5C analogue , in fungi. Given this 

situation, it is interesting that the literature on ascorbate functions in mammals, and 

particularly in work using cultured mammalian cells, has a focus its pro-oxidant effects [3,4], 

which has perhaps coloured perceptions of its function. There are likely to be differences in 

the handling of exogenous ascorbate by mammals with or without ascorbate biosynthesis 

capacity considering that primates have been evolving for 60 million years without 

biosynthesis [5]. Comparison between rodent models and humans is therefore not 

straightforward [3]. Furthermore, supplementation studies and nutritional trials have mixed 

results in supporting claims that large doses have specific health benefits. This review will 

focus on the biochemistry of ascorbate in relation to its proposed functions in plants and will 

make selected comparisons to mammals.  

2. Ascorbate chemistry: antioxidant and other functions. 

The chemistry of ascorbate is surprisingly complex and has been well-reviewed [6–8]. The 

redox reactions of ascorbate are shown in Fig. 1.  The one electron oxidation product of 

ascorbate is the monodehydroascorbate (MDHA) radical and this is probably the key 

determinant of its biological role. Because of resonance stabilization, MDHA does not readily 

react with oxygen or other molecules to generate more reactive radicals and hence is very 

effective as a radical scavenger. Ascorbate reacts with biologically-generated radicals such 

as superoxide, tocopheroxyl radicals and alkoxyl/peroxyl radicals with rate constants of >105 

M-1 s-1 [9,10].  Therefore, at sufficiently high concentration, ascorbate could complement 

SOD in superoxide removal in vivo and has the potential to regenerate tocopherol from 

tocopheroxyl radicals in vivo [11,12].  A possible superoxide removing function was indeed 

pointed out by Halliwell and Foyer some time ago [13].  Superoxide reacts very rapidly with 

NO to produce peroxinitrite which can generate further radicals and cause tyrosine nitration. 

Ascorbate is able to effectively scavenge superoxide and prevent tyrosine nitration in vivo at 

a concentration of 10 mM [14]. While the range of intracellular ascorbate concentrations in 

mammalian cells is 0.1-5 mM [8] and therefore may not be signicant for superoxide 

scavenging, it approaches 10-25 mM or more in chloroplasts [15,16] and 10 mM in neurons 

[17] and could therefore cooperate with SOD to remove superoxide and decrease 

peroxinitrite formation.  Ascorbate can reduce amino acid radicals (e.g. tyrosine, tryptophan) 

effectively [18,19]. In this respect it is more reactive than GSH and also could be seen as a 

preferred route because one electron donation by GSH produces the reactive and damaging 

thiyl radical [18]. Conversely, ascorbate can autoxidise, generating superoxide and its 
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dismutation product H2O2 (rate constant 3*102 M-1 s-1). However, this reaction depends on 

the di-anion form which is only substantially abundant at very high pH [8]. MDHA dismutates 

to produce dehydroascorbate (DHA) plus ascorbate in an equilibrium reaction that is far in 

favour of ascorbate + DHA.  While the structure DHA is often shown as a tri-carbonyl, this 

form is extremely unstable and in solution it is almost entirely present in the hydrated 

hemiacetal form (Fig. 1) [20]. In this review DHA refers to both forms.    

In contrast to its relatively fast reaction with superoxide and other radicals, ascorbate reacts 

slowly with H2O2 (rate constant 2 M-1 s-1 at pH 7) [21]. In green plants and a number of other 

photosynthetic protists, H2O2 removal is catalysed by a specialised family of heme 

containing ascorbate peroxidases (APXs). Although APX activity has been reported in a 

number of non-plants, it appears that a fundamental difference between mammals and 

plants is an additional high capacity H2O2 ascorbate-based scavenging system [2,22] in the 

latter to complement catalase as well as the more widely conserved peroxiredoxin and 

glutathione peroxidase-like systems [23,24].  Plants also possess specialised enzymes for 

regenerating ascorbate from MDHA and DHA, which are not present in animals. However, 

animals do contain different enzymes with these activities (Section 8). MDHA radicals can be 

detected by electron paramagnetic resonance spectroscopy in vivo and increase in leaves 

under oxidative stress [25]. Ascorbate has been reported to reduce the sulfenic acid form of 

1-Cys peroxiredoxin to the thiol state [26]. This is surprising from redox considerations and 

more work is needed to determine the physiological significance of this reaction.   

Because of its electron donating activity, ascorbate can cause radical production and 

therefore it can act as a pro-oxidant. Pro-oxidant effects are most likely to occur when 

ascorbate concentration is low so that balancing antioxidant effects are small.  A well-

characterised pro-oxidant effect of ascorbate derives from its ability to reduce Fe3+ and Cu2+, 

resulting in hydroxyl radical production in the Fenton reaction between Fe2+/Cu+ and H2O2 

[9].  Fe2+ can also reduce oxygen to superoxide, with generation of H2O2. If “free” redox-

active metals are present then the pro-oxidant effect of ascorbate is greatly increased.  This 

effect underlies the reports of ascorbate toxicity in mammalian cell cultures and the low (or 

lack of) ascorbate addition to culture media [3,8,27]. A critical study which varied ascorbate 

and Fe concentration in plasma provided no evidence for a pro-oxidant effect (lipid 

peroxidation) and rather showed a protective effect of ascorbate [28].  Large doses of 

ascorbate have been proposed as a cancer therapy because the altered metabolism of 

tumour cells makes them sensitive to its pro-oxidant effects [8], although ascorbate-

mediated epigenetic effects have been proposed as well (Section 7).  However, to achieve 

sufficiently high plasma concentration to damage tumour cells, it must be delivered 

intravenously to bypass the normal control of plasma ascorbate levels by uptake by the gut. 
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Non-enzymatic DHA degradation also generates H2O2 and might provide a significant H2O2 

source in plant cell walls [29].  The Fe reducing ability of ascorbate is the basis of its best-

known function in maintaining the activity of 2-oxoglutarate-dependent dioxygenases 

(Section 7).   

The ability of ascorbate to reduce Fe3+ suggests that it could have a physiologically 

significant role in Fe uptake. Plants have two strategies for extracellular Fe uptake. Fe3+ 

reduction by ferric chelate reductase (FRO, a plasma membrane enzyme related to 

NAPDPH oxidase) followed by Fe2+ uptake via an iron transporter, IRT (Strategy I). This 

system is induced by iron deficiency and also involves enhanced extracellular acidification 

by the H+-ATPase and citric acid efflux. In contrast, some monocotyledonous plants secrete 

a siderophore which chelates Fe3+ and the complex is absorbed (Strategy II) thus avoiding 

extracellular reduction [30]. Recent evidence suggests that ascorbate efflux additionally 

plays a role in Fe3+ reduction in pea and Arabidopsis (Strategy I plants) and facilitates Fe 

uptake into developing embryos. FRO activity is low in embryos but ascorbate secreted into 

the apoplast (the cell wall/extracellular space of plants)  reduces extracellular Fe3+. This 

mechanism is supported by genetic evidence, since the embryos of ascorbate deficient vtc2-

4 and vtc5 Arabidopsis mutants have decreased Fe3+ reducing capacity and a 75% 

decrease in seed Fe concentration [31].  The presence of ascorbate in the apoplast is well 

characterised, along with an apoplastic enzyme ascorbate oxidase, which affects its 

oxidation state [32]. However, critically, the nature of the transporters which enable 

ascorbate efflux and dehydroascorbate uptake in plants is unknown. Fe deficiency in the 

green alga Chlamydomonas causes a very large increase in ascorbate and expression of 

the homologue of the Arabidopsis biosynthesis gene VTC2, suggesting a role in iron uptake 

[33].  Ascorbate may also play a role in facilitating Fe uptake and homeostasis in mammals 

[34,35].       

As well as redox-related reactions, ascorbate reacts with electrophiles and DHA with 

nucleophiles and a number of naturally-occurring conjugates have been reported [36–39].  

Ascorbate is involved in the specialised glucosinolate (mustard oil glycoside)-based defence 

mechanism of cruciferous plants. During attack by insects, glucosinolates are broken down 

to release isothiocyanates or nitriles, the former acting as a feeding deterrent for generalist 

herbivores or as an attractant for specialized herbivores [40]. Ascorbate and indole-3-

carbinol, a breakdown product of indole glucosinolates, react to form ascorbigen [36,41].  

Glucosinolates are hydrolysed by myrosinase, a thioglucosidase which has an ascorbate 

requirement. Uniquely, ascorbate is associated with the active site of myrosinase and is part 

of its catalytic mechanism [42].  
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DHA reacts with cysteine, lysine and arginine residues to form dehydroascorbylated proteins 

[43–47] and also guanosine [48]. In the case of the eye, which has high ascorbate 

concentration, DHA and its breakdown products cause glycation of eye lens proteins such as 

crystallin [49] and GSH-DHA adduct forms in Jurkat cells fed with DHA [50].  It is possible 

that dehydroascorbylation could act as a specific regulatory post-translational protein 

modification responding to increased ascorbate oxidation rather than as generic damage, 

but so far there is no evidence for this role.  

3. Naturally-occurring ascorbate derivatives and analogues 

A range of ascorbate-like compounds occur in different groups of organisms and there is 

diversity in the occurrence of esters and glycosides (Fig. 2).  Ascorbate is the most widely 

distributed and is the only form present in mammals. However, brine shrimp cysts contain 

ascorbate 2-sulfate which is hydrolysed to release ascorbate when the shrimps become 

active [51,52].  Derivatisation of the 2-position stabilises ascorbate against oxidation.  In 

green plants two ascorbate derivative have been identified: 6-O-glucosyl in curcurbits 

(squashes) [53] and 2-O-glucosyl in goji berry (Lycium barbarum) fruit [54]. Fungi diverge 

from other organisms in synthesising D-erythroascorbate, a C5 analogue along with its 5-O-

glycosides [55–59]. Basidiomycete fungi additionally make 6-deoxyascorbate and its 5-O-

glycosides [60]. Ascorbate 6-phosphate is synthesised by E. coli as part of its ascorbate 

uptake and utilisation pathway [61].  A systematic survey of the under-explored groups of 

eukaryotes might reveal further diversity of ascorbate analogues (reductones) or 

replacements that satisfy the key features of an enediol group which acts as a one electron 

donor antioxidant with a “resonance stabilised” free radical oxidation product.    

4. Ascorbate biosynthesis 

Ascorbate is most likely not made or required by prokaryotes but is synthesised and required 

by eukaryotes.  Selected eukaryote groups (including primates and teleost fish) have lost a 

functional gene encoding the last enzyme in the pathway and have to obtain dietary vitamin 

C [1]. Analysis of genome sequences suggests a few other eukaryotic groups (e.g. ciliates) 

may also lack biosynthetic capacity [2]. Ascorbate biosynthesis pathways differ between 

animals, green plants and photosynthetic protists [2,62] while, as noted in the previous 

section, fungi synthesis a 5C analogue of ascorbate, D-erythroascorbate. Recent evidence 

suggests that the nematode C. elegans contains ascorbate but does not use any of the 

known pathways [63].  Ascorbate biosynthesis pathways have been well-reviewed [2,57,64–

66] and recent developments are minimal, so they will only be outlined here (Fig. 3).  In 

green plants, despite repetitive claims in numerous publications, there is only definitive 

evidence for the D-mannose/L-galactose (Smirnoff-Wheeler ) pathway but tantalising 
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suggestions for incorporation of D-galacturonic acid in some tissues such as tomato fruit 

[67].  In mammals, ascorbate is synthesised in the liver but, presumably because it is not 

made by humans, details of pathway control have received very little attention since the 

1960s. Knockout mutants in mice [68] have identified the lactonase (Fig. 3) and provide 

experimental material for probing ascorbate function more deeply.  The final step in the 

mammalian pathway is catalysed by L-gulono-1,4-lactone oxidase, an FAD-linked enzyme 

which appears to be associated with the endoplasmic reticulum (Fig. 5). Its precise location 

is not known but it is assumed to produce ascorbate on the lumenal side of the ER 

membrane with the production of H2O2 [64]. A number of generally un-testable hypotheses 

have been advanced to explain loss of ascorbate biosynthesis capacity in primates, teleost 

fish and other scattered animal species, including avoidance of H2O2 production by 

gulonolactone oxidase and replacement of ascorbate with uric acid as an antioxidant since 

the loss of gulonolactone oxidase is correlated with loss of uricase [69].  The UDP-

glucuronate used for ascorbate synthesis is also required for detoxification and excretion of 

toxins and drugs by glucuronidation  It is possible that removal of ascorbate biosynthesis, 

which is estimated to comprise 30% of the flux through UDP-glucuronate in rat liver [64] 

improves the capacity to detoxify dietary phytochemicals by glucuronidation.  Beyond this, 

any other factors controlling the rate of ascorbate synthesis in mammals are not known.  In 

plants and green algae, the current view is that control of pathway flux resides largely at the 

GDP-L-galactose phosphorylase step which is encoded by the paralogues VTC2 and VTC5 

in Arabidopsis thaliana [65,70]. This is the first step in the D-mannose/L-galactose pathway 

that is dedicated to ascorbate synthesis. Arabidopsis leaf ascorbate concentration adjusts to 

light intensity over a period of 4 days [71] showing a close relationship with the 

photosynthetic light response curve. VTC2 and VTC5 transcripts are increased by high light 

intensity, possibly via a photosynthesis-sourced signal [72–74]. Ascorbate accumulation is 

induced by low and high temperature and nitrogen deficiency [75,76]; stresses which limit 

photosynthesis rate and, like high light intensity, give rise to excess excitation energy. VTC2 

and VTC5 expression does not respond to H2O2 or other oxidative stresses suggesting that 

the signal is not ROS related, although algae differ since the Chlamydomonas VTC2 

orthologue is strongly induced by H2O2, singlet oxygen and tert-butyl hydroperoxide [77–79]. 

To maintain the appropriate ascorbate concentration, its rate of synthesis is repressed as 

ascorbate increases and the rate of breakdown increases [80]. VTC2 is proposed as the 

step responsible for feedback inhibition via decreased translation. Laing et al. suggest that a 

small ascorbate binding peptide, encoded by a uORF, influences translation of VTC2 mRNA. 

This is an intriguing hypothesis but the existence of this peptide and its effect on translation 

has not been directly measured. The last step of ascorbate biosynthesis in plants is 

catalysed by L-galactono-1,4-lactone dehydrogenase. It is located in complex 1 of the 
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mitochondrial electron transport chain (Figs. 3 & 5) and, as well as forming ascorbate, most 

likely in the inter-membrane space [81–83], it is required as a chaperone for assembly of 

complex 1 [84–86]. This dual role is intriguing and suggests a link between mitochondrial 

function and ascorbate whose role is not entirely obvious.     

5. Ascorbate and dehydroascorbate catabolism 

The ascorbate pool undergoes turnover in plants [80,87–89]. Turnover is increased by 

oxidative stress thus decreasing the total ascorbate pool. For example, this occurs in 

catalase mutants and when catalase activity is inhibited by aminotriazole [90,91]. Ascorbate 

catabolism causes extensive post-harvest loss from salad leaves [92]. The additional radical 

production caused by smoking results in a increased daily requirement for ascorbate to 

maintain plasma concentration [93]. In leaves, there is a strong relationship between 

ascorbate and light via light-induced and circadian expression of the biosynthetic genes 

VTC2 and VTC5 (Section 4). Through normal light/dark cycles ascorbate only fluctuates to a 

small extent but when the dark period is  extended, ascorbate pool size and VTC2/5 

expression are decreased [72,87–89].  The rapid ascorbate loss in extended dark occurs 

along with the induction of a range of carbohydrate starvation responses that are induced by 

this treatment [94]. The final stable products of DHA catabolism differ between species, with 

oxalic and threonic acid being the most common [89,92]. The pathway for production of 

these compounds from DHA under apoplastic conditions involves a mixture of non-

enzymatic and enzymatic steps including intermediates such as 4-O-oxalyl L-threonate  (Fig. 

4) [29,95]. DHA also hydrolyses to 2,3-L-diketogulonate. This compound, under apoplastic 

conditions, is oxidised to a currently unidentified compound (Compound 1) which can 

generate H2O2 non-enzymatically and also inhibits peroxidase. Interestingly, compound 1 is 

destroyed by ascorbate oxidase (a prominent cell wall localised enzyme) so may have an 

enediol group [96]. These reactions provide the possibility that this DHA derivative could 

influence pathogen defence responses and cell wall polymer cross linking processes that 

depend on H2O2 and type III peroxidases. Studies of ascorbate/DHA breakdown products 

have to a large extent been carried out under apoplastic conditions and with exogenously-

supplied 14C-ascorbate. The extent to which ascorbate or DHA are degraded by similar 

intracellular pathways is unknown. A number of plant species accumulate calcium oxalate 

crystals in specialised crystal idioblast cells. Labelling and genetic evidence suggests that 

the oxalate is derived from ascorbate [97–99]. The pathway or its cellular location is not 

known although Medicago truncatula mutants with increased oxalate may provide 

information [99]. Oxalate can also be synthesised from glyoxylate or oxaloactetate and in 

rice, it is probably derived from glyoxylate [100].  L-Tartaric acid is a product of ascorbate in 

plants belonging to the families Vitaceae and Geraniaceae. Red wine drinkers will be familiar 
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with the crystalline precipitate that contains insoluble tartaric acid salts which is derived from 

grape ascorbate. In contrast to threonate/oxalate production, this 5 step pathway in grapes 

uses ascorbate, not DHA and one enzyme, L-idonate dehydrogenase, has been identified 

[101,102].  In mammals, as in plants, DHA gives rise to diketogulonate, threonate and 

oxalate.  Additionally, in the eye ascorbate-derived L-erythrulose gives rise 3-

deoxythreosone, a reactive osone that glycates lens proteins [103,104] and C5 aldonic acids 

which may be converted to D-xylulose 5-P and enter central metabolism via the pentose 

phosphate pathway [64,105,106]. The formation of kidney stones composed of calcium 

oxalate is often cited as a potential danger of ingesting large amounts of ascorbate but this is 

probably unlikely in healthy people [3]. In summary, DHA has a complex chemistry and in 

vivo can produce a range of products some of which are reactive and can damage proteins 

or give rise to H2O2. Consequently the ascorbate pool must be maintained by continual 

biosynthesis or dietary intake, the requirement increasing when DHA production increases 

during oxidative stress.           

6. Ascorbate distribution and transport.  

Ascorbate concentration in plants varies between tissues, with highest concentrations in 

leaves and flowers and lower concentrations in less photosynthetically active tissues such as 

stems and roots [32].  Ascorbate and DHA disappear from developing seeds as they mature 

and dehydrate and is accumulated during imbibition and early germination [107–109].  

Ascorbate occurs in all compartments of plant cells in mM concentrations and in the 

extracellular space (apoplast) where its concentration is 5-10 times lower and it is more 

oxidised than the intracellular pool (Fig. 5). In Arabidopsis, the typical leaf ascorbate 

concentration (2-10 µmol g-1 fresh weight) is higher than any other primary metabolite [110]  

Ascorbate is transported long distance in the phloem so can move from photosynthetically 

active leaves to sink tissues such as roots [111,112].  The mechanism of ascorbate transport 

in plant cells is a major gap in knowledge. A high affinity uptake system (Km 40 µM) has 

been demonstrated in Arabidopsis cell cultures which is specific to DHA. Using careful 

control of ascorbate oxidation to DHA, it was shown that ascorbate transport is negligible 

[113] and previous reports of ascorbate uptake [114,115] are likely to be due to oxidation of 

supplied ascorbate. Plant cell cultures rapidly oxidase ascorbate and this is most likely 

mediated by the apoplastic ascorbate oxidase (Section 8).  Cultured cells exposed to H2O2 

release a pulse of ascorbate, which oxidises in the culture medium and is then re-absorbed 

indicating a possibility that oxidative stress activates an ascorbate efflux system to protect 

the apoplast [116]. Recently, electrophysiological measurements have provided evidence for 

ascorbate efflux via an anion channel which is activated by gluconic acid and blocked by 

anthracene-9-carboxylic acid [117]. The transport proteins responsible for DHA uptake and 
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ascorbate efflux have not yet been identified.  Ascorbate/DHA uptake by isolated vacuoles or 

thylakoid membranes is non-saturable, so may not involve a specific carrier [114,115]. 

Ascorbate uptake by chloroplasts is carrier mediated but it is only recently that a transporter 

was identified as PHT4;4, a member of a phosphate transport family. Mutants of this 

transporter had decreased chloroplast ascorbate concentration and impaired non 

photochemical quenching (an ascorbate-dependent process- Section 7) [118,119]. 

Considering the amount of residual ascorbate in the chloroplasts of this mutant, other 

transporters may be required.  Mitochondria from tobacco BY2 cells take up ascorbate and 

DHA (Km 36 µM and 6 µM respectively, with similar Vmax for both). Uptake of DHA was 

preferred and, based on inhibitors and competition experiments, DHA uptake could use, or 

share the use of a glucose transporter [120]. However, since the intracellular ascorbate pool 

is usually >90% reduced, it is likely that mitochondrial uptake involves ascorbate as well as 

DHA.        

In mammals, ascorbate uptake across the plasma membrane is mediated by Na-dependent 

transporters (SVCTs). This process allows concentration from the micromolar plasma 

concentrations to intracellular concentrations in the millimolar range [8,121]. As a broad 

generalisation, the highest concentrations occur in neurons/brain, the eye, phagocytes and 

the adrenal gland which are tissues particularly exposed oxidative stress or, in the case of 

the adrenal gland, which house hormone synthesising 2-oxoglutarate-dependent 

dioxygenases. The occurrence of very high ascorbate in neurons seems to be related the 

very high aerobic respiration rate which could lead to superoxide production in mitochondria 

but additional roles in neurotransmission and brain metabolism are evident [122–127]. DHA 

uptake is facilitated by GLUTs (glucose transporters), so it follows concentration gradients, 

allowing reduction to ascorbate in the cell (by DHAR type enzymes) to drive uptake.  In 

humans, there is genetic variation in SVCT expression and it can also decline with age [128].  

Therefore, the extent of dietary intake to satisfy demand will vary between individuals.  

Modulation of transport activity is potentially a way to control intracellular ascorbate status in 

mammalian cells since, even in those species able to synthesise it, it is distributed from its 

main site of synthesis in the liver. Ascorbate is often present at low concentration or is not 

added to mammalian cell culture media [129]. This state of affairs seems to be driven by the 

artefactual pro-oxidant effect of ascorbate in culture media [130,131]. Therefore, there is a 

possibility is that many studies with cell cultures (even for ascorbate synthesising species) 

will be based on abnormally ascorbate deficient cells, resulting in lack of understanding of its 

functions or translation to whole bodies [3]. This is being highlighted by recent advances in 

its effect on epigenetic control of gene expression via 2-ODDs (Section 7).    

7. Ascorbate-dependent enzymes. 
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A number of enzymes require ascorbate and it has distinct roles as a “chaperone” to 

maintain active centre Fe2+ (2-oxoglutarate-dependent dioxygenases), a catalytic role in the 

active site of myrosinase (Section 2) and as a substrate (violaxanthin de-epoxidase).  Other 

enzymes could be affected by ascorbate, an example being mitochondrial glycerol 3-

phosphate dehydrogenase from guinea pigs. It is activated several-fold by ascorbate and is 

proposed to be involved in ascorbate-stimulated insulin release [132].   

2-oxoglutarate-dependent dioxygenases: a renaissance in attention for ascorbate. The 

archetypal understanding of ascorbate function derives from the severe deficiency disease 

scurvy, which is now rare. The various symptoms are consistent with a lack of collagen, a 

protein critical for the structure of the extracellular matrix. Collagen contains hydroxyproline 

and hydroxylysine residues essential for its structural properties and these are formed post-

translationally by peptidyl prolyl hydroxylase [133].  This enzyme is a 2-oxoglutarate 

dependent dioxygenase (2-ODD) with Fe in its active site. Ascorbate is an effective 

chaperone for this enzyme because, if substrate does not bind, the enzyme undergoes an 

uncoupled reaction cycle resulting in the active site Fe becoming stalled in a high oxidation 

state. Ascorbate reduces it back to Fe2+ and restores activity [134,135]. Other 2-ODDs 

synthesise carnitine and adrenaline/catecholamines which impact energy metabolism during 

the development of scurvy [8]. While ascorbate is the normal reductant and cannot be 

replaced [136,137] there are some 2-ODDs in which glutathione can maintain activity [138]. 

Considering that 2-ODDs are present in prokaryotes that lack ascorbate, the enzymes may 

vary in likelihood of uncoupled reaction cycles occurring as well as ability to use a thiol 

reductant [137]. Presumably one electron reduction of Fe by GSH would produce a 

potentially damaging thiyl radical. 2-ODDs are involved in hydroxylation of HIF (hypoxia 

inducible factor). This provides an oxygen sensing mechanism in which high oxygen 

concentration increases hydroxylation of prolyl residues leading to ubiquitination and 

proteolytic degradation of HIF [137].  As noted above there seems to be variation between 

HIFs in the ability of GSH to replace ascorbate [137,138]. 

Recently, in mammals an interest in ascorbate has received a boost by the recognition that 

2-ODDs are involved in histone and DNA demethylation and therefore the epigenetic 

regulation of gene expression [129]. TET (ten eleven translocation) proteins are 2-ODDs that 

convert 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine (5hmC), 5-formylcytosine (5fC) 

and then 5-carboxylcytosine (5caC). 5fC and 5caC are then replaced by cytosine by base 

excision repair machinery [139]. Ascorbate, but not other antioxidants, increases TET-

dependent 5hmC production and cytosine demethylation in mice embryonic stem cells 

leading to changes in development [136].  TET2 is involved in differentiation of 

haematopoietic stem cells (HSCs). In humans and gulonolactone oxidase mutant mice 
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studies, ascorbate promoted TET2-dependent 5hmC formation allowing normal 

differentiation while ascorbate or TET2 deficiency allows HSCs to proliferate resulting in 

leukaemia [140–142]. Histone demethylation requires Jumonji C-domain-containing histone 

demethylases, which are also ascorbate-dependent 2-ODDs, thereby providing a further 

means for ascorbate to influence gene expression [129,139].  The possibility of ascorbate 

influencing cell differentiation and therefore cancer raises the question of the extent to which 

it might have a regulatory influence. The observation that HSCs contain very high ascorbate 

[141] raises the possibility that accumulation in specific cell types via high SVCT expression 

could control TET activity and differentiation. It also highlights the importance of ascorbate 

status in cell culture studies [129].   

Plants have numerous 2-ODDs involved in hormone synthesis (ethylene, abscisic acid, 

gibberellins) and degradation (IAA) and synthesis of a wide range of secondary compounds, 

including anthocyanins and glucosinolates [143–145].  Also, cysteine oxidase oxidises N 

terminal cysteines to mark proteins for degradation via the N-end rule [146].  Similarly to 

animals, plants have hydroxyproline containing extracellular matrix proteins such as extensin 

and type III peroxidases [147].  The question therefore arises if ascorbate deficient mutants 

suffer from scurvy-like symptoms. Measurement of hydroxyproline in hydrolysed cell wall 

pellets of wild type and vtc1 and vtc2 ascorbate deficient Arabidopsis mutants found no 

differences showing that decreasing ascorbate to 20% of normal does not affect proline 

hydroxylation [148]. However, ascorbate deficient mutants are impaired in high light- induced 

anthocyanin accumulation, a process requiring several 2-ODDs but this seems to be caused 

by impaired induction of anthocyanin biosynthesis gene expression suggesting an indirect 

effect of ascorbate on high light signalling [71] possibly through an influence on H2O2, since 

anthocyanin accumulation is also suppressed in a catalase mutant [149].    

Violaxanthin de-epoxidase (VDE) is a plant-specific enzyme in the lipocalin family which 

uses ascorbate as reductant in the de-epoxidation of the xanthophyll pigment violaxanthin to 

produce zeaxanthin [150]. The enzyme is localised on the lumen side of the thylakoid 

membranes in chloroplasts and is activated by the decrease in lumenal pH that results from 

photosynthetic electron transport.  Zeaxanthin is involved in the process of non 

photochemical quenching (NPQ) which is essential for protecting photosynthesis from 

damage by intense light [151]. Excess excitation energy in the PSII light harvesting 

complexes is transferred to zeaxanthin, which is then able to dissipate this energy 

harmlessly as heat.  Arabidopsis ascorbate-deficient vtc mutants are impaired in the speed 

and extent of NPQ development and zeaxanthin accumulation in high light and are more 

sensitive to photooxidative stress [152–155]. As noted by Foyer and Lelandais [114], the 

apparent lack of a transporter to move ascorbate into the thylakoid lumen could provide an 
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explanation for the high ascorbate concentration in chloroplasts to maintain a supply for 

VDE. The suggestion that a protein from a phosphate transporter family (PHT4;1) could be a 

thylakoid membrane ascorbate transporter requires investigation [118].        

8. Ascorbate oxidising and recycling enzymes 

Ascorbate peroxidase (APX).  While ascorbate reacts with hydrogen peroxide, the rate 

constant is 2 M-1s-1 [21] so the reaction will be slow under physiological conditions. 

Therefore, efficient H2O2 removal by ascorbate requires catalysis and, while APX activity 

has been reported in a range of species, a haem peroxidase with high specificity for 

ascorbate is largely confined to green plants and photosynthetic protists [2]. For this reason 

ascorbate is not seen as a key player in H2O2 removal in mammals. Plant APX has been 

very well reviewed recently [156], so only a few points will be summarised here. Around 

eight APX genes occur in Arabidopsis, some being targeted to more than one location. In 

chloroplasts, there are two APXs, on in the stroma and the other associated with the 

thylakoid membrane near PSI. They are both sensitive to inactivation by H2O2 compared to 

cytosolic isoforms, particularly if ascorbate concentration is low. This sensitivity is decreased 

by mutation of specific amino acid residues [157,158]. The authors suggest that engineering 

plants with H2O2 resistant chloroplast APXs could improve stress resistance, however an 

alternative view is that H2O2 sensitivity enables H2O2 to escape the chloroplast and act as a 

signal [159,160]. APX is activated by nitrosylation and its activity is also affected by nitration 

and carbonylation, providing a potential for levels of RS to influence H2O2 scavenging 

capacity [161–163]. Numerous studies with mutants and APX over-expressing plants have 

confirmed the important role of APX in protecting plants from oxidative stresses and have 

revealed reams of genes whose expression is changed [164]. Because there is a parallel set 

of multiple thiol peroxidase enzymes in plants (peroxiredoxins and glutathione peroxidase-

like), plants with multiple mutations are needed to assess their interacting functions [23,24].  

The expression of various APX genes is affected by environmental conditions and it is 

noteworthy that the Arabidopsis cytosolic forms (APX1 and APX2) are very responsive to 

high light and H2O2 [156,165–167].          

Dehydroascorbate reductase (DHAR).  Glutathione reduces DHA slowly under 

physiological conditions but the reaction is catalysed by a wide range of enzymes in plants 

and mammals. These include the plant glutathione-dependent DHARs, which are part of the 

glutathione S-transferase superfamily, glutaredoxin, thioredoxin (NADPH-dependent) and 

protein disulfide isomerase [168–173]. Plants have multiple isoforms of GSH-dependent 

DHARs which are targeted to cytosol, chloroplasts, mitochondria and peroxisomes with Km 
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values for DHA and GSH in the 0.1 and 5 mM range respectively [169,172]. Crystal 

structures and reaction mechanisms have been proposed for the green plant enzyme [174–

176]. Both suggest that an active site cysteine is converted to the sulfenic acid form due to 

oxidation by DHA, which itself is reduced to ascorbate. This reaction also requires input of 

one water molecule. Both studies show the substrate as the (very unstable) tri-carbonyl form 

of DHA, but it is generally accepted that it hydrates in solution to the bicylic hemiacetal form 

[6] and possibly the hydrated substrate supplies the necessary oxygen for sulfenic acid 

production.  In this reaction mechanism, DHA is not covalently bound to the enzyme but, in 

liver glutaredoxin which reduces DHA to ascorbate with similar Km values to the plant 

DHARs, DHA is proposed to be covalently bound to the active site cysteine as a 

thiohemiketal intermediate [171]. Knockout mutants of Arabidopsis DHAR1 (cytosolic and 

peroxisomal), and 2 (cytosolic) and DHAR3 (chloroplastic) have little difference in total 

ascorbate (ascorbate + DHA) concentration until exposure to high light intensity. The GSH 

pool is less oxidised in the DHAR3 mutant (one allele only) under low or high light but only 

under high light in DHAR1 mutants, perhaps reflecting a greater rate of ascorbate oxidation 

in chloroplasts compared to cytosol in low light [177,178]. In low light the oxidation state of 

the ascorbate pool (DHA/total ascorbate) is unaffected in DHAR mutants and is around 0.9, 

a value typical of a wide range of studies. Rather inexplicably this value decreases to 0.5 in 

HL treated plants in one study but not the other, but in either case wild type and mutants do 

not have difference in ratios. Along with greater loss of ascorbate in mutants during HL 

stress, this observation would suggest that DHA that is not reduced is degraded and lost to 

the ascorbate pool. In leaves, large proportions of DHA are probably only present under 

extreme conditions and furthermore, close examination of the literature suggests that DHA/ 

total ascorbate increases as total ascorbate decreases, suggesting this ratio mostly 

represents a constant DHA concentration, possibly produced during extraction. The 

Arabidopsis DHAR1 and 3 mutants do clearly show that DHA recycling is required for 

tolerance to photo-oxidative stress.  Studies with various plant species show increased 

ascorbate pool size, sometimes increased GSH, and improved tolerance to oxidative and 

related stresses (at least under laboratory conditions) when DHAR is over-expressed [179–

184]. Rice grain yield was increased by ~15% under paddy field conditions in two seasons 

by over-expressing a rice DHAR [185]  Stomatal guard cell closure is partly controlled by 

H2O2 and DHAR over-expressing plants have more open stomata, suggesting improved 

H2O2 removal is enabled [186]. Expression of DHAR in mammalian cells also influences 

ascorbate and oxidative stress tolerance [170].  

Monodehydroascorbate reductase (MDHAR).   MDHA is the likely initial product of the 

reducing activity of ascorbate and also exists as part of the equilibrium between ascorbate 
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and DHA (Section 2).  Its presence in vivo is confirmed by electron paramagnetic resonance 

spectroscopy which shows that it increases under stressful conditions [25,187]. Plant 

MDHAR is a FAD-linked reductase and has a high affinity for MDHA, which it reduces to 

ascorbate, and has a strong preference for NADH over NADPH [188].  A recent crystal 

structure of rice MDHAR provides a structural basis for this preference [189]. Although 

MDHAR activity has been reported in animals, no specific proteins are characterised [190] 

and, with a few exceptions (e.g. choanoflagellates) the gene family is limited to green plants 

[2]. MDHAR is encoded by 5 genes in Arabidopsis, with predicted targeting to cytosol, 

chloroplasts, peroxisomes and mitochondria. Various forms are soluble or anchored to 

peroxisomal [191] and plasma membranes [168].  Although MDHAR activity is reported in 

the apoplast of barley [192], none of the Arabidopsis proteins have predicted secretory 

sequences. While current reports on the consequences of manipulating MDHAR activity 

focus on ascorbate, there is evidence that it also reduces other radicals, for example 

phenoxyl radicals produced during oxidation of quercetin, ferulic acid, coniferyl alcohol and 

chlorogenic acid [193]. Recently, in an interesting twist, the toxicity of the explosive 2,4,6-

trinitrotoluene (TNT) was shown to be dependent on mitochondrial MDHAR activity. Mutants 

in Arabidopsis MDHAR6 are more tolerant to TNT because it is reduced to a radical which 

then autoxidises, generating superoxide [194].  Therefore, it is clear that MDHAR has wide 

substrate specificity and could be multifunctional, a possibility that should be considered 

when interpreting the results of over-expressing it. Furthermore isoforms in different 

compartments could have different substrate preferences, as evidence by the specificity of 

MDHAR6 in TNT toxicity.    

Ascorbate oxidase (AO) is a blue copper oxidase which is glycosylated and secreted into 

the cell wall.  It oxidises ascorbate with the production of water (Fig. 5) and also oxidises 

“Compound 1” (Fig. 4), an unidentified breakdown product of DHA [195]. Consistent with its 

localisation in the apoplast, mutants with decreased AO activity have a more reduced 

apoplastic ascorbate pool while AO over-expression in tobacco oxidises apoplastic 

ascorbate with no effect on intracellular ascorbate oxidation state [196–199].  Apoplastic 

ascorbate is involved in defence against ozone in some species and tobacco AO over-

expressers are more susceptible [196]. It tends to have its highest activity in areas of cell 

expansion and there has been speculation that it influences cell expansion and hormone 

and redox signalling in the apoplast [200–203].  Mutants and over-expression of the enzyme, 

however, have not provided a clear picture of its function. It is important to note that an 

Arabidopsis T-DNA insertion mutants and tobacco antisense lines with less than 20% of wild 

type AO activity exhibit subtle changes in growth or development [197,199]. Therefore, either 

AO does not have a fundamental role in plant growth or this function can be supported by 
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20% of normal activity. Lowered AO however does manifest noticeable effects during stress 

treatments (for example ozone, salt, drought and pathogen challenge) so it may be important 

for plant growth in natural environments [199,204].      

9. What have plant mutants in ascorbate metabolism revealed about its function? 

In plants, mutants affected in ascorbate biosynthesis (e.g. vtc mutants in Arabidopsis), APX, 

MDHAR and DHAR have been characterised. Differences in the properties of biosynthesis 

and APX mutants (Section 8) could provide a tool to differentiate the functions of ascorbate 

itself (e.g. free radical removal, Fe nutrition, 2-ODDs) from its role in H2O2 removal.  The 

most useful biosynthesis mutants will be in the first dedicated step of the pathway (GDP-L-

Gal phosphorylase) because they are least effected by disruption of cell wall metabolism and 

protein glycosylation. In Arabidopsis, GDP-L-Gal phosphorylase is encoded by two genes 

(VTC2 and VTC5) as described in the section on biosynthesis. The double vtc2vtc5 mutant 

cannot grow after initial germination unless supplemented with ascorbate or its immediate 

precursors [205,206], showing that ascorbate is absolutely essential for plants. The 

challenge is to devise a strategy to identify which critical processes have failed in the double 

mutant: this has not yet been achieved.  A simple explanation in relation to seed germination 

would be the large amount of H2O2 generated by fatty acid β-oxidation for powering early 

growth of this oilseed. This is supported by the deleterious effect of a peroxisomal MDHAR 

mutant [191]. However, this effect is alleviated by growth on sucrose (which suppresses fatty 

acid utilisation) and the double mutation is still lethal on sucrose supplemented media.  vtc2 

mutants with ~20% of wild type ascorbate grow nearly as well as WT [206] although the 

widely-used vtc2-1 allele is small [205,207]. Its small stature can be separated from 

ascorbate deficiency by backcrossing suggesting that other mutations are responsible [206]. 

Since ascorbate is generally the most abundant primary metabolite in Arabidopsis leaves, 

the question of why its concentration can be decreased with such a small effect arises.  The 

most likely explanation is that somewhere between 0-20% is needed to maintain basic 

functions and larger amounts are not needed under benign laboratory conditions.  When 

laboratory-grown plants are challenged by more stressful conditions, then vtc mutants start 

to display symptoms. They are more sensitive to high light, temperature extremes, salinity, 

ozone and a number of other stresses, particularly leading to photo-oxidative stress and, in 

extreme cases, cell death [75,155,208–211]. Overall, it is clear that in leaves, ascorbate, in 

collaboration with the thiol system, has a role in protection against reactive oxygen species 

produced during photosynthesis [212]. Also, thylakoid lumen ascorbate is required for 

photoprotection via VDE activity (Section 7) and it can also act as a electron donor to the 

photosystems when their function is damaged by stress [213,214]. Outside controlled 

laboratory environments light intensity is higher, light and temperature fluctuate 
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unpredictably in the short term, mineral nutrients and water supply vary and pests and 

pathogens are always present.  Such conditions have perhaps selected for maintenance of a 

larger ascorbate pool than is needed for growth in benign conditions. However, an upper 

limit on ascorbate accumulation might be imposed by removal of H2O2 or radicals needed as 

signals to maintain defences and growth. More specifically, ascorbate deficient vtc mutants 

have increased resistance to biotrophic pathogens such as Pseudomonas syringae. This is 

probably caused by increased H2O2 in the mutants and mediated by salicylic acid, a 

hormone involved in basal immunity [215–219].  Conversely, low ascorbate increases 

sensitivity to Alternaria, a necrotrophic pathogen [220]. The upshot is that leaves may need 

to control ascorbate pool size to balance susceptibility to photo-oxidative stress and 

necrotrophic versus biotrophic pathogens. 

10. Conclusions: what are the key functions of ascorbate and is it involved in 

signalling? 

Ascorbate has a varied chemistry, enabling the following functions. 

1. Detoxification of radicals via one electron reduction with formation of the unreactive 

and “harmless” MDHA radical. 

2. Removal of H2O2 in organisms possessing ascorbate peroxidase (e.g. photosynthetic 

eukaryotes). H2O2 is produced by oxygen photoreduction at PSI during 

photosynthetic electron transport and by photorespiration. This provides an additional 

H2O2 burden in photosynthetic organisms. 

3. Two other plant enzymes require ascorbate. Violaxanthin de-epoxidase (VDE), an 

essential enzyme in photoprotection of photosynthesis, uses ascorbate as reductant. 

Myrosinase, a thioglucosidase present in Cruciferous species that synthesise 

glucosinolates, uses ascorbate in its catalytic mechanism. 

4. Reduction of Fe3+ to facilitate Fe uptake. 

5. Protect 2-oxoglutarate-dependent dioxygenases (2-ODDs) from inactivation by 

reducing active centre Fe. Impaired collagen synthesis is the most obvious symptom 

of scurvy. Recently, the recognition that 2-ODDs participate in histone and DNA 

modifications have resulted in the suggestion that ascorbate could “regulate” 

epigenetic control of gene expression.   

Consistent with the above functions, ascorbate concentration is high in tissues in which 

dealing with a high flux of oxidants and free radicals, or where defence is critical. Examples 

are phagocytes (e.g. neutrophils), neurons and associated cells, the eye and photosynthetic 

cells. Consistent with a role in removing radicals, smokers in general require a higher daily 

intake of ascorbate to maintain plasma concentration compared to non-smokers. Ascorbate 
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is also high in the adrenal gland, which houses numerous 2-ODD-dependent biosynthetic 

pathways.  These biochemical functions for ascorbate are clear but it is less clear if it can be 

considered to have a role in signalling, except in a very wide sense. If ascorbate has a direct 

role in signalling, then a sensor is required and currently there is no compelling evidence for 

one. In plants, the closest is the hypothetical ascorbate-binding peptide that controls VTC2 

expression [221]. E. coli has an ascorbate 6-P binding protein which controls its ascorbate 

catabolism operon [61]. The possibility that dehydroascorbylation of proteins by DHA (or its 

degradation products) could act as a regulatory post-translational modification was reviewed 

in an earlier section. An example of this is a mammalian protein kinase involved in NF-B 

signalling which is inhibited by DHA binding [222]. These examples are very limited but, 

given that ascorbate status affects gene expression in both plants and mammals, it is more 

likely it does so by influencing H2O2 [159] and free radical levels, which then affect thiol-

based signalling [160].   

 

Acknowledgments 

NS was funded by UK Biotechnology and Biological Sciences Research Council grant 

numbers BB/I020004/1 and BB/N001311/1.  I apologise to colleagues whose work I was 

unable to cite due to space limitation.   

 

References 

[1] G. Drouin, J.-R. Godin, B. Pagé, The genetics of vitamin C loss in vertebrates, Curr. 

Genomics. 12 (2011) 371–8. doi:10.2174/138920211796429736. 

[2] G.L. Wheeler, T. Ishikawa, V. Pornsaksit, N. Smirnoff, Evolution of alternative 

biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic 

eukaryotes, Elife. 4:e06369 (2015). doi:10.7554/eLife.06369. 

[3] A.J. Michels, B. Frei, Myths, artifacts, and fatal flaws: Identifying limitations and 

opportunities in vitamin C research, Nutrients. 5 (2013) 5161–5192. 

doi:10.3390/nu5125161. 

[4] B. Halliwell, Oxidative stress in cell culture: an under-appreciated problem?, FEBS 

Lett. 540 (2003) 3–6. doi:10.1016/S0014-5793(03)00235-7. 

[5] M.Y. Lachapelle, G. Drouin, Inactivation dates of the human and guinea pig vitamin C 



19 
 

genes, Genetica. 139 (2011) 199–207. doi:10.1007/s10709-010-9537-x. 

[6] J.C. Deutsch, Dehydroascorbic acid, J. Chromatogr. A. 881 (2000) 299–307. 

doi:10.1016/S0021-9673(00)00166-7. 

[7] G.R. Buettner, F.Q. Schafer, Ascorbate ( Vitamin C ), its Antioxidant Chemistry, Free 

Radic. Biol. Med. (2006) 319–335. 

[8] J. Du, J.J. Cullen, G.R. Buettner, Ascorbic acid: chemistry, biology and the treatment 

of cancer, Biochim. Biophys. Acta. 1826 (2012) 443–57. 

doi:10.1016/j.bbcan.2012.06.003. 

[9] G.R. Buettner, B.A. Jurkiewicz, Catalytic metals, ascorbate and free radicals: 

combinations to avoid, Radiat. Res. 145 (1996) 532–41. 

http://www.ncbi.nlm.nih.gov/pubmed/8619018. 

[10] G.R. Buettner, F.Q. Schafer, Ascorbate as an antioxidant, in: H. Asard, J. May, N. 

Smirnoff (Eds.), Vitam. C Its Funct. Biochem. Anim. Plants, Taylor and Francis, 

London, 2003: pp. 173–188. 

[11] X. Li, J. Huang, J.M. May, Ascorbic acid spares α-tocopherol and decreases lipid 

peroxidation in neuronal cells, Biochem. Biophys. Res. Commun. 305 (2003) 656–

661. doi:10.1016/S0006-291X(03)00836-2. 

[12] J.M. May, L. Li, Z. Qu, J. Huang, Ascorbate uptake and antioxidant function in 

peritoneal macrophages, Arch. Biochem. Biophys. 440 (2005) 165–172. 

doi:10.1016/j.abb.2005.06.018. 

[13] B. Halliwell, C.H. Foyer, Ascorbic acid, metal ions and the superoxide radical, 

Biochem. J. 155 (1976) 697–700. 

[14] T.S. Jackson, A. Xu, J.A. Vita, J.F. Keaney, Ascorbate prevents the interaction of 

superoxide and nitric oxide only at very high physiological concentrations, Circ. Res. 

83 (1998) 916–922. doi:10.1161/01.RES.83.9.916. 

[15] C. Foyer, J. Rowell, D. Walker, Measurement of the ascorbate content of spinach leaf 

protoplasts and chloroplasts during illumination, Planta. 157 (1983) 239–244. 

doi:10.1007/BF00405188. 

[16] P. Streb, J. Feierabend, R. Bligny, Resistance to photoinhibition of photosystem II and 

catalase and antioxidative protection in high mountain plants, Plant Cell Environ. 20 

(1997) 1030–1040. doi:10.1111/j.1365-3040.1997.tb00679.x. 



20 
 

[17] F.E. Harrison, J.M. May, Vitamin C function in the brain: vital role of the ascorbate 

transporter SVCT2, Free Radic. Biol. Med. 46 (2009) 719–730. 

doi:10.1016/j.freeradbiomed.2008.12.018. 

[18] J.M. Gebicki, T. Nauser, A. Domazou, D. Steinmann, P.L. Bounds, W.H. Koppenol, 

Reduction of protein radicals by GSH and ascorbate: potential biological significance, 

Amino Acids. 39 (2010) 1131–1137. doi:10.1007/s00726-010-0610-7. 

[19] A.S. Domazou, W.H. Koppenol, J.M. Gebicki, Efficient repair of protein radicals by 

ascorbate, Free Radic. Biol. Med. 46 (2009) 1049–1057. 

doi:10.1016/j.freeradbiomed.2009.01.001. 

[20] J.C. Deutsch, Spontaneous hydrolysis and dehydration of dehydroascorbic acid in 

aqueous solution, Anal. Biochem. 260 (1998) 223–229. doi:10.1006/abio.1998.2700. 

[21] A. Polle, W. Junkermann, Inhibition of apoplastic and symplastic peroxidase activity 

from Norway spruce by the photooxidant hydroxymethyl hydroperoxide, Plant Physiol. 

104 (1994) 617–621. doi:10.1104/pp.104.2.617. 

[22] T. Maruta, Y. Sawa, S. Shigeoka, T. Ishikawa, Diversity and evolution of ascorbate 

peroxidase functions in chloroplasts: more than just a classical antioxidant enzyme?, 

Plant Cell Physiol. 57 (2016) 1377–1386. doi:10.1093/pcp/pcv203. 

[23] J. Awad, H.U. Stotz, A. Fekete, M. Krischke, C. Engert, M. Havaux, S. Berger, M.J. 

Mueller, 2-Cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a 

water-watercycle that is essential to protect the photosynthetic apparatus under high 

light stress conditions, Plant Physiol. 167 (2015) 1592–1603. 

doi:10.1104/pp.114.255356. 

[24] K.-J. Dietz, Thiol-based peroxidases and ascorbate peroxidases: Why plants rely on 

multiple peroxidase systems in the photosynthesizing chloroplast?, Mol. Cells. 39 

(2016) 20–5. doi:10.14348/molcells.2016.2324. 

[25] U. Heber, C. Miyake, J. Mano, C. Ohno, K. Asada, Monodehydroascorbate radical 

detected by electron paramagnetic resonance spectrometry is a sensitive probe of 

oxidative stress in intact leaves, Plant Cell Physiol. 37 (1996) 1066–1072. 

doi:10.1093/oxfordjournals.pcp.a029055. 

[26] G. Monteiro, B.B. Horta, D.C. Pimenta, O. Augusto, L.E.S. Netto, Reduction of 1-Cys 

peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, 

revealing another function of vitamin C, Proc. Natl. Acad. Sci. 104 (2007) 4886–4891. 



21 
 

doi:10.1073/pnas.0700481104. 

[27] T.L. Duarte, J. Lunec, Review: When is an antioxidant not an antioxidant? A review of 

novel actions and reactions of vitamin C, Free Radic. Res. 39 (2005) 671–686. 

doi:10.1080/10715760500104025. 

[28] J. Suh, B.-Z.Z. Zhu, B. Frei, Ascorbate does not act as a pro-oxidant towards lipids 

and proteins in human plasma exposed to redox-active transition metal ions and 

hydrogen peroxide, Free Radic. Biol. Med. 34 (2003) 1306–1314. doi:10.1016/S0891-

5849(03)00147-3. 

[29] H.T. Parsons, S.C. Fry, Oxidation of dehydroascorbic acid and 2,3-diketogulonate 

under plant apoplastic conditions, Phytochemistry. 75 (2012) 41–49. 

doi:10.1016/j.phytochem.2011.12.005. 

[30] T. Kobayashi, N.K. Nishizawa, Iron uptake, translocation, and regulation in higher 

plants., Annu. Rev. Plant Biol. 63 (2012) 131–52. doi:10.1146/annurev-arplant-

042811-105522. 

[31] L. Grillet, L. Ouerdane, P. Flis, M.T.T. Hoang, M.-P. Isaure, R. Lobinski, C. Curie, S. 

Mari, Ascorbate efflux as a new strategy for iron reduction and transport in plants., J. 

Biol. Chem. 289 (2014) 2515–25. doi:10.1074/jbc.M113.514828. 

[32] N. Smirnoff, The metabolism and functions of ascorbic acid in plants, in: F. Rebeille, 

R. Douce (Eds.), Adv. Bot. Res., Volume 59B, Academic Press Ltd-Elsevier Science 

Ltd, London, 2011: pp. 109–179. 

[33] E.I. Urzica, D. Casero, H. Yamasaki, S.I. Hsieh, L.N. Adler, S.J. Karpowicz, C.E. 

Blaby-Haas, S.G. Clarke, J. a. Loo, M. Pellegrini, S.S. Merchant, Systems and trans-

system level analysis identifies conserved iron deficiency responses in the plant 

lineage, Plant Cell. 24 (2012) 3921–3948. doi:10.1105/tpc.112.102491. 

[34] C. Badu-Boateng, S. Pardalaki, C. Wolf, S. Lajnef, F. Peyrot, R.J. Naftalin, Labile iron 

potentiates ascorbate-dependent reduction and mobilization of ferritin iron, Free 

Radic. Biol. Med. 108 (2017) 94–109. doi:10.1016/j.freeradbiomed.2017.03.015. 

[35] D.J.R. Lane, D.R. Richardson, The active role of vitamin C in mammalian iron 

metabolism: Much more than just enhanced iron absorption!, Free Radic. Biol. Med. 

75 (2014) 69–83. doi:10.1016/j.freeradbiomed.2014.07.007. 

[36] N.G. Kesinger, J.F. Stevens, Covalent interaction of ascorbic acid with natural 



22 
 

products, Phytochemistry. 70 (2009) 1930–1939. 

doi:10.1016/j.phytochem.2009.09.028. 

[37] N.G. Kesinger, B.L. Langsdorf, A.F. Yokochi, C.L. Miranda, J.F. Stevens, Formation 

of a vitamin C conjugate of acrolein and its paraoxonase-mediated conversion into 

5,6,7,8-tetrahydroxy-4-oxooctanal, Chem. Res. Toxicol. 23 (2010) 836–844. 

doi:10.1021/tx900452j. 

[38] J. Sowell, H.M. Conway, R.S. Bruno, M.G. Traber, B. Frei, J.F. Stevens, Ascorbylated 

4-hydroxy-2-nonenal as a potential biomarker of oxidative stress response, J. 

Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 827 (2005) 139–45. 

doi:10.1016/j.jchromb.2005.05.046. 

[39] P. Gallice, F. Sazzarin, M. Polverelli, J. Cadet, Y. Berland, A. Crevat, Ascorbic acid-2-

0-β-glucuronide, a new metabolite of vitamin C identified in human urine and uremic 

plasma, Biochim. Biophys. Acta. 1199 (1994) 305–310. 

[40] D.J. Kliebenstein, V.M. Lambrix, M. Reichelt, J. Gershenzon, T. Mitchell-Olds, Gene 

duplication in the diversification of secondary metabolism: Tandem 2-oxoglutarate–

dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis, Plant Cell. 

13 (2001) 681–693. 

[41] M. Opietnik, S. Syed Jaafar, M. Becker, S. Bohmdorfer, A. Hofinger, T. Rosenau, 

Ascorbigen – Occurrence, synthesis, and analytics, Mini. Rev. Org. Chem. 9 (2012) 

411–417. doi:10.2174/157019312804699492. 

[42] M. Shikita, J.W. Fahey, T.R. Golden, W.D. Holtzclaw, P. Talalay, An unusual case of 

“uncompetitive activation” by ascorbic acid: purification and kinetic properties of a 

myrosinase from Raphanus sativus seedlings, Biochem. J. 341 (1999) 725–32. 

doi:10.1042/0264-6021:3410725. 

[43] K. Hasenkopf, B. Rönner, H. Hiller, M. Pischetsrieder, Analysis of glycated and 

ascorbylated proteins by gas chromatography-mass spectrometry, J. Agric. Food 

Chem. 50 (2002) 5697–703. doi:10.1021/jf020411u. 

[44] P. Kay, J.R. Wagner, H. Gagnon, R. Day, K. Klarskov, Modification of peptide and 

protein cysteine thiol groups by conjugation with a degradation product of ascorbate, 

Chem. Res. Toxicol. 26 (2013) 1333–9. doi:10.1021/tx400061e. 

[45] A. Szarka, T. Lőrincz, The role of ascorbate in protein folding, Protoplasma. 251 

(2013) 489–497. doi:10.1007/s00709-013-0560-5. 



23 
 

[46] A. Flandrin, S. Allouche, Y. Rolland, F.O. McDuff, J. Richard Wagner, K. Klarskov, 

Characterization of dehydroascorbate-mediated modification of glutaredoxin by mass 

spectrometry, J. Mass Spectrom. 50 (2015) 1358–1366. doi:10.1002/jms.3706. 

[47] L.S. Lin, J.E. Varner, Expression of ascorbic acid oxidase in zucchini squash 

(Cucurbita pepo L.), Plant Physiol. 96 (1991) 159–165. doi:10.1104/pp.96.1.159. 

[48] A. Raza, R. Vince, Dehydroascorbic acid adducts of guanosine residues: possible 

biological implications, Chembiochem. 12 (2011) 1015–7. 

doi:10.1002/cbic.201000748. 

[49] X. Fan, V.M. Monnier, Inhibition of crystallin ascorbylation by nucleophilic compounds 

in the hSVCT2 mouse model of lenticular aging, Investig. Ophthalmol. Vis. Sci. 49 

(2008) 4945–4952. doi:10.1167/iovs.08-1813. 

[50] P. Regulus, J.-F. Desilets, K. Klarskov, J.R. Wagner, Characterization and detection 

in cells of a novel adduct derived from the conjugation of glutathione and 

dehydroascorbate, Free Radic. Biol. Med. 49 (2010) 984–91. 

doi:10.1016/j.freeradbiomed.2010.05.029. 

[51] A.D. Bond, B.W. Mcclelland, J. Einstein, F.J. Finamore, Ascorbic acid-2-sulfate of the 

brine shrimp, Artemia salina, Arch. Biochem. Biophys. 153 (1972) 207–214. 

[52] K. Dabrowski, Some aspects of ascorbate metabolism in developing embryos of the 

brine shrimp (Artemia salina), Can. J. Fish. Aquat. Sci. 48 (1991) 1905–1908. 

[53] R.D. Hancock, J.A. Chudek, P.G. Walker, S.D. a. Pont, R. Viola, Ascorbic acid 

conjugates isolated from the phloem of Cucurbitaceae, Phytochemistry. 69 (2008) 

1850–1858. doi:10.1016/j.phytochem.2008.03.022. 

[54] Y. Toyoda-Ono, M. Maeda, M. Nakao, M. Yoshimura, N. Sugiura-Tomimori, H. 

Fukami, 2-O-(β-D-Glucopyranosyl)ascorbic acid, a novel ascorbic acid analogue 

isolated from Lycium fruit, J. Agric. Food Chem. 52 (2004) 2092–6. 

doi:10.1021/jf035445w. 

[55] C.M. Spickett, N. Smirnoff, A.R. Pitt, The biosynthesis of erythroascorbate in 

Saccharomyces cerevisiae and its role as an antioxidant, Free Radic. Biol. Med. 28 

(2000) 183–192. doi:10.1016/S0891-5849(99)00214-2. 

[56] S. Kim, W. Huh, J. Kim, S. Hwang, S. Kang, D-Arabinose dehydrogenase and 

biosynthesis of erythroascorbic acid in Candida albicans, Biochim. Biophys. Acta. 



24 
 

1297 (1996) 1–8. doi:10.1016/0167-4838(96)00077-5. 

[57] F.A. Loewus, Biosynthesis and metabolism of ascorbic acid in plants and of analogs 

of ascorbic acid in fungi, Phytochemistry. 52 (1999) 193–210. doi:10.1016/S0031-

9422(99)00145-4. 

[58] A. Baroja-Mazo, P. del Valle, J. Rúa, S. de Cima, F. Busto, D. de Arriaga, N. Smirnoff, 

Characterisation and biosynthesis of D-erythroascorbic acid in Phycomyces 

blakesleeanus, Fungal Genet. Biol. 42 (2005) 390–402. 

doi:10.1016/j.fgb.2005.01.005. 

[59] R.D. Hancock, J.R. Galpin, R. Viola, Biosynthesis of L-ascorbic acid (vitamin C) by 

Saccharomyces cerevisiae, FEMS Microbiol. Lett. 186 (2000) 245–50. 

doi:10.1111/j.1574-6968.2000.tb09112.x. 

[60] M. Okamura, Distribution of ascorbic acid analogs associated glycosides in 

mushrooms, J. Nutr. Sci. Vitaminol. (1994) 81–94. doi:10.3177/jnsv.40.81. 

[61] F. Garces, F.J. Fernández, A.M. Gómez, R. Pérez-Luque, E. Campos, R. Prohens, J. 

Aguilar, L. Baldomà, M. Coll, J. Badía, M.C. Vega, Quaternary structural transitions in 

the DeoR-type repressor ular control transcriptional readout from the L-ascorbate 

utilization regulon in Escherichia coli, Biochemistry. 47 (2008) 11424–11433. 

doi:10.1021/bi800748x. 

[62] N. Smirnoff, P.L. Conklin, F.A. Loewus, Biosynthesis of ascorbic acid in plants: a 

renaissance, Annu. Rev. Plant Physiol. Plant Mol. Biol. 52 (2001) 437–67. 

doi:10.1146/annurev.micro.58.030603.123615. 

[63] A.N. Patananan, L.M. Budenholzer, M.E. Pedraza, E.R. Torres, L.N. Adler, S.G. 

Clarke, The invertebrate Caenorhabditis elegans biosynthesizes ascorbate, Arch. 

Biochem. Biophys. (2015). doi:10.1016/j.abb.2015.02.002. 

[64] C.L. Linster, E. Van Schaftingen, Vitamin C: Biosynthesis, recycling and degradation 

in mammals, FEBS J. 274 (2007) 1–22. doi:10.1111/j.1742-4658.2006.05607.x. 

[65] S. Bulley, W. Laing, The regulation of ascorbate biosynthesis, Curr. Opin. Plant Biol. 

33 (2016) 15–22. doi:10.1016/j.pbi.2016.04.010. 

[66] N. Smirnoff, G.L. Wheeler, Ascorbic acid in plants: biosynthesis and function, Crit. 

Rev. Biochem. Mol. Biol. 35 (2000) 291–314. doi:10.1080/10409230008984166. 

[67] T. Ishikawa, H. Nishikawa, Y. Gao, Y. Sawa, H. Shibata, Y. Yabuta, T. Maruta, S. 



25 
 

Shigeoka, The pathway via D-galacturonate/L-galactonate is significant for ascorbate 

biosynthesis in Euglena gracilis: Identification and functional characterization of 

aldonolactonase, J. Biol. Chem. 283 (2008) 31133–31141. 

doi:10.1074/jbc.M803930200. 

[68] Y. Kondo, Y. Inai, Y. Sato, S. Handa, S. Kubo, K. Shimokado, S. Goto, M. Nishikimi, 

N. Maruyama, A. Ishigami, Senescence marker protein 30 functions as 

gluconolactonase in L-ascorbic acid biosynthesis, and its knockout mice are prone to 

scurvy, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 5723–8. 

doi:10.1073/pnas.0511225103. 

[69] B.N. Ames, R. Cathcart, E. Schwiers, P. Hochstein, Uric acid provides an antioxidant 

defense in humans against oxidant- and radical-caused aging and cancer: a 

hypothesis, Proc. Natl. Acad. Sci. 78 (1981) 6858–6862. 

doi:10.1073/pnas.78.11.6858. 

[70] K. Yoshimura, T. Nakane, S. Kume, Y. Shiomi, T. Maruta, T. Ishikawa, S. Shigeoka, 

Transient expression analysis revealed the importance of VTC2 expression level in 

light/dark regulation of ascorbate biosynthesis in Arabidopsis, Biosci. Biotechnol. 

Biochem. 78 (2014) 60–6. doi:10.1080/09168451.2014.877831. 

[71] M. Page, N. Sultana, K. Paszkiewicz, H. Florance, N. Smirnoff, The influence of 

ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis 

thaliana: further evidence for redox control of anthocyanin synthesis, Plant. Cell 

Environ. 35 (2012) 388–404. doi:10.1111/j.1365-3040.2011.02369.x. 

[72] J. Dowdle, T. Ishikawa, S. Gatzek, S. Rolinski, N. Smirnoff, Two genes in Arabidopsis 

thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate 

biosynthesis and seedling viability, Plant J. 52 (2007) 673–689. doi:10.1111/j.1365-

313X.2007.03266.x. 

[73] Y. Yabuta, T. Mieda, M. Rapolu, A. Nakamura, T. Motoki, T. Maruta, K. Yoshimura, T. 

Ishikawa, S. Shigeoka, Light regulation of ascorbate biosynthesis is dependent on the 

photosynthetic electron transport chain but independent of sugars, J. Exp. Bot. 58 

(2007) 2661–2671. 

[74] Y. Gao, A.A. Badejo, H. Shibata, Y. Sawa, T. Maruta, S. Shigeoka, M. Page, N. 

Smirnoff, T. Ishikawa, Expression analysis of the VTC2 and VTC5 genes encoding 

GDP-L-galactose phosphorylase, an enzyme involved in ascorbate biosynthesis, in 

Arabidopsis thaliana., Biosci. Biotechnol. Biochem. 75 (2011) 1783–8. 



26 
 

doi:10.1271/bbb.110320. 

[75] N. Smirnoff, Vitamin C: The Metabolism and Functions of Ascorbic Acid in Plants, in: 

F. Rebeille, R. Douce (Eds.), Adv. Bot. Res., Volume 59B, Academic Press Ltd-

Elsevier Science Ltd, London, 2011: pp. 109–179. 

[76] P.L. Conklin, D. DePaolo, B. Wintle, C.S. And, G. Buckenmeyer, Identification of 

Arabidopsis VTC3 as a putative and unique dual function protein kinase::protein 

phosphatase involved in the regulation of the ascorbic acid pool in plants, J. Exp. Bot. 

64 (2013) 2793–2804. doi:10.1093/jxb/ert140. 

[77] E.I. Urzica, L.N. Adler, M.D. Page, C.L. Linster, M.A. Arbing, D. Casero, M. Pellegrini, 

S.S. Merchant, S.G. Clarke, Impact of oxidative stress on ascorbate biosynthesis in 

Chlamydomonas via regulation of the VTC2 gene encoding a GDP-L-galactose 

phosphorylase, J. Biol. Chem. 287 (2012) 14234–14245. 

doi:10.1074/jbc.M112.341982. 

[78] A. Vidal-Meireles, J. Neupert, L. Zsigmond, L. Rosado-Souza, L. Kovács, V. Nagy, A. 

Galambos, A.R. Fernie, R. Bock, S.Z. Tóth, Regulation of ascorbate biosynthesis in 

green algae has evolved to enable rapid stress-induced response via the VTC2 gene 

encoding GDP-L-galactose phosphorylase, New Phytol. 214 (2017) 668–681. 

doi:10.1111/nph.14425. 

[79] V. Nagy, A. Vidal-Meireles, R. Tengölics, G. Rákhely, G. Garab, L. Kovács, S.Z. Tóth, 

Ascorbate accumulation during sulphur deprivation and its effects on photosystem II 

activity and H2 production of the green alga Chlamydomonas reinhardtii, Plant. Cell 

Environ. 39 (2016) 1460–1472. doi:10.1111/pce.12701. 

[80] J.E. Pallanca, N. Smirnoff, The control of ascorbic acid synthesis and turnover in pea 

seedlings, J. Exp. Bot. 51 (2000) 669–674. doi:10.1093/jexbot/51.345.669. 

[81] N.G.H. Leferink, W. A M. van den Berg, W.J.H. van Berkel, L-Galactono--lactone 

dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C 

biosynthesis., FEBS J. 275 (2008) 713–26. doi:10.1111/j.1742-4658.2007.06233.x. 

[82] M. Hervás, Q. Bashir, N.G.H. Leferink, P. Ferreira, B. Moreno-Beltrán, A.H. Westphal, 

I. Díaz-Moreno, M. Medina, M.A. de la Rosa, M. Ubbink, J.A. Navarro, W.J.H. van 

Berkel, Communication between L-galactono-1,4-lactone dehydrogenase and 

cytochrome c, FEBS J. 280 (2013) 1830–40. doi:10.1111/febs.12207. 

[83] C.G. Bartoli, G.M. Pastori, C.H. Foyer, Ascorbate biosynthesis in mitochondria is 



27 
 

linked to the electron transport chain between complexes III and IV, Plant Physiol. 123 

(2000) 335–344. doi:10.1104/pp.123.1.335. 

[84] P. Schertl, S. Sunderhaus, J. Klodmann, G.E.G. Grozeff, C.G. Bartoli, H.-P. Braun, L-

Galactono-1,4-lactone dehydrogenase (GLDH) forms part of three subcomplexes of 

mitochondrial complex I in Arabidopsis thaliana, J. Biol. Chem. 287 (2012) 14412–

14419. doi:10.1074/jbc.M111.305144. 

[85] J. Schimmeyer, R. Bock, E.H. Meyer, L-Galactono-1,4-lactone dehydrogenase is an 

assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis, 

Plant Mol. Biol. 90 (2016) 117–126. doi:10.1007/s11103-015-0400-4. 

[86] B. Pineau, O. Layoune, A. Danon, R. De Paepe, L-Galactono-1,4-lactone 

dehydrogenase is required for the accumulation of plant respiratory complex I, J. Biol. 

Chem. 283 (2008) 32500–32505. doi:10.1074/jbc.M805320200. 

[87] N. Smirnoff, J.E. Pallanca, Ascorbate metabolism in relation to oxidative stress, 

Biochem. Soc. Trans. 24 (1996) 472–478. doi:10.1042/bst0240472. 

[88] P. Conklin, J. Pallanca, R. Last, N. Smirnoff, L-Ascorbic acid metabolism in the 

ascorbate-deficient Arabidopsis mutant vtc1, Plant Physiol. 115 (1997) 1277–1285. 

doi:10.1104/pp.115.3.1277. 

[89] V. Truffault, S.C. Fry, R.G. Stevens, H. Gautier, Ascorbate degradation in tomato 

leads to accumulation of oxalate, threonate and oxalyl threonate, Plant J. 89 (2017) 

996–1008. doi:10.1111/tpj.13439. 

[90] A. Bonifacio, F.E.L. Carvalho, M.O. Martins, M.C. Lima Neto, J.R. Cunha, C.W. 

Ribeiro, M. Margis-Pinheiro, J.A.G. Silveira, Silenced rice in both cytosolic ascorbate 

peroxidases displays pre-acclimation to cope with oxidative stress induced by 3-

aminotriazole-inhibited catalase, J. Plant Physiol. 201 (2016) 17–27. 

doi:10.1016/j.jplph.2016.06.015. 

[91] G. Queval, E. Issakidis-Bourguet, F. A Hoeberichts, M. Vandorpe, B. Gakière, H. 

Vanacker, M. Miginiac-Maslow, F. Van Breusegem, G. Noctor, Conditional oxidative 

stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that 

redox state is a key modulator of daylength-dependent gene expression, and define 

photoperiod as a crucial factor in the regulation of H2O2-induced cell death, Plant J. 52 

(2007) 640–657. doi:10.1111/j.1365-313X.2007.03263.x. 

[92] R.A. Dewhirst, G.J.J. Clarkson, S.D. Rothwell, S.C. Fry, Novel insights into ascorbate 



28 
 

retention and degradation during the washing and post-harvest storage of spinach 

and other salad leaves, Food Chem. (2017). doi:10.1016/j.foodchem.2017.04.082. 

[93] German Nutrition Society, New reference values for vitamin C intake, Ann. Nutr. 

Metab. 67 (2015) 13–20. doi:10.1159/000434757. 

[94] B. Usadel, O.E. Bläsing, Y. Gibon, K. Retzlaff, M. Höhne, M. Günther, M. Stitt, Global 

transcript levels respond to small changes of the carbon status during progressive 

exhaustion of carbohydrates in Arabidopsis rosettes, Plant Physiol. 146 (2008) 1834–

61. doi:10.1104/pp.107.115592. 

[95] M.A. Green, S.C. Fry, Vitamin C degradation in plant cells via enzymatic hydrolysis of 

4-O-oxalyl-L-threonate, Nature. 433 (2005) 83–87. doi:10.1038/nature03172. 

[96] A. Kärkönen, R.A. Dewhirst, C.L. Mackay, S.C. Fry, Metabolites of 2,3-diketogulonate 

delay peroxidase action and induce non-enzymic H2O2 generation: Potential roles in 

the plant cell wall, Arch. Biochem. Biophys. 620 (2017) 12–22. 

doi:10.1016/j.abb.2017.03.006. 

[97] S.E. Keates, N.M. Tarlyn, F.A. Loewus, V.R. Franceschi, L-Ascorbic acid and L-

galactose are sources for oxalic acid and calcium oxalate in Pistia stratiotes, 

Phytochemistry. 53 (2000) 433–40. doi:10.1016/S0031-9422(99)00448-3. 

[98] K. Saito, F.A. Loewus, Conversion of D-glucosone to oxalic acid and L-(+)-tartaric acid 

in detached leaves of Pelargonium, Phytochemistry. 31 (1992) 3341–3344. 

doi:10.1016/0031-9422(92)83681-N. 

[99] P. Nakata, M. McConn, Isolated Medicago truncatula mutants with increased calcium 

oxalate crystal accumulation have decreased ascorbic acid levels, Plant Physiol. 

Biochem. 45 (2007) 216–220. doi:10.1016/j.plaphy.2007.01.013. 

[100] L. Yu, J.Z. Jiang, C. Zhang, L.R. Jiang, N.H. Ye, Y.S. Lu, G.Z. Yang, E. Liu, C.L. 

Peng, Z.H. He, X.X. Peng, Glyoxylate rather than ascorbate is an efficient precursor 

for oxalate biosynthesis in rice, J. Exp. Bot. 61 (2010) 1625–1634. 

doi:10.1093/jxb/erq028. 

[101] S. DeBolt, D.R. Cook, C.M. Ford, L-Tartaric acid synthesis from vitamin C in higher 

plants, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 5608–13. 

doi:10.1073/pnas.0510864103. 

[102] S. Debolt, V. Melino, C.M. Ford, Ascorbate as a biosynthetic precursor in plants, Ann. 



29 
 

Bot. 99 (2007) 3–8. doi:10.1093/aob/mcl236. 

[103] G.L.W. Simpson, B.J. Ortwerth, The non-oxidative degradation of ascorbic acid at 

physiological conditions, Biochim. Biophys. Acta - Mol. Basis Dis. 1501 (2000) 12–24. 

doi:10.1016/S0925-4439(00)00009-0. 

[104] I. Nemet, V.M. Monnier, Vitamin C degradation products and pathways in the human 

lens, J. Biol. Chem. 286 (2011) 37128–37136. doi:10.1074/jbc.M111.245100. 

[105] L. Braun, F. Puskás, M. Csala, G. Mészáros, J. Mandl, G. Bánhegyi, Ascorbate as a 

substrate for glycolysis or gluconeogenesis: Evidence for an interorgan ascorbate 

cycle, Free Radic. Biol. Med. 23 (1997) 804–808. doi:10.1016/S0891-5849(97)00022-

1. 

[106] F.A. Loewus, Ascorbic acid catabolism: breakdown pathways in animals and plants, 

in: H. Asard, J. May, N. Smirnoff (Eds.), Vitam. C Its Funct. Biochem. Anim. Plants, 

Taylor and Francis, London, 2003: pp. 31–47. 

[107] J. Pallanca, N. Smirnoff, Ascorbic acid metabolism in pea seedlings. A comparison of 

D-glucosone, L-sorbosone, and L-galactono-1,4-lactone as ascorbate precursors, 

Plant Physiol. 120 (1999) 453–62. doi:10.1104/pp.120.2.453. 

[108] L. De Gara, Ascorbate and plant growth: from germination to cell death, in: H. Asard, 

J. May, N. Smirnoff (Eds.), Vitam. C Its Funct. Biochem. Anim. Plants, Taylor and 

Francis, London, 2003: pp. 83–95. 

[109] O. Arrigoni, L. De Gara, F. Tommasi, R. Liso, Changes in the ascorbate system 

during seed development of Vicia faba L., Plant Physiol. 99 (1992) 235–8. 

doi:10.1104/pp.99.1.235. 

[110] M. Szecowka, R. Heise, T. Tohge, A. Nunes-Nesi, D. Vosloh, J. Huege, R. Feil, J. 

Lunn, Z. Nikoloski, M. Stitt, A.R. Fernie, S. Arrivault, Metabolic fluxes in an illuminated 

Arabidopsis rosette, Plant Cell. 25 (2013) 694–714. doi:10.1105/tpc.112.106989. 

[111] V.R. Franceschi, N.M. Tarlyn, L-Ascorbic acid is accumulated in source leaf phloem 

and transported to sink tissues in plants, Plant Physiol. 130 (2002) 649–656. 

doi:10.1104/pp.007062. 

[112] R.D. Hancock, D. McRae, S. Haupt, R. Viola, Synthesis of L-ascorbic acid in the 

phloem, BMC Plant Biol. 3 (2003) 7. doi:10.1186/1471-2229-3-7. 

[113] N. Horemans, A. Szarka, M. De Bock, T. Raeymaekers, G. Potters, M. Levine, G. 



30 
 

Banhegyi, Y. Guisez, Dehydroascorbate and glucose are taken up into Arabidopsis 

thaliana cell cultures by two distinct mechanisms, FEBS Lett. 582 (2008) 2714–2718. 

doi:10.1016/j.febslet.2008.07.001. 

[114] C.H. Foyer, M. Lelandais, A comparison of the relative rates of transport of ascorbate 

and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea 

leaf mesophyll cells, J. Plant Physiol. 148 (1996) 391–398. doi:10.1016/S0176-

1617(96)80271-9. 

[115] A. Rautenkranz, L. Li, F. Machler, E. Martinoia, J.J. Oertli, Transport of ascorbic and 

dehydroascorbic acids across protoplast and vacuole membranes isolated from barley 

(Hordeum vulgare L. cv Gerbel) leaves, Plant Physiol. 106 (1994) 187–193. 

doi:10.1104/pp.106.1.187. 

[116] H.T. Parsons, S.C. Fry, Reactive oxygen species-induced release of intracellular 

ascorbate in plant cell-suspension cultures and evidence for pulsing of net release 

rate, New Phytol. (2010). doi:10.1111/j.1469-8137.2010.03282.x. 

[117] M. Makavitskaya, D. Svistunenko, I. Navaselsky, P. Hryvusevich, V. Mackievic, C. 

Rabadanova, E. Tyutereva, V. Samokhina, D. Straltsova, A. Sokolik, O. 

Voitsekhovskaja, V. Demidchik, Novel roles of ascorbate in plants: induction of 

cytosolic Ca2+ signals and efflux from cells via anion channels, J. Exp. Bot. (2018) 1–

27. doi:10.1093/jxb/ery056. 

[118] T. Miyaji, T. Kuromori, Y. Takeuchi, N. Yamaji, K. Yokosho, A. Shimazawa, E. 

Sugimoto, H. Omote, J.F. Ma, K. Shinozaki, Y. Moriyama, AtPHT4;4 is a chloroplast-

localized ascorbate transporter in Arabidopsis, Nat. Commun. 6 (2015) 5928. 

doi:10.1038/ncomms6928. 

[119] A.R. Fernie, S.Z. Tóth, Identification of the elusive chloroplast ascorbate transporter 

extends the substrate specificity of the PHT family, Mol. Plant. 8 (2015) 674–676. 

doi:10.1016/j.molp.2015.02.006. 

[120] A. Szarka, N. Horemans, G. Bánhegyi, H. Asard, Facilitated glucose and 

dehydroascorbate transport in plant mitochondria, Arch. Biochem. Biophys. 428 

(2004) 73–80. doi:10.1016/j.abb.2004.05.011. 

[121] F.E. Harrison, S.M. Dawes, M.E. Meredith, V.R. Babaev, L. Li, J.M. May, Low vitamin 

C and increased oxidative stress and cell death in mice that lack the sodium-

dependent vitamin C transporter SVCT2, Free Radic. Biol. Med. 49 (2010) 821–9. 



31 
 

doi:10.1016/j.freeradbiomed.2010.06.008. 

[122] M.E. Rice, I. Russo-Menna, Differential compartmentalization of brain ascorbate and 

glutathione between neurons and glia, Neuroscience. 82 (1997) 1213–1223. 

doi:10.1016/S0306-4522(97)00347-3. 

[123] S.N. Hansen, P. Tveden-Nyborg, J. Lykkesfeldt, Does vitamin C deficiency affect 

cognitive development and function?, Nutrients. 6 (2014) 3818–46. 

doi:10.3390/nu6093818. 

[124] A. Covarrubias-Pinto, A.I. Acuña, F.A. Beltrán, L. Torres-Díaz, M.A. Castro, Old things 

new view: Ascorbic acid protects the brain in neurodegenerative disorders, Int. J. Mol. 

Sci. 16 (2015) 28194–28217. doi:10.3390/ijms161226095. 

[125] F.E. Harrison, J.M. May, Vitamin C function in the brain: vital role of the ascorbate 

transporter SVCT2, Free Radic. Biol. Med. 46 (2009) 719–730. 

doi:10.1016/j.freeradbiomed.2008.12.018. 

[126] F.E. Harrison, G.L. Bowman, M.C. Polidori, Ascorbic acid and the brain: Rationale for 

the use against cognitive decline, Nutrients. 6 (2014) 1752–1781. 

doi:10.3390/nu6041752. 

[127] R.J. Reiter, Ascorbic acid in the central nervous system: uptake, distribution and 

functions, in: H. Asard, J. May, N. Smirnoff (Eds.), Vitam. C Its Funct. Biochem. Anim. 

Plants, Taylor and Francis, London, 2003: pp. 229–246. 

[128] A.J. Michels, T.M. Hagen, B. Frei, Human genetic variation influences vitamin C 

homeostasis by altering vitamin C transport and antioxidant enzyme function, Annu. 

Rev. Nutr. 33 (2013) 45–70. doi:10.1146/annurev-nutr-071812-161246. 

[129] A. Monfort, A. Wutz, Breathing in epigenetic change with vitamin C, EMBO Rep. 14 

(2013) 337–346. doi:10.1038/embor.2013.29. 

[130] B. Halliwell, Oxidative stress in cell culture: an under-appreciated problem?, Cell. 540 

(2003) 14–17. doi:10.1016/S0014-5793(03)00235-7. 

[131] M. Schwarzländer, S. Wagner, Y.G. Ermakova, V. V. Belousov, R. Radi, J.S. 

Beckman, G.R. Buettner, N. Demaurex, M.R. Duchen, H.J. Forman, M.D. Fricker, D. 

Gems, A.P. Halestrap, B. Halliwell, U. Jakob, I.G. Johnston, N.S. Jones, D.C. Logan, 

B. Morgan, F.L. Müller, D.G. Nicholls, S.J. Remington, P.T. Schumacker, C.C. 

Winterbourn, L.J. Sweetlove, A.J. Meyer, T.P. Dick, M.P. Murphy, The “mitoflash” 



32 
 

probe cpYFP does not respond to superoxide, Nature. 514 (2014) E12–E14. 

doi:10.1038/nature13858. 

[132] C.H. Jung, W.W. Wells, Ascorbic acid is a stimulatory cofactor for mitochondrial 

glycerol-3-phosphate dehydrogenase, Biochem. Biophys. Res. Commun. 239 (1997) 

457. doi:10.1006/bbrc.1997.7438. 

[133] J. Myllyharju, Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis, Matrix 

Biol. 22 (2003) 15–24. doi:10.1016/S0945-053X(03)00006-4. 

[134] R. Myllyla, K. Majamaa, V. Giinzler, Ascorbate is consumed stoichiometrically in the 

uncoupled reactions catalyzed by prolyl 4-hydroxylase and lysyl hydroxylase, J. Biol. 

Chem. 259 (1984) 5403–5405. 

[135] J. Myllyharju, K.I. Kivirikko, Characterization of the iron- and 2-oxoglutarate-binding 

sites of human prolyl 4-hydroxylase, EMBO J. 16 (1997) 1173–80. 

doi:10.1093/emboj/16.6.1173. 

[136] K. Blaschke, K.T. Ebata, M.M. Karimi, J. a. Zepeda-Martínez, P. Goyal, S. Mahapatra, 

A. Tam, D.J. Laird, M. Hirst, A. Rao, M.C. Lorincz, M. Ramalho-Santos, Vitamin C 

induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells, 

Nature. 500 (2013) 222–226. doi:10.1038/nature12362. 

[137] E. Flashman, S.L. Davies, K.K. Yeoh, C.J. Schofield, Investigating the dependence of 

the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and prolyl hydroxylase 

domain 2) on ascorbate and other reducing agents, Biochem. J. 427 (2010) 135–142. 

doi:10.1042/bj20091609. 

[138] K.J. Nytko, N. Maeda, P. Schläfli, P. Spielmann, R.H. Wenger, D.P. Stiehl, P. 

Schl??fli, P. Spielmann, R.H. Wenger, D.P. Stiehl, P. Schläfli, P. Spielmann, R.H. 

Wenger, D.P. Stiehl, Vitamin C is dispensable for oxygen sensing in vivo, Blood. 117 

(2011) 5485–93. doi:10.1182/blood-2010-09-307637. 

[139] J.I. Young, S. Züchner, G. Wang, Regulation of the epigenome by vitamin C, Annu. 

Rev. Nutr. 35 (2015) 545–564. doi:10.1146/annurev-nutr-071714-034228. 

[140] P.G. Miller, B.J. Ebert, Vitamin C regulates stem cells and cancer, Nature. 549 (2017) 

462–464. doi:10.1007/978-1-60327-933-8. 

[141] L. Cimmino, I. Dolgalev, Y. Wang, A. Yoshimi, G.H. Martin, J. Wang, V. Ng, B. Xia, 

M.T. Witkowski, M. Mitchell-Flack, I. Grillo, S. Bakogianni, D. Ndiaye-Lobry, M.T. 



33 
 

Martín, M. Guillamot, R.S. Banh, M. Xu, M.E. Figueroa, R.A. Dickins, O. Abdel-

Wahab, C.Y. Park, A. Tsirigos, B.G. Neel, I. Aifantis, Restoration of TET2 function 

blocks aberrant self-renewal and leukemia progression, Cell. 170 (2017) 1079–

1095.e20. doi:10.1016/j.cell.2017.07.032. 

[142] M. Agathocleous, C.E. Meacham, R.J. Burgess, E. Piskounova, Z. Zhao, G.M. Crane, 

B.L. Cowin, E. Bruner, M.M. Murphy, W. Chen, G.J. Spangrude, Z. Hu, R.J. 

DeBerardinis, S.J. Morrison, Ascorbate regulates haematopoietic stem cell function 

and leukaemogenesis, Nature. 549 (2017) 476–481. doi:10.1038/nature23876. 

[143] N. Mellor, L.R. Band, A. Pěnčík, O. Novák, A. Rashed, T. Holman, M.H. Wilson, U. 

Voß, A. Bishopp, J.R. King, K. Ljung, M.J. Bennett, M.R. Owen, Dynamic regulation of 

auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin 

homeostasis, Proc. Natl. Acad. Sci. 113 (2016) 201604458. 

doi:10.1073/pnas.1604458113. 

[144] D.J. Kliebenstein, V. Lambrix, M. Reichelt, J. Gershenzon, T. Mitchell-Olds, Gene 

duplication in the diversification of secondary metabolism: Tandem 2-oxoglutarate-

dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis, Plant Cell. 

13 (2001) 681–693. doi:10.1105/tpc.13.3.681. 

[145] L. Brisson, N. El Bakkali-Taheri, M. Giorgi, A. Fadel, J. Kaizer, M. Réglier, T. Tron, 

E.H. Ajandouz, A.J. Simaan, 1-Aminocyclopropane-1-carboxylic acid oxidase: Insight 

into cofactor binding from experimental and theoretical studies, J. Biol. Inorg. Chem. 

17 (2012) 939–949. doi:10.1007/s00775-012-0910-3. 

[146] M.D. White, M. Klecker, R.J. Hopkinson, D.A. Weits, C. Mueller, C. Naumann, R. 

O’Neill, J. Wickens, J. Yang, J.C. Brooks-Bartlett, E.F. Garman, T.N. Grossmann, N. 

Dissmeyer, E. Flashman, Plant cysteine oxidases are dioxygenases that directly 

enable arginyl transferase-catalysed arginylation of N-end rule targets, Nat. Commun. 

8 (2017) 14690. doi:10.1038/ncomms14690. 

[147] H. Nguyen-Kim, H. San Clemente, T. Balliau, M. Zivy, C. Dunand, C. Albenne, E. 

Jamet, Arabidopsis thaliana root cell wall proteomics: Increasing the proteome 

coverage using a combinatorial peptide ligand library and description of unexpected 

Hyp in peroxidase amino acid sequences, Proteomics. 16 (2016) 491–503. 

doi:10.1002/pmic.201500129. 

[148] N. Sultana, H. V. Florance, A. Johns, N. Smirnoff, Ascorbate deficiency influences the 

leaf cell wall glycoproteome in Arabidopsis thaliana, Plant. Cell Environ. 38 (2015) 



34 
 

375–384. doi:10.1111/pce.12267. 

[149] S. Vanderauwera, P. Zimmermann, S. Rombauts, S. Vandenabeele, C. Langebartels, 

W. Gruissem, D. Inzé, F. Van Breusegem, Genome-wide analysis of hydrogen 

peroxide-regulated gene expression in Arabidopsis reveals a high light-induced 

transcriptional cluster involved in anthocyanin biosynthesis, Plant Physiol. 139 (2005) 

806–821. doi:10.1104/pp.105.065896. 

[150] G. Saga, A. Giorgetti, C. Fufezan, G.M. Giacometti, R. Bassi, T. Morosinotto, Mutation 

analysis of violaxanthin de-epoxidase identifies substrate-binding sites and residues 

involved in catalysis, J. Biol. Chem. 285 (2010) 23763–23770. 

doi:10.1074/jbc.M110.115097. 

[151] J. Kromdijk, K. Głowacka, L. Leonelli, S.T. Gabilly, M. Iwai, K.K. Niyogi, S.P. Long, 

Improving photosynthesis and crop productivity by accelerating recovery from 

photoprotection, Science 354 (2016) 857–861. doi:10.1126/science.aai8878. 

[152] P. Müller-Moulé, M. Havaux, K.K. Niyogi, Zeaxanthin deficiency enhances the high 

light sensitivity of an ascorbate-deficient mutant of Arabidopsis., Plant Physiol. 133 

(2003) 748–60. doi:10.1104/pp.103.026252. 

[153] P. Mu, P.P.L. Conklin, K.K. Niyogi, P. Müller-Moulé, Ascorbate deficiency can limit 

violaxanthin de-epoxidase activity in vivo, Plant Physiol. 128 (2002) 970–977. 

doi:doi/10.1104/pp.010924. 

[154] P. Müller-Moulé, T. Golan, K.K. Niyogi, Ascorbate-deficient mutants of Arabidopsis 

grow in high light despite chronic photooxidative stress, Plant Physiol. 134 (2004) 

1163–72. doi:10.1104/pp.103.032375. 

[155] N. Smirnoff, Ascorbate biosynthesis and function in photoprotection, Philos. Trans. R. 

Soc. Lond. B. Biol. Sci. 355 (2000) 1455–1464. doi:10.1098/rstb.2000.0706. 

[156] T. Maruta, Y. Sawa, S. Shigeoka, T. Ishikawa, Diversity and evolution of ascorbate 

peroxidase functions in chloroplasts: More than just a classical antioxidant enzyme?, 

Plant Cell Physiol. 57 (2016) 1377–1386. doi:10.1093/pcp/pcv203. 

[157] S. Kitajima, M. Kitamura, N. Koja, Triple mutation of Cys26, Trp35, and Cys126 in 

stromal ascorbate peroxidase confers H2O2 tolerance comparable to that of the 

cytosolic isoform, Biochem. Biophys. Res. Commun. 372 (2008) 918–923. 

doi:10.1016/j.bbrc.2008.05.160. 



35 
 

[158] S. Kitajima, H. Nii, M. Kitamura, Recombinant stromal APX defective in the unique 

loop region showed improved tolerance to hydrogen peroxide, Biosci. Biotechnol. 

Biochem. 74 (2010) 1501–3. doi:10.1271/bbb.100218. 

[159] M. Exposito-Rodriguez, P.P. Laissue, G. Yvon-Durocher, N. Smirnoff, P.M. 

Mullineaux, Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei 

provides a high-light signalling mechanism, Nat. Commun. 8 (2017) 49. 

doi:10.1038/s41467-017-00074-w. 

[160] P.M. Mullineaux, M. Exposito-Rodriguez, P.P. Laissue, N. Smirnoff, ROS-dependent 

signaling pathways in plants and algae exposed to high light: Comparisons with other 

eukaryotes, Free Radic. Biol. Med. (2018). doi:10.1016/j.freeradbiomed.2018.01.033. 

[161] N. Correa-Aragunde, N. Foresi, M. Delledonne, L. Lamattina, Auxin induces redox 

regulation of ascorbate peroxidase 1 activity by S-nitrosylation/denitrosylation balance 

resulting in changes of root growth pattern in Arabidopsis, J. Exp. Bot. 64 (2013) 

3339–3349. doi:10.1093/jxb/ert172. 

[162] N. Correa-Aragunde, N. Foresi, L. Lamattina, Nitric oxide is a ubiquitous signal for 

maintaining redox balance in plant cells: Regulation of ascorbate peroxidase as a 

case study, J. Exp. Bot. 66 (2015) 2913–2921. doi:10.1093/jxb/erv073. 

[163] H. Yang, J. Mu, L. Chen, J. Feng, J. Hu, L. Li, J.-M. Zhou, J. Zuo, S -Nitrosylation 

positively regulates ascorbate peroxidase activity during plant stress responses, Plant 

Physiol. 167 (2015) 1604–1615. doi:10.1104/pp.114.255216. 

[164] R. Mittler, S. Vanderauwera, M. Gollery, F. Van Breusegem, Reactive oxygen gene 

network of plants, Trends Plant Sci. 9 (2004) 490–8. 

doi:10.1016/j.tplants.2004.08.009. 

[165] S. Karpinski, C. Escobar, B. Karpinska, G. Creissen, P.M. Mullineaux, Photosynthetic 

electron transport regulates the expression of cytosolic ascorbate peroxidase genes in 

Arabidopsis during excess light stress, Plant Cell. 9 (1997) 627–640. 

doi:10.1105/tpc.9.4.627. 

[166] S. Koussevitzky, N. Suzuki, S. Huntington, L. Armijo, W. Sha, D. Cortes, V. Shulaev, 

R. Mittler, Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis 

thaliana to stress combination, J. Biol. Chem. 283 (2008) 34197–34203. 

doi:10.1074/jbc.M806337200. 

[167] J. van Buer, J. Cvetkovic, M. Baier, Cold regulation of plastid ascorbate peroxidases 



36 
 

serves as a priming hub controlling ROS signaling in Arabidopsis thaliana, BMC Plant 

Biol. 16 (2016) 163. doi:10.1186/s12870-016-0856-7. 

[168] J. May, H. Asard, Ascorbate recycling, in: H. Asard, J. May, N. Smirnoff (Eds.), Vitam. 

C Its Funct. Biochem. Anim. Plants, Taylor and Francis, London, 2003: pp. 139–157. 

[169] D.P. Dixon, B.G. Davis, R. Edwards, Functional divergence in the glutathione 

transferase superfamily in plants. Identification of two classes with putative functions 

in redox homeostasis in Arabidopsis thaliana, J. Biol. Chem. 277 (2002) 30859–69. 

doi:10.1074/jbc.M202919200. 

[170] Y. Saitoh, Y. Fukuoka, M. Nishikimi, N. Miwa, Transfection with glutathione-

dependent dehydroascorbate reductase genes exerts cytoprotective effects against 

hydroperoxide-induced cell injury through vitamin C regeneration and oxidative-stress 

diminishment, Gene Ther. Mol. Biol. 11 (2007) 143–150. 

[171] M.P. Washburn, W.W. Wells, The catalytic mechanism of the glutathione-dependent 

dehydroascorbate reductase activity of thioltransferase (glutaredoxin), Biochemistry. 

38 (1999) 268–274. doi:10.1021/bi980480v. 

[172] Y.-J. Zhang, W. Wang, H.-L. Yang, Y. Li, X.-Y. Kang, X.-R. Wang, Z.-L. Yang, 

Molecular properties and functional divergence of the dehydroascorbate reductase 

gene family in lower and higher plants, PLoS One. 10 (2015) e0145038. 

doi:10.1371/journal.pone.0145038. 

[173] N. Smirnoff, Vitamin C: the metabolism and functions of ascorbic acid in plants, in: F. 

Rebeille, R. Douce (Eds.), Adv. Bot. Res., Volume 59B, Academic Press Ltd-Elsevier 

Science Ltd, London, 2011: pp. 109–179. 

[174] H. Do, I.-S. Kim, B.W. Jeon, C.W. Lee, A.K. Park, A.R. Wi, S.C. Shin, H. Park, Y.-S. 

Kim, H.-S. Yoon, H.-W. Kim, J.H. Lee, Structural understanding of the recycling of 

oxidized ascorbate by dehydroascorbate reductase (OsDHAR) from Oryza sativa L. 

japonica, Sci. Rep. 6 (2016) 19498. doi:10.1038/srep19498. 

[175] N. Bodra, D. Young, L. Astolfi Rosado, A. Pallo, K. Wahni, F. De Proft, J. Huang, F. 

Van Breusegem, J. Messens, Arabidopsis thaliana dehydroascorbate reductase 2: 

Conformational flexibility during catalysis, Sci. Rep. 7 (2017) 42494. 

doi:10.1038/srep42494. 

[176] H.-Y. Chang, S.-T. Lin, T.-P. Ko, S.-M. Wu, T.-H. Lin, Y.-C. Chang, K.-F. Huang, T.-M. 

Lee, Enzymatic characterization and crystal structure analysis of Chlamydomonas 



37 
 

reinhardtii dehydroascorbate reductase and their implications for oxidative stress, 

Plant Physiol. Biochem. 120 (2017) 144–155. doi:10.1016/j.plaphy.2017.09.026. 

[177] M. Noshi, R. Hatanaka, N. Tanabe, Y. Terai, T. Maruta, S. Shigeoka, Redox 

regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate 

reductase is required for high-light stress tolerance in Arabidopsis, Biosci. Biotechnol. 

Biochem. 80 (2016) 870–877. doi:10.1080/09168451.2015.1135042. 

[178] M. Noshi, H. Yamada, R. Hatanaka, N. Tanabe, M. Tamoi, S. Shigeoka, Arabidopsis 

dehydroascorbate reductase 1 and 2 modulate redox states of ascorbate-glutathione 

cycle in the cytosol in response to photooxidative stress, Biosci. Biotechnol. Biochem. 

81 (2017) 523–533. doi:10.1080/09168451.2016.1256759. 

[179] Z. Chen, D.R. Gallie, Increasing tolerance to ozone by elevating foliar ascorbic acid 

confers greater protection against ozone than increasing avoidance, Plant Physiol. 

138 (2005) 1673–89. doi:10.1104/pp.105.062000. 

[180] Z. Chen, T.E. Young, J. Ling, S.-C. Chang, D.R. Gallie, Increasing vitamin C content 

of plants through enhanced ascorbate recycling, Proc. Natl. Acad. Sci. 100 (2003) 

3525–3530. doi:10.1073/pnas.0635176100. 

[181] S.T. Lin, C.W. Chiou, Y.L. Chu, Y. Hsiao, Y.F. Tseng, Y.C. Chen, H.J. Chen, H.Y. 

Chang, T.M. Lee, Enhanced ascorbate regeneration via dehydroascorbate reductase 

confers tolerance to photo-oxidative stress in Chlamydomonas reinhardtii, Plant Cell 

Physiol. 57 (2016) 2104–2121. doi:10.1093/pcp/pcw129. 

[182] S. Yoshida, M. Tamaoki, T. Shikano, N. Nakajima, D. Ogawa, M. Ioki, M. Aono, A. 

Kubo, H. Kamada, Y. Inoue, H. Saji, Cytosolic dehydroascorbate reductase is 

important for ozone tolerance in Arabidopsis thaliana, Plant Cell Physiol. 47 (2006) 

304–8. doi:10.1093/pcp/pci246. 

[183] T. Ushimaru, T. Nakagawa, Y. Fujioka, K. Daicho, M. Naito, Y. Yamauchi, H. Nonaka, 

K. Amako, K. Yamawaki, N. Murata, Transgenic Arabidopsis plants expressing the 

rice dehydroascorbate reductase gene are resistant to salt stress, J. Plant Physiol. 

163 (2006) 1179–84. doi:10.1016/j.jplph.2005.10.002. 

[184] H.A. Eltelib, Y. Fujikawa, M. Esaka, Overexpression of the acerola (Malpighia glabra) 

monodehydroascorbate reductase gene in transgenic tobacco plants results in 

increased ascorbate levels and enhanced tolerance to salt stress, South African J. 

Bot. 78 (2012) 295–301. doi:10.1016/j.sajb.2011.08.005. 



38 
 

[185] Y.S. Kim, I.S. Kim, M.J. Bae, Y.H. Choe, Y.H. Kim, H.M. Park, H.G. Kang, H.S. Yoon, 

Homologous expression of cytosolic dehydroascorbate reductase increases grain 

yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. 

japonica), Planta. 237 (2013) 1613–1625. doi:10.1007/s00425-013-1862-8. 

[186] Z. Chen, D.R. Gallie, The ascorbic acid redox state controls guard cell signaling and 

stomatal movement, Plant Cell. 16 (2004) 1143–62. doi:10.1105/tpc.021584. 

[187] S. Grace, R. Pace, T. Wydrzynski, Formation and decay of monodehydroascorbate 

radicals in illuminated thylakoids as determined by EPR spectroscopy, Biochim. 

Biophys. Acta. 1229 (1995) 155–165. doi:10.1016/0005-2728(94)00183-6. 

[188] A. Hossain, Y. Nakano, K. Asada, Monodehydroascorbate reductase in spinach 

chloroplasts and its participation in regeneration of ascorbate for scavenging 

hydrogen peroxide, Plant Cell Physiol. 25 (1984) 385–395. 

doi:10.1093/oxfordjournals.pcp.a076726. 

[189] A.K. Park, I.-S. Kim, H. Do, B.W. Jeon, C.W. Lee, S.J. Roh, S.C. Shin, H. Park, Y.-S. 

Kim, Y.-H. Kim, H.-S. Yoon, J.H. Lee, H.-W. Kim, Structure and catalytic mechanism 

of monodehydroascorbate reductase, MDHAR, from Oryza sativa L. japonica, Sci. 

Rep. 6 (2016) 33903. doi:10.1038/srep33903. 

[190] Y. Sakihama, M.F. Cohen, S.C. Grace, H. Yamasaki, Plant phenolic antioxidant and 

prooxidant activities: Phenolics-induced oxidative damage mediated by metals in 

plants, Toxicology. 177 (2002) 67–80. doi:10.1016/S0300-483X(02)00196-8. 

[191] P.J. Eastmond, MONODEHYROASCORBATE REDUCTASE4 is required for seed 

storage oil hydrolysis and postgerminative growth in Arabidopsis, Plant Cell. 19 

(2007) 1376–1387. doi:10.1105/tpc.106.043992. 

[192] H. Vanacker, T.L.W. Carver, C.H. Foyer, Pathogen-induced changes in the 

antioxidant status of the apoplast in barley leaves, Plant Physiol. 117 (1998) 1103–

1114. doi:10.1104/pp.117.3.1103. 

[193] Y. Sakihama, J. Mano, S. Sano, K. Asada, H. Yamasaki, Reduction of phenoxyl 

radicals mediated by monodehydroascorbate reductase, Biochem. Biophys. Res. 

Commun. 279 (2000) 949–954. doi:10.1006/bbrc.2000.4053. 

[194] E.J. Johnston, E.L. Rylott, E. Beynon, A. Lorenz, V. Chechik, N.C. Bruce, 

Monodehydroascorbate reductase mediates TNT toxicity in plants, Science  349 

(2015) 1072–1075. doi:10.1126/science.aab3472. 



39 
 

[195] A. Kärkönen, R.A. Dewhirst, C.L. Mackay, S.C. Fry, Metabolites of 2,3-diketogulonate 

delay peroxidase action and induce non-enzymic H2O2 generation: Potential roles in 

the plant cell wall, Arch. Biochem. Biophys. 620 (2017) 12–22. 

doi:10.1016/j.abb.2017.03.006. 

[196] M. Sanmartin, P. a M.D. Drogoudi, T. Lyons, I. Pateraki, J. Barnes, A.K. Kanellis, 

Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in 

altered ascorbate and glutathione redox states and increased sensitivity to ozone, 

Planta. 216 (2003) 918–28. doi:10.1007/s00425-002-0944-9. 

[197] C. Pignocchi, J.M. Fletcher, J.E. Wilkinson, J.D. Barnes, C.H. Foyer, The function of 

ascorbate oxidase in tobacco, Plant Physiol. 132 (2003) 1631–1641. 

doi:10.1104/pp.103.022798. 

[198] C. Garchery, N. Gest, P.T. Do, M. Alhagdow, P. Baldet, G. Menard, C. Rothan, C. 

Massot, H. Gautier, J. Aarrouf, A.R. Fernie, R. Stevens, A diminution in ascorbate 

oxidase activity affects carbon allocation and improves yield in tomato under water 

deficit, Plant. Cell Environ. 36 (2013) 159–75. doi:10.1111/j.1365-3040.2012.02564.x. 

[199] A. Yamamoto, M.N.H. Bhuiyan, R. Waditee, Y. Tanaka, M. Esaka, K. Oba, A.T. 

Jagendorf, T. Takabe, Suppressed expression of the apoplastic ascorbate oxidase 

gene increases salt tolerance in tobacco and Arabidopsis plants, J. Exp. Bot. 56 

(2005) 1785–96. doi:10.1093/jxb/eri167. 

[200] C. Pignocchi, Apoplastic ascorbate metabolism and its role in the regulation of cell 

signalling, Curr. Opin. Plant Biol. 6 (2003) 379–389. doi:10.1016/S1369-

5266(03)00069-4. 

[201] M. De Tullio, M. Guether, R. Balestrini, Ascorbate oxidase is the potential conductor 

of a symphony of signaling pathways, Plant Signal. Behav. 8 (2013) e23213. 

doi:10.4161/psb.23213. 

[202] S.J. Foster, A. Asensi, T. Taybi, C. Pignocchi, G. Kiddle, I. Herna, J. Barnes, C.H. 

Foyer, Ascorbate oxidase-dependent changes in the redox state of the apoplast 

modulate gene transcript accumulation leading to modified hormone signaling and 

orchestration of defense processes in tobacco, 141 (2006) 423–435. 

doi:10.1104/pp.106.078469.cell. 

[203] M. Esaka, K. Fujisawa, M. Goto, Y. Kisu, Regulation of ascorbate oxidase expression 

in pumpkin by auxin and copper, Plant Physiol. 100 (1992) 231–7. 



40 
 

doi:10.1104/pp.100.1.231. 

[204] V. Fotopoulos, M.C. De Tullio, J. Barnes, A.K. Kanellis, Altered stomatal dynamics in 

ascorbate oxidase over-expressing tobacco plants suggest a role for 

dehydroascorbate signalling, J. Exp. Bot. 59 (2008) 729–37. doi:10.1093/jxb/erm359. 

[205] J. Dowdle, T. Ishikawa, S. Gatzek, S. Rolinski, N. Smirnoff, Two genes in Arabidopsis 

thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate 

biosynthesis and seedling viability, Plant J. 52 (2007) 673–89. doi:10.1111/j.1365-

313X.2007.03266.x. 

[206] B. Lim, N. Smirnoff, C.S. Cobbett, J.F. Golz, Ascorbate-deficient vtc2 mutants in 

Arabidopsis do not exhibit decreased growth, Front. Plant Sci. 7 (2016) 1–9. 

doi:10.3389/fpls.2016.01025. 

[207] P.I. Kerchev, T.K. Pellny, P.D. Vivancos, G. Kiddle, P. Hedden, S. Driscoll, H. 

Vanacker, P. Verrier, R.D. Hancock, C.H. Foyer, The transcription factor ABI4 Is 

required for the ascorbic acid-dependent regulation of growth and regulation of 

jasmonate-dependent defense signaling pathways in Arabidopsis, Plant Cell. 23 

(2011) 3319–34. doi:10.1105/tpc.111.090100. 

[208] P.L. Conklin, E.H. Williams, R.L. Last, Environmental stress sensitivity of an ascorbic 

acid-deficient Arabidopsis mutant, Proc. Natl. Acad. Sci. USA. 93 (1996) 9970–9974. 

[209] J. Filkowski, O. Kovalchuk, I. Kovalchuk, Genome stability of vtc1, tt4, and tt5 

Arabidopsis thaliana mutants impaired in protection against oxidative stress, Plant J. 

38 (2004) 60–69. doi:10.1111/j.1365-313X.2004.02020.x. 

[210] B. Genty, M. Havaux, C. Triantaphylide, Autoluminescence imaging: a non-invasive 

tool for mapping oxidative stress, Trends Plant Sci. 11 (2006) 1–5. 

doi:10.1016/j.tplants.2006.08.001. 

[211] P. Muller-Moulé, Zeaxanthin deficiency enhances the high light sensitivity of an 

ascorbate-deficient mutant of Arabidopsis, Plant Physiol. 133 (2003) 748–760. 

doi:10.1104/pp.103.026252. 

[212] J. Awad, Smin, H.U. Stotz, A. Fekete, M. Krischke, C. Engert, M. Havaux, S. Berger, 

M.J. Mueller, 2-Cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a 

water-watercycle that is essential to protect the photosynthetic apparatus under high 

light stress conditions, Plant Physiol. 167 (2015) 1592–1603. 

doi:10.1017/CBO9781107415324.004. 



41 
 

[213] S.Z. Toth, J.T. Puthur, V. Nagy, G. Garab, Experimental evidence for ascorbate-

dependent electron transport in leaves with inactive oxygen-evolving complexes, 

Plant Physiol. 149 (2009) 1568–1578. doi:10.1104/pp.108.132621. 

[214] S.Z. Toth, V. Nagy, J.T. Puthur, L. Kovacs, G. Garab, The physiological role of 

ascorbate as photosystem II electron donor: protection against photoinactivation in 

heat-stressed leaves, Plant Physiol. 156 (2011) 382–392. 

doi:10.1104/pp.110.171918. 

[215] S.D. Veljovic-Jovanovic, C. Pignocchi, G. Noctor, C.H. Foyer, Low ascorbic acid in the 

vtc1 mutant of Arabidopsis Is associated with decreased growth and intracellular 

redistribution of the antioxidant system, Plant Physiol. 127 (2001) 426–435. 

doi:10.1104/pp.010141. 

[216] V. Pavet, E. Olmos, G. Kiddle, S. Mowla, S. Kumar, J. Antoniw, M.E. Alvarez, C.H. 

Foyer, Ascorbic acid deficiency activates cell death and disease resistance responses 

in Arabidopsis, Plant Physiol. 139 (2005) 1291–303. doi:10.1104/pp.105.067686. 

[217] L. Colville, N. Smirnoff, Antioxidant status, peroxidase activity, and PR protein 

transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants, J. Exp. Bot. 

59 (2008) 3857–68. doi:10.1093/jxb/ern229. 

[218] M. Mukherjee, K.E. Larrimore, N.J. Ahmed, T.S. Bedick, N.T. Barghouthi, M.B. Traw, 

C. Barth, Ascorbic acid deficiency in arabidopsis induces constitutive priming that is 

dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene, Mol. Plant-

Microbe Interact. 23 (2010) 340–51. doi:10.1094/MPMI-23-3-0340. 

[219] C. Barth, W. Moeder, D.F. Klessig, P.L. Conklin, The timing of senescence and 

response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant 

vitamin c-1, Plant Physiol. 134 (2004) 1784–92. doi:10.1104/pp.103.032185. 

[220] C.J. Botanga, G. Bethke, Z. Chen, D.R. Gallie, O. Fiehn, J. Glazebrook, Metabolite 

profiling of Arabidopsis inoculated with Alternaria brassicicola reveals that ascorbate 

reduces disease severity., Mol. Plant-Microbe Interact. 25 (2012) 1628–38. 

doi:10.1094/MPMI-07-12-0179-R. 

[221] W.A. Laing, M. Martínez-Sánchez, M.A. Wright, S.M. Bulley, D. Brewster, A.P. Dare, 

M. Rassam, D. Wang, R. Storey, R.C. Macknight, R.P. Hellens, An upstream open 

reading frame is essential for feedback regulation of ascorbate biosynthesis in 

Arabidopsis, Plant Cell. 27 (2015) 772–786. doi:10.1105/tpc.114.133777. 



42 
 

[222] J.M. Carcamo, A. Pedraza, O. Borquez-Ojeda, B. Zhang, R. Sanchez, D.W. Golde, 

Vitamin C is a kinase inhibitor: Dehydroascorbic acid inhibits IκBα Kinase β, Mol. Cell. 

Biol. 24 (2004) 6645–6652. doi:10.1128/MCB.24.15.6645. 

 

 

Fig. 1.  The redox reactions of ascorbate.  Ascorbate is mostly present in the ionised form 

(Asc-) at pH 7.0. Its reaction with free radicals, Fe and H2O2 produces the resonance-

stabilised MDHA radical which is central to its biological role. Reactions occurring in plants 

and mammals are shown with red arrows and plant-specific reactions are shown with green 

arrows. MDHA and DHA reduction are catalysed respectively by NADH and GSH-dependent 

enzymes families in plants and by a variety of enzymes in mammals.      
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Fig. 2.   The diversity of ascorbate and its derivatives. All are naturally occurring with the 

possible exception of the phosphate and fatty acid esters. However, the esterification of 

ascorbate at C2 and 2-O-glycosylation protects the reactive enediol group allowing these 

derivatives to be used as stable food supplements.  
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Fig. 3.  The currently known ascorbate biosynthesis pathways in mammals, plants, 

photosynthetic protists and fungi. In all cases, the final step is oxidation of an aldono-1,4-

lactone to ascorbate using an FAD-linked oxidase or dehydrogenase. The oxidase 

generates H2O2 as well as ascorbate.  The series of reactions generating the aldono-1,4-

lactone differs between groups. Photosynthetic protists evolved from a secondary 

endosymbiosis between a non-photosynthetic ancestor and algae, so it is proposed that this 

pathway represents a hybrid of the plant and mammalian pathways.    
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Fig. 4.  Ascorbate degradation pathways. Ascorbate is enzymatically converted to tartaric 

acid in some plants (e.g. grapes). DHA undergoes a complex set of reactions, some 

involving unidentified enzymes, many of which occur in extracellular fluid. There is evidence 

that oxalate production could be intracellular in plants. Some of the products are reactive 

and potentially damaging carbonyl compounds.  General pathways are shown with red 

arrows, plant-specific pathways with green arrows and those demonstrated in mammals with 

yellow arrows.       
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Fig. 5.   A comparison of the sites of ascorbate synthesis and transport in plants and 

mammals. Ascorbate (SVCT) and DHA (GLUT) transporters allow mammalian cells to 

accumulate ascorbate from low plasma concentrations. SVCTs are co-transporters that use 

a transmembrane Na+
 gradient to drive uptake while GLUTs allow facilitated transport of DHA, 

which is reduced inside the cell by DHAR enzymes. In contrast, uptake by plant cells may be 

primarily via DHA although the molecular nature of transporter is unknown. There is also an 

ascorbate efflux mechanism, possibly via an anion channel. An ascorbate transporter 

allowing movement into the chloroplasts (PHT4:4) has been identified recently. Also, in 

plants apoplastic ascorbate oxidase maintains the ascorbate pool in a more oxidised state 

than the intracellular pool.  Peroxisomes and vacuoles are not shown in this scheme but 

both contain ascorbate. AsA-, ascorbate; AO ascorbate oxidase; Chl, chloroplast; DHA 

dehydroascorbate (bicyclic); ER, endoplasmic reticulum; GalL, galactonolactone; GalLDH, L-

galactonolactone dehydrogenase; GLUT, DHA transporter; GulL, gulonolactone; GulLO, 

gulonolactone oxidase; Mito, mitochondrion; PHT4;4, ascorbate transporter; SVCT, 

ascorbate-Na co-transporter; Thyl, thylakoid; VDE, ascorbate-dependent violaxanthin de-

epoxidase. Shaded rectangles, enzymes and transporters; white circles; transport activities 

using unidentified proteins.  
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Graphical Abstract 

 

Highlights 

 The function and metabolism of ascorbate is compared between plants and mammals. 

 Ascorbate readily reduces radicals and Fe/Cu.  

 Ascorbate is synthesised by plants, protists and animals via different pathways.  

 Fungi synthesise the analogue D-erythroascorbate.  

 Plants and photosynthetic protists ascorbate peroxidase to remove H2O2. 

 

 




