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Pseudorelativistic Dirac quasiparticles have emerged in a plethora of artificial graphene systems that mimic the
underlying honeycomb symmetry of graphene. However, it is notoriously difficult to manipulate their properties
without modifying the lattice structure. Here we theoretically investigate polaritons supported by honeycomb
metasurfaces and, despite the trivial nature of the resonant elements, we unveil rich Dirac physics stemming
from a non-trivial winding in the light-matter interaction. A new kind of type-II Dirac point emerges which
simultaneously exists with its conventional type-I counterpart. By modifying only the photonic environment
via an enclosing cavity, one can manipulate the location of the type-II Dirac points, leading to distinct polariton
phases. This enables one to alter the fundamental properties of the emergent Dirac polaritons while preserv-
ing the lattice structure—a unique scenario which has no analog in real or artificial graphene systems so far.
Exploiting the photonic environment will thus give rise to unexplored Dirac physics at the subwavelength scale.
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The groundbreaking discovery of monolayer graphene [1] has
inspired an extensive quest to emulate massless Dirac quasi-
particles in a myriad of distinct artificial graphene systems
[2–11], ranging from ultracold atoms in optical lattices [3] to
evanescently coupled photonic waveguide arrays [4]. Owing
to their honeycomb symmetry, linear band-degeneracies man-
ifest in the quasiparticle spectrum which we call conventional
Dirac points (CDPs). These belong to the ubiquitous type-
I class of two-dimensional (2D) Dirac points that are char-
acterized by Dirac cones with closed isofrequency contours.
As a result, the corresponding quasiparticles are described by
the rather exotic 2D massless Dirac Hamiltonian [12], in stark
contrast to the more conventional Schrödinger equation. Thus,
these emergent Dirac quasiparticles offer fundamental insight
into pseudorelativistic phenomena such as the iconic Klein
paradox, corresponding to the perfect transmission through ar-
bitrarily large potential barriers [13]. The latter is responsible
for the suppression of backscattering and antilocalization of
Dirac quasiparticles, which are highly desirable properties for
efficient quasiparticle propagation in novel devices.

Since the existence of type-I CDPs is intrinsically linked
to the honeycomb structure, the fundamental properties of the
massless Dirac quasiparticles are notoriously robust and diffi-
cult to manipulate. However, by exploiting meticulous control
over the lattice structure, artificial graphene systems have en-
abled the exploration of Dirac quasiparticles in new regimes
that are difficult, if not impossible to achieve in graphene
itself [14–19]. An archetypal example which has attracted
considerable interest is the paradigm of strain-engineering,
where it has been shown that lattice anisotropy can induce the
merging and annihilation of type-I CDPs [3, 14–16, 20–23],
and that aperiodicity can generate large pseudomagnetic fields
[17, 24].

This concept of Hamiltonian engineering, and the hunt for
exotic quasiparticles, has recently entered the realm of polari-
tonics [25–30]. The true potential of polaritons lies in their
hybrid nature, where their light and matter constituents can
be manipulated independently, thereby providing additional
tunable degrees of freedom. As an example, recent work has
shown the tantalizing prospect of engineering novel topologi-
cal polaritons by introducing a winding coupling between or-
dinary photons and excitons [27]. Shortly thereafter, these
non-trivial interactions were exploited to gap out photonic
Dirac points as an alternative route to topological polaritons
[29].

In this work we exploit the hybrid nature of polaritons in
a different setting, namely metamaterials. We explore Dirac
physics in an entirely new scenario, shifting the focus from the
lattice structure and its deformations to the effect of manipu-
lating the surrounding photonic environment. In particular,
we theoretically study the polaritons supported by crystalline
metasurfaces consisting of a honeycomb array of resonant,
dipolar meta-atoms. Such a structure is imminently realizable
across the electromagnetic spectrum from arrays of plasmonic
nanoparticles to microwave helical resonators. Despite the el-
ementary nature of these metasurfaces, we show that complex

Figure 1. Schematic of a cavity-embedded honeycomb metasur-
face. The honeycomb array of meta-atoms is composed of two in-
equivalent (A and B) hexagonal sublattices—defined by lattice vec-
tors a1 = a(−

√
3

2
, 3
2
) and a2 = a(

√
3

2
, 3
2
)—which are connected

by nearest-neighbor vectors e1 = a(0,−1), e2 = a(
√
3

2
, 1
2
) and

e3 = a(−
√
3

2
, 1
2
), where a is the subwavelength nearest-neighbor

separation. Each meta-atom is modelled as an electric dipole, ori-
ented normal to the plane of the lattice. The honeycomb metasurface
is embedded inside a photonic cavity of height L, which is composed
of two perfectly conducting metallic plates, enabling one to modify
the photonic environment while preserving the lattice structure. This
general model can be realized across the electromagnetic spectrum,
from arrays of plasmonic nanorods to microwave helical resonators.

non-local interactions, mediated by the electromagnetic en-
vironment, give rise to rich and unique Dirac physics at the
subwavelength scale. In particular, we unveil the emergence
of a new kind of type-II Dirac point, which simultaneously ex-
ists with the type-I CDPs. In contrast to the latter, the former
are characterized by critically tilted Dirac cones with open,
hyperbolic isofrequency contours.

Recently, the discovery of type-II Dirac/Weyl semimet-
als has sparked a growing interest in the prospect of
type-II Dirac/Weyl points since the corresponding ‘Lorentz-
violating’ Dirac quasiparticles exhibit markedly different
properties from their type-I counterparts [31–35]. After
their realization, the pursuit for electromagnetic analogs com-
menced [36–42]. However, just like type-I CDPs, the ex-
istence of type-II Dirac/Weyl points is usually tied to judi-
ciously engineered lattice structures, and are thus impossible
to manipulate without modifying the structure [36–42].

In stark contrast, here the existence of the type-II Dirac
points is intrinsically linked to the hybrid nature of the po-
laritons, emerging from a non-trivial winding in the light-
matter interaction. Crucially, the combination of this unique
physical origin and the truly 2D nature of the metasurface
results in an unprecedented tunability of emergent Dirac po-
laritons by modifying only the surrounding photonic environ-
ment. Specifically, we show that by embedding the honey-
comb metasurface inside a planar photonic cavity and sim-
ply changing the cavity height, one can induce novel phase
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transitions, including the multi-merging of type-I and type-
II Dirac points and the annihilation of type-II Dirac points.
This striking tunability results in distinct polariton phases, de-
spite the preserved lattice structure. In particular, we unveil
a morphing between a linear and a parabolic spectrum ac-
companied by a change in topological Berry phase, and an
unprecedented environment-induced inversion of chirality, all
of which have no analog in graphene or artificial graphene
systems studied thus far. Therefore, this unique paradigm of
exploiting the photonic environment will give rise to novel
Dirac-related phenomena at the subwavelength scale, such as
anomalous Klein tunnelling, negative refraction and pseudo-
magnetic Landau levels, which can all be tuned via the pho-
tonic environment alone.

RESULTS

Hamiltonian Formulation

While metamaterials have traditionally been described in
terms of macroscopic effective properties [36, 39, 43], the
importance of crystallinity is becoming increasingly appar-
ent [44]. Therefore, to capture the essential physics related
to complex non-local effects that arise from strong multiple-
scattering [45], here we study the properties of the cavity-
embedded honeycomb metasurface by means of a micro-
scopic Hamiltonian formalism. This allows us to clearly iden-
tify the distinct physical origins of the type-I and type-II Dirac
points.

The full polariton Hamiltonian of this system reads Hpol =
Hmat+Hph+Hint, where the interaction HamiltonianHint cou-
ples the matter and photonic subspaces whose free dynamics
are governed by Hmat and Hph, respectively. We employ the
Coulomb gauge, where the instantaneous Coulomb interac-
tion between the meta-atoms is incorporated within the matter
Hamiltonian Hmat [46]. The effects of the dynamic photonic
environment, described by the transverse vector potential, is
included through the principle of minimal-coupling [46].

We model each meta-atom by a single dynamical degree
of freedom describing the electric-dipole moment associated
with its (non-degenerate) fundamental eigenmode with res-
onant frequency ω0. These meta-atoms are then oriented
such that their dipole moments point normal to the plane of
the lattice. Furthermore, we consider subwavelength nearest-
neighbor separation a such that the light cone intersects the
Brillouin zone edge above ω0, ensuring the existence of
evanescently bound, subwavelength polaritons. The strength
of the Coulomb dipole-dipole interaction between neighbor-
ing meta-atoms is parametrized by Ω. Finally, the metasurface
is embedded at the center of a planar photonic cavity of height
L, as depicted in Fig. 1, where the cavity walls are assumed to
be lossless and perfectly conducting metallic plates.

Emergence of Type-I Dirac Points

The matter Hamiltonian within the nearest-neighbor approxi-
mation reads

Hmat = ~ω̃0

∑
q

(
a†qaq + b†qbq

)
+ ~Ω̃

∑
q

(
fqb
†
qaq + H.c.

)
,

(1)
where, for brevity, we have not presented the non-resonant
terms (see Methods for derivation). In equation (1), ω̃0 is the
renormalized resonant frequency and Ω̃ is the renormalized
Coulombic interaction strength due to the cavity-induced im-
age dipoles (see Methods for their dependence on the cav-
ity height). The bosonic operators a†q and b†q create quanta
of the quasistatic collective-dipole modes that extend across
the A and B sublattices, respectively, with wavevector q in
the first Brillouin zone (see Fig. 2a). Finally, the function
fq =

∑3
j=1 exp

(
iq · ej

)
encodes the honeycomb geometry

of the lattice with nearest-neighbor vectors ej (see Fig. 1).
We diagonalize the matter Hamiltonian (1) as Hmat =∑
τ=±

∑
q ~ωmat

qτ β
†
qτβqτ where the bosonic operators β†qτ =

ψ†q|ψqτ 〉 create quasistatic collective-dipole normal modes
with dispersion ωmat

qτ = ω̃0 + τ Ω̃|fq|. Here, τ indexes the
upper (τ = +1) and lower (τ = −1) bands and ψ†q =

(a†q, b
†
q) is a spinor creation operator. The spinors |ψqτ 〉 =

(1, τeiϕq)T/
√

2 describe an emergent pseudospin degree of
freedom where the two components encode the relative ampli-
tude and phase of the dipolar oscillations on the two inequiv-
alent A and B sublattices, respectively, with ϕq = arg(fq).
These spinors can be represented by a pseudospin vector on
the Bloch sphere which reads Sqτ = τ(cosϕq, sinϕq, 0).

At the high symmetry K and K′ points (see Fig. 2a) the
sublattices decouple with no well-defined relative phase (i.e.,
fq = 0), giving rise to two inequivalent CDPs located at

±K = ±
(

4π
3
√

3a
, 0
)

as observed in Fig. 2b. As expected from
the symmetry of the metasurface, the existence of CDPs is
robust against long-range Coulomb interactions as shown in
Supplementary Note 1. In fact, for small cavity heights, the
image dipoles quench long-range Coulomb interactions and
the nearest-neighbor approximation becomes increasingly ac-
curate as shown in Supplementary Fig. 1. The CDPs corre-
spond to vortices in the pseudospin vector field Sqτ , which
give rise to topological singularities in the Berry curvature
[47]. Therefore, CDPs are sources of quantized Berry flux
wπ, where w = ±1 is the topological charge of the Dirac
point corresponding to the winding number of the vortex.

To quadratic order in k = q − K (ka � 1), the
effective matter Hamiltonian near the K point is Heff

K =∑
k ψ
†
kHeff

K,kψk, with spinor creation operator ψ†k = (a†k, b
†
k)

and Bloch Hamiltonian

Heff
K,k = ~ω̃012 − ~ṽσ · k + ~t̃ (σ∗ · k)

◦2
. (2)

Here, 12 is the 2 × 2 identity matrix, σ = (σx, σy) and
σ∗ = (σx,−σy) are vectors of Pauli matrices, and ◦2 rep-
resents the Hadamard (element-wise) square. Note that the
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Figure 2. Evolution of the polariton dispersion as the cavity height is reduced. a, First Brillouin zone defined by primitive reciprocal
lattice vectors b1 = 2π

3a
(−
√

3,−1) and b2 = 2π
3a

(
√

3,−1). b, Quasistatic dispersion of the collective-dipole normal modes, where the
upper band corresponds to a bright, symmetric dipole configuration (↑↑) and the lower band corresponds to a dark, antisymmetric dipole
configuration (↑↓). The light-cone (shaded region) is bounded by the linear dispersion of the TEM mode. Due to the non-trivial winding in the
light-matter interaction (see Fig. 3), the band crossings are expected to result in large (band crossings ‘1’ and ‘2’) or small (band crossings ‘3’
and ‘4’) direction-dependent anticrossings in the polariton spectrum. c-e, Polariton dispersion obtained from the polariton Hamiltonian Hpol
(solid black lines) and the two-band Hamiltonian H̄mat (orange dashed lines), for c subcritical (L = 5a), d critical (L = Lc = 1.75a), and e
supercritical (L = a) cavity heights, respectively. While type-I CDPs with an isotropic Dirac cone (see inset of c) exist even in the quasistatic
dispersion (see b), new type-II SDPs with a critically tilted Dirac cone (see inset in c) emerge due to the vanishing light-matter interaction for
the dark quasistatic band along the Γ−K(K′) directions (see Fig. 3). At the critical cavity height Lc, three type-II SDPs merge with the type-I
CDPs (see Fig. 5) resulting in a quadratic band-degeneracy at K(K′) (see inset in d). After criticality, the type-II SDPs annihilate one another
and the massless Dirac cone re-emerges at the type-I CDPs (see inset in e) accompanied by an inversion of chirality (see Fig. 5). Plots obtained
with parameters ωph

K0 = 2.5ω0 and Ω = 0.01ω0.

image dipoles do not qualitatively affect the physics, but sim-
ply lead to a renormalization of the group velocity ṽ = 3Ω̃a/2
and trigonal warping parameter t̃ = 3Ω̃a2/8. Apart from a
global energy shift, equation (2) is equivalent to a 2D mass-
less Dirac Hamiltonian to leading order in k, with an isotropic
Dirac cone spectrum ωmat

kτ = ω̃0 + τ ṽ|k| that is character-
ized by closed isofrequency contours. Therefore, as expected
from the honeycomb symmetry, the CDP belongs to the type-
I class of 2D Dirac points, and the corresponding spinors
|ψkτ 〉 = (1,−τeiθk)T/

√
2, where θk = arctan(ky/kx), rep-

resent massless Dirac collective-dipoles with a topological
Berry phase of π. The effective Hamiltonian near the K′ point
is given byHeff

K′,k = (Heff
K,−k)∗, where the CDP is a source of

−π Berry flux as required by time-reversal symmetry.

Hybridization with the Photonic Environment

Given the subwavelength nearest-neighbor separation, it is
tempting to assert that the near-field Coulomb interactions in

Hmat capture the essential physics. In fact, we will show that
this quasistatic description misses the profound influence of
the surrounding photonic environment, which has a remark-
ably non-trivial effect on the Berry curvature and, therefore,
on the corresponding nature of the polaritons.

Crucially, the metallic cavity supports a fundamental trans-
verse electromagnetic (TEM) mode whose polarization (par-
allel to the dipole moments) and linear dispersion (see Fig. 2b)
are independent of the cavity height. For brevity, in what fol-
lows we do not present the contributions from the other cavity
modes since the essential physics emerges from the interac-
tion with the fundamental TEM mode (see Methods for full
expressions). In fact, the higher order cavity modes become
increasingly negligible for smaller cavities as they are pro-
gressively detuned from the dipole resonances.

The effects of the photonic environment are encoded in the
free photonic Hamiltonian

Hph = ~
∑
qn

ωph
qnc
†
qncqn (3)
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and in the light-matter interaction HamiltonianHint = H
(1)
int +

H
(2)
int , with

H
(1)
int = ~

∑
qn

iξqnφ
∗
n

(
a†qcqn + a†qc

†
−qn

)
+~
∑
qn

iξqnφn

(
b†qcqn + b†qc

†
−qn

)
+ H.c.

(4)

and

H
(2)
int = ~

∑
qnn′

2ξqnξqn′

ω0

Re
(
φnφ

∗
n′

)
(
c†qncqn′ + c†qnc

†
−qn′

)
+ H.c.,

(5)

where ξqn ∝ L−1/2 parametrizes the strength of the
light-matter interaction (see Methods for analytical expres-
sion). The bosonic operator c†qn creates a TEM photon with
wavevector q in the first Brillouin zone and dispersion ωph

qn =
c|q −Gn|, where n indexes the set of reciprocal lattice vec-
tors Gn. The complex phase factors φn = exp (iaGn · ŷ)
are associated with Umklapp processes that arise due to the
discrete, in-plane translational symmetry of the metasurface,
and must be retained as they are critical for maintaining the
point-group symmetry of the polariton Hamiltonian.

We diagonalize Hpol using a generalized Hopfield-
Bogoliubov transformation [48] (see Methods for details), and
in Fig. 2c-e we present the resulting polariton dispersion for
different cavity heights. Also, in Supplementary Fig. 2 we
present the full polariton dispersion that includes long-range
Coulomb interactions. For small cavity heights, the full po-
lariton dispersion is almost indistinguishable from that ob-
tained in the nearest-neighbor approximation, and therefore
one can conclude that long-range Coulomb interactions do
not qualitatively affect the physics presented here. It is im-
portant to stress that our general model captures the essential
physics that will emerge in a variety of different experimental
setups. To show this, in Supplementary Fig. 3 and Supple-
mentary Fig. 4 we present the polariton dispersions obtained
from full-wave numerical simulations of a honeycomb array
of plasmonic nanorods and microwave helical resonators, re-
spectively. These different physical realizations indeed show
the same evolution of the polariton spectrum as shown in
Fig. 2c-e and Supplementary Fig. 2.

Emergence of Type-II Dirac Points

Given the elementary nature of the individual resonant ele-
ments, it is tempting to assume that nothing peculiar could
emerge from the ordinary dipole-dipole interactions between
the meta-atoms that are mediated by the electromagnetic field.
However, by expressing the interaction Hamiltonian (4) in
terms of the βqτ and β†qτ operators that diagonalize the matter

Figure 3. Non-trivial winding in the light-matter interaction. a,
Dependence of the magnitude of the light-matter coupling constant
|Λq0τ | ∝ |eiϕq + τ | on the direction of q from Γ−M to Γ−K(K′)
(see inset), for the upper (red line) and lower (blue line) quasistatic
bands. Plots obtained with |q| = |K|/2. b-e, Schematics of the
bright (↑↑) and dark (↑↓) configurations of the two sublattices inter-
acting with the photonic mode, indicated by the field profile. Panels
b and d represent the crossings labeled ‘1’ and ‘3’ in Fig. 2 along the
Γ − K(K′) directions, respectively, while panels c and e represent
the crossings labelled ‘2’ and ‘4’ along the Γ−M directions, respec-
tively. Crucially, the light-matter interaction strength for the dark
mode vanishes (|Λq0−| = 0) along the Γ − K(K′) directions due
to the complete destructive interference between the two sublattices
(see d), leading to the emergence of six inequivalent type-II Dirac
points in the polariton spectrum.

Hamiltonian,

H
(1)
int = ~

∑
τ=±

∑
qn

iΛqnτ

(
β†qτ cqn + β†qτ c

†
−qn

)
+ H.c., (6)

we find that complex non-local interactions, which arise from
strong multiple scattering in the bipartite structure, result in a
non-trivial winding of the light-matter coupling as a function
of wavevector direction

Λqnτ ∝ ξqn
(
φ∗neiϕq + τφn

)
. (7)

Naively, one may expect all of the band crossings in Fig. 2b
to be avoided as a result of the hybridization between the
collective-dipole and photonic modes, as it is a characteris-
tic feature of polaritonic systems [48]. Indeed, this is the
case for the crossings with the upper quasistatic band where
Λq0+ ∝ (eiϕq + 1) (see red line in Fig. 3a) due to the con-
structive interference between the sublattices of this bright
(↑↑) configuration (see Fig. 3b-c). This results in a large anti-
crossing for all wavevector directions, as observed in Fig. 2c.
In stark contrast, for the lower quasistatic band the coupling
constant is significantly reduced Λq0− ∝ (eiϕq − 1) (see blue
line in Fig. 3a) due to the destructive interference between the
sublattices of this dark (↑↓) configuration (see Fig. 3e). Con-
sequently, this results in a small anticrossing for a general
wavevector direction.
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Crucially, however, the light-matter interaction for the
lower quasistatic band completely vanishes (Λq0− = 0) along
the high-symmetry Γ−K(K′) directions, where ϕq = 0, due
to the complete destructive interference between the two sub-
lattices (see Fig. 3d). As a result, along these high-symmetry
directions the crossings are protected, leading to six inequiva-
lent Dirac points emerging in the polariton spectrum—we call
these satellite Dirac points (SDPs) to distinguish them from
the CDPs. As we will see below, these SDPs belong to the
type-II class of 2D Dirac points where the dispersion takes
the form of a critically tilted Dirac cone (see inset of Fig. 2c),
characterized by open, hyperbolic isofrequency contours.

Effective Hamiltonian in the Matter Subspace

To explore the nature of the polaritons in the vicinity of the
different Dirac points, we first neglect non-resonant terms
in the matter Hamiltonian and perform a unitary Schrieffer-
Wolff transformation [49] on Hpol to integrate out the pho-
tonic degrees of freedom (see Methods for details). Finally,
we extract the two-band Hamiltonian in the matter sublattice
space

H̄mat =Hmat − 2~
∑
qn

ξ2
qnω

ph
qn

(ωph
qn)2 − ω̃2

0(
a†qaq + b†qbq + φ2

nb
†
qaq + φ∗2n a

†
qbq
)
.

(8)

Diagonalizing the two-band Hamiltonian (8) leads to an effec-
tive dispersion (see Methods) which provides an excellent de-
scription of the polaritons as indicated by the orange dashed
lines in Fig. 2c-e. Finally, we expand the two-band Hamil-
tonian (8) up to quadratic order in k and obtain the effective
Hamiltonian near the K point H̄eff

K =
∑

k ψ
†
kH̄eff

K,kψk (see
Supplementary Note 2 for derivation) with Bloch Hamiltonian

H̄eff
K,k = ~ω̄012 − ~v̄σ · k + ~t̄ (σ∗ · k)

◦2 − ~D|k|212. (9)

Similarly, the effective Hamiltonian near the K′ point is given
by H̄eff

K′,k = (H̄eff
K,−k)∗. In equation (9), the resonant fre-

quency ω̄0, group velocity v̄, and trigonal warping parameter
t̄, now encode non-trivial contributions from the hybridiza-
tion with the photonic environment. There is also an addi-
tional wavevector-dependent diagonal term parametrized by
D, which breaks the symmetry between the upper and lower
polariton bands. The dependence of these parameters on the
cavity height is shown in Fig. 4 (see Methods for analytical
expressions). To leading order in k, one can observe that the
effective Hamiltonian (9) near the CDP is equivalent to a 2D
massless Dirac Hamiltonian. Therefore, the polariton CDPs
remain in the type-I class and are robust against the coupling
with the photonic environment—this is not surprising given
that their physical origin is intrinsically linked to the lattice
structure alone, which is preserved here.

To elucidate the nature of the SDPs, we expand the effec-
tive Hamiltonian (9) near one of the SDPs located at KS =

Figure 4. Tunable parameters in the effective Hamiltonian. De-
pendence of the parameters in the effective polariton Hamiltonian (9)
on the inverse cavity height. The blue dashed line shows the varia-
tion of the group velocity v̄ which changes sign at the critical cav-
ity height Lc, leading to the inversion of chirality. The orange dot-
dashed line shows the variation of the trigonal warping parameter
t̄ which becomes dominant close to criticality. These parameters
have been normalized to v = 3Ωa/2 and t = 3Ωa2/8 which are
the group velocity and trigonal warping parameters, respectively, in
the absence of image dipoles and light-matter interactions. The or-
ange dot-dashed line in the inset shows the variation of the CDP fre-
quency ω̄0, while the blue dashed line in the inset shows the variation
of the wavevector-dependent diagonal term D. Plots obtained with
ωph
K0 = 2.5ω0 and Ω = 0.01ω0.

(v̄/t̄, 0) and obtain

H̄eff
KS,k′ = ~

(
ω̄0 −

Dv̄2

t̄2
− 2Dv̄

t̄
k′x

)
12 +~σ∗ · v̄ ·k′, (10)

where k′ measures the deviation from KS and v̄ = v̄ ( 1 0
0 3 )

is the velocity tensor. Apart from a global energy shift,
the effective Hamiltonian (10) near the SDP takes the form
of a generalized 2D massless Dirac Hamiltonian Hk =∑
i=x,y ~uiki12 +

∑
i=x,y ~vikiσi. If the parameters ui and

vi satisfy the condition u2
x/v

2
x + u2

y/v
2
y < 1, then the Dirac

cone becomes tilted and anisotropic [50] but still belongs to
the type-I class with closed isofrequency contours. However,
the condition u2

x/v
2
x + u2

y/v
2
y > 1 defines a distinct type-II

class of 2D Dirac points, giving rise to a critically tilted Dirac
cone with open, hyperbolic isofrequency contours. Hence,
the distinct type-I and type-II classes are related via a Lif-
shitz transition in the topology of the isofrequency contours.
Indeed, since we have uy = 0 and u2

x/v
2
x = 4D2/t̄2 > 1,

the SDPs belong to the type-II class of 2D Dirac points. Fur-
thermore, since the Hamiltonian (10) is expressed in terms of
σ∗, the pseudospin winds in the opposite direction around the
SDPs as compared to the CDP, and therefore the SDPs located
along the Γ − K directions are sources of −π Berry flux. As
required by time-reversal symmetry, the SDPs located along
the Γ−K′ directions are sources of π Berry flux (opposite to



7

the CDP located at the K′ point) To the authors knowledge,
this is the first realization of type-II Dirac points in a truly 2D
system with subwavelength dimension in the transverse direc-
tion.

Manipulation of Type-I and Type-II Dirac Points

We have demonstrated the simultaneous existence of type-I
and type-II Dirac points in the 2D polariton spectrum. Since
the latter are intrinsically linked to the hybridization between
the light and matter degrees of freedom, one can manipulate
their location within the Brillouin zone by simply modifying
the light-matter interaction via the cavity height. As a re-
sult, the polariton spectrum evolves into qualitatively distinct
phases as highlighted in Fig. 2c-e. To elucidate the differences
between these phases, we study the spinor eigenstates (see
Methods) of the two-band Hamiltonian (8). In Fig. 5a-c we
plot the pseudospin vector field near the K point for differ-
ent cavity heights and schematically depict the location of the
Dirac points, along with their associated Berry flux. Finally,
in Fig. 5d-f we illustrate the corresponding effective polariton
spectrum to leading order in k. Note that similar analysis can
be performed for the K′ point.

In the subcritical phase (L > Lc), three type-II SDPs are
located along the Γ − K directions, each with −π Berry flux
surrounding a type-I CDP with π Berry flux (see Fig. 5a).
To leading order in k, the polariton spectrum disperses lin-
early about the type-I CDPs (see Fig. 2c) forming an isotropic
Dirac cone with a group velocity v̄ that is tunable via the cav-
ity height (see Fig. 4). Here, the effective Hamiltonian (9) is
equivalent to a 2D massless Dirac Hamiltonian with spinor
eigenstates |ψkτ 〉 = (1,−τeiθk)T/

√
2. These represent mass-

less Dirac polaritons with chirality 〈ψkτ |σ · k̂|ψkτ 〉 = −τ ,
resulting in a pseudospin that winds once around the CDP and
a topological Berry phase of π (see Fig. 5d).

At the critical cavity height (L = Lc), the group velocity of
the massless Dirac polaritons vanishes v̄(Lc) = 0 (see Fig. 4)
as the type-II SDPs merge with the type-I CDP, forming a
quadratic band-degeneracy (see Fig. 2d) with combined −2π
Berry flux (see Fig. 5b). The leading order term in the effec-
tive Hamiltonian (9) is now quadratic in k with correspond-
ing spinor eigenstates |ψkτ 〉 = (1,−τe−i2θk)T/

√
2. There-

fore, during this critical merging transition, the massless Dirac
polaritons morph into massive chiral polaritons with qualita-
tively distinct physical properties. These include a parabolic
spectrum and chirality 〈ψkτ | (σ∗ · k)

◦2 |ψkτ 〉 = −τ , result-
ing in a pseudospin that winds twice as fast compared to the
subcritical phase and a topological Berry phase of −2π (see
Fig. 5e).

Since the point-group symmetry is preserved, the type-II
SDPs do not annihilate the type-I CDP, but they re-emerge
and continue to migrate along the K − M directions as the
cavity height is reduced past criticality (L < Lc) (see inset of
Fig. 5c). After a small decrease in cavity height, these SDPs
annihilate with other SDPs that migrate along the opposite di-

rection and have opposite Berry flux. This topological tran-
sition leaves only the type-I CDP remaining in the spectrum
with π Berry flux (see Fig. 2e and Fig. 5c).

In this supercritical phase, we recover the linear dispersion
near the type-I CDP to leading order in k (see Fig. 2e), and the
effective Hamiltonian (9) is equivalent to a 2D massless Dirac
Hamiltonian with corresponding spinor eigenstates |ψkτ 〉 =

(1, τeiθk)T/
√

2. Remarkably, massless Dirac polaritons thus
re-emerge past criticality with an unprecedented environment-
induced inversion of chirality 〈ψkτ |σ · k̂|ψkτ 〉 = τ (see
Fig. 5f). Physically, this corresponds to a π-rotation in the rel-
ative phase between the dipole oscillations on the two sublat-
tices, which is also accompanied by a π-rotation in the isofre-
quency domains (compare Fig. 5a and Fig. 5c). We emphasize
that it is the chirality of massless Dirac fermions that is re-
sponsible for most of the remarkable properties of monolayer
graphene, including the Klein tunnelling phenomenon [13].
Consequently, this novel environment-induced inversion of
chirality could give rise to unconventional phenomena such as
anomalous Klein transport. For example, near the K point, the
right-propagating polaritons correspond to an antisymmetric
dipole configuration |ψkτ 〉 = (1,−1)T/

√
2 in the subcritical

phase and to a symmetric configuration |ψkτ 〉 = (1, 1)T/
√

2
in the supercritical phase. Thus, due to the orthogonality be-
tween these two eigenstates, the inversion of chirality removes
the channel responsible for the perfect transmission in the con-
ventional Klein tunnelling effect [13] (see Fig. 5d and Fig. 5f).
Such a scenario could be realized in a simple setup character-
ized by two neighboring regions with different cavity heights.

As a side remark, we note that the polariton spectrum near
criticality bears some resemblance with the low-energy spec-
trum of bilayer graphene with its central type-I Dirac point
and three type-I SDPs [51, 52]. However, given the type-
II nature of the polariton SDPs, the topology of the polari-
ton isofrequency contours are markedly different from that of
the bilayer spectrum. This is further highlighted at criticality
where the polariton bands have the same curvature, which is
in stark contrast to the electronic bands in bilayer graphene.

We also note that recent works explored the possibility to
manipulate the (3+1) type-I Dirac points in bilayer graphene
through the application of lattice deformations [53–56], lead-
ing to the merging and annihilation of CDPs and SDPs.
In addition, a multi-merging transition of all (3+1) type-I
Dirac points has been proposed theoretically within tight-
binding models involving the artificial tuning of third-nearest-
neighbour hopping amplitudes in a graphene-like honeycomb
structure [57–60]. However, these proposals have no physical
realization so far. In stark contrast, the imminently-realizable
metasurfaces in our work enable the exploration of rich Dirac
phases with ease by simply modifying the photonic environ-
ment via an enclosing cavity.

As a final remark, we briefly comment on how one might
probe these novel Dirac phases. Given that the Dirac points
exist in a polaritonic excitation spectrum, one must drive the
system with photons at the required frequency in order to
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Figure 5. Merging of type-I and type-II Dirac points with chirality inversion. a-c, Pseudospin vector field and isofrequency contours
for the upper polariton band near the K point for a subcritical (L = 2.3a), b critical (L = Lc = 1.78a), and c supercritical (L = 1.4a)
cavity heights, respectively, as obtained from H̄mat. The Dirac points (corresponding to vortices) are depicted by orange circles along with
their associated Berry flux. Before criticality, three type-II SDPs (−π Berry flux) are driven towards the type-I CDP (π Berry flux) along the
Γ − K directions as the cavity height is reduced (see inset in a). At the critical cavity height Lc, they merge together forming a quadratic
band-degeneracy with combined Berry flux of −2π (see b). After criticality, the type-II SDPs re-emerge and are driven past the type-I CDP
along the K −M directions (see inset in c). After a small decrease in cavity height, these SDPs annihilate other SDPs that migrate along the
opposite direction and have opposite Berry flux, leaving only the type-I CDP remaining in the spectrum with π Berry flux (see c). d-f, Effective
polariton spectrum near the K point to leading order in k. The colors of the bands correspond to the chirality of the Dirac polaritons as defined
in the main text, where the orange and blue bands indicate a chirality of +1 and −1, respectively. The spinor eigenstates, represented by
pseudospin vectors (gold arrows), describe d massless Dirac polaritons with linear dispersion and Berry phase π, e massive chiral polaritons
with parabolic dispersion and Berry phase −2π, and f massless Dirac polaritons with linear dispersion and Berry phase π, but with inverted
chirality. All pseudospin and contour plots are obtained with ωph

K0 = 2.5ω0 and Ω = 0.01ω0.

probe them. Both classes of Dirac points lie outside of the
light-line and thus one must overcome the momentum mis-
match with photons. The specific experimental technique that
one would employ will depend on the nature of the meta-
surface and the corresponding frequency regime. For exam-
ple, techniques for plasmonic systems have traditionally in-
volved coupling via evanescent waves with prisms, gratings,
and local scatterers [61], or more recent techniques such as
non-linear wave-mixing [62]. In contrast, realizations in the
microwave regime can be probed using point-like antenna
sources and detectors [39]. In fact, microwave metamaterials
are proving to be a versatile platform for exploring Dirac/Weyl

physics, since one can directly probe the field distributions us-
ing near-field scanning techniques [39], and thus one could
directly probe the environment-induced chirality inversion.

DISCUSSION

To conclude, we have revealed rich and unique Dirac physics
that emerges even in the most elementary honeycomb meta-
surfaces. In particular, we have shown that the polariton spec-
trum simultaneously exhibits type-I and type-II Dirac points,
where the latter emerge from a non-trivial winding in the light-
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matter interaction. We would like to emphasize that it is this
unique physical origin together with the truly 2D nature of
the metasurface that enables one to qualitatively modify the
fundamental properties of the emergent Dirac polaritons by
manipulating the surrounding photonic environment. This
stands in stark contrast to conventional artificial graphene sys-
tems where the fundamental properties are dictated by the lat-
tice structure alone. Therefore, exploiting the rich tunabilty
of the polariton spectrum with the environment offers a new
paradigm that opens a variety of opportunities to explore novel
Dirac-related physics at the subwavelength scale.

For example, one can simultaneously probe the dynamics
of type-I and type-II Dirac quasiparticles, where the latter
are predicted to exhibit intriguing anomalous refraction be-
haviour [40]. Furthermore, the environment-induced redshift
of the CDP frequency ω̄0 (see Fig. 4) will allow the investiga-
tion of polaritonic Klein tunnelling through interfaces separat-
ing regions with different cavity heights. Consequently, neg-
ative refraction can be induced by simple variations in cavity
height, which could be exploited in novel schemes for guiding
and manipulating light at the subwavelength scale, including
polaritonic Veselago lensing [63, 64]. Moreover, the tunable
group velocity will also enable the exploration of velocity bar-
riers for the unprecedented guiding and localization of mass-
less Dirac quasiparticles [65, 66], which is extremely difficult
to achieve in real graphene. Furthermore, one could also com-
bine the effects of the environment with inhomogeneous strain
deformations, giving rise to unique pseudomagnetic-related
effects, including the intriguing ability to induce a pseudo-
Landau level spectrum for polaritons that can be qualitatively
tuned via the cavity height. Finally, the ability to controllably
invert the chirality of Dirac polaritons opens new perspectives
for anomalous pseudorelativistic transport through interfaces
separating regions in distinct polaritonic phases.

METHODS

Derivation of the polaritonic Hamiltonian

The cavity-embedded metasurface is composed of a honeycomb array of identical meta-
atoms located at RA = R + aŷ + L

2 ẑ and RB = R− aŷ + L
2 ẑ on the A and B

sublattices, respectively. Here, R = l1a1+l2a2 is an in-plane lattice translation vector
with primitive vectors a1 and a2 (see Fig. 1) and integers l1 and l2. Each meta-atom is
modelled by a single dynamical degree of freedom h (with dimensions of length), where
the electric-dipole moment associated with its fundamental eigenmode is p = −Qhẑ,
with effective chargeQ. The Coulomb potential energy between two dipole moments p
and p′ located at generic positions r and r′, respectively, is given by

VCoul =
p · p′ − 3(p · n̂)(p′ · n̂)

4πε0|r− r′|3
, (11)

where n̂ = (r− r′)/|r− r′| and ε0 is the vacuum permittivity.
The presence of the perfectly conducting metallic plates, placed at z = 0 and z =

L, modifies the boundary conditions on the scalar potential and, therefore, the Coulomb
interaction between the meta-atoms. Using the method of images to ensure the vanishing
of the scalar potential at the cavity walls [67], we introduce an infinite series of image
dipoles located outside the cavity at positions Rs + lLẑ, where s = A,B indexes the
two sublattices and l is a non-zero integer. Noting that the Coulomb potential energy
between a real and image dipole is 1/2 of that given by equation (11) [68], the matter

Hamiltonian within the nearest-neighbor approximation reads

Hmat =
∑
s=A,B

∑
Rs

(
Π2

Rs

2M
+
M

2
ω

2
0h

2
Rs

)

+
Q2

4πε0a
3

∑
RB

3∑
j=1

hRB
hRB+ej

−
Q2

8πε0a
3

∑
s=A,B

∑
Rs

+∞∑′

l=−∞
2

∣∣∣∣ alL
∣∣∣∣3 h2

Rs

−
Q2

8πε0a
3

∑
RB

3∑
j=1

+∞∑′

l=−∞

2
∣∣ lL
a

∣∣2 − 1(
1 +

∣∣ lL
a

∣∣2) 5
2

hRB
hRB+ej

−
Q2

8πε0a
3

∑
RA

3∑
j=1

+∞∑′

l=−∞

2
∣∣ lL
a

∣∣2 − 1(
1 +

∣∣ lL
a

∣∣2) 5
2

hRA
hRA−ej

,

(12)

where the primed summations exclude the l = 0 term. Here, ΠRs
is the conjugate

momentum to the dynamical coordinate hRs
corresponding to the meta-atom located at

Rs, andM is an effective mass. Next we introduce the bosonic operators

aRA
=

√
Mω0

2~
hRA

+ i

√
1

2~Mω0

ΠRA
(13)

and

bRB
=

√
Mω0

2~
hRB

+ i

√
1

2~Mω0

ΠRB
(14)

that annihilate quanta of the fundamental eigenmode on the meta-atom located at RA

and RB, respectively, and satisfy the commutation relations [a
R
, a†

R′ ] = δ
RR′ ,

[b
R
, b†

R′ ] = δ
RR′ , and [a

R
, b†

R′ ] = 0. In terms of these operators, the matter
Hamiltonian (12) reads

Hmat = ~ω0

∑
RA

a
†
RA

aRA
+ ~ω0

∑
RB

b
†
RB

bRB

+ ~Ω(1− I)
∑
RB

3∑
j=1

[
b
†
RB

(
aRB+ej

+ a
†
RB+ej

)
+ H.c.

]

−
~
2

ΩS
∑
RA

[
a
†
RA

(
aRA

+ a
†
RA

)
+ H.c.

]

−
~
2

ΩS
∑
RB

[
b
†
RB

(
bRB

+ b
†
RB

)
+ H.c.

]
(15)

where Ω = Q2/8πε0Mω0a
3 parametrizes the strength of the nearest-neighbor

Coulomb interaction, and the parameters

S = 4
∞∑
l=1

(
a

lL

)3

, I = 2
∞∑
l=1

2
(
lL
a

)2 − 1[
1 +

(
lL
a

)2] 5
2

, (16)

encode renormalizations due to the cavity-induced image dipoles. We apply Born-von
Kármán boundary conditions over a lattice with N � 1 unit cells and introduce
the Fourier transform of the bosonic operators aRA

= N−1/2∑
q aqeiq·RA and

bRB
= N−1/2∑

q bqeiq·RB , which transforms the matter Hamiltonian (15) into
the local and block-diagonal form

Hmat = ~
∑
q

(ω0 − ΩS)
(
a
†
qaq + b

†
qbq

)
+~
∑
q

Ω(1− I)
[
fqb
†
q

(
aq + a

†
−q

)
+ H.c.

]
−~
∑
q

1

2
ΩS
(
a
†
qa
†
−q + b

†
qb
†
−q + H.c.

)
.

(17)

In the main text we do not present the non-resonant terms (e.g. b†qa
†
−q), leading to

equation (1) where ω̃0 = ω0 − ΩS and Ω̃ = Ω (1− I).
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In the Coulomb gauge, the light-matter interaction is described by the minimal-
coupling Hamiltonian [46] which, within the dipole approximation, reads

Hint =
Q

M

∑
s=A,B

∑
Rs

ΠRs
Az(Rs)︸ ︷︷ ︸

H
(1)
int

+
Q2

2M

∑
s=A,B

∑
Rs

A
2
z(Rs)︸ ︷︷ ︸

H
(2)
int

, (18)

where we have used ΠR = ΠRẑ. The vector potential can be decomposed into trans-
verse electric (TE) and transverse magnetic (TM) modes of the cavity. However, the
photons corresponding to the TE modes have an in-plane polarization, and therefore
only TM modes contribute to the z-component of the vector potential

Az(r, z) =
∑
qmn

√
~

ε0NmNALω
ph
qmn

|q−Gn|
|q−Gn + mπ

L ẑ|
cos

(
mπ

L
z

)
[
cqmne

i(q−Gn)·r
+ c
†
qmne

−i(q−Gn)·r
]
,

(19)

where A = 3
√

3a2/2 is the area of a unit cell and Nm = 1 + δm0. The bosonic
operator c†qmn creates a TM photon with wavevector q in the first Brillouin zone and
dispersion ωph

qmn = c|q − Gn + ẑmπ/L|. Here, Gn = n1b1 + n2b2 is
a reciprocal lattice vector with primitive vectors b1 and b2, where n indexes the set
of ordered pairs of integers (n1, n2), and m is a non-negative integer indexing the
different TM cavity modes. Only TM photons with even m couple to the dipoles due to
the parity selection rule at the centre of the cavity.

Substituting the vector potential (19) into equation (18) we obtain the light-matter
interaction Hamiltonian

H
(1)
int = ~

∑
qmn

iξqmnφ
∗
n

(
a
†
qcqmn + a

†
qc
†
−qmn

)
+~

∑
qmn

iξqmnφn

(
b
†
qcqmn + b

†
qc
†
−qmn

)
+ H.c.

(20)

and

H
(2)
int = ~

∑
qmm′nn′

2ξ
qmn

ξ
qm′n′

ω0

Re
(
φ
n
φ
∗
n′

)
(
c
†
qmn

c
qm′n′ + c

†
qmn

c
†
−qm′n′

)
+ H.c. .

(21)

The strength of the light-matter interaction is parametrized by

ξqmn = ω0F(ω
ph
qmn)

ωph
q0n

ωph
qmn

(
8π

3
√

3Nm

a

L

Ω

ωph
qmn

) 1
2

, (22)

where, to take into account the finite size of the meta-atoms, we have introduced a phe-
nomenological function F(ωph

qmn) that provides a smooth cut-off for the interaction
with short-wavelength photonic modes where the dipole approximation breaks down.
We choose the phenomenological cut-off function to be of the Fermi-Dirac distribution
form

F(ω
ph
qmn) =

1

1 + e2(ω
ph
qmn−3ω0)/ω0

, (23)

which is smooth enough to avoid spurious artifacts appearing in the polariton spectrum.
Finally, the free photonic Hamiltonian of the cavity reads

Hph = ~
∑
qmn

ω
ph
qmnc

†
qmncqmn. (24)

In equations (3), (4), (5) in the main text we only present the contribution from the TEM
mode (m = 0), dropping the corresponding index. In Supplementary Note 1 we discuss
the effect of the higher order (m 6= 0) TM cavity modes for larger cavities.

Hopfield-Bogoliubov diagonalization

The polariton Hamiltonian Hpol = Hmat +Hph +Hint, where Hmat is given by equa-
tion (17), Hph by equation (24), and Hint by equations (20) and (21), can be recast into

matrix form as Hpol = 1
2

∑
q Ψ†qH pol

q Ψq where Ψ†q = (ψ†q, C
†
q, ψ

T
−q, C

T
−q).

Here, ψ†q = (a†q, b
†
q) is the spinor creation operator in the matter sublattice space and

C†q = (c†q1, c
†
q2, . . . , c

†
qp, . . . , c

†
qN ) is the vector of TM photon creation operators,

where p indexes the set of ordered triplets of integers (n1, n2,m), and N is the total
number of photonic operators considered. The Hermitian [2(N + 2)] × [2(N + 2)]

matrix H pol
q can be written in block form as

H pol
q =

(
H+

q H−q −Wq(
H−q −Wq

)† (
H+
−q

)∗ ) , (25)

where

Wq = ~Diag
(
ω0, ω0, ω

ph
q1, ω

ph
q2, . . . , ω

ph
qp, . . . , ω

ph
qN

)
(26)

is the (N+2)×(N+2) diagonal matrix of resonant frequencies of the free oscillators.
The (N + 2)× (N + 2) block matricesH±q can be sub-divided into block matrices

H±q =

(
Hmat

q Hint
q

±
(
Hint

q

)†
Hph

q

)
, (27)

where the upper-diagonal block

Hmat
q = ~

(
ω̃0 Ω̃f∗q

Ω̃fq ω̃0

)
(28)

is the 2 × 2 matrix in the matter subspace, and the lower-diagonal block Hph
q is the

N ×N matrix in the photonic subspace with components

(Hph
q )pp′ = ~ωph

qpδpp′ + 4~
ξ
qp
ξ
qp′

ω0

Re
{
φ
p
φ
∗
p′

}
. (29)

Finally, the off-diagonal block Hint
q in equation (27) is the 2 × N interaction matrix,

where the pth column reads

(
Hint

q

)
p

= ~
(

iξqpφ
∗
p

iξqpφp

)
. (30)

The polariton Hamiltonian Hpol is diagonalized by a generalized Hopfield-Bogoliubov

transformation [48] Ψq = TqXq, where X†q = (χ†q, χ
T
−q) and χ†q =

(γ†q1, γ
†
q2, . . . , γ

†
qν , . . . , γ

†
qN+2). To ensure the invariance of the bosonic commu-

tation relations for the transformed operators, Tq must be a [2(N+2)]×[2(N+2)] pa-
raunitary matrix [69] that satisfies TqηzT

†
q = T †qηzTq = ηz , where ηz = σz⊗12

and σz is the Pauli matrix. The transformed bosonic operators γ†qν = Ψ†qηz|Ψqν〉
and γqν = 〈Ψqν |ηzΨq that diagonalize the polariton Hamiltonian as

Hpol =
∑
qν

~ωpol
qνγ
†
qνγqν , (31)

create and annihilate polaritons in the ν th band, respectively. The polariton dispersion
ωpol

qν (black solid lines in Fig. 2c-e) and the corresponding linearly-independent eigen-
vectors |Ψqν〉 (first two columns of Tq) are determined from the positive eigenvalue
solutions to the non-Hermitian eigenvalue equation ηzH pol

q |Ψqν〉 = ~ωpol
qν |Ψqν〉.

Schrieffer-Wolff transformation

To obtain an effective two-band Hamiltonian in the matter sublattice space, we neglect
non-resonant terms in the matter Hamiltonian (since Ω/ω0 � 1 for practical realiza-
tions of the metasurface), but not in the light-matter interaction Hamiltonian since the
photons are not resonant with the collective-dipoles near the corners of the Brillouin
zone (see Fig. 2b). Next, we perform a unitary transformation

H̄pol = e
S
Hpole

−S
= Hpol +

[
S,Hpol

]
+

1

2

[
S
[
S,Hpol

]]
+ . . . (32)

and impose the Schrieffer-Wolff condition [49]

[
S,Hmat +Hph

]
= −H(1)

int (33)
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which eliminates the light-matter interaction to first order in ξqmn. From equation (33)
the particular form of the anti-Hermitian operator S reads

S =−
∑
qmn

iξqmn

ωph
qmn − ω̃0

(φ
∗
na
†
q + φnb

†
q)cqmn

+
∑
qmn

iξqmn

ωph
qmn + ω̃0

(φ
∗
na
†
q + φnb

†
q)c
†
−qmn − H.c.

(34)

where we have used the approximation |ωph
qmn ± ω0| � Ω|fq| that is valid near the

K and K′ points. Retaining leading-order terms in ξqmn, the transformed polariton
Hamiltonian (32) reads

H̄pol ' Hmat +
1

2

[
S,H

(1)
int

]
︸ ︷︷ ︸

H̄mat

+Hph +H
(2)
int︸ ︷︷ ︸

H̄ph

, (35)

where the matter and photonic subspaces are decoupled to quadratic order in ξqmn.
Calculating the commutator in equation (35) and extracting the Hamiltonian within the
matter sublattice space we obtain the two-band Hamiltonian

H̄mat = Hmat−2~
∑
qmn

ξ2
qmnω

ph
qmn

(ωph
qmn)2 − ω̃2

0

(
a
†
qaq+b

†
qbq+φ

2
nb
†
qaq+φ

∗2
n a
†
qbq
)
.

(36)
In equation (8) in the main text we only present the contribution from the TEM mode
(m = 0), dropping the corresponding index. We can recast the Hamiltonian (36) into
matrix form as H̄mat =

∑
q ψ
†
qH̄

mat
q ψq, with Bloch Hamiltonian

H̄mat
q = ~

(
Wq F∗q
Fq Wq

)
. (37)

HereWq = ω̃0 − Ω
∑
mn ∆qmn and Fq = Ω̃fq − Ω

∑
mn ∆qmnφ

2
n with

∆qmn =
16π

3
√

3Nm

a

L

ω2
0

(ωph
qmn)2 − ω̃2

0

(
ωph

q0n

ωph
qmn

)2

F2
(ω

ph
qmn). (38)

Diagonalizing H̄mat leads to the two-band dispersion ω̄mat
qτ = Wq + τ |Fq|, which is

indicated by the orange-dashed lines in Fig. 2c-e. The corresponding spinor eigenstates
|ψqτ 〉 = (1, τe

iϕ̄q )T/
√

2, where ϕ̄q = arg(Fq), can be represented by the pseu-
dospin vector Sqτ = τ(cos ϕ̄q, sin ϕ̄q, 0) from which we obtain the pseudospin
vector field plots in Fig 5a-c.

Expansion of the effective two-band Hamiltonian

Near the K point, the function ∆qmn, given by equation (38), expands as

∆kmn ' ∆
(0)
Kmn − a

2
∆

(1)
Kmn

[
(K−Gn)xkx + (K−Gn)yky

]
+

1

2

[
−a2

∆
(1)
Kmn + a

4
∆

(2)
Kmn (K−Gn)

2
x

]
k

2
x

+
1

2

[
−a2

∆
(1)
Kmn + a

4
∆

(2)
Kmn (K−Gn)

2
y

]
k

2
y

+ a
4
∆

(2)
Kmn (K−Gn)

x
(K−Gn)

y
kxky

(39)

to quadratic order in k, where the real parameters ∆
(υ)
Kmn (υ = 0, 1, 2) depend only

on the photon frequencies ωph
Kmn at the K point. Collecting the contributions from

the degenerate photons (see Supplementary Note 2 for details) we obtain the effective
Hamiltonian (9), where parameters are given by

ω̄0

ω0

= 1−
Ω

ω0

S −
Ω

ω0

∑
mn

∆
(0)
Kmn, (40)

v̄

v
= 1− I −

4π

27

∑
mn

An∆
(1)
Kmn, (41)

t̄

t
= 1− I −

8π2

81

∑
mn

Bn∆
(2)
Kmn, (42)

and

D

ω0a
2

=
Ω

ω0

∑
mn

(
4π2

27
Cn∆

(2)
Kmn −

1

2
∆

(1)
Kmn

)
, (43)

with

An =

√
3

2
(2− 3n1) cos

[
4π

3
(n1 + n2)

]
+

1

2
(6n2 − 3n1) sin

[
4π

3
(n1 + n2)

]
,

(44)

Bn =
(

3n
2
1 − 6n

2
2 − 6n1 + 6n1n2 + 2

)
cos

[
4π

3
(n1 + n2)

]
+
√

3
(

2n1 − 4n2 + 6n1n2 − 3n
2
1

)
sin

[
4π

3
(n1 + n2)

]
,

(45)

and

Cn = 1 + 3n1 (n1 − 1) + 3n2 (n2 − n1) . (46)

For brevity, we retain only the dominant (m = 0) TEM contribution for the plots in
Fig. 4, where the coefficients ∆

(υ)
K0n in equation (39) are given by

∆
(0)
K0n = 2

(
4π

3
√

3

)(
a

L

)[
ω2

0

(ωph
K0n)2 − ω̃2

0

]
F2

(ω
ph
K0n), (47)

∆
(1)
K0n = 4
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4π

3
√

3
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)(
ωph

K00
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0
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∂
[
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]
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(ωph
K0n)2 − ω̃2

0
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 ,

(48)

and

∆
(2)
K0n = 16

(
4π

3
√

3

)−3 ( a
L

)(
ωph

K00

ω0

)4 [
ω2

0

(ωph
K0n)2 − ω̃2

0

]3
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(ω

ph
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∂
[
F2(ωph

K0n)
]

∂ωph
K0n

[
5(ωph
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0

] [
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0

]
8(ωph
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+
∂2
[
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]
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[
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0
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 .

(49)

Data Availability

All relevant data are available from the corresponding authors upon reasonable request.

[1] Novoselov, K. S. et al. Electric field effect in atomically thin carbon
films. Science 306, 666-669 (2004).

[2] Polini, M., Guinea, F., Lewenstein, M., Manoharan, H. C. & Pellegrini,
V. Artificial honeycomb lattices for electrons, atoms and photons. Nat.
Nanotechnol. 8, 625-633 (2013).

[3] Zhu, S.-L., Wang, B. & Duan, L.-M. Simulation and detection of Dirac
fermions with cold atoms in an optical lattice. Phys. Rev. Lett. 98,
260402 (2007).

[4] Peleg, O. et al. Conical diffraction and gap solitons in honeycomb pho-
tonic lattices. Phys. Rev. Lett. 98, 103901 (2007).

[5] Han, D., Lai, Y., Zi, J., Zhang, Z. Q. & Chan, C. T. Dirac spectra
and edge states in honeycomb plasmonic lattices. Phys. Rev. Lett. 102,
123904 (2009).



12

[6] Gibertini, M. et al. Engineering artificial graphene in a two-dimensional
electron gas. Phys. Rev. B 79, 241406(R) (2009).

[7] Torrent, D. & Sánchez-Dehesa, J. Acoustic analogue of graphene: Ob-
servation of Dirac cones in acoustic surface waves. Phys. Rev. Lett. 108,
174301 (2012).

[8] Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. De-
signer Dirac fermions and topological phases in molecular graphene.
Nature 483, 306-310 (2012).

[9] Bellec, M., Kuhl, U., Montambaux, G. & Mortessagne, F. Tight-binding
couplings in microwave artificial graphene. Phys. Rev. B 88, 115437
(2013).

[10] Weick, G., Woollacott, C., Barnes, W. L., Hess, O. & Mariani, E. Dirac-
like plasmons in honeycomb lattices of metallic nanoparticles. Phys.
Rev. Lett. 110, 106801 (2013).

[11] Yu, S. et al. Surface phononic graphene. Nat. Mater. 15, 1243?1247
(2016).

[12] Castro Neto, A. H., Peres, N. M. R., Novoselov, K. S., Geim, A. K. &
Guinea, F. The electronic properties of graphene. Rev. Mod. Phys. 81,
109-162 (2009).

[13] Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling
and the Klein paradox in graphene. Nat. Phys. 2, 620-625 (2006).

[14] Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G. & Esslinger, T. Creat-
ing, moving and merging Dirac points with a Fermi gas in a tunable
honeycomb lattice. Nature 483, 302-305 (2012).

[15] Bellec, M., Kuhl, U., Montambaux, G. & Mortessagne, F. Topological
transition of Dirac points in a microwave experiment. Phys. Rev. Lett.
110, 033902 (2013).

[16] Rechtsman, M. C. et al. Topological creation and destruction of edge
states in photonic graphene. Phys. Rev. Lett. 111, 103901 (2013).

[17] Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and pho-
tonic Landau levels in dielectric structures. Nat. Photonics 7, 153-158
(2013).

[18] Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature
496, 196-200 (2013).

[19] Ni, X., Purtseladze, D., Smirnova, D. A., Slobozhanyuk, A. & Alù, A.
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Supplementary Information:
Manipulating Type-I and Type-II Dirac Polaritons in Cavity-Embedded Honeycomb Metasurfaces

Supplementary Figure 1. Quasistatic dispersion beyond the nearest-neighbor approximation. a, Quasistatic dispersion within the nearest-
neighbor approximation for cavity heights of L = 1.3a (blue dashed line) and L = a (orange dot-dashed line). For comparison we also have
plotted the quasistatic dispersion without a cavity (black solid line). One observes that the effect of the image dipoles is to renormalize the
resonant frequency and the Coulomb interaction strength, resulting in the quasistatic dispersion shifting down in frequency and reducing in
bandwidth. Panel b is the same as a but with the full quasistatic dispersion (S8) that includes Coulomb interactions beyond nearest-neighbors
until convergence. Long-range Coulomb interactions introduce an asymmetry between the upper and lower quasistatic bands as shown in b, but
the CDPs remain robust at the K and K′ points. As the cavity height is reduced, the image dipoles quench long-range Coulomb interactions,
which become negligible for cavity heights on the order of the nearest-neighbor separation. All plots obtained with Ω = 0.01ω0.

Supplementary Figure 2. Evolution of the polariton dispersion beyond the nearest-neighbor approximation. Full polariton dispersion
that includes long-range Coulomb interactions (solid black lines) compared to the polariton dispersion obtained within the nearest-neighbor
approximation (orange dashed lines) for a very large (L = 15a), b sub-critical (L = 5a), c critical (L = 1.75a), and d super-critical (L = a)
cavity heights, respectively. Higher-order cavity modes can be observed for very large cavities as seen in a. Along the Γ − K(K′) directions
the band crossings between the photon dispersion and the lower quasistatic band are protected, which gives rise to many additional linear-band
degeneracies within the light-cone. As the cavity height is decreased, these additional Dirac points are driven towards the Γ point (opposite
direction to the SDPs emerging from the TEM mode) where they annihilate one another. Comparing panels a and b, one can see that the
dispersion near the CDPs does not noticeably change, and qualitative changes outside the light-cone only occur for small cavity heights where
the higher-order cavity modes become increasingly detuned from the dipole resonances (see panels b-d). For small cavity heights, the nearest-
neighbor approximation becomes increasingly accurate and indistinguishable from the full polariton dispersion (see d for example). Plots
obtained with parameters ωph

K0 = 2.5ω0 and Ω = 0.01ω0.
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Supplementary Figure 3. Numerical simulation of the polariton dispersion for a cavity-embedded honeycomb array of plasmonic
nanorods. We consider ellipsoidal nanorods (prolate spheroids) with semiminor axis and semimajor axis of lengths 10 nm and 20 nm,
respectively, and model them using the simple Drude model permittivity with plasma frequency ωp = 1.32× 1016 rad s−1 and nonradiative
damping frequency γ = 6.9× 1013 s−1. The plasmonic nanorods are arranged in a honeycomb array with nearest-neighbor separation
a = 45 nm. We apply perfect electric conductor boundary conditions for the cavity walls and periodic boundary conditions surrounding the
unit cell (see inset on panel c). a-c, Numerical simulations of the polariton dispersion for the lowest two bands, calculated using the eigenmode
solver in COMSOL Multiphysics, for cavity heights of a L = 3a, b L = 1.7a, and c L = 1.3a, respectively. The orange dots represent
numerical solutions and the dashed line is a guide for the eye. The frequencies are normalized with respect to ω0 = 5.3× 1015 rad s−1.

Supplementary Figure 4. Numerical simulation of the polariton dispersion for a cavity-embedded honeycomb array of microwave
helical resonators. We consider microwave helical resonators with minor radius 2 mm, major radius 6 mm, pitch 6 mm, and 5 turns (see inset
on panel c). We model the helices and cavity walls as perfect electric conductors, which is a good approximation at microwave frequencies,
and we apply periodic boundary conditions surrounding the unit cell. The helices are arranged in a honeycomb array with nearest-neighbor
separation a = 45 mm. a-c, Numerical simulations of the polariton dispersion for the lowest two bands, calculated using the eigenmode solver
in COMSOL Multiphysics, for cavity heights of a L = 3.33a, b L = 1.56a, and c L = 1.11a, respectively. The orange dots represent
numerical solutions and the dashed line is a guide for the eye. The frequencies are normalized with respect to ω0 = 6.2× 109 rad s−1.
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SUPPLEMENTARY NOTE 1: BEYOND THE NEAREST-NEIGHBOR APPROXIMATION

Including all Coulomb interactions beyond the nearest-neighbor approximation leads to the full matter Hamiltonian within the
dipole approximation

Hmat = ~ω0

∑
q

(
a†qaq + b†qbq

)
+ ~Ω

∑
q

[
fAB
q b†q

(
aq + a†−q

)
+ H.c.

]
+

~Ω

2

∑
q

[
fAA
q a†q

(
aq + a†−q

)
+ H.c.

]
+

~Ω

2

∑
q

[
fBB
q b†q

(
bq + b†−q

)
+ H.c.

]
,

(S1)

where

fAA
q = fBB

q = −S +
∑
R6=0

(
a

|R|

)3 (
1− IAA

R

)
eiq·R (S2)

and

fAB
q =

∑
R

(
a

|R + e1|

)3 (
1− IAB

R

)
eiq·(R+e1). (S3)

In equations (S2) and (S3), the parameters

IAA
R = 2

∞∑
l=1

2
(
lL
|R|

)2

− 1[
1 +

(
lL
|R|

)2
] 5

2

, IAB
R = 2

∞∑
l=1

2
(

lL
|R+e1|

)2

− 1[
1 +

(
lL

|R+e1|

)2
] 5

2

(S4)

encode the renomalizations due to the interaction with cavity-induced image dipoles of neighboring meta-atoms, and S, given
by equation (16) in the Methods, encodes renormalizations due to interactions with their self-images. We can recast the matter
Hamiltonian (S1) into matrix form as Hmat = 1

2

∑
q Ψ†qH mat

q Ψq, where Ψ†q = (ψ†q, ψ
T
−q) and ψ†q = (a†q, b

†
q). The Hermitian

4× 4 matrix H mat
q can be written in block form as

H mat
q =

(
Hmat

q Hmat
q − ~ω012

Hmat
q − ~ω012 Hmat

q

)
, (S5)

with

Hmat
q = ~

(
ω0 + Ω Re

(
fAA
q

)
Ω
(
fAB
q

)∗
ΩfAB

q ω0 + Ω Re
(
fBB
q

)) . (S6)

We diagonalize Hmat via a Bogoliubov transformation Ψq = TqXq, where X†q = (χ†q, χ
T
−q) and χ†q = (β†q+, β

†
q−), with Tq

being a paraunitary matrix (see Methods). The bosonic operators β†qτ = (coshϑqτψ
†
q − sinhϑqτψ

T
−q)|ψqτ 〉 diagonalize the

matter Hamiltonian (S1) as

Hmat =
∑
τ=±

∑
q

~ωmat
qτ β

†
qτβqτ , (S7)

with quasistatic dispersion

ωmat
qτ =

√
ω0 + 2Ω<

(
fAA
q

)
+ 2τΩ

∣∣∣fAB
q

∣∣∣. (S8)

As described in the main text, the spinors |ψqτ 〉 = (1, τeiϕq)T/
√

2 describe a pseudospin degree of freedom where the two
components encode the relative amplitude and phase of the dipolar oscillations on the two inequivalent A and B sublattices, re-
spectively, where ϕq = arg(fAB

q ). The coefficients coshϑqτ = (ω0+ωmat
qτ )/2

√
ω0ω

mat
qτ and sinhϑqτ = (ω0−ωmat

qτ )/2
√
ω0ω

mat
qτ

describe the contributions of the resonant and non-resonant terms, respectively. Neglecting non-resonant terms we obtain
Hmat =

∑
q ψ
†
qHmat

q ψq which can be diagonalized as Hmat =
∑
τ=±

∑
q ~ωmat

qτ β
†
qτβqτ , where the operators β†qτ = ψ†q|ψqτ 〉

and the corresponding dispersion ωmat
qτ = ω0 + Ω<

(
fAA
q

)
+ τΩ

∣∣fAB
q

∣∣ take a simpler form.
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In Supplementary Fig. 1a we plot the quasistatic dispersion within the nearest-neighbor approximation for different cavity
heights and compare it to the full quasistatic dispersion in Fig. 1b, which is given by equation (S8). Indeed, due to the honeycomb
symmetry, one observes that the type-I CDPs remain pinned at the K and K′ points. To prove this robustness against long-range
Coulomb interactions, one must show that the function fAB

q , given by equation (S3), vanishes at the corners of the Brillouin
zone, i.e., one must show that the phase factors associated with the interactions with dipoles residing at the same separation
distance and different sublattices sum to zero. To this aim, we define separation vectors Al1l2

= l1a1 + l2a2 + e3 that connect

meta-atoms residing on different sublattices, with primitive lattice vectors a1 = a(
√

3, 0) and a2 = a(−
√

3
2 ,

3
2 ), and integers

l1 and l2. We can then find six separation vectors with the same magnitude by exploiting the three-fold rotational symmetry
Aj+
l1l2

= OjAl1l2
, where the operator Oj rotates a vector by the angle 2πj/3 (j = 0, 1, 2), and the mirror symmetry about the

y-axis Aj−
l1l2

= MxA
j+
l1l2

, where the operator Mx inverts the sign of the x component. Explicitly, the six separation vectors (not
necessarily all different) read
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= ±a
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2
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]
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1

2
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]
ŷ

(S9)

and evaluating equation (S3) at K one indeed finds fAB
K = 0.

Without a cavity, the fAA
q term, given by equation (S2), introduces strong asymmetry between the upper and lower quasistatic

bands. Since the lower band corresponds to a dark (↑↓) configuration of the two sublattices, the dispersion converges rapidly
with increasing number of interactions taken into account as long-range Coulomb interactions quickly average to zero. The most
prominent change is seen in the upper band where the group velocity increases towards the Γ point, which is in contrast to the
dispersion within the nearest-neighbor approximation. This is because the upper quasistatic band corresponds to a bright (↑↑)
configuration of the two sublattices and therefore long-range Coulomb interactions do not average to zero, especially near the Γ
point. However, as the cavity height is reduced, the image dipoles quench long-range Coulomb interactions, which eventually
become negligible for cavity heights on the order of the nearest-neighbor separation.

The polariton dispersion plots presented in the main text (Fig. 2c-e) are within the nearest-neighbor approximation. In Sup-
plementary Fig. 2a-d we present the polariton dispersion including all Coulomb interactions beyond nearest-neighbors until
convergence, i.e., using equation (S6) instead of equation (28) in the polariton Hamiltonian (see Methods). As expected from the
quasistatic dispersion plots in Supplementary Fig. 1b, long-range Coulomb interactions do not qualitatively affect the physics
near the K and K′ points. In fact, for small cavity heights, the nearest-neighbor approximation becomes increasingly accurate
and indistinguishable from the full polariton dispersion (see Supplementary Fig. 2d for example).

As described in the main text, six inequivalent type-II SDPs emerge in the polariton spectrum due to the protected crossing
with the TEM mode along the Γ − K(K′) directions. Protected crossings with higher-order cavity modes (m 6= 0) result in a
large number of additional type-II Dirac points being generated within the light-cone for large cavity heights (see Supplemen-
tary Fig. 2a). However, as the cavity height is decreased, these additional Dirac points migrate towards the Γ point (opposite
direction to the SDPs), where they eventually merge with and annihilate one another. Comparing Supplementary Fig. 2a and
Supplementary Fig. 2b, one observes that the polariton dispersion near the CDPs does not noticeably change, and qualitative
changes outside the light-cone only occur at small cavity heights where the higher-order cavity modes become increasingly
detuned with the dipole resonances.

SUPPLEMENTARY NOTE 2

In the Methods section we performed a unitary Schrieffer-Wolff transformation on the polariton Hamiltonian and obtained a
two-band Hamiltonian in the matter sublattice space given by equation (36). In this section, we seek an effective Hamiltonian
describing the polaritons near the corners of the Brillouin zone by expanding the two-band Bloch Hamiltonian (37) near the K

point (see Methods). To quadratic order in k = q−K, the diagonal matrix elements expand as Wq ' W
(0)
K,k +W

(1)
K,k +W

(2)
K,k

and the off-diagonal elements as Fq ' F
(0)
K,k + F

(1)
K,k + F

(2)
K,k, where the superscript index denotes the corresponding order in

k. To determine the real and imaginary components in the expansion, we must sum the phase contributions from the degenerate
photons at the K point. To this aim, we define reciprocal lattice vectors Gn = n1b1 + n2b2 with primitive vectors b1 =
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2π
3a (
√

3,−1) and b2 = 4π
3a (0, 1). In analogy with the analysis in Supplementary Note 1, we can find the reciprocal lattice vectors

associated with six degenerate photonic modes at K by exploiting the three-fold rotational symmetry of the reciprocal lattice
Gj+
n = K − Oj(K −Gn), where the operator Oj rotates a vector by the angle 2πj/3 (j = 0, 1, 2), and the mirror symmetry

about the ky = 0 line Gj−
n = MyG

j+
n , where the operator My inverts the sign of the y-component. Explicitly, the six reciprocal

lattice vectors (not necessarily all different) read

G0µ
n = K +

[
2π

3
√

3a
(3n1 − 2)

]
x̂ + µ

[
2π

3a
(2n2 − n1)

]
ŷ,

G1µ
n = K +

[
2π

3
√

3a
(1− 3n2)

]
x̂ + µ

[
2π

3a
(2n1 − n2 − 1)

]
ŷ,

G2µ
n = K +

[
2π

3
√

3a
(1 + 3n2 − 3n1)

]
x̂ + µ

[
2π

3a
(1− n1 − n2)

]
ŷ,

(S10)

with µ = ±1. Exploiting these symmetries one can rewrite the summations over photonic indices as

∑
mn

∆
(υ)
Kmn · · · →

1

6

∑
mn

∆
(υ)
Kmn

2∑
j=0

∑
µ=±

. . . (S11)

where the factor of 1/6 is introduced to avoid over counting. First, the constant (zeroth order) term in the expansion of Wq is

W
(0)
K,k = ω0 − ΩS − Ω

6

∑
mn

∆
(0)
Kmn

2∑
j=0

∑
µ=±

1 = ω̄0. (S12)

The linear (first order) term vanishes as

W
(1)
K,k =

Ωa2

6

∑
mn

∆
(1)
Kmn

2∑
j=0

∑
µ=±

[
(K−Gjµ

n )xkx + (K−Gjµ
n )yky

]
= 0, (S13)

which illustrates that the light-matter interaction does not introduce anisotropic warping of the Dirac cone to first order. Finally,
the quadratic (second order) term is

W
(2)
K,k =− Ωa4

6

∑
mn

∆
(2)
Kmn

2∑
j=0

∑
µ=±

(K−Gjµ
n )x(K−Gjµ

n )ykxky

− Ωa4

12

∑
mn

∆
(2)
Kmn

2∑
j=0

∑
µ=±

[
(K−Gjµ

n )2
xk

2
x + (K−Gjµ

n )2
yk

2
y

]
+

Ωa2

12

∑
mn

∆
(1)
Kmn

2∑
j=0

∑
µ=±

(k2
x + k2

y)

=−D(k2
x + k2

y),

(S14)

The constant (zeroth order) term in the expansion of Fq vanishes at the high-symmetry points as

F
(0)
K,k = −Ω

6

∑
mn

∆
(0)
Kmn

2∑
j=0

∑
µ=±

φ2
njµ = 0, (S15)

where φnjµ = exp(iaGjµ
n · ŷ). This shows that the CDPs remain pinned at the K and K′ points and are completely robust

against the coupling to the surrounding photonic environment. The linear (first order) term reads

F
(1)
K,k = −3Ωa

2
(1− I)

(
kx + iky

)
+

Ωa2

6

∑
mn

∆
(1)
Kmn

2∑
j=0

∑
µ=±

φ2
njµ

[
(K−Gjµ

n )xkx + (K−Gjµ
n )yky

]
= −v̄(kx + iky),

(S16)
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Finally, the quadratic (second order) term is given by

F
(2)
K,k =

3Ωa2

8
(1− I)

(
kx − iky

)2
+

Ωa2

12

∑
mn

∆
(1)
Kmn

2∑
j=0

∑
µ=±

φ2
njµ(k2

x + k2
y)

− Ωa4

12

∑
mn

∆
(2)
Kmn

2∑
j=0

∑
µ=±

φ2
njµ

[
(K−Gjµ

n )2
xk

2
x + (K−Gjµ

n )2
yk

2
y

]
− Ωa4

6

∑
mn

∆
(2)
Kmn

2∑
j=0

∑
µ=±

φ2
njµ(K−Gjµ

n )x(K−Gjµ
n )ykxky

= t̄
(
kx − iky

)2
.

(S17)

We can now identify the effective Hamiltonian H̄eff
K =

∑
k ψ
†
kH̄eff

K,kψk in the matter sublattice space, where the effective Bloch
Hamiltonian H̄eff

K,k is given by equation (9) in the main text.
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