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ABSTRACT 

Rationale:  Forty percent of households worldwide burn biomass fuels for energy, which may 

be most the important contributor to household air pollution.  

Objective: Examine the association between household air pollution exposure and COPD 

outcomes in 13 resource-poor settings.  

Methods: We analyzed data from 12,396 adult participants living in 13 resource-poor, 

population-based settings. Household air pollution exposure was defined as using biomass 

materials as the primary fuel source in the home. We used multivariable regressions to assess 

the relationship between household air pollution exposure and COPD outcomes, evaluated for 

interactions, and conducted sensitivity analyses to test the robustness of our findings.  

Results: Average age was 54.9 years (44.2-59.6 years across settings), 48.5% were women 

(38.3%-54.5%), prevalence of household air pollution exposure was 38% (0.5%-99.6%), and 

8.8% (1.7%-15.5%) had COPD. Participants with household air pollution exposure were 41% 

more likely to have COPD (adjusted OR=1.41, 95% CI 1.18 to 1.68) than those without the 

exposure, and 13.5% (6.4% to 20.6%) of COPD prevalence may due to household air pollution 

exposure, compared with 12.4% due to cigarrete smoking. The association between household 

air pollution exposure and COPD was stronger in women (1.70, 1.24 to 2.32) than in men (1.21, 

0.92 to 1.58). 

Conclusions: Household air pollution exposure was associated with a higher prevalence of 

COPD, particularly among women, and it is likely the leading population attributable risk factor 

for COPD in resource-poor settings. 

Keywords: COPD; Air Pollution, Indoor/adverse effects; Biomass 
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INTRODUCTION 

Approximately three billion people rely on the burning of solid fuels such as wood, dung, 

agricultural crop waste, and coal for energy (1), and biomass fuels are the main source of 

domestic energy for ~40% of households worldwide (2). Households in many low- and middle-

income countries (LMICs) often burn biomass inefficiently and with poor ventilation, resulting in 

exposure to a range of pollutants (3). The resulting household air pollution (HAP) accounts for 

an estimated 4.3 million premature deaths and 110 million disability-adjusted life years lost each 

year (4, 5), making it the third leading risk factor for morbidity and mortality globally (6).  

 

Current evidence supports an association between HAP exposure and a range of respiratory 

diseases including pneumonia, COPD and lung cancer (7-10). COPD, in particular, is a salient 

consequence of HAP exposure since it poses a considerable socioeconomic burden and 

disproportionally affects impoverished populations in LMICs (11).  Previous studies have 

demonstrated that the relationship between HAP exposure and respiratory health outcomes is 

strongest among women and children who have the most intense exposure (12). Two recent 

population-based studies in Latin America found that women with HAP exposure were more 

likely to have COPD than those who did not have the exposure (13, 14).  

 

Few population-based studies have evaluated the attributable risk for COPD due to HAP 

exposure. Here we describe the relationship between HAP exposure and COPD in 13 LMIC 

settings. These settings represent a diversity of geographies, ethnicities, variations in altitude, 

and degrees of urbanization in resource-poor settings of Latin America, Sub-Saharan Africa and 

Southeast Asia. 
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METHODS 

Study setting 

We pooled data from five population-based studies spanning six countries and 13 settings in 

Latin America, Sub-Saharan Africa and Southeast Asia. Included studies were sponsored by 

United States National Institutes of Health/National Heart, Lung, and Blood Institute and 

UnitedHealth Chronic Disease Initiative 

(http://www.nhlbi.nih.gov/about/org/globalhealth/centers), the Fogarty International Center of the 

United States National Institutes of Health, and the FRESH AIR Study Group. To be eligible, 

studies had to contribute data with the following specifications: 1) adults aged ≥ 18 years, 2) site 

located in a World Bank defined LMIC participating within the above described networks, 3) 

conducted a population-based study, 4) performed post-bronchodilator spirometry in those with 

obstruction, and willing to share data for pooled analysis. Specifically, data were compiled from 

the Pulmonary Risk in South America (PRISA) study, conducted by the Institute for Clinical 

Effectiveness and Health Policy (IECS) in two sites in Argentina (Marcos Paz and Bariloche), 

one in Chile (Temuco), and one in Uruguay (Canelones), the CRONICAS Cohort Study in Peru, 

conducted by the CRONICAS Centre of Excellence for Chronic Diseases at Universidad 

Peruana Cayetano Heredia and Johns Hopkins University, and a longitudinal study in 

Bangladesh, conducted by the Centre for Control of Chronic Diseases at the International 

Centre for Diarrheal Disease Research, Bangladesh (icddr,b),  Lung Function Study in 

Nakaseke and Uganda (LiNK) and the FRESH AIR Uganda, conducted by the Makerere Lung 

Institute. Both PRISA and CRONICAS studies are prospective longitudinal studies with multiple 

years of follow up that started in 2010 (15, 16). icddr,b conducted a longitudinal study from 2011 

to 2012 (17). The Lung Function Study in Nakaseke and Uganda (LiNK) is an ongoing 

longitudinal study with baseline data collected in 2015. FRESH AIR Uganda is a cross-sectional 

study conducted in 2012 in rural Masindi (18).  

 

http://www.nhlbi.nih.gov/about/org/globalhealth/centers
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Study Design 

PRISA and CRONICAS used age- and sex-stratified random sampling whereas the Bangladesh 

study used simple random sampling of available census data at each site. LiNK used a 

sampling technique outlined by the WHO, while FRESH AIR used a multi-level sampling 

approach (16, 17, 19-24). We limited our analysis to participants aged 35-95 years to match 

reference equation upper age limits (25). All studies obtained informed consent from local and 

international ethics boards, and all investigators required confidentiality training for field workers. 

Details can be found elsewhere (16, 17, 19-21). 

 

Spirometry 

All sites followed joint ATS/ERS recommendations when performing and grading spirometry. 

PRISA, CRONICAS, LiNK, and Bangladesh used similar spirometry devices (ndd, Zurich, 

Switzerland), while FRESH AIR used Pneumotrac spirometers (16, 17, 20, 21). Pre- and post-

bronchodilator forced expiratory volumes (FEVs) were measured for all individuals in PRISA 

and CRONICAS, whereas other studies only took post-bronchodilator measurements on those 

who screened positive for obstruction on pre-bronchodilator spirometry (FEV1/FVC ≤ 0.7 in 

FRESH AIR and the Bangladesh studies, and FEV1/FVC ≤ lower limit of normal in LiNK). 
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Definitions 

We defined COPD as having a post-bronchodilator FEV1/FVC Z-score ≤ -1.64 SDs of the Global 

Lung Function Initiative (GLI2012) mixed ethnic reference population (26). COPD severity was 

categorized according to the GOLD strategy (25, 27). Pack-years of smoking was defined as the 

number of packs smoked per day multiplied by the number of years smoking. Participants were 

considered to have symptomatic COPD if they had wheeze, cough, or phlegm currently or in the 

last 12 months. We defined restrictive spirometric pattern as a pre-bronchodilator FVC Z-score 

< -1.64 and no spirometric evidence of COPD (28); daily smoking as having ≥1 cigarette/day; 

and, HAP exposure if biomass was the primary source of fuel in the home. We defined lung 

function reversibility as the difference between post- and pre-bronchodilator FEVs was >200 mL 

and/or the percent increase was >12%. 

 

Biostatistical analysis  

Our primary analytical plan was to characterize the association between HAP exposure and 

COPD. We conducted secondary analyses to assess the association between HAP exposure 

and other COPD outcomes, namely severity and the presence of concomitant respiratory 

symptoms, and pre-bronchodilator FEVs; and, between HAP exposure and restrictive 

spirometric pattern.  

 

For our primary analysis, we used multivariable alternating logistic regressions (ALR) to model 

the association between HAP exposure and COPD, adjusted for age, sex, daily cigarette 

smoking, body mass index, post-treatment pulmonary tuberculosis and secondary education 

(i.e., confounders). ALR is a variant of generalized estimating equations where the association 

between pairs of participants for a particular site is modeled with log odds ratios instead of 

correlations (29). In sensitivity analyses, we used the Mantel-Haenszel method to estimate 

unadjusted odds ratios weighted by site, and multivariable random effects logistic regression to 
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determine if our findings were robust to the approach chosen to model heterogeneity across 

settings (Online Supplement) (30, 31).  We also examined for effect modification by sex, age 

(≥55 or <55 years), self-reported daily cigarette smoking, and having secondary education.  We 

used adjusted odds ratio estimates to calculate the population attributable fraction of COPD due 

to HAP exposure using Levin’s formula, i.e., 𝑃𝐴𝑅 =
𝑝×(𝑂𝑅−1)

1+𝑝×(𝑂𝑅−1)
  (32). 

 

For secondary analyses, we used multivariable random effects ordinal logistic regressions to 

examine the association between HAP exposure and COPD severity (none, mild, moderate or 

severe/very severe COPD) or symptomatic COPD (none, asymptomatic COPD and 

symptomatic COPD) adjusted for confounders (vide supra). To graphically assess for 

proportionality of odds, we compared the ORs and corresponding 95% CIs obtained for each 

variable from a logistic regression model evaluated at each of the threshold points for the above 

ordinal scales (See Online Supplement).  We used ALR to examine the association between 

HAP exposure and either having restrictive spirometric pattern or reversibility adjusted for  

confounders. We used multivariable linear mixed-effects models with a random intercept by site 

to study the association between HAP exposure and pre-bronchodilator FEVs accounting for an 

interaction with age and adjusted for confounders (30, 33, 34).  

 

In sensitivity analyses, we used the GLI2012 Caucasian reference values to determine if our 

estimates were consistent regardless of the reference chosen; used pack-years smoked instead 

of daily smoking to rule out residual confounding by not adjusting for frequency of smoking 

exposure; conducted leave-one-site-out and ten-fold cross validation analyses to determine if 

one site or subset of data heavily influenced exposure-outcome relationships, respectively; 

limited analyses to sites with a prevalence of HAP exposure <95% and >5%, or with at least 5 

participants in each category of the contingency table between HAP exposure and COPD to 
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determine if these sites heavily influenced exposure-outcome relationships (Online 

Supplement). 

 

Analyses were performed in R using the lme4, gmodels, ggplot2, alr,doParallel and 

ordinal packages (35, 36). 
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RESULTS 

Population Characteristics 

The 13 sites contributed data on 13,023 participants but 12,396 met eligibility criteria and had 

complete data for analysis (Figure 1). Fifty-eight percent of the study sample lived in Latin 

America, 28% in Southeast Asia, and 14% in Sub-Saharan Africa. Average age among 

participants in the study sample was 54.9 years (range of means across settings 44.2-59.6 

years; p<0.001 for differences between sites), 48.5% were women (range of proportions across 

settings 38.3%-54.5%; p<0.001) and the overall prevalence of HAP exposure was 38% (0.5%-

99.6%; p<0.001). There were no differences in COPD prevalence (8.9% vs. 8.8%; p=0.97) 

between excluded and included participants; however, those who were excluded had a higher 

prevalence of HAP exposure (92% vs 38%; p<0.001), were younger (46.0 years vs. 54.9 years; 

p<0.001), and were more likely to be women (54.9% vs. 48.5%; p=0.002).  Self-reported 

biomass use ranged from 0.5% in Marcos Paz, Argentina to 99.6% in Nakaseke, Uganda. Daily 

cigarette smoking ranged from 0.2% in rural Puno, Peru to 36.2% in Masindi, Uganda. All sites 

were located in resource-poor settings in LMICs with a variety of kitchen layouts (Figure 2). 

  

Epidemiology of COPD 

The overall prevalence of COPD was 8.8% with a range of 1.7% in Kampala, Uganda to 15.5% 

in Masindi, Uganda. Men had a higher prevalence of COPD than women (10.3% vs. 7.2%; 

p<0.001), however, there was significant heterogeneity in the prevalence of COPD by sex 

across sites (Figure 3). Among those with COPD, 394 (36.1%) were mild, 524 (48.0%) were 

moderate, and 173 (15.9%) were severe/very severe; however, there was also substantial 

heterogeneity in severity profiles across settings (Figure 3). For example, the prevalence of 

severe COPD ranged from 0% in both rural and urban Puno, Peru to 26.5% in Dhaka, 

Bangladesh. Men also had a higher prevalence of moderate (53.4% vs. 39.8%; p <0.001) or 

severe/very severe COPD (19.3% vs. 10.6%; p<0.001) than women. In site-weighted analyses, 
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daily cigarette smokers were more likely to have COPD than participants who did not smoke 

daily (Mantel-Haenszel OR=2.55; 95% CI 2.17 to 3.00).  When stratified by sex, both men 

(Mantel-Haenszel OR[ORMH]=2.30, 1.89 to 2.80) and women (ORMH=1.83, 1.35 to 2.48) who 

were daily smokers were more likely to have COPD than those who were not smokers. 

  

HAP exposure and COPD outcomes 

Participants with HAP exposure had a higher prevalence of COPD than those without the 

exposure (10.8% vs. 7.6%; p<0.001). In site-weighted analyses, participants with HAP exposure 

were more likely to have COPD than those without the exposure (ORMH=1.68, 95% 1.29 to 

2.19).  In multivariable-adjusted analysis accounting for clustering by site, participants with HAP 

exposure were more likely (adjusted OR=1.41, 95% CI 1.18 to 1.68) to have COPD than those 

without the exposure (Figure 4). Participants with HAP exposure also had a greater odds of 

having more severe disease (adjusted OR=1.51, 95% CI 1.16 to 1.96) or having symptoms 

(adjusted OR=1.50, 95% CI 1.15 to 1.97). 

 

We plotted interaction effects between HAP exposure and potential effect modifiers on the odds 

of having COPD (Figure 4), and found that the association between HAP exposure and COPD 

was stronger in women (adjusted OR=1.70, 95% CI 1.24 to 2.32) than in men (1.21, 0.92 to 

1.58). We also found that HAP exposure was associated with a higher odds of having COPD 

among participants aged ≥55 years (1.43, 1.09 to 1.87) and a marginally higher odds of having 

COPD for those aged <55 years (1.32, 0.97 to 1.78). While the prevalence of COPD between 

participants with HAP exposure was higher at any age when compared to those without the 

exposure, the difference by HAP exposure status was greater at older ages (Figure 5). 

 

We estimated that 13.5% (95% CI 6.4% to 20.6%) of the COPD prevalence in our study sample 

was due to HAP exposure, in contrast to 12.4% due to daily cigarette smoking, 9.4% due to 
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lower education and 6.6% due to post-treatment pulmonary tuberculosis.  When stratified by 

sex, the PAF was higher in women (21.0%, 95% CI 8.4% to 33.5%) than in men (7.3%, -3.1% to 

18.0%). When stratified by region, the PAF was highest in Sub-Saharan Africa (28.2%, 14.6% to 

39.6%), followed by Southeast Asia (17.8%, 8.7% to 26.6%) and Latin America (6.4%; 2.9% to 

10.3%). 

 

In sensitivity analyses, we found that using a Caucasian reference for FEVs did not affect the 

direction or magnitude of reported exposure-outcome associations. Similarly, analyses using 

pack-years smoked instead of daily smoking showed almost identical results (Online 

Supplement). Both leave-one-site-out and ten-fold cross-validation analyses revealed that no 

single site or small groups of participants appeared to have heavily influenced the association 

between HAP exposure and COPD. Moreover, the association between HAP exposure and 

COPD was consistent in magnitude and direction when we limited our data to sites with <95% 

and >5% prevalence of HAP exposure, or sites with at least 5 participants in each category of 

the contingency table between HAP exposure and COPD (Online Supplement). 

 

HAP exposure and lung function 

We plotted Z-scores of pre-bronchodilator FEV1 by deciles of age and stratified by HAP 

exposure (Figure 6). On average, participants with HAP exposure had lower pre-bronchodilator 

FEV1, FVC and FEV1/FVC Z-scores at any age when compared to those without the exposure. 

There were notable differences in the trends with age, however. Specifically, across all age 

deciles, participants with HAP exposure had a consistently lower pre-bronchodilator FEV1 Z-

score when compared to participants who did not have the exposure. In contrast, differences in 

FVC Z-scores between participants with and without HAP exposure were greater in younger 

ages whereas differences in FEV1/FVC Z-scores were greater at older ages. These trends 

remained consistent in multivariable regression analyses that accounted for heterogeneity 
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across sites. Specifically, participants with HAP exposure had: a marginally lower adjusted pre-

bronchodilator FEV1 Z-score (-0.11 SD, 95% CI -0.24 to 0.03 SD) than those who did not have 

the exposure across all ages, with no interaction effect between HAP exposure and age 

(p=0.07); a lower pre-bronchodilator FVC Z-score at age 35 years (-0.14 SD, -0.28 to -0.004 

SD) but not at age 60 years (-0.02 SD, -0.13 to 0.10 SD); and, no difference in pre-

bronchodilator FEV1/FVC Z-score at age 35 years (0.02 SD, -0.09 to 0.14 SD) but a lower pre-

bronchodilator FEV1/FVC Z-score at 60 years (-0.25 SD, -0.34 to -0.15 SD). In subset analysis 

of studies with both pre- and post-bronchodilator spirometry, we found that participants with 

HAP exposure were more likely to have lung function reversibility than those without the 

exposure at younger ages (adjusted OR at 35 years=1.62, 95% CI 1.18 to 2.24) but not at older 

ages (adjusted OR at 60 years=1.27, 0.93 to 1.74). Sensitivity analyses showed comparable 

results when using Caucasian reference values (Online Supplement). 

 

HAP exposure and restrictive spirometric patterns 

Participants with HAP exposure had a lower prevalence of restrictive spirometric patterns than 

those who did not have the exposure (11.4% vs. 14.8%; p<0.001) and this difference was 

consistent across all ages (Figure 4). In site-weighted analysis, participants with HAP exposure 

had similar odds of having restrictive spirometric pattern (ORMH=0.83, 95% CI 0.64 to 1.06) 

when compared to those without the exposure. There was a similar effect of HAP exposure 

when using multivariable analyses accounting for clustering by site (adjusted OR=0.86, 95% 

0.72 to 1.04). Site-specific analysis showed a wide range of adjusted odds ratios, ranging from 

0.46 in Nakaseke, Uruguay to 3.92 in Masindi, Uganda (Online Supplement). 
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DISCUSSION 

We used data from pooled population-based cohorts to examine the association between HAP 

exposures and COPD outcomes across 13 diverse LMICs. We found a positive association 

between HAP exposure and COPD outcomes in 12,396 participants, namely a higher overall 

prevalence and worse disease severity both in terms of symptoms and lung function. This was 

especially true among women and in participants from Sub-Saharan Africa, for whom 21% and 

28% of COPD prevalence was attributed to HAP exposure, respectively. Our data suggests that 

HAP exposure is likely the leading population attributable risk factor for COPD in our resource-

poor settings, even above that of cigarette smoking. 

 

The association between HAP exposure and COPD outcomes have been well studied but with 

variable results. A meta-analysis of 11 studies found that women and men over age 30 years 

with HAP exposure had 3.2 and 1.8 times the risk of having COPD than those without the 

exposure, respectively (12). A more recent meta-analysis of 25 studies found that women with 

HAP exposure had 2.4 times the odds of having COPD when compared to those without the 

exposure (10). The reported relationships between HAP exposure and COPD in our pooled 

analyses for resource-poor settings in LMICs were positive but were more modest in magnitude 

when compared to the findings of previous two meta-analyses. There are several potential 

reasons for these different results. First, the above meta-analyses included case-control studies 

or convenience samples whereas our studies were all population-based. Second, these meta-

analyses only included participants who lived in households with high particulate matter 

concentrations. Third, previous studies used fixed cutoffs to identify COPD, which may under-

estimate its prevalence in younger individuals and over-estimate it in older individuals (13, 37, 

38). In our analysis, we used the lower fifth percentile of post-bronchodilator FEV1/FVC to 

identify COPD, which may capture a more accurate prevalence in the general population.  
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In a recent analysis, BOLD investigators did not find an association between biomass fuel 

smoke exposure and COPD among non-smokers using data from 12 countries when evaluated 

for the overall study population or when stratified intro high-income countries (HICs) and LMICs 

(39). In contrast, our study sample is limited to resource-poor settings in LMICs only and did not 

include studies conducted in HICs. Specifically, HAP exposure in HICs traditionally do not result 

in same levels of smoke exposure as that observed in LMICs (40). This may be because homes 

in HICs use biomass fuels mostly for heating with well-ventilated chimneys or stoves in contrast 

to poorly ventilated open-fire stoves used in LMICs. This may result in important mis-

classification of exposure, which could be non-differential in nature. For example, the analysis of 

BOLD data revealed that 71% of households in Lexington, Kentucky (USA) used biomass fuels 

when compared to only 46% of households in Ile-Ife (Nigeria). There are other similar examples 

of a disconnect between HAP exposure in HIC and LMICs.   

 

Pollutants caused by incomplete burning of biomass fuel have been linked to abnormal 

inflammatory response of the lungs and, thus, COPD (41). HAP exposure triggers a lung-

specific and systemic inflammatory state that heightens mechanisms of cell damage, such as 

oxidative stress (42). Particulate matter, for instance, has been thought to stimulate an 

inflammatory response in airway macrophages and respiratory epithelial (1).  Beyond the direct 

effect of toxic pollutants on the lungs, HAP exposure affects lung function across the lifespan of 

an individual. Proposed mechanisms during intrauterine development include deposition of 

particulate matter in maternal lung tissue resulting in impaired fetal growth, and carbon 

monoxide exposure may result in reduced oxygen delivery to the fetal placenta (12). HAP 

exposure may also be associated with a higher prevalence of childhood pneumonia (12). These 

early life events result in lower baseline lung function in early adulthood and accelerated lung 

function decline which predisposes individuals to COPD (43, 44). 
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We found that participants with HAP exposure had a lower pre-bronchodilator FEV1 at all ages, 

a lower pre-bronchodilator FEV1/FVC that became more pronounced at older ages, and a higher 

odds of having lung function reversibility at younger ages but not at older ages when compared 

to those without the exposure. These findings support the notion that HAP exposure has 

deleterious effects on lung function and worsen airflow obstruction that may become non-

reversible with older age. The effect of HAP exposure on FVC was not as pronounced, 

explaining the overall decrease in pre-bronchodilator FEV1/FVC among those exposed to 

biomass overtime. A number of cross-sectional studies have found exposure-response 

relationships between HAP and lung function (45, 46). Longitudinal studies, however, have not 

demonstrated improved FEV1 with reduction in HAP exposure, although analysis of lung 

function has so far been limited due to the short follow-up periods (47).  Individuals exposed to 

biomass fuel smoke had higher chances of airway reversibility at younger ages but not at older 

ages, suggesting that chronic inflammation from HAP exposure is associated with the 

development of chronic airway disease.  

 

Our analysis has some important strengths. First, we used large and diverse population-based 

sample with harmonized variables, allowing for the adjustment of a priori known risk factors for 

COPD. Second, we only included studies conducted in LMICs where biomass are commonly 

burned in poorly ventilated areas (40). Third, we used the lower limit of normal to diagnose 

COPD instead of a fixed cutoff which could lead to over-diagnosis especially in older 

participants (48). Fourth, our sensitivity analyses did not identify a single site or subgroup of 

participants that heavily influenced exposure-outcome relationships. Fifth, the prevalence of 

HAP exposure in our study sample is consistent with previously published reports of worldwide 

prevalence (2). 
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Our analysis also has some potential shortcomings.  Our inferences are based on observational 

data that may be affected by unmeasured confounding. Longitudinal studies with repeated 

assessments of lung function and exposure to HAP or randomized control trials including 

experimental elimination of HAP are needed to establish temporal relationships and ultimately 

causality. As with previous studies, we were unable to quantify direct exposure to biomass 

beyond self-reported questionnaires. Some of the included study sites, however, have 

previously published HAP concentrations among those with and without HAP exposure (49). 

Second, the GLI2012 mixed ethnic reference population may not accurately represent all 

individuals in our study, which may help explain inconsistent findings. To mitigate this concern, 

we conducted sensitivity analyses with other reference populations. Third, we were unable to 

ascertain subject-specific time period of biomass fuel smoke exposure using the available 

pooled data.  However, previous studies in LMICs have reported that number of years of 

biomass exposure are closely linked to age, particularly among women who use biomass fuels 

daily for cooking (13). Time or dose-dependent relationships may be reflected in the higher odds 

of having COPD among women vs. than of men with HAP exposure when compared to those 

without the exposure. Fourth, we did not have data on occupational exposure history or pack-

years of tobacco smoking, which may result in residual confounding. Fifth, HAP exposure is 

closely linked to a lower socioeconomic status (SES), which is also a known risk factor for 

COPD (19). For this analysis, we used secondary education which is a proxy for SES but could 

not harmonize across other factors, which again may result in residual confounding. 

 

In this analysis we also calculated the population attributable fractions, i.e., the proportional 

reduction in disease if exposure to a risk factor were mitigated. Accordingly, we estimated that 

there would be a 13.5% reduction in COPD prevalence if HAP exposure were eliminated 

compared to 12.4% if cigarette smoking were eliminated. This finding emphasizes the 

importance of HAP reduction strategies as public health intervention to reduce the burden of 
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COPD among LMICs. However, to date, a number of trials using cleaner biomass-burning 

cookstoves aimed at reducing HAP exposure have failed to produce meaningful reductions in 

HAP exposure. Future intervention trials with clean fuels will ultimately be needed to determine 

the effect of HAP exposure on multiple health outcomes, including those on lung function and 

COPD.  

 

Conclusions 

We found that HAP exposure was associated with COPD in resource-poor settings of LMICs, 

and it was associated with both severity of disease and overall lung function. Women were the 

most affected, and regions like Sub-Saharan Africa may share a disproportionate share of the 

global burden from this risk factor. 
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Table 1: Sociodemographic characteristics stratified by site. Mean and SD pack-years smoked was calculated among individuals who smoked.  

 
Bariloche Canelones Dhaka Kampala Lima 

Marcos 
Paz 

Masindi Matlab Nakaseke 
Rural 
Puno 

Temuco Tumbes 
Urban 
Puno 

Number of 
people 

1099 851 1672 596 997 1236 414 1824 721 500 1038 945 503 

COPD 
positive, % 
(n) 

7.1 (78) 9.3 (79) 9.7 (162) 1.7 (10) 5.6 (56) 13.8 (171) 15.5 (64) 15.3 (279) 7.4 (53) 8.8 (44) 5.2 (54) 1.7 (16) 5.0 (25) 

Age in years, 
mean (SD) 

57.6 ( 7.8) 59.6 ( 8.5) 51.8 ( 9.3) 44.2 ( 8.9) 
54.9 
(11.8) 

58.8 ( 8.2) 
49.7 
(12.5) 

55.1 (10.6) 
49.1 
(11.2) 

55.5 
(12.5) 

59.2 ( 8.5) 
55.5 
(13.1) 

55.2 
(12.1) 

Height in 
centimeters, 
mean (SD) 

161.2 
(9.8) 

162.2 (9.3) 
155.5 
(9.0) 

162.1 
(8.7) 

154.8 
(8.5) 

161.7 
(9.4) 

161.3 
(9.3) 

153.9 (8.3) 
159.9 
(8.0) 

155.4 
(8.0) 

160.3 
(9.1) 

158.4 
(8.7) 

156.9 
(9.0) 

Number of 
males, % (n) 

61.2 (673) 61.7 (525) 45.5 (761) 48.7 (290) 49.2 (491) 59.9 (740) 50.0 (207) 46.0 (839) 45.9 (331) 47.0 (235) 54.7 (568) 50.2 (474) 49.5 (249) 

Education ≥ 
secondary, 
% (n) 

49.9 (548) 49.8 (424) 44.1 (738) 20.8 (124) 45.7 (456) 34.3 (424) 16.9 (70) 18.8 (342) 7.1 (51) 33.4 (167) 70.7 (734) 36.0 (340) 65.2 (328) 

Biomass as 
primary 
source of 
fuel, % (n) 

23.1 (254) 5.1 (43) 3.6 (61) 93.5 (557) 2.4 (24) 0.5 (6) 92.8 (384) 98.1 (1789) 99.6 (718) 95.4 (477) 22.4 (233) 16.7 (158) 2.0 (10) 

Daily 
smokers, % 
(n) 

23.9 (263) 21.7 (185) 6.5 (108) 8.7 (52) 3.2 (32) 22.7 (281) 36.2 (150) 9.0 (164) 6.9 (50) 0.2 (1) 14.9 (155) 5.6 (53) 2.2 (11) 

Pack-years 
smoked, 
mean (SD) 

23.0 
(18.3) 

35.2 (30.0) 
20.6 
(18.0) 

8.7 ( 9.4) 2.7 ( 9.0) 
31.4 
(22.1) 

6.7 (13.1) 19.8 (15.9) 6.5 ( 7.7) 1.3 ( 4.3) 
13.0 
(14.2) 

5.3 (12.9) 2.7 ( 7.2) 

BMI (kg/m2), 
mean (SD)  

29.0 (5.8) 29.6 (6.2) 24.6 (4.9) 26.0 (5.3) 28.4 (4.4) 30.1 (5.8) 22.9 (4.3) 20.6 (3.6) 23.8 (4.5) 25.2 (3.7) 29.1 (4.9) 28.3 (4.7) 27.9 (4.4) 

BMI (kg/m2), 
% (n) 

             

 0-18.5 0.9 (10) 1.1 (9) 10.3 (173) 3.4 (20) 0.1 (1) 0.5 (6) 9.4 (39) 30.5 (556) 8.2 (59) 1.6 (8) 0.5 (5) 0.4 (4) 0.6 (3) 

 18.5-25 25.0 (275) 20.0 (170) 44.7 (748) 46.5 (277) 22.0 (219) 17.9 (221) 67.1 (278) 58.3 (1063) 61.0 (440) 50.4 (252) 16.7 (173) 23.7 (224) 23.3 (117) 

 25-30 36.2 (398) 36.0 (306) 32.7 (546) 28.9 (172) 45.4 (453) 35.1 (434) 17.4 (72) 9.6 (176) 21.1 (152) 37.2 (186) 46.2 (480) 44.3 (419) 49.7 (250) 

 30+ 37.9 (416) 43.0 (366) 12.3 (205) 21.3 (127) 32.5 (324) 46.5 (575) 6.0 (25) 1.6 (29) 9.7 (70) 10.8 (54) 36.6 (380) 31.5 (298) 26.4 (133) 
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Figure 1. Flow chart of study participants included in pooled analysis. A total of 13,023 

participants were enrolled at 13 sites. 878 were excluded due to having an age < 35 or > 95 

yeas, missing lung function or missing information on self-reported biomass fuel use. A total of 

12,396 were included in final analysis. An additional 251 individuals had missing information on 

age, sex, site, BMI, secondary education, daily cigarette use or history of post-treatment 

tuberculosis (n.b., some individuals were missing more than one variable). 
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Figure 2. Typical kitchen and stoves in selected sites. Top row, from left to right: Puno Peru; 

Lima, Peru; Tumbes, Peru; and Nakaseke, Uganda.. Bottom row, from left to right: Kampala, 

Uganda; Dhaka, Bangladesh; ; Matlab, Bangladesh; and Temuco, Chile. 

 

 

  



27 
 

Figure 3. Sex-, site and severity-stratified prevelances of COPD. The prevalence of COPD 

was stratified by sex (women on the left, men on the right) and severity as defined by lung 

function (in shades of grey) across the 13 LMICs sites. Sites were ordered according to the 

overall prevalence of COPD from lower (top) to higher (bottom). Overall COPD was more 

prevelant among men, though in rural settings the prevelance was higher among women. 

COPD was more severe (lower FEV1) in the urban settings and among men.  
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Figure 4. Interaction effects between HAP exposure and interactions with sex, daily 

smoking, age, education on COPD outcomes, and association between HAP exposure 

and ordinal outcomes of disease severity by lung function and symptoms.  Effect 

modification by site between HAP exposure and potential effect modifiers on the odds of having 

COPD was calculated. HAP exposure was associated with a higher odds of having COPD in 

women, among those who completed secondary education and among participants aged ≥55 

years and a marginally higher odds of having COPD for those aged <55 years. 
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Figure 5. Prevalence of COPD and restricted respiratory patterns by deciles of age 

stratified by household air pollution exposure. We calculated point prevalences of COPD at 

each age decile and by household air pollution exposure status. Values on the x-axis represent 

the starting age for each decile. HAP exposure status was stratified according to participants 

who reported using biomass as the predominant fuels (B) and those who did not use biomass 

as the predominant fuel (C). We used smoothing splines to describe the relationship between 

HAP exposure status and COPD or RSP prevalence across age deciles. The broken liens 

summarize trends for participants with HAP exposure and continuous lines summarize trends 

for those without the exposure. 
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Figure 6. Mean pre-bronchodiolator FEV1, FVC and FEV1/FVC Z-scores by deciles of age 

stratified by HAP exposure. We calculated average Z-scores for FEVs at each age decile and 

by household air pollution exposure status. Values on the x-axis represent the starting age for 

each decile. HAP exposure status was stratified according to participants who reported using 

biomass as the predominant fuels (B) and those who did not use biomass as the predominant 

fuel (C). The broken liens summarize trends for participants with HAP exposure and continuous 

lines summarize trends for those without the exposure. 

 

 


