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Classical Computation by Quantum Bits
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Atomic-scale logic and the minimization of heating (dissipation) are both very high on the agenda for
future computation hardware. An approach to achieve these would be to replace networks of transistors
directly by classical reversible logic gates built from thecoherent dynamics of a few interacting atoms.
As superpositions are unnecessary before and after each such gate (inputs and outputs are bits), the de-
phasing time only needs to exceed a single gate operation time, while fault tolerance should be achieved
with low overhead, by classical coding. Such gates could thus be a spin-off of quantum technology much
before full-scale quantum computation. Thus motivated, wepropose methods to realize the 3-bit Toffoli
and Fredkin gates universal for classical reversible logicusing a single time-independent 3-qubit Hamil-
tonian with realistic nearest neighbour two-body interactions. We also exemplify how these gates can be
composed to make a larger circuit. We show that trapped ions may soon be scalable simulators for such
architectures, and investigate the prospects with dopantsin silicon.

Introduction:– Power dissipation has become a seri-
ous obstacle to packing more transistors per unit area so
that the exponential rise of computational power with time
(Moore’s law) may be continued. Heating in a chip is pro-
jected to reach200Wcm−2 by 2020 [1] by the International
Technology Roadmap for Semiconductors (ITRS). The
search for less dissipative alternatives is on with sugges-
tions such as molecular electronics [2], spin-wave compu-
tation [3], magnetic and quantum dot cellular automata [4],
DNA logic [5] and superconducting logic in cryogenic tem-
peratures [6], which are by no means exhaustive.

Aside from minimizing dissipation, another driving fac-
tor for contemporary computer technology is the atomic
scale storage of information [2, 7, 8] and atomic scale
logic [9]. However, to our understanding, they do not yet
aim to exploit the dynamics of highly isolated systems for
computation in the same sense as the “friction free” bil-
liard ball computer of Fredkin and Toffoli [10]. Such dy-
namics is well approximated in the systems being devel-
oped for quantum technologies where quantum coherence
is preserved by a high isolation. In fact, the energy dissi-
pation time-scaleT1 can be exceptionally high, and even
the dephasing timeT2 is fairly high. It is thereby worth
studying whether the huge development towards quantum
computation can, on the way to that grand goal, also pro-
vide a minimally dissipative, as well as miniaturized, hard-
ware for classical logic. Any reliability sacrificed by going
to atomic bits is not particularly new at this scale, and, is
present even at the nano-scale, and ingenious ways of using
low-reliability devices is topical [11–13].

Motivated by the above, here we investigate whether an
unmodulated minimal widget of 3 permanently interacting
qubits, with each qubit encoding a microscopic bit, can act
as a logic gate for classical computation. The aim is to (a)
use coherent dynamics (to avoid dissipation and heating),
(b) use permanent nearest neighbour two-body couplings

of similar strength (to keep things realistic for a structure of
proximal spin qubits, for example), (c) use a single “time-
independent” Hamiltonian to accomplish the entire gate
and finally, (d) avoid any auxillary systems, hybrid systems
or additional levels aside those of the relevant qubits. In
practical implementations, additional regular pulsings may
however be required for reducing decoherence through dy-
namical decoupling. We suggest placing these gates next
to each other spatially to compose a classical circuit (we
also exemplify this composability). The whole classical
circuit will then simply be a 2D pattern of the widgets im-
plementing the fundamental gates, where each such gate is
implemented by a quantum evolution. However, the quan-
tum state is allowed to decohere “before” and “after” each
gate. This is acceptable for a classical circuit as the inputs
and outputs of each gate are classical bits, and no superpo-
sition has to be maintained between the end of one basic
gate and the start of another. Unlike the case for quantum
computation, in the space of time between the gates, the
correction of dephasing errors are not necessry. The use of
classical codes therefore suffices to keep track of the errors
within the computation.

As coherent dynamics is not only non-dissipative, but
also reversible, we will aim to build 3-bit Toffoli and
Fredkin gates, which enable reversible classical compu-
tation [10, 14]. Reversible logic avoids heating due to
the erasure of information [15]. Quantum computation
and quantum error correction has already motivated the
implementation of Toffoli gates [16–18]. Although these
gates can be decomposed into 2-qubit gates and local uni-
taries [19], such implementations require at least five 2
qubit gates [20]. To achieve simplifications beyond this
remit (including single pulse or “single-shot” implementa-
tions), nearly all schemes and actual implementations have
variously used auxillary modes aside the relevant qubits,
such as the cavity mode in hybrid qubit-resonator systems
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[18, 21–25] or the motional modes in ion traps [17, 26],
or auxillary levels outside the space of qubits [25, 27, 28].
Where solely qubits have been used, either multiple pulses
[29] or non-uniform and long-range couplings (departing
from aim (b)) are generically present as in the NMR and
other literature [30, 31]. Crucially, the key question of the
“possibility” and an analytic expression of the “accuracy”
of gates in the simplest setting: 3 qubits and a time inde-
pendent realistic nearest neighbour Hamiltonian, remains
open. In fact, the conjuction (a)-(d) should be impossible
as the generation of the unitary operations corresponding
to the ideal Fredkin and Toffoli gates with a single (time-
constant) 3 qubit Hamiltonian seems to necessitate unreal-
istic 3-body interactions [32, 33]σzi σj · σk andσzi σ

z
jσ

x
k

respectively. However, it has gone unnoticed that when we
lower our aim from quantum to classical computation, i.e.,
when the relative phases between the computational basis
states are irrelevant, and when approximate gates with low
errors could be useful, then classical Fredkin and Toffoli
gates of useful accuracy become feasible with 3 qubit real-
istic nearest neighbour time-independent Hamiltonians.

Toffoli gate:-A classical Toffoli gate flips the target bit
when both the control bits are in the logical state1 (a
quantum Toffoli is a unitary operator that additionally en-
codes a specific phase relationship between distinct quan-
tum states). We start by describing how a structure of 3
permanently Ising coupled spins can be used to implement
an approximateclassical Toffoli gate and investigate how
good the approximation can be. The gate is switched on
by applying a transverse field to the target qubit (qubit 2 in
this case, see fig. 1). With this field switched on, the gate
is performed through the time-independent Hamiltonian

HTOF =
Jzz
2

(σz1σ
z
2 + σz2σ

z
3) +

∑

j

ωjσ
z
j

2
+

Ωσx2
2
, (1)

whereJzz, ωj andΩ are in frequency units (unless oth-
erwise specified we will use these units). For the Toffoli
gate we require1√

2
|1〉(|0〉± eiφ|1〉)|1〉 to be eigenstates of

HTOF. By applyingHTOF on states of this form, it can be
confirmed thatω2 = 2Jzz achieves the desired eigenstate
with φ = 0, while ω1 andω3 can remain arbitrary. The
eigenstates and energies are then

|±〉ij =
1

N±
ij

|i〉
[

(dij ±
√

1 + d2ij)|0〉+ |1〉
]

|j〉, (2)

E±
ij/~ =

1

2

[

(−1)iω1 + (−1)jω3 ± Ω
√

d2ij + 1
]

(3)

FIG. 1. Setup for creating a 3-qubit Toffoli gate.

wherei, j ∈ {0, 1}, d11 = 0, d01 = d10 = ω2/Ω, d00 =
2ω2/Ω, andN±

ij are normalising factors. The|101〉 ↔
|111〉 swapping will occur whenexp [−iHTOFt] |101〉 =
eiθ|111〉, which occurs at a timet = τn = (2n +
1)π~/|E+

11 − E−
11| = (2n + 1)π/Ω (wheren is an inte-

ger, and assuming without loss of generality thatΩ is pos-
itive). In general, the evolution of the arbitrary computa-
tional basis states in this timeτn is captured by the fideli-
tiesflmn→xyz := 〈xyz|e−iHTOFτn |lmn〉. As [HTOF, σ

z
1 ] =

[HTOF, σ
z
3 ] = 0 only the following fidelities are relevant

fabc→ab̄c =
−ie−iφac(2n+ 1)π

2
sinc

(

(2n+ 1)π

2

√

d2ac + 1

)

fabc→abc = −ie−iφac

[

cos

(

(2n+ 1)π

2

√

d2ac + 1

)

− (2n+ 1)iπ

2
dac sinc

(

(2n+ 1)π

2

√

d2ac + 1

)]

(4)

where a, b, c ∈ {0, 1}, b̄ := b ⊕ 1, and φac =
(2n+1)π((−1)aω1+(−1)cω3)

2Ω . Note that|f101↔111| = 1 by
our choice ofτn. To realise a Toffoli gate we further require
that |fi0j → fi1j | = 0 for |ij〉 6= |11〉 so that for these fi-
delities, the phase inside the sinc function in (4) must be an
integer multiple ofπ. This leads us to

1

2

√

ω2
2

Ω2
+ 1 =

m1

(2n+ 1)
,
1

2

√

4ω2
2

Ω2
+ 1 =

m2

(2n+ 1)
,

(5)

wherem1,m2 are non-zero integers, which in turn implies
16m2

1−4m2
2 = 3(2n+1), where the left hand side is even,

and the right side is odd. Thus no choice ofω2, Ω gives a
perfect Toffoli (a price to pay for the simplicity ofHTOF).

However, we can find parameters which achieve an ap-
proximate gate. Assumingn = 0 for the shortest pos-
sible gate time and further assuming that the first sube-
quation of Eq.(5) is exact with largem1 one findsm2 ≈
2m1 from the second subequation of Eq.(5). With this
choice of parameters, the phases inside the sinc func-
tions in (4) are all either multiples ofπ or approximately
so up to order1/m1. To evaluate how close this ap-
proximate Toffoli is to the exact Toffoli, we use the pro-
cess trace distance, which for a 3-qubit system is defined
as [34]Dpro = tr |χ(U )− χ(T )| /16 whereχ(M )mn =
tr(A†

mM )(tr(A†
nM ))∗, and {An}64n=1 is a complete or-

thogonal basis which satisfiestr(A†
nAm) = δnm, T is an

ideal Toffoli gate,U is the gate we can achieve with the
above setup, and|X| indicates the matrix norm. As we
are interested in creating a “classical” gate, we ignore any
phases and defineU|f | such that〈y|U|f ||x〉 = |fx→y| so
this will only measure how close we are to a Toffoli gate
apart from local operations.Dpro gives an upper bound on
the average probabilitȳpe that the gate fails [34], so

p̄e . Dpro =
3π

16m2
1

+O

(

1

m4
1

)

≈ 3π

4
(Ω/ω2)

2 (6)
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In summary, we can achieve an approximate classical Tof-
foli gate with average failure error of Eq.(6), ifJzz = ω2/2

andω2/Ω =
√

4m2
1 − 1, withm1 large.

Fredkin Gate:-We now consider creating a classical
Fredkin gate (controlled-SWAP), using quantum Ising and
Heisenberg interactions. We consider the Hamiltonian

HFRED =
J

2
σ2 · σ3 +

Jzz
2
σz1σ

z
2 +

∑

j

ωjσ
z
j

2
, (7)

where qubit 1 is the control qubit, and qubits 2 and 3 are
to be swapped (see fig. 2). The intuition is that the swap-
ping induced by the Heisenberg interaction between qubits
2 and 3 will only occur when qubit 1 is in a state that makes
the energy splitting of qubits 2 and 3 match. For swap be-
tween qubits2 and3, we need to choose parameters such
that states of the form1√

2
(|110〉± |101〉) are eigenstates of

HFRED, which requiresJzz = ω2−ω3. With these parame-
ters,{|100〉, |111〉, |011〉, |000〉} are all eigenstates, and the
only eigenstates of the Hamiltonian which are not compu-
tational basis states are

|ψ〉±110 = (|110〉 ± |101〉)/
√
2, |ψ〉±010 = {J |010〉+ (ω2

−ω3 ±
√

(ω2 − ω3)2 + J2)|001〉}/N±
010 (8)

where N±
010 is a normalising factor. The eigenener-

gies of these states areE±
110/~ = − (ω1 + J ∓ 2J) /2

andE±
010/~ =

(

ω1 − J ± 2
√

J2
zz + J2

)

/2 respectively.

The swap|110〉 ↔ |101〉 is complete at a timeτn =
(2n + 1)π~/|E+

110 − E−
110| = (2n + 1)π/2J (with n ∈

{0, 1, 2, ...}, and assumingJ > 0, without loss of general-
ity). The fidelity for swapping|010〉 ↔ |001〉 at timeτn
is ∝ sinc

[

(2n+ 1)π
√

J2
zz + J2/J

]

. For this fidelity to

be zero, we needJ2
(

m2/(2n+ 1)2 − 1
)

= (ω2 − ω3)
2,

wherem is an integer greater than 1, andm(2n+1) > 1.
Possible realizations:-In implementations, the gate op-

eration times,∼ 1/Ω for the Toffoli, and∼ 1/J for the
Fredkin, have to be smaller than the dephasing times. We
discuss two possible realizations.

Trapped Ions:-To engineer the HamiltonianHTOF we ex-
ploit the fact that an axial magnetic field gradient realises
Ising couplings [35]. Consider three171Yb+ ions in a lin-
ear Paul trap with secular frequencyν = 2π×100kHz. The
qubits are encoded in the2S1/2 |↓〉 = |F = 0,mF = 0〉
and|↑〉 = |F = 1,mF = 1〉 states which are separated by
approximately12.6GHz. For∂zBj = 250Tm−1, one has

FIG. 2. Setup for creating a 3-qubit Fredkin gate, using Ising and
Heisenberg coupling.

J12 = J23 = Jzz = 2π × 9.98kHz, J13 = 2π × 7.07kHz.
The extraJ13 coupling introduces extra phases to the gate
but this has no effect if the gate is used for classical compu-
tation. Theσx2 field is achieved by applying a near-resonant
microwave pulse leading to the trapped ion Hamiltonian

H(i) =

3
∑

j=1

ω0
j

2
σzj +

Jzz
2

2
∑

j=1

σzjσ
z
j+1 +Ωcos(ωxt)σ

x
2 ,

(9)

where ω0
j is the qubit energy splitting of ionj. We

can transformH(i) to a frame rotating with the operator
1
2(
∑

j ω
0
jσ

z
j − δσz2), whereδ is the detuning of the mi-

crowave field from the resonant frequency of ion 2. States
in this rotating frame evolve according to

H
(i)
I =

δ

2
σz2 +

Jzz
2

2
∑

j=1

σzjσ
z
j+1 +Ωei(δ−ω0

2
)σz

2
t cos(ωxt)σ

x
2

Choosingδ = 2Jzz andωx = ω0
2 − δ, and applying iden-

tity 13 of the supplementary material, we have

H
(i)
I = HTOF(ω2 = 2Jzz, ω1 = ω3 = 0) + O

(

Ω

2ω0
2 − 4Jzz

)

.

Thus with Ω = 2π × 1.8kHz and ω0
2 ∼ 12.6GHz,

H
(i)
I ≈ HTOF, while the systematic gate error from Eq.(6)

is ∼ 0.02. The gate time is∼ 0.3ms, giving an error due
to decoherence of around(1 − e−tgate/T2) ∼ 0.03 with
T2 ≈ 10ms [36] using dynamical decoupling). In addi-
tion there may be additional heating due to proximity of
the ions to the electrode surface, which we estimate from
the results in [37]. For a cryogenically cooled surface trap
with an ion-electrode distance of 160µm we estimate an
additional decoherence rate of 50 Hz, which results in an
error of around 0.01. Overall we therefore expect an aver-
age gate with error∼ 0.04, which should be good enough
for error-free classical circuitry [38–41].

Bismuth Donors in Silicon:-We propose placing the
donor atoms [42–48] close to each other so that their elec-
tronic spins are permanently coupled by isotropic Heisen-
berg interactions. To engineerHTOF, the nuclear spins are
prepared in different states [42, 49]{Iz1 , Iz2 , Iz3}, resulting
in different hyperfine couplings (with the very high cou-
pling strengthA = 1.475 GHz of Bi) at each site. Starting
from a nuclear spin polarised sample [50] we can flip the
nuclear spin from9

2 to −9
2 in 9 steps of∼10µs each. The

nuclear spins are stable for hours [51, 52], so this process
could be done once before many operations of the gate. We
use a magnetic fieldωL >> A to ensure the nuclear spin
does not evolve. The Hamiltonian of the donors is then [53]

H
(d)
0 = ωL

3
∑

n=1

Sz
n+

3
∑

n=1

AIznS
z
n+

2
∑

n=1

Jn,n+1Sn ·Sn+1,

(10)
whereSα

n = 1
2σ

α
n with α = x, y, z are the Pauli matrices

for electronic spin. An AC field of strengthΩ is applied
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on qubit 2 in thex-direction (which could be applied glob-
ally since the hyperfine splittings are different) so that the
HamiltonianH(d) = H

(d)
0 + Ωcos(ωxt)S

x
2 acts on the

donors. SettingJ12 = J23 = J, ωx = ωL + AIz2 − J

and transformingH(d) to a frame rotating with the opera-
tor ωL

∑3
n=1 S

z
n − JSz

2 +
∑3

n=1AI
z
nS

z
n results in (using

identities 13-14 of the supplementary material)

H
(d)
I =

HTOF(Jzz = J, ω2 = 2J, ω1 = ω3 = 0)

2

+O

(

3
∑

n=2

J

|AIzn −AIzn−1|
+

Ω

2(ωL − 2J + AIz2 )

)

.

Setting Iz1 = 9
2 , Iz2 = −9

2 , and Iz3 = 9
2 , and with

Ω = 1MHz, J = 30MHz, both the error term inH(d)
I and

the systematic gate error term in Eq.(6) are∼ 10−3. The
gate time is2µs (thereby allowing the bandwidth of the AC
pulse to significantly exceed the∼ 2kHz linewidths seen in
experiments [54]) so that the errors due to decoherence are
roughly1 − e−tgate/T2 ∼ 10−6 (asT2 ∼700ms in isotopi-
cally pure silicon [55]).

The Fredkin gate can be implemented solely withH
(d)
0 .

TransformingH(d)
0 to a rotating frame with the operator

ωL

∑3
n=1 S

z
n+AI

z
1S

z
1+AI

z
2 (S

z
2+S

z
3 ) and using the iden-

tity 14 of the supplementary material gives

H
(d)
0,I =

1

2
HFRED(Jzz = J12, J = J23, ω2

− ω3 = 2A(Iz2 − Iz3 )) + O (J12/|AIz1 −AIz2 |) . (11)

SettingIz1 = −9
2 , I2 = 9

2 , I3 = 7
2 , Fredkin gate conditions

J12 = 2(AIz3 − AIz2 ) = J23
√

m2

(2n+1)2 − 1 can be met

by J23 = J12(1 + 10−6) (n = 675,m = 2340) with a
resulting gate time∼ 0.5µs= 10−3T2 so that decoherence
is negligible. The error term in Eq.(11) is∼ 0.22, but could
be minimized further to∼ 0.07 by techniques mentioned
in the supplementary material.

Composability:-To exemplify circuit building, we show
how a half-adder (fig. 3 a)) [56] can be implemented with
the arrangement of Ising coupled spins shown in fig. 3 b).
The Toffoli gate with qubit 2 as target is implemented using
HTOF. Then we want to apply the controlled-NOT irrespec-
tive of the state of qubit 2. Two successive pulses on qubit 3
of frequenciesω+ andω−, whereω± = ω3−J13±J23 im-
plement two successive conditional flips of qubit 3 accord-
ing to when qubits 1 and 2 are in a|10〉12 and |11〉12 re-
spectively. Each of these pulses implement different time-
independent Hamiltonians in appropriate rotating frames.
Thus, 3 successive time independent Hamiltonians imple-
ment a half adder. In general, a Toffoli gate can be applied
on a set of qubits (say, 1, 2 and 3 with 2 as target) of the
Ising coupled array depicted in fig. 3 c), by pulses of 4 fre-
quencies to flip qubit 2 irrespective of the state of those
neighbours (say, A and B) that do not take part in the gate.
While our pulsing is similar to tools in liquid state NMR

[30, 56], it was not apparent to date that the gates possible
in the simplest of settings are approximate, inequivalent to
the unitary operations corresponding to Fredkin and Toffoli
gates (to achieve those further “non-local” gates are neces-
sary), and do not require long-range couplings.

FIG. 3. a) A half-adder circuit. b) Setup for creating a half adder,
using two pulses and withJ12 = J23 6= J13. c) Using selec-
tive addressing on arrays of qubits, general computations can be
achieved.

Reliability:- Our physical realizations have errors (as in
any nano-scale logic, including scaled CMOS). However,
reliable classical computation with faulty components is
possible with a constant overhead [38, 40] as our error
rates are below the1/6 required threshold [57]. One can
use measurements between gates and a classical resetting
of bits (e.g., parity protected gates [58]). Besides, applica-
tions such as image processing tolerate more noise [13]. If
we automate error correction with faulty gates such as in
“quantum” error correction, thresholds∼ 10−2− 10−3 are
however obtained (see Supplementary Material ), which
are still met by the donor based implementation ofHTOF.

Conclusions:-We have demonstrated how the classi-
cal Toffoli and Fredkin gates can be achieved by realis-
tic 3 qubit time-independent Hamiltonians. This focus
on simplicity (e.g., time-independence, no auxillary sys-
tems/levels) as opposed to fidelity [28], stems from aim-
ing to build low dissipation atomic-scale classical logic.
Targeting classical gates helps us circumvent the apparent
impossibility of the ideal Toffoli and Fredkin unitaries un-
der our desiderata (a)-(d). Although AC pulses were used
in the proposed implementations with trapped ions and
Bi donors, and for building circuits, these were merely a
means to implement the time-independentHFRED andHTOF

in appropriate rotating frames. This only results in extra
relative phases between the computational basis states that
do not matter for classical computing. While our gates
minimize the dissipation in computation, the study of dis-
sipation while pulsing and measuring and the possibility of
room temperature realizations [59] is kept for the future.
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Interaction picture and the rotating wave approximation

Consider a Hamiltonian that contains some fast oscillat-
ing terms of the formV cosωt, whereV is time indepen-
dent and Hermitian. Ifω > ‖V ‖, then the evolution opera-
tor can be approximated by (see e.g. [60])

U (t, 0) = 1+O

(‖V ‖
ω

)

(12)

To represent this, we will use the notationH(t) = H0(t)+

O
(

‖V ‖
ω

)

. We now derive two identities that are useful in

the main text. For this first identity, consider a Hamiltonian
term of the formCe−iωσzt/2 cos(ωxt)σ

xeiωσzt/2. Setting

ωx = ω gives

Ce−iωσzt/2 cos(ωt)σxeiωσzt/2

= Ce−iωσzt cos(ωt)σx =
C

2
e−iωσztσx(eiωt + e−iωt)

=
C

2
(e−iωtσ+ + eiωtσ−)(eiωt + e−iωt)

=
C

2

(

σ+ + e2iωtσ− + e−2iωtσ+ + σ−
)

=
C

2
σx + O

(

C

2ω

)

(13)

provided thatC < 2ω. For the second identity, consider
a Hamiltonian of the forme−it[ω1σ

z

1
+ω2σ

z

2
]/2J(σx1σ

x
2 +

σy1σ
y
2 + σz1σ

z
2)e

it[ω1σ
z

1
+ω2σ

z

2
]/2

Je−it[ω1σ
z

1
+ω2σ

z

2
]/2(σx1σ

x
2 + σy1σ

y
2 + σz1σ

z
2)e

it[ω1σ
z

1
+ω2σ

z

2
]/2

= 2Je−it[ω1σ
z

1
+ω2σ

z

2
](σ+1 σ

−
2 + σ−1 σ

+
2 ) + Jσz1σ

z
2

= 2Jσ+1 σ
−
2 e

it[ω1−ω2] + 2Jσ−1 σ
+
2 e

−it[ω1−ω2] + Jσz1σ
z
2

= Jσz1σ
z
2 + O

(

4J

ω1 − ω2

)

(14)

provided4J < (ω1 − ω2).

Thresholds for fault-tolerant classical computation

We will estimate the error threshold required to imple-
ment a fault-tolerant classical Toffoli gate, using the sim-
plest classical code, the 3-bit repetition code. We will usea
similar analysis as in [19, 61], which is not a very rigourous
analysis but will give a rough idea of the kind of classical
threshold we will need to achieve with the Toffoli gate. A
simple classically fault-tolerant Toffoli circuit can be con-
structed as follows:

•
S RC1 •

•
Syndrome Recovery

•
S RC2 •

•
Syndrome Recovery

S RT

Syndrome Recovery

Where the syndrome + recovery step is

http://www.nature.com/nature/journal/v393/n6681/abs/393133a0.html
http://dx.doi.org/10.1103/PhysRevB.86.245301
http://dx.doi.org/10.1103/PhysRevB.66.115201
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S R
• •

= • •
• •

Syndrome Recovery

|0〉 • •
|0〉 • •
|0〉 • •

Since the code is robust against single classical (bit-flip)er-
rors, a rough expression for the fault tolerant gate threshold
can be found by considering the ways in which 2 or more
errors can occur. Two errors can be output by a single fault-
tolerant Toffoli gate in the following ways:

1 There are incoming errors in two or more of the in-
puts, which can propagate through the gate to create
two errors on one encoded qubit. Incoming errors
would be from a single error exiting from a previ-
ous syndrome / recovery step, which could happen at
any of six points in the syndrome / recovery process.
There are3C2 = 3 ways that two errors could be in-
coming, so if the error of a bit flip in the gate isp the
total probability is3× (6p)2 = 108p2.

2 There is an incoming error in one of the inputs, and
an error in the first round of Toffoli gates. Incoming
errors have probability6p, and the probability of one
error in any of the three gates is3p. There are 3 ways
this can happen so the overall probability is3× 3p×
6p = 56p2.

3 Two errors occur during the Toffoli gates. There are
3C2 = 3 ways this can happen, so the total probabil-
ity is 3p2.

4 One failure occurs during the Toffoli gates (three
ways this can happen), and one during one of the syn-
drome gates (3 ways this can happen). Total proba-
bility for all three encoded qubits is3 × 3p × 3p =
27p2.

5 Two failures occur during one of the syndrome gates
(3C2 ways this can happen per encoded qubit). Total
probability is3× 3p2 = 9p2.

6 One failure occurs during the syndrome gate and one
during the recovery. Total probability3× 3p× 3p =
27p2.

7 Two or more failures during recovery; total probabil-
ity 9p2.

In total, this gives a rough probability of(108+56+3+27+
9+ 27+ 9)p2 = 239p2 of two errors occurring undetected

in the fault-tolerant Toffoli gate. Thus following concate-
nation of this encoding (see e.g. [19]) we would expect er-
rors in the gate below the thresholdp . 1

239 ≃ 5 × 10−3

to give a fault tolerant Toffoli gate.

Parameter set for Fredkin Gate with Bismuth donors

To satisfy the conditions of the Fredkin gate,J12 =

2(AIz3 − AIz2 ) andJ2
23(

m2

(2n+1)2 − 1) = 4(AIz3 − AIz2 )
2.

For the minimal gate time (n = 1), this would give
J23 = 1√

3
J12, or alternativelyJ23 could be tuned to dif-

ferent fractions ofJ12 by alteringm andn. For exam-
ple, we can achieveJ23 = J12(1 + 10−6) by setting
n = 675 andm = 2340. The resulting gate time would
be675 × 0.5ns∼ 0.5µs= 10−3T2, so such tuning would
still not lead to large decoherence errors.

FIG. 4. Adding a fourth qubit to the original setup, in order to
relax the constraints onJzz and provide a control to turn the gate
on and off.

With J12 = 2(AIz3 − AIz2 ), the error term inH(d)
0,I is

O(2(Iz2 − Iz3 )/(I
z
1 − Iz2 )), which is minimal whenIz1 =

−9
2 , I2 = 9

2 , I3 = 7
2 . To decrease this error, a fourth qubit

could be included, as shown in Fig. 4. Adding this qubit
E with Ising couplingJE2 effectively adds another local
magnetic field to qubit 2 and so changes the resonance con-
dition to J12 + JE2 = ω3 − ω2 (assuming that this qubit
is set in the|0〉 state). Note however that this coupling also
has an error associated to it, and so the optimal situation
is with JE2 = J12 = (AIz3 − AIz2 ) = 1.475GHz. This
results in an error of around 11%. Adding yet another con-
trol qubit E′ with couplingJE′2 and choosing couplings
such thatJ12 = JE2 = JE′2 = 2

3 (AI
z
3 − AIz2 ) results in

errors of around 7% (adding any more becomes unrealistic
as the control qubits may begin to interact significantly).
The gate time in this situation would be∼ 1.5ns which is
still significantly smaller thanT2.

Additionally, settingJ12 = (ω2 − ω3) is not straightfor-
ward, since the donor position is not continuously tunable.
There are also oscillations in the exchange interaction that
depend on the separation between donors and the orienta-
tion of the donors relative to the crystal [62], although these
oscillations can be minimised if donors are aligned along
the [100] axis, or if strain is applied [63]. Atomically-
precise positioning of the donors is possible [9, 64, 65],
so a possible approach is to position the donors at separa-
tions of around 15-20nm such thatJ12 ≈ (ω2 − ω3) and
then use a magnetic field gradient to tuneω2 − ω3 closer
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to J12 (this magnetic field would also decrease the error in
H

(d)
0,I ). Since it would be possible to bring a magnetic tip

close to the sample, large magnetic field gradients of up to
107 Tm−1 would be possible [66] so thatω2−ω3 could be
tuned by up to±0.5 GHz. Alternatively, we could adopt
the method in [53], and use electric gates to tune the inter-
donor couplings and increase hyperfine interactions, how-
ever this might introduce extra noise due to charge fluctua-
tions.

We could go further and use an extra qubit as an on/off
switch for the gate, which could be useful if we wish to
concatenate several of these gates together. Consider the
setup in Fig. 4 that has one additional external qubit, la-

belled qubit E. For qubit E to act as a control, we just need
to make sure that the resonances of qubits 2 and 3 only
match when qubits 1 and E are in the|1〉 state, and are
very different otherwise so that the Heisenberg coupling
becomes effectively an Ising coupling. By finding the res-
onance energy of qubit 2 under different settings of qubits 1
and E, and choosingJ12 = J2E , we find that the following
conditions must be satisfied

A+ 2J12 ≫ J23, A≫ J23, A− 2J12 ≃ 0 (15)

Altogether these mean that the conditions under which this
on/off switch would work isA ≃ J12, andA, J12 ≫ J23.


