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Abstract
Purpose of Review In recent years, the role of the gastrointes-
tinal (GI) tract in energy homeostasis through modulation of
the digestion and absorption of carbohydrates and the produc-
tion of incretin hormones is well recognized.
Recent Findings Bariatric surgery for obesity has been a very
effective method in substantially improving weight, and nu-
merous studies have focused on intestinal adaptation after bar-
iatric procedures. A number of structural and functional
changes in the GI tract have been reported postsurgery, which
could be responsible for the altered hormonal responses.
Furthermore, the change in food absorption rate and the intes-
tinal regions exposed to carbohydrates may affect blood glu-
cose response.
Summary This review hopes to give new insights into the
direct role of gut hormones, by summarising the metabolic
effects of bariatric surgery.

Keywords Bariatric surgery . Gastric banding . Sleeve
gastrectomy . Roux-en-Y gastric bypass . Gut hormones .

Gastrin . GLP-1 . GLP-2 . PYY . Ghrelin . CCK . GIP .

Oxyntomodulin . Secretin . VIP . PP . Insulin . Glucagon .

Somatostatin . Obestatin . Gustducin . FGF19 . FGF21

Introduction

Obesity, defined as a bodymass index ≥30 kg/m2, has become
a worldwide epidemic, considered among the greatest public
health challenges of our time. An estimated global progression
of obesity over the next decades indicates that by 2030, more
than 1 billion adults will be obese [1]. Obesity can contribute
towards multiple cardiometabolic co-morbidities, with debili-
tating consequences. The weight reductive effects of bariatric
surgery have beenwell documented over the past decades, and
bariatric surgery remains currently the most effective weight
loss method mainly by GI tract volume restriction and/or ben-
eficial metabolic sequelae [2]. The mechanisms underlying
the metabolic effects of bariatric surgery remain elusive, but
they are likely to be secondary to changes in the secretion of
gut hormones and the transformation of the gastrointestinal
lining [3]. This review article aims at elucidating the potential
hormone mechanisms of the most commonly used bariatric
procedures (Table 1).

Procedures

Bariatric procedures, such as Roux-en-Y gastric bypass and
vertical sleeve gastrectomy, cause substantial and durable
weight loss in both humans and rodents. Lately, these surgical
interventions have also been termed metabolic due to the sub-
stantive metabolic changes beyond body weight loss alone.
The most popular interventions at present are gastric banding,
sleeve gastrectomy and the Roux-en-Y gastric bypass.
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Gastric Banding

Gastric banding (GB) includes the placement of a silicone
ring around the stomach to create a small upper gastric pouch
at the bottom of the oesophagus. This procedure was intro-
duced in the 1970s and remains safe, well tolerated and effi-
cacious with a relative low risk of serious complications.
Another benefit to this procedure is the ability to adjust the
band enhancing its weight loss effect without compromising
safety [4].

Roux-en-Y Gastric Bypass

The Roux-en-Y gastric bypass (RYGB) is one of the most com-
mon bariatric procedures and has the greatest weight loss effect
[5]. During the procedure, a small gastric pouch is created,
draining into the jejunum (alimentary limb) causing nutrients to
bypass the pylorus and duodenum. The bile and pancreatic juices
drain into the duodenum and jejunum as normal (biliopancreatic
limb) but are only mixed with food after the anastomosis of the
alimentary and biliopancreatic limbs to create the common limb.

Table 1 The effects of the most common bariatric procedures on gut hormone regulation

Hormone GB SG RYGB

Gastrin

Ghrelin

CCK

GIP

GLP-1

GLP-2

PYY

Oxyntomodulin

Secre�n

VIP

PP

Insulin

Obesta�n

Gustducin

Somatosta�n

Glucagon

FGF-19

FGF-21

More than one arrow means that data are conflicting

GB gastric banding, SG sleeve gastrectomy, RYGBRoux-en-Y gastric bypass,CCK cholecystokinin,GIP glucose-dependent insulinotropic polypeptide,
GLP-1 glucagon-like peptide 1,GLP-2 glucagon-like peptide 2, PYYpolypeptide YY, VIP vasoactive intestinal polypeptide, PP pancreatic polypeptide,
FGF19 fibroblast growth factor 19, FGF21 fibroblast growth factor 21, → no change, ↓ decreased, ↑ increased, – unknown
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The length of the common limb is an important factor for the
development of serious complications [5]. In standard RYGB,
the Roux limb is usually 0.75–1.5 m long with a common limb
of ∼3 m which is usually adequate for absorption of nutrients. A
modified version of the RYGB is called ‘distal bypass’ tech-
nique, reducing the length of the common limb to ∼75 cm, car-
rying though a higher risk for complications [5].

Sleeve Gastrectomy

The sleeve gastrectomy (SG) involves creating a long, thin
longitudinal gastric pouch or sleeve. This reduces the volume
of the stomach by approximately 80% but leaves the pylorus
intact. SG was initially performed as a precursor to a larger
procedure but has been increasingly used alone due to its
efficacy and safety. SG is now one of the most commonly
performed bariatric surgery procedures with impressive
weight loss effect and relative low rate of complications [6].

Potential HormoneMechanisms of Bariatric Surgery

The metabolic effects of bariatric surgery have been attributed
by many to changes in the secretion of gastroenteropancreatic
peptides although additional mechanisms have been proposed

(Fig. 1). In this review article, we will focus on the weight
loss-independent effects of bariatric surgery mainly involving
changes in postprandial gut hormone secretions (Table 2) [3].

Bariatric Surgery and Gut Hormones

Gastrin

Gastrin is a peptide hormone that stimulates the secretion of
gastric acid (HCl) by the parietal cells of the stomach and aids
in gastric motility. It is released by G cells in the pyloric
antrum of the stomach, duodenum and the pancreas. Gastrin
binds to cholecystokinin B receptors to stimulate the release of
histamines in enterochromaffin-like cells, and it induces the
insertion of K+/H+ ATPase pumps into the apical membrane
of parietal cells (which in turn increases H+ release into the
stomach cavity). Its release is stimulated by peptides in the
lumen of the stomach and gastrin reduces appetite. Rather
than being a single molecular entity, gastrin is actually a fam-
ily of multiple peptides of varying lengths with varying de-
grees of biological activity. As one would expect, following
RYGB, there is some evidence suggesting that postprandial
gastrin levels fall after RYGB both in the first 2 weeks post-
operatively [7•] and over the first year [8]. Recent evidence

Ghrelin +

Gastrin - CCK - GLP-1 - OXM – Glucagon - 

Obestatin - GLP-2 - SS - 

Gustducin - Secretin - GIP - PYY - VIP, PP, Insulin - 

Brain

Stomach

G-cells

S. 

Intestine

I-cells

L. Intestine

L-cells

Pancreas

B-cells

A-cells

Appetite

Satiety                Hunger

Duodenum

S-cells

Fig. 1 Hormone interactions (feedback mechanisms) between the brain and organs of the gastrointestinal tract
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suggests that the remnant stomach is subject to multiple his-
tological changes following RYGB. One study demonstrated
increased cell proliferation rate in the epithelium of the ex-
cluded gastric antrum coupled with a reduction in the number
of G cells [9]. It has been suggested that excessive gastric acid
production maybe involved in the pathogenesis of abnormal
histological findings in the stomach after RYGB [10]. Grong
et al. used a protein-rich mixed meal on a cohort of 20 female
patients previously operated with RYGB or SG versus 13
female matched controls and were able to demonstrate dimin-
ished gastrin levels in the RYGB but no statistically significant
changes between the SG group and controls [11]. A study of
24 patients following GB demonstrated no change in fasting
gastrin concentrations 6–12 months after surgery [12]. Others
have showed that SGmay be associated with increased gastrin
levels in both human and rodents [13, 14]. The role of gastrin
secretion as either a cause or a consequence of altered gastric
histology remains unclear.

Ghrelin

Ghrelin is a peptide hormone produced by ghrelinergic
cells in the gastrointestinal tract and functions as a neu-
ropeptide in the central nervous system [15•]. Besides
regulating appetite, ghrelin also plays a significant role
in regulating the distribution and rate of use of energy
[16]. Ghrelin is most active in its acylated form, with

an octanoyl group attached to its third amino acid res-
idue, which occurs due to the action of ghrelin-O-acyl-
transferase (GOAT). As a consequence, it activates the
growth hormone secretagogue receptor (GHSR), which
is predominantly found in the hypothalamus and pitui-
tary glands [17]. Ghrelin levels rise with prolonged
fasting and drop after ingestion of food, hence the poor
long-term efficacy of diet for the management of obesi-
ty [18•]. The effect of bariatric procedures appears to
have variable effects on ghrelin secretion, possibly due
to the altered passage of ingested nutrients through the
gastric fundus where the ghrelin-producing cells are pre-
dominantly located and additionally due to small sample
size of the existing studies. Fruhbeck and co-workers
studied 24 obese men following adjustable GB
(n = 8), RYGB (n = 8) or lifestyle modifications [19,
20]. Six months after surgery, patients with GB and
lifestyle group had similar ghrelin levels, whereas pa-
t ients wi th RYGB had a signif icant decrease .
Cummings et al. noted that gastric bypass (n = 5) was
associated with a reduction in 24-h ghrelin area under
the curve when compared to five healthy obese matched
controls and ten controls of normal weight [19]. Dirksen
et al. followed 33 patients for 12 months after RYGB
and observed that greater weight loss was associated
with a higher degree of ghrelin suppression postsurgi-
cally [21•]. Others, however, have demonstrated

Table 2 Gut hormones and their actions

Hormone Organ/cell Mechanism of action

Gastrin Stomach/G cells Increases HCl production

Promotes satiety

Ghrelin Stomach/G cells Increases appetite

Enhances gastric emptying GI motility and GH secretion

GLP-1 Ileum/L cells Causes the incretin effect

Increases insulin sensitivity and production. Delays gastric emptying. Enhances satiety.

GLP-2 Ileum/L cells Causes gut hypertrophy. Alters GI motility

PYY Colon/L cells Delays gastric emptying. Promotes satiety

OXM Ileum/L cells Promotes satiety, increases energy expenditure

Secretin Duodenum/S cells Reduces gastric and duodenal motility. Enhances insulin release

VIP Enteric and parasympathetic nerves Promotes hormone secretion by the brain, gut and pancreas Increases the secretion of
water and electrolytes. Reduces HCl secretion

PP Pancreas- PP cells Promotes satiety

Exocrine and endocrine secretion regulator

Insulin Pancreas/B cells Regulates metabolism of carbs, fat and protein. Promotes absorption glucose from the blood

Obestatin Stomach/epithelial cells Promotes satiety

Gustducin Stomach/specialized lining cells Enhances GLP-1 secretion

SS Pancreas/D cells Reduces gastrin, GLP-1, CCK, GIP and secretin

Glucagon Pancreas/A cells Promotes glucogenolysis and gluconeogenesis

FGF19 Ileum Regulation of glucose and lipid metabolism. Increases energy expenditure
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increased ghrelin levels in humans or rodents following
RYGB [22, 23]. On the other hand, SG may be associ-
ated with reduced ghrelin levels likely due to the re-
moval of that part of stomach where ghrelin-secreting
cell concentration is higher [24].

Cholecystokinin

Cholecystokinin (CCK) is a peptide hormone of the gastroin-
testinal system, synthesized and secreted by I cells in the du-
odenal mucosa being responsible for stimulating the digestion
of fat and protein. Its presence causes the release of digestive
enzymes and bile from the pancreas and gallbladder, respec-
tively, slowing gastric emptying and also acting as a hunger
suppressant. Several studies have shown an increase in CCK
levels postprandially after RYGB in response to a mixed meal
[7•, 21•]. CCK is primarily released in the presence of amino
acids and fatty acids within the duodenum, which is excluded
from contact with nutrients following RYGB in contrast with
what studies have shown. Other factors of CCK release such
as parasympathetic impulses and intraluminal releasing fac-
tors may be responsible for the increased levels of CCK fol-
lowing bariatric surgery [25]. The effect of bariatric surgery
on CCK homeostasis still remains unclear. Few studies have
examined the changes in CCK which occur following other
bariatric procedures. Mans et al. showed that SG resulted in
enhanced CCK levels and increased satiety in 8 morbidly
obese patients versus 16 matched controls [26]. Peterli et al.
[27•] studied patients for a year after RYGB or SG. SG was
associated with a much larger CCK increase compared to the
RYGB group. The effect of SG in CCK secretion was evident
1 week postoperatively and gained in magnitude over the first
year [27•]. To date, there are no studies looking at the effect of
GB on CCK concentration.

Glucose-Dependent Insulinotropic Polypeptide

Glucose-dependent insulinotropic polypeptide (GIP) is de-
rived from a 153-amino acid proprotein encoded by the GIP
gene and circulates as a biologically active 42-amino acid
peptide. It is synthesized by K cells, which are found in the
mucosa of the duodenum and the jejunum of the gastrointes-
tinal tract. Like glucagon-like peptide-1 (GLP-1), GIP is asso-
ciated with an insulinogenic effect following ingestion of oral
glucose, known as the incretin effect [28]. The role of GIP in
the development of diabetes and obesity is unclear, but
hyperglycaemia may act to directly down-regulate GIP recep-
tors in pancreatic b-cells leading to a defect in late-stage insu-
lin release. GIP is also thought to have significant effects on
fatty acid metabolism through stimulation of lipoprotein lipase
activity in adipocytes [29]. RYGB is found in some studies to
cause a reduction in postprandial GIP secretion due to the
restriction of nutrient passage through the duodenum and

jejunum, and this effect may be enhanced in patients with type
2 diabetes mellitus (T2DM) [30–32]. Bunt et al. assessed the
effects of a mixed-meal test following GB and RYGB and
found statistically significant lower GIP levels in the RYGB
group [33]. The RYGB group had increased GIP levels post-
surgically whereas there were no observed changes in the GB
group. Similar findings have been reported by others after GB
[34]. The effects of SG on GIP regulation have not been stud-
ied sufficiently.

Glucagon-Like Peptide 1

GLP-1 is a 30-amino acid-long peptide hormone deriving
from the tissue-specific posttranslational processing of the
proglucagon gene. It is produced and secreted by intestinal
enteroendocrine L-cells and certain neurones within the nu-
cleus of the solitary tract in the brainstem upon food consump-
tion. Alongside GIP, GLP-1 is the only known incretin de-
scribing its ability to decrease blood sugar levels in a
glucose-dependent manner by enhancing the secretion of in-
sulin. Beside the insulinotropic effects, GLP-1 has been asso-
ciated with numerous regulatory and protective effects.
Despite the lack of evidence indicating increased GLP-1 con-
centrations following bariatric surgery [35], postprandial
GLP-1 levels are increased following GB, SG and RYGB
[36, 37]. It is not fully understood why there is increase in
GLP-1 postsurgery, but it is believed that it may be associated
to the passage of more intact nutrients to the ileum through
anatomical changes or increased intestinal transit [25, 38].
Others suggest that bypassing the upper small intestine may
be responsible for the beneficial effect of bariatric surgery [39,
40]. Supporting evidence for the importance of the GLP-1
system comes from acute human experiments in which
GLP-1 antagonists are administered to humans after an
RYGB and appear to reduce the enhanced insulin secretion
that occurs after the procedure [41••, 42•]. However, in genetic
loss-of-function experiments, where mice lack the only iden-
tified receptor for GLP-1, both vertical sleeve gastrectomy
(VSG) and RYGB have identical effects on both weight loss
and glucose improvements compared with the effects in wild-
typemice, implying that activation of the GLP-1 receptor does
not contribute to the benefits of VSG and RYGB [43, 44•].
GLP-1 agonists or mimetics such as liraglutide, exenatide or
lixisenatide have been approved for pharmacological use in
the treatment of diabetes and obesity [45, 46]. GLP-1 is also
thought to have centrally mediated effects upon appetite by
interacting with vagal afferent nerve fibres. In rodents, GLP-1
administration appears to activate neurones in the arcuate nu-
cleus and paraventricular nucleus to promote satiety [47–50].
Performing a vagotomy with bariatric surgery attenuates these
effects [48]. There is also some evidence to support an in-
crease in energy expenditure in rodents [50], but this has not
been replicated in humans. Dirksen et al. showed that levels of
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GLP-1 were higher in patients who lost more weight, com-
pared to those with poor weight loss [21•]. In another study,
SG was still effective in GLP-1 receptor knockout mice, sug-
gesting that alternative pathways must also be involved [51].
Mokadem et al. revealed that RYGB had beneficial metabolic
effects in two GLP-1 KO mouse models, similar to RYGB-
treated control mice [52•]. Although GLP-1-induced incretin
effect might be in part responsible for the improved glucose
tolerance after bariatric surgery, increased insulin secretion
might be expected to produce weight gain, rather than weight
loss. The weight loss-induced effect of GLP-1 following bar-
iatric surgery remains poorly understood.

Glucagon-Like Peptide 2

Glucagon-like peptide 2 (GLP-2) is a 33-amino acid peptide
created by specific posttranslational proteolytic cleavage of
proglucagon in a process that also liberates the related GLP-
1. GLP-2 is produced by the intestinal endocrine L cell and by
various neurones in the central nervous system. Intestinal
GLP-2 is co-secreted along with GLP-1 upon nutrient inges-
tion. GLP-2 appears to have a role in stimulating gut hyper-
trophy by ileal cell hyperplasia and reducing apoptosis and
has been used therapeutically in patients with short gut syn-
drome [53, 54]. There are various studies assessing the effects
of RYGB on GLP-2 regulation. Taqi et al., in an experimental
study, demonstrated a significant increase in the GLP-2 levels
after gastric bypass in rats [55]. LeRoux et al., in a human
prospective study, demonstrated a significant increase in the
postprandial levels of GLP-2 after gastric bypass, with a se-
cretion peak observed 6 months after the procedure [56].
Cazzo et al., in a human prospective study, observed a signif-
icant increase in the GLP-2 levels 12 months after surgery and
demonstrated that this increase was significantly correlated
with aspects of satiety regulation [57]. Comparing individuals
who underwent gastric bypass and SG, Romero et al. ob-
served in a prospective study that both procedures led to a
significant increase in the postprandial levels of GLP-2
6 weeks after surgery, without significant difference between
the two evaluated procedures [58]. Cummings et al., in an
experimental study, demonstrated a significant increase in
the GLP-2 levels in rats after the SG [59•]. Evidence suggests
that GLP-2 postoperatively increases, and this change may be
potentially related to weight loss stabilization, late reduction
of diarrhoea and malabsorption, partial compensation of
harms to bone mineral metabolism, minimization of the con-
sequences of bacterial overgrowth and regulation of specific
aspects of satiety regulation.

Pancreatic Peptide YY

Peptide YY (PYY) also known as pancreatic peptide
YY3–36 is a peptide that in humans is encoded by

the PYY gene. PYY is a short (36-amino acid) peptide
released by L enteroendocrine cells in the distal small
intestine and colon in response to feeding. Following
cleavage in the circulation by the enzyme dipeptidyl-
peptidase-IV (DPP-IV), PYY1–36 is converted to
PYY3–36, suspected to promote satiety through its
agonism of the Y2 receptor [60, 61]. PYY3–36 has
many effects, including delaying gastric emptying, re-
ducing postprandial insulin production and altering co-
lonic motility, but its main role appears to involve the
central regulation of appetite [60–63]. Le Roux et al.
were able to demonstrate that obese individuals had re-
duced postprandial PYY3–36 levels and individuals in-
fused with PYY3–36 demonstrated reduced food intake
[64•]. Levels of PYY3–36 appear to increase postpran-
dially following bariatric surgery [65••]. PYY3–36
levels increase postprandially regardless of bariatric pro-
cedure [37, 65••, 66•]. In rodent KO models, PYY ap-
pears to have an important role to weight loss following
bypass surgery [25, 67]. Further research and innovative
approaches are required to better understand PYY (3–
36) physiology, its role in obesity and bariatric surgery
and therapeutic potential.

Oxyntomodulin

Oxyntomodulin originates from the proglucagon gene by
alternative posttranslational processing pathways. It is a
naturally occurring 37-amino acid peptide structurally
similar to glucagon with an additional C-terminal octa-
peptide. Oxyntomodulin is produced by the L cells in
the colon and has been found to suppress appetite. The
mechanism of action of oxyntomodulin is not well under-
stood. It is known to bind both the GLP-1 receptor and the
glucagon receptor, but it is not known whether the effects
of the hormone are mediated through these receptors or
through an unidentified receptor. Oxyntomodulin regula-
tion following bariatric surgery is poorly understood, and
very few studies have looked at the effects of surgery on
oxyntomodulin. In one study, ten obese women with
T2DM who had RYGB were matched with ten women
who achieved 10-kg weight loss through diet. The group
who underwent RYGB had increased oxyntomodulin
levels following a mixed-meal test that were correlated
to circulated GLP-1 and PYY levels [68•]. These findings
have been replicated by others [69••]. Exogenous admin-
istration of oxyntomodulin in mice leads to body weight
loss, increased energy expenditure and amplified glucose-
induced insulin secretion [70•, 71]. No specific receptor for
oxyntomodulin has yet been identified, and because
oxyntomodulin lacks the ability to increase insulin secretion
in GLP-1R−/− mice, this effect of oxyntomodulin can likely
be attributed to its action on GLP-1R. Subcutaneous
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oxyntomodulin infusions reduce body weight in rodents [70•]
and humans by increasing energy expenditure and reducing
food intake [72••, 73].

Secretin

Secretin is a 27-amino acid peptide hormone which is pro-
duced by S cells in the duodenal mucosa in response to a
low intraluminal pH, inhibiting the secretion of gastric acid
from the parietal cells of the stomach and stimulating the pro-
duction of bicarbonate from the centroacinar cells and inter-
calated ducts of the pancreas. It also stimulates bile production
by the liver; the bile emulsifies dietary fats in the duodenum so
that pancreatic lipase can act upon them. In humans, the se-
cretin peptide is encoded by the SCT gene [74]. Rhee et al.
studied the impact of Roux-en-Y gastric bypass (RYGB) on
the density and hormonal gene expression of small-intestinal
enteroendocrine cells in obese patients with type 2 diabetes.
Twelve patients with diabetes and 11 age- and BMI-matched
controls underwent RYGB followed by enteroscopy
~10 months later. Mucosal biopsies taken during surgery
and enteroscopy were immunohistochemically stained for se-
cretin and secretin mRNAwas reduced after RYGB [75•]. In
another study, 18 patients without T2DM had perianastomotic
jejunal biopsies at baseline and using endoscopy 12 months
postoperatively. RYGB had no impact on villi length or den-
sity of secretin [76]. Changes in secretin homeostasis have not
been studied following GB or SG.

Vasoactive Intestinal Polypeptide

Vasoactive intestinal polypeptide (VIP) is a neuropeptide of
28-amino acid residues that belongs to a glucagon/secretin
superfamily, the ligand of class II G protein-coupled receptors,
and is released by the enteric-neural system and parasympa-
thetic efferent nerve fibres. It acts to increase the secretion of
water and electrolytes into the pancreatic juices and the gut
itself. VIP stimulates contractility in the heart, causes vasodi-
lation, increases glycogenolysis, lowers arterial blood pressure
and relaxes the smooth muscle of trachea, stomach and gall
bladder. In humans, VIP is encoded by the VIP gene [77]. The
effects of bariatric surgery on VIP regulation remain elusive.

Pancreatic Polypeptide

Pancreatic polypeptide is a polypeptide secreted by pancreatic
polypeptide (PP) cells in the endocrine pancreas predominant-
ly in the head of the pancreas. It consists of 36 amino acids.
The function of PP is to self-regulate pancreatic secretion ac-
tivities (endocrine and exocrine); it also has effects on hepatic
glycogen levels and gastrointestinal secretions. Its secretion in
humans is increased after a protein meal, fasting, exercise and
acute hypoglycaemia and is decreased by somatostatin and

intravenous glucose [78]. Dixon et al. examined 17 postoper-
ative individuals who had already achieved a mean of 28%
GB-induced weight loss (range, 10–38%) whilst taking part in
a cross-sectional study and 16 obese individuals prior to GB
from a prospective study and assessed plasma PP and PYY
meal responses. They concluded that PP responses appeared
unchanged by weight loss status but a reduced PP meal re-
sponse may predict higher weight loss [79].

Insulin

Insulin is a 51-amino acid peptide hormone produced by beta
cells of the pancreatic islets. It regulates the metabolism of
carbohydrates, fats and protein by promoting the absorption
of, especially, glucose from the blood into fat, liver and skel-
etal muscle cells. Accumulating evidence suggests that β-cell
function can be improved early after RYGB and SG. In
glucose-tolerant individuals, the insulin response to a mixed
meal is decreased after weight loss resulting from GB, SG or
RYGB, Specifically, the profile of the insulin curve shifts to a
more rapid response and a steeper fall after SG and RYGB,
whereas the insulin curve after GB is characterized by a par-
allel downshift of the insulin concentration [7•, 80••, 81•, 82•].
The different profiles are probably caused by the different
rates of glucose absorption and especially the different GLP-
1 response profiles [7•, 80••]. In cases of type 2 diabetes, only
minor changes in insulin profile have been reported after GB,
whereas after SG or RYGB, an improved initial insulin re-
sponse has been described that is reminiscent of that in
glucose-tolerant obese people [83•]. B-cell glucose sensitivity
increases a few days after SG or RYGB, thus improving the
dynamic responsiveness during a meal, whereas the respon-
siveness to intravenous glucose stimulation is unchanged dur-
ing the first few months after surgery [82•, 83•]. Additionally,
insulin sensitivity also improves after bariatric surgery.
Regardless of the type of operation, hepatic insulin sensitivity
is improved within days after the procedure, presumably due
to caloric restriction. Following major weight loss occurring
after several months postsurgically, insulin sensitivity is also
improved in individual cases [82•, 83•]. Weight loss effect
therefore, appears to have a catalytic role regarding the mag-
nitude of improvement in skeletal muscle insulin sensitivity.
Of patients following RYGB, SG and GB, respectively, 1, 4
and 31% have unchanged glucose tolerance [84]. Bariatric
surgery also reduces the likelihood of progression to T2DM
compared to matched controls [85••].

Obestatin

Obestatin is a hormone that is produced in specialized epithe-
lial cells of the stomach and small intestine of several mam-
mals including humans. Obestatin was originally identified as
an anorectic peptide, but its effect on food intake remains
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controversial [86]. Obestatin is encoded by the same gene that
encodes ghrelin, a peptide hormone. Ghrelin is cleaved to
produce proghrelin which is cleaved to produce a 28-amino
acid ghrelin (unacylated) and C-ghrelin(acylated). Obestatin is
presumed to be cleaved from C-ghrelin [87]. Zhou et al. were
able to demonstrate increased obestatin and ghrelin/obestatin
ratio in mice treated with RYGB whereas obestatin was de-
creased in the SG group [25]. In a human study, Siejka et al.
were unable to demonstrate significant changes in obestatin
levels post-SG [88]. In contrast to ghrelin, which acts as an
appetite stimulant, treatment of rodents with obestatin sup-
presses food intake, inhibits jejunal contractions and decreases
body weight [89]. Only a few studies on obestatin levels in
human obesity have been published. Plasma obestatin levels
are significantly lower in obese subjects, as compared to lean
controls, indicating a role for obestatin in long-term body
weight regulation, and decreased obestatin levels were report-
ed in morbidly obese subjects referred to bariatric surgery.

Gustducin

Whilst gustducin was known to be expressed in some
taste receptor cells (TRCs), studies with rats showed
that gustducin was also present in a limited subset of
cells lining the stomach and intestine. These cells ap-
pear to share several features of TRCs [90]. Recent
rodent studies have found functional intestinal nutrient
sensing through α-gustducin in the gut in relation to
GLP-1 secretion after RYGB [52•]. Under normal cir-
cumstances, T1r3 sweet taste receptors on the L cells
are coupled to the G protein α-subunit α-gustducin.
Activation of this pathway stimulates GLP-1 secretion.
As a result, α-gustducin−/− knockout mice, similar to
GLP-1R KO, are considered a functional knockout of
GLP-1 signalling [52•]. In another rodent study, the
role of α-gustducin in the RYGB-induced improvement
of glucose homeostasis could not be clearly assessed
by Steensels et al. as sham-operated α-gust KO mice
displayed better glucose profiles and tended to display
lower insulin levels compared to sham-operated wild-
type (WT) mice [91]. These results indicate that α-gust
KO mice were partially protected from the diabetogenic
properties of a western style diet. Avau et al. previous-
ly showed that high-fat diet-induced obese α-gust KO
mice have an increased heat production compared to
WT mice, as a result of an increased brown adipose
tissue thermogenic activity [92]. Finally, α-gustducin
stimulates the expression of sodium glucose transporter
and Glut2 receptor, and activation of α-gustducin may
be correlated to the hyperabsorption observed during
an oral glucose tolerance test following bariatric sur-
gery [93].

Somatostatin

Somatostatin is a peptide hormone that regulates the endocrine
system and affects neurotransmission and cell proliferation via
interaction with G protein-coupled somatostatin receptors and
inhibition of the release of numerous secondary hormones.
Somatostatin inhibits insulin and glucagon secretion.
Somatostatin is a peptide hormone produced by delta (or D)
cells in the pancreas, stomach and duodenum. The pre-pro-
hormone can be cleaved at two different locations giving two
forms of 14 and 28 amino acids in length, which both have
biological activity. In the gastrointestinal tract, it reduces the
secretion of gastrin, secretin, CCK, GIP and GLP-1. In the
pituitary, it reduces the secretion of growth hormone,
thyroid-stimulating hormone and prolactin. In the pancreas,
it reduces the production and secretion of insulin and glucagon
and inhibits exocrine secretion. A somatostatin analogue with
high biding affinity to somatostatin receptor 2 and lower to 3
and 5 (sstr 2,3,5), octreotide, has caused reduced adiposity in
high-fat-fed rats [94]. Somatostatin infusion in a study of
obese women inhibited release of PYY [95]. Despite the pre-
vious, the role of somatostatin following bariatric surgery re-
mains poorly characterized.

Glucagon

Glucagon is a 29-amino acid peptide hormone produced in the
alpha cells of the pancreatic islets of Langerhans, which are
located in the endocrine portion of the pancreas. Its production
is suppressed/regulated by insulin from the adjacent beta cells.
Glucagon is also released during the fasting state and acts to
increase blood sugar levels by promoting glycogenolysis and
gluconeogenesis. Very few studies have assessed the effect of
bariatric surgery upon circulating glucagon concentrations.
Farey et al. demonstrated a significant reduction in glucagon
levels 3 months post-SG [96]. Korner et al. assessed women
after GB and RYGB and in a group of overweight control
patients (n = 36 in total) for glucagon concentrations. The
investigators found no difference in glucagon levels between
groups following a mixed-meal test, except for 180 min after
the test was commenced where patients who had the RYGB
compared to the control group had significantly lower gluca-
gon levels [97]. Umeda et al. assessed glucagon concentra-
tions at baseline and 3 months after RYGB. According to their
observations, fasting glucagon concentrations increased and
postprandial glucagon levels decreased following surgery in
response to a liquid meal [98].

Fibroblast Growth Factors (FGF19,21)

Fibroblast growth factors (FGFs) constitute a family of proteins
comprising at least 22 members involved in the regulation of
cell growth and differentiation, development, angiogenesis,
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wound repair and metabolism [99]. Most FGFs are secreted
heparin-binding proteins and function as autocrine or paracrine
factors, whilst FGF19, FGF21 and FGF23 exhibit common
unique structural properties which confer them the ability to
elicit endocrine actions functioning as hormones. FGF19 is an
ileum-derived enterokine that controls bile acid and nutrient
metabolism. FGF19 has been reported to play a role in the
regulation of glucose and lipid metabolism, as well as in energy
expenditure and body adiposity [99]. FGF21 is produced main-
ly in the liver and promotes fatty acid oxidation, improves
insulin sensitivity and increases energy expenditure [99].
FGF21 is paradoxically increased in obesity, suggesting that
obesity is a FGF21-resistant state [99]. Gomez-Ambrosi et al.
were able to demonstrate that FGF19 levels in obese patients
increase after bariatric surgery-induced weight loss regardless
of the surgical procedure used, but not after diet-inducedweight
loss [100]. They were also able to demonstrate that FGF21
concentrations in obese patients decrease after diet- and SG-
induced weight loss, but not after weight loss following RYGB
[100].Martinez de la Escalera et al. investigated 39 obesewom-
enwith T2DMwho underwent various bariatric procedures and
were able to demonstrate that changes in circulating FGF19
levels were surgery specific [101].

Conclusions

Whether the metabolic benefits of bariatric surgery are sec-
ondary to weight loss or not remains controversial. It is nev-
ertheless clear that there are widespread physiological re-
sponses to changes in GI tract morphology. Studies of peptide
hormone concentrations after bariatric surgery have often
found conflicting results, and these findings are further com-
plicated by the fact that most of the observed hormonal and
physiological responses are similar between all surgical inter-
ventions. Weight loss itself can cause changes in gut hormone
secretion, regardless of the effects of bariatric surgery, making
it difficult to evaluate the independent effects of surgery on
weight loss postsurgically. The beneficial effects of bariatric
surgery are still poorly understood, but are most likely to be
multifactorial in aetiopathogenesis. An obvious candidate,
however, is GLP-1. The increase in postprandial GLP-1 levels
following bariatric surgery is obviously beneficial to the stim-
ulation of postprandial insulin secretion. Interestingly, howev-
er, suppression of the GLP-1R does not diminish the benefi-
cial effects of surgery, indicating that this is not the onlymech-
anism for the observed metabolic phenomena of surgery.
Changes in calorie restriction occurring postsurgery, coupled
with hormonal adaptations, promote weight loss which, sur-
prisingly, can be preserved in the long term. Yet, there are
patients lacking sustainable weight loss despite initial good
response to bariatric surgery (secondary poor responders).
There are several hypotheses regarding this phenomenon,

including cognitive traits related to eating behaviour and iso-
lated cases of blunted GLP-1 and PYY secretion following
bariatric surgery. In contrast, primary poor responders to bar-
iatric surgery may be genetically predisposed to a limited
weight loss as various genome-wide associated studies have
shown. In such cases, weight loss % over time is a strong
prognostic factor to overall achieved weight loss.

The success of bariatric surgery comes from the combined
effect of physiological and molecular signalling changes in
both the GI tract and other organs that result in sustained
weight loss and improved glucose and insulin homeostasis.
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