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Abstract 

Social media has become a popular platform of interpersonal communication in which users can search for news 

and convey real-time information. Researching into social big data, such as Twitter, can be an effective way to 

identify public opinions and feelings in risk emergence, as it provides rich sources of data for opinion mining 

and sentiment analysis. This study aims to investigate and analyse the public perception towards the Mars and 

Snickers product recall scandal. The study proposes a comprehensive data analysis framework, and utilises the 

dataset formed of 10,930 Twitter messages over the span of 10-day following the product recall announcement 

made by Mars Inc., to gauge public attitudes and opinions. The study finds that the overall attitude of Twitter 

users towards the scandal was negative, and Snickers were the most mentioned product in the 10-day periods 

after the announcement of the recall. The data analysis highlights that the Tweet diffusion (retweeting) has 

positive associations with the number of followers and the use of hashtags, hence companies should pay more 

attention to users who have a large number of followers, as their tweets will be read by a great number of other 

Twitter users. The findings suggest effective methods for practitioners in crisis management (e.g., how to use 

social media to disseminate information). The study also presents a progressive tweet-mining framework that can 

serve as a tool in crisis management to classify the tweet topics, identify and analyse the sentiment and 

comprehend the changes of the public attitudes. 

 

Keywords: Social media, Crisis management, Twitter mining 

 

1. Introduction 

With the advent of social media, the means of creating and sharing information have changed 

dramatically (Mangold & Faulds, 2009). As mentioned by Neti (2011), social media, or 

consumer-generated media, can be a new marketing tide like websites and emails. Social 

media marketing refers to the process of utilising the online platform, such as social networks, 

Internet communities, blogs, etc., to improve brand awareness and attract new customers. 

Corporations have benefited from the use of social media (e.g., Twitter) not only as a 

marketing tool to communicate with customers (Kaplan & Haenlein, 2010), but also an 

effective way to understand public opinions and feelings, hence it helps to build better 

relationships with customers (Agnihotri et al., 2012). 

 

Twitter, as a popular social media platform, has a total number of 1.3 billion registered users, 

with approximately 313 million of them are monthly activated (until 08/2017) and the number 
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is still growing fast. This microblogging platform offers users to search for news and convey 

real-time information. The data created through the use of Twitter have also attracted 

increased attention from academics (Townsend, 2013; Veil et al., 2011). This is to some 

extent inspired by latest excitements over the notion of big data, as the popularity of the 

platform can offer rich sources of favourable social data to study public behaviour in a non-

experimental way. For instance, the Twitter data can comprise information about users’ 

behaviours, emotions and attitudes about a specific product quality (Chae, 2015). Therefore, 

researchers can utilise such a platform, as part of a useful risk communicating strategy, to 

identify public opinions and feelings in product quality risk emergence. 

 

The emergence of the social media research demands new approaches, such as the utilisation 

of text mining (Feldman, 2013), to gain insights by overcoming obstacles in analysing a mass 

of unstructured texts (Liau & Tan, 2014). Exploring the social big data is promising, but the 

current Twitter analytics are rather descriptive. Some common text mining methods may 

include descriptive analytics (e.g., word count analysis) and content analytics (e.g., sentiment 

analysis). Particularly in the research on crisis events, the development of studying social 

media and big data is relatively slow and there is little research to further explore the 

interrelationships between the factors that accompany with a tweet, such as the retweeting 

behaviour, URL usage, hashtag sage, sentiment value and users’ followers etc. 

 

This study aims to identify the principal elements that may demonstrate public sentiments and 

responses during a product quality crisis. By capturing and analysing the tweets related to the 

2016 Mars recall scandal, the study also aims to propose a more progressive tweet-mining 

framework to include descriptive analytics, content analytics and relationship analytics. Use 

Twitter as a means to gauge public perception, following three research questions are raised: 

 

 What are they the key topics in the tweets that related to the Mars recall scandal? 

 What is users’ sentiment towards Mars in the recall? 

 What are the significant determinants of users’ retweeting behaviour? 

 

The study is organised as follows: Section 2 reviews the literature on social media big data 

and crisis management research within the social media context. Section 3 and 4 presents 

hypotheses development and the research methodologies. Section 5 explains the study results 

and implications. Finally, the conclusions and recommendations for future research are 

presented in Section 6. 

 

2. Literature review 

2.1 Social Media and Bid Data  

Social media is defined as popular web-based platforms which allow individuals to ‘construct 

a public or semi-public profile within a bounded system; articulate a list of other users with 

whom they share a connection; and view and traverse their list of connections and those made 

by others within the system’ (Boyd & Ellison, 2007, p219). Web-based messages are 

explosively transmitted through these platforms and have become a dominant factor affecting 

public perceptions (Freberg et al., 2011).  

 

Social media makes the world borderless, which to a large extent facilitates the 

communication of users. This phenomenon enables the world to be more interconnected and 

accounts for the production of a large amount of data (Rainie and Wellman, 2012). The large 

pools of data (Boyd & Crawford, 2012) are more readily used for research in various 

disciplines (Agrawal et al., 2011), such as politics (Shirky, 2011), sociology (O'Keeffe & 



 3 

Clarke-Pearson, 2011), pedagogy (Dabbagh & Kitsantas, 2012), management (Baird & 

Parasnis, 2011), and business (Kim & Ko, 2012). Although social media is a relatively 

emerging research area, because of its rapid growth, it is at the top of the agenda for many 

business executives (Kaplan & Haenlein, 2010) and academia (Fuchs, 2017).  

 

Manyika et al. (2011) define big data as the large pool of data, which can be collected, saved 

and analysed. Big data can generate forms of objective facts rather than the previous 

guesswork, which is recognised by creative practitioners (Agrawal et al., 2011). They are 

produced directly from the utilisation of social media by individuals, which can be captured 

from social media site distributors or collected manually (Tufekci, 2014). This is almost an 

effortless method which is in contrast with the conventional data collection methods (e.g., 

interview and survey), but can generate big impacts (Chen et al., 2012).  

 

Twitter is a microblogging social media service (Kwak et al., 2010). It provides a popular 

online platform on mobile and other network devices for users to exchange and share 

information with other users anytime and anywhere (Thompson, 2011). Common features of 

Twitter include: ‘Twittering’ – to share short posts (or tweets) within the 280-character limit 

(it used to be 140); ‘Following’ – to follow other Twitter users (or followees); ‘Retweet’ – to 

share the tweets posted by the followees; and ‘Update’ – to share new posts (or new tweets) 

based on the current one (Jansen et al., 2009). Because Twitter allows users to follow others 

and are followed freely (Java et al., 2007), It can yield at an enormous rate of data per day 

(Claster et al., 2010) and has seen a faster pace of growth since the launch in 2006 (Kwak et 

al., 2010). Therefore, it provides a rich source for research into people’s emotions, which is 

necessary for deeper understanding of people’s behaviours and actions (Ngai et al., 2015; 

Wang et al., 2012).  

 

2.2 Crisis Management Research Within the Social Media Context  

Crises can be seen as events which cannot be predicted, but significantly threaten 

stakeholders’ expectations. They have strong impacts on organisations’ performance and 

could have long-term negative effects (Jin et al., 2014). Technical advance has revolutionised 

the way of viewing, broadcasting and interacting with communities affected by crisis events, 

especially for relevant practitioners and researchers (Veil et al., 2011). As emphasised by Hui 

et al. (2012), crisis events and disasters related information could be transmitted, spread, and 

cascaded from one to another rapidly in online social networks. For instance, information 

derived from Facebook could be easily shared with other users through Google+, Tweeter or 

other social networks. As an increasing number of people utilise social media for risk and 

crisis communication (Freberg et al., 2013), many companies have faced huge challengs 

managing crisis communication (Schultz et al., 2011). Previous studies have been conducted 

on social media and its impact on crisis communication. Coombs (2007) argues that the 

evidence-based crisis communication guidance must be integrated into social media in 

managing crisis. This is supported by some recent studies (Freberg et al., 2013; Gruber et al., 

2015; Jin et al., 2014), as they introduce models for social-mediated crisis communication, 

which address the demand identified by Coombs (2007). In particluar, Gruber et al. (2015) 

define the leadershiop role in crisis events and prpopose methods in assisting laders to 

strategically manage the internet communication, such as to collect and handle information 

during crisis events. Jin et al. (2014) find that emotions of the public such as anger and 

aversion are increasingly worse when the public receive crisis information through third-party 

social media platforms, as a result, enterprises should act in time to demonstrate their 

participation in social media.  

 

In food industry, there are also a growing number of social media studies which have paid 
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attention to crisis events, so that firms involved in food communication can make appropriate 

response to inquiries and develop strategies to deal with the problems (Rutsaert et al., 2013). 

As a large amount of fragmented and user generated content is freely available on social 

media networks (He et al., 2013), the traditional and ‘old’ strategies are not necessarily 

working well (Veil et al., 2011) and some new strategies are suggested (Freberg et al., 2013), 

such as rumour management; channels selection to reach segmented publics; methods to 

check for information accuracy, follow credible sources and disclose information. Although 

communicating on the internet is risky due to the inaccuracy, social media is still an ideal 

choice because of its high efficiency, coverage and accessibility during and after the food 

crisis events (Shan et al., 2014). Recent studies have addressed social media coverage of food 

crises (Casey et al., 2011; Chunara et al., 2012). Rutsaert et al. (2013) argue that social media 

is an appropriate platforming to discuss the risk of food crisis events.  

 

3. Hypotheses Development 

In order to determine the significant determinants of users’ retweeting behaviour, one of the 

recent food quality crisis events - the Mar’s plastic scandal, is selected in this study. This 

scandal was a major food recall in 2016. It affected customers from 55 countries and made 

Mars lose tens of millions of dollars. On Friday, 8 January 2016, a consumer in Germany 

found a slice of red plastic inside the Snickers he had purchased. After lodging a complaint 

about this, the plastic was retraced back to its production plant in the southern Dutch town of 

Veghel, where it was decided that the plastic derived from a protective guard utilised in the 

productive process. Mars then made an announcement on 23 February 2016 to recall its 

products around the world due to the concern about its customers choking on the plastic again. 

There are various products affected, such as Milky Way, Snickers, Bars of Mars, Mini Mix 

and Celebrations,  

 

Since the announcement, consumers have expressed their concern and condemnation about 

this recall on social media sites. This study uses a dataset formed of public’s comments from 

Twitter to identify the antecedents of users’ tweeting behaviour (i.e. retweet). Two hypotheses 

are formulated and illustrated in the hypothesized model (Figure 1), namely number of 

followers and hashtag usage could contribute the information diffusion. Furthermore, three 

control variables are also considered in this study, which are the URL usage, Sentiment Score 

and Mention Usage. 

 

 
Figure 1. The Hypothesised Model 
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Use a hash sign (#) to tag a keyword (hence hashtag) is a characteristic in social media like 

Twitter. The hashtags can be used to label keywords or hot topics which describe a tweet, aide 

in search and organise discussion around specific topics or events (Small, 2011). The use of 

the symbols can help to search for messages more quickly, therefore, it should increase the 

amount of retweets and help to spread the messages. This study proposes that the use of 

hashtags may increase the likelihood of diffusing the tweets message. Thus, a hypothesis is 

represented as follows: 

 

Hypothesis 1: The possibility of spreading messages is positively related to the utilisation of 

hashtags in tweets during the product recall event. 

 

Followers and followees are two groups of users in Twitter. Followers are users who typically 

share tweets posted by other users, or followees, who they follow. Followers can freely select 

other users to follow. As long as a tweet is posted by one user, this tweet message will be 

spread to followers of this user at once and presented on each follower’s Twitter window 

according to time order (Suh et al., 2010). As a result, the term “Follower” means one user 

subscribing to other users’ tweet while the term “Following” could be seen as those accounts 

which are subscribed to by others. With the emergence of the social networks, plenty of 

researches have represented the significance of a great deal of followers for the spread of 

tweets. As emphasised by Zhou et al. (2010), the structure of followers and following have a 

crucial impact on diffusing tweets. They also pointed out that, the more the followers one 

followee has, the bigger the likelihood that the followee’s tweet messages are retweeted by 

others. Furthermore, according to Zaman et al. (2010) and Harvey et al. (2011), it is 

significant to utilise the quantity of followers for evaluating the quantity of retweeting 

messages. Nevertheless, to the best of our knowledge, the effect of followers in spreading 

tweets has not been measured in the context of product-recall. Consequently, the hypothesis 

of following is developed on the basis of previous research. 

 

Hypothesis 2: The possibility of spreading a message is positively related to the quantity of 

followers during a product recall event. 

 

4. Methodology 

This study develops a Tweets Analysis Framework to capture, analysis the Twitter messages, 

and test the aforementioned hypotheses. The framework has six steps: tweets collecting, word 

count analysis, clustering analysis, sentiment analysis, time series analysis and empirical 

analysis.   

 

In Step One, the Twitter dataset is captured and refined. This study uses Twitter API to 

capture the relevant tweets over the span of the 10-day period (23/02/2016-03/03/2016) 

following the product recall announcement made by Mars Inc. Only messages with a hashtag 

(#) and mentioned (@), and written in English are captured (Thelwall et al., 2010). The final 

dataset contains 10,930 tweets which are sent from 55 countries. These tweets are then 

normalised and tokenised (Liau and Tan, 2014) in the QDA Miner software package to stem 

(e.g., convert ‘chocolates’ into ‘chocolate’) and remove stop words (articles: e.g., ‘a’, ‘an’, 

‘the’; prepositions: e.g., ‘this’, ‘that’, ‘these’, ‘those’; and personal pronouns: e.g., ‘I’, ‘me’, 

‘you’, ‘it’). Other high frequency but pointless words (e.g., HTTP, HTTPS, RT, etc.) are also 

removed and common misspellings are corrected (e.g., ‘chocolete’ instead of ‘chocolate’).  

 

In Step Two, the QDA Miner is used to generate word count frequency and predict the 

popular topics from the textual data (Table 1). The software is selected based on it is 
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extensive features on exploring textual data. The major characteristics are also extracted in the 

proximity plot (Figure 2) (Mostafa, 2013).  

 

 FREQUENCY SHOWN PROCESSED TOTAL CASES 

MARS 12524 15.03% 13.34% 8.72% 43.28% 

RECALL 10826 12.99% 11.53% 7.54% 43.93% 

SNICKER 4690 5.63% 5.00% 3.27% 18.90% 

CHOCOLATE 4263 5.12% 4.54% 2.97% 16.90% 

BAR 3893 4.67% 4.15% 2.71% 15.67% 

PLASTIC 3275 3.93% 3.49% 2.28% 13.70% 

COUNTRIES 3222 3.87% 3.43% 2.24% 13.22% 

CANDY 1773 2.13% 1.89% 1.23% 7.35% 

ISSUES 1142 1.37% 1.22% 0.80% 4.80% 

GERMAN 974 1.17% 1.04% 0.68% 4.11% 

Table 1. Word frequency table for the top 10 keywords 

 

 

 
Figure 2. Proximity plot for ‘Mars’ 

 

In Step Three, the popular topics are further analysed to look for their co-occurrence by using 

Multi-Dimensional Scaling (MDS) (Péladeau et al., 2017; Taboada et al., 2011). Jaccard’s 

coefficient is applied as the index of co-occurrence. A matrix of distances between the 

popular topics are illustrated (Figure 3), in which the circles indicate the major topic of the 

dataset and the closer the circles, the higher the tendency of co-occurrence and vice versa. The 

lines between the circles indicate the strength of the association.  
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Figure 3. The 2D MDS results 

 

In Step Four, the sentiment analysis is applied to comprehend the motive behind the tweets. 

This study uses the lexicon-based method to the tweets to measure the semantic orientation. 

This is one of the popular methods to extract sentiment from text which involves the use of 

dictionaries to capture polarity (positive or negative sentiment) and explain strength on a scale 

of 1 (no sentiment) to 5 (very strong sentiment). This study adopts the SentiStrength classifier 

(Thelwall et al., 2010) and employs Liu’s (2010) sentiment lexicon to analyse the sentiment 

expressed in the tweets.  

 

 
Figure 4. The 2D MDS results 

 

In Step Five, a time series analysis is employed to compare and contrast the sentiment values 

of the tweets captured in different time. The 10-day period is broken down into a half-day 

manner (am/pm) to study the variations in the popular topics and sentiment. Hence, the 

original dataset is separated into 20 sub-datasets for the time series analysis (Figure 4).  
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In Step Six, the logistic regression is performed to identify the significant antecedents to the 

retweeting behaviour. In order to test the above hypotheses, the relationship between the 

independent variables (i.e. hashtags usage and the numbers of followers) and dependent 

variables (i.e., retweet or not) are examined with controlled variables (i.e., URL usage, 

mentions and sentiment values).  

 

Parameter Coefficient S. Errors Wald(df) Sig. Exp(b) 

Hashtag*** .857 .088 93.898(1) .000 2.356 

Followers* .000 .000 4.022(1) .042 .800 

Mention 22.805 500.765 .002(1) .964 8015715733.000 

URL*** .778 .080 94.337(1) .000 2.176 

Sentiment* Score -.117 .058 4.076(1) .043 .890 

Constant -22.239 500.765 .002(1) .965 .000 

Cox & Snell R Square=0.585, *p<0.5, **p<0.01, p<0.001 

Table 2. The logistic regression results 

 

5. Results and Implications 

From the Table 1, ‘Mars’, ‘Recall’ and ‘Snicker’ have the highest word count frequency 

during the 10-day product recall period. This can be explained by the Mars recall scandal 

comes after a customer who found a piece of plastic in a Snickers bar. In Figure 2, the 

proximity plot uses a single axis to illustrate the most concerned topic and other popular 

topics. It seems that most tweets are concerned with things such as ‘Recall’, ‘Snicker’, 

‘Chocolate’, ‘Bar’ and ‘Plastic’. Twitter users seem to be also concerned with the scandal in 

‘Countries’, like ‘Germany’, ‘UK’ and ‘The Netherlands’. 

 

The Figure 3 shows the popular tweets topics and their mutual relationships based on the 

MDS. In this figure, a pattern of ‘Company Action’ is identified and represented by the topics 

of ‘Mars’, ‘Snickers’, ‘Recall’, ‘Remove’, ‘Shelves’ and ‘Products’. This could imply that the 

consumers expect firms to immediate remove all products with potential risk from shelves. In 

particular, ‘Snickers’ is strongly associated with ‘Mars’ and ‘Recall’, which indicates that the 

Snickers is the product that consumers were most concerned with during the recall. Another 

group is the ‘Recall Consequence’ which has the topics of ‘Cost’, ‘Firms’ and ‘Millions’. This 

may highlight that consumers are actually interested in the firm’s financial losses as a result of 

the product call.  

 

From the results of the SentiStrength classifier, the average sentiment value of the Mars 

Scandal tweets is -0.26169 and the distribution of sentiment scores falls between the band of 

circa -1/+1. These could be an indication that most tweets are not very affective. From the 

time series analysis in Figure 4, the sentiment scores of the tweets captured in AM (-0.127) is 

generally stronger than those in PM (-0.069) over the ten-day period. The strongest negative 

sentiment tweets (-4) are those captured in AM of 24 February 2016 - the day after Mars Inc. 

announced its globe product recall. 

 

The results of the logistic regression can be found in Table 2, the Cox & Shell R-square (i.e. 

0.585) indicates a good model fit and the model supports both hypotheses. Thus, the usage of 

the hashtag (hypothesis 1, p<0.001) and the number of followers (Hypothesis 2, 

p=0.042<0.05) are significant drivers of retweet, which suggests that the usage of the hashtag 

and the number of followers can significantly and positively impact on the retweet behaviour. 

This study also finds that the sentiment value was negatively associated with the diffusion of 

tweets (p<0.05). 
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6. Conclusions 

This study uses a dataset, which contains 10,930 Twitter messages to gauge public attitudes 

and opinions. The results of the sentiment analysis agree with some previous studies (Ma et 

al., 2017; Tse et al., 2016) that consumers would search for news and convey real-time 

information on the internet in risk emergence. As consumers’ expressions are likely to affect a 

firm’s financial performance like sales data and share price (Mostafa, 2013), firms should be 

active on social network sites and enhance its communication strategy. It is significant for 

firms to supervise general public’s sentiment on social network to avoid propagating the 

negative message or even the rumour, which is an indispensable factor to the successful crisis 

communication.  

 

The results of the logistic regression provide insights for firms to better understand social 

media on how information can be diffused and the reasons why certain information can 

spread more widely than others. In this study, the numbers of tweet followers and the use of 

hashtags are two significant factors of retweeting hence, information diffusion. These results 

are in line with some existing studies (Lee et al., 2015; Suh et al., 2010), as the larger number 

of tweet followers and the more use of hashtags, the tweets are likely read by more followers, 

thus, the chance of retweeting is also increased. Therefore, these two factors play crucial roles 

in estimating the number of retweets and predicting the spread of information. These are 

important for firms to capture and understand public expectations during crisis events and 

develop proactive strategies and information diffusion models (Wei et al., 2012) to deal with 

chaos. 

 

This study also presents a progressive tweet-mining framework the can serve as a tool in crisis 

management. The framework comprises word count analysis, clustering analysis, sentiment 

analysis and logistic regression analysis to comprehend Twitter messages. It suggests a 

promising future direction of research on public perceptions.  
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