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Abstract

Background:

Preclinical animal experiments measuring vaccine immunogenicity and safety are essential,
not only to establish if the vaccine should progress further, but to generate information on
how the vaccine should be administered in humans. Animal models that represent human
vaccine responses well are vital to translate information about vaccine dose to clinical phases.
Vaccine dose is a key aspect in creating an effective vaccine. However, if the wrong dose is
chosen, vaccine candidates may be mistakenly discarded and considerable resources wasted.
Current methods of finding optimal vaccine dose are mostly empirically based, which may be
leading to sub-optimal doses progressing into later clinical trials. A current example of this is
in the tuberculosis (TB) vaccine developmental pipeline, where a series of adjuvanted subunit
vaccines, the H-series, have progressed through to later stages of clinical development with a
high dose that has been shown to less immunogenic than lower doses. In drug development,
mathematical model-based methods are routinely used alongside empirical evaluations, to
inform dose-finding. | hypothesised that vaccine development may benefit from the
application of similar quantitative methods. As such, | launched the new field of vaccine
immunostimulation/immunodynamic (IS/ID) mathematical modelling. My aims for this thesis
were 1) to establish differences in Bacillus Calmette—Guérin (BCG) Interferon-Gamma (IFN-y)
response by human subpopulation, then develop a IS/ID model to represent these response
dynamics and identify the most representative macaque subpopulation for human BCG
responses. Aim 2) was to predict human H-series vaccine IFN-y response using IS/ID model

calibrated to mouse multi-dose IFN-y data and allometric scaling.

Methods: For aim 1, longitudinal data on IFN-y emitting CD4+ T cells following vaccination
BCG were available in humans and macaques. Human (sub)population covariates were:
baseline BCG vaccination status, time since BCG vaccination, gender and
monocyte/lymphocyte cell count ratio. The macaque (sub)population covariate was colony of
origin. | developed a two-compartmental mathematical model describing the post-BCG IFN-y
immune response dynamics. The model was calibrated to the human and macaque data using
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Nonlinear Mixed Effects Modelling (NLMEM) to establish if there were differences in IFN-y
dynamics for both species subpopulations. | then established which macaque subpopulation
best described human data. For aim 2, longitudinal data on IFN-y emitting CD4+ T cells
following two vaccinations with five doses of novel TB vaccine H56+IC31 in mice were
generated. | then assessed the shape of the dose response curve at early and late time points.
| calibrated the T cell model to the mouse data and established the change in key model
parameters across dose. Using the change in model parameters across dose found in the
mice, | predicted the immune response dynamics in humans for different doses and which

dose was most immunogenic.

Results: In aim 1, | found that BCG status in humans (baseline BCG-naive or baseline BCG-
vaccinated) was associated with differences in the peak and end IFN-y response after
vaccination with BCG. When the mathematical model was calibrated to the BCG data for both
macaques and humans, significant differences (p<0.05) in key model parameters were found
after stratification by macaque colony and human baseline-BCG status. Indonesian
cynomolgus macaques had the closest immune response dynamics to the baseline BCG-naive
humans. In aim 2, a peaked curve was the best description of the mouse H56+IC31 dose
response curve for early and late time points. Calibrating a revaccination model to the data
and mapping changes in the estimated mouse model parameters across dose group to the
estimated human model parameters, | found at day 224 (a latest time point), the model-
predicted median number of human IFN-y secreting CD4+ T cells were the highest for the
dose group in the range 1-10ug H56/H1+500 nmol IC31. This suggests a dose of 1-10ug may

be the most immunogenic in humans.

Discussion: Finding the most predictive animal model and optimal vaccine dose is essential
for efficiently accelerating the development of new, effective, TB vaccines. | demonstrated
that mathematical modelling was a useful tool to quantify BCG immune response dynamics
in macaques and humans. | established which macaque subpopulation should be used to
represent a human BCG (or potentially new TB vaccine) induced IFN-y response in future
clinical trials. Using IFN-y as marker of vaccine immunogenicity, mathematical modelling

predictions using preclinical data suggested that doses in current novel TB vaccines clinical
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trials on healthy BCG-vaccinated participants should be between 1-10ug H56/H1+500 nmol
IC31, a result which has been recently corroborated in an empirical H56+IC31 dose-ranging
trial. This project has demonstrated the potential utility of mathematical modelling in vaccine
development. | believe future work on IS/ID modelling should include data on more complex
immune response networks and different animal and human subpopulations. This future
work is entirely feasible and would establish IS/ID modelling as a legitimate tool to accelerate

vaccine development.
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of IFN-y secreting CD4+ T cells measured over time by ELISPOT assay in mouse

splenocytes for each mouse after receiving vaccination of H56+IC31 at day 0 and day 15.

Median responses over time are marked by a blue triangle, the 75 percentile
responses by an orange triangle and the 25 percentile responses by a purple triangle.
The model prediction (total cells) calibrated to the data in the calibration framework
(parameters in Table 1) is plotted against the median data (blue line). The orange and
purple dashed lines are the model prediction (total cells) of the 75% and 25t percentiles
of the data, a result of the variation in the estimated parameters (standard deviation
fixed to 0.5 for all parameters (Table 1)).
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Empirical and model predicted number of IFN-y secreting CD4+ T cells over time for A.
pooled human data (all data, pooled over vaccine type) (50 ug H56/H1+IC31), and the
predicted human immune responses following a B. low (mouse-data mapped dose of 1-
10 pg H56/H1+IC31) or C. high dose vaccination (mouse-data mapped dose of 150 ug
H56/H1+IC31). A. Grey points correspond to number of IFN-y secreting CD4+ T cells
measured over time by ELISPOT assay in human PBMC after receiving vaccination of
H56/H1+IC31 at day 0 and day 56. Median responses over time are marked by blue
triangles, the 75" percentile responses by an orange triangle and the 25 percentile
responses by a purple triangle. The model prediction (total cells) (parameters in Table 1)
is plotted against the median data (blue line). The orange and purple dashed lines are
the model prediction (total cells) of the 75" and 25" percentiles of the data, a result of
the variation in the estimated parameters (standard deviation fixed to 0.5 for all
parameters (Table 1)). In B. and C. Median (blue dashed), 75 (orange dots) and 25
(purple dots) of the model predicted human responses after mapping from the mouse
dose group model calibration (predicted parameters in Table 1) are shown.
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prediction (total cells) (parameters in Table S9) is plotted against the median data (blue
line). The orange and purple dashed lines are the model prediction (total cells) of the
75t and 25 percentiles of the data, a result of the variation in the estimated
parameters (standard deviation fixed to 0.5 for all parameters (Table S9)). In B. and C.
Median (blue dashed), 75" (orange dots) and 25 (purple dots) of the model predicted
human responses after mapping from the mouse dose group model calibration
(predicted parameters in Table S9).

Chapter 6

Schema depicting the steps required to incorporate vaccine Immunostimulation (IS)
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Chapter 1. Background and Thesis Overview

Vaccine Development

Vaccines are one of the most important public health discoveries and are the most cost-
efficient intervention known in medicine [1]. The physician Edward Jenner has been widely
recognised as the pioneer of vaccination when he made a breakthrough discovery against
smallpox, a deadly disease with a high fatality rate in infants and adults (80% and 20-60%,
respectively) in the 18™ century [2]. In 1798, he observed that dairymaids who were exposed
to cowpox, were protected from smallpox, and thus inoculation with cowpox pathogen could
protect against smallpox disease [3]. This was the first recorded vaccine and led to the
eradication of smallpox [2]. Since then vaccines have been developed and licensed for
multiple diseases [4]. Currently, both the pipeline and business rationale for new vaccines are

strong [5].

The vaccine development process follows a progression of phases to produce a safe and
effective vaccine which can take up to 10-15 years to complete [1]. After initial discovery,
vaccine immunogenicity and safety bounds are identified in animals (pre-clinical experiments)
before the vaccine can be given to humans in clinical trials for further safety and
immunogenicity testing (phases 1 and 2). Finally, large efficacy trials (phase 3) are conducted
to assess the vaccine performance in the chosen population and if successful, the vaccine will
be licensed [6]. Taking a vaccine from discovery to licensure can cost in the region of US$0.8
billion [7]; the later stage is the most expensive, with phase 3 trials costing in the region of
USS0.5 billion [1]. With these enormous costs, there is intense pressure to make well-
informed decisions at each stage of the development process; mistakes are expensive and
delays can waste precious time that could save lives. As such, it is vital that key developmental

decisions are thoroughly investigated.

Animal models
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Ideally, the most accurate information regarding vaccine performance would be gained if
vaccines were tested directly in humans; however, developers are constrained by clinical,
ethical, and financial concerns. As such, in the early stages of vaccine development animal
models are employed to help understand the safety, immunogenicity and efficacy (amongst
other aspects) of a vaccine before administration in humans [8, 9]. Animal models are
essential to the vaccine development process as developers are able to test a wide range of
developmental factors quickly at a relatively reduced cost. It is vital that a representative
animal model is found to enable translation of the findings in pre-clinical experiments to

clinical trials, as accurately as possible [10].

Nonhuman primates (NHP) are used to represent human vaccine responses as they are
physiologically and immunologically closer to humans than other animals [9, 11, 12]. In many
cases NHPs have been shown to be a valuable model for vaccine development, for example,
in the study of vaccines for HIV [13, 14], measles [15] and yellow fever/dengue [16]. Despite
their obvious value in vaccine development, the use of NHPs for vaccine research is expensive
and requires specialist expertise, care and laboratory facilities. Other larger animals have
proved successful animal models for vaccine development including pigs [17], cattle [18, 19]

and sheep [20].

Smaller animals (e.g. rodents) are regularly used in the earliest phases of development as they
are cheaper, easier to house and monitor. In-bred animals with varying susceptibility to
numerous diseases allow the testing of specific immunological pathways [21]. However,
unless genetically modified to be “humanised”, in many cases, smaller animals are less

predictive of human vaccine responses [22-24].

The key challenge is to accurately translate vaccine responses from these animal studies to
humans, as the relationships are still not fully characterized, and fraught with issues of not
only scale, but physiological differences between species. Many vaccines are still searching

for the most representative animal model to accelerate vaccine development [25, 26].
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Dose selection

A key consideration in developing a vaccine is establishing an optimal vaccine dose
concentration. Throughout the thesis, | refer primarily to vaccine dose concentration
(hereafter dose) to mean the amount of antigen in the vaccine that promotes the intended
immune response [21]. Additionally, vaccine delivery systems, i.e. adjuvants are considered a

separate component of the vaccine construct and not included in my definition of dose.

Once a representative animal model is identified, a key aim of preclinical experiments is to
establish a vaccine dose that is safe and a range of doses that are safe and likely to provide
the highest protection when tested in humans. In the case of a pre-exposure vaccine (a
vaccine given to prevent infection), the optimal vaccine dose will promote an immune
response in the host that is sufficient to protect against subsequent infection, whilst
remaining non-toxic. Further to this, from a cost-effectiveness perspective, the optimal dose

may be the lowest dose that achieves both of these criteria.

In current vaccine development, effective human doses are estimated based on pre-clinical
experiments in which developers are able to test large dose ranges over short timeframes.
Methods for finding optimal vaccine dose are purely empirical [27] and based on the long-
standing assumption that the relationship between dose and host response is saturating. This
assumes a minimum vaccine dose can be found that gives no host response, followed by a
window of vaccine doses where the selected immune response rapidly escalates then a clear
response plateau above a certain dose threshold [28, 29]. The goal of vaccine development
has then been to increase the dose until the response plateau is reached and assume the
highest, safe dose is optimal (with some margin of error to allow for host variation). Typically,
following toxicology tests to establish a safety bounds of the vaccine [30], a “low” dose in
mice or other small animals is chosen and increased by half log increments until the maximum
plateau in response is met. This dose range is then scaled up to be applied in larger animals
and humans using a proposed allometric dose scaling factor. Allometric scaling is the
guantifiable relationship between animal body size and characteristic, e.g. the physiological

relationship between animal size and metabolism or life span [31]. The allometric dose scaling
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factor is a value by which the developer believes the vaccine dose that is equivalent across
species (i.e. small to large animal to human. Once the starting dose has been established in
humans, it is then increased incrementally until a “maximal” safe dose, which is defined by

predetermined safety criteria, is achieved.

However, this “classic” saturating dose response curve is now being challenged by data from
newer vaccine platforms. Recent immune data for tuberculosis disease (TB) has highlighted

the shortcomings of this vaccine dose selection assumption.

Tuberculosis

The burden of tuberculosis disease

Tuberculosis disease (TB) caused by the bacteria Mycobacterium tuberculosis (Mtb.), remains
a substantial global health problem as one of the top 10 causes of death worldwide [32].
There were approximately 10.4 million new cases (11% of which were in people living with
HIV) and 1.4 million deaths from disease (with an additional 0.4 million deaths from TB disease
in people living with HIV) worldwide in 2015 [32]. In 2015, there were 480,000 new cases of
multi-drug resistant TB [32]. Countries with the highest incidence of TB (those that account
for 60% of new cases) include: India, Indonesia, China, Nigeria, Pakistan and South Africa

(Figure 1.1).

The Sustainable Development Goals but forward by the United Nations in 2015, have the goal
to “end TB epidemic by 2030” [33] and the WHO End TB Strategy aims for a 95% reduction in
TB deaths and 90% reduction in TB incidence (approximately 10 per 100,000 population)
compared to 2015 by 2035 [34]. TB incidence has declined worldwide by 1.5% between 2014
and 2015 [32], but to achieve the WHO targets, this rate of decline will have to increase to 4-

5%. Major new technologies will be required to achieve this goal [35].
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Figure 1.1 Estimated TB incidence rates by country, 2015 (WHO, 2016 TB report — permission to use granted 26/6/17 see appendix B for e-mail correspondence)
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Natural history of Mtb. infection

Once an infection with Mtb. has been established, approximately 10% of individuals will
progress straight onto active TB disease [36, 37]. In the classic paradigm of tuberculosis
disease, the remaining individuals will clear the infection or develop latent Mtb. infection
whereby no TB disease symptoms are observed and it is assumed their infection is in a
quiescent state [37]. In this case, progression from latency to active is possible and
approximately 3-10% of those latently infected will progress on to active TB disease in their
lifetime [36, 37]. This rate is considerably increased to >10% per life-year by factors such as

age and HIV infection that compromise the immune system [38].

TB immune response

Transmission of Mtb. occurs after an individual with active disease aerosolizes bacilli by
coughing, sneezing [39]. There is data to suggest a great amount of variability around the
infectiousness of an aerosol produced when an actively infected person coughs [40] and some
people with active disease may be more infectiousness than others [41]. TB disease can
disseminate to other organs within the host (extra-pulmonary TB disease) or remain in the

lungs (pulmonary TB disease), here | focus on the latter.

The innate response to Mtb. infection

The first line of defence against Mtb. infection is the innate immune response. The innate or

I”

“natural” immune system is present at birth and does not fundamentally change throughout
the host’s lifetime [42]. Additionally, the innate immune response is thought not to possess

memory to previous interaction with pathogens [43, 44].

In Mtb. infection, the primary innate response is respiratory mucosa located in the hosts
airways [45]. Respiratory mucosa acts to create a physical barrier that prevents invasion and
a first-line introduction of Mtb. to key innate immune response cells [46]. Evading this, the
bacilli will eventually establish in the lung alveoli [40]. Here, the bacilli is phagocytosed by

alveolar macrophages [47] and taken up by neutrophils [48] and antigen presenting dendritic
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cells [49]. Once internalized by the macrophage, the Mtb. bacilli are chemically destroyed via
a process of autophagy, which is activated by cytokines emitted by the adaptive response [50,

Ill

51]. Alternatively, macrophage apoptosis (or cell “suicide”) acts to destroy the internalized
bacilli, and halt further bacteria replication [52]. Simultaneously, antigen presenting cells,
dendritic cells process Mtb. and migrate to the draining lymph node for presentation to naive

T cells [53, 54]. Naive T cells then differentiation into the appropriate adaptive cell type.

The adaptive response to Mtb. infection

The adaptive immune system is comprised of B and T lymphocytes, whose role is to stimulate
(and activate) the innate immune system and store information on invading pathogens in
order to recognise and immobilize the pathogen more quickly if a repeat infection occurs. In
the case of infection with Mtb., an intracellular bacteria, it is assumed that a cellular (Th1)
defence is required. The adaptive immune cells widely acknowledged to be most associated
with Mtb. infection are Thl-phenotype CD4+ and CD8* T-cells [55-62] as research has shown
that both Major Histocompatibility Complex (MHC)-lI and MHC-II pathways can be stimulated
by Mtb. antigens. Once stimulated by an antigen-presenting cell, CD4+ T-cells secrete the
cytokines IFN-y, IL-12 and TNF-a, which are known to be essential to the immune response to
Mtb. infection by facilitating interactions between the innate and adaptive immune response
cells [63-68]. Cytotoxic CD8+ T cells are known to increase in the later stages of infection as
bacterial burden increases to kill infected cells [60], although the role of CD8+ T cells in Mtb.
infection is complex and still an area of research [69]. Regulation of these responses during
infection are also vital to avoid causing damage to host tissue, as such regulatory T cells
secreting cytokines such as IL-10 [70] control pro-inflammatory responses [71, 72]. There is
also emerging evidence to suggest the importance of Th17, y6- T cells, B-cells, MAIT and NK
cells in Mtb. infection [73-78].

Immunological memory

CD4+ T cells in early adaptive response to Mtb. infection are known as effector phenotype
[79, 80]. Once the pathogen has been cleared, effector cells “contract” by apoptosis or cell

death [4]. Here it is approximated that up to 95% of the cells die to avoid over-inflammation
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in the host [81, 82]. The remaining 5% of cells migrate to the lymph nodes and remain in the

III

hosts system as long-lived memory cells or “central” memory cells [83]. These cells have the
ability to rapidly proliferate when the same pathogen is encountered, providing protective
response to infection [44, 81, 84]. Studies have shown that in the case of Mtb. infection, a
large pool of central memory T cells is indicative of protection [79, 85, 86] and vaccination
against the disease should aim to induce these T cells above any other memory type [87, 88]

(see review in [89] of other memory cells).

Granuloma Formation

A key immune mechanism to slow the progression to active disease is the formation of the
granuloma in the lung. Following an activated adaptive immune response, macrophages,
neutrophils and lymphocyte cells gather in the lung to form a physical containment of Mtb.
bacilli [90]. Inside the granuloma, cells maintain a hypoxic environment encourage a state of
dormancy in the bacteria [37]. There is still unknown whether an individual will effectively
sterilize the bacteria as granuloma have been shown to be variable within the host [91].
However recent evidence has shown that a balance of pro- and anti-inflammatory cytokines
inside the granuloma is key to sterilization of the bacteria [92]. Factors such as age and HIV
infection that compromise the immune system can cause break down of the granuloma

construct [38].

Risk factors for Mitb. infection and progression to TB disease

Risk factors associated with increased risk of Mtb. infection are mainly external to the host
[93], for example, the infectiousness of a TB index case [94], contact patterns with infectious
individuals [95-97], residence (e.g. confined spaces such as prisons [98]) or behavioural risk

factors (e.g. visiting enclosed bars with little ventilation [99, 100]).

Risk factors of progression from Mtb. infection to TB disease are mainly driven by endogenous
host factors. Human Immunodeficiency virus (HIV) is a major risk factor for TB disease and
HIV-TB co-infection is highly prevalent in South Africa, a major contributor to global TB disease

incidence [32]. HIV infection suppresses the cell-mediated response believed to be important
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for prevention of TB disease progression [101]. For example, HIV infection disrupts the ability
for Mtb. infected phagocytic cells, such as macrophages to apoptosis providing the bacteria
more opportunity to replicate [102]. TB disease is also known to exacerbate HIV infection
[101]. Elimination of TB disease is heavily dependent on addressing this co-epidemic [32]. Co-
infection with other diseases also cause immunosuppression that can lead to TB disease. In
diabetes infection cell-mediated immune responses are depleted [103], including IFN-y
production [104] and impaired movement of innate cells such as neutrophils [105].
Additionally, in Helminth-TB coinfection, regulatory cytokines IL-10 are upregulated which

dampens immune response to protect against TB [106, 107].

There has been recent research into the importance of the monocyte (innate cells) to
lymphocyte (adaptive cells) (ML ratio) in the risk of TB disease. Recent evidence has shown
that the ratio of host monocyte to lymphocytes cells (ML ratio) was associated with risk of TB
disease [108-110]. “Naranbhai et. al. observed that in HIV positive, South African adults on
combination antiretroviral therapy, this relationship was nonlinear, i.e. low and high,
compared to moderate, ML ratios were associated with a higher risk of TB disease [108]. Little
investigation has been made into how ML ratio may affect mycobacterial-specific immune
responses and further insight into this relationship could potentially inform targeted TB

interventions.” (quoted text taken from my paper 1 [111]).

Age of an individual plays an important role in the likelihood of progression to disease. There
is potentially a non-linear relationship between age and risk of disease progression, where
infants (< 3 years) [112] and the elderly [113] are at a higher risk than adolescents and adults.
In both groups, the immune system is compromised leading to higher risk of TB disease
progression. In infants, increased risk is due to an immature immune system, which struggles
to contain Mtb. infection [112]. In the elderly, TB disease is more likely due to reactivation as

the immune system declines and fails to contain latent Mtb. infection [114].

Socio-economic and behavioural related factors can also increase the risk of disease
progression [93]. Country of residence is associated with a higher risk of TB disease, where
the poorest, developing countries experiencing the highest burden of TB [93, 115]. Risk

factors including poorly ventilated accommodation leading to indoor air pollution and
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crowding increase the likelihood of exposure to Mtb. Malnutrition [116], high alcohol intake
[117] and smoking [118, 119], which are also associated with socio-economic status, have
been shown to increase risk of TB disease progression. In the case of malnutrition risk of TB
disease progression is increased by between 6 to 10-fold [116], due to reduced cell-mediated
immunity [120, 121]. However, the authors acknowledge further research is required as TB
disease itself can lead to malnourishment [122, 123]. The risk of progression to active TB is
almost three times as high for those who consume above average alcohol [100]; this is due to
reduced production of the cytokine, TNF-a from T cells [124]. Smoking tobacco causes
damage to lung mucosa [125], a first line defence against Mtb. infection in the lung and

reduced CD4+ function due to nicotine intake [126].

Correlates of protection against TB disease

Despite extensive research into the immune response to Mtb. infection, there is currently no
definitive correlate of protection against TB disease [127]. A candidate for such a correlate is
IFN-y; a key cytokine produced by CD4+ and CD8* cells, which primarily acts to stimulate
phagocytic cells, such as macrophages, to clear intracellular pathogens [37, 55]. IFN-y has
been shown to be essential in the control of such pathogens as Leishmania major [128].
Cooper et al. [129] show that mice with a disrupted IFN-y gene, failed to control their infection
and succumbed to tuberculosis disease more frequently than that of a control group [129].
Similarly, Chakerian et al. [57] demonstrated that mice that could induce an early IFN-y
producing T-cell response were better protected than an alternative strain of mouse that
could not provoke such a response. These results are supported by many other animal studies
[64, 130, 131]. Human studies have demonstrated that individuals deficient in the IFN-y
receptor gene are more susceptible to infection with Mtb. [66, 132, 133]. For example,
Newport et al. show that defects in the IFN-y receptor gene (IFN-y R1) in four children with
severe Mtb. infection led to an absence of IFN-y receptors on innate cell surfaces.
Consequently, a failure in the up-regulation of a key inflammatory cytokine, TNF-a, by
macrophages usually provoked by IFN-y response [133]. As such, IFN-y has long been
regarded as one of the best measures of immune response against Mtb. infection [37, 64,
134]. Despite this, there is mixed evidence as to whether levels of IFN-y correlate with

protection against disease in humans [135, 136]. Most notably, a study by Kagina et al [136]
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on a group of infants in South Africa, showed that there was no difference in T-cell responses,
including the secretion of IFN-y between the TB cases and non-TB infected controls. However,
in research relating to the recent TB vaccine, MVA-85A, T cells secreting IFN-y were shown to
be associated with reduced risk of TB disease in infants, amongst other T cell activation

markers [137].

As such, IFN-y has long been regarded as one of the best measures of immune response
against Mtb. infection [37, 64, 134]. Despite this, there is mixed evidence as to whether levels
of IFN-y correlate with protection against disease in humans [135, 136]. A study by Kagina et
al [136] on a group of infants in South Africa, showed that there was no difference in T-cell
responses, including the secretion of IFN-y between the TB cases and non-TB infected
controls. However, in research relating to the recent TB vaccine, MVA-85A, T cells secreting
IFN-y were shown to be associated with reduced risk of TB disease in a large sample of infants
who were more intensively screened for LTBI and HIV infection, than in the study by Kagina
et. al. [137]. Surprisingly, Ag85A IgG was also found to be associated with reduced risk of TB
disease, indicating a potential role for antibodies in addition to IFN-y in protection from

disease [137].

It has been widely acknowledged in the TB community that increased IFN-y responses are
necessary but not sufficient to provide a protective response against TB disease [138].
Polyfunctionality of T cells (i.e. secreting IFN-y, TNF-a and IL-2) may be a stronger correlate of
protection, as has been shown for other pathogens [139]. In addition, as both antibodies and
other T-cell populations may contribute to the protective immune response against Mtb.
infection, such as CD8+ T-cells and Natural Killer (NK) cells [59, 62, 74, 140, 141], it is likely
that a correlate of protection for TB is a complex network of innate, humoral and Thl immune
responses [138, 142, 143]. Not only cell types, but the balance of T cell phenotypes which,
through measurement of T cell differentiation markers are thought to be indicative of
bacterial load within the host [144, 145]. Host factors may also play a vital role in correlate
discovery, including age, biology and HIV status, etc. [138]. Finding a correlate of protection
for TB disease is a priority, and is especially important for TB vaccine development [142].
Hannekom et al. [127] suggest IFN-y and other cytokines should be a reading of “vaccine take”

until a comprehensive surrogate of protection is established. As such, IFN-y secreting T cells
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(measured by ELISPOT assay) and IFN-y levels (measured by ELISA assay) are the markers of
choice for the majority of TB immunological studies and the association of IFN-y with reduced
risk of TB disease in BCG immunised South African infants supports the continued use of IFN-

v as a marker of vaccine take [146, 147].

TB vaccines

The WHO Stop TB strategy has outlined the goal of 90% reduction in TB incidence
(approximately 10 per 100,000 population) compared to 2015 by 2035 [34]. To reach this
goal, more effective employment of current treatments and development of new TB control
technology is paramount [32, 148, 149]. A recent systematic review by Harris et. al. on studies
that assessed the impact of a new TB vaccine on TB disease using epidemiological
mathematical models found the incidence rate ratio (IRR) of a new pre-exposure vaccine 25
years after vaccination was approximately 80% if given to all ages [150, 151]. The IRR for a
pre-exposure vaccine given only to neonates 40 years after vaccination was approximately
33% [150, 152]. Similar modelling studies also showed the IRR of a post-exposure vaccine 25-
35 years after vaccination given to all ages was approximately 80-85% [148, 151] and given
only to neonates was 25-39% [148, 151]. A new vaccine could therefore be key to meeting

the 2035 targets [153, 154].

Existing TB vaccine: Bacillus Calmette—Guérin (BCG)

There is currently only one licensed TB vaccine, Bacillus Calmette—Guérin (BCG), a live
attenuated vaccine, which has been in use for nearly 100 years. BCG is a strain of
Mycobacterium bovis that went through more than 230 round of attenuation (passage of the
organism in culture) when developed by Albert Calmette and Camille Guérin in 1908 [155].
Since then, attenuation of BCG continued and was distributed globally, resulting in more than
16 strains of BCG worldwide [156]. So far, BCG has been administered over 4 billion times
[153] and shows strong efficacy against tuberculous meningitis in children [157]. BCG efficacy
against adult pulmonary TB is variable [87, 158]. Studies have shown BCG vaccine to exhibit
high levels of protection from pulmonary TB, with efficacy as high as 80% [159-161], however

in other studies it showed little to no protection at all [162-164].

32



The reason as to exactly why BCG exhibits such variable efficacy is still a prominent question
in TB vaccine research. It has been shown that one of the major factors contributing to higher
efficacy was the latitude at which the trial was conducted [165, 166]. One hypothesis to
explain this trend lies in the observation that latitude is associated with varying levels of
exposure to non-tuberculous mycobacteria (NTM) [167] and it is thought that lower levels of
exposure occur in more Northern regions [168]. Regular exposure to NTM is presumed to
“mask” the effects of BCG vaccination against TB disease by priming the immune system and
thus introducing a level of protection for the host [169]. Age at vaccination has also been
suggested as a factor influencing BCG efficacy [166] . As a possible explanation for this,
Ottenhoff et al. suggest that vaccination of infants/neonates could be detrimental to the
immune memory required for protection by BCG as very early immune responses are not as
fully developed as adolescents [153]. Immunosenescence can also affect the efficacy of BCG;
two of the most common forms are age and infections that target the immune system, such
as HIV [170-172]. Other factors such as BCG strain have been suggested to influence to
efficacy of BCG [173].

Despite widespread use of BCG, tuberculosis continues to be the leading infectious disease

killer globally [174] as such, a new TB vaccine is required [175].

New TB vaccines

There are currently 13 candidate TB vaccines in development, with the majority in phase 2
and 3 (Figure 1.2) [32]. As outlined above, the Th1l type response is important in inducing a
protective response to Mtb. challenge in animals [129] and in observational human genetic
studies [66, 133]. The majority of new TB vaccines aim to induce a strong Thl immune
response, predominantly CD4+ T cell mediated [35, 88, 155]. Only those candidates that are
safer, more immunogenic and provide better efficacy then BCG are likely to proceed in the

vaccine development process [58, 153].

TB vaccines can be classified into three types [35]: whole cell vaccine, viral vectored subunit

vaccine and adjuvant protein subunit vaccine. New candidate TB vaccines can also be
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categorised into two strategies: to replace BCG or to boost on previous BCG immune
responses [176]. A booster vaccine works by building upon the immunity induced by previous
vaccination [177]. A BCG booster vaccine would be administered following BCG vaccination
either during infancy or adolescence [174]. In the current pipeline, most of the whole cell
vaccines are designed to replace BCG and the subunit vaccines are predominantly used as

BCG boosters.

A brief description of each vaccine candidate can be found in Appendix B.
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Figure 1.2 2015 developmental pipeline for new TB vaccines by Aeras, TB vaccine developers (permission to use granted 15/6/17 see appendix B for e-mail

correspondence)
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H-series

In this thesis, | use data on the H-series subunit, BCG booster vaccines. These vaccines are
currently in Phase 2 of development (Figure 1.2). The H-series vaccines are protein adjuvant
vaccines developed by Statens Serum Institut (SSI, Denmark), Aeras and Sanofi Pasteur. Three
subunit protein vaccines from the H-series, designed to boost BCG vaccination, are currently
in the vaccine development pipeline: Hybrid-1 (H1), HyVac-4 (H4) and Hybrid-56 (H56). H1 is
comprised of the antigens Ag85b and ESAT-6 and H56 is comprised of Ag85b, ESAT-6 and
Rv2660c (see Table B.1 in Appendix B). To address the complication of misdiagnosis of TB
disease, due to the reliance of an immune response to ESAT-6 in current TB disease diagnostic
tools [178], the vaccine H4 was developed, comprised of antigens Ag85B and TB10.4. H4, H1
and H56 have been adjuvanted with, IC31 [179, 180](Table B.1, Appendix B) has been used in
the majority of preclinical and clinical trials with the H-series vaccines, however animal early
experimentation also utilised proprietary liposomal adjuvant CAFO1 [181, 182]. As | use data
on H-series vaccines in this thesis, a more detailed outline of the pre-clinical and clinical

performance can be found below.

Developing new TB vaccines

To test the immunogenicity of new TB vaccines, IFN-y is commonly chosen as an indicator of
the induction of vaccine mediated antigen specificimmune response, although as mentioned,
on its own it is necessary but not sufficient for a protective response against TB disease [138].
ELISA assays are used to measure IFN-y concentrations in whole blood by stimulating cells
using a specific antigen [183]. To measure the number of cells producing IFN-y in peripheral
blood mononuclear cells (PBMCs), an enzyme-linked immunosorbent spot (ELISPOT) assay is
commonly used [184]. Flow cytometric analysis is also used to stain cells for multiple cytokine
secretion as well as determining cell surface markers which would indicate CD4+ or CD8 T cell
types and effector or memory cell type [58, 83]. Due to the additional complexity involved in
flow cytometry, the assay is more expensive than ELISA or ELISPOT so the latter are more

frequently used.
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Just as with many vaccines, animal models are exploited in an effort to aid the development
of TB vaccines. Due to the complex natural history of TB disease, multiple animal models have
been developed with the aim of representing the different stages of disease progression as
well as different settings or populations (infant versus adolescent, latently TB infected versus

Mtb. naive) [185].

Pre-clinical TB vaccine development is predominantly conducted in the mouse and the
availability of inbred mouse strains enables reproducible and direct comparison between
animals and across laboratories [185]. Comparisons of mouse and human immune responses
have been made extensively due to the large body of data that exists in both species and is
an active area of research [185-191]. The infection model in mice is thought to reflect the
early stages of human infection (preceding granuloma formation) as the commonly used
mouse strains do not make granulomas [188]. While there are established differences in
mouse and human immunology [23], the fundamental mechanisms of cytokine responses
secreted by Th1 T cells are thought to be similar [189]. However, broadly speaking, the ability
of mice to form lesions (granuloma) after Mtb. infection, that reflect the pathology in humans

is lacking [190] and variable amongst mouse strains [191].

Guinea pigs are also used to model TB disease as post-infection. Guinea pigs experience
heightened inflammatory responses leading to lesions in the lung, which reflects the
pathology observed in human Mtb. infection [192]. As a result of the similarities between
guinea pig and human Mtb. response, it is a promising animal model to use once a vaccine

has been “screened” in the mouse model [185].

The nonhuman primate (NHP) model is, arguably, the most appropriate TB animal model to
represent human Mtb. infection and disease pathology as they are genetically and
physiologically more like humans than small animals [193, 194]. This means direct comparison
of NHP vaccination studies (immunology and efficacy) can be applied to clinical trials [185].
PET-CT imaging in macaques has provided valuable insight into the dynamics of TB lesions
[91]. “Historically, rhesus (Macaca mulatta) [195] and cynomolgus (Macaca fascicularis) [196]
macaque species have been used as the primary NHP-model in TB vaccine research [197-200].

Both species have been shown to respond to, and be partially protected from, TB by BCG
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vaccination [147, 201-204]; however, it has been shown that the same experimental
conditions (infection with Mycobacterium tuberculosis (Mtb) following vaccination or vaccine
immune response) may lead to divergent outcomes between the two species [193, 205-207].
Furthermore, the colony (country of origin) of macaque, even within the same species, has
been shown to affect the level of protection to infection and response after vaccination [208].
For example, differing levels of protection between Chinese and Mauritian cynomolgus
macaques have been observed, whereby Mauritian cynomolgus macaques developed end
stage progressive TB in 7 weeks, while the Chinese cynomolgus macaques remained well past
the end of the study (12 weeks)[209]. Additionally, the cost and expertise required to
facilitate an NHP study far exceeds that of any small animal studies. Despite this, in 2014, the
Bill and Melinda Gates Foundation adopted a new strategy for the up-selection of new TB
vaccine candidates for clinical testing selecting vaccines on immune response and challenge

results in NHPs [210].” (quoted text taken from my paper 2 [200])

After pre-clinical evaluation, TB vaccines are progressed into clinical stages to establish
efficacy in humans. Due to a lack of correlate of protection, this requires large efficacy trials
that must be carried out in high incidence settings and as TB is a slow progressing disease,
large numbers and long follow up times are required [88]. Additionally, due to differing
immunogenicity and levels of susceptibility, there are three distinct populations to target with
a new TB vaccine [88]: infants, adolescents and HIV infected [38, 175]. In the latter two, latent
Mtb. infection may be an added complication that new TB vaccines will have to
accommodate. Depending on the BCG policy of the country where the trial is held, it is likely
that participants in efficacy trials may already have BCG vaccination, potentially at birth. If
the vaccine under consideration is a BCG booster then measures may have to be taken to
prime participants with BCG before enrolment (with sufficient time to build an adequate
immune response). To establish if a new TB vaccine is an improvement on BCG, BCG

vaccination may be included in vaccine trials as a control arm [211, 212].

Recent TB vaccine clinical trials

To date, there has only been one TB vaccine that has progressed through to efficacy trials

with published results. The first efficacy trial for MVA85A, developed at Oxford university,
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was in conducted in 2,794 BCG-vaccinated infants in South Africa [213]. The purpose of the
trial was, primarily, to investigate safety of the vaccine, followed by efficacy against TB disease
and infection [158]. None of the serious adverse events were associated with the vaccine and
elevated immune responses were recorded [213]. However, the efficacy of the vaccine
against TB disease (measured using microbiological and clinical criteria) was calculated at
17.3% (95% Cl: -31.9% to 48.2%) and the efficacy of the vaccine for protection against Mtb.
infection (measured using the Quantiferon-TB Gold assay) was -3.8% (95% Cl: -28.1% to
15.9%) suggesting this vaccine was not efficacious in this population [213]. The investigators
of the trial speculated that immature immune systems and low immune responses to
MVAS85A may have affected the MVAS85A efficacy in the infants [213]. It is also speculated
that the high incidence rates of TB in South Africa may be a challenge for any TB vaccine to
protect the population, especially those with underdeveloped immune systems [158]. Despite
this, this study demonstrated that a large TB vaccine efficacy trial could be successfully
conducted that produced meaningful results; a first for the TB vaccine community. A further
MVABSSA efficacy trial was conducted in adults with HIV infection in South Africa and Senegal,
although following the infant result the study was down-graded to a safety study and had
insufficient statistical power to assess vaccine efficacy [214]. Similar results were found in this
trial: the vaccine was safe, however there was no efficacy against Mtb. infection (efficacy of
11.7% (95% Cl: —41.3% to 44.9%)) or against TB disease (efficacy of 32.8% (95% Cl: —111.5%
t0 80.3%)) [214]. This study marks an important breakthrough in establishing a safe TB vaccine
in an HIV infected population [214].

The lack of MVAS8SA efficacy in the infant trial (efficacy wasn’t tested in the HIV trial) was
potentially attributed to inadequate understanding of the necessary immune response
needed for protection against TB disease [214]; new TB vaccines may have to shift focus to
induce wider immune responses including non-classical T cells, innate and humoral immunity
[35, 175]. Additionally, it has been suggested that for future TB vaccines to be successful, a
broader range of Mtb. antigens maybe required [35, 215]. Data from the MVAS85A vaccine
trials have helped in moving forward the correlate of protection work [137] and new TB
vaccines [216]. As more TB vaccines progress through efficacy trials (M72+AS01E, VPM1002
and Vaccae are currently in phase 2b and 3 efficacy trials (Figure 1.2, and Appendix B)) more

data on the responses required for protection against TB disease will become available.
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H-series TB vaccine performance and dose escalation

In animal studies, HyVac-4 (H4) adjuvanted with IC31 (H4+IC31) administered as a BCG boost,
was shown to be safe, immunogenic and protective when compared to BCG alone [217, 218].
Similarly, when administered with the CAFO1 adjuvant, the vaccine was protective in mice as
a pre-exposure vaccine [219, 220]. Following this pre-clinical investigation, a phase | clinical
trial in South Africa, where a two vaccination regimen, given two months apart, of H4+IC31
was administered in BCG vaccinated healthy participants in varying antigen dose was
conducted [221]. Adverse events to the vaccine were minimal and multifunctional (IFN-y,
TNF-a and IL-2 or TNF-a and IL-2 producing) CD4+ T cell expansion was long lasting. A similar
result was found when a two vaccination regimen, given two months apart, of H4+IC31 was
administered in BCG vaccinated healthy participants in two Scandinavian countries in a phase
1 trial [222]. The trial escalated both antigen and adjuvant dose. Similarly, small animal
studies showed that the vaccination with Hybrid-1 (H1) adjuvanted with CAF01 (H1+CAFO01)
induced key polyfunctional immune responses that were long lasting [223, 224] and
protection against challenge [224, 225]. Nonhuman primate (NHP) studies with H1+IC31 also
showed reduced bacteria numbers in the lungs and lung pathology after challenge with Mtb.
[226]. Phase | clinical studies showed that in BCG-naive, BCG-vaccinated participants and
latently TB infected participants, a two vaccination regimen, given two months apart, of
H1+IC31 promotes strong and long lasting T cell (measured by IFN-y secreting CD4+ + T cells)
response [227, 228]. The same strong immune response was shown when a two vaccination
regimen, given two months apart, of H1 was administered with CAFO1 adjuvant [181]. The
effect of HIV infection on T cell responses to H1+IC31 were investigated and showed mixed
results [229, 230]. The effects of vaccination with Hybrid-56 (H56) adjuvanted with IC31
(H56+IC31) in BCG-vaccinated NHP’s was effective containment of infection and reduced rate
of clinical disease. Additionally, strong responses to ESAT-6 and Rv2660c were recorded in
NHPs [231]. Of note, macaques in this study who received BCG and H56+IC31 did not
reactivate latent infection after anti-TNF antibody was administered. H56+IC31 was
administered in a first-in-man study where three vaccinations, two months apart, were given

to latently infected and healthy participants [232]. Results showed that both groups (latently
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infected and healthy participants) expressed Thl CD4+ T cells. The frequency of T cell

responses following vaccination were higher in latently infected than in healthy participants.

The dose escalation studies of the H-series vaccines are as follows. Initial dose response
testing with the H4+IC31 candidate revealed Th1l immunogenicity as low as 0.005 ug of the
H4 antigen, the highest responses were observed at doses of 0.05 to 1 ug [217]. Here, the
adjuvant dose was kept constant. The best protection in a challenge model in mice was
observed with the lowest dose tested, 0.5 ug H4 [217]. The protection and measured
immunogenicity then decreased at 5 g and was minimal at 15 pg. A similar dose response
was shown in an accompanying guinea pig challenge study [217]. However, in further animal
studies, 20 pg of H4 + IC31 was chosen for a pivotal guinea pig study [218], 5 ug chosen for
studies of murine post-TB intervention [219, 220, 233], and 100 ug used in cynomolgus
challenge studies [226]. A potentially important cynomolgus challenge study used H56 + IC31
at the likely high dose of 50 pg, and whether the results may have been improved with a lower
dose [231] is unknown. Following this pre-clinical investigation, a “classic” method was
employed to the clinical environment. The current hypothesis in TB protein vaccine
developers is that the allometric dose scaling factor of dose between small animals and
humans is in the range of one to ten (personal communication, Thomas Evans MD), and for

H56+IC31 a factor of ten has been assumed from mice to human and NHP [230, 234, 235].

However, the lowest dose tested in a human was 5 g, despite evidence of protection at 0.1
ug in the guinea pig (where the scaling factor between small animal and human is believed to
be less than 50 — see above). The dose escalation went from 5 pg to 15, 50, and 150 ug of the
H4 + 1C31 vaccine in two trials performed in Scandinavia [222]. In those studies, there was no
difference in response at the 5 and 15 pg doses, the immune response began to drop at 50
pg and was markedly lessened by 150 ug. This study was then repeated in a BCG vaccinated,
non-latently infected tuberculosis endemic population in South Africa [221] and the same
dose response pattern was seen. 15 and 50 ug alone were studied in small numbers in the
First in Man (FIM) trial of the H56 + IC31 vaccine [232], 50 ug was chosen as a single dose in
the FIM study of H1 + CAFO1 [227, 228] and for the H1 + IC31 studies [229, 230]. To note,

different dose-response curves may been observed between the H-series vaccine constructs,
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however H56 and H1 adjuvanted with IC31, result in similar immunological profiles at varying

doses [236].

Potential issues with current vaccine dose-finding methods

H-series vaccine development has benefitted from robust dose escalation testing. However,
the dose ranging data in the animals suggested that the lower doses were the most (Th1)
immunogenic compared to higher doses, but a comparatively high dose range was chosen to
be tested in humans. Thus, despite numerous human published studies on the H-series

vaccines, the lower end of the dose response curve in man has not been established.

These unconventional dose response curves present important evidence that long-standing
vaccine development assumptions (that the dose response curve is saturating) are flawed and
as such, suboptimal doses could be progressing to later clinical stages. Similar instances of
non-saturating dose response curves have also been seen in HIV [237], malaria [238] and
Influenza [239] vaccines. As an added complication, vaccine responses may differ across
human subpopulation (e.g. all current TB vaccine clinical trials are stratified by HIV status
[32]), highlighting the possibility that dose response curves may differ within the human

population [240].

Preclinical dose data has potential as an effective predictive tool for human dose decision
making. However, in TB vaccine development, there is a wide range of scaling factors between
species; as previously mentioned, a scaling factor is assumed to be ten has been used for H56
from mice to human and NHP [230, 234, 235], ten times from mouse to human for BCG [241,
242], 100 times for MVA 85A [213, 241] and 0.5 for VPM1002 [241, 243] (recombinant BCG
vaccine, currently in phase 2, see vaccine pipeline Figure 1.2). There is little evidence as to
why these differ so widely. The yellow fever vaccine presents another example of mistakes in
dose decision making. In this case, due to vaccine shortages, yellow fever vaccine dose
fractionation studies were carried out and a lower dose was found to be as effective

(measured using a known correlate) as the current higher licensed dose [244-246].
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These errors in vaccine dose decision making may be occurring partly because translating
vaccine responses from animal studies to humans is challenging and a representative animal
model is required. The relationships between species are still not fully characterized; there
are issues of not only scale, but physiological differences. Additionally, within human
differences in vaccine response may require multiple animal models to develop a vaccine for
a broad population. To my knowledge, no formal assessment of vaccine allometric scaling has

been undertaken for vaccine development.

It is clear that mistakes are being made in vaccine development concerned with dose-finding.
The consequences of which could mean wasted resources (e.g. animals), money and
potentially, lives. Surprisingly, the definitive text on vaccine development does not include
strategies for dose finding [27] and there is limited regulatory guidance on vaccine dose-

finding methodologies from licensing organizations such as the FDA [147].

Model-based drug development: Pharmacokinetic/Pharmacodynamic Modelling

Drug development faces similar pressures to those experienced in vaccine development;
translating evidence from pre-clinical experiments and finding the optimal drug dose is
paramount for effective, safe treatment. Yet, the drug development decision-making process
is far more advanced than in vaccine development, mostly due the use of systematic,

guantitative methods for drug optimization.

Model-based drug development (MBDD) combines data on drug responses and biological
mechanism through mathematical modelling to quantify within-host drug effects [247] and
has become an essential tool in developing safe drugs. The main goals of MBDD are to use
mathematical based simulation to; focus in on promising candidates and develop the right
dose(s) early on, decrease probability of failed or useless trials, reduce animal resources in
developmental phases, decrease time to market and avoid post-marketing changes in dose

or regimen or withdrawals [248].

MBDD is commonly split in to two components:
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1. Pharmacokinetics (PK): What the body does to the drug, i.e. the concentration of drug
in the body (as it is absorbed and eliminated) over time [249],

2. Pharmacodynamics (PD): What the drug does to the body, i.e. how the “effect” of the
drug (e.g. in the blood) changes with the concentration of the drug in the body [249].

These are collectively known as pharmacometrics or PK/PD modelling [250].

Finding an appropriate model to represent the drug course can aid in development of safe
and optimal drug dose and regimen. PK/PD modelling commonly combines compartmental
ordinary differential equation models to represent drug dynamics within the host (PK) and a
continuous nonlinear relationship between drug concertation and clinical effect (PD). In PK
modelling, ordinary differential equations are used to describe the movement of drug
concentration between model compartments which represents biological region of the host.
The parameters of the model dictate the rate of drug movement. These models can either
represent defined organs (e.g. the stomach or liver) known to be relevant to the drug
(physiological-based models) or more abstract in that they do not represent a specific part of
the body [250]. The integration of PK and PD models provides a vital link between drug

dynamics and the desired effect. See Figures B.1, B.2 for a simple PK example.

Population characteristics such as age, weight or renal function can affect drug response. In
order to find safe drugs for a target population, it is essential MBDD can incorporate these
differences [251]. Population PK/PD modelling describes population typical response
dynamics and how those dynamics vary across a population to gain information on

appropriate drug dose or regimen for a given sub-population [250, 252].

While it is feasible to assume the biological mechanisms in response to drug (i.e. the model)
do not change across a heterogeneous population, the magnitude of key mechanistic
parameters might. Hence, the aim of population PK/PD modelling is to establish differences
in model parameters associated with population covariates. To achieve this, models are
calibrated to the response data and the parameters and parameter variation, estimated
which requires a robust statistical framework. Nonlinear Mixed Effects Modelling is
commonly used in pharmacometric modelling as it enables simultaneous estimation of both

the population average responses, the variation in responses across individuals in the
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population and the effect of population covariates on this variation [252]. Due to the
nonlinearity of the model-predicted response dynamics advanced computational software
are required to execute parameter estimation. These methods are outlined in more detail in

the proposed methods section and appendix B.

MBDD has been in use for approximately 40/50 years. Drawing upon existing modelling
practises in fields such as economics, meteorology and engineering [251], modelling to inform
drug trials was first recognised in the late 1990’s [253]. Pivotal work by Sheiner et al. to
encourage “learning and confirming” [254] using mathematical models in clinical drug trials
meant MBDD came to the forefront as an innovative and efficient tool to aid drug
development. MBDD soon began to filter into the drug development community, featuring in
influential pharmacological conferences [255] industry [256-258] and gained support from
regulatory agencies such as the Food and Drug Administration (FDA) [259, 260]. Currently
there are many consortiums and work groups dedicated to MBDD (e.g. Modelling and
Simulation Working Group (MSWG) [261], International Society of Pharmacovigilance (ISOP))
and the large pharmaceutical industry has decades of effort applying quantitative analysis to

improve drug dose and regimen selection for small molecule drugs.

The main applications of PK/PD modelling to drug development are in the following areas.

Translation of drug dynamics between species and “first-in-man” dose selection

Animal experiments are first conducted to understand the concentration and toxicology of
the active drug components in the relevant regions of the body. This data is used to
parameterise PK/PD models and establish differences in response dynamics by dose or
regimen. Here, model simulation can be used optimise the design of animal experiments to
gain the most information with the least use of resources, thus improving the efficiency of
pre-clinical testing phase. By applying allometric scaling (based on information on
physiological scaling due to body mass, variation in metabolic pathway across species or
major anatomical differences [262-264]), of the model parameters an estimation of the doses
needed to obtain similar exposure in humans is then derived. For examples see [265, 266].

Allometric scaling is also used within species, for example in humans allometry is applied to
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common PK parameters such as volume of distribution, absorption and clearance of the drug

by the host’s weight, (e.g. for the drug Isoniazid e.g.[267]).

Clinical Trial Simulation

Model-based trial simulation is an important tool in drug development to explore drug effects
without empirical testing. In drug trials, simulation studies can help determine key aspects
such as the bounds of the dose response curve in a dose escalation simulation [268],
important for proof-of-concept studies and regimen of drug administration. In the later stages
of development, confirmatory studies can be fully simulated [256, 269]. As more data
becomes available, PK/PD models can be used iteratively to refine these simulation estimates,
aiding in a reduction of the total number of subjects required to establish the desired
confidence intervals, thus minimizing potential harm. As an example, modelling was able to
systematically assess the different doses and protocols to derive optimal values for TB drug

treatments, which previously had never been formally compared [270-272].

Identifying important subpopulations and personalised medicine

Identification of which population covariates cause substantial variability in model
parameters can help drug developers to adapt dose or dose regimen to maintain safe,
effective responses in those populations [251, 273-275]. Personalised medicine is an
extension to this. Personalised medicine aims to provide individuals with drug dose and
regimen optimised based on their characteristics [276]. It is thought, by personalizing
medicine to fit an individual would increase adherence rates as the drug is more likely to be
safe and effective [277]. Predictions from large scale individual-based PK/PD models have

been shown to improve treatment in individual cancer patients [278, 279].

In summary, model based drug development is used to explore drug host interaction; test
and confirm ranges of safe drug doses by directly translating information from animal
experiments to first-in-human trials; modify regimens to specific subpopulations of
individuals and evaluate appropriate study design to reduce numbers of required participants

and thus exposure to the drug.
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Model-based drug development (MBDD) methods

Statistical curve models

Statistical curves are regularly used in MBDD to describe drug simple pharmacokinetics [280]
and pharmacodynamics [281] (e.g. Emax equations). These parametric, analytical models
have the benefit of being potentially simple (minimal parameters). However, these curves
focus entirely on descripting the shape of the response data over time with no consideration
of underlying biological mechanism. This presents limitations if the aim is to make inferences

on the differences in response biology by subpopulation, for example.

Mechanistic models

The second method is to use a mechanistic compartmental differential equation model to
represent drug pharmacokinetics [250]. This approach provides biological, mechanistic
understanding of the longitudinal response to drug exposure by using model compartments
and differential equations to describe the change in response over time [282]. The method
seeks to establish how population covariates effects the model parameters and the potential
biological reasons for this. More complex drug responses could be incorporated in a network
mechanistic model (with separate models to represent different organs or cells, e.g.).
Integrating complex interdependent responses would be less intuitive with a statistical curve
model. However, the complexity involved in representation of biological mechanism could
potentially be a disadvantage. A mechanistic model may require additional model

parameters (and thus, degrees of freedom) compared to the simpler statistical curve model.

Nonlinear Mixed Effects Modelling

To calibrate mathematical models representing PK and PD of a drug course, the method of

nonlinear mixed effects modelling (NLMEM) is regularly employed [283]. NLMEM is used to

estimate the parameters of mathematical models designed to represent the drug dynamics

at individual and (sub)population level’. Quantifying the variance of drug dynamics in a
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population is essential to avoid either sub-therapeutic or toxic exposure to the drug to those

individuals with widely varying responses.

A brief description of the aims of NLMEM are outlined here, methods and implementation of
NLMEM employed in this thesis are outlined in appendix B. For a more general and technically

in-depth explanation of NLMEM and its implementation see [250, 252, 280, 284].

Nonlinear Mixed Effects Modelling (NLMEM) aims

Nonlinear Mixed Effects Modelling (NLMEM) is a statistical framework which combines a
mathematical or statistical model to describe the longitudinal response data over time and
statistical models to capture variation in the mathematical model parameters due to multiple
individual responses in a population. Using NLMEM inferences can be made about the
variation in response across a population when population covariate analysis is conducted

[284, 285].

The main aims of NLMEM are [252]:

1. To estimate the parameters of the mathematical model that describe the population
typical response dynamics over time

2. Estimate the variation around the population average dynamics as a result of
individuals in the population (inter-individual variation) as thus estimate the individual
responses

3. Establish residual variation between model prediction and response data (intra-
individual variation)

4. Assess the effect of population covariates on the population typical dynamics
(mathematical model parameters) and associated variation (statistical model

parameters)

Due to the nested levels of variation (intra-individual and inter-individual variation), NLMEM
is also known as hierarchical nonlinear modelling or nested hierarchical nonlinear modelling
[284]. Nonlinear refers to the nonlinearity in the relationship of the host response to the drug

(or vaccine), represented by the mathematical model. Mould et. al. give the following
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definition of fixed and random-effects: “‘Mixed-effects’ refers to the [model]
parameterization: parameters that do not vary across individuals are referred to as ‘fixed

mnm

effects’, parameters that vary across individuals are called ‘random effects.” The term ‘mixed

effects’ refers to the combination of fixed and random effects in the NLMEM framework.

NLMEM employs maximum likelihood based methods to estimate the population and
individual parameters; further details on these methods and implementation in available

software are outlined in Appendix B.

Thesis Rationale: Model-based vaccine development — Vaccine

Immunostimulation/Immunodynamic modelling

There are valid reasons as to why current empirical vaccine development methods might be
leading to mistakes in dose decision making. For example, thorough evaluation of the dose-
dependent immune response dynamics is not currently undertaken in current vaccine
development and as a result, is not fully understood. This is leading to unexpected dose
response relationships such as the H-series TB vaccine highlighted above, essentially being
missed. These errors in vaccine dose decision making may be occurring partly because
translating vaccine responses from animal studies to humans is challenging as response
dynamics are not fully understood and a tool to translate responses from a representative
animal model is required. More systematic approaches to vaccine development should be

used to avoid these mistakes.

Vaccine Immunostimulation/Immunodynamic modelling

| intend to develop mechanistic mathematical models to represent vaccine immune response
dynamics, translate vaccine responses between the animal and human to make better

predictions for human vaccine dosage.

To reflect the similarities in my methods to that of PK/PD modelling, | introduce this type of
modelling as vaccine Immunostimulation/Immunodynamic (1S/ID) modelling. Analogous to

population PK/PD modelling, population vaccine 1S/ID modelling uses mathematical models
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in a statistical framework to explore population typical vaccine responses and the variation in
response due to individuals. Vaccine IS/ID models describe the immune response stimulation
(IS) that produce the measured immune response dynamics (ID) following vaccination.
Mathematical models representing the immune response to infection and vaccination, that
could be considered suitable IS/ID models exist (e.g. [286, 287] and see literature review for
TB specific models), but as far as | am aware, no such models have been incorporated into a

PK/PD style framework to inform vaccine species translation and dose prediction.

To demonstrate the potential utility of IS/ID methods, | apply them to IFN-y immunogenicity
data from the H-series TB vaccine. As discussed, these vaccines are currently in the pipeline
and previous mistakes may have been made in dosing, therefore the implementation of
mathematical modelling to TB vaccine dosing data could have an immediate impact on

further development.

TB immune response mathematical modelling: literature review

To investigate the current work on TB immune response modelling, a literature review in the
Pubmed database was conducted on the topic. | did not confine the search to “vaccine
immune response to TB” as this search yielded limited results. Instead, | used the search
terms “Tuberculosis” or “TB” and “mathematical model*” and “immun*” in all fields. The
flowchart in Figure 1.3 depicts the literature review process in which 30 publications were
found, 5 of which were excluded for reasons outlined in Figure 1.3, leaving 25 publications

for the review.
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30 publications met search
criteria “Tuberculosis” or “TB”
and “mathematical model*”
and “immun*” in Pubmed
search

5 publications were excluded:

1. HIV model where TB is mentioned, but no explicit TB model
(publication number 14 in Table B.4)

2. Population level TB model (publication number 20 in Table B.4)

3. Review on diseases due to poverty, not specifically TB and no
new models (publication number 26 in Table B.4)

4. Summary of 3 population level TB models (publication number
28 in Table B.3)

5. My paper 2 of thesis (publication number 30 in Table B.4)

4

A 4
25 publications

viewed in full and
included in review

Figure 1.3 Flowchart of the literature review process using the search terms

Table B.4 in appendix B outlines the aims, model structure, interventions (e.g. initiation of TB

drug treatment) and main findings.

Aims of previous TB immune response modelling publications

For 18/25 publications, the primary aim was to build models to simulate an immune response
to Mtb. infection [53, 60, 288-303]. In 11 of these, the secondary aims were to detect the
parameters within the model that influence the state of TB disease (latent or active) by
sensitivity analysis or virtual experiments [53, 60, 288-296]. Five of these publications (the
majority authored by Marino and Kirschner) focussed specifically on developing models of
the lung and lymph node then extending these models to investigate specific elements of the
immune response and their influence on disease state [53, 291, 292, 296, 297]. A further five
publications focussed on the immune response in a granuloma formation and the conditions
in which Mtb. infection can be successfully contained [297-301]. An early work by Denise
Kirschner focussed on the interplay of immune response between HIV and Mtb. infection
[302] and Ray et. al. aimed to investigate the intracellular mechanisms of macrophage

activation [303].
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5/25 publications aimed to model the dynamics of Mtb. itself; the dynamics of bacteria
replication and death, the conditions required for bacteria transition between active and

latent states and the effect of TB drugs on drug sensitive and resistant strains [304-308].

2/25 publications used a PK/PD model to establish regimen of the TB drug, Rifampin, in mice
[309, 310].

Data

In the majority of publications, data were used to aid parameterisation of the models. Six
publications calibrated models to longitudinal immune response data [292, 296, 299, 308-
310]. Calibration methods included nonlinear least squares with Latin Hypercube Sampling
(LHS) of the model parameters [292] , multiple linear regressions to data for different time
ranges [308] and Bayesian Markov chain Monte Carlo (MCMC) procedures [309, 310]. Six
publications used experimental data from mice [53, 292, 299, 305, 308-310] and Datta et. al.
used data from experiments in rabbits to parameterize the model [301]. In the remaining
publications, parameterisation of the models was conducted using published experimental

data, weighted towards those conducted in humans where possible.

Methods

The majority of the publications used compartmental deterministic ordinary differential
equation (ODE) models (19/25) [53, 60, 288, 289, 291-293, 295, 296, 300, 302-310], with the
remaining incorporating two other types: Agent Based Models (ABMs) (2/25) [298, 299] and
Spatio-temporal reaction-diffusion partial differential equation models (4/25) [290, 294, 297,
301]. Two publications used both ABMs and ODE models [300, 307].

14/18 publications whose aim it was to model the host immune response to Mtb. infection
([53, 60, 288-303]), included T cells, eight of those were CD4+ specific and four were CD4+
and CDS8 specific. Macrophage cell populations featured in 16/18 publications, six of those
included dendritic cells also. 9/18 included cytokine populations, all of which included IFN-y
and three include chemokines. 17/18 of the publications investigating immune responses to
Mtb. infection included a bacteria population(s), with all but one making the distinction

between intra- (within macrophages) and extracellular bacteria. One publication did not
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include any cells or bacteria and focussed that only on the oxygen concentration dispersion

subject to different boundary conditions across varying layers of a granuloma [301].

In the publications that aimed to model the dynamics of Mtb. [304-308], all defined an
“active” state of the Mtb. bacilli, whereby the bacteria were able to replicate. 4/5 also defined
a “latent” state where replication was considerably slowed and three out of these had models
for the concentrations of nutrients, iron, oxygen and/or Nitrous Oxide (NO) to explore the
effects changes in host biochemistry on bacteria transition between the active and latent

states.

Both publications who aimed to quantify Rifampin PK in mice, included a physiological based
model of the concentration of Rifampin in 12 compartments of the mouse body (e.g. lung,
brain, gut, etc.) (Lyons et. al. 2013, 2015) [309, 310]. The later publication by these authors
added an immune response model including CD4+ and CD8 T cells, macrophages and bacteria

and a PD model [310].

Model outcomes representing TB disease

For those models that included extracellular bacteria, active TB disease was defined as when
the extracellular bacteria increased to high levels and did not appear to be saturating or
controlled by the immune response [53, 60, 288-300, 302, 310]. Conversely, latent TB disease
was established when intracellular bacteria counts reached a constant low level over time
and extracellular bacteria was eliminated or remained at a very low level. Ray et. al.
represented bacteria killing that results in elimination of disease by monitoring NO levels
producing by macrophages in the model [303]. Granuloma outcomes associated with control
of Mtb. infection included; bacteria count with the granuloma [297-300], granuloma size and
amount of diseased tissue or necrosis [297, 298, 300], absence of infected macrophages
[298], TNF-a [300] and oxygen concentration [301]. Persistence of the active Mtb. bacteria
versus latent state bacteria was considered indicative of TB disease in models by Pedruzzi et.
al., Magombedze et. al., Chisholm et. al. and McDaniel et. al. [305-308]. Alavez-Ramirez et. al.

focus more on the progression of bacteria toward antibiotic resistance [304].

Interventions
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Six publications used cytokine “depletion and deletion” experiments. These can be thought
of as virtual experiment, designed to mimic “knock-out” experiments in laboratory settings.
They are useful in suggesting which immune response elements are the strongest predictors
of latency or active disease [60, 289, 291-293, 303]. Model parameter perturbations featured
in ten of the publications [290, 294-299, 305, 306, 308] with the aim of assessing the effect
on disease outcome of interest due to; changes in bacteria growth or kill (by macrophages)
rate [290, 308], infection rate of macrophages [295] or increased immune response
“strength”, which was considered to be; differing concentrations of nutrients, oxygen and NO
produced by immune cells and the environment surrounding the bacteria [305] and changes
in chemokine signalling strength [297, 299]. Additionally, perturbation of multiple key (or all)
parameters using LHS was conducted to systematically explore the parameter space and its
correlation with disease outcome [294, 298, 306]. Seven publications introduced TB drug
interventions [291, 293, 296, 297, 300, 302, 304] by manipulating appropriate parameters
such as; decreasing growth rate or increasing kill rate of bacteria [302, 304], increasing innate
cell recruitment [291], decreasing the rate pro-inflammatory cytokine production [297, 300]
or decreasing the rate of TNF-a production (to assess stability of granuloma formation after
anti-TNF treatment) [293]. Two publications looked at TB drug dose fractionation.
Experimental Rifampin concentration data at different doses in mice from [311-313] was used
to calibrate models in the two PK/PD publications [309, 310]. Finally, vaccination as an
intervention was considered by Sud et al. [60] by increasing memory T-cells (defined as T-cells
with extended half-life) as an initial condition (when bacteria is introduced to the immune

system in the model).

Results

The main findings of the publications are summarised here:

= |n all publications that modelled the immune response to Mtb. infection, both latent
and active disease states were effectively established (using outcomes outlined
above).

= Decreasing inflammatory cytokines (e.g. IFN-y) led to less effective innate immune
response performance and increased extracellular-bacterial load indicating active

disease [289-291, 294, 295, 298].
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Inclusion of broader adaptive immune responses (e.g. CD8 helper and cytotoxic cells)
contributed to more effective protection against active disease [60, 290].
Interactions between innate and adaptive immune response timings between organs,

i.e. cell trafficking were influential in the state of disease [53].

Granuloma specific results:

A balance between inflammatory and regulatory cytokines led to avoidance of tissue
damage and unstable granuloma formation [292, 293, 297, 300].

Chemokine levels and distribution determine the formation of the granuloma, the
stronger the signals, the more successful the granuloma [299].

Only large granulomas can achieve a necrotic core [297, 301].

Bacteria specific results

Persistence of bacteria is a result of latent state (where the gain from latency and
therefore survival against immune responses outweighs the loss of transmission
opportunities [307]) and slow replication [288, 299, 308].

Level of Nitrus oxide was most influential on the stability of the system (i.e. controlled
bacterial growth) [306] and the ability of the bacteria to disrupt iron production by

the host ensured its survival and persistence [306].

Intervention specific results:

HIV infection exacerbates Mtb. load, however, treatment of TB can have a profound
effect on HIV as T cell counts improve after TB treatment initiation [302].

By varying combinations of Thl CD4+ and CD8+ T-cells, the model showed that a
vaccine that jointly increased CD4+ and cytotoxic CD8+ memory T-cells was most
effective at clearing bacteria once challenged [60].

Early treatment and a less aggressive adaptive immune response is most affective to
kill bacteria in the granuloma [297, 300].

When drugs administered, a biphasic bacteria kill curve observed, firstly due to drug,

secondly to macrophage activation. This reflects clinical data [296].
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= PK/PD simulations agreed with Rifampin concentrations and bacteria killing in mice.
Area under the concentration-time curve most correlated with Rifampin efficacy

[310].

Publication Conclusions
Each publication drew specific conclusions that reflected their own results, here | outline the

overarching, common conclusions drawn by all publications.

It was acknowledged by many of the publications that aimed to model the immune response
to Mtb. infection, that a balance between inflammatory and regulatory immune responses
was vital to contain bacteria, avoid TB disease and damage to host lung tissue [60, 289, 292-
295, 302]. Further to this, Clarelli et. al. and lIbarguen-Mondragon et. al. emphasized that
threshold values in the parameter space that pushed the system from latency to active
disease needed to be empircally verified [294, 295]. Three publications suggest that strategies
for the development of more effective therapeutics, i.e. drugs that stimulate innate processes
[53, 291, 303]. Finally, although all publications use mathematical models to explore their
aims a few authors highlight explicitly the use of models as tools to; understand the
immunology of Mtb. infection [290], optimize drug treatment [296, 297, 301, 310],
understand granulomas (specifically the spatial models) [298, 299] and understand bacteria

progression from active to latent states [305, 308].

In conclusion, Wigginton and Sud [60, 289] suggest that “executable models enable
manipulation of the immune system elements to mimic treatment, vaccine or the immune
system becoming compromised”. The outcome of the immune response models helps us
understand the complex interactions involved in the immune response and has implications

for further research [289, 314].

Literature review summary

The models covered in this literature review had three main aims, to investigate; the host
immune response to Mtb. infection, bacteria transition between states and pharmacometrics
of TB drugs. All models that included immune response processes were Th1 based, i.e. B cell

and antibody populations were not included in any publication. Assumptions about the
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immune response to Mtb. infection vary between the models in the review, generating a wide
range of model complexity from highly parameterised ABM’s [300] to ODE’s with minimal
compartments [295]. However, the main constituents were T cells, innate cells and bacteria.
Publications concerned with only the dynamics of cells/cytokines over time were represented
using ODE models, whereas, ABMs and spatial models were used to represent spatial-
temporal constructs, i.e. the granuloma. In most cases, data were mostly used to
parameterise the model, not to calibrate the model. The conclusions of the papers
acknowledge modelling as an effective tool to accelerate knowledge around the TB immune
response, the effect of intervention or immunosenescence. While | agree with this statement,
| believe, especially in the case of modelling the effect of vaccination on the TB immune
response (my focus in this thesis), these dynamics are still largely not understood, therefore

results of this modelling should be further scrutinized.

Summary of thesis data, I1S/ID model and model calibration

| use data on immune responses following vaccination with existing TB vaccine, BCG (aim 1)
and candidate vaccines h-series, adjuvanted with IC31 (aim 2). The immune response |
focussed on was the number of IFN-y secreting CD4+ T cells following. As mentioned
previously, IFN-y secreted by CD4+ T cells are believed to be fundamental to a TB vaccine
immune response [83]. As such, these responses are the current immunogenicity marker of
choice in TB vaccine development. It is important to note from the outset that in aim 2 where
my aim was to predict dose response curves, | use the terminology “most immunogenic”, not
“optimal” dose to make the distinction between a dose that elicits a high IFN-y response
versus a dose that is the most protective. For specific information regarding the source of the
data and laboratory methods used to generate it, see individual chapters. Only data from
animals and humans who are not latently infected are included, as such we consider the two
TB vaccines to be pre-exposure vaccines in this thesis. BCG is used in this way, as it is routinely
given at birth in endemic countries [315]. However, H56 was originally designed as a post-
exposure vaccine [232], nevertheless, it was tested in healthy adults with no latent infection,
the data of which we use here. Data sample sizes, demographic data as well as vaccine dose

and regimen (timing of vaccinations) are outlined in the relevant chapters.

57



The T cell mathematical IS/ID model structure used in this thesis represents the dynamics of
these responses. The models in the above review concerned with immune cell dynamics,
specifically those including T cells were used to inform the structure of the IS/ID model used
here. However, as | only had data on number of CD4+ T cells secreting IFN-y, my model was
simpler than the majority of models outlined above, despite this, the fundamental dynamics
are the same. Alongside the literature review, | took expert advice from supervisory and
advisory panel members (Dr. Helen Fletcher, Prof Richard White, Dr Thomas Evans, Dr.
Gwenan Knight and Prof. Denise Kirschner) as well as influential publications on T cell

mechanism (focusing on CD4+) [81, 286, 287, 316, 317].

To calibrate the mathematical model to longitudinal vaccine response data and establish
differences in model predictions due to subpopulations, | used the method of Nonlinear
Mixed Effects Modelling (NLMEM) outlined above and in Appendix B. | implemented NLMEM
in the software Monolix, a software commonly used in PK/PD modelling, developed by Lixoft,

Paris [318], the implementation requirements for Monolix are also outlined in Appendix B.

Thesis Aims and Objectives

The overall purpose of this thesis was to develop a mathematical modelling framework to
translate TB vaccine response between species and predict the most immunogenic dose in

humans using animal data.

There were two aims of the thesis.

1. Establish individual human response differences to the TB vaccine Bacillus Calmette—
Guérin (BCG) Interferon-Gamma (IFN-y) then develop an I1S/ID model to represent
these response dynamics and identify the most representative macaque
subpopulation for human BCG responses

2. Predict the human H-series vaccine IFN-y response using an I1S/ID model calibrated to

mouse multi-dose IFN-y data using an allometric scaling assumption.

The aims of the thesis were achieved using the following objectives:

Aim 1:
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Aim 2:

Preliminary data analysis of differences in human IFN-y response to BCG
Development of the mechanistic IS/ID model to describe IFN-y response dynamics and
application of the model to human BCG data to establish differences in IFN-y response
dynamics (if any) by human subpopulation

Application of the mechanistic model to macaque BCG IFN-y response data to
establish differences in IFN-y response dynamics by subpopulation

Comparison of the I1S/ID modelling results between macaque and human to establish

most representative macaque for humans in terms of IFN-y responses

Generation of IFN-y response data to multi-dose of the TB vaccine, H56+IC31, in mice
and assessment of dose response curve in mice for varying time points

Development of a revaccination model and calibration of the IS/ID model to mouse
IFN-y response data (stratified by dose) and human H56/H1+IC31 IFN-y response data
Mapping of the changes in IFN-y response dynamics across the doses in H56+IC31 in
mice

Prediction of the human immune response to other H56/H1+IC31 doses using a

proposed mouse to human allometric dose scaling factor and mapping in objective 7

Thesis overview

Figures 1.4 and 1.5 outline aim 1 and 2 of the thesis, respectively, the objectives to achieving

these aims, how the objectives align with the thesis chapters, research papers, and the data

and methods required to completing the objectives.

59



Aim: Develop a mathematical model to representthe T cell dynamics following BCG vaccination to establish differences in BCG immune response dynamics in humans and

macaques and compare model predictions between human and macaque subpopulation

Objective 1

Preliminary data analysis of
differencesin humanimmune
responseto BCG

=N

Objective 2

Development of the mechanistic model tq
describe the BCG immune response and
application to human BCG datato
establish differences in response

PN

dynamics by subpopulation

Objective 3

Application of the mechanistic
model to the macaque BCG data to
establish differences dynamics by
subpopulation

N

Objective 4

Comparison of the mathematical
modelling results between macaque and
human

Chapter 2

Exploration into the immune
response to BCG vaccination
in a heterogeneous human
population

Chapter 3

Exploration into the immune response to BCG vaccination in a heterogeneous human and macaque population using an
Immunostimulation/Immunodynamic (IS/ID) mathematical model and the predictive power between macaque and human data

Paper 1

Individual-level factors associated
with variation in Mycobacterial-
specific immune response: gender
and previous BCG vaccination

Paper 2

Using Data from Macaquesto Predict Gamma Interferon Responses after Mycobacterium bovis BCG Vaccinationin Humans: A
Proof-of-Concept Study of Immunostimulation/Immunodynamic Modeling Methods

(secondary data)

Longitudinal BCG IFN-y responses (number of CD4 T cells, ELISPOT) in humans
after one dose and one vaccination and human population covariates

2N

Longitudinal BCG IFN-y responses
(number of CD4 T cells, ELISPOT) in
macaques after one dose and one
vaccination and macaque population
covariates

(secondary data)

=P

No additional data required

Linear regression models to
determine which population
covariates significantly correlated
with key immune response estimates

—

Mathematical model to the T cell dynamics following vaccination calibrated to the
human and macaque data using Nonlinear Mixed Effects Modelling to determine
model parameter estimates for human and macaque subpopulations

—

Calibration of the macaque
subpopulation model predictions to the
human data and assessment of best fit
using goodness of fit measures

Figure 1.4. Aim 1 of the thesis with corresponding objectives thesis chapters, papers, data requirements and methods
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Aim: Adaptthe mathematical modelto representthe T cell dynamics following two vaccinations with H-series vaccine and calibrate to multi-dose datain mice to establish
differencesin the immune response dynamics by dose and predictthe human multi-dose immune response dynamics using the mouse model predictions.

Objective 5

Generation of immune response
data to multi-dose of H56+IC31 in
mice and assessment of dose
response curve in mice for varying
time points

Objective 6

Development of a revaccination
model and calibration of the model to
mouse immune response data
(stratified by dose) and human
H56/H1+IC31 immune response data

=P

Objective 7

Mapping of the immune
response using allometric
scaling from one dose of
H56+IC31in mouse to human

=

Objective 8

Prediction of the human immune response
to other H56/H1+IC31 doses using
mapping and assessment of most
immunogenic dose at late time point

Chapter 4

Generation ofimmune response data
to multi-dose of H56+IC31 in mice for
the application ofInmunostimulation
Immunodynamic (IS/ID) modelling

Chapter 5

Predicting human multi-dose immune responses to H series vaccination using multi-dose data in mice and an
Immunostimulation/Immunodynamic (IS/ID) modelling

Paper 3

The TB vaccine H56+IC31 dose-
response curve is peaked not
saturating: data generation fornew
mathematical modelling methods to
inform vaccine dose decisions

Paper 4

Animal dose response curve predicts lower optimal TB vaccine dose in humans: A proof-of-concept study of
Immunostimulation/Immunodynamic modelling methods to inform vaccine dose decision-making

Longitudinal H56+IC31 IFN-y responses (number of CD4 T cells, ELISPOT) in mice
after five dose (plus 0 dose) and two vaccinations

(primary data — results of objective 5)

Longitudinal H56 and H1+IC31 (pooled) IFN-g responses (number of CD4 T cells,
ELISPOT) in humans after one dose and two vaccinations

(secondary data)

Data on allometric scaling for H
series vaccine

PN

No additional data required

ELISPOT assay on mouse
splenocytes after two vaccinations
(day 0 and 15) with H56+IC31 for 5
different doses (plus O dose).
Sampled over eight time points from
day 0 to 56 (5 mice per dose per time

—_

Mathematical model to the T cell
dynamics following two vaccinations
calibrated to the mouse multi-dose and
human single-dose data using
Nonlinear Mixed Effects Modelling.

-

Comparison of model parameter
estimates for each dose in mice and
using allometric scaling data, mapping
model parameter estimates from one
dose in mice to the equivalent dose in
humans

-

Prediction of human immune responses
to multi doses using mapping in
objective 7.

NG Y Y / \ e b

pomty

Figure 1.5. Aim 2 of the thesis with corresponding objectives thesis chapters, papers, data requirements and methods



There are six chapters in this thesis. Chapter one provides a detailed background to the thesis.
Issues arising in the qualitative nature of current vaccine development are outlined and an
example of a current vaccine for TB, whose dose choice could be misinformed, is presented.
| then contrast vaccine development methods to the quantitative methods employed in drug
development. The new field of quantitative IS/ID modelling for vaccine development is then
presented. The final sections of chapter one is a literature review on current TB immune

response models, proposed aims for the thesis and this review.

Chapters two to five are research papers, three of which are published and one is under
review at the time of writing. Research paper chapters include firstly an introduction, then
the paper, followed by the corresponding supplementary material which is referenced
throughout the paper. Any other unpublished work that is relevant to the thesis is included
in the chapter introduction. The thesis concludes with a discussion of the findings and future
areas of research. A final perspective article was written, but was not included in the thesis
as a specific chapter; instead the contents were included in the background and discussion

chapters.

| would like the reader to be aware that each paper was written as a standalone article, and
as such, there is some repetition of information. | have endeavoured to keep terminology
consistent throughout the papers, but due to variation in journal specifications differences in
terminology may exist. The papers are presented in an order conducive to the two aims of
the thesis (Figures 1.4 and 1.5), which may not be in temporal order of publication. References
for the thesis body and supplementary material for each chapter are at the end of the thesis

main body. Each paper has its own set of references as does the appendix.

Chapter 2 is a research paper (paper 1) exploring the immune response to BCG vaccination in
a heterogeneous human population.
Main objectives of the paper:
e To consider how individual-level factors affect BCG immunogenicity as measured by
tuberculin purified protein derivative (PPD) stimulated interferon gamma (IFN-y)
response following vaccination, focusing on long-term responses and short-term

dynamics.
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This chapter corresponds to aim 1 and objective 1 of the thesis (see Figure 1.4).

Citation: Rhodes SJ, Knight GM, Fielding K, Scriba TJ, Pathan AA, McShane H, Fletcher H,
White RG. 2016. Individual-level factors associated with variation in mycobacterial-specific
immune response: Gender and previous BCG vaccination status. Tuberculosis (Edinb) 96:37-

43.

Chapter 3 is a research paper (paper 2) exploring the immune response to BCG vaccination in
a heterogeneous human and macaque population using a mathematical model. Further, it
considers and which macaque subpopulation best predicts human IFN-y response.

Main objectives of the paper:

e Develop a model of post-BCG vaccination, IFN-y producing CD4+ T cell dynamics, and
assess the suitability of the model structure to predict responses by calibrating to
data.

e Investigate the impact of the human and macaque population covariates to explain
the within-population variation in responses.

e Test which macaque subpopulation best predicts human IFN-y response

This chapter corresponds to aim 1 and objectives 2-4 of the thesis (see Figure 1.4).

Citation: Rhodes SJ, Sarfas C, Knight GM, White A, Pathan AA, McShane H, Evans TG,
Fletcher H, Sharpe S, White RG. 2017. Using Data from Macaques to Predict Gamma
Interferon Responses after Mycobacterium bovis BCG Vaccination in Humans: A Proof-of-
Concept Study of Immunostimulation/Immunodynamic Modeling Methods. Clin Vaccine

Immunol doi:10.1128/CVI.00525-16.

Chapter 4 is a research paper (paper 3) outlining the generation of immune response data to
multi-dose of H56+IC31 in mice for the application of mathematical modelling.
Main objectives of the paper:
e Generate longitudinal response data in mice for a wide range of H56+IC31 doses for
use in future mathematical modelling
e Test whether a ‘saturating’ or ‘peaked’ dose-response curve, better fit the empirical
data.

This chapter corresponds to aim 2 and objective 5 of the thesis (see Figure 1.4).
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Citation: Rhodes SJ, Zelmer A, Knight GM, Prabowo SA, Stockdale L, Evans TG, Lindenstrom
T, White RG, Fletcher H. 2016. The TB vaccine H56+IC31 dose-response curve is peaked not
saturating: Data generation for new mathematical modelling methods to inform vaccine dose

decisions. Vaccine 34:6285-6291.

Chapter 5 is a research paper (paper 4) predicting human multi-dose immune responses to
H-series vaccination using multi-dose data in mice and mathematical modelling.

Main objectives:

Develop a mathematical model of the IFN-y producing CD4+ T cell dynamics following
primary and revaccination with the H56+IC31 vaccine

e Calibrate the model to the mouse H56+IC31 multi-dose data

e Calibrate the model to the human H-series (H56/H1+1C31 pooled) data

e Predict the human immune response dynamics and establish the most immunogenic

dose in humans.

This chapter corresponds to aim 2 and objectives 6-8 of the thesis (see Figure 1.4).
Citation: Rhodes SJ, Guedj J, Lindenstrom T, Fletcher H, Evans TG, Knight GM White RG.
Animal dose response curve predicts lower optimal TB vaccine dose in humans: A proof-of-
concept study of Immunostimulation/Immunodynamic modelling methods to inform vaccine

dose decision-making (submitted)

A perspective article with the citation: Rhodes SJ, Knight GM, Kirschner D, White RG, Evans
TG. Dose finding for new vaccines: the role for immunostimulation/immunodynamic
modelling (in review at Vaccine), was written during the thesis (paper 5). Contents from this
paper are included in the background and discussion of the thesis. | would like to acknowledge
Dr Steven Kern for his input to this paper. The paper and description of author contributions

can be found in Appendix A.

Author contributions

The overall idea for the PhD project to apply mathematical modelling to vaccine development
was generated by Dr Thomas Evans and Prof Richard White. Author contributions for papers

1-4 (as well as the supplementary material) are outlined in the associated chapters.
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Funding

This PhD project was funded through a studentship granted by Aeras (a tuberculosis vaccine
development organisation) awarded before | started working on the PhD project. The mouse
experiment in chapter 4 was funded by a separate grant from the Bill and Melinda Gates

Foundation, on which | was co-applicant.
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Chapter 2. Exploration into the immune response to BCG vaccination in a

heterogeneous human population: Paper 1

Chapter 2 introduction

The objective of paper 1 was to conduct a preliminary exploration into the differences in BCG-
induced IFN-y immune responses across human subpopulations to account for differences in

BCG across individuals. This work addresses aim 1, objective 1 of the thesis (Figure 1.4).

| chose BCG to study as, not only is it the only licensed vaccine against TB disease, it is the
basis for booster vaccines now in the developmental pipeline (see Figure 1.2). Data were
readily available to my group as supervisory member Dr Helen Fletcher and colleagues
(McShane et al.) at the Jenner Institute (Oxford university) had recently conducted
immunogenicity trials on TB viral vector vaccine expressing Mtb. antigen 85A (MVA-85A)
[319] where BCG was regularly used as a control arm. As such, | was able to combine BCG
data from multiple MVA-85A trials (referenced in paper 1) to create a BCG longitudinal
dataset. As all BCG data included in my dataset were generated by the Jenner Institute, lab

assays and protocols were standardized across all trial sites (in UK and Africa).

| analysed the effect of population covariates on BCG-induced IFN-y responses
retrospectively, using trial baseline responses as an indicator of long-term responses before
BCG was administered in the trials (analysis 1) and prospectively using short-term longitudinal
data after BCG vaccination in the trials (analysis 2). | used methods of summarising the data
that are conventional in vaccine development when assessing longitudinal responses, i.e.
summary measures (Area Under the Curve (AUC)) or point estimates of interest (peak
responses, late responses) and applied regression to account for differences by population
covariate. This preliminary analysis on differences in IFN-y immune responses was conducted

in preparation for the calibration of an IS/ID model to the data.

| presented the work in paper 1 in poster form at the following conference:
e Keystone Symposium: Host Response in Tuberculosis, Santa Fe, USA, January 2015.

“Impacts of key individual-level factors on the variation in Mycobacterium
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tuberculosis-specific immune response” S. J. Rhodes, G. M. Knight, K. L. Fielding, T.

J. Scriba, A. A. Pathan, H. McShane, H. A. Fletcher, R. G. White
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Introduction: A more effective tuberculosis (TB) vaccine is needed to eliminate TB disease. Many new
vaccine candidates enhance the immunogenicity of the existing vaccine, Bacillus Calmette—Guérin (BCG).
Understanding BCG induced immune variation is key to developing a new vaccine.
Aims: We aimed to establish if individual-level covariates were associated with cell-mediated immune
response (interferon gamma (IFN-vy)) at vaccine trial enrolment (baseline) in a long-term retrospective
analysis (LTR) and after BCG vaccination in a short-term prospective analysis (STP).
Methods: Four covariates were analysed: gender, country, BCG vaccination history and monocyte/
lymphocyte cell count ratio. Univariable and multivariable linear regression were conducted on IFN-y
response at baseline for LTR, and area under the curve (AUC), 24 week and peak IFN-y response for STP.
Results: Previous BCG vaccination was strongly associated with higher IFN-y response at baseline (LTR
analysis) (p-values < 0.05). Being male showed a weak association with higher baseline response
(p-value = 0.1). BCG revaccination was strongly associated with a larger response increase than primary-
vaccination (AUC & peak p-values < 0.01), but did not differ at 24 weeks (STP analysis). All other
covariates were non-significant (p-values > 0.1).
Conclusion: This analysis suggests that previous BCG vaccination and gender are associated with durable
IFN-v responses. Vaccine trials may need to stratify by BCG vaccination history and gender.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

70 years of widespread use of the only licensed TB vaccine, Bacillus
Calmette—Guérin (BCG), a live attenuated strain of Mycobacterium

Tuberculosis disease (TB) caused by the organism Mycobacte-
rium tuberculosis (M.tb), remains a substantial global health prob-
lem with approximately 9 million people developing active disease
and 1.5 million TB-related deaths in 2013 [1]. This is despite nearly

* Corresponding author.
E-mail address: sophie.rhodes@Ishtm.ac.uk (SJ. Rhodes).
! Joint senior authors.

http://dx.doi.org/10.1016/j.tube.2015.10.002

bovis, which has exhibited variable efficacy [2]. Novel TB vaccines
are considered an essential tool to meet the WHO goal of TB
elimination by 2050 [3,4], and many candidates utilise a BCG
prime-boost strategy.

It has been proposed that the observed variation in BCG efficacy
could be attributed to individual-level factors that influence host
mycobacterial-specific immune responses [5,6]. Factors that have
been shown to be consistent in their influence of such responses
include: latitude, which is known to be associated with varying

1472-9792/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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exposure to non-tuberculous mycobacteria (NTM) [7], and M.tb-
specific sensitization of the immune system through previous BCG
vaccination [8]. Additional factors that have shown consistent in-
fluence include age at vaccination and BCG strain [5].

Another factor that may influence the mycobacterial-specific
immune response is gender. TB prevalence surveys report a
higher occurrence of disease in males than females [9], which is
thought in part to be due to differences in the immune response
between the sexes [10], in addition to social aspects [11]. However,
so far, investigations into the effects of gender on the mycobacterial
immune response have shown equivocal results [12,13] and few TB
vaccine immunogenicity or efficacy trials have reported results
stratified by gender.

In addition, recent evidence has shown that the ratio of host
monocyte to lymphocytes cells (ML ratio) was associated with risk
of TB disease [14—16]. Naranbhai et al. observed that in HIV posi-
tive, South African adults on combination antiretroviral therapy,
this relationship was nonlinear, i.e. low and high, compared to
moderate, ML ratios were associated with a higher risk of TB [14].
Little investigation has been made into how ML ratio may affect
mycobacterial-specific immune responses and further insight into
this relationship could potentially inform targeted TB vaccine
strategies.

New detailed longitudinal immune response data to BCG
vaccination has recently become available due to an increase in
research into new TB vaccines in which BCG vaccination was used
as a control [17]. These detailed data have the potential to give new
insights into how individual-level factors alter the immune
response to BCG.

Our aim was to consider how individual-level factors affect BCG
immunogenicity as measured by tuberculin purified protein de-
rivative (PPD) stimulated interferon gamma (IFN-y) response
following vaccination. Utilizing new immunological data allowed
us to provide a more detailed analyses of the immune response
than previous studies, which have focused on long-term responses
with less detail of short-term dynamics.

2. Methods

In this study, two analyses were performed on data from par-
ticipants included in new TB vaccine (BCG-booster) trials in which
participants were given a new TB vaccine or BCG as a control
measure. The data from the BCG control arms were used in this
analysis.

Our first analysis aimed to determine which individual level
covariates were associated with increased PPD antigen-specific
IFN-y immune response at enrolment to the trials. In this anal-
ysis, IFN-y responses measured at enrolment to the trial (and before
BCG vaccination was administered) is referred to as the ‘baseline
response’. This was a cross-sectional analysis of previously BCG
vaccinated or BCG-naive trial participants, and is referred to as the
‘long-term retrospective’ or ‘LTR’ analysis.

The second analysis aimed to determine which covariates were
associated with IFN-y immune response over a short period,
following BCG vaccination. This analysis was conducted using data
from the prospective follow-up of study participants, who had
either been revaccinated or primary-vaccinated with BCG imme-
diately following baseline screening and were followed up for 24
weeks post vaccination. This is referred to as the ‘short-term pro-
spective’ or ‘STP’ analysis.

2.1. Data and materials

In this study we used data from seven vaccine trials involving
BCG (Table 1). The available data were on HIV negative and M.th

naive participants (see references in Table 1 for HIV and M.th
latency testing procedures). Data on haematological parameters
were based on routine laboratory haematology testing at baseline
and only those participants with values within normal limits were
included in clinical trials.

IFN-y response was measured using a standardized ex vivo
IFN-y Enzyme-Linked ImmunoSpot (ELISPOT) assay which quan-
tifies IFN-y secreting CD4+ T cells as spot forming units (SFU) per
million peripheral blood mononuclear cells (PBMCs) using PPD as a
stimulant. The same ELISPOT method including plates, antibody
kits, antigens, developing reagents, washing method, ELISPOT
reader and ELISPOT counting method were used across all UK trials
and all South African trials. South African researchers visited the UK
laboratory for ELISPOT training and reagents for the ELISPOT assay
were shipped from UK to South Africa for these studies. As these
BCG studies were conducted as part of a series of Phase I clinical
trials with MVAS85A all lab protocols and lab reagents were
harmonized as far as possible between UK trials and between UK
and South African trial. For the exact laboratory methodology see
[17—20].

2.2. Covariates

The four individual-level factors (covariates) included in this
analysis were country (UK or South Africa), gender, BCG vaccination
history at baseline and baseline ML ratio. ML ratio data were not
available for three of the studies (two UK trials and the South Af-
rican trial, Table 1). For details on how BCG-vaccination history was
determined see original trial methods [17—20]. BCG vaccination
history was categorised into “never” and 10 year time-periods since
vaccination with the reference group as 1—9 years since BCG
vaccination. Age was not included as a covariate as it was colinear
with BCG vaccination history.

2.3. Statistical analysis

The analyses were performed using linear regression. Firstly, a
univariable model analyses was conducted referred to as the ‘un-
adjusted’ analysis, followed by multivariable model; the ‘fully
adjusted’ analysis. Analysis was conducted using R [21]. A p-value
of <0.05 was considered as strong evidence for an association with
the outcome.

All outcomes were log transformed (natural log) as data were
right-skewed and the residuals verified to justify this trans-
formation. The effect measures are the anti-logged regression slope
parameters, the associated 95% confidence interval (CI) and
p-value. For the categorical covariates (country, gender and BCG
vaccination history), these represent the ratio of the geometric
means (GM) of the IFN-y response outcome variable compared to
the reference group. For the continuous covariate, ML ratio, the
effect measure represents the increase in GM of the IFN-y response
outcome variable for an increase in 0.1 ML ratio (as ML ratio is
bound by zero and one), assuming a linear trend in ML ratio.

Additionally, due to previous research that found a nonlinear
relationship to exist between ML ratio and risk of TB disease [14],
both linear and quadratic regression models were fitted to establish
if a similar relationship existed between IFN-y response and ML
ratio (see Supplementary Material for example, Table S2). Analysis
of variance (ANOVA) was used to assess if a non-linear relationship
more adequately described this association.

2.3.1. Long-term retrospective (LTR) outcome variables

Baseline IFN-y responses were used as the outcome variable in
the long-term analysis. All four individual-level covariates were
considered in the analysis. In the BCG vaccination history covariate,
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Table 1

Demographic and trial information for participants included in long-term retrospective (LTR) and short-term prospective (STP) analyses. Trial information was split by BCG

vaccine history where possible.

Vaccine No. of Country  Male (%) Median age  Previous BCG Blood haematological: Median ML Included in  Reference
trials no. participants (IQR) years vaccination (median ~ median (IQR) % of cells ratio (IQR) LTR/STP
years since (IQR)) in whole blood analysis
Monocytes  Lymphocytes
NCT00480688 11 UK 3(27%) 25 (8.5) None (NA) 0.30(0.15) 1.76 (0.43) 0.20 (0.05)  LTR/STP [17]
NCT00480714 6 UK 2 (33%) 25 (0) None (NA) 036 (0.21)  1.90 (0.32) 0.19(0.16)  LTR/STP [17]
NA 14 UK 4 (29%) 23.5(9) None (NA) 0.56 (0.18)  1.89 (0.41) 0.31(0.18)  LTR/STP [36]
14 7 (50%) 23 (8.5) Yes (15 (0.6)) 0.57 (0.18)  1.66 (0.34) 0.29 (0.07)
NCT00654316 13 UK 4 (29%) 25(11) Yes (12 (11)) 034 (0.17) 1.53(042) 0.24 (0.10)  LTR/STP [18]
NCT00427453 10 UK 3 (30%) 24 (7.3) None (NA) NA NA NA LTR [19]
NCT00427830 15 UK 7 (47%) 27 (10.5)  Yes (21(7)) NA NA NA LTR [17]
NCT00460590 4 South 2 (50%) 40.5 (4.8) None (NA) NA NA NA LTR [20]
14 Africa 3(21%) 33.5(12) Yes (33.5(12)) NA NA NA
Aggregated 101 - 35 (35%) 26 (11) 21(17.3) 041 (0.24) 1.70 (0.51) 022 (0.11) — -

" Trial number was not available for this trial at time of analysis. Three participants from the first four trials (those included in both the LTR and STP analyses) did not have
full STP data, so were only included in the LTR. NA = not available. IQR = Interquartile range; ML = Monocyte/lymphocyte.

the groups represent time since previous BCG vaccination with the
group “never” representing those who were BCG naive at baseline.

2.3.2. Short-term prospective (STP) outcome variables

To investigate the short-term response, IFN-y responses at
baseline and 4, 8 and 24 weeks post BCG vaccination were used and
summarized using the following three statistics as outcome vari-
able: area under the curve (AUC), peak and the 24 week (referred to
as ‘sustained’) IFN-y responses. The AUC summarises the total
change in IFN-y response over 24 weeks post BCG vaccination and
was calculated using the R package “Kulife” [22].

For the STP analysis, unadjusted and fully adjusted regression
was conducted separately for the three outcomes. For the STP
analysis, an additional analysis was also carried out for peak and 24
week response, whereby adjustment for baseline IFN-y responses
was conducted, known as the ‘partially adjusted’ analysis. This was
not adopted for the AUC outcome variable, as the AUC calculation is
standardized by the baseline value, so adjustment for the effect is
not necessary.

In the STP analysis, the categories defined for the BCG vaccina-
tion history covariate correspond to years since previous BCG
vaccination before receiving BCG at enrolment into the trial. The
group ‘never’, corresponds to being ‘primary vaccinated’ at

Table 2

enrolment. As all trials used in the STP analysis were UK based, all
individual-level covariates except country were included.

3. Results

101 participants were included in this analysis (Table 1). Seven
vaccine clinical trials were used in the LTR analysis; four of those
also had data available for the STP analysis (Table 1 and Table S1).
Participants were either vaccinated with BCG (56 participants), at a
median of 21 years (interquartile range (IQR) = 17.3) before base-
line or BCG naive at baseline (45 participants). The median of the
ML ratio was 0.22 (IQR = 0.11). The distribution of ML ratio amongst
the population can be found in Figure S1.

3.1. Long-term retrospective (LTR) analysis

All 101 participants were included in the LTR analysis. All
covariates were included in the fully adjusted analysis, except for
ML ratio as data on this measure were not available for some of the
trials (data were only available for 58 participants (Table 1)).

For male participants, the unadjusted GM ratio of the IFN-y
response at baseline was nearly twice that of females (GM ratio
1.97,95% CI (1.03, 3.77)) (Table 2), and remained weakly associated

Long-term retrospective (LTR) analysis: results of the linear regression analysis on baseline IFN-y responses (SFU/mill cells) against individual-level covariates.

Geometric mean
of IFN-y response

Covariates (n)

Unadjusted GM ratio (95% CI), p-value

Fully adjusted” GM ratio (95% CI), p-value

Country

South Africa (18) 65.62 1 — 1 —

UK (83) 47.56 0.73 (0.32, 1.65), 0.63 1.02 (0.41, 2.55), 0.97
Gender

Female (66) 39.82 1 - 1 -

Male (35) 78.45 1.97 (1.03, 3.77), 0.04 1.76 (0.96, 3.25), 0.07
BCG vacc history

1-9 yrs (8) 133.54 1 — 1

10—-19 yrs (13) 121.28 091 (0.25, 3.28) 0.74 (0.20, 2.70)

20—29 yrs (19) 80.58 0.60 (0.18, 2.01) 0.57 (0.17,1.93)

30 + yrs (12) 94.93 0.71 (0.19, 2.62) 0.72 (0.17,3.13)

Never (49) 24.27 0.18 (0.06, 0.54), <0.001' 0.18 0.06, 0.52), <0.001
ML ratio (58) 0.89° (0.58, 1.38), 0.61 - -

As an example of the GM of the IFN-y response by ML ratio two values were chosen from the range of ML ratio (Table 1) to represent high and low values and the GM calculated
using the unadjusted GM ratio value in the above table. As such, the GM for the IFN-y response for a ML ratio of 0.1 and 0.3 were 52.03 and 50.88, respectively. Abbreviations:
IFN-y = Interferon gamma; vacc = vaccination; GM = geometric mean; yrs = years; ML = Monocyte/lymphocyte.

" Adjusted for all variables in the model except ML ratio.

f p-value for all categories of BCG vaccination history covariate using an ANOVA summary.
i Represents the value of the change in GM of the IFN-y response for an increase in 0.1 of ML ratio.

73



40 S.J. Rhodes et al. / Tuberculosis 96 (2016) 37—43

after adjustment for country and years since BCG vaccination (GM
ratio 1.76, 95% CI (0.96, 3.25)).

For BCG-naive participants (‘never’), a GM ratio of their IFN-y
response at baseline of 0.18 (95% CI (0.06, 0.54)) was found,
compared to that of the reference group of 1—-9 years since BCG
vaccination (Table 2) and remained strongly associated after full
adjustment (GM ratio 0.18, 95% CI (0.06, 0.52)). GM IFN-vy response
was similar for 10—19, 20—29 and 30+ years since BCG vaccination,
compared to 1-9 years since BCG vaccination (Table 2).

There was no evidence of an association between IFN-y
response at baseline and ML ratio in the linear or quadratic analyses
(Table 2, Table S2). Neither was there an association between IFN-y
response and country (Table 2).

3.2. Short-term prospective (STP) analysis

Data from 55 participants, all UK adults, were available for the
STP analysis. The IFN-y responses over the 24 week follow-up
period, by primary or revaccination status, are shown in Figure 1.

All analyses (unadjusted, partially and fully adjusted) suggested
there was no association between gender or ML ratio and AUC
(Table 3), 24 week response (Table 4) or peak response (Table 5).

Being primary-vaccinated (‘never’ in Table 3) was strongly
associated with a lower AUC in the unadjusted analysis with a GM
ratio of 0.16 (95% CI (0.06, 0.44)) (Table 3 and Figure 1). This asso-
ciation remained strong after adjustment for baseline IFN-y
response, gender and ML ratio (GM ratio 0.22, 95% CI (0.07, 0.68)).
No other groups in the BCG vaccination history covariate were
associated with AUC.

BCG vaccination history was strongly associated with 24 week
response in the unadjusted analysis, specifically: primary-
vaccinated participants had lower 24 week responses (GM ratio
0.14, 95% CI (0.06, 0.36)) (‘never’ in Table 4) compared to the
reference group. After full adjustment, this association remained
but was weaker (GM ratio 0.29, 95% CI (0.07, 1.12)). The partially
adjusted analysis showed changes in the GM ratio for all covariates
(Table 4). Most notably, the GM ratio for those who were primary
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vaccinated increased from 0.14 (95% CI (0.06, 0.36)) to 0.25 (95% CI
(0.09, 0.69)) compared to the reference group in the unadjusted
and partially adjusted analyses, respectively.

Primary-vaccinated participants had lower peak IFN-y response
compared to the reference group in the unadjusted analysis (GM
ratio 0.24, 95% CI (0.14, 0.39)) (Table 5). This remained after full
adjustment for all covariates (GM ratio 0.32, 95% CI (0.15, 0.68))
(Table 5). The partially adjusted analysis did not significantly
change this value (GM ratio 0.29, 95% CI (0.16, 0.51)), indicating a
minimal affect of baseline response on the association between
BCG vaccination history and peak response (Table 5).

4. Discussion

We investigated the impact of multiple individual-level cova-
riates on the mycobacterial-specific immune response pre- and
post- BCG vaccination. Being male or previously BCG vaccinated
was associated with higher IFN-y response at baseline. BCG
revaccination resulted in a larger initial increase in immune
response than primary-vaccinated participants, but response was
not significantly different at 24 weeks. All other covariates (country
and ML ratio) were non-significant.

Differences in TB disease notification rates between the gen-
ders have been well documented and are thought to be a result of
both social and biological factors [10]. In our analysis we found a
weak association between male gender and higher IFN-vy levels at
baseline in the long term retrospective (LTR) analysis. This could
be linked to sex hormones causing differences in gender-
associated immune responsiveness, specifically those of IFN-y
[10,23]. Our results are consistent with previous studies that show
women have significantly lower IFN-y response after PPD stimu-
lation than men (after adjustment for age, BMI and M.tb infection)
[13] as well as less strong tuberculin skin testing results [24].
However, these results remain somewhat surprising as reported
disease incidence tends to be higher in men [9]. This could imply
that disease burden differences may be due to behavioural, rather
than biological, reasons or that a balanced immune response is
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Figure 1. Longitudinal IFN-y responses for the Short-term prospective (STP) analysis for 55 participants. BCG revaccinated (A) and primary-vaccinated (B). The bold red line
represents the median values of each group at each time point. X-axis is not to scale. Abbreviations: IFN-y = Interferon gamma; SFU = spot forming unit; PBMC = peripheral blood
mononuclear cells. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 3
Short-term prospective (STP) analysis: results of the linear regression analysis on AUC.

Area under the curve (AUC)

Covariates (n) Geometric mean of AUC Unadjusted GM ratio (95% CI), p-value Fully adjusted” GM ratio (95% Cl), p-value (n = 43")
Baseline IFN-vy response (55) 329.03 1.00 (0.99, 1.01), 0.49 1.00 (0.99, 1.01), 0.76
Gender

Female (36) 280.13 1 - 1 -

Male (19) 446.30 1.59 (0.73, 3.49), 0.24 1.04 (0.55, 1.96), 0.91
BCG vacc history

1-9 yrs (8) 1156.66 1 - 1 -

10—-19 yrs (10) 579.88 0.50 (0.15, 1.63) 0.45 (0.16, 1.27)

20-29 yrs (7) 384.62 033 (0.09, 1.21) 0.70 (0.19, 2.50)

Never (30) 187.84 0.16 (0.06, 0.44), 0.002 0.22 (0.07, 0.68), 0.01
ML ratio (43) 1.16 (0.85, 1.58), 0.33 1.09’ (0.82, 1.45), 0.53

Using a similar analysis of GM of IFN-y response by MLratio as in Table 2; GM for the AUC for a MLratio of 0.1 and 0.3 were 111.57 and 115.01, respectively. Abbreviations: IFN-
vy = Interferon gamma; vacc = vaccination; GM = geometric mean; yrs = years; ML = Monocyte/lymphocyte.

" Adjusted for all variables in the model.

 Due to missing ML ratio data.

¥ Prior to BCG vaccination in trial.

% p-value for all categories of BCG vaccination history covariate using an ANOVA summary.

Y The value of the change in GM of the AUC for an increase in 0.1 of ML ratio.

Table 4
Short-term prospective (STP) analysis: results of the linear regression analysis on 24 week IFN-y response.

24 week IFN-y response

Covariates (n) Geometric mean of 24 Unadjusted GM ratio (95% CI), Partially adjusted (for baseline IFN-y Fully adjusted” GM ratio
week IFN-y response p-value response) GM ratio (95% CI), p-value (95% CI), p-value (n = 43")
Baseline IFN-y 87.44 1.01 (1.01, 1.01), <0.001 — — 1.00 (0.99, 1.01), 0.17
response (55)
Gender
Female (36) 83.11 1 — 1 - 1 —
Male (19) 96.29 1.16 (0.51, 2.64), 0.72 1.12 (0.57,2.21),0.74 0.69 (0.32,1.51), 035
BCG vacc history
1-9 yrs (8) 27413 1 — 1 — 1
10—19 yrs (10) 21237 0.78 (0.26, 2.32) 0.84 (0.29, 2.42) 1.05 (0.30, 3.73)
20—-29 yrs (7) 21443 0.78 (0.24, 2.59) 0.68 (0.21, 2.16) 1.55 (0.32,7.35)
Never (30) 38.91 0.14 (0.06, 0.36), <0.001" 0.25 (0.09, 0.69), <0.001" 0.29 (0.07, 1.12), >0.05

ML ratio (43) 1.08' (0.71, 1.65), 0.72 1.14" (0.81, 1.59), 0.45 1.04' (0.73, 1.47), 0.83

Using a similar analysis of GM of the IFN-y response by ML ratio as in Table 2; GM for the 24 week response for a ML ratio of 0.1 and 0.3 were 125.08 and 126.01, respectively.
The GM ratio for the baseline IFN-y response covariate in the partially adjusted analysis is not included here, but all were similar to the unadjusted analysis value
(approximately 1 and p-value<0.05). Abbreviations: IFN-y = Interferon gamma; vacc = vaccination; GM = geometric mean; yrs = years; ML = Monocyte/lymphocyte.

" Adjusted for all variables in the model.

I Due to missing ML ratio data.

¥ Prior to BCG vaccination.

% p-value for all categories of BCG vaccination history covariate using an ANOVA summary.

T The value of the change in GM of the 24 week response for an increase in 0.1 of ML ratio.

Table 5
Short-term prospective (STP) analysis: results of the linear regression analysis on peak IFN-y response.

Peak IFN-y response measured over 24 week follow-up

Covariates (n) Geometric mean of  Unadjusted GM ratio (95% CI), Partially adjusted (for baseline IFN-y Fully adjusted” GM ratio (95% CI),
peak IFN-y response  p-value response) GM ratio (95% Cl), p-value p-value (n = 437)

Baseline IFN-y response (55) 343.08 1.00 (1.00, 1.01), <0.001 - - 1.00 (0.99, 1.01), 0.14
Gender

Female (36) 336.38 1 - 1 - 1 -

Male (19) 356.90 1.06 (0.64, 1.76), 0.81 1.05 (0.68, 1.59), 0.83 0.89 (0.58, 1.36), 0.57
BCG vacc history*

1-9 yrs (8) 853.93 1 - 1 1

10-19 yrs (10) 595.42 0.70 (0.38,1.28) 0.71 (o 39, 1.30) 0.72 (035, 1.45)

20-29 yrs (7) 588.23 0.70 (0.36,1.32) 0.65 (0.34, 1.24) 0.75 (0.32, 1.76)

Never (30) 201.06 024 (0.14, 0.39), <0.001 0.29 (0.16, 0.51), <0.001' 0.32 (0.15, 0.68), <0.001
ML ratio (43) 1.05' (0.82, 1.35), 0.70 1.09' (0.89,1.32), 0.38 1.01 (0.84, 1.22), 0.89

Using a similar analysis of GM of the IFN-y response by ML ratio as in Table 2; GM for the peak response for a ML ratio of 0.1 and 0.3 were 536.34 and 564.72, respectively. The
GM ratio for the baseline IFN-y response covariate in the partially adjusted analysis is not included here, but all were similar to the unadjusted analysis value (approximately 1
and p-value < 0.05). Abbreviations: IFN-y = Interferon gamma; vacc = vaccination; GM = geometric mean; yrs = years; ML = Monocyte/lymphocyte.
" Adjusted for all variables in the model.
Due to missing ML ratio data.
Prior to BCG vaccination.
p-value for all categories of BCG vaccination history covariate using an ANOVA summary.
The value of the change in GM of the peak response for an increase in 0.1 of ML ratio.

R —
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required to protect against TB disease and in males, a higher im-
mune response may lead to detrimental exaggerated inflamma-
tory responses [25].

There is uncertainty in the duration of protection of efficacy
following BCG vaccination. In our Long-term retrospective (LTR)
analysis, we found previous BCG vaccination was associated with a
higher IFN-y response at baseline, which supports results from
several previous studies [8,26]. We also found, in both LTR analysis
and short-term prospective (STP) analysis, no difference between
any IFN-y response if vaccinated any time between 10 and 30 years
ago versus less than 10 years ago, suggesting that there may be no
difference in the immune response generated at one year and up to
30 years after primary vaccination. These results suggest that BCG
vaccination induces a durable memory response. However, previ-
ous studies have shown that IFN-y responses following BCG
vaccination can wane [27]. In order to more precisely assess the
possibility of a waning response in our data, the BCG vaccination
history covariate could be stratified into smaller groupings. How-
ever, with the current dataset size, this would impact on the sta-
tistical power of the analysis. The duration of a BCG immune
response is complex and currently, not fully understood. As such,
more trials to measure this specific immune response may be
necessary.

In our STP analysis, we found that revaccination with BCG was
associated with an increase in total (AUC) over 24 weeks and peak
(taking into account baseline levels) IFN-y response. However, it
was not associated with higher IFN-y response (when baseline
responses were taken into account) at 24 weeks. Our in-depth
characterization of this short term effect is supported by previous
work at single time points that showed initial increases following
revaccination with BCG [25—27] that were not sustained at 24 [28]
or 52 weeks [29,30]. This suggests that revaccination with BCG has
an impact on overall IFN-y levels in the short term (<24 weeks) but
may have little effect on IFN-vy levels long term (>24 weeks).

All other covariates were non-significant. This may be due to
small numbers of participants or no association.

Recent evidence has revealed a complex relationship between
ML ratio and risk of TB disease [14]. We explored if this could be
explained by a link between ML ratio and IFN-y responses. How-
ever, our results showed that ML ratio had no association on IFN-y
response in the LTR or STP analyses. This difference could be
explained by HIV status amongst our participant population
compared to previous work [14].

There are a number of limitations of our work. Most impor-
tantly, we chose to use IFN-y-expressing cells as our marker of
immune response. Whilst the presence of IFN-y has been shown
to be important in protection against M.tb infection [31], it has not
proven to be a correlate of protection for TB disease [32,33]. It is,
however, one of the most commonly used measures of TB vaccine
immunogenicity we have [34]. The use of IFN-y-expressing cells
as our sole indicator of immunogenicity has benefits in its
simplicity, and was the only outcome for which data was available
to us. Other studies are being carried out that may give a more in
depth view of the immune response to BCG in which a more
complex “biosignature” is being investigated [34]. Secondly, our
work was limited to the data available from the seven TB vaccine
trials, which restricted the covariates available and the size of the
participant cohorts. For example, HIV positive and latently infec-
ted individuals were excluded. Thirdly, in the outlined laboratory
procedure [17—20] a 16-h ELISPOT assay was chosen, which may
have potentially missed central memory CD4+ T-cells as they
require a longer period of antigen re-stimulation to generate IFN-
vy [35]. As such, our responses may underestimate the true
“memory” cell presence, specifically at the later time point of 24
weeks.

The implications of our results are as follows. Our results show
that previous BCG vaccination generates a higher immune
response and this may complicate the interpretation of immu-
nological results of new TB vaccine clinical trials, and support
stratification of vaccine trial results by previous TB vaccination
status, as is carried out previously [17,26]. In addition, if replicated
in future analysis, our results also suggest that future TB vaccine
trials may need to also stratify their analysis by gender. Moreover,
to potentially capitalize on the impact of higher immune response
due to previous vaccination and to improve upon the variable
efficacy of BCG, it has recently been suggested that revaccination
with BCG may increase efficacy [36]. Our findings showed that
revaccination with BCG, whilst providing a higher IFN-y peak
response, did not increase IFN-y at 24 weeks over the levels
measure in primary-vaccinated participants. This provides more
evidence to support the WHO policy not to revaccinate with
BCG [37].

As an extension to our analysis, the time between the long-
term retrospective (LTR) and short-term prospective (STP) anal-
ysis could be considered (for example, a number of years via a
phase II/III clinical trial), which is not addressed here. Knowledge
of this may indicate why we see a gender effect in the long term
and not in the short-term and give further insight into the dura-
tion of BCG immunogenicity. Moreover, the link between ML ratio
and TB disease is an exciting development in the search for
informative TB risk factors and further work with additional
detailed datasets should be conducted on the immunology driving
this relationship. To improve upon the methods used in our STP
analysis, mathematical models could be adopted to explore the
underlying mechanisms behind the dynamics. The impact of the
covariates on key immune system parameters would then be
analysed.

5. Conclusion

The research conducted in this analysis aimed to establish,
using new detailed mycobacterial-specificimmune response data,
which, if any, individual level covariates alter the immune
response over the long term or shortly after BCG vaccination. This
analysis suggests that previous BCG vaccination and gender are
associated with durable IFN-y responses. The results of this
analysis imply that future vaccine trials should consider strati-
fying the trial population for analysis by gender and BCG vacci-
nation history.
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Supplementary Material for paper 1

The following is the published supplementary material referenced in paper 1. All references

to the below tables and Figures are preceded with the suffix “S” in the paper.

Additional Results

The demographics of the participants used in the long-term retrospective (LTR) and short-

tern prospective (STP) analyses can be found in S1. The distribution of the ML ratios in the

participants (measured at baseline) is shown in Figure S1.

Long-term retrospective

(LTR)
(n=101) (M = 35)

Short-term prospective

(STP)
(n=55) (M = 19)

Geography: UK 83 (M =30) 55 (M= 19)
Time since BCG
vaccination
1to9 8 (M=2) 7(M=2)
10to 19 13 (M =8) 10 (M =6)
20to 29 19 (M =7) 8(M=3)
30+ 12 (M =3) -
Never 49 (M = 15) 30 (M =38)

Table S1. Participant demographics. M = males
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Distribution of ML ratios of participants
included in STP analysis
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Figure S1. Distribution of ML ratios of participants included in STP analysis.

Nonlinear regression model for ML ratio on LTR and STP outcome measures

Both linear and quadratic regression models were fitted to establish if a similar relationship

existed between the LTR and STP outcome measures and ML ratio. Below is an outline of

these models.

Linear model (M1)
log(Outcome) = a+ by * (ML)

Nonlinear model (M2)

log(Outcome) = a+ by * (ML) + b, * (ML?)

A model comparison test (ANOVA) was conducted to establish if a non-linear relationship

more adequately described this association, the F-score and p-value of which are displayed

in Table S2.
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LTR STP
Outcome: Baseline IFN-y Outcome: AUC Outcome: 24 week Outcome: Peak
F-score (p-value) F-score (p-value) F-score (p-value) F-score (p-value)
0.41 (0.53) 0.01 (0.94) 0.27 (0.60) 0.05 (0.82)

Table S2. ANOVA test results comparing M1 to M2 for LTR and STP outcome measures. This was an
unadjusted analysis, therefore, no other covariates were included here.

As none of the p-values were below 0.05 | concluded that the quadratic model did not
improve upon the description of the relationship between ML ratio and the LTR and STP
outcome variables provided by the linear regression analysis. Therefore, there was no
evidence of a nonlinear relationship between ML ratio and the LTR and STP outcome variables

as stated in the main text.
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Chapter 3. Exploration into the immune response to BCG vaccination in a
heterogeneous human and macaque population using a vaccine
Immunostimulation/Immunodynamic (IS/ID) mathematical model and the

predictive power between macaque and human subpopulation data: paper 2

Chapter 3 introduction

The objectives of this paper were three-fold:

1. Design and implement a model representing the CD4+ T cell mechanisms producing
the IFN-y immune response dynamics in the data and validate this model by calibrating
it to the human IFN-y data (paper 1) and longitudinal IFN-y data in macaques.

2. Establish which model parameters (if any) are statistically different for different
subpopulations in both species separately.

3. Use the model predictions for the macaque subpopulations (if any) to fit to the human
data and establish which macaque subpopulation model best represents human IFN-

y immune response dynamics.

This chapter aims fulfil the remainder of aim 1 of the thesis and objective 2-4 (Figure 1.4).

This is my first application of IS/ID modelling to vaccine response data for the purpose of

immune response translation between species.

Drawing on the results of paper 1, | hypothesized that there would be differences in IFN-y
immune response dynamics in humans due to BCG status (baseline BCG-naive or baseline
BCG-vaccinated). As there was a weak significant effect on baseline IFN-y responses by gender
(long-term retrospective analysis in paper 1), but not in the IFN-y dynamics after BCG
vaccination (short-term prospective analysis in paper 1), | hypothesized | would not find a
difference in model predicted immune response dynamics stratified by gender. As both time
since BCG vaccination and ML ratio were not significantly associated with differences in either
baseline or IFN-y response dynamics after BCG vaccination, | hypothesized | would find no

differences in model predicted immune response dynamics due to either of these covariates.
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The macaque BCG data was provided by colleagues at Public Health England (Sally Sharpe, et.
al.). Data were combined from pre-clinical immunogenicity experiments for the MVA-85A
vaccine, which preceded the clinical data used here and in paper 1. Preliminary analysis
(equivalent to my analysis in paper 1) of the macaque subpopulation data was conducted
prior to my work by Charlotte Sarfas (PHE) who had shown that there were significant
differences in peak and AUC response by macaque colony of origin (personal communication,
publication in review). As such, in paper 2 | focused only on investigating the differences in
the mathematical model parameters to the macaque subpopulation data and not the
preliminary analysis methods of paper 1. From Charlotte’s work | hypothesized there would

be differences in mathematical modelling parameters due to macaque colony of origin.

| presented the work in paper 2 in poster form at the following conference:

e Population Approach Group Europe (PAGE) meeting 2016, Lisbon, Portugal, June
2016. “Previous BCG vaccination associated with variation in Mycobacterial-specific
immune response: a modelling study” S. J. Rhodes, G. M. Knight, J. Guedj, H. A.
Fletcher, R. G. White

| also presented this work as an oral abstract at the following conference:

e The 47% Union World Conference on Lung Health, Liverpool, UK, October 2016.
“Previous BCG vaccination associated with variation in Mycobacterial-specific
immune response: a modelling study”. S. J. Rhodes, G. M. Knight, J. Guedj, H. A.
Fletcher, R. G. White
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Paper 2 title: Using Data from Macaques to Predict Gamma Interferon Responses after
Mycobacterium bovis BCG Vaccination in Humans: A Proof-of-Concept Study of

Immunostimulation/Immunodynamic Modeling Methods

Authors: Sophie J. Rhodes*, Charlotte Sarfas*, Gwenan M. Knight, Andrew White, Ansar
A. Pathan, Helen McShane, Thomas G. Evans, Helen Fletcher, Sally Sharpe**, Richard G.
White**

*Joint first author

**Joint senior author

Author contribution:

The human BCG data was the same dataset used in paper 1. The macaque BCG data were
provided by Dr. Sally Sharpe, Charlotte Sarfas and Andrew White at PHE. The data were
collated over multiple experiments by Charlotte Sarfas. The mathematical model of the IFN-
y secreting T cell response was developed by myself with guidance from Prof. Richard White
and Dr. Gwenan Knight and advisory panel members, immunological expert Dr. Thomas Evans
and TB immune response modeller, Prof. Denise Kirschner. The calibration method, Nonlinear
Mixed Effects Modelling in the software Monolix was implemented soley by myself, however
training in the program was undertaken with the guidance of advisory panel member Dr.
Jeremie Guedj. The design of methods to translate responses between species was exclusively
my own work. All authors reviewed the paper. Joint first authorship was granted to myself for
developing and applying the mathematical model to the data and writing the paper and
Charlotte Sarfas for aggregation of the macaque data and reviewing the paper. The

interpretation of the results was my own work.
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ABSTRACT Macaques play a central role in the development of human tuberculosis
(TB) vaccines. Immune and challenge responses differ across macaque and human
subpopulations. We used novel immunostimulation/immunodynamic modeling methods
in a proof-of-concept study to determine which macaque subpopulations best predicted
immune responses in different human subpopulations. Data on gamma interferon (IFN-
y)-secreting CD4+ T cells over time after recent Mycobacterium bovis BCG vaccination
were available for 55 humans and 81 macaques. Human population covariates were
baseline BCG vaccination status, time since BCG vaccination, gender, and the monocyte/
lymphocyte cell count ratio. The macaque population covariate was the colony of origin.
A two-compartment mathematical model describing the dynamics of the IFN-y T cell re-
sponse after BCG vaccination was calibrated to these data using nonlinear mixed-effects
methods. The model was calibrated to macaque and human data separately. The associ-
ation between subpopulations and the BCG immune response in each species was
assessed. The macaque subpopulations that best predicted immune responses in
different human subpopulations were identified using Bayesian information crite-
ria. We found that the macaque colony and the human baseline BCG status were
significantly (P < 0.05) associated with the BCG-induced immune response. For
humans who were BCG naive at baseline, Indonesian cynomolgus macaques and
Indian rhesus macaques best predicted the immune response. For humans who
had already been BCG vaccinated at baseline, Mauritian cynomolgus macaques
best predicted the immune response. This work suggests that the immune re-
sponses of different human populations may be best modeled by different ma-
caque colonies, and it demonstrates the potential utility of immunostimulation/
immunodynamic modeling to accelerate TB vaccine development.

KEYWORDS nonhuman primates, T-cell immunity, bacillus Calmette-Guérin,
interferons, mathematical modeling, tuberculosis, tuberculosis vaccines

uberculosis (TB) disease remains a major global health problem (1), and Mycobac-
terium tuberculosis bacillus Calmette-Guérin (BCG), the only licensed TB vaccine,
exhibits variable efficacy (2, 3). In order to reach WHO TB control goals, a new, effective
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vaccine is vital (4). Animal models are used in almost every aspect of vaccine devel-
opment, including helping to understand the transmission dynamics of the disease and
the immunogenicity and efficacy of vaccines (5). They are therefore a vital and efficient
tool in vaccine development (6). In preclinical TB vaccine research, nonhuman primates
(NHPs) are a valuable animal model (7, 8) and are genetically and physiologically more
similar to humans than small animals with respect to TB disease and immune response
(7,9).

Historically, rhesus (Macaca mulatta) (10) and cynomolgus (Macaca fascicularis) (11)
macaque species have been used as the primary NHP models in TB vaccine research
(12-14). Both species have been shown to respond to BCG vaccination, which affords
them partial protection from TB (15-19); however, it has been shown that the same
experimental conditions (infection with Mycobacterium tuberculosis following vaccina-
tion or a vaccine immune response) may lead to divergent outcomes for the two
species (7, 20-22). Furthermore, the colony (country of origin) of macaque, even within
the same species, has been shown to affect the level of protection against infection and
the level of response after vaccination. For example, differing levels of protection have
been observed for Chinese and Mauritian cynomolgus macaques: Mauritian cynomol-
gus macaques developed end-stage progressive TB in 7 weeks, while Chinese cyno-
molgus macaques remained healthy past the end of the study (12 weeks) (23).

These differences suggest that the immune responses of different human popula-
tions (e.g., those with previous BCG vaccination or those who are BCG naive) may be
best modeled by different macaque colonies. In 2014, the Bill and Melinda Gates
Foundation adopted a new strategy for the selection of new TB vaccine candidates for
clinical testing based on immune response and challenge results in NHPs (24). There-
fore, in order to increase the likelihood of developing an effective vaccine, it is critical
to identify and understand differences between macaque populations.

Here we focus on establishing the most representative NHP model for modeling the
gamma interferon (IFN-y) immune responses of adult humans in the UK following
recent BCG vaccination, as one example of the prediction of vaccine immune responses
in humans from a macaque animal model.

For this purpose, we conduct a proof-of-concept study to evaluate the potential use
of novel immunostimulation/immunodynamic (IS/ID) modeling methods in vaccine
immune response translation between species. A mechanistic mathematically based
approach is used to quantify the dynamics of the immune response. By building the
mathematical models on the basis of quantitative immunological data, it is possible to
describe how these mechanisms may differ within and between species and to draw
quantitative comparisons. Such modeling techniques are commonly used in drug
development (pharmacokinetic/pharmacodynamic modeling) to translate drug re-
sponses between species (25-27) but have yet to be used in vaccine development.

First, we develop a model of IFN-y-producing CD4* T cell dynamics after BCG
vaccination and assess the suitability of the model structure for predicting responses by
calibrating the model to the data (analysis 1). We investigate the impact of the human
and macaque population covariates to explain the within-population variation in
responses, which our previous analysis on humans (28) showed can have a substantial
impact on the magnitude of the response (analysis 2). We then test which calibrated
macaque models best predict human IFN-vy responses (analysis 3). Finally, we use the
calibrated mathematical models for macaque and human subpopulations to predict
the dynamics of the constituent T cell populations over time (analysis 4).

RESULTS

Analysis 1. Calibration of the model to IFN-y data and exploration of model
predictions for macaques and humans separately. Our mathematical model repre-

senting the immune response dynamics of two CD4* T cell populations secreting IFN-y
is diagramed in Fig. 1. The estimated parameter values for both macaques and humans
can be found in Table 1. The visual predictive check (VPC) plots in Fig. 2 show that the
ranges for macaques and humans in the model simulation cover the empirical data,
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FIG 1 (A) Schematic of the mathematical model representing the immune response dynamics of two CD4* T cell populations secreting
IFN-v. (B) Depiction of the changes in the recruitment rate of transitional effector memory cells (8) over time. (C) Key model parameters.
Equations may be found in the supplemental material.

indicating that our model yields a good representation of the empirical data. Further
diagnostic plots and model prediction plots can be found in Fig. S3 to S7 in the
supplemental material.

Analysis 2. Population covariate impact on within-population variation in model
parameter estimates. We found two covariates to be important: stratifying macaques
by colony and humans by baseline BCG status reduced the within-population variation
in the initial transitional effector memory cell count (TEM,) for macaques, TEM, for
humans, and the human gamma probability density function (PDF) multiplier and scale
parameters (parameters L and h) (Table 1; see also Tables S7 to S13 and Fig. S8 to S12
in the supplemental material). The VPC and further diagnostic plots for the subpopu-
lation models show that the model describes the data adequately (see Fig. S13 to S18
in the supplemental material). Accounting for the population covariates reduced the
Bayesian information criterion (BIC) value significantly, by 73, for humans from that in
analysis 1 (BIC values, 2,779 in analysis 1 and 2,706 in analysis 2 [Table 1]) and decreased
it by 2 for macaques (BIC values, 7,253 in analysis 1 and 7,251 in analysis 2 [Table 1]).
The model-predicted total mean number of IFN-y-secreting cells (transitional effector
memory [TEM] cells plus central memory [CM] cells) over time is shown in Fig. 3 as a
visual assessment of the goodness of fit of the model to the mean empirical data. Also,
Fig. S19 and S20 in the supplemental material show the 10th to 90th percentiles of
model predictions after accounting for within-population variation.

Analysis 3. Which macaque subpopulations best predicted immune responses
in different human subpopulations? The calibrated model for Indonesian cynomol-
gus macaques from analysis 2 provided the lowest BIC values for the human population
that was BCG naive at baseline (BCG: N), and that for Indian rhesus macaques provided
the second lowest BIC value (1,357 and 1,391, respectively [Fig. 4; see also Fig. S20 to
S27 in the supplemental material]). The calibrated model for Mauritian cynomolgus
macaques best represented the human population that had already been BCG vacci-
nated prior to baseline (BCG: Y) (BIC value, 1,608 [Fig. 4; also Fig. S21 to S28]).

Analysis 4. Predicted numbers of TEM and resting CM cells over time. Figure 5
shows the model-predicted numbers of total (transitional effector memory and central
memory) cells secreting IFN-y, over time, for the mean macaque and human subpop-
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TABLE 1 Population mean parameter estimates for analyses 1 and 2 for macaques and humans®

Macaques Humans
All (analysis 1) Covariates (analysis 2) All (analysis 1) Covariates (analysis 2)
Parameter or statistic Value RSE (%) Subpop. Value RSE (%) Value RSE (%) Subpop. Value RSE (%)
Parameter (unit)
Initial no. of TEM cells (TEM,) (cells) (E) 20.7 29 Chi 029 39* 599 17 BCG:Y 149 15
Maur 65.1 24
Indo 23.2 41* BCG: N 30.6 14
R: Ind 15.7 20
Gamma PDF curve multiplier (L) (scalar) (E) 1,170 13 Chi 617 43* 1,490 14 BCG: Y 3,240 14
Maur 1,460 28
Indo 1,100 45* BCG: N 747 14
R: Ind 1,250 14
Gamma PDF curve shape parameter (k) (scalar) (E)  3.31 5 Chi 43 11 1.45 9 1.55 16
Maur 3.15 10
Indo 3 20
R: Ind 353 6
Gamma PDF curve scale parameter (h) (scalar) (E) 15 8 138 7 184 18 BCG:Y 217 24
BCG:N 152  34*
Initial no. of CM cells (CM,) (cells) (F) 0 0 0 0
TEM cell terminal mortality rate (wey) (/day) (F) 0.1 0.1 0.083 0.083
Proportion of TEM cells that die (p) (proportion) (F) 0.925 0.925 0.925 0.925
Within-population variation (WPV) (%)
Initial TEM cell population (TEM,) 130 25 41 27 107 15 52 19
Gamma PDF curve multiplier (L) 96 13 90 13 95 10 61 12
Gamma PDF curve shape parameter (k) 24 24 23 24 25 28 32 33*
Gamma PDF curve scale parameter (h) 19 21 21 20 58 25 43 37*
Goodness-of-fit statistics
—2LL 7,209 7,183 2,738 2,653
BIC 7,253 7,251 2,779 2,706

aFor details on the parameter-covariate relationship, see the supplemental material. F, fixed; E, estimate; TEM, transitional effector memory; CM, central memory; PDF,
probability density function; RSE, relative standard error; subpop., subpopulation; Chi, Chinese cynomolgus macaques; Maur, Mauritian cynomolgus macaques; Indo,
Indonesian cynomolgus macaques; R: Ind, Indian rhesus macaques; BCG: Y, human participants who were BCG vaccinated at baseline; BCG: N, human participants
who were BCG naive at baseline; —2LL, —2 log likelihood; BIC, Bayesian information criteria. RSEs of =30% are marked with asterisks.

ulation data. These model dynamics present a prediction for the phenotypic behavior
of CD4™ T cells and the ways in which they differ between species and subpopulations,
which can be validated experimentally.

DISCUSSION

In our proof-of-concept study, we applied novel immunostimulation/immunody-
namic (IS/ID) modeling to BCG immune response data and found that the macaque
colony and the human baseline BCG status were significantly (P < 0.05) associated with
the BCG-induced IFN-y immune response. No other population covariates were signif-
icantly associated. For baseline BCG-naive humans, Indonesian cynomolgus macaques
and Indian rhesus macaques best predicted the immune response. For baseline BCG-
vaccinated humans, Mauritian cynomolgus macaques best predicted the immune
response.

A key strength of this proof-of-concept study was the application of mathematical
modeling techniques to vaccine data that are rarely explored quantitatively. We used
established robust quantitative and statistical frameworks (compartmental mathemat-
ical models with nonlinear mixed-effects modeling [NLMEM] [29]) to explore the
complex biological dynamics, giving an early example of the utility of 1S/ID modeling.
The biological data we used were standardized between species, with respect to time
points and laboratory techniques, which allowed a direct comparison of the immune
responses to BCG vaccination.

Although our model was a highly simplified version of the complexities of the
immune system (see the discussion in the supplemental material for the main assump-
tions and their impact [Table S14]), analysis 1 showed that the model described the
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FIG 2 VPC plots showing the number of IFN-y SFU per million PMBC, by time (days) for all macaques (A) and all humans (B).
The VPC plot assesses the appropriateness of the proposed mathematical model (Fig. 1) for describing the empirical data by
comparing the data simulated using the model, the population mean parameters, and associated variances (Table 1) to the
empirical data distribution (see the supplemental material for more details). Blue points show empirical data. Pink regions
represent the ranges of the medians of the simulated data for 500 simulations. Blue regions represent the ranges of the 90th
and 10th percentiles of the simulated population data. The green lines link the empirical percentiles (10th, 50th, and 90th).
Dark red regions show where the empirical data fall outside the ranges of the simulated percentiles. The lack of dark red
regions (aside from cases in which data are variable between time points in macaques) indicates that our proposed
mathematical model (Fig. 1) adequately represents the empirical data.

data well. The model was also a good description of the subpopulation data in analysis
2. However, when the model was calibrated to smaller subpopulation sizes (especially
for the Chinese and Indonesian cynomolgus macaques), the estimated model param-
eters were more uncertain than for the larger populations (see the relative standard
error [RSE] values in Table 1). Access to larger data sets on these populations would
increase the certainty of the parameter estimates. Additionally, in analysis 2, our aim
was to establish how population covariates affect the model parameters using a
stepwise addition method. However, as Whittingham et al. point out, there are inherent
drawbacks with such a method, despite its widespread use (30).

By modeling the recruitment rate of transitional effector memory cells by the function
5, we were able to represent the nonlinear stimulation of the CD4 T cell response
following BCG vaccination, allowing comparison of the dynamics of the response
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FIG 3 Total number of T cells secreting IFN-vy (the sum of the number of transitional effector memory
cells and resting central memory cells) over time. Each point represents the mean of the data at a
particular time point. Lines represent model predictions. Model predictions use the estimated subpop-
ulation model parameters from Table 1 for the four macaque colonies and the two human subpopula-
tions with different BCG statuses. (Note the differences in scale between macaques and humans.)

between subpopulations. However, since the recruitment rate of transitional effector
memory cells was not based on biological data and was characterized by a theoretical
shape, it is difficult to make direct biological interpretations of the parameters. To
incorporate a mechanistic stimulation curve in future work, data on the cells involved
in the stimulation response would be required.

The results in this analysis were consistent with previous work, in which we applied
descriptive statistics to the human data (28). In that study, men experienced a higher
baseline IFN-y response (P < 0.1) than women. A similar pattern can be seen in the
current work: the median initial number of transitional effector memory cells (TEM,,) for
men is higher than that of women (Fig. S8 in the supplemental material). Additionally,
the model in analysis 2 is consistent with our previous findings (28) for humans, in
which immune responses were higher in magnitude and were sustained longer for
baseline BCG-vaccinated humans than for baseline BCG-naive humans. Therefore, our
results suggest that BCG revaccination provides a higher and more sustained IFN-y
response than primary vaccination in humans. Finally, our results suggest that there are
differences in BCG response between different colonies of macaques. This is consistent
with work by Langermans et al., who show that rhesus macaques experience a higher
IFN-y response 13 weeks after BCG vaccination than cynomolgus macaques (22),
although the potential effect of the colony on IFN-y response was not highlighted in
that work. Differences in responses across macaque colonies have also been found in
M. tuberculosis challenge studies: Sharpe et al. showed that the AUC,, .k (@area under
the concentration-time curve at 12 weeks) values for IFN-y-secreting CD4 T cells were
significantly higher for Indian rhesus macaques than for Indonesian cynomolgus (21).
Although we do not consider M. tuberculosis challenge in our analysis, these differences
may be important to consider when one is selecting an NHP model for human
mycobacterial immune response.

Our results imply that responses in Indonesian cynomolgus macaques, followed by
those in Indian rhesus macaques, most closely resembled the response in primary-
vaccinated humans determined by enzyme-linked immunospot (ELISPOT) assays. How-
ever, we approach this conclusion with caution, since the sample sizes of the macaque
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FIG 4 Mean immune responses of the four macaque colonies and of human subpopulations that were
BCG vaccinated (BCG: Y) or BCG naive (BCG: N) at baseline. Empirical data for human responses are
represented by black points (individual data) and red triangles (means). Lines show model predictions.
The tables show the results of assessments of the ability of the calibrated macaque colony mathematical
model parameters (Table 1, analysis 2) to describe the data for the human BCG: Y and BCG: N
subpopulations. Bayesian information criterion (BIC) values are listed in ranked order, from lowest to
highest. Asterisks indicate that all differences in BIC values are significant (a BIC value difference of >6
is considered significant [46]). cyn., cynomolgus.

colony subpopulations were variable. With these smaller sample sizes, model param-
eterization and validation are less reliable than for larger groups. More data on the
colonies with small sample sizes should be collected and remodeled to verify our
results. Nevertheless, the large sample size obtained for the Indian rhesus macaques
was collated over decades of experimentation. Conventional vaccine studies in ma-
caques are often limited to 6 to 9 animals per group due to space and cost. These
smaller macaque experiments are then used to inform clinical vaccine trials, making our
small sample sizes more representative of current vaccine development than the large
rhesus macaque data set.

It should be noted that in terms of BCG vaccination history, the baseline BCG-naive
human subpopulation is the most comparable to all of the macaque subpopulations.
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FIG 5 Mean IFN-y response data (black points) and model predictions for the total number of T cells
secreting IFN-vy (black lines), the number of transitional effector memory (TEM) cells (green lines), and the
number of resting central memory (CM) cells (orange lines) over time. Model predictions use the
estimated subpopulation model parameters from Table 1 for the four macaque colonies and the two
human subpopulations with different BCG statuses. (Note the differences in scale between macaques
and humans.)

Mauritian cynomolgus macaques mounted the highest response to a primary BCG
vaccination, and therefore, their data most closely resemble those for revaccination in
humans. However, it is apparent from Fig. 4 that the BCG-vaccinated humans experi-
enced a considerably higher magnitude of responses than all of the macaque sub-
populations (which were BCG naive at baseline). This suggests that the immune
response to an antigen encountered for the first time is lower and slower than the
response induced to the same antigen on subsequent occasions (31). Our results
therefore suggest that a revaccinated macaque animal model may be most appropriate
for revaccinated humans. This should be considered in further IS/ID translational
analysis between macaques and humans.

In our analyses, we consider only a UK-based human population. In future evalua-
tions, an analysis similar to that presented here could be carried out on populations
from various geographical locations, since BCG responses have been shown to differ by
geographic location (32). Other population covariates, such as age, may also be
important (8). Additionally, the question of whether this analysis will be appropriate for
other candidate vaccines would benefit from further scrutiny.

Figure 5 explores the dynamics of the constituent T cell populations and provides
insights into how and when memory may be developed—an important consideration
in vaccine regimen design, i.e., the timing of revaccination and differences between
subpopulations. However, we do not currently have data to support these dynamics, so
future work could be undertaken using flow cytometry to characterize the relative
numbers of complex phenotypic cell types over time and thus to inform models that
can provide a better understanding of T-cell dynamics.

In this analysis, we used solely IFN-+y as a proxy for BCG vaccine immunogenicity (33)
and did not consider BCG efficacy measures explicitly. We understand that in order to
develop a vaccine, both immunogenicity and efficacy are vital considerations. There-
fore, in predicting which macaque model best represents the human vaccine response,
vaccine efficacy cannot be ignored. However, to incorporate efficacy would require
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more-complex models and data than those we present here. As more immunological
information or functional parameters become available, I1S/ID modeling methods will
allow us to easily integrate new information, e.g., on cytokines, cells, or (for efficacy
measures) bacterial counts. Thus, we will be able to make decisions on the best NHP
model to use based on a more complete vaccine performance framework.

Conclusion. This work suggests that the immune responses of different human
subpopulations may be best modeled by different macaque colonies, and it demon-
strates the potential utility of immunostimulation/immunodynamic modeling to accel-
erate the development of TB vaccines.

MATERIALS AND METHODS

Data. Data on the number of purified protein derivative (PPD)-stimulated CD4+ T cells secreting
IFN-v (in spot forming units [SFU] per 1 million peripheral blood mononuclear cells [PBMC]), measured
by an ex vivo IFN-y ELISPOT assay, were available for 55 humans and 81 macaques. BCG vaccination was
given on day zero, and ELISPOT measurements were performed up to 140 days after vaccination. The
details of the human data set and laboratory techniques have been published previously (28). Briefly,
healthy UK volunteers aged 18 to 55 years, either with no history of BCG vaccination or previously
immunized with BCG, were given 100 ul of BCG, administered intradermally in the upper arm. Immune
responses to BCG were measured using an IFN-y ELISPOT assay at weeks 1, 4, 8, and 24. For demo-
graphics and laboratory details, see the supplemental material (Table S1; Fig. S1). All macaque studies
were conducted in accordance with the Home Office (UK) Code of Practice for the Housing and Care of
Animals Used in Scientific Procedures (1989) and the Guidelines on Primate Accommodation, Care and
Use of the National Committee for Refinement, Reduction and Replacement (NC3Rs), issued in August
2006. All animal procedures were approved by the Public Health England, Porton Down Ethical Review
Committee, and were authorized under an appropriate UK Home Office project license. Vaccination,
sample collection procedures, and immunological methods are described in full in references 19, 23, 34,
and 35). All macaques were demonstrated to be mycobacterially naive prior to BCG vaccination and were
between the ages of 3 and 14 years. The human population covariates were baseline (before vaccination
at time zero) BCG vaccination status (either BCG vaccinated [BCG: Y] or BCG naive [BCG: N] at baseline),
years since BCG vaccination (grouped as 1 to 9, 10 to 19, or 20 to 29 years, or “never”), gender, and
monocyte-to-lymphocyte cell count ratio (ML ratio). The macaque population covariate was the colony
of origin (Indian rhesus macaques; for cynomolgus macaques, Chinese, Mauritian, or Indonesian [see
Table S2 and Fig. S2 in the supplemental material]). Rhesus macaques and cynomolgus macaques of the
Indonesian and Mauritian genotypes were obtained from established UK breeding colonies. Chinese
cynomolgus macaques were imported from a Home Office-approved breeding colony in China.

Mathematical IS/ID model. An ordinary differential-equation model was used to describe the IFN-y
response dynamics of two CD4* T cell populations, transitional effector memory (36) and resting
“central” memory cells, which are short- and long-lived, respectively (37-39) (Fig. 1). Briefly, cells were
recruited into the transitional effector memory compartment at rate 8. A proportion (p) of transitional
effector memory cells underwent apoptosis at rate g, and the remaining proportion (1 — p)
transitioned to a central memory phenotype, where they stayed for the duration of the model run (170
days) (Fig. 1). Central memory cells are quiescent in the host until stimulated by an antigen (31); however,
we considered them here to contribute to IFN-y production, since the ELISPOT assay uses PPD to
stimulate all potentially IFN-y-secreting CD4* T cells. To reflect this, the IFN-y immune response
predicted by the mathematical model was the sum of the number of transitional effector memory and
central memory cell populations over time. We assumed that any nonzero responses at baseline were
existing memory responses that had immediately reverted to the transitional effector memory pheno-
type in the presence of an antigen. Therefore, the initial transitional effector memory population (TEM,)
was positive for those subjects. We assumed that the increases in the number of transitional effector
memory and central memory cells did not occur immediately after vaccination but gradually increased
over time due to immune processes such as vaccine antigen trafficking and presentation (31, 40). This
increase then subsided, as T cell stimulation was assumed not to last indefinitely (31, 40-43). The
recruitment of transitional effector memory cells over time was controlled in the model using the re-
cruitment rate §, which was a peaked curve specified using a gamma probability density function (PDF)
distribution with parameters L, k, and h (Fig. 1).

Analyses. (i) Analysis 1. Calibration of the model to IFN-y data and exploration of model
predictions for macaques and humans separately. In analysis 1, the model was calibrated to the
macaque and human data separately to quantify the dynamics of the IFN-vy response for each species.
To do this, three parameters (the components of function &: L, k, and h [Fig. 1]) and TEM,, the initial
number of transitional effector memory cells, were estimated using the established method of nonlinear
mixed effects modeling (NLMEM) (29) using the software Monolix v. 4.3.3 (44). Briefly, NLMEM uses
maximum likelihood methods to estimate the model parameters that best describe the population mean
response and the associated parameter variance which accounts for the within-population variation (for
more details see reference 45). Evaluation of the model’s ability to describe the data was conducted
primarily by simulation-based, visual predictive check (VPC) plots (see the supplemental material for
details); assessment of the precision of the estimated parameters using the relative standard error (RSE)
and a goodness of fit measure (Bayesian Information Criteria [BIC]). A difference in BIC of >6 was
considered a significant (P value < 0.05) effect (46) and a parameter RSE of <30% was considered a
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well-estimated parameter. The proportion of transitional effector memory cells that die (p) was assumed
to be 0.925, as supported by literature (38) (Fig. 1; Table 1) and the parameter governing the mortality
rate of transitional effector memory cells, ., was fixed after a scenario analysis was conducted (Table S3).
Further tests required to establish the NLMEM framework are outlined in Tables S4 to S6.

(ii) Analysis 2. Population covariate impact on within-population variation in model parameter

estimates. In analysis 2, we explored whether population covariates (i.e., subpopulations, such as
different colonies) could reduce the within-population variation of the estimated parameters from that
in analysis 1, and we thus established subpopulation models for macaques and humans separately. To
do this, covariate-parameter relationships were tested and selected based on a forward-addition strategy
and likelihood ratio test method (see the supplemental material for details). Once the appropriate
covariate-parameter relationship was found, the subpopulation model was calibrated to the data and the
subpopulation parameters estimated. We observed the change in the BIC values and within-population
variation of model parameters from analysis 1 to analysis 2 as a result of accounting for the population
covariates.

(iii) Analysis 3. Which macaque subpopulations best predicted immune responses in different

human subpopulations? To evaluate which macaque subpopulations best predicted the immune
responses in different human subpopulations, estimated parameters and parameter variances from the
macaque subpopulation model (analysis 2) were fit to the human data (or human subpopulation data
[analysis 2]). The subpopulation of macaques that best described the human data was defined as the
model with the lowest BIC.

(iv) Analysis 4. Predicted numbers of TEM and resting CM cells over time. The calibrated

mathematical model was then used to predict the number of transitional effector memory (36) and
resting central memory cells over time. These dynamics were not measured empirically.

SUPPLEMENTAL MATERIAL

CV1.00525-16.

SUPPLEMENTAL FILE 1, PDF file, 3.6 MB.
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Supplementary Material for paper 2

The following is the published supplementary material referenced in paper 2. All references

to the below tables and Figures are preceded with the suffix “S” in the paper.

Additional Methods

Human and macaque demographics and IFN-y response data longitudinal plots

(The following text on human data and laboratory methods are text taken from my paper 1 [111])

Human demographic data and IFN-y longitudinal plot stratified by BCG status can be found in

Table S1 and Figure S1, respectively.

Total population 55

Age; median (range) 25 (18, 55)
Baseline-BCG status BCG: N= 30, BCG: Y=25
Gender M=19, F=36

Time since BCG vaccination

1t09 7(M=2)
10to 19 10 (M =6)
20to 29 8 (M=3)
Never 30 (M =8)

ML ratio; median (range) 0.26 (0.07, 0.56)

Table S1. Human demographics

The available data were on HIV negative and Mtb. naive participants (see [242, 319, 320] for
HIV and Mtb. latency testing procedures). Data on haematological parameters were based on
routine laboratory haematology testing at baseline and only those participants with values
within normal limits were included in clinical trials. IFN-y response was measured using a
standardized ELISPOT assay which quantifies IFN-y secreting CD4+ T cells as spot forming units
(SFU) per million PBMCs using PPD as a stimulant. The same ELISPOT method including plates,

antibody kits, antigens, developing reagents, washing method, ELISPOT reader and ELISPOT
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counting method were used in all the data collection. As these BCG studies were conducted
as part of a series of Phase | clinical trials with MVAS85A all lab protocols and lab reagents were
harmonized as far as possible. For the IFN-y ELISPOT assay 300,000 PMBC per well were
performed in duplicate and the results were averaged. Incubation time was 18 hours. For the

exact laboratory methodology see [242, 319, 320].

The covariates included in this analysis were gender, BCG vaccination history at baseline and
baseline ML ratio. For details on how BCG-vaccination history was determined see original
trial methods [242, 319, 320]. BCG vaccination history was categorised into “never” and 10-
year time-periods since vaccination with the reference group as 1 to 9 years since BCG
vaccination. Age was not included as a covariate as it was colinear with BCG vaccination

history.

For macaques, colony demographics can be found in Table S2 and the IFN-y longitudinal plot

stratified by colony can be found in Figure S2.

Species (% of total | Colony (% of total
animals) animals)

Rhesus, n=58 (72%) India, n=58 (72%)

Mauritian, n=12

(15%)
Cynomolgus, n=23

(28%) Chinese, n=6 (8%)

Indonesian, n=5 (6%)

Table S2. Macaque demographics
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Figure S1. Longitudinal IFN-y responses for analysis for 55 human participants. Baseline-BCG vaccinated (A) and baseline-BCG naive (B). The bold line represents the
median values of each group at each time point. X-axis is not to scale. Abbreviations: IFN-y = Interferon gamma ; SFU = spot forming unit ; PBMC = peripheral blood
mononuclear cells
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Figure S2. Number of IFN-y secreting CD4+ T cells per million PBMCs over time as measured by the ELISPOT assay in macaques. Data is shown for each colony
separately, Chinese, Indonesian and Mauritian cynomolgus macaques and Indian rhesus macaques. The red line indicates median responses.
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Mathematical vaccine Immunostimulation/Immunodynamic (I1S/ID) Model Equations

The equations for the I1S/ID two-compartmental in Figure 1 in paper 2 were as follows:

dTEM
dt 6 — purgmTEM — (1 — p)urenTEM (1)
dCM
T (1 —=p)urenTEM (2)

Where TEM represents the transitional effector memory (TEM) cell population, CM, the
resting central memory (CM) cell population, t, the time in days and parameters outlined in

Figure 1. The equation for the recruitment of the TEM cell population, §, is:

(1/ h)k *etime) (3)

§=1Lx Ty * time ®~1 « e_(h

Where L, h and k are the gamma PDF parameters outlined in Figure 1.

Analyses

Analysis 1: Model calibration to IFN-y data and exploration of model predictions for

macaque and humans, separately

Scenario analysis for parameter urgy (per day)

Table S3 summarises the scenario analysis of parameter prem in macaques and humans.

Macaque Human

Param UrgMm

(per day) BIC BIC

0.5 7269.01 2825.22
0.25 7259.65 2803.31
0.167 7254.20 2791.84
0.125 7248.89 2783.49
0.1 7251.55 2778.53
0.083 7254.49 2780.97
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0.071 7259.81 2780.80
0.063 7263.44 2782.09
0.056 7264.81 2785.31
0.05 7271.37 2792.95
0.045 7276.46 2798.21

Table S3. Scenario analysis for parameter prem in macaques and humans

In macaques the value of 0.13 for prem resulted in the lowest BIC value, however there was
no significant difference in the BIC for the values prem from 0.167 to 0.083 (shaded) (see [321]
for significance associated with difference of BIC values). Similarly, in humans the value of 0.1
for urem resulted in the lowest BIC value, with no significant difference between values of 0.1

to 0.0625 (shaded).

Residual Error (RE) Model
Table S4 outlines the results of the RE model comparison for macaques and humans
separately using BIC as an assessment of fit. For a detailed description of the residual error in

NLMEM and how it is incorporated in Monolix, see Appendix B.

Model Macaque | Human
Error model Description
BIC BIC
Constant Y =f+a*e 7753.10 | 2895.72
Proportional | Y = f+b*f*e - 2780.65
Combined Y = f+(a+b*f)*e | 7248.89 | 2776.66

Table S4. Results of comparing residual error models using Monolix in-built tool. Definitions: Y =
observation, f = model prediction, a,b= scalars to be determined during parameter estimation process, e =
Normally distributed random variable N(0,1).

The BIC for the human residual error model indicate that a combined model best represented
the residual error in the data (as the BIC value was lower), however the proportional or
combined model were not significantly different with respect to calibration to the data (the
difference between the BIC value was <6, which according to Raftery [321], is a non-significant

difference).
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The same comparisons were made for the macaque dataset, however when a proportional
RE model (i.e. without an additive term) was applied, the parameter TEMo was poorly
estimated, potentially due to a lack of data at time=0. Therefore, the BIC was compared
between only the constant and combined RE models. As the BIC value as a result of calibration
of the model to the macaque data with a combined RE model was considerably lower than

the BIC value with the additive model (7248 vs. 7753), the combined RE model was chosen.

The estimated values for the residual error model for macaque and human can be found in

Table S6.

Test for random effects correlations

It is important to test if the random effects (the variation) of the model parameters are co-
dependent, i.e. correlated. | tested if any combination of parameters were correlated across
the population with the inbuilt Monolix tool. Results for the pairwise test for random effects

correlations for human and macaques are shown in Table S5.

Macaque Human
Diff to | Decision Diff to
Combination “none” | to “none” Decision
tested BIC | (BIC) include BIC (BIC) toinclude
None 7253 | - - 2779 - -
8.81
TEMo & L 7252 | 0.94 No 2788 | (higher) | No
3.21 2.62
TEMo & k 7256 | (higher) | No 2782 | (higher) | No
51
TEMo & h 7258 | (higher) | No 2778 0.95 No
5.37
L&k 7256 | 2.2 No 2784 (higher) | No
3.73
L&h 7257 | (higher) | No 2778 1.05 No
8.17
k&h 7218 | 35.6 No* 2787 (higher) | No

Table S5. Tests for random effects correlations for macaques and humans
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All BIC values in Table S5 were non-significantly different from no random effects correlations
in the macaque population except for when parameters k and h were correlated. *However,
applying this correlation meant that some parameters could not be accurately estimated
(RSE% was NA) so it was not included. In the human population, all BIC values were either
non-significantly lower, or higher than the model with no random effects correlations, so no

correlations were considered necessary to apply in further analyses.

Analysis 2: Population covariate impact on within-population variation in model parameter

estimates

To establish if there were significant differences in response dynamics by population
covariate, | ran regression analysis on the individual model parameter estimates (resulting
from analysis 1) with population covariates as the predictors. This was conducted in R [322]
using graphical plots and non-parametric rank tests for each species separately. The non-
parametric rank tests conducted to establish parameter-covariate relationships are as follows.
For categorical covariates with 2 levels (BCG status and gender in humans) the Wilcoxon test
was applied. For categorical covariates with 2+ categories (BCG vaccination history in human
and colony in macaques) a kruskal-Walllis followed by a Dunn post-hoc test with a Bonferroni
correction was applied. For continuous covariate, ML ratio, linear regression was applied. If a
significant association (p-value<0.05) was found between model parameters and a covariate,
a forward stepwise addition strategy was used in Monolix to establish a subpopulation-model.
Here, parameter-covariate relationships were added to the subpopulation -model one at a
time and the likelihood ratio test (LRT) was used to assess if the addition improved the fit. The
parameter-covariate relationship that provided the best fit (a significant decrease in the -2LL
using the LRT) provided the subpopulation model for the results of analysis 2. The resulting
subpopulation model estimated parameter values were reported in the results for analysis 2,

in paper 2.

The parameter-covariate relationship was multiplicative, for example, the population
estimation of the initial transitional effector memory cells (TEMo) in accounting for BCG status

was modelled by TEMosce:n=TEMoscc:y*e®, where TEMogce:y is the value for TEMg for those in
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the BCG:Y subpopulation (the reference subpopulation) and a is the exponentiated scalar of
this value to represent changes in TEMg for those in the BCG:Y subpopulation. The covariate
effects (a’s) are estimated in the NLMEM analysis alongside the associated p-values, but the
value for the subpopulation parameter (left hand side of above equation) is reported in the

results of paper 2.

Analysis 3: Which macaque subpopulations best predicted immune responses in different

human subpopulations?

In analysis 3, my aim was to calibrate the macaque estimated model parameters stratified by
colony (analysis 2, Table 1) to the human subpopulation (stratified by BCG status) response
data to establish which macaque subpopulation model parameters were the best description
of the human subpopulation data. Here, the resulting BIC value was used to assess the
goodness of fit of the calibration of the macaque subpopulation estimated model parameter
values and to compare between macaque subpopulations. To achieve the calibration, my aim
was to fix all parameter values to those macaque subpopulation values in analysis 2, Table 1
and record the resulting BIC value. However, to achieve the calibration in Monolix, it was
necessary to provide one parameter to estimate (as NLMEM needs something to estimate!).
To get around this, all macaque subpopulation model parameters were fixed at their
estimated value (table 1) except for parameter L, which was allowed to vary within the range
[(estimated value of L)-1, (estimated value of L)+1], which is small compared to the magnitude
of the estimated values of parameter L and thus, would not considered substantially different
from the estimated value of L for each macaque subpopulation in Table 1. The BIC values for

this analysis are reported in Figure 4 in paper 2.

Additional Results

Analysis 1: Model calibration to IFN-y data and exploration of model predictions for

macaque and humans, separately

Estimates for the residual error model parameters
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Macaque Human

Covariate Covariate
All lysis 1 All lysis 1
(analysis 1) (analysis 2) (analysis 1) (analysis 2)
Estimated | RSE | Estimated | RSE | Estimated | RSE | Estimated | RSE
Value (%) | Value (%) | Value (%) | Value (%)
Additive
contribution 5.37 90 |5.51 17 3.79 65 6.04 23
(cells)
Proportional
contribution
(% of | 61 10 61 9 42 10 39 10
predicted
response)

Table S6. Residual error model estimated parameters for a combined residual error model for macaques and
humans.

The estimates for the combined residual error model parameters for both macaques and

humans for analysis 1 and 2 are in Table S6.

Diagnostic plots
Key diagnostic plots were used to assess the model’s ability to accurately represent the data.
These were the Visual Predictive Check (VPC) plot and model prediction distribution plots. For

a description of these diagnostic plots, see Appendix B.

The VPC plot in paper 2 (Figure 2) showed a good fit of the model to the data for humans and
macaques separately (analysis 1). Model prediction versus response data were also plotted
to show the how the model predictions compare to the empirical data. Figure S3 below shows
the that model predicted (total) cells secreting IFN-y fits through the population median data

well. Additional diagnostic plots for analysis 1 can be found in Appendix C Figures S4-S7.
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Figure S3. Data (black points), predicted total number of T cells secreting IFN-y (black line), predicted number of
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(orange line), over time. Model predictions use the estimated parameters from Table 1 for the A) macaque and B)
human populations.
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Analysis 2: Population covariate impact on within-population variation in model parameter estimates

Non-parametric rank test in R on potential differences on the individual macaque estimated model parameter values (from Analysis 1) by
macaque population covariate

Macaque population covariate: Colony

Table S7 and Figure S8 show significant differences on the individual macaque estimated parameters (estimated in analysis 1) TEMy, L and k between

the Chinese, Mauritian, Indonesian cynomolgus and Indian rhesus macaques. The colony covariate will be added to the covariate model for macaques

in analysis 2.
TEMo L
Cyn: Chi | Rhe:Ind | Cyn: Cyn: Rhe: Ind Cyn: Indo
Indo Chi
Rhe:Ind | NS Rhe: Ind NS
Cyn:Indo | S NS Cyn:Indo | NS NS
Cyn: S S S Cyn: Maur | NS NS S
Maur
k h
Cyn: Chi | Rhe:Ind | Cyn: Cyn: Rhe: Ind Cyn: Indo
Indo Chi
Rhe:Ind | NS Rhe: Ind NS
Cyn:Indo | NS NS Cyn:Indo | NS NS
Cyn: S NS NS Cyn: Maur | NS NS NS
Maur

Table S7. p-value results of applying the non-parametric Kruskal-Wallis and post-hoc Dunn test (for more than two groups) with a Bonferroni correction on individual
macaque estimated parameters from analysis 1 with colony as the predictor. Abbreviations: Cyn: chi = cynomolgus macaques of Chinese origin, Cyn: Maur = cynomolgus
macaques of Mauritian origin, Cyn: Indo= cynomolgus macaques of Indonesian origian, Rhe: Ind = Rhesus macaques of Indian origin. NS equates to non-significant
(adjusted p-value>0.008=0.05/6), S equates to significant (adjusted p-value<0.008=0.05/6).
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Figure S8. Boxplot of individual macaque estimated parameters from analysis 1 by macaque colony
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Forward stepwise addition method for selecting macaque covariate model

To select which parameters in the model should be indexed by macaque colony covariate, a forward selection method was adopted. Here, the

covariate was added to one model parameter seperately and the -2LL recorded (for example, in Table S8, parameter TEMg). The parameter

which provides the lowest -2LL is this indexed alongside a second model parameter (e.g. TEMo+L and all other pairwise parameters, seperately,

e.g. TEMo+k and TEMo+h) and the resulting -2LL compared using the likelihood ratio test (chi*2 distribution with the appropriate degrees of

freedom). This is continued until the model with the most parameters indexed on the colony covariate, with significantly lower -2LL is found.

The results of Table S8 show that indexing parameters TEMy, L and k on macaque colony provide the lowest -2LL. The estimated values for each

of these parameters for each macaque colony can be found in Table 1 of paper 2.

Model # Parameter(s) indexed | -2LL Diff in -2LL (*from | 0.05 level significant? (Chi*2
on colony covariate Model # 0) test 4 d.f.: crit val = 9.48, 8 d.f.

crit val = 15.5, 12 d.f: crit. Val =
19.68)

0 None 7209

1 TEMo 7189.96 19.04 Yes (4 d.f.)

2 L 7206.53 3 No (4 d.f.)

3 k 7209.26 +0.26 No (4 d.f.)

4 h 7222.45 +13.45 No (4 d.f.)

3 TEMo+L 7183.75 25.25 Yes (8 d.f.)

4 TEMo+k 7183.89 25.11 Yes (8 d.f.)

5 TEMo+h 7199.01 9.99 No (8 d.f.)

5 TEMo+L+k 7177.55  31.45 | Yes (12 d.f.)

Table S8. Forward stepwise addition method for selecting a subpopulation-model for colony in macaques. -2LL values are taken from running in Monolix with colony
applied to the parameter. Difference in -2LL from the full model (model number 0) is calculated and significance is assessed by a chi squared distribution for the
appropriate degree of freedom.
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Non-parametric rank test in R on potential differences on the individual human estimated model parameter values (from Analysis 1) by human
population covariate

Human population covariate: Gender

Table S9 and Figure S9 show no significant differences on the individual humans estimated parameters (estimated in analysis 1) associated

with gender. As a result, stratification of model parameters by gender was not considered further in this work.

Parameter Wilcoxon test p-value
TEMo 0.45
L 0.26
k 0.31
h 0.14

Table S9. Results of applying the Wilcoxon test on individual human estimated parameters from analysis 1 with gender as the predictor
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Figure S9. Boxplot of individual human estimated parameters from analysis 1 by gender, F=Female, M=Male
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Human population covariate: ML Ratio

Table S10 and Figure S10 show no significant differences on the individual humans estimated parameters (estimated in analysis 1) associated

with ML ratio. As a result, stratification of model parameters by ML ratio was not considered further in this work.

Parameter Linear regression slope
parameter p-value

TEMpo 0.70

L 0.69

k 0.33

h 0.24

Table S10. Results of applying linear regression on individual human estimated parameters from analysis 1 with ML ratio as the predictor
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Figure S10. Scatterplots of individual human estimated parameters from analysis 1 against ML ratio
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Human population covariate: BCG History

Table S11 and Figure S11 show that there is a significant difference on the individual estimated parameters between the “never” group, and the

1-9, 10-19 and 20-29 years since BCG vaccination groups, but not between the 1-9, 10-19 and 20-29 years since BCG vaccination groups. As such,

these groups are considered as “BCG status”, where 1+ years since BCG vaccination groups are aggregated into a BCG:Y group and the “never”,

BCG:N.
TEMo L
Never 10-19yrs | 1-9yrs Never 10-19 yrs | 1-9yrs
10-19 yrs S 10-19yrs | S
1-9yrs S NS 1-9yrs S NS
20-29yrs | S NS NS 20-29yrs | S NS NS
k h
Never 10-19 yrs 1-9yrs Never 10-19 yrs | 1-9yrs
10-19 yrs NS 10-19 yrs NS
1-9yrs NS NS 1-9yrs NS NS
20-29yrs | NS NS NS 20-29yrs | NS NS NS

Table S11. p-value results of applying the non-parametric Kruskal-Wallis and post-hoc Dunn test (for more than two groups) with a Bonferroni correction on individual
human estimated parameters from analysis 1 with BCG history as the predictor. NS equates to non-significant (adjusted p-value>0.008=0.05/6), S equates to significant
(adjusted p-value<0.008=0.05/6).
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Figure S11. Boxplot of individual human estimated parameters from analysis 1 by BCG history
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Human population covariate: BCG Status

As BCG status significantly impacted the individual human estimated parameters (Table S12 and Figure S12), it will be used to stratify

estimated model parameters (Table S12, Figure S12).

Parameter | Wilcoxon test p-
value

TEMpo 2x10°10

L 9.6x107°

k 0.31

h 0.13

Table S12. Results of applying the Wilcoxon test on individual human estimated parameters from analysis 1 with BCG status as the predictor
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Figure S12. Boxplot of individual human estimated parameters from analysis 1 by BCG status
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Forward stepwise addition method for selecting human covariate model

The results of Table S13 show that indexing parameters TEMo, L and h on human BCG status provides the lowest significant -2LL. The estimated
values for each of these parameters for baseline BCG-vaccinated and baseline BCG-naive can be found in Table 1 of paper 2.

Model # Parameter(s) -2LL Diff in -2LL (*from | 0.05 level significant? (Chi*2
Model # 0) test 2 d.f.: crit val = 5.99, 4 d.f..

crit val = 9.49, 6 d.f. crit val =
12.59, 8 d.f. crit val = 15.5)

0 None 2738

1 TEMo 2698.00 40 Yes (2 d.f.)

2 L 2697.36 40.64 Yes (2 d.f.)

3 k 2739.45 +1.45 No (2 d.f.)

4 h 2737.22 0.78 No (2 d.f.)

5 L+ TEMo 2665.75 72.25 Yes (4 d.f.)

6 L+h 2694.01 43.99 Yes (4 d.f.)

7 L+k 2696.85 41.15 Yes (4 d.f.)

8 L+TEMo+k 2657.75 80.25 Yes (6 d.f.)

9 L+TEMo+h 2653.96 84.04 Yes (6 d.f.)

10 L+TEMo+h+k 2723.54 | 145 | No (8d.f.)

Table S13. Forward stepwise addition method for selecting a covariate model for BCG status in humans. -2LL values are taken from running in Monolix with BCG status
applied to the parameter. Difference in -2LL from the full model (model number 0) is calculated and significance is assessed by a chi squared distribution for the
appropriate degree of freedom.

Diagnostic plots
Using the estimated model parameter values for the subpopulation models for macaque and humans outlined in Table 1 (i.e. the estimated
model parameters TEMy, L and k, stratified by macaque colony covariate and TEMyg, L and h stratified by human BCG status, provided by the

subpopulation model analysis in Table S8 and S13), the VPC in Figure S13 and S14 show the model fits well to the macaque and human
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subpopulations, respectively. Additional diagnostic plots for the macaque and human subpopulation-models can be found in Appendix C, Figures

S15-S18. The model prediction distribution for the macaque and human subpopulations can be found in Figures S19 and S20, respectively.
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Figure S13. Visual predictive check plots for all colonies of macaque. Points represent the empirical data. Blue regions represent the ranges of the 90" and 10"
percentiles of the simulated populations. The pink region represents the range of the 50" percentile. The green line links the observed percentiles (10", 50" and 90%)
for each time point. Red regions represent where the observed data falls outside the ranges of the simulated percentiles.
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Figure S14. Visual predictive check plots for BCG: N and BCG: Y humans. Points represent the observed data. Blue regions represent the ranges of the 90" and 10t
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Figure S19. Prediction distribution plot for all colonies of macaque. Points represent the empirical data. The bands represent the 10" to 90" percentiles of the
theoretical predictions using the predicted population parameters and associated variation for analysis 2 (Table 1). The black line shows the median total response
prediction.
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Figure S20. Prediction distribution plot for humans by BCG status subpopulation. Points represent the empirical data. The bands represent the 10t to 90" percentiles of
the theoretical predictions using the predicted population parameters and associated variation for analysis 2 (Table 1). The black line shows the median total response
prediction.

125



Analysis 3: Which macaque subpopulations best predicted immune responses in different

human subpopulations?

The results of calibrating the macaque subpopulation estimated model parameter values to
the human subpopulation data are in Figure 4, paper 2. The VPC plots for these calibrations

can be found in Figure S21-S24. Further diagnostic plots can be found in Appendix C Figures
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Figure S21. VPC plots for macaque estimated subpopulation-model parameters fit to the human BCG: Y data
(top) and BCG: N data (bottom) for Chinese cynomolgus macaques. The green line links the observed
percentiles (10", 50" and 90%") for each time point for the human BCG: Y data (top) and BCG: N data (bottom).
Blue regions represent the ranges of the 90'" and 10" percentiles of the simulated populations time-matched
to the observed data points. The pink region represents the range of the 50" percentile. Red regions represent
where the observed data falls outside the ranges of the simulated percentiles.
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Figure S22. VPC plot for macaque estimated subpopulation-model parameters fit to the human BCG: Y data
(top) and BCG: N data (bottom) for Mauritian cynomolgus macaques. The green line links the observed
percentiles (10", 50t" and 90%") for each time point for the human BCG: Y data (top) and BCG: N data (bottom).
Blue regions represent the ranges of the 90'" and 10" percentiles of the simulated populations time-matched
to the observed data points. The pink region represents the range of the 50" percentile. Red regions represent
where the observed data falls outside the ranges of the simulated percentiles.
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Figure S23. VPC plot for macaque estimated subpopulation-model parameters fit to the human BCG: Y data
(top) and BCG: N data (bottom) for Indonesian cynomolgus macaques. The green line links the observed
percentiles (10%", 50" and 90%) for each time point for the human BCG: Y data (top) and BCG: N data (bottom).
Blue regions represent the ranges of the 90" and 10*" percentiles of the simulated populations time-matched
to the observed data points. The pink region represents the range of the 50" percentile. Red regions represent
where the observed data falls outside the ranges of the simulated percentiles.
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Additional Discussion

The main assumptions for the IS/ID model structure used in paper 2 are outlined in Table S14.

IS/ID model assumption

Implications for model

IFN-y responses are not scaled to host body size

The ELISPOT assay readout is conventionally measured per million cells in all species and
as the model represents a systemic response regardless of host blood volume, it was not
necessary to scale the ELISPOT readout to reflect body size. This was an important
assumption in this work, where | translate dynamics directly onto the ELISPOT data in
humans from macaques, however, following from conventional macaque to human

vaccine translation, scaling by body size is not regularly conducted.

CDA4+ T cell stimulation greatly simplified

The immune response to vaccination is a complex network of cells and cytokines behaving
nonlinearly over time. In the Thl response to Mtb. infection (or vaccination), innate and
adaptive cells interact to optimise and maintain a protective response [37]. Very simply,
cytokines secreted by innate cells after infection or vaccination, such as IL-12, work to
stimulate adaptive cells to produce IFN-y that both encourages innate cells to phagocytose
bacteria and produce more IL-12 [66, 323]. As such, a feedback stimulation loop is
established. In addition, to avoid an over-inflammatory response (which is harmful to the
host) cytokines such as IL-10 are produced to regulate and dampen the immune response

[324]. In the model, function 6 is used to represent the delay of T cell initiation due to

If data were available on IL-12 or other cytokines
believed to be important to an immune response to
BCG, It is possible that & could be modelled as a parallel
“innate response” compartmental model. Incorporating
such a model would provide insight into the innate cell
mechanisms and thus strengthen the conclusions drawn

on the T cell dynamics.
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processes such as antigen processing and presentation and the decline of T cell responses
due to depreciation of the required stimulation (creating a “n-shaped” curve). However,
6 neglects the influence of stimulation amplification as a result of cytokine feedback loops,
amongst other co-stimulation factors. As such, 6 is a generalization of the complex
networks required to protect against infection or vaccination and may not be as prolonged

as required to generate a response to vaccination.

Shape of stimulation curve,

The Gamma pdf distribution function fit well for & for the BCG data in the analysis, so no
other functional forms were tested. Although an abstract concept, it is possible that a
different shape may be required if the model was to be applied to different type of vaccine
(i.e. viral vector vaccines (e.g. novel TB vaccine MVA-85A) deliver a rapid “burst” of
transitional effector cells compared to a live replicating vaccines (BCG) [communication,

H. Fletcher]).

Central Memory (CM) cells do not die

The central memory cell population is assumed to be maintained be a constant turnover,
the death rate was omitted from the both the human and mouse model [316]. Although
there is evidence to suggest CD4+ long-term memory cells turnover may diminish with

time [325, 326], this is assumed not affect the time frame of the model.

No initial recruitment into resting memory compartment

The model assumes a linear progression from effector cell to resting memory cell

phenotype [327-329]. However, an alternative model has been suggested, whereby

To incorporate a nonlinear effector-memory pathway
into the model, a recruitment term like 6 would be

added to the memory compartment.
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effector and central memory cells are initiated simultaneously after vaccination [81, 83,
330]. This could be another possibility for the model. The determining factor as to which

pathway is optimal is still not fully understood [44].

Transition and replication of transitional effector cells happens in Lymph node before

entering the blood

The model assumes that the recruited transitional effector cells are former Mtb.-specific
naive CD4+ T cells that have clonally expanded within the lymph node and exited into the
blood stream. Under this assumption, transitional effector cells do not replicate in this
model. The rate of naive CD4+ T cell clonal expansion changes with time dependent on
stimulation from innate processes and antigen presence [44] so could be considered to be

incorporated into 6.

To incorporate replication of transitional effector cells
into the model, a parameter Re would be applied which
would determine the rate at which replication occurs,
dependent on the current transitional effector cell

count.

Table S14. Main assumptions of the model and implications on challenging these assumptions
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Chapter 4. Generation of immune response data to multi-dose of H56+IC31 in
mice for the application of vaccine Immunostimulation/Immunodynamic

(1S/ID) modelling: paper 3

Chapter 4 introduction

The second aim of the thesis was to predict human H-series vaccine IFN-y response using IS/ID
model calibrated to mouse multi-dose IFN-y data and allometric scaling. In order to achieve

this, extensive longitudinal data in mice was required.

Mouse data was used in this chapter as | wanted to be able to translate responses over time
between animal and humans on multiple doses and the majority of H-series dose escalation
work was conducted in mice as is common in vaccine development. However, a review of the
existing H56+IC31 data (generated by SSI), showed a lack of extensive time sampling in
healthy mice, with most data sets measuring immune responses at most three time points
after vaccination, e.g. [217]. This was sufficient for the purpose of testing immunogenicity in
the experiments they were designed for, but would not provide enough information to
provide identifiable model predictions. As a result, we generated the data at LSHTM (see
author contributions below for details of persons involved in the experiment and to what
degree). Again, we chose to use mice as the IFN-y response mechanics are thought not to
differ between mouse and human [189] and they could be housed at LSHTM for the
experiment at a cheaper cost than an alternative animal model (e.g. macaque). The design of
the experiment was developed to provide adequate temporal information on the IFN-y
response dynamics to provide an identifiable calibration of the IS/ID model. The logistics and
resources required to carry out the experiment were managed by experimental PI, Dr. Helen
Fletcher. The experiment was designed to match a subset of the data from human clinical
trials outlined in [222, 232] where H56+IC31 or H1+IC31 was given in a two-vaccination
regimen to healthy, BCG-vaccinated participants (see chapter 5, paper 4). As such, two
vaccinations of H56+IC31 were given to healthy mice, however the mice did not receive BCG
vaccination. This was due to evidence that suggests the time course required to generate a

sufficient BCG immune response in mice equivalent to humans, was too long to complete in
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the time scale of the thesis (personal communication, Dr Thomas Evans). Whilst it is possible
that this omission might alter the magnitude of response in mice, we hypothesized it would
not affect the response dynamics. The time scale used for the vaccinations was taken from
previous pre-clinical experiments conducted by colleagues at SSI [217, 220, 223, 331]. The
dose range was chosen to be wide (0.1-15 mg H56 (over 2 log increase)) based on previous
work on H-series dose response curves which resulted in notable “bounds” in IFN-y
immunogenicity [217, 224]. We used the IC31 adjuvant in this experiment in order to mirror
the human data. However, for the existing H56 pre-clinical mouse experiments, the adjuvant
CAF01 was predominantly used. We used the dose of IC31 in previous H4 pre-clinical trials
(100nmol) [217], which was kept constant over antigen dose. For further details on

experiment design and logistics, see Appendix D.

In summary, the purpose of this chapter was to outline the generation of longitudinal IFN-y
immune response data in mice after receiving 5 different doses (and 0 dose) of H56+IC31 (aim
2, objective 5, Figure 1.5). This data was generated in order to complete aim 2 of the thesis,
i.e. for the application of an IS/ID model to predict human multi-dose responses (see chapter

5, paper 4).

Additionally, | wanted to investigate the shape of the H56+IC31 dose response curve in mice
over time. As stated previously, vaccine development regularly employs the assumption of a
sigmoidal dose response curve. Based on previous work on H-series vaccine dose response
which showed a clear peaked (or n-shaped) dose response curve shape [217], | hypothesized
that the mouse IFN-y data would show a peaked dose response relationship. To show
definitively that this was the case, | applied statistical curve fitting to the data and compared
a saturating (described using a sigmoidal or “Emax” equation [332]) and peaked curve shape
(described by a gamma PDF equation). It is important to note that | did not aim here to find
a curve that provided the “best” fit, but only to show which curve shape out of the two

(saturating or peaked) was a better representation of the data.

| presented the work in paper 3 in poster form and as a presentation at the following

conference:
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e Keystone Symposium: Translational Vaccinology for Global Health, London, UK,
October 2017 (invited speaker). “Use of mathematical modelling for dose finding in T
cell mediated vaccines”. S. J. Rhodes, G. M. Knight, A. Zelmer, T. G. Evans, P.

Andersen, H. Fletcher, R. G. White
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Introduction: In vaccine development, dose-response curves are commonly assumed to be saturating.
Evidence from tuberculosis (TB) vaccine, H56 + IC31 shows this may be incorrect. Mathematical mod-
elling techniques may be useful in efficiently identifying the most immunogenic dose, but model calibra-
tion requires longitudinal data across multiple doses and time points.
Aims: We aimed to (i) generate longitudinal response data in mice for a wide range of H56 +1C31 doses
for use in future mathematical modelling and (ii) test whether a ‘saturating’ or ‘peaked’ dose-response
curve, better fit the empirical data.
Methods: We measured IFN-y secretion using an ELISPOT assay in the splenocytes of mice who had
received doses of 0, 0.1, 0.5, 1, 5 or 15 pug H56 +IC31. Mice were vaccinated twice (at day 0 and 15)
and responses measured for each dose at 8 time points over a 56-day period following first vaccination.
Summary measures Area Under the Curve (AUC), peak and day 56 responses were compared between
dose groups. Corrected Akaike Information Criteria was used to test which dose-response curve best fit-
ted empirical data, at different time ranges.
Results: (i) All summary measures for dose groups 0.1 and 0.5 pg were higher than the control group
(p <0.05). The AUC was higher for 0.1 than 15 pg dose. (ii) There was strong evidence that the dose-
response curve was peaked for all time ranges, and the best dose is likely to be lower than previous
empirical experiments have evaluated.
Conclusion: These results suggest that the highest, safe dose may not always optimal in terms of
immunogenicity, as the dose-response curve may not saturate. Detailed longitudinal dose range data
for TB vaccine H56 + IC31 reveals response dynamics in mice that should now be used to identify optimal
doses for humans using clinical data, using new data collection and mathematical modelling.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

delay licensure of an effective vaccine. A key decision in develop-
ment is vaccine dose amount (hereafter dose), which, if chosen

Vaccines are one of the most important and cost-effective inter-
ventions in public health [1]. However, development from vaccine
discovery to licensure is costly; in the region of US$0.8 billion [2].
Mistakes in vaccine development may cause not only a waste of
resources (both financial and experimental) but also ultimately,

* Corresponding author.

E-mail address: sophie.rhodes@lshtm.ac.uk (S.J. Rhodes).
! Joint first authors.
2 Joint senior authors.

http://dx.doi.org/10.1016/j.vaccine.2016.10.060
0264-410X/© 2016 The Authors. Published by Elsevier Ltd.

optimally would achieve maximum vaccine efficacy, with minimal
side effects.

It is common practise in pre-clinical and clinical trials that vac-
cine dose is increased incrementally until a maximum safe dose
that promotes an effective response (usually an antibody response)
is achieved; it is assumed that this response will then saturate [3].
This saturating relationship between dose and host response has
been the standard assumption in vaccine development and many
vaccines have proceeded through to the late stages of development
with this method as a basis for dose choice [4,5].

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 140



6286 S.J. Rhodes et al./Vaccine 34 (2016) 6285-6291

However, in tuberculosis (TB) vaccine development, early pre-
clinical studies in mice with the IC31 adjuvanted fusion protein
TB10.4 [Ag85B (H4) revealed that low antigen doses were both
more immunogenic and provided increased protection relative to
high doses [6]. In accordance, a clinical study showed that
responses after vaccination with the same H4 +1C31 vaccine were
not different between the 5 and 15 g doses, decreased at 50 pg
and were minimal for the 150 pg dose [7]. In a latently infected tar-
get population, vaccination with an analogous vaccine H56 (an
ESAT-6/Ag85B/Rv2620 fusion protein vaccine) also adjuvanted
with 1C31 (H56 +1C31) showed that out of two doses tested in
Quantiferon-positive (QTF+) individuals, the lowest dose (15 pug
H56 +1C31) was more effective at inducing polyfunctional CD4+
T cell responses than the higher dose (50 pg H56 +1C31) [8]. Of
note, the higher dose (50 pg) of the related first-generation Hybrid
vaccine H1+1IC31 was taken forward to a First-in-man study,
which may have led to suboptimal vaccine evaluation [9].
Although immunogenicity not only depends on antigen dose, but
indeed also on the type and nature of the adjuvant employed,
the incorrect assumption that a higher dose is preferred per se
for protein vaccines (or other platforms) has further been brought
into question by vaccines using other types of adjuvants [10].

Translational quantitative analysis methods to inform dose
decision-making already exist in the drug development world. Ph
armacokinetic/Pharmacodynamic (PK/PD) modelling uses mecha-
nistic mathematical methods to describe how dose influences drug
dynamics over time [11,12]. Translational modelling to predict
human PK/PD parameters based on animal data is a key stage in
model-based drug dose decision-making [12-14], and is often
required by regulators during development. Although pharmacoki-
netic data is often not available for vaccines, pharmacokinetics is
dependent on dose and regimen, and thus analogies to dose finding
for vaccines are relevant. No translational quantitative methods
are applied in vaccine development, as the chosen vaccine dose
to be tested in a clinical environment is usually based on qualita-
tive assessment of the pre-clinical data [15], which has the poten-
tial to ignore or underutilise dose-response information.

To address this gap, we are proposing the new field of Immunos
timulation/Immunodynamic (IS/ID) modelling, analogous to that of
PK/PD modelling, to make more informed human vaccine dosing
decisions based on animal response data. In this field, models will
be created to describe the underlying mechanisms that determine
the immune response dynamics (immunodynamics) following vac-
cination, e.g. the influence of the innate and regulatory systems for
T cell expansion and contraction (immunostimulation). These
models will then be calibrated to dose ranging data from animals
and model parameters “mapped” to known human response data.
Subsequently, dose-response curve in humans can be predicted,
providing information on the most effective range of doses to be
first evaluated in clinical trials. In this larger body of work, we will
apply these methods on the aforementioned TB vaccine, H56
+1C31 by measuring IFN-7y after vaccination over time.

As in model-based drug development, extensive longitudinal
data are required. Published data on a wide dynamic range of doses
and time points do not exist for H56 + IC31, where dose-ranging
studies have only ever been conducted on minimal pre-specified
time points [6]. As such, we conducted and report here an experi-
ment in which we vaccinated mice with a wide range of doses of
H56 +1C31 and measured responses extensively over time. These
data outlined in this paper will be used in future IS/ID modelling
to further our knowledge in mice, non-human primates and
humans. In this paper, we aim to (i) generate longitudinal response
data in mice for a wide range of H56 +1C31 doses for use in future
mathematical modelling and (ii) test whether a ‘saturating’ or
‘peaked’ dose-response curve, better fit the empirical data.

2. Materials and methods
2.1. Ethics statement

All animal work was carried out in accordance with the Animals
(Scientific Procedures) Act 1986 under a license granted by the UK
Home Office (PPL 70/8043), and approved by the LSHTM Animal
Welfare and Ethics Review Body.

2.2. Animals

Female CB6F1 mice were acquired from Charles River UK at 6-
8 weeks of age. Animals were housed in specific pathogen-free
individually vented cages, were fed ad libitum, and were allowed
to acclimatize for at least 5 days before the start of any experimen-
tal procedure.

2.3. Vaccination

The experimental vaccine H56 (comprising Mycobacteria tuber-
culosis antigens Ag85B-ESAT-6-Rv2660c [16], provided by Statens
Serum Institute (SSI), Copenhagen, Denmark) was formulated in
1C31® adjuvant (provided by SSI on behalf of Valneva Technologies)
and 10 mM Tris-HCI buffer (pH 7.4) as described in [17] to obtain a
final volume of 200 pl/mouse. The adjuvant IC31®consists of a mix-
ture of the cationic peptide KLK (NH2-KLKL5KLK-COOH) and the
oligodeoxynucleotide ODN1a (oligo-(dldC)13). Adjuvant doses
were 100 nmol peptide and 4 nmol oligonucleotide for every vac-
cine (H56) dose. Antigen doses of 0.1, 0.5, 1, 5 or 15 pg of H56
+100/4 nmol IC31 (hereafter, H56 + IC31) were administered per
animal at day 0 and 15, the same dose was used at both vaccination
times within a group. Control animals received no vaccination. The
vaccine was administered subcutaneously into the left or right leg
flap.

2.4. IFN-vy ELISPOT

IFN-vy secreting CD4+ T cells were measured using the ELISPOT
assay. Single cell suspensions of mouse splenocytes were prepared
by mechanical disruption of spleens through a 100 pm cell strainer
on the day of sacrifice. After lysis of red blood cells, single cell sus-
pensions were made up in antibiotic-free media [RPMI-1640
(Sigma-Aldrich, Dorset, UK) + 10% heat-inactivated FBS (Labtech
International Ltd, Uckfield, UK) + 2 mM L-Glutamine (Fisher Scien-
tific, Loughborough, UK)]. 96-well microtiter ELISPOT plates
(MAIPS4510, Millipore, Watford, UK) were coated with 10 pg/ml
rat anti-mouse IFN-y (clone AN18, Mabtech, Nacka Strand, Swe-
den). Free binding sites were blocked with RMPI 1640 supple-
mented as described above. 2.5 x 10° of total splenocytes were
added and incubated in duplicate with H56 (10 pg/ml), supple-
mented RPMI as a negative control, or Phorbol myristate acetate
(PMA) (50 pg/ml, Sigma-Aldrich) and Phytohemagglutinin (PHA)
(10 pg/ml, Sigma-Aldrich) as a positive control. After 24 or 48 h
of incubation at 37 °C in 5% CO,, IFN-y was detected with 1 pg/
ml biotin labelled rat anti-mouse antibody (clone R4-6A2, Mab-
tech) and 1 pg/ml alkaline phosphatase-conjugated streptavidin
(Mabtech). The enzyme reaction was developed with BCIP/NBT
substrate (5-Bromo-4-chloro-3-indolyl phosphate/Nitro blue tetra-
zolium) (MP Biochemicals, UK) and stopped by washing the plates
with tap water when individual spots could be visually detected
(up to 5 min). ELISPOT plates were analysed using an automatic
plate reader. IFN-y-specific cells are expressed as number of
spot-forming units (SFU) per million spleen cells after non-
specific background was subtracted using negative conftd! wells.
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2.5. Experimental schedule

ELISPOTs were carried out at 2, 7, 9, 14, 16, 21, 28, and 56 days
after the first vaccination for all doses. Five mice were used per
time point per dose group (equating to 40 mice in a dose group
from initiation to conclusion of the experiment). This schedule
was designed to reflect the H56 +IC31 phase I clinical trial sched-
ule [8] and previous experimental schedules in mice using the H-
series vaccines by SSI in CB6F1 mice [6,16,18,19].

2.6. Statistical methods

2.6.1. Summary of IFN-y response data after two vaccinations with TB
vaccine H56+IC31 for future mathematical modelling

The Wilcoxon test was used to test for differences in IFN-y
responses generated as a result of the two ELISPOT incubation
times (on data pooled across dose groups and time points). The fol-
lowing summary measures were used to quantify responses over
time: Area Under the Curve (AUC), day 56 response, peak response
between first and second vaccination and peak response post-
second vaccination (peaks may occur at different times as they
were defined as the highest median response measured in the
respective time period). As IFN-y responses over time within a
dose group were not dependent (each taken from an individual
mouse spleen), AUC was calculated using 200 samples of the pos-
sible combinations of the five mice per dose group over time. Full
details of this method are outlined in Supplementary material and
Fig. S1. The non-parametric Dunn test was used to compare the
summary measures between the dose groups and a Bonferroni cor-
rection applied to account for comparisons across multiple groups.
A p-value < 0.05 was considered significant.

2.6.2. Determine the shape of dose-response curve when examined at
varying sample times and the best dose predicted by fitted curves

To assess the shape of the dose-response curve (IFN-y SFU per
million splenocytes versus dose), a saturating or peaked curve
was fitted to all IFN-y responses against the (log;o transformed)
doses using nonlinear regression, in the software Prism (v 7 for
Mac, GraphPad Software, California USA, www.graphpad.com).
Briefly, the aim of nonlinear regression is to find the parameters
that minimise the sum of the squared residuals from all data points
to the curve (see Supplementary material for description). We
choose a sigmoidal equation as the saturating curve and the
gamma probability density function (pdf) as the peaked curve
(see Supplementary for equations). The choice of the gamma pdf
was due to the hypothesis that the dose response, once peaked,
will not increase again and will never decrease to a zero response.
To establish which of the shapes best described the dose-response
curves the goodness-of-fit measure, the corrected Akaike informa-
tion criteria (AICc) was compared, where a lower AICc indicates a
better fit. A difference in AICc value between curve fits of greater
than seven was considered strong evidence of a better fit and a dif-
ference in AICc of greater than ten was considered absolute evi-
dence of a better fit [20] (Table S1). To assess how the dose-
response curve changed with time, the response data was pooled
into three time ranges: between the first and second vaccination
(day 2, 7, 9, 14 aggregated), post-second vaccination (day 21, 28
and 56 aggregated) and day 56 responses. The best dose was
defined as the dose that produced the maximum IFN-y response
as predicted by the fitted curves.

3. Results

3.1. Summary of IFN-y response data after two vaccinations with TB
vaccine H56+IC31 for future mathematical modelling

Splenocyte-derived IFN-y responses did not differ for the 24
versus the 48 h ELISPOT incubation times when responses where
pooled over all dose groups and time points (p-value=0.67,
Fig. S2). Therefore, an incubation time of 24 h was used in the fol-
lowing analyses.

The IFN-vy responses over time for each dose group are shown in
Fig. 1 (significance of the changes in dynamics over time are in
Table S2). Out of the samples taken to calculate the AUC, the com-
mon significance trend showed that dose groups 0.1, 0.5 and 1 pg
had significantly higher AUC than the control group, and the dose
group 0.1 pg had significantly higher AUC than dose group 15 pg
(Fig. 2, Table S3). Peak responses between first and second vaccina-
tion were significantly higher in the dose groups 0.1, 1, 5 pig than in
the control group and for post-second vaccination, dose groups 0.1,
0.5 and 5 pg were significantly higher than the control group
(Figs. 1 and 2, Table 1). Similarly, day 56 responses were signifi-
cantly higher for the dose groups 0.1, 0.5 and 1 pg than the control
group and the dose group 0.5 g was higher than 15 pg. However,
this did not reach statistical significance (Figs. 1 and 2, Table 1). For
all summary measures, no other comparisons between dose groups
were statistically significantly different (Fig. 2, Table 1).

3.2. Determine the shape of dose-response curve when examined at
varying sample times and the best dose predicted by fitted curves

To establish the shape of the dose-response curve (IFN-y SFU
per million splenocytes versus dose), we fitted either a saturating
or peaked function for three time ranges. There was strong evi-
dence that the peaked curve was a better fit to the response data
between first and second vaccination (Fig. 3A, Table S4) with a AICc
difference of 7.5 favouring the peaked (gamma) curve. The AICc
difference was 18.8 and 10.9 for the post-second vaccination
(Fig. 3B, Table S5) and day 56 (Fig. 3C, Table S6) response data, sug-
gesting absolute support for the peaked curve for both these time
ranges. The best dose predicted by the peaked fitted curve for the
time ranges; between first and second vaccination, post-second
vaccination and day 56 were 0.026, 0.11 and 0.25 pg, respectively
(transformed from log;, scale, Fig. 3). Due to the right-skewed nat-
ure of the responses the best saturation curve had an almost
immediate increase followed by immediate plateau for all time
ranges (Fig. 3). As such it was not possible to obtain a best pre-
dicted dose using the saturation model as, in this case, all doses
generated the same response.

4. Discussion

Our future aim is to apply the new field of Immunostimulation/
immunodynamic (IS/ID) modelling to translate vaccine dose-
response information between animals and humans and thus
quantitatively inform vaccine dose decision-making. To begin ini-
tial examination of such methods, we conducted a longitudinal
dose-ranging experiment of the novel TB vaccine H56 +1C31 in
mice, and a mathematical analysis of the dose-response curve over
time.

We successfully generated an intensive time course of IFN-y
response data to vaccination where AUC and peak analysis showed
a trend toward higher responses over time in the lower doses than
in the higher doses. By using mathematical curve fitting, we
showed that the IFN-y dose-response follows a peaked shape
instead of the commonly assumed saturation shag%l r all time
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Fig. 1. Median IFN-y responses (horizontal black bars) and responses of individual mice per time point (blue points) for each dose. As the control group did not receive H56
+1C31, the median of all responses from the control group (which did not significantly change throughout the experiment) was used to represent all mice at baseline. The
Wilcoxon test was used to compare consecutive time points, where *equates to p-value < 0.05 and **p-value < 0.01 (Table S2). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

ranges. This was most apparent post-second vaccination, and
trended toward that curve shape after the first dose. Using the
peaked fitted curve, we were able to determine which dose may
provide the maximal predicted I[FN-y response in mice. Our results
indicate this was at a low range; between 0.02 and 0.25 pg H56
+1C31. It must be noted that, there is uncertainty associated with
our predictions for best dose which is apparent in Tables S4-S6,
where the standard error was high for some gamma distribution
function parameters, particularly for the time ranges between first
and second vaccination and post-second vaccination. This is poten-

tially due to a lack of response information between dose 0 and
0.1 pg, which would provide information on the increase of the
peaked curve. Despite this, as we show a definitive decline in the
dose-response at the higher dose range (approximately after dose
1 pg H56 +1C31), our predicted best dose range show compelling
evidence that lower doses than previously explored in mice using
very similar vaccines [6,16,18,21,22], would be preferential. Impor-
tantly, as previous evidence suggest the human dose-response may
be of a similar shape for the H-series of vaccines from SSI [7,8]
(although higher in magnitude), this implies that previﬂtsbly tested
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Fig. 2. AUC calculated from number of IFN-y secreting CD4+ T cells after two vaccinations with H56 + IC31 from individual mice spleens, number of IFN-vy secreting CD4+ T
cells between first and second vaccination, after second vaccination and day 56 by dose (ug H56 + 100 nmol IC31). Dose 0 equates to the control group. The plot for AUC is
representative of the 200 samples taken to establish statistical differences in AUC by dose (see methods). X axis not to scale.

Table 1

Median (IQR) values for the summary measures day 56 response, peak between first and second vaccination and post-second vaccination IFN-y responses by dose. Significance in
the summary measures was tested between dose groups using the non-parametric Dunn test with a Bonferroni correction. Those comparisons between dose groups with a p-
value < 0.05 or 0.05 < p-value < 0.1 (starred) are displayed. Abbreviations: IQR = interquartile range, vacc = vaccination.

Dose group (ug Median day 56 Significantly

Median Peak between 1st

Significantly Median Peak post Significantly

H56 +1C31) response (IQR) different from dose  and 2nd vacc (IQR) different from dose  2nd vacc (IQR) different from dose
Control 10 (2-14) 0.1,0.5, 1 18 (4-18) 01,1,5 44 (26-64) 0.1,05,5

0.1 298 (208-538) Control 182 (152-206) Control 590 (464-652) Control

05 352 (338-446) Control, 15* 156 (118-168) - 414 (322-592) Control

1 302 (198-308) Control 146 (110-212) Control 488 (104-520) -

5 106 (86-188) - 124 (106-296) Control 502 (456-586) Control

15 94 (76-96) 0.5* 124 (22-200) - 246 (130-248) -

clinical dose ranges may also have been too high to capture the
optimal response in terms of immunogenicity.

We use the frequency of IFN-y secreting CD4+ T cells measured
using the ELISPOT assay as our chosen immune response readout
to reflect the current convention in TB vaccine development for
dose selection. IFN-y is a cytokine shown to be associated with
control of infection or decreased risk of TB disease [23], however
these findings have been a topic of controversy in TB vaccine devel-
opment [24]. In previous work by Aagaard et al. in the vaccine H4
+1C31, results showed that mice vaccinated with a lower dose
(0.5 ng H4) experienced significantly higher IFN-y responses than
higher doses (5 and 15 pg H4) and, significantly stronger protec-
tion against Mtb. infection (measured by Mtb. colony forming
units) than the higher doses, in two independent challenge exper-

iments [6]. These results support our choice of [FN-y as a readout.
We also compliment Aagaard et al.’s study by measuring the IFN-y
response at multiple time points, thus assessing trends in the dose-
response curve over time.

It is possible that varying dose may alter the function or type of
CDA4 T cell secreting IFN-vy, which the ELISPOT assay will not detect.
Further lab assays such as flow cytometry should be used in the
future work to determine the function or type of cell produced as
a result of varying dose, which may then be used in clinical trials
for human dose selection.

Dose concentration feasibility and animal cost and overall num-
bers limited the size of our study. By testing in larger groups of
mice at potentially fewer time points, we may have gained greater
certainty in response differences and fitted dose-regggnse curves.
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show the saturating (sigmoidal) curve fit and the vertical green line indicated the best dose as predicted by the peaked curve fit. The table shows the differences in AICc for A,B
and C between the saturating and peaked curve fits. The x-axis is log;o(dose: pg H56 +1C31) + 2 to transform the dose to a log scale and to ensure positivity, but x-axis labels
show the non-logged value for clarity (to avoid infinite values, control (dose 0) is not logged).

However, we chose the extensive time course to determine
detailed dynamics of the vaccine response and dose-response
curves over time, since this has been performed infrequently in
the past. We believe a higher maximum dose may have better
defined the decline in the dose-response curve. As the size of the
study was limited, we concentrated efforts on the lower doses,
where previous exploration is lacking; however, we found that
the probable best dose is still lower than the minimum dose used
here.

We have identified the following areas for further research. The
mathematical curve fitting we conducted has provided the basis
for further optimised studies in animals, i.e. we now know that
the dose range that captures the probable best dose should be 0-
0.3 pg H56 +1C31 (based on our predicted best dose values) not
the initial 0-15 pg H56 +1C31 (a reduction of 98% in the range).
Expanding the dose range in the lower end between 0 and 0.1 pg
will further increase our best dose predictions, as the peaked curve
parameters will be estimated with greater certainty. This warrants
further animal studies to investigate in greater detail the host
response to low dose vaccination.

Additionally, we used AUC to quantify the magnitude of the
immune response for the duration of the experiment and com-
pared AUC between dose groups. However, we do not interpret this
measure as the cumulative immune response over time, as would
be appropriate in drug AUC measures, but an indication of overall
higher immune response magnitude. In vaccine development, dose

decisions are made based on the dose response curve at one time
point (usually a long-term time point) and as such it would be
advantageous to know how dose effects the dynamics of the
immune response that may lead to higher average response in
the long-term. As such, our future aim is to apply the new field
of Immunostimulation/immunodynamic (IS/ID) modelling, where
by a mechanistic mathematical model incorporating the funda-
mental T cell subsets involved in a Th1 immune response will be
calibrated to the ELISPOT or another given measure over time.
The IS/ID model will allow us to quantify how the dynamics of
the immune response differ between dose groups (and across the
entire mouse population) by assessing the change in model param-
eters by dose. To achieve this, we will use the robust statistical
framework, Nonlinear Mixed Effects Modelling to calibrate the
model to the data and characterise the parameters and associated
parameter variation. IS/ID modelling will also be used to translate
vaccine dose-response information between animals and humans.
To achieve this we will utilise known allometric scaling factors for
H56 +1C31 between mouse and human we aim to “map” IS/ID
model parameters from one dose of the outlined experiment to
existing human H56 +I1C31 dose data (one dose 50 pug H56
+500 nmol IC31). The effect of heterogeneity in target human pop-
ulations (due to HIV status, existing latent infection, etc.) on IS/ID
modelling parameters will be taken into account. Following this
mapping, we can then use the remaining doses to predict the dose
response curve in humans. This predicted human dd]sé5esponse
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curve will be used as a guide to select further doses to test in clin-
ical trials.

Additionally, as the antigen dose-response may also vary with
the adjuvant dose and type of adjuvant, in order to fully charac-
terise and optimise complete vaccine (H56 +1C31) dose it would
be necessary to perform a checkerboard interaction pattern, the
design of which could be informed by IS/ID modelling through
optimal design analysis [25].

5. Conclusion

Our results suggest that the highest, safe dose is not always
optimal in terms of host response as the dose-response curve is
not saturating, which may also be true for vaccines against dis-
eases other than TB. Mathematical modelling can be used on the
detailed longitudinal dose range data for TB vaccine H56 +1C31
to simulate responses to optimise further experiments in mice
and help to identify optimal doses for humans.
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Supplementary material for paper 3

The following is the supplementary material referenced in paper 3. All references to the

below tables and Figures are preceded with the suffix “S” in the paper.

Additional Methods

Statistical methods

Analysis (i) Summary of IFN-y response data after two vaccinations with TB vaccine

H56+IC31 for future mathematical modelling

To compare the magnitude of the IFN-y response over time between dose grouping, |
calculated the Area Under the Curve (AUC) from day O to 56 for each dose grouping.
Conventional AUC calculations are conducted on repeated measures data; the area of the
curve created by connecting responses over time for one host make the AUC value for that
host. Responses in our experiment are not repeated measures as each IFN-y response
measured was taken from a spleen of one euthanized mouse. To account for this in the AUC
calculation | take samples of all possible AUC’s in one dosing group and compare across
groups. The procedure for this is as follows. As there are five mice per time point and eight
time points per dosing group (excluding day 0), there are 52 possible combinations of AUC
values for each dose grouping (i.e. by linking mouse one at time point one to mouse one at
time point two, etc. until time point eight. Or mouse one at time point one to mouse two at
time point two, etc. and calculating the AUC from these combinations of responses over time,
see Figure S1). | sample 5 (to reflect the use of five mice per time point) out of the total
possible AUC values (58) for one dose group. | do this for each dosing group. | then compare
these AUC values across the dosing groups and note the significant differences (using the
Dunn test with a Bonferroni correction for multiple group comparisons and adjusted p-
value<0.003). | re-sample five AUC values (repeating the procedure above) for each dosing
group and compare across dosing groups. | sample a total of 200 times. Results are presented
in Table S3 showing the frequency of observed significantly different AUC’s between dosing

groups for all 200 samples.

147



Response

¢
©
@
4

(&)

1 2 3 4
Time points

Figure S1. Example representation of the possible combinations of AUC calculations. In this example, there are 5 times points and 5 data points (diamonds) per time
point. Three lines are shown (solid, dotted and dashed) which AUC would be calculated from. These are 3 random combinations out of the possible 5° combinations
that could be drawn.
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Analysis (ii) Determine the shape of dose-response curve when examined at varying

sample times and the best dose predicted by fitted curves

In this analysis, | conducted nonlinear regression using the functional forms gamma pdf and

sigmoidal in the software Prism. The functional form for the sigmoidal curve is:

Rmax * DoseP?
R50 + Dose?

Response = Baseline +

Where Dose is the Dose(log10), Rmax is the saturation maximum, R50 is the value where the
response is 50% of the saturation maximum. Baseline is the value of the curve when dose is
0. As | assume that the response at dose 0 is very low (almost zero) due to the lack of exposure
to the vaccine, | fix this value to the mean response at dose O for the different time ranges.

The functional form for the gamma pdf curve is:

sh

I'(sh)

Response = Baseline + <S * * DoseSh=1) « e‘r*Dose>

S is a scalar multiplying the gamma pdf, r is the gamma rate parameter, and sh, the gamma

shape parameter.

In the Prism software, nonlinear regression is conducted by minimizing the sum of the squares
of the residuals (SS), under the assumption that the residuals are normally distributed. Thus |
used a maximum likelihood method. | fit the curves to all data points in the time range, hence,
the SS is calculated by summing all squared residuals from all data points. Prism uses the
derivative-based, Levenberg-Marquardt method to perform the parameter optimization (for

an in-depth mathematical description see [333]).

To assess the precision of the parameter best-fit estimates | used the standard error of the
estimates produced by Prism. See [334] for a brief explanation into their calculation. | used

relative standard error, which is expressed as the percentage of the standard error of the

149



parameter to the best-fit estimate parameter and can give an indication of the relative

magnitude of the standard error.

To measure the goodness of fit of each model to the data, | used the corrected Akaike
Information Criteria (AlCc). AlCc is a recommended criterion to compare the fit of non-nested
models in nonlinear regression on data from small studies. It is in-built to nonlinear regression

analysis in Prism. The AlCc is calculated using the following formula:

2K(K + 1)
N—K-1

AlCc = N*ln<%>+21(+
where N is the number of data points, K is the number of fitted model parameters (+1) and
SS is the sum of the squared residuals. To find the “best” model to describe the data, | used
the in-built model comparison tool in prism, which calculates the probability that the model
is “correct”, also known as the Akaike weight (see [334-336]) using the model AlCc. | also used
the criteria for model selection using the difference in AlCc outlined by Burnham & Anderson

[336] in Table S1:

Difference in AlCc between model with | Conclusion
lowest AICc (MLow) and model being

compared (MCom)

0-2 Substantial support for MCom
4-7 Considerably less support for MCom
>10 Essentially no support for MCom

Table S1. Table outlining Burnham and Anderson’s criteria for support for models using AlCc difference

To assess for homoscedasticity of the data (i.e. the variance of the data around the mean
response is not dependent on the magnitude of the response), | ran the in-built test in Prism
[334] (see Tables S4-S6). If this test failed, this would indicate weighing the data by response
could be necessary. Additionally, to establish if the estimated parameters were global

minimums, | ran the regression with varying initial parameter estimates (see Table S7).

150



Additional Results

Statistical results
Analysis (i) Summary of IFN-y response data after two vaccinations with TB vaccine

H56+IC31 for future mathematical modelling

The Wilcoxon test was used to test for differences in IFN-y responses generated as a result of
the two ELISPOT incubation times (on data pooled across dose groups and time points). IFN-
y responses did not differ for the 24 versus the 48 hour ELISPOT incubation times (p-value =
0.67). Figure S2 shows a comparison between all mouse IFN-y responses (over all dose
groupings and all time points) for the two ELISPOT incubation times. Therefore, an incubation

time of 24 hours was used in paper 3.
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Figure S2. Number of IFN-y secreting CD4+ T cells after two vaccinations with H56+IC31 from individual mice
spleens (pooled over time and dose) for the two ELISPOT assay incubation times (24 and 48 hour). There was
no significant difference between the two incubation times.
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Table S2 outlines significant changes in median IFN-y responses between consecutive time points by dosing group (highlighted grey in Table S2).

For each dose grouping (except the control group) there was a significant difference in median response between the day 2 and day 7 and

between day 16 and day 21. In both cases (and for all dose groupings) this was a significant increase in median IFN-y response over time. This is

presumably because the IFN-y response increases significantly due to primary vaccination between day 2 and 7 and also increases significantly

due to revaccination between day 16 and 21. For the dose grouping receiving 5 ug of H56, there were further instants of significant differences

between time points, namely between day 9 and 14 (an increase) and day 28 and 56 (a decrease). The decrease in response for this dosing group

is potentially interesting as it suggests the mice receiving 5 pg of H56 experience a significant drop off of immunity in the long term.

Dose group (pug H56+IC31)
Median SFU per million cells for two timepoints (p-value for difference)

control 0.1 0.5 1 5 15

Significant |0 &2 2 & 0(0.65) 2&0(0.11) 2 &0(0.28) 2 &0(0.65) 2&0(0.11) 2&0(0.1)
difference |2 &7 0&0(0.72) 0 & 100 (0.009) 0 & 142 (0.01) 0 & 146 (0.02) 0 & 54 (0.02) 0& 124 (0.01)
in response | 7 &9 0&2(0.5)| 100& 176(0.55) | 142 & 104 (0.55) 146 & 96 (0.55) 54 & 48 (0.69) 124 & 32 (0.35)
between |9g 14 2&18(0.2) | 176 & 182(0.84) | 104 & 156 (0.35) 96 & 98 (1) | 48 & 124 (0.047) 32 & 96 (0.07)
days: 14 & 16 18 & 44 (0.12) 182 & 56 (0.1) 156 & 136 (1) 98 & 76 (0.35) 124 & 0(0.07) 96 & 44 (0.14)

16 & 21 44 & 6(0.14) | 56 &542(0.008) | 136 & 414 (0.03) | 76 & 488 (0.047) 0 & 502 (0.009) 44 & 246 (0.02)

21&28 6 & 8(0.26) | 542 & 590(0.22) | 414 & 258 (0.42) | 488 & 394 (0.69) | 502 & 332 (0.06) | 246 & 190 (0.69)

28 & 56 8 & 10(0.83) | 590 &298(0.15) | 258 & 351 (0.42) | 394 & 302 (0.31) | 332 & 106 (0.049) 190 & 94 (0.55)

Table S2. Median values and p-values using the Wilcox test to compare the five IFN-y responses between consecutive time points for each dose. Bold and
highlighted values are below 0.05.
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Table S3 shows the frequency of significant differences in sampled AUC values across dosing groups after 200 samples of 5 AUC values per dosing

group (see additional methods, analysis (i)). Out of the samples taken to calculate the AUC, the common significance trend showed that dose

groups 0.1, 0.5 and 1 ug had significantly higher AUC than the control group, and the dose group 0.1 pg had significantly higher AUC than dose

group 15 pg (Figure 2, Table S3).

Dose (ug Frequency of significantly

H56+IC31) different (adjusted p-value <

grouping 0.003) AUC values*out of the

comparison 200 samples (% of the 200
samples)

control—0.1 179 (89.5%)

control —0.5 167 (83.5%)

control -1 164 (82%)

control -5 18 (9%)

control - 15 0 (0%)

0.1-0.5 0 (0%)

0.1-1 0 (0%)

0.1-5 0 (0%)

0.1-15 86 (43%)

0.5-1 0 (0%)

0.5-5 0 (0%)

0.5-15 7 (4%)

1-5 0 (0%)

1-15 18 (9%)

5-15 0 (0%)

Table S3. Frequency of significantly (with a Bonferroni correction
for multiple groups) different AUC comparisons over 200 samples
of possible AUC values. *Five AUC values for each dose grouping

per sample.

153



Statistical results

Analysis (ii) Determine the shape of dose-response curve when examined at varying

sample times and the best dose predicted by fitted curves

In this analysis, | conducted nonlinear regression using the functional forms gamma pdf and
sigmoidal in the software Prism. In order to obtain a reasonable nonlinear curve fit to the
dose response data, constraints on the fitting algorithm were required. | have outlined above
that the baseline parameter was fixed to 0 for both curves (see above). Additionally, for the
Gamma curve, | applied the constraint of 1.2 to the shape parameter (sh). This was to avoid
an exponential shape curve (which violates my peaked curve shape hypothesis), which occurs
when the shape parameter is equal to 1. For the sigmoidal curve, the parameter E50 was
constrained to be >0 as a negative E50 would not produce a saturating curve shape.
Additionally, in preliminary fits where the parameter p was estimated, Prism reported an
“ambiguous” value. | believe this was due to the right skew of the data which forced the
sigmoidal curve to increase immediately to the Rmax value. As such, the effect of changing
parameter p will shift the sigmoidal curve to the right (see Figure S3 for demonstration), but

does not change the AlCc value of the overall fit. As such | fixed the value at p=1.
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Test for value of Sigmoidal curve value p on day 56
response data
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Figure S3. Plot showing the effect of changing parameter p in the sigmoidal curve
equation the dashed line corresponds to a p=50, the dotted line, p=100 and the solid
line, p=200 on the day 56 data. If values are increased further (to approximately p=700),
Prism reports a “bad initial value” error.

Tables S4-S6 outlines the results of the regression analysis on responses for the time ranges
pre-second vaccination (between first and second vaccination), post-second vaccination and
day 56. Tables S4-S6 show that the Sigmoidal Rmax parameter was well estimated (low
relative standard error), except for the day 56 data, which is due to small sample size. For
every fit, the R50 parameter hit the low bound (very close to zero). This was due to the right
skew of the data, which forced the sigmoidal curve to increase immediately to the Rmax
value, and as such, R50 to be very small. A value of absolute zero here would cause an

inflection point which and the derivative-based fitting algorithm to fail.

The Gamma parameters were not well estimated for in any of the fits. | believed this is due
to alack of datain the range between dose 0 and 0.1 (log10) which would provide information
on the nature increase of the peaked curve. This was most apparent in the pre-second data
set where the shape parameter (sh) hit the constraint value and as such produced a heavily

right-skewed curve (Figure 3A). The day 56 data do provide information on the increase of
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the peaked curve, but the sample size is small, so the relative standard error of the

parameters is high.

Pre-second vaccination Gamma

Pre-second vaccination Sigmoidal

homoscedasticity

homoscedasticity

curve fit curve fit
Best-fit parameter values Best-fit parameter values
Baseline | 5 (fixed) Baseline | 5 (fixed)
S | 440.5 Rmax | 87.02
r | 0.5047 p | 1 (fixed)
sh|1.2 R50 | 1.8x10716
Standard Error (% relative SE) Standard Error (% relative SE)
Baseline | - Baseline | -
S | 255.1 (58%) Rmax | 21.16 (24%)
r | 0.7405 (150%) pl-
sh | Hit constraint R50 | Hit constraint
Goodness of Fit Goodness of Fit
Degrees of | 117 Degrees of | 118
Freedom Freedom
Absolute Sum of | 786326 Absolute Sum of | 851795
Squares Squares
AlCc | 1063 AlCc | 1070
Test for Passed Test for Passed

Comparison of Gamma and Sigmoidal curve fit

Simpler model Sigmoidal
Probability it is correct 2.35%
Alternative model Gamma
Probability it is correct 97.65%
Ratio of probabilities 41.59
Preferred model Gamma
Difference in AlCc 7.456

[336])

Strength of evidence for model
with higher AlCc (according to

Between “considerably less” and

“Essentially no

4

support  for

Sigmoidal — strong support for

Gamma

Table S4. Summary of nonlinear regression analysis of the Gamma and Sigmoidal curve
fitting for the responses pre-second vaccination.
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Post-second vaccination Gamma

Post-second vaccination Sigmoidal

homoscedasticity

homoscedasticity

curve fit curve fit
Best-fit parameter values Best-fit parameter values
Baseline | 9 (fixed) Baseline | 9 (fixed)
S| 1451 Rmax | 336
r | 0.7535 p | 1 (fixed)
sh | 1.787 R50 | 1.8x1071®
Standard Error (% relative SE) Standard Error (% relative SE)
Baseline | - Baseline | -
S| 309.7 (21%) Rmax | 50.73 (15%)
r | 0.4175 (55%) pl-
sh | 0.7283 (40%) R50 | Hit constraint
Goodness of Fit Goodness of Fit
Degrees of | 87 Degrees of | 88
Freedom Freedom
Absolute Sum of | 2167842 Absolute Sum of | 2737663
Squares Squares
AlCc | 916.5 AlCc | 935.3
Test for Passed Test for Passed

Comparison of Gamma and Sigmoidal curve fit

Simpler model Sigmoidal
Probability it is correct <0.01%
Alternative model Gamma
Probability it is correct >99.99%
Ratio of probabilities

Preferred model Gamma
Difference in AlCc 18.81

[336])

Strength of evidence for model
with higher AlCc (according to

“Essentially no
Sigmoidal

support”  for

Table S5. Summary of nonlinear regression analysis of the Gamma and Sigmoidal curve
fitting for the responses post-second vaccination.
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Day 56 Gamma curve fit

Day 56 Sigmoidal curve fit

Best-fit parameter values

Best-fit parameter values

homoscedasticity

homoscedasticity

Baseline | 10 (fixed) Baseline | 10 (fixed)
S | 846.3 Rmax | 271.8
r|2.336 p | 1 (fixed)
sh | 4.242 R50 | 1.8x1071®
Standard Error (% relative SE) Standard Error (% relative SE)
Baseline | - Baseline | -
S |140.4 (17%) Rmax | 93.28 (34%)
r | 1.048 (45%) p |-
sh | 1.687 (40%) R50 | Hit constraint
Goodness of Fit Goodness of Fit
Degrees of | 27 Degrees of | 28
Freedom Freedom
Absolute Sum of | 623052 Absolute Sum of | 981648
Squares Squares
AlCc | 307.8 AlCc | 318.8
Test for Passed Test for Passed

Comparison of Gamma and Sigmoidal curve fit

Simpler model Sigmoidal
Probability it is correct 0.41%
Alternative model Gamma
Probability it is correct 99.59%
Ratio of probabilities 239.99
Preferred model Gamma
Difference in AlCc 10.96

[336])

Strength of evidence for model
with higher AlCc (according to

“Essentially no

support”  for

Sigmoidal — absolute support for

Gamma

Table S6. Summary of nonlinear regression analysis of the Gamma and Sigmoidal curve
fitting for the responses at day 56.
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To establish if the estimated parameters were global minimums, | ran the regression with

varying initial parameter estimates. Table S7 shows varying the initial parameter estimates

did not impact the best-fit estimates in the regression analysis for any time range.

Time range Curve Initial parameter | Best-fit parameter values
estimates
S$=600, r=3, sh=3 $=440.5, r=0.5047, sh=1.2
Gamma $=100, r=1, sh=1.2 $=440.5, r=0.5047, sh=1.2
$=2000, r=6, sh=5 $=440.5, r=0.5047, sh=1.2
Rmax=300, R50=0.001 Rmax=87.02, R50=1.8x10"
Pre-second 16
vaccination
. . Rmax=10,R50=0.000001 | Rmax=87.02, R50=1.8x10"
Sigmoidal 16
Rmax=2000,R50=2 Rmax=87.02, R50=1.8x10"
16
S$=600, r=3, sh=3 S=1451, r=0.7535,
sh=1.787
Gamma S$=100, r=1, sh=1.2 $=1451, r=0.7535,
sh=1.787
F\’/‘;Ztc;zct‘l’:: $=2000, r=6, sh=5 5=1451, r=0.7535,
sh=1.787
Rmax=300, R50=0.001 Rmax=336, R50=1.8x10®
Sigmoidal Rmax=10,R50=0.000001 | Rmax=336, R50=1.8x101®
Rmax=2000,R50=2 Rmax=336, R50=1.8x10®
S$=600, r=3, sh=3 $=846.3, r=2.336,
sh=4.242
Gamma S$=100, r=1, sh=1.2 $=846.3, r=2.336,
sh=4.242
$=2000, r=6, sh=5 $=846.3, r=2.336,
sh=4.242
Day 56 Rmax=300, R50=0.001 | Rmax=271.8, R50=1.8x10
16
. . Rmax=10,R50=0.000001 | Rmax=271.8, R50=1.8x10"
Sigmoidal 16

Rmax=2000,R50=2

Rmax=271.8, R50=1.8x10"
16

Table S7. Testing initial parameter estimates
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Chapter 5. Predicting human multi-dose immune responses to H-series
vaccination using multi-dose data in mice and vaccine

Immunostimulation/Immunodynamic (1S/ID) modelling: paper 4

Chapter 5 introduction

In paper 3, | showed that vaccine dose affects the immune response and to achieve a higher
IFN-y response, a lower dose of H56+IC31 may be required. In paper 4, | aimed to identify
which of the immune response mechanisms in the IS/ID model were affected by dose. This
was achieved by calibrating the I1S/ID model to the longitudinal multi-dose IFN-y data in mice
outlined in paper 3. The model was then calibrated to H56/H1+ IC31 response data after one
dose in humans. | mapped the change in model parameters by dose in mice and used this
mapping alongside a proposed mouse to human dose scaling factor to predict the human
immune response to remaining H56/H1+IC31 doses. The work in this chapter falls in line with

aim 2 and objective 6-8 of the thesis (Figure 1.5).

The human data used in this paper were pooled from two phase 1 clinical trials (see Appendix
Table D.1) where non-HIV and non-latent TB infected, BCG vaccinated participants were given
either 50 pg H56 + 500nmol 1C31(n=8) or 50 pug H1 + 500nmol IC31 (n=10). The data were
pooled as it has been shown that H56 and H1 induce similar IFN-y immune responses in
humans [236]. Demographic data was not available for the H1 data, so the differences in
model predicted IFN-y responses in humans by demographics is not considered in this work.

Further data on H-series clinical trials was not available to me at the time of this work.

The IS/ID model used in paper 4 is based on the T cell mathematical model used in paper 2.
However, by incorporating advice from advisory and supervisory panel members (Prof. White,
Dr. Knight, Dr Fletcher, Dr Evans, Dr Guedj) the model was evolved to incorporate the T cell
dynamics following revaccination. Key differences in the one vaccination and re vaccination

models are discussed in the paper supplementary material.

160



London School of Hygiene & Tropical Medicine

Keppel Street, London WC1E 7HT
www.Ishtm.ac.uk

Registry

T +44(0)20 7299 4646
F: +44(0)20 7299 4656
E: registry@lshtm.ac.uk

LONDON
SCHOOLof
HYGIENE
&TROPICAL
MEDICINE

RESEARCH PAPER COVER SHEET

PLEASE NOTE THAT A COVER SHEET MUST BE COMPLETED FOR EACH RESEARCH PAPER INCLUDED

IN A THESIS.

SECTION A — Student Details

Student

Sophie Rhodes

Principal Supervisor

Richard White

Thesis Title

The development of a mathematical modelling framework to
translate TB vaccine response between species and predict the
most immunogenic dose in humans using animal data

If the Research Paper has previously been published please complete Section B. if not please move to

Section C

SECTION B — Paper already published

Where was the work published?

When was the work published?

If the work was published prior to
registration for your research degree,
give a brief rationale for its inclusion

Have you retained the copyright for the
work?*

Was the work subject to
academic peer review?

*If yes, please attach evidence of retention. If no, or if the work is being included in its published format, please
aftach evidence of permission from the copyright holder (publisher or other author) to include this work.

SECTION C — Prepared for publication, but not yet published

Where is the work intended to be
published?

npj Vaccines

Please list the paper's authors in the
intended authorship order:

Sophie J Rhodes, Jeremie Guedj, Helen Fletcher, Thomas
Lindenstrom, Thomas J. Scriba, Thomas G. Evans, Gwenan
M Knight, Richard G White

Stage of publication

Submitted

SECTION D — Multi-authored work

For multi-authored work, give full details of your role in
the research included in the paper and in the preparation | See next page
of the paper. (Attach a further sheet if necessary)

Student Signature: ik A2 ol i Date: ?/f// ¢

Improving health worldwide

www.Ishtm.ac.uk

161



Supervisor Signature: ﬂl@%/ﬁaé;g Date: /%/6/) 7'

Improving health worldwide Page 2 of 2 www.Ishtm.ac.uk

162



Paper 4 title: Animal dose response curve predicts lower optimal tuberculosis
vaccine dose in humans: Using vaccine Immunostimulation/Immunodynamic

modelling methods to inform vaccine dose decision-making
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Abstract

Introduction: Unlike drug dose optimisation, mathematical modelling has not been applied
to vaccine dose finding. We applied a novel Immunostimulation/Immunodynamic
mathematical model to translate multi-dose TB vaccine immune responses from mice, to

predict most immunogenic dose in humans.

Methods: Data were available on IFN-y secreting CD4+ T cells over time for novel TB vaccines
H56 and H1 adjuvanted with IC31 in mice (3 dose groups (0.1-1,5 and 15 ug H56+IC31), 45
mice) and humans (1 dose (50 pg H56/H1+IC31), 18 humans). A two-compartment
mathematical model, describing the dynamics of the post-vaccination IFN-y T cell response,
was calibrated to mouse and human data, separately, using nonlinear mixed effects
methods. We used these calibrated models and a vaccine dose allometric scaling

assumption, to predict the most immunogenic human dose.

Results: At day 224, the model-predicted median number of human IFN-y secreting CD4+ T
cells for the 1-10ug, 50ug and 150ug H56/H1+IC31 dose groups were 374, 188, and 118
SFU/mill PBMC, respectively, suggesting the 1-10ug dose may be the most immunogenic in

humans, based on the mouse data.
Conclusion: A 1-10ug of H-series TB vaccines in humans, may be as, or more, immunogenic,

as larger doses. Mathematical modelling is a novel, and potentially revolutionary tool, to

predict most immunogenic vaccine doses, and accelerate vaccine development.
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Introduction

Vaccines are one of the most effective interventions in public health [1]. However, to
progress a vaccine from discovery to licensure can take decades and cost up to USS0.8 billion
[2]. With costs so high, it is vital that development is made more efficient. A primary goal in
vaccine development is to establish optimal vaccine efficacy, and vaccine dose amount
(hereafter ‘dose’) is a crucial factor in achieving this. The consequences of selecting the
wrong dose can lead to inadequate protection against disease, and ultimately wasted

resources and lives.

In humans, vaccine dose decisions are made based on dose escalation trials, the dose range
of which is based on experiments in animals. In classical pre-clinical experiments, an initial
dose is tested and incrementally increased until the dose is no longer considered safe. The
resulting maximum safe dose is then scaled-up to be applied in a clinical setting. Historically,
pre-clinical dose escalation experiments assume the response ‘saturates’, i.e. increases, then
plateaus, as vaccine dose is increased. Many vaccines have progressed through

developmental phases with doses selected under this assumption [3, 4].

However, recent pre-clinical data suggest that this ‘saturating’ assumption may not always be
correct. Studies in mice [5], and humans [6], using the potential tuberculosis (TB) vaccine H4
adjuvanted with 1C31® (H4+IC31) have shown that lower vaccine doses have higher
immunogenicity and protective efficacy than higher doses. We have recently shown that the
IFN-y dose-response curve in mice, for the novel TB vaccine H56+IC31, was peaked, not
saturating [7], and an ongoing phase 1/2a H56+IC31 dose-ranging clinical trial will test this
prediction in humans (ClinicalTrials.gov No. NCT01865487). Similar non-saturating dose-
response curves have been observed in clinical trials in HIV and Malaria vaccines using other
adjuvants [8, 9]. These data suggest that developing vaccines based on a ‘saturating dose’
response curve assumption is likely to lead to sub-immunogenic doses being selected for later

stage vaccine development, and risk efficacious vaccine discovery.

In contrast to vaccine development, drug development benefits from systematic,

quantitative analysis through the application of Pharmacokinetic/Pharmacodynamic (PK/PD)
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modelling. PK/PD modelling employs mechanistic mathematical models to quantify drug
concentration dynamics in the host over time (PK) and drug effect as the concentration
varies (PD) [10]. Model-Based Drug Development (MBDD) is recognized as an efficient tool
to accelerate and streamline drug development, by minimizing developmental time and
resources [11]. MBDD has been established for decades in the pharmaceutical industry [12]
and is often required by regulatory agencies in all stages of drug development. As such,
MBDD is regularly used to establish optimal drug dose [13] and translate drug response

dynamics between species [14].

PK/PD model-based methods have not been applied in vaccine development for dose decision
making [1]. The application of quantitative methods similar to that of MBDD, could lead to
better evaluation and translation of the vaccine dose-response data from animals to humans,

and accelerate vaccine development.

Consequently, we propose the new field of vaccine Immunostimulation/Immunodynamic
(IS/ID) modelling as a method to inform vaccine dose decision making. Analogous to PK/PD
modelling, IS/ID modelling applies mathematical models to describe the underlying
mechanisms, the immune response stimulation (IS) that produce the measured immune

response dynamics following vaccination (ID).

In anticipation of the release of the dose-ranging clinical trial data (NCT01865487), the aim of
this work was to employ a novel IS/ID model to translate H56+IC31 TB vaccine immune
responses from mice to predict the most immunogenic dose in humans. We calibrated our
model to IFN-y data following two vaccinations with TB vaccine H56 adjuvanted with IC31
(H56+IC31) in mice and humans, and H1+IC31 data in humans. The model was used to
describe the IFN-y response dynamics of two CD4+ T cell populations, and predict the most
immunogenic dose in humans.

Our analysis was in three stages. In analysis 1, the model was calibrated to the mouse data.
In analysis 2, the model was calibrated to the limited dose data on humans. In analysis 3, we

used our calibrated models to predict the most immunological dose in humans.
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Methods

Data

Full details of mouse IFN-y response data are in [7]. Briefly, female CB6F1 mice were given five
doses, 0.1, 0.5, 1, 5, or 15 pg H56 adjuvanted with 100 nmol IC31® (supplied by SSI on behalf
of Valneva Austria GmBH; hereafter designated H56+IC31) plus a control dose of 0 pg
H56+IC31, at day 0 and 15. Data on the number of H56 antigen stimulated IFN-y secreting
CD4+ T cells (in spot forming units (SFU)) per 1 million splenocytes measured by an ex vivo
IFN-y Enzyme-Linked ImmunoSpot (ELISPOT) assay, were taken at eight time points over 56
days (Figure S1 and supplementary methods). Mouse dose groups were: low (0.1, 0.5 and 1

ug H56+1C31), middle (5 ug H56+IC31) and high (15 pug H56+IC31).

Human IFN-y response data was pooled from phase | clinical trials for the vaccines H56+IC31
([15], ClinicalTrials.gov no. NCT01967134) (N=8) and H1+IC31 ([16] ClinicalTrials.gov no.
NCT00929396) (N=10). H1 is comprised of a subset of the H56 antigens [17]. For both vaccine
trials, primary vaccination was administered intramuscularly on day 0 and revaccination, day
56, both at a dose of 50 ug of the vaccine antigen (H1 or H56) and 500 nmol IC31 in healthy,
BCG vaccinated participants (hereafter, H56/H1+IC31). IFN-y responses were measured using
ELISPOT in SFU per 1 million Peripheral Blood Mononuclear Cells (PBMC), taken until day 224

(Figure S2). Further trial information can be found in Table S1.

The adjuvant dose remained constant across antigen dose for both species (100 nmol and 500

nmol IC31 in mice and humans, respectively).

Mathematical vaccine Immunostimulation/Immunodynamic (IS/ID) Model

An ordinary differential equations mathematical model was used to describe the IFN-y
response dynamics of two CD4+ T cell populations induced following vaccination: transitional
effector memory [18] which had effector functionality (activated to produce IFN-y [19]) and

III

were short-lived and resting “central” memory (Figure 1). Here, we assumed following primary
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vaccination, cells were recruited as transitional cells and entered the transitional effector
memory cells population (TEM) at rate d. TEM cells then either died, at rate prem, or
transitioned into central memory cells (CM) at rate Brem. CM cells were assumed not to die
over the short duration modelled (60 and 250 days in mice and humans, respectively).
Following revaccination, transitional cells entering the TEM population were again recruited
at rate 9, and central memory cells replicated at a rate Rem for T days. The time that replication
occurred for, 1, was dependent on the CM population size at time of revaccination. Following
replication, CM cells were recruited back to the TEM pool at rate Bcw. As with primary
vaccination, TEM cells transition to CM cells at rate Prem following revaccination. As
stimulation of T cell responses is delayed following vaccination (due to immune processes such
as vaccine antigen trafficking and presentation [20, 21]) and does not last indefinitely [21], we
assumed the TEM cell recruitment rate, §, was nonlinear. § was initiated at time of primary

and re- vaccination and was assumed to be the same at both vaccination points.

The death rate of the TEM cells (urem) was fixed to values found in literature for mice [22] and
humans [23], separately. For both species, the replication rate of the CM cells, Rem, was fixed
to one replicate every 10 hours [24] and the transition rate to TEM pool following replication
post revaccination, Bcv , was assumed to be instantaneous. All other parameters were free to

be estimated. For parameter value description, see Figure 1.

As central memory cells are known to be essentially non-proliferating in the host until
stimulated by antigen [24]; we assumed they contributed to IFN-y production, because the
ELISPOT assay uses the vaccine antigens to stimulate all potentially IFN-y secreting CD4+ T-
cells. To reflect this, the IFN-y immune response predicted by the mathematical model was
assumed equal to the sum of the number of TEM and CM cell populations over time. To
account for the potential non-zero baseline responses, the initial TEM cell count was fixed at

the median cell count for mice and humans, separately.

Analyses
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Analysis 1: Calibration of the IS/ID model to the mouse data, pooled and stratified by dose

group

In analysis 1, the model was calibrated (i) to all mouse ELISPOT data, pooled over dose groups,
and (ii) to the data stratified by dose group, to quantify the IFN-y response dynamics.
Calibration of the model to the data was achieved using nonlinear mixed effects modelling
(NLMEM) [25] and the SAEM algorithm implemented in the software Monolix v. 4.3.3 [26].
SAEM uses maximum likelihood methods to estimate the free model parameters that best
describe the population typical IFN-y response and the inter-individual variability [25]. For

further description of the NLMEM statistical framework see supplementary methods.

Calibrated model parameters were considered well estimated if their relative standard error
(RSE) was less than 30% [27]. Model selection was carried out using Bayesian Information
Criteria (BIC) value assessment, where a lower BIC value was indicative of a better fit.
Evaluation of the model’s ability to describe the data was assessed primarily using the Visual
Predictive Check (VPC) and further diagnostic plots (see supplementary methods for

description).

For analysis 1i, we tested two nonlinear equations for the recruitment of TEM cells (parameter
6, Figure 1); a Gaussian equation and a gamma Probability Density Function (PDF) equation.
We also tested the replacement of rate 6 with a naive T cell compartment, whereby naive cells
replicate for tn days before transitioning to TEM at rate PBn. (for mathematical description of
the forms, see supplementary). All parameters within the forms of & were free to be
estimated. The form of 6 that resulted in the lowest BIC value when calibrated to the pooled
mouse data was chosen. This form was then used when the model was calibrated to the

mouse data stratified by dose group (analysis 1ii) and the human data (analysis 2).

For analysis 1ii, we used the likelihood ratio test (LRT) to identify which model parameters

should be stratified by dose to improve the model fit, compared to analysis 1i.

Analysis 2: Calibration of the IS/ID model to the pooled human data
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In analysis 2, the model was calibrated to the human data using the same methods as analysis
1. We calibrated the model to the pooled human data set (across vaccine H1+IC31 and
H56+IC31) as the two vaccines are known to have a similar immunological profile [28] (see
supplementary material for analysis on the human data stratified by vaccine type to validate

this assumption).

Analysis 3: Use calibrated mathematical models in analysis 1 & 2, and a vaccine dose
allometric scaling assumption, to predict the human immune response dynamics and predict

the most immunogenic dose in humans

In analysis 3, the estimated model parameters identified for the dose groups in mice (analysis
1ii) and for the one dose in humans (analysis 2) were used to predict the IFN-y response in
humans for a range of doses. As the current (antigen) dose allometric scaling factor between
mouse and humans for the H-series vaccines is assumed to be approximately ten [29-31], we
initially assumed the 50 pg H56/H1+IC31 dose given to humans was equivalent to the middle
(5 pg H56+IC31) dose group in the mice. Under this assumption, the low and high doses in
humans were estimated to be 1-10 and 150 pg H56/H1+IC31, respectively.

Firstly, we calculated the percentage change between the mouse-data-estimated model
parameters from the middle dose group vs the low and high dose groups (found in analysis
1ii). Then we applied these percentage changes to the human estimated model parameters
found in analysis 2 (the human middle dose group) to predict the model parameters for the
low and high dose groups in humans. To establish the ‘most immunogenic’ human dose we
compared long term (day 224) model-predicted responses for the three human dose groups.
We conducted a sensitivity analysis on the dose allometric scaling factor by assuming the
human dose was equivalent to the high (15ug H56 + IC31) dose group in the mice, giving a

scaling factor of 3.33.
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Results

Analysis 1: Calibration of the IS/ID model to the mouse data, pooled and stratified by dose

group

The best (lowest BIC value) form for the TEM recruitment parameter, §, for primary and

revaccination was the Gaussian equation (Table S2):

—(time—b)? —(time—(b+revaccination time))?
ax|le 2 + e 2c?

where a is a scalar, b, the Gaussian equation mean, c, the variance and time is measured in
days. Using this §, all free model parameters (including Gaussian equation 6, N=5, Figure 1)
were well estimated (RSE<30%) (Table 1). The model predicted IFN-y responses for this
parameter set (Table 1) are plotted in Figure 2A. The VPC showed the model predictions

represented the median pooled data well (Figure S3, further diagnostic plots Figure S4-S5).

Using the LRT and lowest BIC value, the best parameter set of the model for analysis 1ii, was
when the Transitional Effector Memory (TEM) to Central Memory (CM) cell transition rate
(Brem) differed by dose group (Table 1, Table S5). Figure 2 shows the model predicted IFN-y
response for the low (Fig 2B), middle (Fig 2C) and high (Fig 2D) dose groups (VPC and diagnostic
plots in Figures S6-58). In Figure 2A-D, model predictions for the 25t and 75™ percentiles of
the data were not as well estimated as the medians because the parameter standard

deviations were fixed at 0.5 throughout.

Analysis 2: Calibration of the IS/ID model to the pooled human data

Parameter estimates for all free parameters (including Gaussian equation §, N=5, Figure 1) for
analysis 2 can be found in Table 1. Due to the smaller sample size of the human data,
parameters Brem and T were not identifiably estimated (RSE>30%). Model parameter standard

deviations were fixed at 0.5.

Figure 3A and the VPC (Figure S9) shows that the model predicted IFN-y responses from this

parameter set (Table 1) was a good description of the median data, despite the wide variability
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over time of the human responses. See Figures $10-S13 for further diagnostic plots and model

predictions for each participant.

Analysis 3: Use calibrated mathematical models in analysis 1 & 2, and a vaccine dose
allometric scaling assumption, to predict the human immune response dynamics and predict

the most immunogenic dose in humans

In analysis 1ii, the estimated parameter Brem increased by 53% (0.15 to 0.23) from the middle
to low dose group and decreased by 63% (0.15 to 0.056) from the middle to high dose group.
Applying these changes to parameter Brem in the human model parameter set (Table 1),
resulted in a value of 0.032 and 0.0074 for the low and high dose group, respectively (Table
1). Using these values for Brem in humans, the model predicted median number of IFN-y
secreting CD4+ T cells at day 224 were 374, 188, and 118 (SFU per million PBMC) for the low,
middle and high (1-10, 50 and 150ug H56/H1+1C31, respectively) dose groups, suggesting the
low dose (1-10 pg H56/H1+IC31) may be most immunogenic in humans (Figure 3). In the
sensitivity analysis, using a vaccine dose allometric scaling factor of 3.33, the low dose range

(now 0.3-3.3 ug H56/H1+1C31) was also the most immunogenic (Table S9, Figure S14).
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Discussion

In this work, mathematical models were successfully calibrated to animal and human TB
vaccine IFN-y data. At day 224 post primary vaccination the model-predicted median number
of human IFN-y secreting CD4+ T cells were 374, 188, and 118 (SFU per million PBMC) for the
low, middle and high dose groups (1-10, 50 and 150 pg H56/H1+IC31, respectively). This

indicated that lower doses (1-10 pg H56/H1+1C31) may be the most immunogenic in humans.

A key strength of this work was the application of mathematical modelling techniques to
vaccine data that are rarely explored quantitatively. We used established, robust quantitative
and statistical frameworks (compartmental mathematical models with NLMEM [25]) to
explore and translate the complex biological dynamics between species, giving an early
example of the utility of Immunostimulation/Immunodynamic modelling. We present here
the first example of the allometric mapping between vaccine immune dynamics between mice
and humans through the mapping of estimated model parameters between the two species.
This mirrors established techniques incorporated in PK/PD modelling for drug development.
Using diagnostic tests and goodness of fit measures, we showed our IS/ID mathematical model
was a good description of the mouse dose group and human data and produced potentially

biological meaningful results.

We made the following key assumptions in this work. Our model was a highly simplified
version of the complexities of the T cell response following vaccination. Our model assumes a
linear progression from TEM to CM memory cell phenotype [32, 33]. However, an alternative
model has been suggested, whereby TEM and CM cells are initiated simultaneously after
vaccination [18, 19, 24]. Additionally, the death rate of TEM cells may also be affected by
antigen dose. Both of these assumptions were necessary to avoid over-parameterisation given
the data sample sizes available to us. See supplementary discussion for further model
structure assumptions and their impact (Table S3). The IFN-y secreting CD4+ T cell dynamics
we incorporate in the IS/ID model was used to describe both the mouse and human response
to H-series vaccination. This was justified as the fundamental mechanisms of Thl response

induction by vaccination are thought not to differ between these two species [34].
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There were weaknesses in our work. Small data sample sizes meant we had to firstly, group
the mouse dose data in analysis 1ii, limiting our conclusions on the full range of doses we
tested. Secondly, due the small human dataset (N=18), two of the model parameters were not
identifiably estimated, therefore the results of the model fit to the human data should be
approached with caution. Additionally, due to small sample sizes, we constrained the model
parameter standard deviations to 0.5 throughout, which restricted the conclusions we could
make around the inter-individual variability. The geographical location of the clinical trials was
correlated with vaccine type (H1 or H56), so this was not included as a human population
covariate. However, as immune response to the current TB vaccine, BCG, are known to vary
by geographic location [35], this covariate may also influence H-series vaccine responses. We
did not consider participants with latent TB infection (LTBI) in this analysis, as vaccine take has
been shown to differ markedly in non-exposed versus LTBI participants [36]. As such,
predicting the optimal vaccine dose for this population, would require new IS/ID modelling

efforts to accounts for these effects.

Previous work on the H4+IC31 vaccine [6, 37] showed that after vaccination with a dose of 50
pg H4+500 nmol IC31, the median H4-stimulated IFN-y response measured with the ELISPOT
assay at day 182 (latest time point) was 222 IFN-y secreting CD4+ T cells. This is close to our
model prediction for the equivalent dose with H56/H1+IC31 (a median of 188 total cells). The
dose response relationship showed a similar trend to our results also, i.e. the lower doses (5,

15 ug H4+1C31) perform better than the higher doses (50, 150 ug H4+IC31) [6, 37].

Preliminary empirical results from the phase 1/2a clinical dose ranging study of H56 + 500
nmol 1C31 (ClinicalTrials.gov no. NCT01865487) may support our model predictions
(unpublished, personal communication, Thomas Scriba). These preliminary trial findings from
NCT01865487 suggest that doses 5, 15 and 50 pug H56+IC31 were equally immunogenic in
healthy, BCG vaccinated participants, and therefore developers have decided to use 5 ug
H56+I1C31 in future clinical trials, rather than 50 pg in previous trials. If these preliminary
findings are confirmed, they may support the utility of IS/ID modelling. It must be noted, that

these results are preliminary, and empirical samples sizes were small.
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There are several areas for future research. In analysis 3, our vaccine dose allometric
assumption; that a dose of 5 ug H56+IC31 (middle dose group) in mice was equivalent to a 50
ug H56/H1+IC31 in humans, is in line with the current hypothesis in TB protein vaccine
developers [29-31]. However, to our knowledge, no formal assessment of this scaling factor
has been extensively undertaken and it is possible that this scaling factor could range between
zero and ten. It is vital that further empirical data are collected to support these allometric
scaling assumptions for a given antigen-adjuvant combination. Additionally, the effects of

changing adjuvant dose on the dose-dependent dynamics should be explored.

Further lab assays such as flow cytometry could be conducted to characterise the relative
number of complex phenotypic cell types (TEM or CM) over time to further parameterize this
model. Additionally, we use the frequency of IFN-y secreting CD4+ T cells measured using the
ELISPOT assay as our chosen immune response readout to reflect the current convention in
TB vaccine development for dose selection. IFN-y is a cytokine shown to be associated with
control of infection or decreased risk of TB disease [38], however these findings have been a
topic of controversy in TB vaccine development [39]. Despite this, Aagaard et al. showed in
two independent studies that higher IFN-y responses in mice correlated with stronger
protection against Mtb. infection (measured by Mtb. colony forming units) [5]. Additionally, it
is possible that varying dose may alter the function or type of IFN-y secreting CD4+ T cells,
which the ELISPOT assay will not detect. Flow cytometry could provide information on other
cytokine types which could be incorporated into a more complex network model which can

provide better understanding of T-cell dynamics.

The clinical data used in this work were from a two vaccination regimen. However, in the H56
trial [15] an additional vaccination was given after two months (data after third vaccination
was excluded). Current methods to determine regimen are conducted empirically in early
clinical phases (1/2a) in vaccine development [40-43]. In contrast, drug regimen is regularly
explored and optimised using model-based simulation based on early response data. With this
in mind, 1S/ID modelling could be used to explore the effects of timing of a third vaccination,
providing insight into the opportune time to boost vaccine responses, which can then be

empirically verified.
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In summary, using a mathematical model within a new IS/ID framework, we predicted that
low doses of H-series TB vaccine may increase immune response in humans based on animal
data. Forthcoming empirical clinical evaluations may support this prediction. We have
illustrated that mathematical modelling may be a novel and potentially revolutionary tool to

predict most immunogenic vaccine dose, and accelerate vaccine development.
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A B ParameterZ] Parameter@lescription? unit) Fixed®rFree
symbol
Hrem TEM cell terminal mortality rate | Fixed to value 0.3 day?
(day?) (mouse) [22] and 0.2 day?
Restingl (human) [23]
Transitionall® ' TEM cell transition rate to CM | Free
F B Central® ==~ Pren .
Effector TEM M N Ror T type (day?)
|:> MemoryB :> emoryt 4_—:3{ ™y Rem™ Replicaton of CM cells in| Fixed to value 0.4 (day?)
(TEM)E:eIIs (CM) <~<“' response to revaccination (day?) [24]
cells ™ Time that CM cells replicate in| Free
4'\“ iy response to revaccination (days)
’
Hrem \::~ ,:?’ Bem™ CM cell transition to TEM cell type | Fixedto high value
L S ication i
after replication in response to
Bcm revaccination (day?)
é TEM cell recruitment rate (day?) Free

Figure 1. Modelling overview. A) Schematic of the mathematical model representing the immune response dynamics of two IFN-y secreting CD4+ T cell populations after primary
and re- vaccination. Dashed arrows correspond to T cell dynamics as a result of only revaccination. B) Table of key model parameters. Model parameters are either fixed to a
value from literature (prem and Rewm), to an assumed value (fcw) or free to be estimated using NLMEM (Brem, T, and the parameters that comprise 8). Asterisked parameter symbols
correspond to those resulting from only revaccination. Equations can be found in the supplementary material. The form of & to be identified in analysis 1i.
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Mouse Human
Pooled Dose covariate Pooled Predicting dose
(analysis 1i) (analysis 1ii) (analysis 2) (analysis 3)
. RSE Dose RSE RSE | Dose
Parameter (unit) Value (%) group Value (%) Value (%) | group Value
Death rate of Transitional effector memory 0.3 (F) ) 0.3 (F) ) 02(F" |- 0.2 (F)"
cells, prem (per day)

N N Low 0.23(E) | 14 Low 0.032 (P)
Transition rate from Transitional Effector to 5.5 (E) 17 Middle 0.15(E) |23 0.022 (E) | 31 Middle 0.022 (F)
Central Memory cell type, Brem (per day)

High 0.056 (E) | 26 High 0.0074 (P)

Replication rate of Central Memory cells (per 0.4 (F)™ | - 0.4 (F)™ | - 0.4 (F)™ |- 0.4 ()™
day), Rem
Central Memory cell replication time, © 1.1 (E) 5 1.1 () 7 0.34(F) |35 0.34 (F)
(days)
Transition rate from Central Memory to

10 (F)® - 10(F)* |- 10(F)* |- 10 (F)?
Transitional Effector type, Bcwm (per day) (F) (F) (F) (F)
Recrw.tment ofTranS|t|onaI Effector rate o: 92.9(E) |14 103 (E) 13 51 (E) »3 51 (F)
Gaussian equation scalar, a (# cells)
RecrU|.tment ofTranS|t|onaI Effector rate &: 6 (E) 3 6.2 (E) 10 16.6 (E) |20 16.6 (F)
Gaussian equation mean, b (days)
Recrw.tment of.TranS|t.|onaI Effector rate o: 0.91(F) |15 0.89(E) |7 5.7 (E) 13 5.7 (F')
Gaussian equation variance, c (days)

Table 1. Population parameters for mice and humans from model calibration (analysis 1&2) and prediction (analysis 3). All estimated model parameter standard
deviations were fixed at 0.5. Abbreviations: RSE = relative standard error, F=Fixed, E=Free parameters that were Estimated using NLMEM, F’ = fixed to value found in
analysis 2, P=predicted, fixed to value in literature: *[22],**[23], ***[24]. $ Fixed to be high.
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Figure 2. Empirical and model predicted number of IFN-y secreting CD4+ T cells over time for A. pooled mouse data, B. low dose group
(0.1-1 ug H56+1C31), C. middle dose group (5 pg H56+IC31) and D. high dose group (15 pg H56+IC31). Grey points correspond to number
of IFN-y secreting CD4+ T cells measured over time by ELISPOT assay in mouse splenocytes for each mouse after receiving vaccination
of H56+IC31 at day 0 and day 15. Median responses over time are marked by a blue triangle, the 75t percentile responses by an orange
triangle and the 25 percentile responses by a purple triangle. The model prediction (total cells) calibrated to the data in the calibration
framework (parameters in Table 1) is plotted against the median data (blue line). The orange and purple dashed lines are the model
prediction (total cells) of the 75t and 25t percentiles of the data, a result of the variation in the estimated parameters (standard
deviation fixed to 0.5 for all parameters (Table 1)).
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Figure 3. Empirical and model predicted number of IFN-y secreting CD4+ T cells over time for A. pooled human data (all data, pooled over vaccine type) (50 ug H56/H1+IC31), and the
predicted human immune responses following a B. low (mouse-data mapped dose of 1-10 ug H56/H1+IC31) or C. high dose vaccination (mouse-data mapped dose of 150 pg H56/H1+IC31).
A. Grey points correspond to number of IFN-y secreting CD4+ T cells measured over time by ELISPOT assay in human PBMC after receiving vaccination of H56/H1+IC31 at day 0 and day 56.
Median responses over time are marked by blue triangles, the 75t percentile responses by an orange triangle and the 25 percentile responses by a purple triangle. The model prediction
(total cells) (parameters in Table 1) is plotted against the median data (blue line). The orange and purple dashed lines are the model prediction (total cells) of the 75t and 25t percentiles
of the data, a result of the variation in the estimated parameters (standard deviation fixed to 0.5 for all parameters (Table 1)). In B. and C. Median (blue dashed), 75t (orange dots) and
25t (purple dots) of the model predicted human responses after mapping from the mouse dose group model calibration (predicted parameters in Table 1) are shown.
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Supplementary material for paper 4
The following is the supplementary material referenced in paper 4. All references to the

below tables and Figures are preceded with the suffix “S” in the paper.

Additional Methods

Data

(The following text on the mouse data and laboratory methods is taken from my paper 3

[337])

Mouse IFN-y ELISPOT data

The methods and materials used to generate the mouse IFN-y response data following

H56+1C31 vaccination are outlined below. These methods are outlined in chapter 4 [337].

Ethics Statement

All animal work was carried out in accordance with the Animals (Scientific Procedures) Act
1986 under a license granted by the UK Home Office (PPL 70/8043), and approved by the
LSHTM Animal Welfare and Ethics Review Body.

Animals
Female CB6F1 mice were acquired from Charles River UK at 6-8 weeks of age. Animals were
housed in specific pathogen-free individually vented cages, were fed ad libitum, and were

allowed to acclimatize for at least 5 days before the start of any experimental procedure.

Vaccination

The experimental vaccine H56 (comprising Mycobacteria tuberculosis antigens Ag85B-ESAT-
6-Rv2660c [338], provided by Statens Serum Institute (SSI), Copenhagen, Denmark) was
formulated in IC31® adjuvant (provided by SSI on behalf of Valneva Technologies) and 10 mM
Tris-HCL buffer (pH 7.4) as described in [339] to obtain a final volume of 200 pl/mouse. The
adjuvant IC31®consists of a mixture of the cationic peptide KLK (NH2-KLKL5KLK-COOH) and

the oligodeoxynucleotide ODN1a (oligo-(dldC)13). Adjuvant doses were 100 nmol peptide
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and 4 nmol oligonucleotide for every vaccine (H56) dose. Antigen doses of 0.1, 0.5, 1, 5 or 15
ug of H56 + 100/4 nmol IC31 (hereafter, H56+IC31) were administered per animal at day O
and 15, the same dose was used at both vaccination times within a group. Control animals
received no vaccination. The vaccine was administered subcutaneously into the left or right

leg flap.

IFN-y ELISPOT

IFN-y secreting CD4+ T cells were measured using the ELISPOT assay. Single cell suspensions
of mouse splenocytes were prepared by mechanical disruption of spleens through a 100um
cell strainer on the day of sacrifice. After lysis of red blood cells, single cell suspensions were
made up in antibiotic-free media [RPMI-1640 (Sigma-Aldrich, Dorset, UK) + 10% heat-
inactivated FBS (Labtech International Ltd, Uckfield, UK) + 2 mM L-Glutamine (Fisher
Scientific, Loughborough, UK)]. 96-well microtiter ELISPOT plates (MAIPS4510, Millipore,
Watford, UK) were coated with 10 pug/ml rat anti-mouse IFN-y (clone AN18, Mabtech, Nacka
Strand, Sweden). Free binding sites were blocked with RMPI 1640 supplemented as described
above. 2.5x10° of total splenocytes were added and incubated in duplicate with H56 (10
ug/ml), supplemented RPMI as a negative control, or Phorbol myristate acetate (PMA) (50
ug/ml, Sigma-Aldrich) and Phytohemagglutinin (PHA) (10 pg/ml, Sigma-Aldrich) as a positive
control. After 24 or 48 hrs of incubation at 37°C in 5% CO;, IFN-y was detected with 1 pg/ml
biotin labelled rat anti-mouse antibody (clone R4-6A2, Mabtech) and 1 ug/ml alkaline
phosphatase-conjugated streptavidin (Mabtech). The enzyme reaction was developed with
BCIP/NBT substrate (5-Bromo-4-chloro-3-indolyl phosphate/Nitro blue tetrazolium) (MP
Biochemicals, UK) and stopped by washing the plates with tap water when individual spots
could be visually detected (up to 5min). ELISPOT plates were analysed using an automatic
plate reader. IFN-y-specific cells are expressed as number of spot-forming units (SFU) per

million spleen cells after non-specific background was subtracted using negative control wells.

Experimental Schedule
ELISPOTs were carried out at 2, 7,9, 14, 16, 21, 28, and 56 days after the first vaccination for
all doses. Five mice were used per time point per dose group (equating to 40 mice in a dose

group from initiation to conclusion of the experiment). This schedule was designed to reflect
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the H56+IC31 phase | clinical trial schedule [232] and previous experimental schedules in

mice using the H-series vaccines by SSl in CB6F1 mice [217, 219, 338, 340].

Figure S1 shows the ELISPOT results using the 24 hour incubation time for each dosing group.
Each blue dot represents the responses of one mouse, the black horizontal lines indicate the

median responses. This Figure is a replication of Figure 1 in [337], chapter 4.
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Figure S1. Median IFN-y responses (horizontal black bars) and responses of individual mice per time point (blue points) for
each dose. As the control group did not receive H56+IC31, the median of all responses from the control group (which did not
significantly change throughout the experiment) was used to represent all mice at baseline. The Wilcoxon test was used to
compare consecutive time points, where *equates to p-value<0.05 and **p-value<0.01 (Table S2 in [337]). This Figure is
duplicated from [337] here as a reminder of the data generated in chapter 4.
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Human IFN-y ELISPOT data

Table S1 summarizes the two H-series trials from which the human ELISPOT data was taken. Figure S2 shows the individual IFN-y responses (measured using

ELISPOT assay) over time for both trials and the pooled median response across both trials.

Clinical trial Information Data from Clinical trial used in the analysis
Vaccine ClinicalTrials.gov Phase | Purpose of trial Country Study arms Study | N | Response Median | Gender | Years
ID/publication (taken from conducted arm measurement | age since BCG
ClinicalTrials.gov) used times (days) (IQR)

H56+IC31 | NCT01967134/[232] | i Evaluation of the | South Africa | 1. N=8, LTBI 1 8 |0,14,56,70, | 32(19- | M=4, >10
Safety and negative, dose = 112 38) F=4 (assumed
immunogenicity 50 pg to be
profile of H56(+500nmol vaccinated
H56+I1C31 IC31), two at birth)
administered to vaccinations (day
HIV-negative 0, 56)
adults and 2. N=8, LTBI positive,
without LTBI and dose =15 pg
no history or H56(+500nmol 1C31),
evidence of two vaccinations (day
tuberculosis (TB) 0, 56)
disease. 3. N=9, LTBI positive,

dose =50 ug
H56(+500nmol IC31),
two vaccinations (day
0, 56)

H1+IC31 NCT00929396/[227] | i A safety and Netherlands | 1. N=10, LTBI negative, 1 10 ({ 0,7,42, 63, 49 (24— | M=7, >2
immunogenicity BCG positive, dose= 98, 224 54) F=3
Phase 1 Trial with 50 pg H1(+500nmol
an adjuvanted TB IC31), two
subunit vaccine vaccinations (day O,

H1+IC31 (Ag85B- 56)

ESAT-6 + 1C31) 2. N=10, LTBI positive,
administered in dose=50 ug

PPD positive H1(+500nmol IC31),
volunteers at 0 two vaccinations (day
and 2 months 0, 56)

Table S1. Outline of the H56+IC31 and H1+IC31 phase i clinical trials and human demographics for each. Abbreviations: LTBI = Latent Tuberculosis Infection, IQR= Inter
quartile range.
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H1+IC31 IFN-y responses
H56+IC31 IFN-y responses

Median of pooled IFN-y responses
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Figure S2. Number of IFN-y secreting CD4+ T cells in humans in H56+IC31 phase | trial [232] (ClinicalTrials.gov no NCT01967134) and H1+IC31 phase | trial [227]
(ClinicalTrials.gov no NCT00929396) over time measured using an ELISPOT assay. Vaccinations of the respective vaccines were given at day 0 and day 56. The median of
the pooled data is shown in red and the responses in those that received H1+1C31 are shown in solid grey and for those that received H56+IC31 are shown in dashed grey.
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Laboratory procedures for the human IFN-y data

H56+IC31 phase | trial [232]: ClinicalTrials.gov no NCT01967134

Screening procedures for HIV status included a medical history and blood collection for
baseline chemistry. QuantiFERON®-TB Gold In Tube test (gft, cellestis limited) was used to

determine latent TB infection (LTBI) status.

H1+IC31 phase | trial [227]: ClinicalTrials.gov no NCT00929396

The ELISPOT methods for the H1+IC31 clinical trial are outlined in [227]. | summarise the

methods below.

Frozen cells were pre-stimulated for 16-18 hours, followed by 24 hours in the ELISPOT plate.
1x10°®thawed cells/well were stimulated in 24 well plates with H1 antigens (Ag85B and ESAT-
6 proteins) as well as PPD, separate peptide pools and positive and negative controls (see
[227]). All samples were assayed in triplicate. Incubation was done overnight in a fully
humidified incubator at 37 °C, 5% CO2. Subsequently, cells were resuspended and divided
over 3 wells (250,000 cells/well) of a mixed cellulose ester-backed 96 well plate (MAHASA45,
Millipore) which had been pre-coated with anti-IFN--antibody (mAb1-D1K, Mabtech, Sweden)
and blocked with AIMV medium. The next day biotinylated detector antibody (mAb 7-B6-1,
Mabtech) was added and spots colored with alkaline phosphatase conjugated streptavidin
(Mabtech, Sweden) and FastTMNBT/BCIP (Sigma—Aldrich, The Netherlands). Substrate
incubation was done at room temperature for 10 min and stopped by rinsing the plates with
tap water. Plates were dried and spots were counted in the Bioreader 3000 pro (BioSys,

Germany) using calibrated parameters.

BCG vaccination status was determined by tuberculin-skin-test (TST), whereby a reaction
range 6—15mm or any documented value between 6 and 15mm on medical file in the past,
indicated the participant was BCG vaccinated. To determine LTBI status, a QuantiFERON®-TB

Gold In Tube test and a 6-day lymphocyte stimulation test (as described in [228]) in addition
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to chest X-rays, were conducted at screening. HIV status was determined by reviewing

recorded medical history and conducting standard blood tests.

Mathematical vaccine Immunostimulation/Immunodynamic (1S/1D) Model

The equations for the IS/ID two-compartmental in Figure 1 are as follows:

dTEM
dt

dCM
— = BremTEM + RCM — B¢y CM (2)

Where TEM represents the transitional effector memory (TEM) cell population, CM, the
resting central memory (CM) cell population, t, the time in days and the parameters are
those outlined in Figure 1. The parameters in the model follow the rules:
e { initiated at time=0 and time=revaccination and has the same value at both times.
e RCM = 0 until time = time of revaccination then 0 after time = time of revaccination
+7T
e ey = 0 until time = time of revaccination + 1 then is 0 shortly after (once 95% of
CM cells have transitioned) time = time of revaccination + T to ensure there is no
flow back into the TEM compartment other than that due to revaccination. The value
of B¢ is fixed arbitrarily high, at a value of 10 cells per day.
e urgMm is fixed to values found in literature: 0.3 per day for mice [341] and 0.2 per day

for humans [297, 317, 342].

Analysis 1: Calibration of the IS/ID model to the mouse data, pooled and stratified by dose

group

Testing the structural model for parameter 6
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Three different mathematical forms were used to represent parameter &:

1. Gamma Probability Density Function (PDF) equation:

k
(/) -
= L2y * time « o~ (Letime)

the parameters were: L=multiplier to scale up the gamma PDF, k= Gamma PDF shape
parameter, h=Gamma PDF scale parameter.
2. Gaussian function equation:
—(time — b)?
2c?

the parameters were: a=height of Gaussian function, b=mean of Gaussian function,

§d =ax*exp

c=variance of Gaussian function.

3. Naive T cell compartment: A naive T cell compartment was added to the model which
introduced cells to the Transitional Effector Memory (TEM) compartment. There were
initially 10 cells in the naive compartment, which replicated every 10 hours for Ty
days. After this, they left the Naive compartment and enter the TEM compartment at
rate By. As naive cells do not express cytokines until they are differentiated [44], they
do not contribute to IFN-y output of the model. They were also long-lived cells [343],

so do not die.

Statistical (NLMEM) model

The residual error model and potential random effects correlations were tested in the

analyses (see chapter 3 and Appendix B for description of the statistical NLMEM model).
Analysis 3: Use calibrated mathematical models in analysis 1 & 2, and a vaccine dose
allometric scaling assumption, to predict the human immune response dynamics and

predict the most immunogenic dose in humans

Sensitivity analysis of vaccine dose allometric scaling factor
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| assumed a scaling factor of 3.33 instead of 10, so the 50 pug H56/H1 + 500 nmol IC31 dose
given to humans was now equivalent to the high (15 pg H56 + 100 nmol IC31) dose group in
the mice. Under this assumption, the low and middle doses in humans were estimated to be

0.3-3.3 and 16.7 pg H56/H1 + 500 nmol IC31, respectively.

Like in the main analysis, | calculated the percentage change between the mouse-data-
estimated model parameters from the high dose group vs the low and middle dose groups
(identified in analysis 1ii). Then | applied these percentage changes to the human estimated
model parameters found in analysis 2 (now assumed to be the human high dose group) to
predict the model parameters for the low and middle dose groups in humans. To establish the
‘most immunogenic’ human dose group | compared long term (day 224) model-predicted

responses for the three human dose groups.
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Additional Results

Analysis 1: Calibration of the IS/ID model to the mouse data, pooled and stratified by dose

group

Analysis 1i: Calibration of the IS/ID model to the pooled mouse data: Mouse pooled model

Table S2 shows the result of the calibration of the model to the pooled mouse data for each
form of & in the model (Figure 1). The Gaussian equation provided the best fit according to
the BIC value and all parameters were well estimated (RSE<30%). The estimated parameter

values for the Gaussian equation calibration are in Table 1.

Results after calibration to pooled
Model parameters (fixed or to be P
. . . mouse data
Form of estimated in Monolix)
To be Parameters BIC -2LL
Fixed (value) ) with RSE >30% | value value
estimated
Gamma PDF L, k, h, Brem, T None 2453 2415
Gaussian prem (0.3 day
N 237 2341
equation 1)%, Bew (10 per a,b,c Prem, T one 379 3
Nai day1)&
alve y ) TN, BN, BTEM, T None 2503 2471
compartment

Table S2. Results of calibrating the model to the pooled mouse data for the three forms of 6. *Fixed to value found in
literature, &Fixed to assumed high value

Residual Error (RE) Model

The following residual error models were tested on the pooled mouse data with the Gaussian
0 function: additive, proportional and combined (additive and proportional). An additive
model resulted in a BIC value of 2732, the proportional; 2430 and the combined 2379 (as in
table S2). The combined residual error model was therefore used throughout analysis 1. The
estimated values for the combined residual error model for analysis 1 can be found in Table

S3. All are well estimated (RSE<30%).

Dose covariate
Pooled (analysis 1i)
(analysis 1ii)
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predicted response)

Estimated RSE Estimated RSE

Value (%) Value (%)
Additive contribution (cells) 0.63 18 0.63 14
Proportional contribution (% of

22 25 21 24

Table S3. Residual error model estimated parameters for a combined residual error model for mice.

Test for random effects correlations

Results for the pairwise test for random effects correlations for mice are shown in Table S4.

Mice

Diff to | Decisio
Combinati “none” n to
on tested BIC (BIC) include
None 2379 - -
a&b 2401 22 No
a&ec 2402 23 No
a & Brem 2405 |26 No
A&t 2395 16 No
b&c 2399 20 No
b & Brem 2398 |19 No
b& 7 2416 | 37 No
¢ & Brem 2397 |18 No
c& 1 2413 | 34 No
Brem& T 2432 |53 No

Table S4. Tests for random effects correlations for mice

All BIC values in Table S4 were non-significantly different from no random effects correlations

in the mice population. No correlations were considered necessary to apply in further

analyses.
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Diagnostic Plots

The VPC plot, model prediction distribution plot and the observed versus predicted (for the

population and individual mice) for the pooled mouse model can be found in Figures S3-S5.

The VPC plot shows that the simulated model predictions cover the data well and there are
little red areas (red areas indicate the simulated model predictions did not adequately cover
the observed data) (Figure S3). The red areas in the early response stages may be due to
variable responses at this stage. The red area for the 25 percentile prediction indicates the
model is under predicting the data. This could be due to the 0.5 value constraint placed on
the standard deviation of the parameters which limit the degree to which the predictions can
vary to cover the data. The model prediction distribution plot suggests the percentiles of the
data are adequately covered (Figure S4), however, as all parameter standard deviations are
fixed at 0.5, this may be underestimating the responses in some cases (as the observed versus
predicted individual responses suggests (Figure S5)). Figure 2A in the main paper reflects

these results.

196



& 1000~
=N
O
O *
o)
rol 800 —
U) *
"g. * : ~
) 600 - : .
N ]

(U + \\ : X
E + . % \\\ = 3 0

=i A 04 ¥
& 400 ‘ N
% ., . :
= 200 e e, :
5 T N
o. 7/ ’Y\ \i ‘ 4 i’l ;///’ e i
< G S *

| | T T | | : ;
0 10 20 30 40 50 80 20

Times (days)

Figure S3. Visual Predictive Check (VPC) plot for the pooled mouse model (parameters from Table 1 using the Gaussian equation for 5 Table S2). Blue points represent the
observed data. Blue regions represent the ranges of the 75" and 25" percentiles of the simulated populations. The pink region represents the range of the 50" percentile.
The green line links the observed percentiles (25", 50t" and 75'") for each time point. Red regions represent where the observed data falls outside the ranges of the simulated
percentiles.

197



[o)] ~J o] o
< < < <
< < < <
] | | |

500 —

400

No. of IFN-gamma SFU/mill Splenocytes

+ Observed Data

— Median

20

T

30
Times (days)

40

50

60

75

70

65

60

30

25

Figure S4. Prediction distribution plot for the calibration to the mouse data (parameters from Table 1 using the Gaussian equation for  Table S2). The blue points represent the
data. The bands represent the 25 to 75t percentiles of the theoretical predictions using the estimated population parameters and associated variation for analysis 1i (Table 1).

The black line shows the median total cell response prediction

198



No. of IFN-gamma SFU/mill Splenocytes

900+

-

Observed data
Spline

800 ol
700+
600 ¢ 3
3 H
s i y
500 .
g ) 0//
400 g i
G
3004 i I or
5 F A T8
2004 G B ¢
(3 4 B
100 1 $ 1 : H
r 4 $ +
/3 s t
-
0 $ It' T T T T T T T T
0 100 200 300 400 500 600 700 800 900

Population Predictions

No. of IFN-gamma SFU/mill Splenocytes

900+

800+

700+

600+

500+

400+

300+

200+

100+

0

100

200

300 400 500 600 700 800

Individual Predictions

Figure S5. Mouse observed data versus model predicted IFN-y responses (parameters from Table 1 using the Gaussian equation for & Table S2)

900

199



Analysis 1ii: Calibration of the IS/ID model to the mouse data stratified by dose group: Mouse

covariate model

As described, the LRT was used to establish the mouse covariate model. The selected model
for analysis 1ii was the one which satisfied the LRT against the pooled model, had all
estimated model parameters RSE <30%, and had the lowest -2LL. Table S5 shows the result
of indexing dose group on the estimated model parameters from the pooled model (model

parameter standard deviations were all 0.5).

-2LL Dose group | Results Difference | 0.01 level significant? (Chi”2 test
value |indexed on | Parameters | -2LL |in -2LL | 3 d.f.: crit val = 11.34, 6 d.f.: crit
for parameter(s) | with  RSE from val =16.81, 9 d.f.: crit val =21.67,
pooled >30% pooled 12 d.f.: crit val = 26.22, 15 d.f.:
model model crit val = 30.58)
(pooled-
dose
group)
2341 a None 2322 | 19 (3 d.f.) Yes
b None 2333 | 8 (3d.f.)No
c None 2322 | 19 (3d.f.) Yes
Brem None 2315 | 26 (3 d.f.) Yes
T None 2335 | 6 (3 d.f.)No
a, b a 2314 | 27 (6 d.f.) Yes
a,c a 2323 | 18 (6 d.f.) Yes
a, Prem C 2318 | 23 (6 d.f.) Yes
a, T None 2322 | 19 (6 d.f.) Yes
b, c None 2315 | 26 (6 d.f.) Yes
b, Brem None 2319 | 22 (6 d.f.) Yes
b, T None 2329 | 12 (6 d.f.) No
c, Prem C 2320 | 21 (6 d.f.) Yes
C,T C 2320 | 21 (6 d.f.) Yes
Brem, T c 2316 | 25 (6 d.f.) Yes
a,b,c a,b,c, brem | 2313 | 28 (9 d.f.) Yes
a, b, BTEM a, bTEM 2312 | 29 (9 df) Yes
a,b,t a, bt 2316 | 25 (9 d.f.) Yes
a, ¢, Prem a, ¢, brem 2322 | 19 (9.d.f.) No
a,cT a,ct 2325 | 16 (9d.f.) No
a, Prem, T a, ¢, brem 2319 | 22 (9 d.f.) Yes
b, C, BTEM bTEM 2317 | 24 (9 df) Yes
b,ct b, c 2316 | 25 (9 d.f.) Yes
b, Brem, T Brem 2312 | 29 (9 d.f.) Yes
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c, Prem, T brem 2322 | 19 (9d.f.) No

a, b, C, BTEM a, b, C, brem | 2317 | 24 (12 df) No
a,b,cr None 2317 | 24 (12 d.f.) No
a, b, Brem, T | @, brem 2315 | 26 (12 d.f.) No
a,c Prem, T | a, ¢, brem 2321 | 20 (12 d.f.) No
b, ¢, Brem, T All 2310 | 31 (12 d.f.) Yes
:' b ¢, Brew, | o 2320 | 21 (15 d.f.) No

Table S5. Results of indexing the dose group covariate on all combinations of estimated parameters in the
mouse pooled model

Table S5 shows that the best covariate model is when dose group was indexed on model
parameter PBrem with all model parameter standard deviations fixed to 0.5
(highlighted)(allowing the standard deviations to be estimated led to RSE of one or more

parameters >30%).

Diagnostic Plots

The VPC plot, prediction distribution and observed versus predicted response plots can be

found in S6-S8.

The VPC shows that for each dosing group (low, middle and high), the model predicts the data
well (Figure S6), although with less data per group the VPC is not as definitive as for in the
mouse pooled model (Figure S3). This is due to the small sample size for the high and middle
dose groups, as the VPC plot does not summarise all responses, either observed data (green
line) and model simulations (blue and orange regions) for all times points which is why the
green line, blue and orange regions do not reflect the expected shape of the model prediction,
i.e. there is no clear peak after primary and revaccination as would be expected from the
design of the IS/ID model. This is not a reflection of an unidentifiable model calibration, but
an artefact of the default settings for the VPC plot in Monolix, where model predictions for
small sample sizes are misrepresented. Figure 2B-D is a better depiction of the model
prediction versus the observed data. The observed versus predicted response plots in Figure
S8 suggest that the model predictions fall in line with the observed data for the dose groups

on a population and individual level.
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Figure S6. Visual Predictive Check (VPC) plot for the covariate mouse model (dose group indexed on parameter Brem, see Table S5, estimated parameters in Table 1). Blue
points represent the observed data. Blue regions represent the ranges of the 75" and 25" percentiles of the simulated populations. The pink region represents the range
of the 50" percentile. The green line links the observed percentiles (25", 50" and 75") for each time point. Red regions represent where the observed data falls outside

the ranges of the simulated percentiles
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Figure S7. Prediction distribution plot for the calibration to the mouse data stratified by dosing group (dose group indexed on parameter Brem, see Table S5, estimated
parameters in Table 1). The blue points represent the data. The bands represent the 25 to 75t percentiles of the theoretical predictions using the estimated
population parameters and associated variation for analysis 1i (Table 1). The black line shows the median total cell response prediction. Note, Y-axis not on the same
scale.
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Analysis 2: Calibration of the IS/ID model to the pooled human data

Analysis 2: Calibration of the IS/ID model to the pooled human data: Human pooled model

The results of the model calibration to the human data can be found in Table 1. As two of the
parameters were not identifiably estimated, | did not test the effects of estimating model
parameter standard deviations as it was clear there was not enough data to estimate further

parameters.

Residual Error (RE) Model

The following residual error models were tested on the pooled human data with the Gaussian
d function: additive, proportional and combined (additive and proportional). An additive
model resulted in a BIC value of 1277, the proportional; 1270 and the combined 1248. The
combined residual error model was therefore used throughout analysis 2. The estimated
values for the combined residual error model for analysis 2 can be found in Table S6. All are

well estimated (RSE<30%).

Pooled (analysis 1i)

Estimated Value | RSE (%)

Additive contribution (cells) 24.7 29

Proportional contribution (% of predicted response) | 37 23

Table S6. Residual error model estimated parameters for a combined residual error model for human.

Test for random effects correlations

Results for the pairwise test for random effects correlations for humans are shown in Table

S7.

Humans
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Diff to | Decision

Combinati “none” to

on tested BIC (BIC) include
None 1248 | - -

b&c 1308 |60 No

b & Brem 1362 | 114 No

b& 1 1390 | 142 No

c & Brem 1275 |27 No

c& 1t 1410 | 162 No

Brem & T 1274 |26 No

Table S7. Tests for random effects correlations for humans

All BIC values in Table S7 were non-significantly different from no random effects correlations
in the human population. No correlations were considered necessary to apply in further

analyses.

Diagnostic Plots

The VPC plot, model prediction distribution plot and the observed versus predicted (for the

population and individual participants) for the pooled human model can be found in $9-511.

The VPC plot shows that the simulated model cover the data well and there are no red areas
(indicating the simulated model predictions did adequately cover the observed data) (Figure
S9). However, the model prediction is trending toward under estimating the median response
at latest time point. Again, due to the small sample size, this VPC plot does not summarise all
responses, either observed data (green line) and model simulations (blue and orange regions)
for all times points which is why the green line, blue and orange regions do not reflect the
shape of the model prediction in Figure 3 of the main paper. Similarly, this is not a reflection
of the calibration of the model, but an artefact of the default settings for the VPC plot in
Monolix, where model predictions for small sample sizes are misrepresented. However, the

expected profile from the IS/ID model can be seen better in the model prediction distribution
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plot, which suggest the percentiles of the data are adequately covered (Figure S10) despite
widely variable responses over time in the human data set. Figure 3 in the main paper shows
how the model predictions follow the trend of this variable data. However, similar to the
mouse pooled model, as all parameter standard deviations are fixed at 0.5, this may be
underestimating the responses in some cases (although the observed versus predicted
individual responses suggests the model is a good fit (Figure S11)). Figure 3A in the main paper

reflects these results.

The individual plots for each human participant can be found in Figure S12 and S13.
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Figure S9. Visual Predictive Check (VPC) plot for the pooled human model (model parameters Table 1). Points represent the observed data. Blue regions represent the
ranges of the 75" and 25" percentiles of the simulated populations. The pink region represents the range of the 50" percentile. The green line links the observed
percentiles (25", 50" and 75'") for each time point. Red regions represent where the observed data falls outside the ranges of the simulated percentiles.
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Validation of Pooling Human data across Vaccine Type

Table S8 shows the result of indexing vaccine type on the estimated model parameters from the human pooled model.

Results Difference in -
2LL from 0.01 level
Vaccine type pooled model | significant? (2 or4
-2LL value for Parameters
indexed on (pooled d.f.) (Chi*2 test 2
pooled model with RSE -2LL
parameter(s) model- d.f.:critval =9.21, 4
>30%
covriate d.f.: crit val = 13.28)
model)
(2 d.f.) No
1231 b Brem, T 1281 -50
-2LL larger
(2 d.f.) No
C b, BTEM' T 1241 -10
-2LL larger
(2 d.f.) No
BTEM None 1292 -61
-2LL larger
(2 d.f.) No
T b, C, BTEM 1326 -95
-2LL larger
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(4 d.f.) No
b, c C,T 1262 -31

-2LL larger

(4 d.f.) No
b, Brem Brem 1346 -115

-2LL larger

(4 d.f.) No
b, T All 1363 -132

-2LL larger

(4 d.f.) No
c, Prem All 1271 -40

-2LL larger

(4 d.f.) No
C,T T 1308 -77

-2LL larger

(4 d.f.) No
Brem, T All 1518 -287

-2LL larger

Table S8. Results of indexing the vaccine type covariate on all combinations of estimated parameters in the human pooled model

Table S8 shows that the vaccine type covariate was not associated with a significant improvement in model fit from the model fit to the pooled
human data. This result was not surprising as H56 and H1 have been shown to have a similar immunogenicity profile [236]. As indexing on two
model parameters on vaccine type resulted in unidentifiable model fits (for all), we did not analyse the effect of indexing all combinations of

three or more model parameters on vaccine type.
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Analysis 3: Use calibrated mathematical models in analysis 1 & 2, and a vaccine dose
allometric scaling assumption, to predict the human immune response dynamics and

predict the most immunogenic dose in humans

Sensitivity analysis of vaccine dose allometric scaling factor

In analysis 1ii, the estimated parameter Brem increased by 168% (0.056 to 0.15) from the high
to middle dose group and by 311% (0.056 to 0.23) from the high to low dose group. Applying
these changes to parameter Brem in the human model parameter set (Table S9), resulted in a
value of 0.091 and 0.059 for the low and middle dose group, respectively (Table S9). Using
these values for Brem in humans, the predicted median number of IFN-y secreting CD4+ T cells
at day 224 were 757, 542, and 188 (SFU per million PBMC) for the low, middle and high (0.3-
3.3 ug, 16.7ug and 50ug H56/H1+IC31, respectively) dose groups, suggesting the low dose
(0.3-3.3 pg H56/H1+IC31) may be most immunogenic in humans (Figure S14). This result which
supports the findings using a scaling factor of 10. Using both scaling factors, a range of 1-3.3

ug H56/H1+1C31may be most immunogenic dose in humans.
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Mouse Human

Pooled Dose covariate Pooled Predicting dose

(analysis 1i) (analysis 1ii) (analysis 2) (analysis 3)

. RSE Dose RSE RSE | Dose
Parameter (unit) Value (%) group Value (%) Value (%) | group Value
Death rate of Transitional effector memory 03(F) |- 03(F) |- 02 (F)" |- 0.2 (F)"
cells, purem (per day)
Low 0.23(E) |14 Low 0.091 (P)
Transition rate from Transitional Effector 55(E) |17 Middle 0.15(E) |23 0.022 31 Middle 0.059 (P)
to Central Memory cell type, Brem (per day) ' 0.056 (E)
High (6) 26 High 0.022 (F)

Replication rate of Central Memory cells - 0.4 - xx

0.4 (F - - - 0.4 (F - 0.4 (F
(per day) (F) (F) (F) (F)
Central Memory cell replication time, © 1.1 (E) ) 1.1 (E) 7 0.34(E) |35 0.34 (F)
(days)
Transition rate from Central Memory to

10(F)* |- 10(F)* |- 10(F)* |- 10 (F)?
Transitional Effector type, Bem (per day) (F) (F) (F) (F)
RecrU|.tment ofTran5|t|onaI Effector rate o: 92.9 (E) | 14 103 (E) 13 51 (E) 93 51 (F)
Gaussian equation scalar, a (# cells)
Recrw.tment ofTranS|t|onaI Effector rate o: 6 (E) 3 6.2 (E) 10 16.6 () | 20 16.6 (F)
Gaussian equation mean, b (days)
Recrw.tment of.TranS|t.|onaI Effector rate d: 0.91(F) |15 0.89(E) |7 5.7 (E) 13 5.7 (F)
Gaussian equation variance, c (days)

Table S9. Population parameters for mice and humans from model calibration (analysis 1&2) and prediction (analysis 3). All estimated model parameter standard deviations were
fixed at 0.5. Abbreviations: RSE = relative standard error, F=Fixed, E=Free parameters that were Estimated using NLMEM, F’ = fixed to value found in analysis 2, P=predicted (using
scaling factor 3.33), fixed to value in literature: * [341], **[342], ***[81]. $ Fixed to be very fast.
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Data: Empirical human IFN-y responses
Data: 75! percentile of empirical human IFN-y responses

A Data: median of empirical human IFN-y responses
a Data: 25" percentile of human mouse IFN-y responses
Model: Prediction of the 75t percentile data (total cells)
— Model: Prediction of the median data (total cells)
-=- Model: Prediction of the 25t percentile data (total cells)
Model: 75t percentile prediction (total cells)
--- Model: Median prediction (total cells)
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Figure S14. Empirical and model predicted number of IFN-y secreting CD4+ T cells over time for A. pooled human data (all data, pooled over vaccine type) (50 ug H56/H1+IC31), and
the predicted human immune responses following a B. low (mouse-data mapped dose of 0.3-3.33 ug H56/H1+IC31) or C. middle dose vaccination (mouse-data mapped dose of 16.7
ug H56/H1+1C31) assuming a dose allometric scaling factor of 3.3. A. Grey points correspond to number of IFN-y secreting CD4+ T cells measured over time by ELISPOT assay in
human PBMC after receiving vaccination of H56/H1+IC31 at day 0 and day 56. Median responses over time are marked by blue triangles, the 75t percentile responses by an orange
triangle and the 25 percentile responses by a purple triangle. The model prediction (total cells) (parameters in Table S9) is plotted against the median data (blue line). The orange
and purple dashed lines are the model prediction (total cells) of the 75t and 25t percentiles of the data, a result of the variation in the estimated parameters (standard deviation
fixed to 0.5 for all parameters (Table S9)). In B. and C. Median (blue dashed), 75t (orange dots) and 25" (purple dots) of the model predicted human responses after mapping from

the mouse dose group model calibration (predicted parameters in Table S9).
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Additional Discussion

Model Assumptions

Key model assumptions from the IS/ID model are outlined in Table S10.

Assumption

Implications for model

Baseline responses were fixed at the median value

In this model, the initial values for the Transitional Effector Memory cells (TEMo)
were not estimated. This is due to the fact that all mice IFN-y responses at
baseline were based on measurements from one unvaccinated mouse and
therefore were all zero. As all human participants in the clinical trials were
previously BCG vaccinated and no other human covariates were considered that
could impact on a baseline response, the baseline responses were fixed to the
median value. This also aided in avoiding over parameterisation compared to the

small sample size of the human data.

Central Memory (CM) cells do not die

The central memory cell population is assumed to be maintained be a constant
turnover, so we assumed the death rate could be omitted from the both the
human and mouse model [316]. Although there is evidence to suggest CD4+ long-
term memory cells turnover may diminish with time [325, 326], we assumed this

does not affect the time frame of the model.

Introducing a death rate of memory cells would result

in a decline of the long-term responses.

Replication followed by transition of CM cells after revaccination and rate of

transition, Bcw
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In the model, after revaccination, the CM cells replicated at a fixed rate for time
T, which was estimated in the model calibration stage. Only after replication had
occurred, the cells transitioned back to TEM cell type at a rate Bcw, which was
assumed to be fast. Although this may be a simplification of the host immune
response dynamics, it was necessary to assume as we did not have information
on Bcm. We therefore considered the transition of CM cells to TEM cells as a result
of revaccination to be a proliferation followed by a “burst” as opposed to a slower
gradual transition (where proliferation and transition occur simultaneously). We
believe this assumption is justified as the purpose of CM cells are to mount an
immune (in our case, IFN-y) response faster than a primary response as a result
of re-exposure to the antigen (revaccination) [44] and a “burst” response is an

effective method to represent this dynamic.

IFN-y responses are not scaled to host body size

The ELISPOT assay readout is conventionally measured per million cells in all
species and we considered the model to represent a systemic response
regardless of host blood volume, it was not necessary to scale the ELISPOT
readout to reflect body size. As our focus was on translating the change in
dynamics due to change in dose between mouse and human, therefore this

scaling the ELISPOT readout was not essential.

CD4+ T cell stimulation greatly simplified

The immune response to vaccination is a complex network of cells and cytokines

behaving nonlinearly over time. In the Thl response to Mtb. infection (or

If data were available on IL-12 or other cytokines
believed to be important to an immune response to

BCG, It is possible that & could be modelled as a
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vaccination), innate and adaptive cells interact to optimise and maintain a
protective response [37]. Very simply, cytokines secreted by innate cells after
infection or vaccination, such as IL-12, work to stimulate adaptive cells to produce
IFN-y that both encourages innate cells to phagocytose bacteria and produce
more IL-12 [66, 323]. As such, a feedback stimulation loop is established. In
addition, to avoid an over-inflammatory response (which is harmful to the host)
cytokines such as IL-10 are produced to regulate and dampen the immune
response [324]. In the model, function & is used to represent the delay of T cell
initiation due to processes such as antigen processing and presentation and the
decline of T cell responses due to depreciation of the required stimulation
(creating a “n-shaped” curve). However, 6 neglects the influence of stimulation
amplification as a result of cytokine feedback loops, amongst other co-
stimulation factors. As such, & is a generalization of the complex networks
required to protect against infection or vaccination and may not be as prolonged

as required to generate a response to vaccination.

I “"

parallel “innate response” compartmental model.
Incorporating such a model would provide insight
into the innate cell mechanisms and thus strengthen

the conclusions we draw on the T cell dynamics.

Transition and replication of transitional effector cells happens in Lymph node

before entering the blood

The model assumes that the recruited transitional effector cells are former Mtb.-
specific naive CD4+ T cells that have clonally expanded within the lymph node
and exited into the blood stream. Under this assumption, transitional effector

cells do not replicate in this model. The rate of naive CD4+ T cell clonal expansion

To incorporate replication of transitional effector
cells into the model, a parameter Re would be applied
which would determine the rate at which replication
occurs, dependent on the current transitional

effector cell count.
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changes with time dependent on stimulation from innate processes and antigen

presence [44] so could be considered to be incorporated into &.

Table $10. Main assumptions of the model and implications on challenging these assumptions
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Chapter 6. Discussion & Conclusion

Decision making in vaccine development employs relatively antiquated methods compared
to the methods employed for drug development. As such, developers may be discarding
vaccine candidates and wasting considerable resources. This failure to utilise modern
methods may be, in part, due to the complexities in measuring a biomarker of vaccine efficacy
and defining the dynamics of the immune system, but also simply represents a failure to
harness quantitative expertise into vaccine development. In this thesis, | take the initial step
to explore the potential utility of PK/PD methods for vaccine development, which | define as

vaccine Immunostimulation/Immunodynamic (I1S/ID) modelling.

The strengths, weaknesses and implications of the work outlined in the separate chapters of
this thesis are discussed in the associated publications. Here | outline strengths, weaknesses,

implications and future work of the thesis as a whole.

Summary of findings

| aimed to apply mathematical modelling to IFN-y responses following vaccination with TB
vaccine, BCG, to establish if differences in response dynamics were due to population
covariates in humans and macaques. Secondly, | aimed to use these results to determine
which macaque subpopulation best represented human responses. In addition, we generated
data on IFN-y responses in mice after receiving varying doses of novel TB vaccine H56+IC31
and mathematically determined the shape of the dose-response curve at early and late time
ranges. | applied IS/ID modelling to the longitudinal mouse responses to establish how dose
affects key model parameters and to human H56/H1+IC31 clinical data, allowing me to map
model parameters between species. | then predicted the IFN-y response dynamics for the

remaining doses in humans and consequently, potentially the most immunogenic dose.

| found that BCG status in humans (baseline BCG-naive or baseline BCG-vaccinated) was
associated with differences in the peak and end response and the long-term IFN-y response

after BCG vaccination (using simple regression methods) (paper 1). When the mathematical
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model was calibrated to the BCG human data, differences in model parameters across the
BCG status covariate were found; those that dictated the baseline and peak response
magnitude and timing of peak. In the macaque population, differences in similar model
parameters were found when the data was stratified by macaque colony of origin and
Indonesian macaques had the closest immune response dynamics to the baseline BCG-naive

humans (paper 2).

A peaked curve was a better description of the mouse H56+IC31 IFN-y dose-response data
than a saturating curve for early and late time points (paper 3). Calibrating a revaccination
model to the data and mapping changes in the estimated mouse model parameters across
dose group to the estimated human model parameters, | found at day 224 (a latest time
point), the model-predicted median number of human IFN-y secreting CD4+ T cells were the
highest for the dose group in the range 1-10ug H56/H1+500 nmol IC31. This suggests a dose

of 1-10ug may be the most immunogenic in humans (paper 4).

Strengths

The strengths of the work from each chapter are summarised as follows (see papers 1-4).
Strengths of chapter 2/paper 1

In chapter 2, | presented an analysis of the differences in key IFN-y immune response aspects
(e.g. peak, long term responses and AUC) following BCG vaccination due to population
covariates. This analysis has not been conducted before and provides valuable insights into
which human population covariates do (and do not) influence these key response aspects.
Thus, this work indicates in future stratification of vaccine trials to minimise variation in key
BCG response aspects. The influence of monocyte to lymphocyte ratio on these responses

has never been considered before.

Strengths of chapter 3/paper 2
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In chapter 3, | extended the analysis from chapter 2 by applying a mathematical model to the
human BCG response data and a macaque BCG dataset. This demonstrated the utility of
mathematical modelling to quantify vaccine immune response dynamics and was an early

example of IS/ID modelling.

Here, we used data on response to BCG after one vaccination of the licensed dose of BCG to
determine the most representative macaque subpopulation for the human responses.
Finding the most representative macaque model to test BCG immunogenicity is an important
aspect of TB vaccine development, as BCG is regularly used as a control arm in current clinical
trials. However, these results may not be generalizable to a different vaccination regimen,
dose or for a new TB vaccine. It is possible that, as some new TB vaccines are BCG boosters
(Figure 1.2, Table B.1 in Appendix B) and are therefore building on an existing BCG response,
the most similar macaque model to human (in terms of the BCG response) may also be the
most similar for these vaccines. To test this hypothesis would require the incorporation of
new data on new TB vaccines. Despite this, our primary aim in chapter 3 was to apply novel
mathematical modelling methods to the response data to quantify the dynamic trends of the
data over time to statistically determine which macaque model should be selected to
represent human responses. This is an improvement on the historical methods of
preclinical/clinical comparisons, where qualitative observations, point estimates or summary
measures such as AUC are used. As these methods rely on the absolute values of the response
data, they are limited by sampling consistency. For example, sampling times in the macaque
data differed across within and between macaque subpopulations (and between macaques
and humans) and showed high variability over time. | would like to re-emphasize that our
conclusions to chapter 3 are not that we have predicted which macaque model is the
“winning” macaque model for TB vaccine development, only a macague model that has the
most similar responses to BCG as a subpopulation of humans. Other response factors are very
important and should be considered in combination. For example, the natural susceptibility
and pathology similarities, which are known to differ between macaque subpopulations [193,

205-207].

Although my model was a highly simplified version of the complexities of the immune system

the model described the data well even for the small macaque sample sizes. A key strength
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in using a simple model for translational purposes is that, providing the mathematical model
is appropriate to all species, translating mechanism of response is simply mapping between
model parameters. Such model-based allometric scaling is used in practice in PK/PD to scale
drug dynamics between animals and humans [265] but has never before been used in
vaccines. | presented a first example of vaccine model-based allometric scaling between

macaques and humans.

Strengths of chapter 4/paper 3

In chapter 4, | successfully generated an intensive time course of IFN-y response data to
vaccination where AUC and peak analysis showed a trend toward higher responses over time
in the lower doses than in the higher doses. By using mathematical curve fitting, | showed
definitively, that the IFN-y dose-response follows a peaked shape instead of the commonly
assumed saturation shape for multiple time ranges. This level of quantitative analysis of
vaccine dose response curves and the change in dose response shape over time has never

been conducted before.

Strengths of chapter 5/paper 4

The final work in chapter 5 presents the first example of the allometric relationship between
vaccine immune dynamics between mice and humans through the mapping of estimated
model parameters between the two species. | was able to provide a guide of the most
immunogenic dose in humans, based on mouse IFN-y responses. This predicted dose range in
humans has recently been corroborated by preliminary empirical results from the phase 1/2a
clinical dose ranging study of H56 + 500 nmol IC31 (ClinicalTrials.gov no. NCT01865487)
(unpublished, personal communication, Thomas Scriba), where developers have decided to
use 5 pg H56+IC31 in future clinical trials, rather than 50 pg in previous trials. These modelling
methods mirrors techniques incorporated in PK/PD modelling for drug development and have

never been used before for this purpose in vaccine development.

Again, although my model was simple, it was a good description of the mouse dose group and

human data and produced biological meaningful results. Due to data sample size, | was
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required to constrain aspects of the model parameterization (i.e. fixing the standard
deviations of the estimated model parameters) and data (i.e. grouping dose). Despite this, my
choice of constraints provided an optimal balance between obtaining identifiable model
parameterisations and providing sufficient information on vaccine responses to achieve my

aims.

Overall strengths of the thesis are as follows.

Novel mathematical modelling methods

My work proposed a new field of science: a mathematical and statistical modelling framework
for accelerating vaccine development. My work incorporated methods to quantify biological
mechanism using mathematical models, which, to my knowledge, has never been directly
integrated into the areas of vaccine development | focused on here, especially in determining
optimum vaccine dose. Using biological mechanistic models to describing longitudinal data
has the advantage over a purely statistical description as data on known biological parameters
of the model across species can aid in more effective allometric translation of vaccine
responses. We can also make new biological inference using mechanistic models by
calibrating them to responses by subpopulation (e.g. dose grouping) and IS/ID models can be
generalised to describe similar response for other vaccines (e.g. T cell mediated vaccines for
cancer). Purely statistical description is an effective tool for describing and comparing the
shape of longitudinal data. However, this does not take into account the underlying biological
mechanism that produced that dataset and as such, may not as generalizable for other
subpopulations or vaccines. Additionally, integration of further biological complexity with the
provision of more immunological data is intuitive for mechanistic modelling compared to
statistical modelling. There is a new recognition of the need for mathematical modelling to
accelerate vaccine development [185, 344], and | believe | present the first steps in achieving

this for TB vaccines.

IS/ID mathematical model based on known CD4+ T cell dynamics
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| spent considerable time developing the model alongside experts to ensure a simple model
that provided insight into the IFN-y immune response. The IS/ID model in this thesis assumes
a linear immune pathway once vaccination is administered, i.e. effector responses are
initiated once antigen presentation and naive T cell differentiation has occurred, they then
deplete and transition to a memory phenotype. Once memory cells experience exposure to
antigen again (revaccination), they revert to effector phenotype. This is an acknowledged
pathway for CD4+ T cells; central memory CD4+ T cells have been shown to have developed
directly from effector cells [327-329]. | chose this pathway after consideration of the
literature on TB vaccine immune responses. However, an alternative model has been
suggested, whereby effector and central memory cells are initiated simultaneously after

vaccination [81, 83, 330]. This could be another possibility for the model.

| chose the terminology “Transitional Effector Memory” to coincide the terminology used by
current TB vaccine developers. Sharpe et al use the term Transitional Effector Memory to
describe activated, non-lymphoid homing (measured by low expression of CC47 marker) in a
recent study of BCG vaccination in macaques. These cells were detected early on after
vaccination with BCG in macaques and correlated with IFN-y levels, both of which declined
over time [345]. However, other authors may suggest the terms “Transitional Effector” or
“Activated Effector” [346] or “Cells with Effector Functionality” [347] as a more appropriate
name for the assumed the short-lived, activated cells in my model. While | agree these
definitions would also be appropriate for the IS/ID model, | wanted to take into account the
possibility that the IFN-y producing CD4+ T cells initially recruited into the IS/ID model may
have already been primed by NTM. This would suggest that any cell in the IS/ID model system
may already be a “memory” cell type. Soares et. al. state that excessive stimulation of CD4+
T cells by antigen is likely to lead to an effector memory type response [327]. Considering the
age of the participants we use in this thesis, is likely that they will have been persistently
exposed to NTMs, which are known to elicit a mycobacterial specific IFN-y response in

vaccination studies [320, 348].

| also use the terminology “Resting Central Memory” (CM). Soares et. al. and Sharpe et. al.
show that after BCG vaccination, CM cells (measured by low expression of CD4+5RA and high
expression of CCR7 [327] and high expression of CD28 and CCR7 [345]) were present in the

later stages [327, 345] and that these cells transitioned from effector-type activated cells and
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expressed high levels of Bcl-2, an anti-apoptotic marker indicating long-life [327]. It is
generally acknowledged, however, that CM cells, produce predominantly IL-2 [83] and less
IFN-y than their effector counterparts, however, there is evidence to suggest that they still
produce IFN-y even at low levels [327, 349, 350]. The terminology for this group could

potentially be framed as “Resting Long-Lived Memory” cells.

In conclusion, there may be debate around the immune cell terminology used in the IS/ID in
this thesis, however | believe the characteristics of the cells in the model and the transitions
between them should receive the focus, i.e. short versus long lived, active versus resting. It is
acknowledged also that the dynamics and terminology for CD4+ T cells in TB research is still
an area of great investigation and discoveries into this field are current and changing. With
this in mind, my model was designed to clearly communicate with my intended current
collaborators and future revisions of the IS/ID model will take into account any shifting

terminology in the field.

Insights into new biological mechanism

During the process of development and parameterisation of the IS/ID model, valuable
discussion around model structure led to interesting questions around vaccine immune
response biology and mechanism. For example, in the case of the revaccination model, are
there important differences in “reactivated” Transitional Effector Memory (TEM) cells due to
revaccination compared to those following primary vaccination? i.e. would two
compartments, TEMprimary and @ TEMyevaccination, b€ @ more accurate representation of
revaccination biology? However, without data on these mechanisms (and on the cell groups
they apply to) it would not be possible to add these to the model. This raises further questions
around the data availability; what data would | need to parameterise this and do the tools
exist to be able to collect such data? This thesis and further IS/ID modelling of vaccine immune
responses may be a catalyst to new discovery around biological mechanism and laboratory

assays.

Mitigation of potential risks
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Conducting novel science such as this thesis comes with risk and | worked hard to mitigate
any risks | felt would jeopardise producing meaningful results. One of the biggest risks we
faced was the potential of the H56+IC31 multi-dose mouse data to be uninformative, which
would have not allowed me to complete the predictive dose modelling in chapter 5. To reduce
this risk, we had early interactions with colleagues at SSI who had previously produced
informative data with H56+IC31 in mice. Secondly, we doubled the ELISPOT plates for every
time point testing two incubation times; 24 and 48 hours providing two avenues for results
(see paper 3). Finally, we regularly read the ELISPOT plates to monitor the results and check
for anomalies. Risks were also involved in developing the model and calibrating it to the data.
| needed to ensure my results were precise given the model structure and data sample sizes.
To achieve this with the data | had available, required using a simple IS/ID model (with a
maximum of two compartments). These models are easily communicable, which in the
context of this thesis is vital as | aimed to introduce mathematical modelling to an
environment where is it not regularly used. Another benefit to these methods is the ability to

easily adapt model structure, essential for integrating further biological complexity.

The use of the Nonlinear Mixed Effects Modelling framework

| used the method of NLMEM to calibrate my model to the longitudinal data in chapters 3 and
5. In a survey of PK/PD modelling between 2002 and 2004, 92% of studies used NLMEM as
the parameter estimation method [283]. However, other methods of parameter estimation
are available. Naive pooled analysis assumes all data comes from the same individual and
while the model parameters can be estimated, any variation in response is ignored, which in
my case is not appropriate. In a two-stage approach, each individual’s model prediction is
made and summary statistics on the mean parameters are made. Both of these methods
require each individual to have extensively sampled and balanced data in order to make
valuable predictions [351, 352]. Additionally, alternative algorithms to estimate the
parameters within the NLMEM framework are available. NONMEM [353] is acknowledged as
one of the first NLMEM software developed for PK/PD analysis and uses the First Order (FO)
and First Order Conditional Estimation (FOCE) algorithms [354]. FO and FOCE methods use
simplification of the likelihood equation to estimate the parameters [281]. | used Monolix to

estimate the parameters [318] which in comparison, is a new software and utilises a more
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exact method of parameter estimation - the SAEM algorithm. SAEM has shown to be robust
and accurate even for sparse data [355], more so than other methods (FO and FOCE).
However, computation time is longer due to the complexity of the method [356, 357]. There
are benefits and drawbacks to all NLMEM methods depending on the data and model; the

superiority of one method compared to another has never been shown definitively [352] .

Weaknesses & Challenges

Weaknesses of chapter 2/paper 1

In chapter 2, although | did show differences in key IFN-y immune response aspects (e.g. peak,
long term responses and AUC), the fundamental biological mechanisms driving these
differences were not explored. However, chapter 2 was considered a preliminary analysis of
the human BCG response and the describing underlying mechanism using an IS/ID model was

the aim of chapter 3.

Weaknesses of chapter 3/paper 2

In chapter 3, IFN-y responses in a macaque population were available. However, the sample
sizes of the macaque colony subpopulations were variable. With these smaller sample sizes
model parameterization and validation were less reliable than for the larger groups; the
estimated model parameters were more uncertain. Nevertheless, conventional vaccine
studies in macaques are often limited to 6-9 per group due to space and cost. These smaller
macaque experiments are then used to inform clinical vaccine trials, making the small sample
sizes used here, more representative of current vaccine development. The uncertainty |
experienced for these small groups highlights the need for larger sample sizes and could be
used to push the vaccine development field to increase sample numbers to reduce response

uncertainty.

It may appear that the closeness of the baseline response (in the model, the parameter TEMo)
could be considered the sole indicator of which macaque subpopulation should be “chosen”.

However, the goodness of fit (BIC) of the macaque subpopulation model predictions to the
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baseline BCG-naive human population data (figure 4, paper 2) are not ordered the same as
the absolute difference in magnitude of baseline response between the macaque
subpopulations and the baseline BCG-naive human population, (i.e. baseline TEMg value
closeness ranking were 1. (closest to baseline BCG-naive human TEMp value) Indonesian
cynomologus, 2. Indian rhesus, 3. Chinese cynomologus, 4. Mauritian cynomologus whereas
the goodness of fit statistic in Figure 4 rankings were: 1. (best fit) Indonesian cynomologus, 2.
Indian rhesus, 3. Mauritian cynomologus, 4. Chinese cynomologus). This suggests that the
baseline response is not necessarily the best indicator of similarity between macaque and

human responses and overall dynamics should be considered.

In chapter 3, | gave the first example of the application of my IS/ID model to vaccine immune
responses. As discussed, a strength of my IS/ID model is its simplicity. However, in order to
make a simple model, key assumptions around the immunological mechanism were made, as
such, some immunological detail had to be omitted. For example, | assumed a nonlinear non-
mechanistic equation for rate parameter, 6, to represent T cell stimulation, attributed to
innate cell processes. However, & is not supported by innate response data and therefore
does not represent a specific group of cells or cytokines. Consequently, there is no direct
biological interpretation of the 6 rate parameters. Variation in vaccine immune responses can
be large across different ages and populations, possibly attributed to underlying differences
in genetics or exposure rates. Where demographic data was available, | tested for differential
IFN-y responses across human and animal subpopulations. Data on geographical location of
participants was not available in chapter 3 (I did not have access to longitudinal responses in
the African participants) so | could not determine differences in IFN-y dynamics by geography.
In chapter 3, | stratified the macaque results by colony of origin, but no other population
covariates. Data is available in these macaques on age and this is intended as further work.
In summary, limited data constricted the conclusions | could make around immune response

dynamics (the IS/ID model structure) and how they varied across the population.

Weaknesses of chapter 4/paper 3

In chapter 4, my aim was to generate H56 multi-dose data that would provide sufficient

longitudinal data for the IS/ID model calibration. Dose concentration feasibility and animal
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cost limited the size of the study. A wide range of doses were chosen to “capture” a wide
response range which we believed would provide adequate information on the full dose
response curve. We successfully predicted a most immunogenic dose by fitting a peaked
curve to the dose response data (paper 3). However, there was uncertainty associated with
these predictions which was potentially due to a lack of response information between dose
0 and 0.1 pg, which would provide information on the increase of the peaked curve. As a
result, | could not fully capture the H56+IC31 dose response curve as the dosing was weighted
towards the higher end of the curve. Despite this, | showed a definitive decline in the dose-
response at the higher dose range (approximately after dose 1 ug H56+1C31) and found that
the probable most immunogenic dose is lower than the minimum dose currently used. |
suggest further H56+IC31 dose testing in mice to establish the curve between 0 and 0.1 ug
H56+IC31.

Additionally, in chapter 4, | chose sampling times that would potentially capture the peak of
response between primary and revaccination, after revaccination and a long-term response
based on previous H56-series response data. Based on the vaccination times (day 0 and 15)
we concentrated our sampling between vaccination times and shortly after revaccination to
try and ensure that the peak responses were captured. Our experiment design led to
informative results of the IFN-y dynamics by dose in chapter 5. Nevertheless, it is possible
that the experiment design could be improved. For example, sampling points were more
extensively between primary and revaccination than after revaccination (5 and 4 time points,
respectively). It is possible that redistribution of these sampling points (potentially weighted
to later time points) may provide a more informative model calibration. Additionally,
redistributing the mice such that there were more mice per dose and less doses may have
provided a better model fit. Model-based optimisation techniques are used in drug
development to establish the optimal experiment by systematically simulating and analysing
different designs. The goal is to maximise information on response dynamics using the
minimal resources [358, 359]. We did not have the capacity to use such methods to find an

optimal experiment design in this thesis, but this is an aim of future work.

Weaknesses of chapter 5/paper 4
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In chapter 5, the data on human demographics such as age, gender and ethnicity was not
available for the H1 trial. The small sample size in this human dataset also meant | was forced
to fix the majority of the model parameters to achieve an identifiable model
parameterisation. As a result, information on the variation in response dynamics, especially
by population covariate, was limited. In chapter 5, | relied on vaccine dose allometry to create
the mapping from mouse to human response. In drugs, the systemic nature of their effect
allows for dose scaling to be based on animal body weight [360]. It is generally acknowledged
that vaccine dose allometric scaling does not benefit from precision gained in drug scaling
[360, 361]. This may be due to the complexity in the immune response elicited by vaccination
which relies on complex interactions that behave nonlinearly over time and across multiple
biological scales (e.g. molecular to cellular to whole systems). | assumed a dose allometric
scaling factor of ten between mouse and human, based on published data by the developers
of H56 [230, 234, 235] (I also considered the scaling factor 3.33 in a sensitivity analysis).
However, this scaling factor has not yet been substantiated as without an established
relationship of dose to efficacy in humans, this scaling is difficult to verify. As mentioned
previously, for other TB vaccines the dose scaling is variable; a scaling factor is assumed to be
ten times from mouse to human for BCG [241, 242], 100 times for MVA 85A [213, 241] and
0.5 for VPM1002 [241, 243]. | also assumed that the scaling factor was linear with respect to
dose i.e. the scaling factor of ten could be used to predict the dose value of all dose groups in
humans. Current hypotheses suggest that a nonlinear relationship may be more accurate i.e.
decreasing as dose decreases (personal communication, Thomas Evans MD). However, there
is currently no evidence to support this. In conclusion, the H-series dose scaling factor
between mouse and human is currently vastly under researched. It is vital that further
predictions of human immune responses using IS/ID modelling should be supported by more

in depth vaccine dose allometric evaluations.

There were some overall limitations and challenges to this thesis as a whole.

The use of IFN-y as the sole marker of vaccine immunogenicity and the model as a systemic

blood model
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Throughout the thesis, | chose the sole use of IFN-y as an indicator of TB vaccine immune
response. This was guided by the data available to me during the project. This choice of TB
response marker has been a longstanding limitation in the TB vaccine field as there is
conflicting data on the protective ability of IFN-y on its own. A protective TB vaccines immune
response is more likely to be a combination of cytokines or cells types [144]. For example,
work by Andersen et al. showed that polyfunctional T cell responses emitting combinations
of IFN-y, TNF-a and IL-2 after vaccination with H1+CAFO1 were well sustained over long-term
timelines; protective and maintained post-challenge with Mtb. [223]. Similar results were
found after vaccination with TB vaccine MVAS85A [362]. The combination of these cytokines
secreted by the CD4+ T cells during an immune response to TB vaccination may alter the
function of the cell [92], for example, it has been shown that when cells lose polyfunctionality
and produce predominantly IFN-y they are close to “exhaustion” [363]. Therefore, omission
of data on these cytokines may have implications for my model parameterisation, i.e. for the
above example, the cell death rate parameter in the model (both chapter 3 and 5 models)
may be affected. The nature of T cell cytokine secretion may also be dose dependent; it is
plausible that the low IFN-y response observed for high doses (in chapters 4 and 5) could be
a result of cells being removed quickly from the model due to exhaustion or that a higher
dose induces CD4+ T cells secreting cytokines other than IFN-y that the ELISPOT assay cannot
detect. In summary, the nature of the response for any TB vaccine dose cannot be fully
characterised with only IFN-y data. To fully establish an effective immune response in the case
of TB vaccines requires comparison of immune response against bacteria count measures. |
did not collect this data in the thesis, as it was not viable for me to do so. | acknowledge that
the mixed evidence that IFN-y levels correlate with protection in humans [135-137] and
macaques [193] is a limitation for the results in chapters 2 and 3. However, | felt that previous
evidence showing the correlation of bacteria counts and H-series vaccination IFN-y response
(i.e. lower bacteria count for low doses) in small animals [217, 224] was sufficient to justify
the results in chapters 4 and 5. Further to this, as my model represents IFN-y secreting CD4+
T cells measured using the ELISPOT assay in PBMC in humans and macaques, and splenocytes
in the mouse, it is a generalisation of vaccine immunogenicity, homogenously mixed in the
blood. However, TB immune activity is mainly focused around the lungs and draining lymph
nodes [37]. For ethical and logistical reasons, blood is the most viable measure of TB vaccine

immunogenicity in humans, the