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REVIEW

Effects of HIV infection and ART 
on phenotype and function of circulating 
monocytes, natural killer, and innate lymphoid 
cells
Rose Nabatanzi1* , Stephen Cose2, Moses Joloba1, Sarah Rowland Jones3 and Damalie Nakanjako4,5

Abstract 

HIV infection causes upregulation of markers of inflammation, immune activation and apoptosis of host adaptive, and 
innate immune cells particularly monocytes, natural killer (NK) and innate lymphoid cells (ILCs). Although antiretro-
viral therapy (ART) restores CD4 T-cell counts, the persistent aberrant activation of monocytes, NK and ILCs observed 
likely contributes to the incomplete recovery of T-cell effector functions. A better understanding of the effects of HIV 
infection and ART on the phenotype and function of circulating monocytes, NK, and ILCs is required to guide devel-
opment of novel therapeutic interventions to optimize immune recovery.
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Background
The human innate immune system is comprised of a 
complex network of cellular and soluble proteins that 
work together to provide the first-line of defense against 
common invading pathogens prior to involvement of the 
adaptive immune response [1–3]. Innate immune cells 
including monocytes, natural killer cells (NK), innate 
lymphoid cells (ILCs), and other antigen presenting cells 
(APCs) play a crucial role in the ushering in the adaptive 
arm of the immune response [4, 5]. In particular, mono-
cytes are precursor cells to professional APCs involved in 
immune surveillance [6]. In addition, they have pattern-
recognition receptors (PRRs) that detect conserved path-
ogen-associated molecular patterns (PAMPs) which lead 
to the induction of inflammatory responses that com-
bat invading pathogens [7]. Natural killer cells produce 
cytokines; particularly interferon-gamma (IFN-ɣ) which 
activates phagocytic cells and primes APCs for interleu-
kin 2 (IL-2) secretion thus shaping adaptive immunity 

towards a T helper 1 (Th1) response [8, 9]. ILCs rapidly 
secrete immunoregulatory cytokines which makes them 
provide protective immunity early on during infection 
[10] and also maintain intestinal homeostasis by directly 
regulating T cells through the presentation of peptide 
antigens on major histocompatibility complex II [11].

During HIV infection, the adaptive immune system 
is directly affected through the rapid infection of CD4 
T-cells [12] but the effects on the innate immune sys-
tem are more indirect through microbial translocation, 
inflammation, and immune activation [13]. Immune acti-
vation and inflammation cause a reduction in the num-
bers of monocytes, NK and ILCs, consequently leading 
to poor innate and adaptive immune responses, all which 
result in suboptimal response to infecting antigens [14].

Antiretroviral therapy (ART) suppresses HIV replica-
tion, restores CD4 T-cell numbers, reduces microbial 
translocation, inflammation, and aberrant T-cell activa-
tion [15–17]. The net effect of this is the near restoration 
of the immune system to pre-infection status and control/
prevention of opportunistic infections and other AIDS-
associated ailments [18, 19]. Several studies have how-
ever demonstrated incomplete recovery of the adaptive 
immune responses including ours which showed lower 
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CD4 T-cell proliferation among ART-treated adults (with 
CD4 counts restored to 500 cells/µl and more), relative to 
their HIV-negative counterparts [19–21]. Innate immune 
cells; in particular NK cells, ILCs and monocytes, par-
ticipate in the initiation and development of adaptive 
immune responses although little is known about their 
recovery during ART. This review discusses the recovery 
of monocytes, NK and ILCs during ART, because of their 
respective contributions to the regulation of the adaptive 
immune response.

Figure  1 summarises the effects of HIV infection and 
ART on monocytes, NK cells, ILCs, and other innate 
cells. Persistent inflammation and activation of mono-
cytes, NK cells, and ILCs is likely associated with the per-
sistent T-cell activation and impaired effector functions 
observed among ART-treated adults [20–22]. There is 
likely a unique phenomenon of innate immune cell recov-
ery during ART, among residents in sub-Saharan Africa 
(SSA) where several endemic infections activate the 
immune systems. A better understanding of innate cell 
dysfunctions and their effects on the adaptive responses 
during ART would guide the development of innovative 

therapeutic intervention to optimize recovery of host 
immune responses.

HIV infection and innate immune cells
Monocytes
In the first few weeks of HIV infection, there is a mas-
sive accumulation of CD8 T-cells and a massive deple-
tion of CD4 T-cells in the gut, followed by increased gut 
permeability and translocation of microbial products 
into circulation [23, 24]. Microbial translocation con-
tributes to increased monocyte activation as evidenced 
by the rapid shift in the circulating monocyte pool from 
the classical phagocytic monocytes  (CD14++CD16−) to 
the intermediate inflammatory monocyte subpopula-
tion  (CD14++CD16+) in the first 2 weeks of HIV infec-
tion [25]. Subsequently, monocyte subsets are disrupted, 
leading to suboptimal effector functions of phagocytosis, 
intracellular killing, chemotaxis and cytokine produc-
tion [26]. HIV infection, both through direct infection 
and indirectly through microbial translocation, leads to 
monocyte activation and aberrant release of pro-inflam-
matory cytokines including TNF-α, IL-1β and IL-6, 

Fig. 1 The effects of HIV infection and ART on monocytes, NK cells, ILCs
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thereby activating the immune system [17]. In addition to 
aberrant cytokine production, HIV-associated monocyte 
activation leads to increased release of chemokines, lead-
ing to non-specific movement of monocytes into various 
tissue sites [23]. Direct HIV infection of the monocytes 
down regulates MHCII expression, inhibits MHCII-anti-
gen complex formation and reduces the monocyte abil-
ity to take up antigens for processing and presentation to 
T cells [27]. In a study conducted in Beijing, Chen et al. 
[28] demonstrated that acute HIV-1 infected individu-
als had significantly increased proportions of inflamma-
tory monocyte subsets and upregulated expression of the 
HLA-DR and CD163 receptors when compared with HIV 
negative individuals. These acquired defects in monocyte 
function cause the inability of monocytes to present anti-
gens [27].

We postulate that the observed increase in inflamma-
tory monocytes and immune activation markers could 
further impair monocyte responsiveness to antigens 
making the HIV infected individuals more susceptible to 
opportunistic infections. After several months to years 
of HIV infection, viral load levels gradually increase, 
while CD4 T-cells continue to reduce in number and 
function [29–31]. Similarly, there is dysregulation of 
monocyte subsets with higher populations of inflam-
matory  (CD14+CD16+) monocytes than phagocytic 
 (CD14+CD16−) populations. Monocytes in circulation 
become functionally anergic due to continued activation 
and high inflammatory status [32]. Untreated, individuals 
with chronic HIV-1 infection continue to have increased 
proportions of both the intermediate and non-classical 
monocytes subsets [33]. Moreover, levels of expression 
of CD163, a marker of activation on inflammatory mono-
cytes remains significantly higher among individuals 
with chronic HIV-1-infection than HIV negative controls 
[34]. Protracted expression of the activated phenotype of 
monocyte subsets has a direct association with disease 
progression [33].

ART down regulates the excessive production of 
cytokines by the inflammatory monocytes thereby reduc-
ing the levels of immune activation and inflammation 
[17]. In a review by Burdo et  al. [35], it was observed 
that ART initiation within the first year of HIV infec-
tion reduced monocyte activation, as evidenced by a 
reduction in expression of activation marker CD163 and 
absolute numbers of inflammatory monocytes. Similarly, 
markers of microbial translocation [lipopolysaccharide 
protein (LPS), IL-6, 16S ribosomal DNA and soluble 
CD14], and inflammatory markers such as d-dimer and 
interferon-α declined with ART initiation [33, 36]. 
Although a lot of immune functions appear to be recov-
ered during ART, some monocyte dysfunctions persist. 
After 1 year of therapy, ART-treated adults were reported 

to still have elevated levels of the inflammatory monocyte 
subset  (CD14++CD16+) and a downregulated expression 
of phagocytic monocyte subset  (CD14++CD16−), result-
ing in the reduced ability of monocytes to process and 
present antigens to T cells [34, 37]. Similarly, phagocytic 
activity and oxidative burst of neutrophils and mono-
cytes remained impaired among HIV-1 infected patients, 
in Athens general hospital after 3  months of ART [26, 
38]. However, there is paucity of data on monocyte acti-
vation and functional recovery beyond 2  years of ART, 
particularly in sub-Saharan Africa (SSA) where monocyte 
frequency and functional recovery has not been widely 
studied in HIV treatment cohorts. Given the increasing 
numbers of individuals receiving ART, for 7  years and 
over, a better understanding of the effects of long-term 
ART on inflammation and monocyte activation would be 
relevant to inform innovations against chronic inflamma-
tion and its complications among adults living with HIV.

Natural killer cells
Natural killer (NK) cells have an important role in con-
trolling acute HIV infection, through rapid division 
and production of huge amounts of IFN-γ cytokine [8]. 
Strong NK cell activity and cytotoxic receptor expression 
are associated with preservation of CD4 T cells and lower 
viral set point [39]. HIV infection is associated with sev-
eral changes in the NK cell compartment, including phe-
notypic and functional abnormalities that contribute to 
difficulty in the control of HIV progression [40]. Evidence 
of dysfunctional NK cell populations has been revealed 
by studies in the nonhuman primate model which have 
demonstrated anergic NK cell accumulation in lymph 
nodes in SIV infection [41].

In humans, acute HIV infection generally causes acti-
vation and expansion of the whole pool of NK cells [42], 
with abnormal distribution of the NK cell subsets. Pro-
inflammatory  NKCD56bright populations are reduced, 
while the cytolytic  CD56dimCD16pos NK cell and dysfunc-
tional  CD56negCD16pos NK cells are increased in HIV 
positive people compared to HIV negative individuals 
[43, 44]. HIV infection reduces expression of the natu-
ral cytotoxicity receptors (NCR), NKp30, NKp44 and 
NKp46 [39, 45], which are essential in the containment 
and clearance of HIV virus. Evidence has further sug-
gested that acute HIV infection activates the upregula-
tion of stress ligands for cytotoxicity receptors including 
NKG2D which leads to lysis and cell death [46].

With continued viral replication, the  CD56dimCD16pos 
NK cell subset previously expanded in acute infec-
tion drop in numbers and function, as demonstrated by 
reduced CD107a expression and cytokine secretion [47]. 
The reduced numbers of cytolytic and cytokine produc-
ing NK cells would suggest that HIV infected patients 
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with chronic disease remain susceptible to many infec-
tions especially those of viral origin [42, 48]. Evidence 
of reduced cytokine producing NK cells was further 
demonstrated in a rural Ugandan cohort, where chroni-
cally infected HIV individuals had lower expression of 
the  NKG2A+CD57+CD56dim subset in HIV infected 
group than the HIV negative controls [49]. In addition 
to down-regulated cytokine production, HIV infec-
tion causes a reduced ability of NK cells to perform 
ADCC due to a reduction in the number of the cytolytic 
 CD56dimCD16+NK cells population [50] and a reduction 
in the intracellular stores of perforin and granzyme A 
[51].

Several discrepant results have been reported on the 
recovery of NK cells with ART.

ART has been shown to restore NK cell numbers with a 
mature phenotype in HIV-infected individuals, although 
defects of subset distribution and impaired ability to pro-
duce IFN-ɣ cytokine persist [44, 52, 53]. Frias et al. [54] 
reported incomplete recovery of NK cell subsets after 
3 years of ART in Spain, in spite of undetectable viral load 
and an outstanding increase in the CD4 count to levels 
above 500 cell/µl. On the contrary, Mavilio et al. and Luo 
et al. [40, 55] reported complete recovery of NK cell sub-
sets and functional profiles after 2  years of ART when 
compared with HIV negative individuals. In Ottawa at 
the immunodeficiency clinic, NK cell cytolytic activity 
was greatly reduced to levels similar to those among HIV 
negative people, after 1 year of ART [56]. In a Ugandan 
cohort, we demonstrated increased pro-inflammatory 
 CD56bright NK cells that were associated with suboptimal 
immune recovery despite 4 years of suppressive therapy 
[57]. Given that most of the evidence on the recovery of 
NK cells is from individuals after a short duration of ART, 
there is need to explore recovery of NK cell function after 
longer durations of ART. This is particularly important 
for sub-Saharan Africa which has more than 10 million 
people receiving ART majority of whom have been on 
treatment for more than 10 years [58].

Innate lymphoid cells (ILCs)
Innate lymphoid cells are a group of innate immune cells 
that belong to the lymphoid lineage but do not respond in 
an antigen-specific manner, because of their lack of a B or 
T cell receptor [59]. These cells are subdivided into ILC1, 
ILC2 and ILC3 and these mirror the CD4 T helper cells 
TH1, TH2, and TH17 cells in the cytokines they produce. 
ILCs are mainly found at mucosal surfaces where they 
act as gatekeepers to invading infectious agents, includ-
ing HIV [60]. ILCs rapidly secrete immunoregulatory 
cytokines which makes them provide protective immu-
nity early on during infection [61]. Studies done in non-
human primates revealed that ILC populations in the gut 

mucosa are significantly reduced in numbers due to an 
increase in cytotoxicity and inflammatory cytokine pro-
duction by both ILCs and NK cells during acute Simian 
immunodeficiency viruses (SIV) infection. The reduc-
tion in ILC numbers contributes to the massive apoptosis 
and dysregulation in the gut-associated lymphoid tissue 
(GALT) [62, 63]. Xu et al. [64] showed that IL-17 produc-
ing ILC populations were drastically reduced in acute 
SIV infection, especially in the jejunum.

In humans, acute HIV infection has been associated 
with lymphoid tissue destruction of gut mucosa and fur-
ther causes upregulation of genes associated with ILCs 
cell death, as evidenced by the depletion of ILCs both 
in blood and gut tissues of HIV-1 infected patients [63]. 
The destruction of lymphoid tissue cells has been associ-
ated with microbial translocation, immune activation and 
disease progression in both ART-treated and untreated 
individuals [65]. In a study by Kløverpris et  al. among 
individuals with acute HIV infection in South Africa, 
it was demonstrated that all three subsets of ILCs were 
massively depleted from peripheral blood 7–14 days after 
HIV infection and these did not increase with viral load 
decreasing [65, 66].

In chronic HIV infection, ILC3s are further depleted 
and the depletion was attributed to the presence of exces-
sive production of type 1 interferons by the plasmacytoid 
dendritic cells [67]. Although ILCs are depleted irre-
versibly from peripheral blood and the mucosal tissues, 
Mudd et al. [67] demonstrated that ILCs in tonsillar tis-
sue are not significantly altered, meaning that ILC deple-
tion is not generalised but rather compartmentalised and 
with continued therapy they may be redistributed back in 
peripheral blood and mucosal tissues.

Initiation of ART during acute HIV infection, preserves 
ILC numbers if it is initiated before peak viremia [66]. 
However, ART initiation during chronic HIV disease 
seems to have little effect on recovery of ILC numbers; 
with circulating ILC1s and ILC2s remaining signifi-
cantly depleted and incomplete reconstitution of circu-
lating ILC3s even with 2 years of ART [65, 66]. Kramer 
et  al. studied ILC distribution in the gut and observed 
that despite effective use of ART, ILCs in HIV infected 
individuals remain dysregulated compared to their HIV 
negative counterparts. This lack of recovery of ILC dis-
tribution may contribute to the loss of intestinal barrier 
integrity and immune activation [66, 68, 69]. It is likely 
that individuals with persistent ILC dysfunction remain 
with limited mucosal protection and subsequently high 
risk of bacterial infections, autoimmune diseases and 
allergic infections due to the subsequent limitations 
in TH1, TH2 and TH17 functions that are mirrored by 
ILC1, ILC2 and ILC3 phenotypes, respectively [68].
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Consequences and clinical implications of persistent 
dysfunction of innate immune cells during ART
Innate immune cells and IRIS
ART generally leads to viral suppression, improvement 
of immune function, and better outcomes for many HIV 
positive individuals. Up to 10–25% of ART-treated indi-
viduals [70, 71] may develop the immune reconstitution 
inflammatory syndrome (IRIS) during the first months 
to years of HIV treatment. IRIS is a paradoxical inflam-
matory syndrome resulting from increased host immune 
responses to pre-existing opportunistic pathogens, 
including Mycobacterium avium complex, M. tuberculo-
sis, Cryptococcus neoformans, Cytomegalovirus, JC virus, 
Pneumocystis jirovecii, Herpes zoster (VZV), and hepati-
tis B, as a result of CD4 T-cell restoration and interferon 
gamma production during the first months of ART [72]. 
The contribution of the different innate immune cells to 
IRIS has been documented by different groups; for exam-
ple, in a Ugandan cohort, Tran et  al. [73, 74] reported 
that monocyte-associated biological processes and func-
tions were disturbed in TB-IRIS patients (after 2 weeks of 
ART), with dysregulation in both anti- and pro-inflam-
matory processes in monocytes. Andrade et al. [75] eval-
uated soluble biomarkers of inflammation and monocyte 
activation in patients who had been on ART for 12 weeks 
with TB-HIV co-infection from India and South Africa 
and found increased plasma levels of sCD14 and sCD163 
pre vs post IRIS which are strong indicators of monocyte 
activation and predictors of death in TB-IRIS patients. 
Natural killer cells also exhibit phenotypic and func-
tional differences in patients who develop IRIS relative 
to those who do not. At a Themba Lethu clinic Johan-
nesburg, patients who developed IRIS had significantly 
higher levels of NK-cell degranulation before ART initia-
tion [76] and exhibited high immune activation levels as 
demonstrated by the elevated levels of CD69 and HLA-
DR [77]. Increased NK cell degranulation can cause lysis 
of cells infected with antigens, thereby increasing the 
circulating antigen load in these patients and contribut-
ing to the observed IRIS [76]. Given the propagating role 
of monocyte activation in IRIS processes, it is likely that 
therapeutic interventions to minimise monocyte activa-
tion might indirectly modify the risk and severity of IRIS 
among ART-treated adults.

Persistent immune activation and non‑AIDS complications
Aberrant activation of the innate immune system is per-
sistent despite ART [78], and it could be directly due to 
replicating HIV virus or indirectly through co-infections 
including subclinical Cytomegalovirus (CMV) infec-
tion [79]. Innate immune activation can be due to HIV 
directly infecting the monocytes/macrophages and den-
dritic cells or indirectly through HIV gene products like 

envelop proteins of gp120 and Nef that cause activation 
of lymphocytes and macrophages to produce pro-inflam-
matory cytokines and chemokines [80]. Evidence of indi-
rect immune activation suggests that persistent leakage 
of lipopolysaccharide (LPS) into blood circulation [36] 
causes monocyte activation [81].

Persistent activation of innate immune cells is asso-
ciated with the heightened production of pro-inflam-
matory cytokines (IL-1β, TNFα and IL-6) which cause 
T-cell activation. T-cell activation subsequently increases 
intracellular NF-κB levels which enhances the transcrip-
tion of integrated virus and production of new virions 
that further infect more cells [82]. Activation of T-cells 
promotes T-cell depletion through upregulation of apop-
tosis, ADCC, and by-stander killing; all of which are 
functions of innate immune cells [3]. Reduced numbers 
of innate monocytes, NK and ILCs, consequently lead to 
poor innate and adaptive immune responses causing sub-
optimal response to infecting antigens [14]. Moreover, 
persistent inflammation and activation have been associ-
ated with fatal non-AIDS illnesses such as cardiovascular 
diseases, malignancies and organ damage among adults 
aging with HIV [83–85]. The high levels of inflamma-
tion and immune activation associated with chronic HIV 
disease, despite ART, contribute to accelerated immune 
aging and increase the risk of non-AIDS illnesses includ-
ing cardiovascular diseases [86, 87], cataracts [88], malig-
nancies [89, 90], bone demineralization [91], renal disease 
[92] and cognitive decline [93]) among HIV-positive 
adults relative to their HIV-negative counterparts. We, 
therefore, postulate that strategies to downgrade innate 
immune cell activation and associated dysfunctions could 
modify the magnitude, duration, and systemic complica-
tions of the aberrant immune activation associated with 
HIV chronic disease.

Conclusions
HIV infection disrupts phenotypes and functions of 
monocytes, NK cells and ILCs, and subsequently the 
related adaptive host immune responses. ART restores 
some phenotypic and functional abnormalities associ-
ated with HIV infection, although persistent disruption 
of phenotypes and function of monocytes, NK cells, and 
innate lymphoid cells have been observed among popu-
lations of ART-treated adults. A further understand-
ing of specific persistent innate immune cell phenotypic 
and functional abnormalities during ART is required to 
inform innovations in immune modulation interventions 
to optimize recovery of both innate and adaptive immune 
system. Similarly, a further understanding of the drivers 
of persistent immune activation is required to inform 
strategic therapeutic interventions to minimize its com-
plications, particularly in sub-Saharan Africa where other 
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infectious causes of immune activation such as malaria, 
tuberculosis and helminthic infections are still endemic.
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