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Thesis abstract 

Non-invasive assessments of the calcaneus, by techniques such as quantitative 

ultrasound (QUS) and dual x-ray absorptiometry (DXA), have been used as 

predictors of fracture risk assessment and to monitor the response to mechanical 

loading and treatments for osteoporosis. However, these current devices lack the 

sensitivity to measure microstructural changes in the bone. High-resolution 

peripheral quantitative computer tomography (HR-pQCT) has been specifically 

developed to provide volumetric bone mineral density (vBMD), geometry, trabecular 

and cortical microstructure measurements, revealing DXA-independent predictors of 

fracture risk and compartment-specific adaptations to environmental stimuli.  

This thesis describes the development of a procedure to quantitate calcaneal vBMD 

and trabecular microstructure using HR-pQCT (first generation XtremeCT), in order 

to overcome limitations with previous quantitative devices.  

Studies using human cadaveric feet and participants in vivo were used to develop 

the procedure and determine measurement accuracy and precision. Regional 

differences in calcaneus trabecular bone were found, with ~2-fold higher trabecular 

vBMD at the superior compared to the inferior region of the bone in vivo. The 

superior region of the calcaneus had better HR-pQCT measurement accuracy 

compared to the middle and inferior regions, due to fewer tissues surrounding the 

region and a higher trabecular density. Increasing HR-pQCT scans integration time 

(100 to 200ms) improved trabecular microstructure accuracy ex vivo; acceptable 

quality images could be obtained with a 200ms integration time in vivo. Calcaneus 

vBMD and trabecular microstructure could be measured with good relative precision 

in premenopausal women (vBMD, 0.9-1.9%; trabecular microstructure 1.4-1.8%), 

where it was necessary to correct for positional errors using image registration.  

In conclusion, calcaneus vBMD and trabecular microstructure can be quantified 

using HR-pQCT in vivo. Continued development of the positioning apparatus would 

benefit the future application of the method, to enable greater flexibility with the 

region measured and enable image acquisition at a 200ms scan integration time.  
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Background 

1.1 The skeleton 

The skeleton is essential to living vertebrate’s and is made up of varied sizes and 

types of bones that accommodate its function. Long bones (such as the humerus, 

femur, radius, tibia) support weight and provide levers to facilitate movement from 

the skeletal muscles and tendons. The short bones (such as the carpals and tarsals) 

support movement. Flat bones (such as the skull, sternum, ribs and scapulae) 

provide organ protection. Irregular bones have complex shapes and specific 

functions, such as the vertebrae that protect the spinal column. Sesamoid bones 

(such as the patella and pisiform) provide attachments for tendons across joints. 

Bones are also a reservoir for the storage and release of minerals that maintains the 

body’s homeostasis, such as calcium, magnesium and phosphorus, and contain 

bone marrow within its cavities that produce red blood cells. 

1.1.1 Bone anatomy 

The bone has a hierarchal structure from the nano- (<1µm) to macro-structural level 

(>500µm) (Figure 1.1). At the nano-structural level, the bone is a composite material 

primarily formed by mineralised collagen fibrils, containing collagen proteins (85-

90%) with hydroxyapatite mineral platelets [Ca10(PO4)6(OH)2], water and non-

collagenous organic proteins, such as osteopontin, sialoprotein, osteonectin and 

osteocalcin (10-15%) [1]. These material properties give bone a stiff, but flexible 

structure. The mineralised collagen fibrils are arranged in a planar fashion to form 

lamellae (3-7µm). The lamellae are arranged to form different types of bone 

microstructure (<200µm), such as Haversian systems and single trabeculae.  

Haversian systems contain blood vessels and are tightly packed together to form 

the cortical bone compartment. The cortical compartment is surrounded by a 

membranous layer on the inner (endocortical) and outer (periosteal) surfaces, which 

contains bone cells (discussed in Section 1.1.2), blood vessels and nerve fibres. 

The endocortical surface forms a transitional zone with the trabecular bone. Single 

trabeculae are inter-connected, with a network-like appearance that is surrounded 

by bone marrow, blood vessels and nerve bundles. Here, the trabecular bone has a 

larger surface area compared to cortical bone. The proportion of trabecular and 

cortical bone varies between skeletal sites and is highly dependent on its function. 
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Figure 1.1. The hierarchy of the structural organisation of bone from the 
macro (proximal femur) to nano-structure.  
Sourced from Pahr and Zysset [2]. 
 

1.1.2 Bone physiology 

Bone is a metabolically active tissue that responds to extrinsic (external to the bone, 

e.g. endocrine, genetic and senescence) and environment stimuli (external to the 

body, e.g. pharmacologics, exercise and diet). There are three cells that regulate 

bone tissue, which are contained in a microenvironment called the basic 

multicellular unit (BMU) (Figure 1.2). Within the unit there is the: (1) osteoclast, 

which resorbs (removes) bone from the skeleton; (2) the osteoblast, which forms 

(deposits) new bone for the skeleton; and (3) the osteocyte, which is a mechano- 

and hormonal-sensory cells embedded and connected in the bone matrix. 

Osteocytes are responsible for sensing the stimuli and signalling BMU activity. The 

balance between osteoclast and osteoblast activity can determine a person’s bone 

quantity over the lifespan.  

During growth, bone modelling is dominant until the skeleton reaches maturity. 

Modelling adapts a bone’s size, shape and spatial mineralisation with bone 

deposition but without previous bone resorption. Long bones during growth serves 

as an excellent example of bone modelling; with an increase in bone length, bone 

diameter and cortical thickness by late adolescence, followed by a plateau in bone 

geometry and smaller increases in trabecular and cortical compartment BMD with 

consolidation until post-puberty [3-6]. Heritability (genetics), hormones, weight and 
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lifestyle factors [7] govern the attainment of peak bone mass at the end of skeletal 

maturation, which is typically between 25 to 30 years of age [3, 8, 9]. The 

dimorphism in bone strength between males and females is evident at this stage; 

males typically have larger cross-sectional area and cortical area, thicker cortex and 

higher trabecular BV/TV, and subsequently higher estimated bone strength [10].  

Bone remodelling is the process by which bone tissue is continuously renewed. 

Bone resorption and formation are typically balanced and occur at lower rates than 

seen than prior to maturity [11]. It permits the replacement of old or damaged bone 

through spatially and temporally dependent resorption and formation (i.e. coupling) 

within the BMU (Figure 1.2, Sims and Martin [12]).  

Bone remodelling begins when the osteocytes orchestrate the retraction of the bone 

lining cells and reveal the bone matrix. This signals for the multinucleated 

osteoclasts (driven by increase RANKL:OPG cytokine expression ratio) to attach to 

the bone surface, which creates a sealed zone. The osteoclasts create an acidic 

environment by secreting hydrochloric acid within the sealed zone. This creates an 

optimal pH 2 for the enzyme, cathepsin k, to degrade type I collagen in the 

mineralised bone matrix  – at each remodelling site, bone resorption occurs over a 

period of approximately 3 weeks. In the reversal phase, osteoblasts are recruited 

directly to the resorbed cavity via mechanisms that include the release of osteogenic 

growth factors from the matrix, cell-to-cell contact and secreted signals from 

osteoclasts – this occurs over approximately 5 weeks at the remodelling site. 

Osteoblasts deposit osteoid, which contains type I procollagen and additional non-

collagenous proteins. The addition of hydroxyapatite mineralises the newly 

deposited osteoid forming bone matrix – bone formation occurs over approximately 

3-4 months. Before returning to quiescence, the osteoblast has 3 fates: it undergoes 

apoptosis, becomes a bone-lining cell or differentiates within the bone matrix and 

becomes an osteocyte.  

Bone resorption and formation (turnover) can be measured using biochemical 

markers. PINP and serum CTX-I are recommended as reference markers for bone 

formation and bone resorption, respectively [13, 14]. PINP is the cleavage of type I 

procollagen molecules prior to assembly into collagen fibrils and CTX-I is a c-

terminal product from the breakdown of type I bone collagen. There are other 

biochemical markers available to measure bone remodelling, related to type I 

collagen degradation (NTX-I), matrix formation (osteocalcin) and osteoclast 

(TRAP5b) and osteoblast enzyme activity (bone ALP) [15]. These biochemical 
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markers are useful in monitoring how bone tissue may change in response to 

extrinsic and environmental factors.  

 

 

 

1.1.3 The functional adaptation of bone 

The functional adaptation of bone was first proposed in the 19th century by Julius 

Wolff, who observed that the trabecular patterns followed lines of principal stress in 

weight-bearing bones of the lower-limbs and foot (adapted version [16]), where 

regions have distinct geometrical structures based on stresses experienced [17]. 

Evolving from Wolff’s findings, Harold Frost proposed the mechanostat theory for 

the control and remodelling of bone [18]. The theory proposed that bone operates in 

a negative feedback system, where strain is sensed and the bone 

modelled/remodelled to adequately adapt to the strength of the stimulus to resist 

structural failure.  

Bone tissue is exposed to compressive, tensile and shear stresses (Figure 1.3). Via 

mechanotransduction and bone deformation (strain) these initiate bone modelling 

and remodelling to functionally adapt the bone. This can occur through extracellular 

 

Figure 1.2. Bone remodelling within the basic multicellular unit. 
Osteoclast secreted signals initiate the differentiation of osteoblast progenitors (A). 
Osteoclast secreted signals may lead to the indirect activation (dashed line) of 
osteoblast precursors and mature osteoblasts through the bone lining cells (B), the 
reversal cells on the bone surface (C) and the osteocytes (D and E). 
Sourced from Sims and Martin [12]. 
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fluid creating fluid shear stress across the osteocytes, activating receptors 

associated with bone resorption (e.g. RANKL) and formation (e.g. sclerostin),  and 

through microdamage to trabecular and cortical bone surfaces, such as linear 

microcracks (~ 50-100µm) or diffuse damage (clusters of sublamellar-sized cracks). 
Linear microcracks are a result of higher loads (compressive and shear stress), 

which can lead to osteocyte apoptosis and the initiation of remodelling at that site 

[19]. Diffuse damage is a result of lower loads (tensile stress), which does not 

necessarily cause osteocyte apoptosis and can be followed by bone modelling 

rather than remodelling [20].  

There are several examples of how the human skeleton functionally adapts. People 

with a high BMI carry a greater load and have higher BMD at central and peripheral 

sites of the skeleton compared to normal weight people [21-23]. There is 

deterioration in trabecular and cortical bone following the removal of weight-bearing 

compressive stress at the distal tibia with disuse [24] and spaceflight [25]. Studies 

have also shown that the humeral diaphysis from the racket arm of tennis players 

has geometrical asymmetries to the non-racket arm from bending, caused by 

compressive and tensive stress from striking the ball [26-28]. Functional adaptations 

at these sites may alter the customary strain stimulus for further adaptation, which 

may also be affected with changes in extrinsic and environmental factors. [29].  

 

 

Figure 1.3. The biomechanical effect of compression, tension and 
shear stress.  
Stress (arrows) is the force applied to a material and strain (dotted line) is the 
change in length or deformation of the material. 
For a long bone, compression and tension would occur along the bone axis, 
whereas shear stress is perpendicular to the bone axis. 

     

Compression Tension Shear 
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1.1.4 Bone fracture 

Bone fracture occurs when the loading conditions exceed the capacity that the bone 

can resist i.e. its strength. Figure 1.4 shows the mechanics behind the fracture of 

bone with load-displacement behaviour (A) and stress-strain behaviour (B).  

The point at which bone failure occurs is dependent on intrinsic characteristics, such 

as the mass, geometry, tissue integrity and material properties. For example: with a 

higher amount of healthy bone mass there is a greater quantity of tissue to absorb 

energy without fracturing, as shown by the higher failure load at the distal tibia 

compared to the distal radius [30, 31]; the accumulation of unrepaired microdamage 

affects tissue integrity and is associated with lowering the load/stress required for 

bone failure [32]; changes in the tissue material properties, such as the 

mineralisation, can alter bone stiffness; the degree of porosity and osteonal area 

fraction can also influence crack navigation, particularly at the cement lines and 

lamellar patterns in the osteons [33, 34].  

 

It is well established that bone size is critical to whole bone strength at several 

skeletal sites [1-3]. Additionally, the characteristics of the trabecular and cortical 

compartment also contribute to bone strength. Cowin [4] stated that trabecular 

(cancellous) bone had 20-30% lower stiffness than cortical bone, proposing that 

A  B  

 

Figure 1.4. Mechanical properties of bone fracture. 
A − Load-displacement behavior. Stiffness = linear region. Stiffness remains linear until 
transition to non-linear behaviour (yield point), causing permanent deformation and damage 
to the bone. Ultimate load = peak of the curve, which precedes failure of the bone (i.e. 
fracture). Work-to-failure = area under the load-displacement curve. 
B − Stress-strain behavior. Elastic modulus = linear elastic region; yield stress = transition 
from linear to nonlinear behavior; ultimate stress (strength) = peak of stress-strain curve prior 
to failure. The energy needed to cause a fracture is calculated from the area under the 
stress-strain curve. 
Sourced from Cole and van der Meulen [35]. 
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this was the result of different microstructural orientation and distribution (as 

shown in Figure 1.1). The relative contribution of the trabecular and cortical 

compartments to bone strength varies depending upon the skeletal site. For 

example, vertebrae are primarily composed of trabecular bone, which are 

orientated in an axial direction within a thin cortex. Trabecular thickness and the 

plate-rod conformation, as well as total BMD, significantly determines the 

vertebral failure load, whereas individual cortical parameters have a much 

smaller influence [2]. In contrast, cortical bone is more influential on peripheral 

bone strength; for example, the distal tibia and distal radius strength and 

stiffness is dependent on cortical thickness, as well as the trabecular BV/TV and 

connectivity [1]. There is also inter-site heterogeneity in the contribution of 

trabecular and cortical bone to proximal femur strength. In femoral neck fracture 

cases, large focal losses in trabecular vBMD have been reported. For 

trochanteric fractures there are focal losses in trabecular and cortical vBMD [5], 

as well as an association with trochanteric cortical area, as shown in mechanical 

testing experiments [3].  

1.2 Osteoporosis 

1.2.1 Definition and diagnosis 

Osteoporosis is ‘a systemic skeletal disease characterised by low bone mass and 

microarchitectural deterioration of bone tissue, with a consequent increase in bone 

fragility and susceptibility to fracture’ [36]. A BMD T-score value 2.5 SD below the 

young adult female mean is used to assist the diagnosis of osteoporosis [37, 38] – 

there is more detail of this measurement in Section 1.3.1. The T-score is seen as a 

useful tool, as fracture risk increases by 1.5 to 3-fold with every T-score reduction by 

1 SD [39]. 

Osteoporosis is, however, a multi-factorial disease and the -2.5 SD BMD T-score 

does not capture all fractures [40]. Other independent risk factors for osteoporosis 

include age, sex, BMI, parental history of fractures, personal history of prior fracture, 

current tobacco smoking status, glucocorticoid use, rheumatoid arthritis, alcohol 

consumption >3 units per day [41]. The combination of these factors with the BMD 

T-score can enhance fracture risk prediction [42]. In order to obtain a quantitative 

measurement of an individual’s absolute 5-10 year fracture risk, the clinical risk 

factors, with or without BMD, have been integrated into different computational 

algorithms, such as FRAX®, QFracture and Garvan, each of which has different 
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input characteristics. Currently, QFracture and Garvan capture individuals falls rate; 

a key contributor to fracture incidence. Nonetheless, FRAX is more commonly used 

worldwide, as it has 68 population-specific calculators currently available [43].  

1.2.2 Prevalence and impact 

With an ageing population the prevalence and cost of osteoporosis-related fractures 

is predicted to increase worldwide. It has been estimated that 22 million women and 

5.6 million men have osteoporosis in Europe [45]. There were also approximately 

3.5 million new osteoporosis-related fractures in 2010: 610,000 hip fractures, 

520,000 vertebral fractures, 560,000 forearm fractures and 1.8 million at other sites 

[45]. The direct annual cost was estimated at €24 billion, rising to €37 billion with 

indirect costs, such as long term care and pharmacological therapies for 

osteoporosis management [45]. In a UK populations study, it is estimated than one 

in two women and one in five men past 50 years of age will have an osteoporosis-

related fracture in the rest of their lifetime (Figure 1.5) [44, 46]. 

 

 

Figure 1.5. Age- and sex-specific incidence rates of fracture at the radius/ulna, 
femur/hip and spine (1988-2012). 
Sourced from Curtis et al., [44]. 
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1.2.3 Disease characteristics 

The dimorphism in osteoporosis between women and men begins during puberty, in 

obtaining peak bone mass, and is primarily caused by differences in sex steroids. 

During growth and at skeletal maturation, males tend to have high BMD at the spine 

and hip, as well as larger bones, higher trabecular BMD and thicker cortices (Burt, 

Gabel, Lorentzon?). Following maturation, oestrogens and androgens restrain the 

rate of bone remodelling [47, 48], which assist with the maintenance of bone mass. 

Oestrogen deficiency that occurs with the menopause in women results in an 

increased number of activated BMUs; also mediated by proinflammatory cytokines 

[49]. This increases the number of differentiated osteoclasts and osteoblasts; but 

there is an imbalance between the resorbed and deposited bone, which leads to a 

net bone loss [50]. Men, on the other hand, do not have a rapid change in bone 

remodelling like women, but can lose substantial amounts of bone with ageing, 

associated with lower bioavailable oestrogen and testosterone [48, 51]. Collectively, 

these hormonal changes can result in the deterioration of trabecular and cortical 

microstructure.  

Examples of the impact of trabecular and cortical bone loss that is associated with 

osteoporosis are shown in Figure 1.6. In the right image of Figure 1.6A, the 

trabecular bone appears less dense in the inner and outer medullary compartment. 

This can be caused by a conversion of plate- to rod-like trabeculae, the complete 

loss of trabeculae (i.e. lower number) and a loss of trabecular connectivity. In Figure 

1.6B, there are examples of significant cortical remodelling and loss of cortical 

mass. This can be demonstrated by greater cortical porosity and the 

trabecularisation at the endocortical surface. There is also an accumulation of 

microcracks, which can be apparent in trabecular and cortical bone. 
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1.2.4 Disease management 

The prevention and management of osteoporosis has been improved by the 

development of pharmaceutical therapies. The prescription of licensed anti-

resorptive and anabolic therapies accounts for 5% of the total spend on 

osteoporosis in Europe [45].  

Anti-resorptive treatments prevent bone resorption and lower bone turnover, thus to 

some extent retaining ‘old’ bone and suppressing the formation of new bone. Anti-

A 

  

B 

 

Figure 1.6. Images of trabecular and cortical microstructure.  
A − Images of the distal tibia. The trabecular bone compartment is in red and the cortical 
bone compartment is in blue. The image on the left has a dense trabecular region, whereas 
the image on the right has had a noticeable loss in central meduallary area and towards the 
endocortical bone surface. 
B − Micrograph of distal radius specimens from a 78 year old and 90 year old women. The 
green image shows the high number of cortical pores, and a high number of microcracks 
that surround and go through osteons. The red images shows an area of endocortical 
trabecularisation. The bottom right image shows that there is a greater number of larger 
pores in distal radius micrograph from the 90 year old woman (sourced from Zebaze et al., 
[52]). 
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resorptive therapies include oral and intravenous bisphosphonates, denosumab, 

calcitriol, raloxifene and hormone replacement therapy (HRT). Available anabolic 

therapies promotes bone formation and increase bone turnover by increasing the 

BMU activation frequency. Therefore, it has the opposite mechanistic action to anti-

resorptives. Currently teriparatide, a 1 to 34 fragment of parathyroid hormone (PTH), 

is the only licensed anabolic treatment in the UK. Other anabolic treatments include 

abaloparatide (binds to PTH 1 receptor), which has been recently approved by the 

FDA, and romosozumab (anti-sclerostin antibody), which is undergoing phase III 

review.  

The anti-fracture efficacy of anabolic and anti-resorptive treatments has been 

evaluated in comparative analyses of different studies and, more recently, direct 

head-to-head trials. In one of the latest comparative analyses of fracture reduction 

between treatments and placebo in postmenopausal women, bisphosphonates, 

denosumab and teriparatide had a relative risk reduction of 40-60% for vertebral 

fractures and 20-40% reduction for non-vertebral fractures [11]. However, in recent 

head-to-head trials there appears to be better anti-fracture efficacy of anabolic 

compared to anti-resorptive therapies in postmenopausal women with osteoporosis. 

In the VERO trial, there was a pooled 52% lower vertebral and non-vertebral fragility 

fracture risk with teriparatide compared to risedronate [12], and, in the ARCH trial, 

romosozumab lowered vertebral fracture risk by 48% and non-vertebral fracture risk 

by 19% when compared to alendronate [13]. This is promising for finding more 

efficacious treatments for patients, but more evidence is required to influence 

treatment decision-making.  

Guidance on the prescription of osteoporosis treatments has been provided by 

NICE and the National Osteoporosis Guideline Group [41, 56]: oral 

bisphosphonates (alendronate and risedronate) are first line treatments for the 

prevention of fractures, due to a 3-fold lower cost-utility ratio (pounds per Quality of 

Life Year to prevent one fracture) compared to teriparatide. Intravenous 

bisphosphonate (zoledronic acid) and denosumab are recommended if oral 

bisphosphonates are contraindicated or not tolerated. Finally, teriparatide is a 

second/third line therapy for individuals that are unresponsive to bisphosphonates, 

have contraindications for bisphosphonates, or have a T-score ≤ -3.5 SD with a 

history of fragility fractures. A NICE technology appraisal is currently in progress, 

which includes abaloparatide. 
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1.3 Non-invasive assessment of bone 

The ‘gold standard’ for measuring bone strength is mechanical loading until failure 

(i.e. fracture). Clearly, this cannot be achieved clinically. Non-invasive assessments 

have been important to predict bone strength by measuring the intrinsic 

characteristics of bone, particularly how these characteristics may adapt with 

extrinsic and environmental stimuli.  

X-ray is the most common method used for the non-invasive assessment of bone. 

X-ray photon beams are attenuated based on the electron density (atomic number 

which in turn depends on mass density) of the body tissues. Bone mineral strongly 

attenuates x-rays as it has a high electron density, whereas soft tissues (e.g. fat and 

muscle) have low electron densities and are low attenuating tissues. The photon 

attenuations are detected and reconstructed into a radiographic image, where its 

detail is dependent on the physical properties of the assessment device. The 

contrast achieved between bone and soft tissues is essential to bone edge detection 

and measurement accuracy. Whilst the estimation of bone mineral by x-ray is not 

perfect, it provides a measurement that is more feasible than measuring the bone 

mineral ash weight. Other non-x-ray based assessments of bone (i.e. not dependent 

on bone mineral) include magnetic resonance imaging (MRI) and ultrasound. These 

are advantageous, as they do not irradiate the participants.  

Devices used for the non-invasive assessment of bone have different capabilities 

and limitations. The key assessments are summarised within this section.  

1.3.1 Dual-energy x-ray absorptiometry (DXA) 

DXA is a quantitative radiological procedure for measuring areal (2D-based) 

(a)BMD. The accessibility of DXA, its low effective radiation dose and its capability 

of measuring BMD at the lumbar spine and proximal femur has established the 

assessment device as integral in diagnosing osteoporosis (Section 1.2.1, T-score 

measurement), estimation of fracture risk and monitoring of BMD changes over time 

[57]. Other non-BMD applications have been used from DXA images, such as 

vertebral fracture assessment, hip structural analysis, trabecular bone score and the 

measurement of body composition. 

There are some technical limitations to using DXA. DXA assumes that all high-

density overlying material imaged is bone [58], such as abdominal aortic 

calcification and surgical implants. Degenerative changes with arthritis and fracture 

can also cause artefacts and typically overestimate aBMD [58]. DXA also assumes 
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that soft tissue is homogenous; composition can change in response to extrinsic or 

environmental stimuli (e.g. hydration, weight loss), which affects x-ray attenuation. 

Subsequently, this may distort the segmentation of the bone from the soft tissue 

with image analysis. Soft tissue thickness can also attenuate x-rays, in which 

simulated fat-layering has been reported to increase DXA phantom aBMD [59]. 

Finally, areal DXA measurements cannot take into account bone depth, which can 

underestimate and overestimate aBMD in small and large bones, respectively, and 

does not discriminate between the trabecular and cortical compartments.  

1.3.2 Quantitative Computed tomography 

Quantitative computed tomography (QCT) can obtain volumetric (3D) 

measurements of bone, such as volumetric (v)BMD and bone geometry, therefore 

overcoming some of the limitations found with DXA.. QCT can also obtain some 

measurements of trabecular and cortical microstructure; however the accuracy of 

these measurements is dependent on the tomographic slice thickness and pixel 

size. Scans are generally of a shorter duration than DXA and the precision error for 

QCT is also low [60].  

An advantage of QCT is that it can assess compartmental changes associated with 

fractures and response to treatment. For example, lower trabecular vBMD at the 

femoral neck and the trochanteric region, as well as focal cortical thinning and lower 

cortical vBMD towards the superior region of the femoral neck, have been reported 

with hip fractures [61-63]. Femoral neck and medial trochanter trabecular vBMD 

have also been shown to predict hip fracture, independently from total hip aBMD, 

age and BMI [61]. When QCT has been applied to monitor the response to 

osteoporosis treatment, an increase in integral vBMD and trabecular vBMD at the 

spine was 2 and 5-fold higher, respectively, with teriparatide compared to 

alendronate [64]. Localised increases in proximal femur cortical vBMD has been 

associated with regions of high compressive and tensile stress with teriparatide, 

highlighting the specificity that can be achieved using QCT assessments [65]. QCT 

images of the spine and hip have also been used to estimate failure loads and 

fracture under specific loading conditions using finite element (FE) modelling; which 

has been supported by the ISCD to monitor age- and treatment-related changes 

[66]. 

Preventing the more routine used of QCT in osteoporosis diagnosis and in studies is 

the substantially higher radiation dose per scan compared to DXA, due to the 

greater amount of soft tissue at the central sites. This radiation dose is even higher 
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with more specialised high-resolution QCT, which has superior spatial resolution. 

The radiation dose is an issue if completing longitudinal monitoring, especially in 

younger populations. Even with this improved spatial resolution, trabecular bone 

microstructure (number, thickness and spacing) or the geometry of cortical pores 

cannot be quantified. QCT devices are also more expensive compared to DXA. 

Taking these limitations into account, QCT appears to be complementary to DXA for 

fracture risk prediction and monitoring, rather than replacing DXA [67].  

1.3.3 Peripheral QCT (pQCT) 

pQCT obtains either a single slice or multiple slices at the extremities of the 

skeleton. The single slice pQCT devices (such as the Stratec XCT2000 and 

XCT3000) have a standard slice thickness of 2 mm, with an in-plane voxel size from 

200-800 µm [68]. Multi-slice CT and cone beam CT, which are more commonly 

available in hospitals, can image a greater proportion of the peripheral site of 

interest and can also image the bone under weight-bearing conditions [69]. 

Subsequently, multi-slice images have greater effective radiation doses than single 

slice images. An advantage of pQCT scanners, particularly the Stratec XCT range, 

is that is has an open gantry, meaning it has great accessibility to image a number 

of distal-proximal sites along the extremities.  

pQCT cannot be used to diagnose osteoporosis, but can be used for fracture risk 

assessment and monitoring interventions (loading and treatment). Radius and tibia 

cortical geometry and estimated biomechanical strength measured by pQCT can 

independently predict incident fractures in older men and women, following 

adjustment for proximal femur aBMD and other clinical risk factors [70, 71]. pQCT 

can also provide measurements of soft tissue and can be applied to image the 

muscle-bone relationship, such as with exercise interventions and musculoskeletal 

diseases [72, 73]. 

One of the main limitations to pQCT is that it is restricted to imaging the extremities. 

However, as it is limited to the extremities’, the radiation dose is lower when 

compared to central sites using standard QCT. Variability in participant repositioning 

can cause measurement imprecision, such as through a slight alteration in the limb 

angle or with distal-proximal movement along the extremity [74-76]. The spatial 

resolution of pQCT means that trabecular microstructures and cortical pores cannot 

be quantified. Furthermore, the cortical bone density is sensitive to in-plane pixel 

size and may not be accurately quantified when it’s thickness is low [68], such as at 

the radius metaphysis or with higher cortical bone loss. 
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1.3.4 High-resolution peripheral QCT (HR-pQCT) 

HR-pQCT is a progression of pQCT that obtains multi-slice images with a superior 

voxel size (isotropic 82 and 61 µm, first and second generation XtremeCT, 

respectively). This has enabled the more accurate measurement of trabecular and 

cortical microstructure [77], which has identified compartmental differences in 

trabecular number, cortical thickness and porosity in individuals with similar DXA 

aBMD measurements [78]. The radiation dose per HR-pQCT scan is also low. HR-

pQCT also appears to have better short and long-term measurement precision 

compared to pQCT [76, 79], potentially due to the improved spatial resolution and 

the removal of misalignments between repeat images with the manufactures’ 

software.  

HR-pQCT is not used for osteoporosis diagnosis, but appears to have a wide 

applicability in bone research. Measurements such as radius and tibia total, 

trabecular and cortical vBMD, cortical area and thickness, trabecular number, and 

bone strength (estimated by FE modelling) have all been independently associated 

with postmenopausal fracture risk [80-83]. In monitoring treatments responses an 

increase in HR-pQCT measured cortical porosity (and decrease in cortical vBMD) 

has been observed with teriparatide [84, 85], and cortical pore infilling with anti-

resorptives [84-86]. The device has had the sensitivity to detect deterioration in 

trabecular and cortical microstructure with just 6-weeks disuse at the distal tibia [24] 

and detect compartment-specific abnormalities associated with type 2 diabetes [87], 

corticosteroid-induced osteoporosis [88] and with kidney transplantation [89]. Image 

acquisition and evaluation procedures have also been adapted to image joint 

geometry and microstructure at the metacarpals in patients with rheumatoid arthritis 

[90-92] and in patients developing knee osteoarthritis [93]. 

HR-pQCT has a number of potentially clinically relevant measurements, but also 

has limitations. It is a specialised device and less accessible than DXA and QCT. 

Only the extremities can be measured, particularly towards distal regions due to the 

restricted size of the gantry. The scan duration is 2-2.8 minutes (depending on the 

scanner), which is longer than pQCT devices. The longer scan duration can lead to 

movement artefacts and lead to repeat image acquisitions when image quality is 

unacceptable. Movement artefacts can cause measurement imprecision, particularly 

for microstructural measurements [94, 95]. Also, whilst there is good accuracy of 

most trabecular and cortical measurements, there are issues with measuring 

structures that are at or below the spatial resolution (95-150 µm [96, 97]), such as 

trabecular thickness and cortical pore size [77, 97, 98]. HR-pQCT does not have the 
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spatial resolution to detect microdamage (requires voxel size < 5 µm). This can only 

be achieved using micro computed tomography; however this cannot be used for 

the non-invasive assessment of human bone.  

1.3.5 Magnetic resonance imaging (MRI) 

MRI is typically used to image non-osseous tissue. The imaging of bone by MRI is 

largely dependent on visualising the bone marrow and surrounding soft tissues. The 

pulse and duration of the magnetic field, dictated by the radiofrequency, determine 

the spin and relaxation of the protons in the tissues. Bone has low proton 

abundance and has a negative signal (appears black) where as the marrow and soft 

tissues have higher proton abundances and a positive signal (appears white).  

The advantage of MRI is that it invovles no ionizing radiation exposure and is 

available in hospital settings. As it in non x-ray-based, it cannot quantify BMD. 

Instead, it measures trabecular and cortical bone volume and microstructure. MRI 

has commonly been applied at peripheral sites as a better spatial resolution can be 

achieved (150 µm in-plane pixel size and a 300 µm slice thickness [68]), where as 

the spine and hip is challenging due to the abundance of soft tissue, which impact 

signal-to-noise ratio, the spatial resolution and scanning duration. Measurement at 

central, fragility fracture sites may be feasible using a higher magnetic field strength 

(7 tesla) [99], however these protocols are still relatively underdeveloped compared 

to those using lower magnetic field strength (1, 1.5 and 3 tesla) at the peripheral 

sites [76, 79, 100, 101]. 

MRI is not used in osteoporosis diagnosis, but has been applied in research studies 

to evaluate microstructural changes with fracture risk and treatment. 

Postmenopausal women with hip fractures have been reported to have lower BV/TV 

and increased trabecular spacing at the calcaneus [101] and the radius [102] 

compared to controls. More advanced image processing with MR images has 

detected an apparent conversion of trabeculae to rod-like phenotypes and 

trabeculae disconnection at the distal radius in women after the menopause, which 

was attenuated with estrogen therapy [103]. Maintenance in MR-measured BV/TV 

and trabecular microstructure has also been reported following 24 months of 

alendronate treatment, which was consistent with DXA aBMD at central sites [104].  

The added complexity of imaging bone microstructure using MRI explains its lower 

use compared to x-ray based devices. HR-pQCT appears to be easier to use to 

measure bone microstructure, as shown by the superior short and long-term 

precision of measurements compared to MRI [76, 79]. MRI spatial resolution also 



 18 

has an impact on its measurement of microstructure; there is reasonable accuracy 

for trabecular microstructure [105] but quantifying cortical pores pose challenges 

[106]. The scan duration needs to be longer to improve signal-to-noise and assist 

microstructure measurement. However, in turn, this increases the likelihood of 

movement artefacts during the image acquisition. 

1.3.6 Quantitative ultrasound 

Quantitative ultrasound (QUS) was introduced to quantify bone properties using 

ultrasonic waves [107]. The transmission of the waves and its absorption and 

scattering can be interpreted as bone properties, such as the attenuation of the 

waves (broadband ultrasound attenuation (BUA)) and speed that the waves transmit 

through the bone (speed of sound (SOS)). QUS measurements have been used to 

study BMD and bone microstructure, including trabecular separation, anisotropy and 

connectivity [108, 109], as well as cortical thickness and porosity [110]. Such in an 

osteoporotic bone, BUA and SOS would be lower than that measured from a dense 

bone without microstructural deterioration.  

QUS is highly accessible; it is inexpensive, portable and ionizing radiation free. 

There are a number of QUS devices that measure different sites of the peripheral 

skeleton, such as the radius, tibia, calcaneus and phalanges. Specifically, calcaneal 

QUS is able to predict fracture risk independent from central DXA BMD (described 

in more detail in Section 1.4.3). Fracture risk prediction using calcaneal QUS is 

comparable to using femoral neck aBMD [111, 112] and QUS thresholds have been 

recommended as a useful tool for osteoporosis screening in locations that do not 

have access to DXA [113]. QUS measurements are also continuing to be 

developed, with a particular focus on measuring the proximal femur [114, 115] and 

the extremities where the focus is on cortical bone thickness and porosity [110]. 

There are limitations to QUS, which have been documented by the ISCD [113]. The 

technical diversity between devices, such as the number of detectors, within-site 

variation of the region of interest, measurement algorithms and the skeletal site 

assessed, can limit the interpretation of the results in clinical applications [113, 116]. 

This makes study comparisons challenging. Also, improper coupling between the 

ultrasound medium and the skin, skin temperature and soft tissue thickness can all 

affect QUS measurements. In prospective studies, ultrasound drift can lead to 

measurement imprecision. Subsequently, the relative measurement precision has 

been reported to be 2.3-7.1% for BUA and SOS between devices [113], which 

compromises the detection of clinically significant changes in monitoring studies.  
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1.3.7 Summary 

Non-invasive assessments can help to determine a person’s fracture risk and 

monitor the response to an extrinsic and environmental stimulus. Different devices 

can be used to achieve this (Table 1.1). DXA is integral to osteoporosis diagnosis 

and an essential tool in the management of the disease. However, the 

amalgamation of trabecular and cortical compartments limits DXAs sensitivity to 

detect intrinsic changes in bone. Ideally, QCT would be applied in these scenarios, 

particularly at major osteoporotic fracture sites (spine and hip). Measuring these 

sites using QCT would expose people to high ionising radiation doses and be 

unsuitable for monitoring or with multiple measurements in longitudinal study 

designs. pQCT devices (including HR-pQCT) offer significantly lower radiation 

doses. Whilst these devices are limited to the peripheral skeleton, and may not be 

entirely representative of the central sites [117, 118], meaningful measurements 

have been reported with disease and in response to interventions. MRI may offer an 

alternative to measure bone microstructure, but it complex to use and has issues 

with precision. QUS also has issues with precision in detecting changes in the bone. 

At this present moment, HR-pQCT is preferred for the measurement of peripheral 

bone microstructure in research settings.  
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1.4 Calcaneus 

1.4.1 Anatomy 

The calcaneus, or heel bone, is a weight-bearing bone. It is the largest tarsal bone 

and has distinct macroscopic features and geometry (Figure 1.7). It forms two joints 

with other bones of the foot: the subtalar joint with the talus at the posterior and 

middle facets of the sustentaculum tali, and the calcaneocuboid joint with the cuboid 

at the anterior facet. It has numerous ligament origins and insertions [119]: the 

calcaneo-fibula ligament attaches at the calcaneus from the fibula; the plantar fascia 

ligament originates from the plantar surfaces of the calcaneus tuberosity and 

attaches to the proximal phalanges via the metatarsals; the longitudinal plantar 

ligaments attach to the metatarsal via the cuboid; the calcaneo-navicular plantar 

ligaments attach at the navicular bone; the calcaneo-cuboid plantar and dorsal 

ligaments attach to the cuboid; the calcaneo-navicular bifurcate and calcaneo-

cuboid bifurcate attach at the navicular and cuboid, respectively; the tibio-calcaneal 

ligament from the tibia. The triceps surae muscles also attach to the posterior 

portion of the calcaneus via the Achilles tendon.  

The calcaneus is largely composed of trabecular bone with thin cortices [120]. The 

trabecular orientation is highly heterogeneous reflecting the applied mechanical 

loads. Gefen and Seliktar [121] summarised the intrinsic characteristics of the 

calcaneus in relation to the applied strains: the calcaneus subtalar articular surfaces 

are exposed to high compressive strains that occur from weight bearing and 

locomotory activities, which the trabeculae align to in the superior half and towards 

the inferior half of the bone. Trabeculae also follow tensile stress lines in the inferior 

half of the calcaneus from the Achilles tendon attachment, which bears strains 

through maintaining balance in the standing posture. There is a mix of tensile and 

compressive strains from ground reaction force on the plantar-posterior surface of 

the calcaneus cortex, and there are smaller tensile strains from the deep and 

superficial plantar ligaments towards the anterior region of the calcaneus.  

The non-invasive assessment of the calcaneus has been undertaken in several 

areas of osteoporosis research, using devices such as DXA, MRI and QUS. The site 

has been primarily used to study the effects of mechanical loading, assess fracture 

risk and monitor response to treatments for osteoporosis management.  
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Figure 1.8. A sagittal slice through the calcaneus.  
Left − sketch of the calcaneus and the trabecular orientation (adapted from Von Meyer 
[16]). 
Right − slice of the calcaneus from a human cadaveric specimen captured using HR-
pQCT. 

 

1.4.2 Mechanical loading and unloading 

The calcaneus is a mechano-responsive bone and has formed a surrogate site in a 

number of large physical activity/performance studies.  

Blanchet and colleagues [122] reported that BUA and SOS were higher in active (≥3 

sessions per week) postmenopausal women compared to sedentary counterparts, 

 

Figure 1.7. Calcaneus specimen with anatomical landmarks. 
Landmarks: AF, anterior facet; MF, middle facet; PF, posterior facet, TU, tuberosity; SU, 
sustentaculum tali; PFL, plantar fascia ligament attachment; AT, Achilles tendon 
attachment.  
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independent from age, BMI, HRT use, smoking and alcohol intake. The associations 

between physical activity and QUS measurements were also independent of lumbar 

spine and femoral neck aBMD [122]. In younger adult men, time spent doing 

physical activities was positively associated with calcaneal BMD, with adjustment for 

age, height, weight, calcium intake and smoking status [123]. Men that had ceased 

activity or had continued to be active for at least 10 years had higher calcaneal BMD 

than those who have always been inactive [123]. Lower calcaneal BMD has also 

been reported in young women following the discontinuation of rigorous exercise 

over a 3-year period [124].  

Physical performance and daily step count have also been predictive of calcaneal 

aBMD and QUS measurements. Pettersson and colleagues [123] found that total 

work capacity attenuated the prediction of BMD by history of physical activity levels 

in young men (10.1% without, 7.6% with total work capacity); although both 

parameters were likely closely correlated. Furthermore, in older men (60±11 years 

old), those who took longer to walk 50 feet had lower BUA and SOS, following 

adjustment for age, weight, alcohol consumption, smoking status [125]. Also, in 

older men and women (65-84 years old), a loss of QUS stiffness (parameter derived 

from both BUA and SOS) was dependent on physical activity levels over a 5-year 

follow-up [126]. The latter study also reported higher QUS stiffness in individuals 

completing over 8800 steps per day (or > 25 minutes of activity at > 3 metabolic 

equivalents), following adjustment for age, body mass and baseline calcaneus 

ultrasonic stiffness, in comparison to very sedentary individuals (< 4,000 steps per 

day).  

Studies in larger cohorts, with varied populations, indicate that the characteristics of 

the calcaneus are dependent on physical activity and physical performance, as well 

as age and weight [122, 125, 127].  

Higher calcaneal aBMD and BUA have been reported in participants that undertake 

sporting activities in comparison to controls. In particular, activities that expose the 

weight-bearing sites to high ground force impacts (football, squash, volleyball, 

dancing, gymnastics and running) [128-132]. Furthermore, in the same studies, the 

relative between-group differences in calcaneus measurements were comparable to 

other sites of the lower limbs (proximal femur to the distal tibia) [128, 130-132].  

In prospective studies, the performance of high-impact activities increases calcaneal 

BMD in premenopausal women [133] and attenuates the loss of calcaneal BMD and 

BUA in peri- and postmenopausal women [130, 134] – similar trends in BMD were 
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reported at central sites [133, 134]. The effect of whole-body vibration, a low-impact 

activity, has had indifferent responses at the calcaneus [135, 136], as well as other 

sites of the central skeleton and extremities [137]. Methodological differences in the 

population recruited (children, young adults, postmenopausal women), the 

intervention duration, and uncertainties about the optimal magnitude and frequency 

(vibration intensity), and the duration (time exposed to vibration) may have 

contributed to the varied skeletal responses to whole-body vibration [137]. 

Considering the proximity of the calcaneus to the device platform, a response could 

be expected at this location with an ‘osteogenic’ protocol, mimicking the strains 

impacted during high-impact activities. 

The removal of a weight-bearing stimulus also leads to a loss of calcaneal BMD. 

With 60 days of bed rest, the relative loss of calcaneus aBMD measured by DXA 

was equivalent to the tibia and greater than that reported at central sites of the 

skeleton [138]. With ~120 days of bed rest, the relative loss of calcaneal BMD 

exceeded peripheral and central sites, including the tibia [139]. There appeared to 

be high variability in the changes in calcaneus BMD with bed rest, but also with 

reambulation following bed rest in these studies. Whilst these could be due to 

individualised bone turnover responses, which has been recently highlighted [25], 

there may also be reproducibility issues due to difficulties in standardising a region 

to quantify in relation to the heterogeneous trabecular microstructure. 

1.4.3 Fracture risk prediction 

Calcaneus measurements have been used in the assessment of fracture risk, 

particularly using QUS. In a meta-analysis of prospective studies (55,164 women, 

13,1742 men) with a total follow-up of 279,124 per years, the relative risk of hip 

fracture was 69% and 96% higher for every SD decrease in BUA and SOS, 

respectively [140]. Even when adjusted for DXA aBMD, there was still an 

independent association between BUA and fracture risk (34% higher for every SD 

decrease). QUS can also independently predict fracture incidence at individual sites 

such as the vertebrae, distal forearm and humerus/elbow [111]. The predictive 

ability of QUS appears to decrease over time, whereas that of femoral neck aBMD 

remains stable [111], suggesting that calcaneal QUS measurements may have a 

more limited long-term association with fractures.  

BMD measurement of the calcaneus has also been associated with fractures, albeit 

in fewer studies compared to QUS. In the Study of Osteoporotic Fractures recruiting 

women older than 65 years, both calcaneal BUA and BMD had significant relative 
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risk increases, per SD decrease, for non-spine (30% and 40%, respectively) and hip 

(100 and 120%, respectively) fracture with a 2 year follow-up [141]. Calcaneal BMD 

appeared to have a slightly better association with fracture risk than BUA. 

Furthermore, calcaneal BMD was still associated with non-spine and trochanteric 

fractures following adjustment for calcaneal BUA and femoral neck BMD. With ~10 

years follow-up in this study, containing a larger number of fractures, hip, wrist and 

spine fracture risk was 71%, 71% and 79% higher for every SD decrease, 

respectively [142]. Calcaneal BMD performed comparably to distal radius BMD for 

fracture prediction, but did not perform as well as central site BMD for predicting 

central site fractures (106-137% higher for every SD decrease). There is little doubt 

that measured characteristics of the calcaneus can be associated with fracture risk.  

1.4.4 Treatment response 

There is good evidence that the calcaneus bone is responsive to pharmaceutical 

treatments for osteoporosis. Postmenopausal women treated with HRT for 4 years 

maintained calcaneus BUA and SOS in comparison to a control group, where 

group-differences were between 6-10% [143]. Furthermore, male and female 

patients beginning treatment with oestrogen and bisphosphonate had an increase in 

BUA and SOS, whereas controls had a loss in these measurements [144]. QUS 

was, however, less sensitive to detect a relative change due to poorer precision 

error (technical limitations discussed in Section 1.3.6). Here, Sahota and colleagues 

[143] reported that QUS measurements had a 3-fold higher relative precision error 

than DXA, and Frost and colleagues [144] found that a lower proportion of patients 

exceeded the threshold for a clinically significant change compared to the lumbar 

spine. These findings partly support why QUS is not recommended for treatment 

monitoring by the ISCD [113].  

Calcaneal BMD also changes with bisphosphonate treatment. Ringe and colleagues 

[145] reported an increase in calcaneal BMD of 15.5% (±10.7%) following a 24-

month treatment with ibandronate in men and women with corticosteroid-induced 

osteoporosis, which was approximately 8% higher than patients treated with 

alfacalcidol. Leal et al., [146] showed 12 months of zoledronic acid treatment in 

women with breast cancer increased calcaneal BMD by 2%, with no change in the 

control group. Paggiosi et al., [147] found that postmenopausal women with 

osteoporosis prescribed oral bisphosphonates for 96 weeks had a significant 

increase in calcaneal aBMD than that reported at baseline (+2.0±4.4%), albeit a 

similar mean change was observed in a to premenopausal control group 

(+1.7±2.5%). However, changes from baseline were not apparent for other 
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peripheral sites (radius-ulna BMD, tibia vBMD at the 4% and 33% site), apart from a 

smaller increase (+0.4±1.2%) in total vBMD at the radius diaphysis. 

While some of these trials demonstrated a treatment-response of the calcaneal 

BMD and/or QUS, the effect was small compared to those observed at the lumbar 

spine and, to a lesser extent, the proximal femur. The greater variance observed in 

the calcaneus compared to the central sites, may reflect the poorer precision of 

measurement techniques rather than actual biological changes in calcaneal aBMD. 

1.4.5 Summary 

It has been shown that measurements of the intrinsic characteristics of the 

calcaneus measured using aBMD and QUS, are reflective of loading, fracture risk 

and treatment/intervention responses. The devices that have been used to quantify 

the calcaneus have great applicability in large population studies, particularly in 

associating measurements with physical activity and fracture risk. However, these 

methods appear to lack sensitivity to detect changes and have questionable 

precision. 

Thesis rationale 

The thesis rationale can be summarised from previous sections: 

• The calcaneus provides an accessible site of the peripheral skeleton, which 

appears to be readily responsive to loading and pharmacological 

intervention. 

• Methods used to measure the intrinsic characteristics of the calcaneus lack 

sensitivity to quantify bone microstructure. 

• HR-pQCT is currently the best available technique for compartmental 

measurements of trabecular and cortical bone at a low radiation dose. 

Developing a method to image and quantify the intrinsic characteristics of the 

calcaneus using HR-pQCT has not been undertaken previously. Improving upon 

aspects from other non-invasive assessment devices, related to sensitivity and 

precision, may give greater purpose to using the calcaneus as a surrogate in 

interventional research studies, particularly those assessing the effects of 

mechanical loading and unloading alone or in combination with pharmacological 

therapies.  
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There have been suggestions of mechano-interactions with teriparatide (anabolic) 

treatment by comparing the response at the radius and tibia using HR-pQCT [148], 

and at the proximal femur using QCT [65]. Anabolic treatment may lower the 

customary strain stimulus required for mechanical adaptations. If this concept is 

proven, the combination of teriparatide and exercise could be important for 

populations that cannot undertake high-impact activities e.g. osteogenic. The 

calcaneus is exposed to high compressive (subtalar articular surface) and tensile 

stress (Achilles tendon attachment), and investigation with HR-pQCT may help to 

confirm whether these interactions are present.  

In the wider context, the resources required for interventional mechanical loading 

studies can lead to high study costs. Novel methods are therefore sought after to 

detect microstructural changes in bone using a lower number of participants and 

earlier measurement endpoints. Calcaneus HR-pQCT measurements may provide a 

new alternative option for these studies. 
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Aims and objectives 

The aim of the work described in this thesis was to develop a protocol to quantify 

bone density and bone microstructure in the human calcaneus. The method was 

developed using HR-pQCT as the imaging device. After this Introduction and the 

Chapter described in the Methods, Chapters 3-6 represents a chronological 

overview of the work. 

Chapter 3 − To develop a protocol to scan the calcaneus using HR-pQCT in 

human cadaveric specimen. 

1. To optimise foot positioning for the calcaneus HR-pQCT scans.  

2. To compare trabecular vBMD and trabecular microstructure measurements 

between the inferior, middle and superior regions of the calcaneus 

tuberosity. 

3. To evaluate trabecular vBMD and trabecular microstructure measurements 

with 5 (0.41 mm), 10 (0.82 mm) and 20 slice (1.64 mm) deviation in the 

measurement region in the calcaneus tuberosity. 

Chapter 4 − To validate the calcaneus HR-pQCT measurements with 

respective to micro-CT measurements. 

1. To determine the accuracy of trabecular bone volume and microstructure 

measurements using HR-pQCT, at the superior, middle and inferior regions 

of the calcaneus tuberosity, with respect to gold standard micro-CT 

measurements. 

2. To characterise the effect of scan integration time on trabecular 

microstructure measurements on calcaneus HR-pQCT scans, with respect to 

gold standard micro-CT measurements. 

3. To determine whether surrounding bones of the foot affect the accuracy of 

calcaneus trabecular bone volume and microstructure measurements using 

HR-pQCT. 

Chapter 5 – To optimise the quantitative assessment of the calcaneus using 

HR-pQCT in vivo. 

1. To compare image movement artefact grades between the 100ms and 

200ms integration time calcaneus HR-pQCT scans. 

2. To compare volumetric bone mineral density and trabecular microstructure 

between the 100ms and 200ms integration time calcaneus HR-pQCT 

images. 
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3. To compare the volumetric bone mineral density and trabecular 

microstructure between the superior and inferior region of the calcaneus HR-

pQCT images. 

4. To identify practical issues in positioning of the participant and the lower-limb 

that would compromise the application of the calcaneus HR-pQCT in vivo.  

Chapter 6 – To determine the short-term measurement precision error for 

calcaneus HR-pQCT images. 

1. To determine the short-term precision errors for volumetric bone mineral 

density and trabecular microstructure in calcaneus HR-pQCT images. 

2. To compare measurements’ coefficient of variation between unregistered, 

cross-sectional area (CSA)-based registered and 3D registered HR-pQCT 

images. 

3. To compare volumetric bone mineral density and trabecular microstructure 

between the non-dominant and dominant calcaneus HR-pQCT images. 

4. To compare volumetric bone mineral density and trabecular microstructure 

between calcaneus, distal radius and distal tibia HR-pQCT images. 

5. To test associations between calcaneus, distal radius and distal tibia 

volumetric BMD measurements, and lumbar spine and proximal femur areal 

BMD measurements. 
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CHAPTER 2 METHODS: SCAN ACQUISITON AND 
EVALUATION 
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2.1 Dual-energy x-ray absorptiometry 

DXA was used to determine aBMD of the lumbar spine (L1-L4), total hip and the 

calcaneus using a Discovery A densitometer (Hologic Inc.: Bedford, MA, USA) using 

Hologic software (version 12.6). This obtains a single 2D projection of the 

anatomical site of interest where outcomes such as bone area, bone mineral 

content (BMC) and aBMD are measured. aBMD is used to calculate T-scores to 

diagnose osteoporosis and is therefore incorporated into the clinical decision 

making process for determining fracture risk. 

2.1.1 Principles 

DXA uses the two different photon beam (x-ray) energies (high and low) to 

determine the attenuations from two different reference materials: bone mineral 

hydroxyapatite (Ca5(PO4)3OH) and soft tissue (which have different electron 

densities, Section 1.3). Energies are typically set at a level just above the 

attenuation level for the material (K-edge filter) so that photons drop dramatically 

once they are transmitted through the material. Following transmission where 

photons are absorbed (photoelectric absorption) or scattered (Compton), photons 

are detected by a linear multi-detector array. An absorbed photon that uses up all its 

energy will not scatter, where as a partially absorbed photon will change direction 

(or scatter) with less energy and in a different detector. The detected photons are 

converted into a pixel intensity map representing the site that was scanned with 

attenuations (i.e. different greyvalues) that are dependent on the low and high 

energies. 

Blake and Fogelman [149] described the attenuation of bone and soft tissues at the 

two different energies using the following formula: 

 Low energy: 𝐼! =  [𝐼!!exp] – (µ!!𝑀! +  µ!! 𝑀!) Equation 2.1 

 High energy: 𝐼 = [𝐼!𝑒𝑥𝑝] − (µ!𝑀! +  µ!𝑀!) Equation 2.2 

 

where, I is the beam intensity, ′  is for low energy, µ is the mass attenuation 

coefficient, M is the areal density, and B and S represent bone and soft tissue, 

respectively.  
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Blake and Fogelman [149] then placed 𝐽 in place of the logarithmic transmission 

factor of 𝐼! to calculate the areal bone density (𝑀!): 

	
𝑀! =  

(𝐽! − 𝑘𝐽)
(µ!! − 𝑘µ!)

 
Equation 2.3 

where:  

	
𝑘 =  

µ!!

µ!
 

Equation 2.4 

 

Edge-detection algorithms are used to identify bone edges on the pixel intensity 

maps, which precede the calculation of aBMD, bone area and BMC from the scans.  

The 𝑀! across the scan region of interest is then computed as aBMD, in grams per 

centimetre squared (g/cm2). The bone area is the sum of the pixels in the region of 

interest (cm2). The total mass of bone hydroxyapatite is expressed as BMC (g), and 

is calculated using aBMD and bone area [149]: 

	 BMC (g) = aBMD × bone area Equation 2.5 

 

The primary application of aBMD at central sites has been for diagnostic purposes 

and for the assessment of fracture risk. In this application, gender- and ethnicity-

specific Z-scores and T-scores are calculated, which compares the individuals 

aBMD to an age-matched mean or a young, normal adult mean, respectively [37]. 

Equation 2.6 and Equation 2.7 shows how a Z-score and T-score is calculated using 

aBMD, respectively: 

Z-score = Measured aBMD – Age-matched mean aBMD 

Age-matched population SD 

Equation 2.6 

   

T-score = Measured aBMD – Young adult mean aBMD 

Young adult population SD 

Equation 2.7 
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2.1.2 Image acquisition and analysis 

All DXA images were obtained using the manufacturer’s standard procedures for 

each skeletal site, as described previously within our Research Group [21, 147, 

151]. Participants’ scans were obtained in the posterior-anterior projection using a 

dual-energy, low 100 peak kilovoltage (kVp) and high 140 kVp, x-ray with a current 

of 10 milliampere (mA). 

2.1.2.1 Lumbar spine 

Participants were positioned on the DXA scan bed in a supine, straight and central 

position with arms rested flat on either side (Figure 2.2). Legs were raised on a 

scan-positioning block provided by the manufacturer. The C-arm was positioned 

level with the participants’ iliac crest using the DXA cross-hairs. Scout views were 

obtained from the mid-L5 to the mid-T12 so that vertebrae L1-L4 were captured: if 

required, the C-arm was repositioned to ensure the lumbar spine was within the 

scanning reference limits. Once in the correct position, the array mode was used for 

the DXA scan. 

For image analysis, the global region of interest was positioned from the T12-L1 

intervertebral space to the L4-L5 intervertebral space (white borders). The operator 

manually altered the L1-L4 intervertebral borders if there were clear positional 

discrepancies, and no changes were made to the L1-L4 right-left borders, unless 

vertebrae were excluded if they were deemed to be fractured or had severe 

degenerative changes. Sub-region analysis was then completed of each lumbar 

vertebra.

A B 

 

Figure 2.1. The Hologic Discovery dual-energy x-ray absorptiometry 
scanner (A) with fan-beam and detector technology (B). 
The x-ray fan beam and rotating C-arm can move along the side to scan optimise 
positioning (green, dashed arrow). 
Figure 2.1B sourced from Bonnick and Lewis [150]. 

Rotating C-arm 
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2.1.2.2 Proximal femur 

Participants were positioned on the DXA scan bed in a supine, straight and central 

position with arms on the chest (Figure 2.3). The limb being measured was rotated 

inwards by 15 to 20° using an angled foot positioning device provided by the 

manufacturer (Figure 2.3). This positioning is critical for positioning reproducibility of 

the proximal femur: the aim was to (i) achieve parallel positioning of the femoral 

neck to the scan bed and (ii) to ensure only a small portion of the lesser trochanter 

was seen on the scan image. Correct positioning was confirmed through obtaining a 

scout view prior to the DXA scan acquisition. The acquisition was completed in the 

array mode and included the entire femoral head, neck and approximately 3cm of 

the femoral shaft below the lesser trochanter. 

For image analysis, the global region of interest was positioned in relation to 

anatomical features of the proximal femur from the left limb (Figure 2.3): (i) the 

upper border was positioned 5 scan lines away from the edge of the femoral head; 

(ii) the bottom border was positioned 10 scan lines below the lesser trochanter; (iii) 

the medial border was 5 scan lines from the edge of the femoral head; (iv) the 

lateral border was 5 scan lines from the edge of the greater trochanter. Sub-region 

analysis was completed to identify the central hip axis, the femoral neck box and the 

greater trochanteric region (Figure 2.3). 

 

 A B  

 

 
 

 

 Figure 2.2. Lumbar spine DXA scan.  
A – Participant positioning for the lumbar spine scan. 
B – Region of interest placement for the lumbar spine pixel intensity map. 
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 A B  

 

  

 

 

 

 

 Figure 2.3. Proximal femur DXA scan.  
A – Participant positioning for the proximal femur scan.  
B – Region of interest placement for the proximal femur pixel intensity map. 

 

 

2.1.3 DXA outcome precision error 

The precision error, expressed as the coefficient of variation, for the lumbar spine 

DXA scans in our Research Group are 1.2% for bone area, 1% for aBMD and 2.2% 

for BMC, for adults with normal body mass index. The scan technician completing 

the measurements is certified by the ISCD, which requires a minimum precision of 

1.8% at the total hip and 2.5% at the femoral neck from DXA image measurements. 

2.1.4 DXA quality control checks 

One highly trained operator performed all DXA scans, eliminating inter-operator 

reliability. Procedures employed by the Research Group ensure daily quality control 

checks of the scanner, in accordance with manufacturer recommendations. Quality 

control checks are completed with an anthropomorphic spine phantom, containing 

four single density, semi-hydroxyapatite ‘vertebrae’. All measurements (bone area, 

aBMD and BMC) were within the limits of agreement set by the manufacturer and 

the coefficient of variations were below 0.8% over the period of which the scans 

were obtained (Appendix Figure 9.1). 
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2.2 Computed tomography 

2.2.1 Principles 

CT is an x-ray based technique that enables the three-dimensional quantification of 

tissue. Similar to DXA, photons pass through the participant and have different 

attenuations based on the tissues they pass through. The detected attenuation 

coefficient of the voxels is transformed into a CT number, known as Hounsfield 

Units (HU) for describing radiodensity. Here, water is defined as zero HU and air is 

defined as -1000 HU [60]: 

	 𝐶𝑇 𝑛𝑢𝑚𝑏𝑒𝑟 [𝐻𝑈] = (
𝜇− 𝜇𝑤𝑎𝑡𝑒𝑟
𝜇𝑤𝑎𝑡𝑒𝑟

) × 1000 Equation 2.8 

 

where µ is the average linear attenuation coefficient for the voxel, µwater  is the linear 

attenuation coefficient of distilled water at room temperate. There is a spread of HU 

for different tissues based on the HU scale transformation: the most distinctly 

attenuated tissue is bone. Several parameters in the CT acquisition and 

reconstruction can impact the discrimination between the bone and marrow phases. 

Key parameters include [60, 152]: 

X-ray tube voltage (kilovolt peak, kVp) – Determines the maximum voltage or 

photon energy. This also impacts BMD calibration when used quantitatively. 

X-ray tube current (milliamperes, mA, or microamperes, µA) – Determines the total 

number of photons that each tomographic projection is exposed to. 

Scan integration time (ms) – Determines the exposure duration for each 

tomographic projection (i.e. shutter open time).  

Reconstruction field of view – Determines the voxel size in the image matrix to 

which grey-values are assigned. 

Slice thickness (mm or µm) – Determines the smallest thickness of the 2D CT 

slices. 

Exposure factors (i-iii) dictate the radiation exposure and scan duration. Optimising 

the x-ray intensity (ii and iii) is important to improve image signal-to-noise ratio. 

Reconstruction factors (iv and v) determine the voxel size and spatial resolution in 

the images, and are critical to the accurate quantification of bone composition using 

CT [77, 153].  
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QCT is used to measure bone properties from CT images. To quantify BMD, 

calibration phantoms containing hydroxyapatite rods are able to convert the HU into 

BMD (g/cm-3) using a regression slope and intercept. Here, three-dimensional 

volumetric densitometry and morphological information on bone can be obtained 

using post-scan processing methods.  

The primary advantage of QCT over DXA is that the attenuated photons are 

detected over multiple projections, rather than one. This is achieved by multiple 

detectors rotating around the participant during image acquisition, resulting in multi-

slice images of tissues that are reconstructed as volumes. Several advantages have 

been found using QCT over DXA to quantify bone properties, such as measuring 

bone shape and size and quantifying trabecular and cortical bone compartments. An 

additional advantage is that CT is free from inaccuracies due to extra-osseous 

calcification and degenerative changes, such as in the spine, which becomes 

amalgamated and consequently identified as bone using DXA. CT scanners can 

also be equivalently calibrated, as water has a QCT number of 0, unlike DXA.  

There are also disadvantages associated with CT, such as the high ionizing 

radiation exposure at the spine and hip (upto 3 mSv), the expense and accessibility 

compared to DXA, and its ability to measure microstructural properties of bone in 

vivo. QCT, like DXA, is also unable to quantify bone material properties beyond 

bone mineral, such as collagen fibre organisation, and therefore excludes an 

important component of fracture risk. 

2.3 High-resolution peripheral quantitative computed 
tomography 

HR-pQCT was used to quantify vBMD and bone microstructure at the radius, tibia 

and calcaneus, using the first generation XtremeCT device and the SCANCO Image 

Processing Language (IPL, version 5.08-B) (SCANCO Medical AG: Brüttisellen, 

Switzerland). The advantages of HR-pQCT compared to multidetector-CT are that 

there is superior signal-to-noise ratio and spatial resolution, the radiation dose is 

significantly and does not involve radiating organs located in proximity to the axial 

skeleton. However, this also highlights its disadvantages compared to CT, as it is 

limited to peripheral sites of skeleton, where the lumbar spine and proximal femur 

carry a large proportion of the osteoporotic fracture burden. 

The image acquisition, reconstruction and evaluation is outlined in this Methods 

Chapter and is consistent with clinical studies using this version of the device. 
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2.3.1 Image acquisition 

HR-pQCT image acquisition for the distal radius and distal tibia followed the 

standard protocol provided by manufacturer.  

HR-pQCT uses cone beam technology and obtained projections by one single 

rotation of the x-ray source and detector around 180º. The standard operational 

settings for clinical scans were an x-ray tube potential of 60 kVp, an x-ray tube 

current of 95 mA, and collection of 750 projections at an integration time of 100 ms. 

Each HR-pQCT scan was 9.02 mm in length, which was equivalent to 110 slices 

when considering the first generation XtremeCT isotropic voxel size of 82 µm. This 

resulted in a scan duration of 2.8 minutes and a radiation dose of 3 µSv per scan, 

which was equivalent to half a normal day’s background radiation. 

2.3.1.1 Distal radius HR-pQCT procedure 

Self-report was used to identify the hand dominance for the distal radius HR-pQCT 

scans, by asking, “What hand do you write with?” The participant was then asked if 

they have suffered a previous fracture at the non-dominant location. If so, the 

dominant side was used and noted. The participant was seated and the forearm 

was placed in the forearm cast, with the hand lightly clasping the handle (Figure 

2.4). Foam and positioning aids were used to secure the form and minimise 

movement. The cast was secured in the scanning gantry and a scout view was 

performed. The scout view start and end position was set to 90 mm and 120 mm, 

respectively. A reference line was placed on the slight curvature of the articular 

surface between the scaphoid and lunate fossae of the radiocarpal joint [154]; a 

fixed offset of 9.5 mm 1  was applied from the reference line to identify the 

measurement region.  

Participants were asked to remain motionless during the image acquisition. At the 

end of each scan, the operator assessed the image quality of a single slice using a 

visual grading system, described by Engelke and colleagues [155]:  

Grade 1 = Perfect: No noticeable artefacts. 

Grade 2 = Slight artefact: small streaking. 

Grade 3 = Pronounced artefact: large streaking, particularly near the cortex. 

Grade 4 = Unacceptable artefacts: discontinuity at the cortex. 

                                                
1 A fixed offset is used for the standard HR-pQCT protocols (distal radius and distal tibia) in 
our Research Group. There have been recent publications using relative offsets based on 
participants’ anatomy to remove positional errors due to radius and tibia length. This method 
has not yet been tested in our Research Group and was therefore not applied in the thesis.  
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Images given a grade 3 were repeated to see if the image quality could be 

improved; if the image quality was not improved, the grade 3 image was used for 

evaluation. Images given a grade 4 were repeated; if the repeated image quality 

was graded 4, the images were removed from the evaluation. Here, only images 

with a grade 1, 2 and 3 were used for evaluation. 

 

A B 

   

C 

 

Figure 2.4. Participant positioning for distal radius HR-pQCT scans. 
A – Participant positioning. 
B – Upper-limb cast from two different viewpoints.  
C – Scout view for the distal radius with the reference line placement and 
measurement region. The XtremeCT elongates the radiograph automatically. 

 

2.3.1.2 Distal tibia HR-pQCT procedure 

Self-report was used to identify the foot dominance for the distal tibia HR-pQCT 

scans, by asking, “What foot would you kick a ball with?” The participant was then 

asked if they have suffered a previous fracture at the non-dominant location. If so, 

the dominant side was used and noted. The participant was seated and the lower-

limb was placed in the tibia cast, with the foot placed flat on the bottom of the cast 
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(Figure 2.5). Similar to the radius, foam and positioning aids were used to secure 

the lower-limb in the cast. The cast was secured in the scanning gantry and a scout 

view was performed. The scout view start and end position was set to 73 mm and 

103 mm, respectively. A reference line was placed at the peak of the tibial articular 

plateau at the tibiotalar joint [154]; a fixed offset of 22.5 mm was applied from the 

reference line to identify the measurement region. The image acquisition and 

assessment of image quality was identical to that for the distal radius HR-pQCT 

procedure. 

A B 

   

C 

 

Figure 2.5. Participant positioning for distal tibia HR-pQCT scans. 
A – Participant positioning. 
B – Lower-limb cast from two different viewpoints.  
C – Scout view for the distal tibia with the reference line placement and measurement 
region. The XtremeCT elongates the radiograph automatically. 
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2.3.2 Image reconstruction 

HR-pQCT image reconstruction followed the standard protocol provided by 

manufacturer.  

A beam hardening correction (BHC) filter with a 200 mg HA/cm-3 step wedge 

function was applied during image reconstruction [156]. The BHC filter aims to 

mitigate the beam hardening artefacts caused by preferential attenuation of low 

energy beams, which can result in a ‘cupping profile’ and can cause inaccuracies in 

attenuation measurements e.g. BMD (Figure 2.6); this is a common artefact with 

polychromatic x-ray sources. 

 

A B 

  

Figure 2.6. Beam-hardening correction. 
A – 200 mg HA/cm-3 beam hardening step wedge phantom (sourced, Burghardt et al., 
[157]). 
B – Example of a CT slice without beam hardening correction (left) and after beam 
hardening correction (right) (sourced from Barrett & Keat [158]). 

 

The corrected reconstructed linear attenuation was mapped onto a 1536 x 1536 

matrix over a 126 x 126mm field of view, yielding an isotropic 82 µm voxel size. 

Calibrations of the densities were performed on a weekly basis using a phantom 

supplied by the manufacturer, which has a soft tissue density (0 mg HAcm-3) and HA 

rods at 100, 200, 400 and 800 mg HAcm-3 embedded in resin (Figure 2.7B). In 

comparison to the standard quality control procedure, which recommends that the 

error for the highest density rod error is within 1% i.e. ±8 mg HA/cm-3 [81], the error 

for the highest HA density rod was towards the lower limit of error for the duration of 

the study period (Figure 2.8).  

In a multi-centre study, the spatial resolution of reconstructed images was reported 

as approximately 120 to 150 µm at the centre of the field of view, and between a 

mean 140 to 170 µm at a distance of 30 mm from the field of view centre [96]. 
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 A B C 

 

  

Figure 2.7. HR-pQCT calibration equipment and images. 
A – The HR-pQCT phantom. 
B – Image of the density phantom. 
C – Image of the alignment phantom. 
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Figure 2.8. Quality control plots for the HR-pQCT density phantom over the 
study period. 
A – Measurements for the hydroxyapatite rods with % coefficient variations. 
B – Comparison of the 800 mg HA/cm-3 measurement to the limits of error. 
 

2.3.3 Image evaluation 

Following image reconstruction, a series of steps were performed to segment the 

image and obtain HR-pQCT measurements using the Scanco IPL.  

2.3.3.1 Image segmentation 

The operator performed a semi-automated contouring procedure around the 

periosteal boundary of the bone for all HR-pQCT image slices. First, a graphical 

object (GOBJ) was created in close proximity to the periosteal boundary. An 

automated edge detection algorithm was run, using the default settings for edge 

detection and a ‘2 times’ iteration setting, to ‘snap’ the GOBJ to the periosteal 

boundary. The automated algorithm was stopped at 10 to 20 slice intervals to check 
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the quality of the periosteal edge detection on each slice; if results were 

unsatisfactory the GOBJ was manually corrected. The time to create an accurately 

placed GOBJ around the radius and tibia HR-pQCT images was approximately 60 

minutes. 

2.3.3.2 Image quantification 

HR-pQCT images were quantified using the manufacturers ‘standard clinical 

evaluation’ script, specific to the first version of the XtremeCT; this uses a Laplace-

Hamming filter to smooth the image and enhance edges, and then applies a 40% 

fixed, global threshold to segment (binarise) the bone from marrow phase [159].  

From the greyscale HR-pQCT images, total vBMD, including both the trabecular and 

cortical bone, was calculated from the average mineral density in milligrams of 

hydroxyapatite per centimetre cubed (mg HA/cm-3). Trabecular vBMD is further 

compartmentalised into inner and outer trabecular vBMD; the inner measurement is 

calculated as the inner 40% of trabecular area, and the outer measurement in the 

outer 60% of trabecular area. vBMD measurements were calculated using a 

calibration of HU attenuation values to HA density using a linear conversion, based 

on the measurements made on the manufacturer’s calibration phantom. 

A separate procedure was used to quantify the trabecular and cortical bone 

compartments using the manufacturers ‘standard clinical evaluation’, which has 

been outlined by Davis and colleagues [160]; a Gaussian filter (sigma = 2, support = 

3) is applied to remove the finer trabecular bone structures from the medullary 

compartment, whilst preserving the cortical shell. A fixed global threshold (16% of 

the range) is then applied to segment the cortical from the trabecular bone 

compartment. However, thin segments of cortical bone can be lost with the 

Gaussian blurring and the accuracy of the fixed threshold may be perturbed if 

mineralisation of the bone changes with disease or pharmaceutical treatment [160]. 

A ‘dual-threshold’ algorithm is also used to better estimated cortical bone volume 

and thickness [161], as well as measuring cortical porosity [162]. Nonetheless, it has 

been reported that there is still good agreement between measurements extracted 

from the trabecular bone phases from the manufacturers ‘standard clinical 

evaluation’ and the ‘dual-threshold’ methods [161], such as trabecular bone volume 

fraction (BV/TV), trabecular number (Tb.N*), trabecular thickness (Tb.Th) and 

trabecular spacing (Tb.Sp). 

Measurements of trabecular bone microstructure are computed, rather than 

measured directly, due to the closeness of the physical dimensions of individual 
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trabeculae (~200 µm) to the spatial resolution (120-150 µm [96]) 2 . Direct 

quantification results in partial volume effects affecting measurement accuracy, 

leading to a 2-3 fold overestimation of BV/TV and Tb.Th [159, 163, 164]. In order to 

provide more accurate estimations, the following methods were used and are a part 

of the ‘standard clinical evaluation’:  

BV/TV is derived from the trabecular vBMD divided by 1200 mg/cm3 hydroxyapatite 

(now abbreviated to BV/TVd); the figure is chosen to represent mineralised bone, 

and the calculation assumes all trabeculae have a this density [159]. 

From the binary HR-pQCT image, the mean Tb.N* is computed using a mid-axis 

transformation to find the trabecular ridges [165] and the distance transformation 

method to calculate the distances between the ridges of a skeletonised binary 

image [166] (Equation 2.9 and Figure 2.9): 

 
𝑇𝑏𝑁 =  

1
𝑝

 𝐷𝑇(𝑀𝐴𝑇 𝐼𝑚𝑎𝑔𝑒 )!

!!!

!!!

 
Equation 2.9 

 

where, p is the distances between the ridges, expressed as an average over all 

inter-ridge voxels, DT is the distance transform between the trabecular bone ridges 

that is calculated from the diameter of a sphere, and MAT is the mid-axis 

transformation between the trabecular bone ridges that is calculated by a sphere 

[100]. 

Tb.Sp and Tb.Th are derived (from now on abbreviated to Tb.Spd and Tb.Thd) using 

plate-model assumptions [167, 168], as shown in Equation 2.10 and Equation 2.11. 

Therefore, the accurate measurement of trabecular vBMD and Tb.N* are critical to 

the measurement of trabecular microstructure from images obtained using the first 

generation XtremeCT.  

 Tb.Thd = !"/!!
!

!".!∗
 Equation 2.10 

 Tb.Spd = ( !!!"/!!
!

!".!∗
) Equation 2.11 

 

 

                                                
2 The second generation XtremeCT has been recently made available commercially (2014), 
and has an isotropic voxel size of 61 µm and a spatial resolution of 95 µm. With the 
improved spatial resolution, this device directly measures BV/TV and the trabecular 
microstructure.  
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2.4 Micro-computed tomography 

Micro-CT was used to quantify trabecular BV/TV and bone microstructure in 

samples dissected from human cadaveric calcanei (SkyScan 1172, Brüker: Kontich, 

Belgium). Micro-CT images were used as the ‘gold standard’ in order to validate 

measurements obtained from HR-pQCT images (Chapter 4). This section will 

describe the micro-CT procedure that was used to quantify trabecular microstructure 

of human bone samples.  

Micro-CT has similar properties and uses similar components to HR-pQCT (Figure 

2.10). Most desktop micro-CT devices use a cone beam technology and a 

polychromatic x-ray source, exposing samples to a range of photon energies. 

Monochromatic beam is also possible using synchrotron radiation micro-CT, but is 

only available at a few specialist centres worldwide. An advantage of micro-CT is 

that it can operate at a smaller voxel size (down to 1 µm) compared to HR-pQCT, 

and therefore a higher spatial resolution. Here, micro-CT can provide a good 

representation of trabecular and cortical microstructure compared to bone 

histomorphometry [169, 170], without using a destructive procedure to obtain serial 

sections of bone. However, its application in humans is limited to samples ex vivo, 

such as bone biopsies or samples extracted from cadaveric specimens. 

 

 

 

 

 Figure 2.9. Schematic of trabecular number calculation. 
The sphere between the trabeculae ridges is a visual representation 
of the Equation 2.9. 
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Figure 2.10. The main components of micro-CT scanning. 
Sourced from Stauber and Müller [171]. 

 

2.4.1 Image acquisition 

The SkyScan 1172 was used for micro-CT image acquisitions. Standard 

components of the micro-CT include: an 11 megapixel X-ray camera that can scan a 

matrix of up to 8000 x 8000 pixels per slice; a fixed x-ray tube and detector; a 

motorised sample holder that rotates 360° within the field of view during the 

acquisition of radiographic projections. The scan settings that were used had been 

previously optimised in the Mellanby Centre for Bone Research, Skelet.AL (Skeletal 

Analysis Laboratories), Department of Oncology and Metabolism at the University of 

Sheffield, using a bovine trabecular bone sample (Figure 2.11). 

A B 

  

Figure 2.11. 2D micro-CT scan slice of the bovine bone (A) and human 
cadaveric calcanei (B) tissue. 
Contrast added to improve image quality for printing. 
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Images, collected with an x-ray tube potential of 100 kVp and an x-ray tube current 

of 100 microampere (µA), were calibrated with flat field corrections to minimise ring-

artefact. The scanning camera was set to medium (2000 x 1048 pixel level), which 

equated to an isotropic in plane pixel size of 17.4 µm; 3 to 4 voxels have been 

recommended to quantify trabeculae [152] to minimise quantitative bias from partial 

volume effects (Figure 2.12). This voxel size was comparable to previous studies 

that have quantified human trabecular bone [77, 169, 172]. A 1.0 mm aluminium foil 

filter was selected to filter the lower-energy photons to minimise beam-hardening 

artefact. The scan integration time for each projection was set at 2950 ms and the 

number of times each projection was repeated (frame averaging) was set at 2. The 

sample was rotated from 0° to 180° with a 0.7° rotation step. Random movement 

was turned off. The scan time per field of view was 44 minutes, where each sample 

was split into 2 or 3 field of views. 

 

Prior to image acquisition, a scout view of the sample was obtained (Figure 2.13). 

The sample holder was then rotated 359 degrees (one scale marker short of full 

rotation i.e. the samples original position) to check for lateral movement of the 

sample; if the sample sides breached the scout view edges, the sample tube was 

removed and re-glued to the holder. Once these checks had been passed, a 

reference line was positioned that determined the start position of the scans, 

ensuring the cortical bone of the calcaneus sample was included. 

 

 

 

 Figure 2.12. Example of partial volume effects.  
Pixels containing part tissue and part background have their signal 
intensities averaged, causing ‘spill out’. 
Sourced from Soret et al., [173]. 
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2.4.2 Image reconstruction 

The raw micro-CT projections were reconstructed into cross-sectional image slices 

in the NRecon software (Brüker: Knotich, Belgium).  

The image contrast depth was set to 16-bit (with 65,536 grey levels). Here, the 

minimum grey level for the histogram scale was computed as zero, and the 

maximum grey level output was computed by the maximum value of the automated 

histogram multiplied by 0.714; this resulted in an image contrast range from 0 to 

approximately 0.035. To remove common polychromatic imaging artefacts found 

with micro-CT, ring artefact removal was set to 10% and a polynomial BHC was set 

to 30%. The reconstructed images were saved as a TIF format and in DICOM 

format, and exported to an external hard drive (1 terabyte, Seagate Expansion, 

Seagate Technology PLC: California, USA).  

2.4.3 Image evaluation 

The reconstructed DICOMs were imported to the XtremeCT I workstation. Here, the 

micro-CT images were quantified using the Scanco IPL and the manufacturer’s 

standard methods.  

2.4.3.1 Image segmentation 

All micro-CT images were evaluated using a square GOBJ that was morphed over a 

range of 2D slices to create a cubic volume of interest. High frequency noise was 

removed from the micro-CT images using a Gaussian filter (kernel 1.2, support 2) 

[152, 163]. Individual slices from each sample were visually examined to test a 

A B 

  

Figure 2.13. Scout view of the sample prior to micro-CT image acquisition. 
A – First field of view. 
B – Second field of view.  
Cortical bone is apparent at the top of image A and at the bottom of image B. 
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range of single-level, global thresholds; this was then optimised at 330/1000 or 33% 

of the maximum greyscale value (Figure 2.14). Following segmentation, a despeckle 

algorithm was applied to remove isolated ‘bone’ regions with a volume lower than 10 

voxels (Figure 2.15); this additional filter can remove small islands of noise that may 

not be removed by the Gaussian filter and the threshold. 

 

 Original 220/1000 330/1000 440/1000 

    

    

Original 300/1000 330/1000 360/1000 

    

Figure 2.14. Testing the micro-CT image segmentation, following Gaussian 
filtering. 
 

 

Figure 2.15. Application of the despeckle algorithm.  
Red circles indicate the removal of noise from the original scan using a 10-voxel filter. 
The orange circle indicates the removal of noise using a 25-voxel filter. 

 

 
 

 

  

0 voxel 10 voxels 25 voxels 
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2.4.3.2 Image quantification 

Standard measurements reported from micro-CT evaluation of trabecular bone were 

similar to those reported from HR-pQCT scans. Measurements were, however, 

calculated using a 3D model-independent algorithm in the SCANCO IPL, rather than 

indirectly for some measurements (i.e. using plate-model assumptions). BV/TV was 

determined by dividing the number of bone voxels by the total number of voxels in 

the region of interest (TV). The average measurement for trabecular microstructure 

is computed from the images, as well as a standard deviation. Trabecular 

microstructure (Tb.N, Tb.Th and Tb.Sp) were measured using the distance 

transformation method, where maximal spheres are filled into the segmented image 

[166]. 

2.5 Summary of the bone densitometry methods 

 

 

Table 2.1. Summary of the bone densitometry modalities. 

 DXA HR-pQCT Micro-CT 

Application  Lumbar spine, 

proximal femur 

Radius, tibia and 

calcaneus* 

Calcaneus ** 

Technical Areal or volumetric Areal Volumetric Volumetric 

 X-ray tube potential 100 and 140 kVp 60 kVp 100 kVp 

 X-ray current 10 mA 95mA 100 µA 

 Pixel size 1 x 1 mm 82 x 82 µm 17.4 x 17.4 µm 

 Slice thickness N/A 82 µm 17.4 µm 

 Scan durations 10 – 30 seconds 2.8 minutes 88 to 132 minutes 

Notes: * the details for the calcaneus HR-pQCT scans are provided in Chapter’s 3 and 5 of the 
thesis. ** imaged in human cadaveric calcaneus samples 
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2.6 Registration of the computed tomography images 

The registration of HR-pQCT to micro-CT images was performed in Chapter 4 to 

enable the validation of HR-pQCT measurements of the calcaneus using Amira 

(version 6.0, FEI; Oregon, USA). The registration of HR-pQCT to HR-pQCT images 

was performed in Chapters 5 and 6, to compare HR-pQCT measurements of the 

calcaneus with different integration times (Chapter 5) and quantify calcaneus HR-

pQCT measurements precision (Chapter 6), using the SCANCO IPL registration 

module (version 1.07).  

2.6.1 Principles 

Image registration is an important application in medical imaging. Hill et al., [174] 

defined registration as “determining the spatial alignment between images of the 

same or different subjects, acquired with the same or different modalities”. A 

common ‘intra-subject’ application is to find the common region, or volume, between 

prospectively collected images to accurately monitor a person’s physiology.  

When images are spatially aligned, a transformation is obtained that maps the 

image to its new coordinates. By aligning the two images after the transformation 

and with a perfect registration, there should be two values at each voxel location. 

The registration process can be broadly summarised into the following principles, 

which have been applied in two registration processes, registering HR-pQCT 

images and registering HR-pQCT to micro-CT images: pre-processing, to align the 

images being registered; transformation type, to define the geometric transformation 

from one image to the other; similarity metric, to determine the spatial alignment 

between the images; optimisation, to maximise the similarity between the images; 

and interpolation, to transform the registered image to its new spatial coordinates 

2.6.2 Pre-processing 

In the pre-processing of image registration it can be important to define landmarks 

of interest that can be used to overlap the images prior to spatial alignment. 

First, the operator defined the reference and moving images; here, the moving 

image was spatially aligned to the reference image. Second, the moving image was 

aligned to the reference image based on the centre of mass and/or its principle 

axes. This automated image alignment reduced the distance that is searched for 

registering the images, thus reducing computing time. The operator adjusted the 
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alignment manually on a case-by-case basis, depending on the quality of the 

automated alignment, to further reduce the parameter space (image voxels) that 

was searched: for example, aligning the periosteal landmarks on the QCT scans.  

2.6.3 Transformation type 

A rigid body transformation is the most common form of registration that is used and 

preserves the distance between any two points of the images being transformed 

[174, 175], as shown in Figure 2.16. The rigid transformation (T) is defined by 3 

rotations (r) and 3 translations (t) about the x, y and z-axes in each coordinate. This 

4x4 matrix contains the information to spatially align and map the coordinates to its 

new position (Equation 2.12). This is an advantage of registering bone or a tissue 

enclosed in bone, such as the brain in the skull, due to its rigid structure, and has 

been frequently applied in studies registering HR-pQCT images [89, 176, 177] and 

HR-pQCT-to-micro-CT images [77, 163, 164]. Rigid body transformations were 

therefore applied for the image registration procedures. 

 

2.6.4 Similarity metric 

The type of similarity metric used is key to minimising the distance between 

coordinates of the moving and fixed images. A voxel-based similarity approach aims 

to register images based on the degree of shared information by the image 

 

 

 

 Figure 2.16. Example of rigid body transformation 
The distances and angles between a, b and c are preserved 
in the transformed image (aT, bT and cT) 

 

 
𝑇 =   

𝑟𝑥𝑥 𝑟𝑥𝑦
𝑟𝑦𝑥 𝑟𝑦𝑦
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𝑟𝑦𝑧 𝑡𝑦
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attenuations and intensities (e.g. grey-value histograms). This metric is not as 

susceptible to registration errors that may be present in feature-based similarity 

metrics, as it is more robust to changes in the structure i.e. growth with skeletal 

development or degradation with disease.  

The similarity metric used for voxel-based approaches with HR-pQCT has followed 

earlier work using micro-CT images [178, 179]. For mono-modality images, 

similarities from the grey-level histogram can be used, such as correlation 

coefficient method that searches for a linear relationship between the intensities. 

This is available through the Scanco IPL and performs well in short-term repeat 

intra-subject HR-pQCT scans [177]. Therefore, the correlation coefficient metric has 

been applied in the HR-pQCT to HR-pQCT image registrations (Chapter 5 and 6).  

The mutual information metric uses voxel intensity to measure how much 

information, or entropy, one image has about another image [180]. The metric is 

recommended for multi-modality image registration for diagnostic purposes [175], 

and has been specifically selected to register HR-pQCT and micro-CT images [30, 

77, 163, 164, 181]. The individual voxel grey values of an image can be weighted 

and interpreted as a probability distribution i.e. how often does a grey value occur in 

the image and dividing those by the total number of occurrences [175]. This is 

known as Shannon entropy and is calculated for two images, M and N, as follows 

[180]: 

 𝐻 𝑀 =  − 𝑝 𝑚
!∈!

log 𝑝(𝑚) Equation 2.13 

 𝐻 𝑁 =  − 𝑝 𝑛
!∈!

log 𝑝(𝑛) Equation 2.14 

 

In Equation 2.13 and Equation 2.14, 𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑁 represents the whole set of 

voxel values for the respective images. 𝑝 𝑚  is the probability that a voxel of image 

𝑀 has the intensity 𝑚 and 𝑝 𝑛  is the probability that a voxel of image 𝑁 has the 

intensity 𝑛.  

The joint entropy of two images, the content of the combined entropies of H(M) and 

H(N), can then be calculated as follows [180]: 

 𝐻 𝑀,𝑁 =  − 𝑝 𝑚, 𝑛
!∈!!∈!

log 𝑝(𝑚, 𝑛)  Equation 2.15 
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In Equation 2.15, 𝑝 𝑚, 𝑛  is the joint probability of the images 𝑀 and 𝑁. As the 

image alignment improves (H(M) and H(N)), the joint entropy decreases, resulting in 

a lower error in the image overlap. However, joint entropy also decreases as the 

image overlap decreases, which led to the proposal of the mutual information metric 

to overcome this error [180]: 

 

The equation can also be interpreted using a Venn diagram (Figure 2.17). 

 

 

Studholme, Hill and Hawkes [180] also proposed the metric of normalized mutual 

information, which is more robust to entropy error than mutual information, as the 

marginal (𝐻 𝑀  and 𝐻 𝑁 ) and joint 𝐻(𝑀,𝑁) entropies are normalised as a ratio: 

 𝑌 𝑀,𝑁 = 𝐻 𝑀 + 𝐻 𝑁 ÷ 𝐻(𝑀,𝑁)  Equation 2.17 

 

The normalized mutual information metric has been used as the similarity metric in 

Amira to register the HR-pQCT to the micro-CT images (Chapter 4). 

 

2.6.5 Optimisation 

The range for rotations (radians) and translations (mm) was set prior to the 

registration within each axis; a larger rotation and translation search would increase 

the central processing unit (CPU) time. These rotations and translations are 

 𝐼 𝑀,𝑁 = 𝐻 𝑀 + 𝐻 𝑁 − 𝐻(𝑀,𝑁)  Equation 2.16 

  

 

 

 Figure 2.17. Graphical representation of the 
mutual information metric. 

 

H(A) H(B) MI(A,B) 
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performed over a range of iterations, which have a similar impact on CPU time. A 

pyramid workflow was applied to the voxel size during the iterations; this is initially 

performed at a coarse voxel size so that common landmarks can be identified. The 

transformation search at this level was completed once the tolerance level was met, 

where there were no further improvements in the spatial alignment. The voxel size 

was then scaled down to optimise the registration, following similar steps, with a 

final step of completing the iterations at the actual voxel size, in this case 82 µm. 

2.6.6 Interpolator 

Once the transformation has been optimised, an interpolator function was 

responsible for “pulling” the moving image to its new coordinates. This was 

completed by determining the pixel intensity in the transformed image in relation to 

the corresponding intensity in the original image [182]. Figure 2.18 depicts examples 

of a cropped HR-pQCT slice that has been transformed using the three kinds of 

interpolator considered here: the nearest neighbour, linear and Lanczos 

interpolators.  

Nearest neighbour is one of the simplest interpolators, assigning transformed image 

intensity values to the new coordinate point. This preserves image intensity, but can 

cause a ‘jagged’ appearance and can lead to errors in measurements quantified 

from micro-CT images of bone [183].  

The linear interpolator computes a weighted average of the grey values from the 

nearest neighbours of the pixel, typically 8 neighbouring pixels, in the transformed 

image. The grey value of the moving image is then linearly interpolated to the 

averaged pixel that is closest the original intensity value [184]. This removes the 

‘jagged’ appearance found with the nearest neighbour interpolator, but it can also 

remove high frequency intensity values, leading to errors in the ‘original’ trabecular 

microstructure from untransformed images [183, 185].  

The use of more computationally complex and time expensive interpolators, such as 

cubic spline and Lanczos (sinc) (Figure 2.19), can minimise image artefacts [182]. A 

cubic spline interpolator minimises errors in bone microstructure to less than 1.4%, 

and has superior performance to nearest neighbour and linear interpolators [183]. 

The Lanczos interpolator has also been used to transform micro-CT images to study 

bone microstructure and remodelling [186, 187]. The available interpolators can 

depend on what software is used; for instance, the Lanczos interpolator is used in 

Amira, as are the nearest neighbour and linear interpolators (Figure 2.18).  



 57 

Alternative methods have been proposed to avoid interpolating the images analysed 

by transforming the HR-pQCT and micro-CT image mask [77, 89, 177, 179]. This is 

known as an inverse transformation and removes any potential error in the 

interpolation of bone microstructure. This method can be applied using the 

SCANCO IPL [177] and was applied in the HR-pQCT to HR-pQCT image 

registration (Chapter 5 and 6). Further details of the HR-pQCT to micro-CT 

interpolator function are provided in section 2.6.7.2. 

 

Nearest Neighbour Linear Lanczos 

   

   

Figure 2.18. Examples of registered HR-pQCT slice images that have 
been transformed with 3 different interpolators using the Amira 
Image Registration modules. 

 

 

Figure 2.19. Example of three types of image interpolators. 
Sourced from Pluim et al., [175] 
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2.6.7 Optimised experimental registration procedures 

2.6.7.1 HR-pQCT to HR-pQCT registration 

Step 1: Registration 

The process is presented schematically in Figure 2.20. The registration settings 

followed default settings recommended by the manufacturer. For the registration the 

steps were as follows: 

I. The ‘baseline’ and follow-up’ images, as well as their GOBJs, were called 

into the IPL. Including the GOBJs in the registration is recommend to shorten 

registration time and maximise the registration accuracy between the scans.  

II. The ‘follow-up’ image (moving) was registered to the ‘baseline’ (fixed) HR-

pQCT scan. Within the registration, the centre of mass and moment of inertia 

was aligned and so the initial rotation and translation were set to default 

values.  

III. The correlation coefficient similarity metric was used with a simplex search 

method [177], so that intensity similarities were searched over fine levels.  

IV. The image was resampled to 10x, 4x and 1x the voxel size with the 

tolerance set to 0.0001.  

V. The minimum required value for the correlation coefficient between the two 

scans was set to 0.5: the coefficients were recorded after each registration 

for quality control purposes. 

VI. A transformation matrix for the registration was obtained. 

Step 2: Transformation of the ‘follow-up’ GOBJ 

In order to avoid interpolating the HR-pQCT image, the ‘follow-up’ GOBJ was 

transformed and overlaid on the ‘baseline’ HR-pQCT image: 

I. The transformation matrix was applied to the ‘follow-up’ GOBJ. This was 

interpolated using linear interpolation [177, 188]. 

II. The ‘baseline’ and the transformed ‘follow-up’ GOBJs were concatenated to 

create a ‘combined’ GOBJ, containing both masks.  

III. A threshold was applied to the ‘combined’ GOBJ to identify the common 

volume between the images.  

IV. The GOBJ of the common volume was then overlaid on the ‘baseline’ HR-

pQCT image. 
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V. The common volume was established by identifying all GOBJs that 

surrounded the periosteal perimeter of the bone. Any partial GOBJs were 

deleted. 

Step 3: Transformation of the ‘baseline’ GOBJ   

Following transformation of the ‘follow-up’ GOBJ to the ‘baseline’ image, the same 

procedure is applied in reverse: 

I. The same transformation matrix was inverted and applied to the ‘baseline’ 

GOBJ. This was also interpolated using linear interpolation. 

II. The transformed ‘baseline’ and the ‘follow-up’ (original, not transformed) 

GOBJs were concatenated to create a ‘combined’ GOBJ containing both 

masks. 

III. A threshold was applied to the ‘combined’ GOBJ to identify the common 

volume between the images.  

IV. The GOBJ of the common volume was then overlaid on the ‘follow-up’ HR-

pQCT image. 

V. The common volume was established by identifying all GOBJs that 

surrounded the periosteal perimeter of the bone. Any partial GOBJs were 

deleted. 

Step 4: Evaluation of the common volume 

The manufacturers’ guidelines set a cut-off for the common volume between HR-

pQCT images of 70%. For instance, 70% of the 110 HR-pQCT slices that are 

collected between two repeat images must be the same. Other studies have 

reported using a 75% [9] and 80% cut-off [189-191]. The 70% cut-off is used by our 

Research Group for the distal radius and distal tibia HR-pQCT scans. Once the 

common volume is established, only that region is evaluated (methods described in 

Section 2.3.3) between the repeat HR-pQCT images. 

Two methods can be applied to quantify the common volume of interest (), which 

have been used in the literature [9, 177, 188]: (1) the maximised method, which 

includes all GOBJ slices that appear on the bone; (2) the cropped method, which 

only includes GOBJ slices that are overlapped on the periosteal boundary of the 

bone This is recommended for FE analysis of the HR-pQCT images, as the surfaces 

of the evaluated image need to be flat.  
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On the manufacturer’s recommendation, the cropped method was used for the 

evaluation of the common volume in the thesis, as it is applicable to all 

measurements that can be made using the Scanco IPL. 
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Maximum 

common 

volume 

 

Cropped 

common 

volume 

 

 

Figure 2.21. Maximised and cropped GOBJ for evaluation following 3D image 
registration 
Maximised common volume – the GOBJ (green line) is only partially in contact with the 
periosteal surface on some of the slices. Slice 1 and slice 110 show the GOBJ covering 
approximately half of the calcaneus. These slices are included in the evaluation of the images 
using the maximised common volume method. 
Cropped common volume – the GOBJ is in contact with the calcaneus periosteal surface on all 
of the evaluated HR-pQCT slices. The GOBJs that were in partial contact with the periosteal 
surface of the HR-pQCT slices, in the maximum common volume method (slice 1 and 110 in 
this example), are removed prior to analysis. 
 

2.6.7.2 HR-pQCT to micro-CT registration 

Step 1: Registration 

The HR-pQCT image was pre-aligned with the micro-CT scan by finding the centre 

of mass, then manually translating and rotating the scan to find similar cortical 

landmarks. This order uses the highest resolution scan as the template for initial 

registration and prevents the potential manipulation of the micro-CT scan 

parameters, considering the aim of the micro-CT scan as to best represent the ‘true’ 

bone microstructure. 

A rigid transformation was applied with a normalised mutual information metric, as in 

with previous studies looking at multi-modal CT registration [77, 163]. The minimum 

and maximum optimizer steps were set to 0.01 and 0.0625, respectively, for finer 

translation and rotation of the HR-pQCT scan. (Lowering the numbers of steps did 

not improve the registration metric). The HR-pQCT scan was resampled in a 

pyramid fashion at 16, 8, 4 and then at the original (x 1) voxel size. (A resampling 

Slice 1 Slice 3 Slice 108 Slice 110 
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limit below 27 led to longer computation time per scan and no improvement in the 

registration metric). 

Step 2: Transformation 

A Lanczos interpolator was chosen to transform the registered HR-pQCT image 

voxels to their new coordinates. The Lanczos interpolator minimised changes in 

trabecular microstructure compared to the nearest neighbour and linear 

interpolators (Figure 2.22), which is in line with Schulte et al., [183], who used a 

more complex interpolator with micro-CT scans. The isotropic 82 µm voxel size was 

preserved following completion of the transformation. 
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Figure 2.22. Comparison of trabecular vBMD and trabecular number using 
three different resampling methods. 
Using Amira, HR-pQCT images of the calcaneus were manually rotated and resampled 
using three different interpolators: nearest neighbour (NNB), linear interpolation (LIN) and 
Lanczos (LCZ). Each resampled HR-pQCT scan was imported into the XtremeCT 
workstation and evaluated using the standard patient analysis. Measurements from the 
resampled calcaneus HR-pQCT images were compared to the original HR-pQCT scans 
(n=6) – the absolute and percentage change from the original is shown.  
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CHAPTER 3 HR-PQCT METHOD DEVELOPMENT USING 
HUMAN CADAVERIC CALCANEUS 
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3.1 Introduction 

Chapter 3 outlines the method to image the calcaneus using HR-pQCT, which has 

been developed in human cadaveric specimen.  

3.1.1 Imaging the calcaneus 

The imaging of calcaneus microstructure has previously been performed using CT 

and MRI. The application of CT has the advantage of obtaining a scan of the whole 

calcaneus in a short duration (< 10 seconds) [192]. In conventional multi-slice CT 

participants lay supine and have the lower leg and foot fixed in position during the 

scan. A more recent application of cone beam CT can image the calcaneus 

(including ankle and foot) in weight-bearing conditions (i.e. standing) and at a lower 

effective radiation dose per scan compared to multi-slice CT (2-14 µSv vs. 21 µSv) 

[69]. Furthermore, cone beam CT can reconstruct the images at a smaller voxel size 

compared to multi-slice CT (isotropic ≥ 0.15 mm vs. ≥ 0.2 mm pixel size and ≥ 0.5 

mm slice thickness) with a similar-sized Field of view [69]. 

The application of MR to image the calcaneus has the advantage of avoiding 

exposure to ionising radiation. Measurement at the calcaneus has been reported to 

achieve an in-plane spatial resolution of 156 x 156 µm and slice thickness of 0.5 mm 

[100, 105, 193], which is similar to multi-slice CT scans. Participants lie supine 

during calcaneus MR image acquisition with the leg secured in a holder. Sagittal 

and/or axial slices of the calcaneus have been obtained in reported scan durations 

of 12 to 20 minutes [101, 193, 194]. This is significantly longer than a calcaneus CT 

scan and does not obtain an image of the whole bone.  

A protocol to image the calcaneus using HR-pQCT has not yet been described. HR-

pQCT has a superior voxel size (isotropic 82 µm) to multi-slice CT and cone beam 

CT, however HR-pQCT requires a longer scan duration (2.8 minutes) to obtain just 

a 9 mm region of interest in vivo. The effective radiation dose is 3 µSv with a 

standard HR-pQCT scan [195] and is therefore equivalent to a cone beam CT scan 

of the ankle and foot at an isotropic voxel size of 0.3 mm [69]. Whilst HR-pQCT has 

a superior spatial resolution with a lower effective radiation dose compared to cone 

beam CT, the HR-pQCT scanner gantry (and field of view) is narrower. Therefore, 

optimising the positioning of the foot and the calcaneus for the HR-pQCT scans 

would be essential prior to any application in vivo. 
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3.1.2 Calcaneus microstructural heterogeneity 

The calcaneus has a heterogeneous bone microstructure, evident in both transverse 

CT slice images [196] and sagittal histological sections of the calcaneus [120, 197]. 

Quantitative analysis has found BV/TV, Tb.Th and Tb.N to be 2-4 fold higher at 

superior regions (near the posterior facet) compared to anterior regions of the 

calcaneus (below the anterior process) in cadaveric specimens using micro-CT 

[197]. Approximately 2-fold higher BV/TV and apparent Tb.Th has been reported 

between similar regions of the calcaneus in healthy subjects using MRI [198]. Lin 

and colleagues [198] reported heterogeneity within superior, anterior and posterior 

regions of the calcaneus across participants as coefficient of variations (CV), in 

which BV/TV ranged from 22 to 28%, apparent Tb.Th ranged from 24 to 54%, 

apparent Tb.Sp from 22 to 41% and apparent Tb.N from 12 to 16% within the 

regions. The heterogeneity in calcaneus microstructure appears to be greater along 

the superior-inferior axis [197, 198], than in the anterior-posterior axis of the bone 

[101, 199]. Few studies have performed a regional quantitative analysis of the 

calcaneus [101, 197-199] and no study has performed this using HR-pQCT. 

The measurement of calcaneus microstructure using HR-pQCT would use different 

quantitative methods to those applicable to MRI or micro-CT. MRI uses direct voxel 

counting for BV/TV measurement and calculates the mean intercept length as an 

index for apparent Tb.Th [200]. Plate-model assumptions are then used to calculate 

apparent Tb.N (area fraction of bone/Tb.Th) and apparent Tb.Sp ((1/Tb.N) – Tb.Th) 

[200]. Quantitative differences have been reported between co-registered HR-pQCT 

and MRI images of the radius and tibia; BV/TV and Tb.Th were 3 to 4-fold higher 

with MRI, and Tb.N* and Tb.Spd were higher using HR-pQCT [100]. Furthermore, 

the correlation between the measurements obtained using MRI and HR-pQCT at the 

radius and tibia ranged from an R2 of 0.18 to 0.52, highlighting the weak agreement 

for the same microstructural parameters between the two modalities. Agreement 

between HR-pQCT and micro-CT measurements is stronger [77, 163], which could 

be expected, as HR-pQCT is essentially a clinical micro-CT device. However, the 

greater HR-pQCT voxel size leads to an overestimation of Tb.N*, and an 

underestimation of Tb.Th and Tb.Sp [77, 163, 164, 201]. Therefore, measurements 

of calcaneus microstructure obtained using HR-pQCT may not completely reflect 

those obtained using other modalities.  
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3.1.3 Positional variation and microstructure heterogeneity 

The heterogeneity that has been established at the calcaneus could affect 

measurement precision with improper positioning of the region that is evaluated. 

Within the standard region obtained using HR-pQCT at the distal radius and distal 

tibia, there can be large variability in total vBMD, trabecular vBMD and cortical 

thickness. Kazakia and colleagues [100] found the mean percentage variation in 

BV/TVd to range from 8 to 58% at the distal radius and 8 to 40% at the distal tibia, 

depending on the HR-pQCT slice that was evaluated within a 9 mm region of 

interest. The highest heterogeneity in this region was found in cortical thickness 

(~152% and ~71% across all participants’ radius and tibia, respectively). These 

findings have been confirmed by Boutroy et al. [202] and Boyd [203], who identified 

similar regional differences in total, trabecular and cortical vBMD, as well as Tb.N*, 

Tb.Thd and cortical thickness. An important finding by Boyd [203] was that distal 

radius total vBMD changed by up to ±6% with 0.5 mm of proximal or distal 

movement of the region of interest. A similar region of interest movement at the 

distal tibia caused total vBMD, Tb.N* and cortical thickness to change by 

approximately ±2%, which increased by up to ±6% with ~1.7 mm of region 

movement. Positional variation is therefore critical using HR-pQCT at the radius and 

tibia, and the same could be anticipated at the calcaneus.  

3.1.4 Summary 

A protocol to image and quantify the calcaneus using HR-pQCT has not been 

proposed in the literature. Imaging the bone using HR-pQCT provides different 

challenges to those found with CT (scan duration, positional variation and larger 

field of view) and MRI (positional variation), but does provide advantages in 

microstructure quantification due to its superior spatial resolution. Quantitative 

measurements using micro-CT and MRI have identified a heterogeneous calcaneal 

trabecular microstructure between different regions of the bone, which could be 

anticipated using HR-pQCT. This heterogeneity could impact measurement error 

with improper positioning of the foot and positional variation with the start of the 

measurement region. 
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3.2 Aims and objectives 

The aim of Chapter 3 is to develop a protocol to scan the calcaneus using HR-pQCT 

in human cadaveric specimen. 

The objectives of Chapter 3 are: 

1. To optimise foot positioning for the calcaneus HR-pQCT scans.  

2. To compare trabecular vBMD and trabecular microstructure measurements 

between the inferior, middle and superior regions of the calcaneus tuberosity. 

3. To evaluate trabecular vBMD and trabecular microstructure measurements with 

5 (0.41 mm), 10 (0.82 mm) and 20 slice (1.64 mm) deviation in the 

measurement region in the calcaneus tuberosity. 

3.3 Methods and Materials 

3.3.1  Study design 

Professor Eugene McCloskey, Dr Margaret Paggiosi and I designed the study The 

study was undertaken using anonymised human cadaveric specimen, where 

consent had been obtained in life and bodies were donated to the Medical Teaching 

Unit at the University of Sheffield for anatomical study. Specimen limbs were 

transported to and from the Clinical Research Facility, Northern General Hospital by 

the Designated Individual (Mr John Rochester). The use of the limbs was carried out 

under direct supervision of the Designated Individual, authorised under the Human 

Tissue Act (Code 4). The study was given favourable ethical opinion by the 

University of Sheffield Medical Research Ethics Committee (Application 007375). 

The specimen limbs were used in three separate visits to the Clinical Research 

Facility: visit 1 was completed using a single specimen limb (Section 3.4); visits 2 

and 3 were completed using a number of specimen limbs (Section 3.5). Dr Margaret 

Paggiosi performed the HR-pQCT image acquisitions. I completed the HR-pQCT 

image analysis.  

3.3.2 Materials 

At the Medical Teaching Unit, the specimen were formaldehyde fixated using 

embalming fluid number 4 (Vickers Laboratories Ltd, Pudsey, UK) by infusion 

through the arterial system: 25-30 litres was used in a 70 kg cadaver. Specimens 

were stored at 1-4°C and were later dissected at room temperature (18-24°C). Prior 

to transportation to the Clinical Research Facility, specimens were divided through 



 69 

the proximal 2/3 point of the tibia (n = 16) or between the talus and tibia endplate (n 

= 6) at the Medical Teaching Unit. No medical history was available and specimens 

were not examined for the presence of metabolic bone disease or any abnormality. 

3.4 Development with a single human calcanei 

3.4.1 Materials 

The lower limb of one human cadaveric specimen with the tibia present (in situ) was 

used to develop the foot positioning for the calcaneus HR-pQCT scans.  

3.4.2 Image acquisition 

3.4.2.1 Specimen positioning 

With studies previously reporting that participants were comfortable in the position 

for the distal tibia HR-pQCT scans [204], a similar position was selected for the 

calcaneus HR-pQCT scans. The lower limb cast, used for distal tibia scans and 

provided by the manufacturer, was used to fix the cadaveric limb in place. In an 

attempt to achieve similar positioning to that used with other imaging modalities 

[194, 205], the sole of the specimen foot was placed flat on the bottom of the lower-

limb cast, with no plantar or dorsi-flexion at the ankle joint (i.e. neutral), and similar 

to the position used for the distal tibia scans. 

A two-dimensional x-ray (scout view) was obtained (Figure 3.1). Whilst this position 

aligned the tibia endplate parallel to the scout view, the calcaneus was at an angle. 

The advantage of this position is that it was similar to the distal tibia scan. However, 

the main limitation was that it led to surrounding bones of the foot crossing the 

XtremeCT field of view. This can cause scattering of the x-ray photons and cause 

incomplete tomographic projections as the CT source rotates around the foot [158]. 

Plantar flexion at the ankle joint overcame this problem and aligned the calcaneus 

superior and inferior surfaces with the field of view (Figure 3.1); this was a similar 

position to that used with QUS and with specialised calcaneus DXA (DXL Calscan, 

Demetech AB: TÄBY, Sweden), which have both received considerable use in vivo. 
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3.4.2.2 Scout view 

The additional advantage with plantar flexion at the ankle joint was that main body 

of the calcaneus bone was parallel to the scanning region. The scanning region can 

only be placed parallel to the scout view, which would lead to different regions being 

scanned in the neutral and plantar-flexed foot positions. Figure 3.2 shows the 

differences between the region of the calcaneus that is imaged in the neutral and 

plantar-flexed positions. The plantar-flexion at the ankle joint led to an improvement 

in contrast between the bone and the soft tissue, which would benefit the calcaneus 

periosteal perimeter detection; this was supported by an improved definition 

between the air and bone peak of the bimodal histogram (Figure 3.3). 

The size of the scout view required adaptations for the calcaneus HR-pQCT images. 

The start and end position in the control files for the radius and tibia scout views are 

set to 90 mm and 120 mm, and 73 mm and 103 mm, respectively. With the 

calcaneus superior and inferior surfaces that are parallel to the scout view, the start 

and end positions were widened to 0 mm to 150 mm. This ensured that the scan 

technician could visualise the whole calcaneus and also check the position of the 

surrounding bones of the foot in relation to the field of view. 

 

Neutral Plantar-flexion 

  

Figure 3.1. Two-dimensional x-ray scans of the foot with neutral foot 
position and with plantar-flexion. 
Calcaneus superior and inferior surface (yellow dotted lines); Tibia endplate 
(green dotted line). 

Space created  
with plantar flexion 
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3.5 Application in multiple human cadaveric calcaneus 

3.5.1 Materials 

The lower limbs from 21 human cadaveric specimens (in situ) were used to (1) 

further test the development of the foot positioning, (2) test the scanning region 

identification and (3) evaluate the volumetric BMD and trabecular microstructure of 

the calcaneus using HR-pQCT. 

3.5.2 Image acquisition 

The specimens were positioned in the lower-limb cast with plantar-flexion at the 

ankle joint. The foot was fixed in the position using pieces of foam and the Velcro 

straps attached to the lower limb cast. The scout view size (or scaling) was set to a 

start position of 0 (zero) and an end position of 150. The standard manufacturer 

operational settings for HR-pQCT image acquisition were used (Section 2.3.1): an x-

ray tube potential of 60 kVp, an x-ray tube current of 95mA, collecting 750 

projections at an integration time of 100ms.  

Two different regions of interest were obtained in the 21 specimens. At visit 2, 15 

specimens had the whole calcaneus imaged using HR-pQCT, with up to 770 slices 

captured (at an isotropic voxel size of 82 µm). At visit 3, 6 specimens had a 330-

Neutral Plantar-flexion 

  

Figure 3.3. Frequency of the Hounsfield units from the neutral and plantar-flexion 
calcaneus HRpQCT images. 
Hounsfield units were exported from the calcaneus HR-pQCT slice images. These were exported 
from the calcaneus only apply a GOBJ around the calcaneus periosteal surface. 
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slice region captured around the mid-point of the calcaneus between the superior 

peak of the tuberosity and the plantar fascia attachment (Figure 3.4). A smaller 

region was collected at visit 3 due to time and scheduling constraints. 

 

3.5.3 Image reconstruction 

Calcaneus HR-pQCT image reconstruction followed the standard protocol provided 

by the manufacturer (Section 2.3.2). 

3.5.4 Image evaluation 

All image evaluations were completed within the XtremeCT Evaluation Software. 

3.5.4.1 Volume of interest size and positioning 

A protocol to position the volume of interest was developed to quantify the 

calcaneus trabecular microstructure. Previous studies using three-dimensional 

imaging methods [194, 198, 206] have used circular, square and rectangular 

regions of interest to measure trabecular BV/TV and trabecular microstructure 

heterogeneity in the calcaneus. These analyses have excluded cortical bone, which 

could be due to the difficulty in measuring the thin cortex in comparison to the 

method’s spatial resolution. Using HR-pQCT, the cortical bone could be visually 

identified in the transverse slices of the bone. The semi-automated contouring 

procedure with the dual-threshold algorithm [161, 162] (Section 2.3.3) was 

performed on one cadaveric specimen. The performance of the endocortical 

boundary detection was poor and required high manual input to correct its position 

on every slice (Figure 3.5). For simplicity, the semi-automated contouring was not 

Whole calcaneus scan 330 slice section calcaneus scan 

  

Figure 3.4. Regions for the calcaneal HR-pQCT scans.  

Start of scanning region 

Start of scanning region 
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applied in Chapter 3 and a GOBJ was positioned to quantify trabecular bone and 

exclude cortical bone. 

 

 

Figure 3.5. Example of the dual-threshold segmentation algorithm on 
calcaneus HR-pQCT slices. 
The left image shows the GOBJ (green line) in contact with the periosteal surface of the 
calcaneus. The central image shows the automated performance of the cortical 
segmentation method, in which the GOBJ should be in contact with the endocortical 
surface. The right images represent the red squares within the central image and further 
highlight the improper positioning of the GOBJ. 

 

The GOBJ size and position was piloted across all specimens. A fixed sized GOBJ 

was used, with dimensions of (X) 12.25 mm x (Y) 12.25 mm x (Z) 9.02 mm (Figure 

3.6A). The Z-dimension was equivalent to the number of slices measurement at the 

distal radius and distal tibia in vivo, representing a 2.8 minute scan duration [195]. 

The X and Y dimensions were tested at larger sizes (up to 25 mm), however the 

GOBJ overlapped the periosteal perimeter at medial-lateral surfaces of the 

calcaneus across different specimen. This was particularly apparent at superior and 

inferior regions of the bone, where the medial-lateral widths were narrow in all 

specimens. Increasing the Y-dimension was also tested (up to 40 mm), however the 

GOBJ then encroached areas of the calcaneus that are subjected to high 

mechanical strains, such as those near the Achilles tendon attachment and near the 
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posterior facet. These regions have been found to have 1.5-2 fold higher BV/TV 

compared other regions of the calcaneus tuberosity [197, 198].  

3.5.4.2 Volume of interest evaluation 

Objective 1: To compare trabecular vBMD and trabecular microstructure 

measurements between the inferior, middle and superior regions of the 

calcaneus tuberosity. 

Six different regions of the calcaneal tuberosity body were evaluated. An eight-step 

process was applied to position the GOBJ, which is depicted in Figure 3.6B-C:  

Step 1. A single GOBJ was placed on the middle slice of the bone between the 

superior tuberosity peak and the plantar fascia attachment. To avoid areas that are 

subjected to high mechanical strains, the anterior edge of the single GOBJ was 

positioned at 60% of the slice length.  

Step 2. The single GOBJ was then translated in the medial-lateral direction to 

ensure that the GOBJ had an equal distance either side to the medial and lateral 

periosteal surfaces.  

Step 3. The GOBJ was then morphed through 330 slices in a fixed coordinate 

position of the HR-pQCT slice images, using the ‘Contouring: Range: Morph 

function’.  

Step 4. The morphed GOBJs were then divided into superior (1 to 110 slices), 

middle (111 to 220 slices) and inferior regions (221 to 330 slices).  

Step 5. The single GOBJ, used in the first step, was then translated in the anterior 

direction to create a new region of interest. There was a one-voxel difference 

between the anterior edge of the original GOBJ and posterior edge of the new 

GOBJ.  

Step 6. The new single GOBJ was translated in the medial-lateral direction to 

ensure that the GOBJ had an equal distance either side to the medial and lateral 

periosteal surfaces, similar to step 2.  

Step 7. The new single GOBJ was then morphed through 330 slices in a fixed 

coordinate position of the HR-pQCT slice images, similar to step 3.  

Step 8. The newly morphed GOBJs were then divided into superior (1 to 110 slices), 

middle (111 to 220 slices) and inferior regions (221 to 330 slices).  

The GOBJ regions created in step 4 and step 8 were labelled ‘posterior’ and 

‘anterior’ regions, respectively: posterior-superior, posterior-middle posterior-inferior, 
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anterior-superior, anterior-middle, anterior-inferior. The volume covered by these 

regions was similar to that used to identify trabecular heterogeneity in the main body 

of the calcaneus tuberosity in previous work [198]. 

 

A 

 

 

     

B Slice 1 Slice 165 (middle) Slice 330  

 
C 

 

Figure 3.6. Location of the volume of interest for the scan evaluation. 
A − The dimension of the GOBJ was 15 mm2: Anterior-Posterior = 12.25, Medial-Lateral = 12.25 
mm, Superior-Inferior = 9.02 mm). 
B − The GOBJ position on the middle slice was morphed through slice 1 to 330 at fixed 
coordinates on the HR-pQCT field of view. Note the change in calcaneus morphology through 
this slice range. 
C – Approximate position of the six GOBJs relative to a sagittal slice of the calcaneus.  
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Objective 2: To evaluate trabecular vBMD and trabecular microstructure 

measurements with 0.41 mm, 0.82 mm and 1.64 mm deviation in the 

measurement region in the calcaneus tuberosity. 

The reference GOBJ within each posterior region (posterior-superior, posterior-

middle and posterior-inferior region) was translated ±5 (±0.41 mm), ±10 (±0.82 mm) 

and ±20 slices (±1.64 mm) in the superior and inferior direction. These three 

translations were within the ranges reported by [203] at the distal tibia, in which total 

vBMD and Tb.N* changed by up to ±6% with ~1.7 mm of GOBJ movement. The 

GOBJ with each movement was evaluated in comparison to the reference GOBJ. 

This aimed to represent the potential differences of landmark selection by the scan 

technician and how this may impact measurement error. This was performed in 

subset of cadaveric specimens with the tibia present that has HR-pQCT scans of 

the whole calcaneus completed (n=10).  

3.5.4.3 Image quantification 

The HR-pQCT images were quantified for trabecular vBMD, Tb.N*, Tb.Thd and 

Tb.Spd (* – directly computed; d – derived) using the ‘standard clinical evaluation’ 

script (Section 2.3.3).  

3.5.5 Statistical analysis 

Statistical analyses were completed in GraphPad Prism (7.0, GraphPad Software: 

La Jolla California, USA) and SPSS statistics package (version 21, IBM: New York, 

USA). A p<0.05 indicated statistical significance, unless indicated otherwise. HR-

pQCT measurements were visually checked for normality, and then statistically 

checked using a Shapiro-Wilk test. Normally distributed measurements were 

presented as a mean with a 95% confidence interval (95% CI) and non-normally 

distributed measurements were presented as a median with an interquartile range 

(IQR); parametric and non-parametric tests were applied accordingly. 

3.5.5.1 Repositioning error between repeated scans 

The region of interest placement is related to the identification of the midpoint 

between the superior and inferior surfaces of the calcaneus. Here, reproducibility 

will be impacted by the positioning errors that alter the apparent distance between 

the two surfaces. This has been explored by repositioning the calcaneus between 

two repeat image acquisitions. The total number of slices in each image was 
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counted to provide a measure of calcaneal height (82µm x total number of slices)3. 

The root mean square error of the standard deviation (SDRMS) of the calcaneus 

height (mm) was calculated from the two images to represent the variability in the 

positioning. This analysis was only completed in images of the whole calcaneus 

(n=16). 

3.5.5.2 Regional evaluation of the calcaneus tuberosity 

Two separate regional evaluations were performed. First, the percent CV (CV%) 

was calculated for the 6 regions combined for each measurement to provide a 

heterogeneity measurement within the main body of the calcaneus tuberosity [198]:  

 

Second, measurements from the six 110-slice volumes of interest (Figure 3.6B) 

were compared to one-another. Normally distributed measurements (trabecular 

vBMD and Tb.Thd) were compared using a one-way repeated measures analysis of 

variance (ANOVA) with Bonferroni post-hoc tests (p<0.008; 0.05/6). Non-normally 

distributed measurements (Tb.N* and Tb.Spd) were compared using a Friedman’s 

test with adjusted Dunn’s multiple comparison post-hoc tests (p values corrected to 

p<0.05 for post-hoc analyses).  

3.5.5.3 Systematic adjustment of the volume of interest 

Measurements from the translations of the GOBJ (±5, 10 and 20 slices) were 

compared to the original posterior-superior, posterior-middle and posterior-inferior 

region measurements, and expressed as a percentage change. Linear regression 

analyses were performed to evaluate the correlation between the percentage 

change in measurements from the translations of the GOBJ (trabecular vBMD, 

Tb.N*, Tb.Thd and Tb.Spd) and the translations of the GOBJ (±5, 10 and 20 slices). 

The coefficient of determination (r2), equation slope and intercept, and root mean 

square error (RMSE) were calculated. 

                                                
3 This analysis was completed before the method to measure repositioning error for the 
reference line placement was proposed by Bonaretti and colleagues (2016). This has been 
adapted accordingly with updated software for the HR-pQCT image acquisition in Chapter 5 
and 6. 

 𝐶𝑉% =
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛𝑠

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑚𝑒𝑎𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛𝑠
 × 100 Equation 3.1 
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3.6 Results 

3.6.1 Repositioning error between repeated scans 

Figure 3.7 shows the calcaneus height for the individual specimens between the 

plantar fascia attachment (first HR-pQCT slice) and the superior peak of the 

tuberosity (last HR-pQCT slice) for the repositioned HR-pQCT images of the whole 

calcaneus. The SDRMS in the calcaneus height between these images was 1.77 mm 

(equivalent to 22 HR-pQCT slices). There was difficulty in repositioning the 

specimens without a tibia. When the reproducibility errors were calculated 

separately for specimens with the tibia present and absent, there was a greater 

variation in mean difference in specimens with the absent tibia (95% CI: tibia absent 

= 0.37, 5.4%; tibia present = 0.2, 0.8%). The SDRMS in the calcaneus height between 

the images in which the tibia was present, was 0.24 mm (equivalent to 3 HR-pQCT 

slices). 

 

3.6.2 Regional evaluation of the calcaneus tuberosity 

16 specimens were used in the analysis as 5 were excluded due to air bubbles in 

the volumes of interest. These specimens had negative trabecular vBMD, which 

would subsequently affect the calculation of Tb.Thd and Tb.Spd.  

Table 3.1 shown the descriptive statistics and CV% for the 6 combined regions of 

interest. Figure 3.8 shows the trabecular vBMD and trabecular microstructure 

 

 

 

 Figure 3.7. Calcaneal height of repositioned HR-pQCT scans for 
the individual calcanei. 
Calcaneal height was calculated by multiplying the number of slices 
between the superior peak of the tuberosity and the plantar fascia 
attachment by the HR-pQCT slice thickness (0.082 mm, 82 µm). 
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between the different regions of the calcaneus that were evaluated using HR-pQCT. 

There was noticeably higher CV% for trabecular vBMD and Tb.Thd in comparison to 

Tb.N* and Tb.Spd. The regional heterogeneity was further supported by statistical 

analysis between the 6 regions. A statistically significant effect of the calcaneus 

region was found on trabecular vBMD (F(2.28, 34.2) = 29.2, p<0.001, R2 = 0.66) 

and Tb.Thd (F(2.86, 42.9) = 50.9, p<0.001, R2 = 0.57), as well as Tb.N* (𝑋2(5) = 

13.4, p=0.02) and Tb.Spd (𝑋2(5) = 17.3, p=0.004). Superior regions (both anterior 

and posterior) were found to have significantly greater trabecular vBMD and Tb.Thd 

than the middle and inferior regions (both anterior and posterior). There were no 

differences in trabecular vBMD and Tb.Thd between the anterior and posterior 

regions. There were found to be no significant differences between the individual 

regions for Tb.N* (p=0.09-1). Tb.Spd at the anterior-superior region was significantly 

lower than the posterior-inferior region. Tb.Spd at the posterior-superior region was 

lower than the posterior-inferior (p=0.03). Tb.Spd was not statistically significant 

between the other calcaneal regions (p=0.16-1.00). 

 

   

 

 

 

 

 

 

 

 

 

Table 3.1. Summary statistics and coefficient of variation (%) for 
trabecular vBMD and trabecular microstructure in the 6 regions. 

 Mean (95% CI) / 

Median [IQR] 
CV% (95% CI) 

Tb.vBMD, mg HA/cm-3 129 (117, 141) 41% (32, 56%) 

Tb.N*, mm-1 3.1 [2.5, 3.6] 11% (8, 13%) 

Tb.Thd, µm 34 (24, 46) 40% (33, 48%) 

Tb.Spd, µm 288 [240, 362] 13 (10, 16%) 

Trabecular vBMD (Tb.vBMD) and Tb.Thd – mean (95% CI); Tb.N* and 
Tb.Spd – median [IQR]. 
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3.6.3 Systematic adjustment of the volume of interest 

The trabecular vBMD, Tb.N*, Tb.Thd and Tb.Spd for each reference volume of 

interest is reported in Table 3.2. The percentage change in the reference volume of 

interests with adjustment (±0.41 (5 slices), ±0.82 (10 slices) and ±1.64 mm (20 

slices)) is reported as a linear regression analysis in Table 3.3 and graphically in 

Figure 3.9. 

Trabecular vBMD was sensitive to changes in the volume of interest in all regions. 

There was a positive, moderate-strong correlation for the superior (r2=0.72, 

p<0.001) and middle region Tb.vBMD (r2=0.73, p<0.001) with the volume of interest 

adjustment. Here, a positive shift (superior direction) of the volume of interest 

increased the trabecular vBMD, and a negative shift (inferior direction) of the volume 

of interest decreased the trabecular vBMD. At the inferior region there was a 

negative, weak correlation for trabecular vBMD (r2=0.22, p<0.001), as well as a 

higher RMSE. This was influenced by little or no change in trabecular vBMD with a 

 

Figure 3.8. Trabecular volumetric BMD and trabecular microstructure 
measured at different regions of the calcaneus tuberosity body by HR-pQCT. 
Abbreviations: P-S, posterior-superior; P-M, posterior-middle; P-I, posterior-inferior; A-S, 
anterior-superior; A-M, anterior-middle; A-I, anterior-inferior. 
Bonferroni corrected p value set at p<0.008 (= 0.05/6): A, p<0.001 to P-S; B, p<0.001 to A-
S; C, p=0.003 to P-S; D, p=0.003 to A-S. 
Adjusted Dunn’s p value set at p<0.05: E, p=0.03 to P-S; F, p=0.007 to A-S.  
 

P-I P-M P-S A-I A-M A-S
0

100

200

300

Calcaneus region

Tb
.v

B
M

D
 

(m
g 

H
A

.c
m

3 ) A,B C,D
A,B

A,B

Trabecular vBMD

P-I P-M P-S A-I A-M A-S
0.00

0.02

0.04

0.06

0.08

Calcaneus region

Tb
.T

hd  
(m

m
)

Trabecular thickness 

A,B
A,B A,BA,B

P-I P-M P-S A-I A-M A-S
0

1

2

3

4

5

Calcaneus region

Tb
.N

* (
m

m
-1

)

Trabecular number 

P-I P-M P-S A-I A-M A-S
0.0

0.1

0.2

0.3

0.4

0.5

Calcaneus region

Tb
.S

pd  
(m

m
)

Trabecular spacing
E,F



 82 

+20-slice shift to a -5-slice shift, with trabecular vBMD increasing from a -5 to -20 

slice shift. Tb.Thd followed similar trends to the trabecular vBMD. Positive slice shifts 

in the superior and middle regions increased Tb.Thd, and negative slice shifts 

decreased the superior and middle regions Tb.Thd (r2=0.80, p<0.001 and r2=0.79, 

p<0.001, respectively). There was a negative, weak correlation for Tb.Thd at the 

inferior region, which was influenced by an increase in Tb.Thd from -5 to -20 slices. 

The Tb.N* and Tb.Spd were relatively stable with the slice shifts of the reference 

volume of interest. There was no significant correlation for Tb.N* at the superior and 

middle region, where as the inferior region had a very weak correlation, favouring an 

increase in Tb.N* from a -5 to -20 slice shift (r2=0.08, p=0.03). Tb.Spd had very weak 

correlations at the superior, middle and inferior regions. There was a reduction in 

Tb.Spd with a positive slice shift at the superior and middle regions, and a decrease 

with a negative slice shift at the inferior region. 

 

 

Table 3.2. Region trabecular vBMD and trabecular microstructure measurements 
for the reference volume of interest that were compared to measurements 
following slice shifting. 

 Superior Middle Inferior 

Tb. vBMD, mg HA/cm-3 148 (114, 182) 110 (86, 134) 83 (52, 114) 

Tb.N*, mm-1 2.8 (2.6, 3.1) 2.9 (2.6, 3.2) 2.8 (2.4, 3.1) 

Tb.Thd, µm  43 (36, 49) 31 (26, 36) 23 (16, 30) 

Tb.Spd, µm  320 (280, 360) 320 (290, 360) 350 (300, 400) 

Data presented as mean (95% confidence intervals). 
N = 10, tibia present in all specimens.  

Table 3.3.  Linear regression analysis of the systematic adjustment of the 
calcaneus HR-pQCT volume of interest. 

 Tb.vBMD Tb.N* Tb.Thd Tb.Spd 
Superior R2 = 0.72*** 

RMSE = 3.9%  
Y = 0.465*X-0.112 

R2 = NS  
RMSE = 1.6%  
Y = -0.017*X+0.181 

R2 = 0.80*** 
RMSE = 3.3% 
Y = 0.499*X-0.227 

R2 = 0.11** 
RMSE = 2.0% 
Y = -0.052*X-0.276 

Middle R2 = 0.73*** 
RMSE = 2.8% 
Y = 0.345*X+0.275 

R2 = NS 
RMSE = 1.3% 
Y = 0.000*X+0.040 

R2 = 0.79*** 
RMSE = 2.6% 
Y = 0.365*X+1.04 

R2 = 0.08* 
RMSE = 1.5% 
Y = -0.032*X-0.135 

Inferior R2 = 0.22*** 
RMSE = 6.2% 
Y = -0.248*X+1.750 

R2 = 0.08* 
RMSE = 2.1% 
Y = -0.046*X+0.282 

R2 = 0.14** 
RMSE = 5.6% 
Y = -0.172*X+2.38 

R2 = 0.14** 
RMSE = 2.4% 
Y = 0.072*X-0.440 

RMSE – Root mean square error. Significance * ≤0.05, ** ≤0.01, *** ≤0.001 
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3.7 Discussion 

This Chapter described preliminary findings for the use of HR-pQCT at the 

calcaneus from human cadaveric specimen. The foot was positioned to ensure that 

the calcaneus and surrounding bones of the foot were within the field of view. 

Regional differences were found in the main body of the calcaneus tuberosity, 

specifically relating to trabecular vBMD and Tb.Thd, which was significantly greater 

in superior regions compared to the middle and inferior regions of the bone. The 

heterogeneous trabecular vBMD and Tb.Thd highlights the importance in 

standardising the position of the reference line to identify the start of the image 

region (as shown for the distal radius and distal tibia in Section 2.3.1) to minimise 

calcaneus HR-pQCT measurements precision error.  

It was apparent that the analysis of the calcaneus HR-pQCT images was more 

complex than the radius and tibia. The calcaneus cross-sectional area was 

noticeably larger (in comparison to radius and tibia scans collected from other 

studies in our Research Group) and therefore took longer to check the automated 

edge-detection performance. Some specimens, given their cadaveric source, also 

had low trabecular vBMD and a thin cortex, with cortical thickness approaching the 

width of individual trabeculae in specific regions on visual inspection of the slices 

(example Figure 3.6A). The low cortical thickness may had led to the large 

inaccuracies in the detection of the endocortical surface by the ‘dual-threshold’ 

algorithm, where similar errors have been reported at the ultradistal radius slices in 

osteoporotic individuals, with cortical thickness ranging from 200 to 300 µm [162]. 

Whereas radius cortical thickness increases with proximal movement from the 

ultradistal slices [100, 202, 203], which makes segmentation easier, the calcaneus 

cortical thickness was fairly uniform throughout the bone. Previous studies using 

MRI [193, 194, 198] and QCT [206, 207] have not evaluated calcaneus cortical 

bone. With the lower spatial resolution in these devices compared to HR-pQCT, 

separating the trabecular and cortical bone compartments may have been even 

more challenging. The condition of the calcaneal specimens in this Chapter may be 

a limiting factor in its application.  

The natural variation in calcaneus trabecular vBMD and microstructure was 

demonstrated across representative regions that could be visualised and measured 

in vivo. Large regional differences in trabecular vBMD and Tb.Thd were apparent in 

the main body of the calcaneus tuberosity, as demonstrated by a CV% of ~60%. 
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These differences were mainly apparent along the superior-inferior axis of the 

calcaneus, rather than the anterior-posterior axis, which was consistent with studies 

using different quantitative imaging modalities [197, 198, 208]. Large distal-to-

proximal differences have also been demonstrated at the radius and tibia, 

specifically in cortical thickness [202, 203, 209]. Bearing these anatomical 

differences in mind, adaptations have been made to HR-pQCT protocols to image 

different regions in clinical studies assessing fracture risk [87, 210] and 

pharmaceutical treatment response [211], as well as monitoring fracture healing 

[212]. It would be simpler to measure an extended region of interest at the 

calcaneus, or even the whole bone, however the increased likelihood of movement 

artefacts would be an issue with the increased scan duration (~20 minutes in the 

calcaneus specimens). At this stage, establishing a reproducible protocol for 

regional assessment of the calcaneus using scan duration comparable to current 

clinical studies is of importance. Once a protocol similar to that used routinely at the 

distal radius and distal tibia has been established, attempts could be made at larger 

region imaging and longer scans duration in vivo. 

Different foot positioning was tested in the cadaveric specimen to ensure that the 

surrounding bones of the foot were within the XtremeCT field of view. With the aim 

of developing a protocol to enable the regional assessment of the calcaneus, 

standardised foot positioning was critical. The repositioning error of the scans was 

0.24 mm (in specimen with the tibia present), based on the distance between two 

fixed anatomical landmarks. This is equivalent to 3 HR-pQCT slices at an 82 µm 

slice thickness. Based on the measurements from the positional variation, the 

change in trabecular vBMD would be on average 3% at the superior region and 1-

2% at the middle and inferior regions of the calcaneus tuberosity. This variation was 

slightly higher than that reported in trabecular vBMD at the distal tibia (±1%) and 

distal radius by Boyd [203], however the reference trabecular vBMD was lower 

compared to the calcaneus specimens (tibia = 43 mg HA.cm-3; radius = 39 mg 

HA.cm-3) and the larger positional errors reported for total vBMD were dependent on 

cortical thickness. Larger positional variation at the calcaneus tuberosity led to more 

noticeable changes, with the mean percentage change in trabecular vBMD with a 

±20 slice (±1.64 mm) shift reaching approximately 10% (superior region), which has 

also been reported for trabecular vBMD at the radius and tibia [203]. Image 

registration techniques may ameliorate these positional errors in multiple 

measurements of the same calcaneus, such as in longitudinal studies.  
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There are technical aspects of the calcaneus HR-pQCT imaging protocol that need 

to be considered for the application in vivo. Beam hardening and scatter artefacts 

from the polychromatic x-ray source could influence the trabecular vBMD 

measurement from the calcaneus HR-pQCT images. Sekhon and colleagues [156] 

reported that the manufacturers BHC algorithm was not sufficient to correct for 

beam hardening artefact, with trabecular vBMD overestimated by upto 41% in a 

customised HR-pQCT phantom with inserts containing a range of trabecular vBMD 

(60-360 mg HA/cm-3) and cortical thickness (0.5-2.5 mm). Tissue with a larger size 

and quantity can also lead to cupping artefact from beam hardening, which can 

underestimate attenuation coefficients i.e. density measurements [213, 214]. The 

larger calcaneus size, combined with the greater quantity of bone in the field of view 

(talus, navicular and cuboid), could enhance beam-hardening artefact and lead to 

erroneous measurements using a similar protocol to that used for the radius and 

tibia HR-pQCT image acquisition and reconstruction. This is an important 

consideration for microstructural accuracy, as Tb.Thd and Tb.Spd are dependent on 

trabecular vBMD. Additionally, the greater quantity of bone in the field of view may 

have compromised the image signal-to-noise ratio, as photons would be attenuated 

in surrounding bones and soft tissue. Increasing the x-ray intensity or frame 

averaging can improve signal-to-noise ratio [152, 214]; different x-ray intensities and 

its effect on the accuracy of the calcaneus trabecular vBMD (BV/TVd) and trabecular 

microstructure measured by HR-pQCT, in comparison to a ‘gold standard’ 

reference, are investigated in Chapter 4.  

A practical concern was the correct participant positioning for the HR-pQCT image 

acquisitions. It was established that the participant’s body position would be similar 

to that with the tibia HR-pQCT scans, but with different foot positioning. This is 

unlike participant’s position for MRI and conventional CT imaging of the calcaneus, 

where the body is supine on a couch. Furthermore, CT and some MRI devices have 

a larger gantry than the XtremeCT, which enables the foot to be more easily 

positioned for the image acquisitions. Whilst the pilot experiment was completed 

using cadaveric lower limbs in situ, other practical issues could be apparent in vivo. 

A pilot and familiarisation study for the developing measurement is described in 

Chapter 5.  
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3.8 Conclusion 

This Chapter has presented preliminary findings for imaging the calcaneus in situ 

using HR-pQCT. The anticipated participant position for the calcaneus HR-pQCT 

scans would be similar to the distal tibia scans, with adaptations to the foot 

positioning to benefit image quality. The data generated from the cadaveric 

specimens indicate large heterogeneity in calcaneus tuberosity trabecular vBMD 

and Tb.Thd, with differences shown over small (~1.64 mm) and large (~18 mm) 

positional variation of cubed volumes of interest. The appreciable positional 

variation has highlighted the importance of standardising the reference line 

positioning for the calcaneus HR-pQCT scans. 

Technical and practical limitations have been highlighted and are addressed in the 

following Results Chapters: measurement validation with regards to the HR-pQCT 

scan settings and image reconstruction (Chapter 4); piloting the calcaneus HR-

pQCT image acquisition in vivo and further testing the image analysis procedures 

(Chapter 5 and 6); short-term precision error for calcaneus HR-pQCT 

measurements (Chapter 6). 
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CHAPTER 4 VALIDATION OF CALCANEUS HR-PQCT 
MEASUREMENTS 



 90 

This Chapter has been published: Metcalf LM, Dall'Ara E, Paggiosi MA, Rochester 

JR, Vilayphiou N, Kemp GJ, McCloskey EV, Validation of calcaneus trabecular 

microstructure measurements by HR-pQCT, Bone, doi: 

10.1016/j.bone.2017.09.013.  

As the author of this manuscript, permission to use the manuscript in the thesis is 

granted by Elsevier for personal use only. The published manuscript has been 

adapted so that it is consistent with the format of the thesis. A proportion of the 

Introduction, Methods and some parts of the Results have been reported in Chapter 

3, and will be referred to when necessary to avoid repeating similar information.  

Additional analyses have been included in the Appendix and are referred to within 

the Methods and Results sections. 

4.1  Introduction 

Chapter 3 presented preliminary findings from imaging the calcaneus using HR-

pQCT in situ. Notable differences in trabecular vBMD and Tb.Thd were observed in 

the superior region compared to middle and inferior regions of the calcaneus 

tuberosity. Whilst observing these regional differences, it was clear that the 

calcaneus is anatomically and structurally different compared to the radius and tibia; 

the calcaneus CSA is larger and has several close-lying bones of the foot (talus, 

navicular and cuboid). This may make keeping the surrounding bones of the foot in 

the field of view challenging. Because there is likely to be a different quantity of 

bone and surround tissues in the field of view of the calcaneus HR-pQCT scans 

compared to the radius and tibia, the HR-pQCT scan settings may not be 

appropriate for optimal signal-to-noise ratio, due to x-ray artefacts such as beam 

hardening and photon scatter [156, 213, 214]. Adaptation of the x-ray intensity is 

known to improve signal-to-noise ratio, but it is unknown how changing the x-ray 

intensity may influence HR-pQCT measurements. 

X-ray artefacts can affect quantitative measurement accuracy. Beam hardening can 

cause low attenuation values towards the centre of the field of view, leading to 

underestimations of vBMD [156]. Photon scatter may increase noise within the HR-

pQCT images, which could be quantified as bone voxels following the application of 

the segmentation procedure [172]. As a distance-transformation method is used for 

Tb.N* measurement, higher bone voxels as noise may artificially increase Tb.N* 

[172]. This may subsequently lower Tb.Thd and lower Tb.Spd calculations when 

using plate-model assumptions with the first generation XtremeCT. Considering the 
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differences mentioned above, the accuracy of distal radius and distal tibia HR-pQCT 

measurements [30, 77, 163, 164, 216] may not reflect those at the calcaneus. 

4.2 Aims & Objectives 

The aim of Chapter 4 is to validate the calcaneus HR-pQCT measurements with 

respective to micro-CT measurements. 

The objectives of Chapter 4 are: 

1. To determine the accuracy of trabecular bone volume and microstructure 

measurements using HR-pQCT, at the superior, middle and inferior regions of 

the calcaneus tuberosity, with respect to gold standard micro-CT measurements. 

2. To characterise the effect of scan integration time on trabecular microstructure 

measurements on calcaneus HR-pQCT scans, with respect to gold standard 

micro-CT measurements. 

3. To determine whether surrounding bones of the foot affect the accuracy of 

calcaneus trabecular bone volume and microstructure measurements using HR-

pQCT. 

4.3 Methods 

4.3.1 Study design 

Professor Eugene McCloskey, Dr Margaret Paggiosi, Dr Enrico Dall’Ara and I 

designed the study. The study design followed that reported in Section 3.3.1. I 

completed the calcaneus sample preparation for the micro-CT scans, the micro-CT 

scanning, and the image registration and analysis. 

4.3.2 Materials 

Ten lower limbs were obtained from cadavers (n=5, all female, age range 85 to 101 

years); all had been divided through the proximal 2/3 point of the tibia. The 

specimens’ preparation has been described in Section 3.3.2.  

4.3.3 Calcaneus HR-pQCT imaging 

4.3.3.1 Image acquisition 

The specimen positioning was consistent with that reported in Section 3.4.2.1. 

Scans of the whole calcaneus were obtained between the superior peak of the 
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tuberosity and the plantar fascia attachment to the calcaneal tuberosity at an 

isotropic voxel size of 82 µm (maximum of 660 slices) using the standard clinical 

operational settings (Section 2.3.1).  

As part of the method development, each calcaneus was scanned with different 

integration times; in situ (with the calcaneus in the intact limb) scan projections were 

collected twice at 100 ms and once each at 150 and 200 ms integration times, 

labelled IS100, IS150 and IS200, respectively. The range of integration times was 

tested to determine the potential gains in microstructure assessment of more 

prolonged exposure, while limiting the upper scan time to 4.2 minute to minimize 

potential movement artifacts when the protocol would be used in vivo in future 

clinical settings. Isolated (ex vivo, with the calcaneus removed from the limb, soft 

tissue removed but no cleaning of the bone marrow) scan projections were collected 

at 100 ms integration time, labelled EV100, to determine whether measurements 

would be affected by the surrounding bones of the foot. For these scans, the 

calcaneal samples were placed in sealed polythene bags and supported by foam, in 

order to obtain a similar anatomical position to scans in situ. 

The calibration of the HR-pQCT density phantom is shown in the Appendix (Figure 

9.2). 

4.3.3.2 Image reconstruction 

Calcaneus HR-pQCT image reconstruction followed the standard protocol provided 

by the manufacturer (Section 2.3.2). 

4.3.4 Calcaneus micro-CT imaging 

4.3.4.1 Sample preparation 

The dissected calcanei were cut into rectangular prism samples (18 x 18 x 40 mm) 

preserving cortical bone at the superior and inferior surfaces, using a diamond-

coated bandsaw under constant water irrigation (EXAKT: Norderstedt, Germany). 

Each sample was submerged and fixed in a 50 ml holder containing saline solution 

and was vacuumed for 20 minutes to remove air bubbles prior to each scan. 

4.3.4.2 Image acquisition 

Calcaneus micro-CT image acquisition followed the protocol reported in Section 

2.4.1. 
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4.3.4.3 Image reconstruction 

Calcaneus micro-CT image reconstruction followed the protocol reported in Section 

2.4.2. 

4.3.5 Rigid image registration 

HR-pQCT scan DICOMs were registered to their respective micro-CT scans in a 

two-step process (Amira 6.0, FEI: Oregon, USA): step 1, an IS100 HR-pQCT scan 

was pre-aligned and registered to the micro-CT scan using a normalized mutual 

information metric and resampled using a Lanczos interpolator (Figure 4.1A). This 

has been described in Section 2.6.7.2. In step 2, the remaining HR-pQCT scans 

(IS100, IS150, IS200 and EV100) were registered using similar settings to the pre-

registered IS100 HR-pQCT scan. This spatially registered all HR-pQCT scans to the 

micro-CT scan and, importantly, to the same reference system. The HR-pQCT 

scans from step 2 were used for morphological evaluation. 

A 

 

3D rigid registration Sagittal Transverse Coronal 

B 

 

Figure 4.1. Methodology for registration and identifying the cubed regions of 
interest for HR-pQCT and micro-CT image analysis. 
A) The HR-pQCT images were rigidly registered to the micro-CT image (red). Examples of 
the micro-CT and HR-pQCT images following transformation are shown in all 3 planes 
(sagittal, transverse and coronal).  
B) Scans were split into six 10 x 10 x 5 mm regions along the superior-inferior axis. The 6 
regions were sub-divided into four equal sized cubed volumes of interest (5 x 5 x 5 mm), 
which were used in the evaluations. Two of the 10 x 10 x 5 mm regions were combined into 
superior, middle and inferior regions: there were eight 5 x 5 x 5 mm-cubed volumes of 
interest in these regions.  
Superior = region 1 to 8; middle = region 9 to 16; inferior = region 17 to 24. 

Superior 

Middle 

Inferior 
10mm 

10mm 

5 mm 
5 mm 

5 mm 5 mm 
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4.3.6 HR-pQCT and micro-CT image evaluation 

A custom cropping procedure was performed at the common region between the 

scan modalities, along the superior-inferior axis. The aim of the procedure was to 

increase the likelihood of evaluating a wider range of BV/TV [216, 217] as there had 

been significant bone loss in some specimens. Images were divided into regions of 

interest approximately 5 x 5 x 5 mm in dimensions: HR-pQCT, 60 x 60 x 60 voxels 

and micro-CT 284 x 284 x 284 voxels (Figure 4.1B). 24 cubical regions of trabecular 

bone were isolated in each scan, virtually dividing the central portion of each micro-

CT image in six 5 mm thick slices, which were divided into four cubes (Figure 4.1). 

All registered HR-pQCT scans and the micro-CT scans were then imported into the 

XtremeCT for evaluation.  

The HR-pQCT images were quantified for trabecular vBMD, BV/TVd, Tb.N*, Tb.Thd 

and Tb.Spd (* – directly computed; d – derived) using the manufacturers ‘standard 

clinical evaluation’ script (Section 2.3.3). The micro-CT images were quantified for 

BV/TV, Tb.N, Tb.Th and Tb.Sp (all directly measured) using the SCANCO IPL 

(Section 2.4.3). Examples of the HR-pQCT and micro-CT scans segmentation are 

presented in Figure 2. 

IS100 IS150 IS200 EV100 Micro-CT 

 

Figure 4.2. Segmentation of representative regions of interest in the 
calcaneus using HR-pQCT and micro-CT. 
A slice is shown for a representative HR-pQCT and micro-CT image. The HR-pQCT scan 
is separated into the condition (in situ (IS) and ex vivo (EV)) and scan integration time 
(100, 150 and 200ms). This includes a greyscale and segmented slice, and the 3D volume 
of interest. 
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4.3.7 Statistical analysis 

Statistical analyses were completed in GraphPad Prism (7.0, GraphPad Software: 

La Jolla California, USA) and R Studio (1.0.44: Boston, USA). A p<0.05 indicated 

statistical significance, unless stated otherwise. Morphometric measurements were 

non-normally distributed following visual and statistical checks (Shapiro-Wilk test), 

therefore median and interquartile ranges were calculated for each measurement. 

Wilcoxon-Rank tests were performed to compare the paired HR-pQCT and micro-

CT scans (IS100, IS150, IS200, EV100 vs. micro-CT). Friedman's test with post-hoc 

between-pair analyses using Dunn's multiple comparisons tests was performed to 

compare the four HR-pQCT scans. 

Linear regression analyses were performed to evaluate the correlation between the 

measurements performed on the HR-pQCT and micro-CT images; coefficient of 

determination (r2), equation slope and intercept, root mean square error (RMSE) 

and the largest difference between the predicted and morphological parameters 

(max. error) were calculated. A region was treated as an outlier and removed from 

the regression analyses if all comparisons (IS100, IS150, IS200 and EV100) 

exceeded the Cook's distance (4/number of regions). Regression slopes were 

compared between the HR-pQCT scans using a one-way ANOVA and t-tests with 

Bonferroni corrections, to account for multiple tests i.e. between scan conditions 

(0.05/4) and between regions (0.05/3). Passing-Bablok regression was also 

performed as part of the HR-pQCT and micro-CT method comparison of each 

morphological parameter. Bland-Altman methods were performed to test for bias 

(mean ± SD) between the paired HR-pQCT scans and the micro-CT scan [218]. 

4.4 Results4 

4.4.1 Descriptive comparisons 

In total, 108 matched regions were evaluated between all HR-pQCT scans and the 

micro-CT scans, after removal of HR-pQCT scans with visible air bubbles or 

negative trabecular vBMD values. Table 4.1 contains the descriptive statistics for 

the morphological measurements from the scans. All estimates of BV/TVd, Tb.Thd 

and Tb.Spd derived from HR-pQCT images (IS100, IS150, IS200 and EV100) were 

                                                
4 Please note, the Results for this Chapter has been copied from the published manuscript. 
Figures and Tables from the supplemental information of the manuscript are included in this 
Results section. 
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significantly lower than the corresponding measures obtained from micro-CT images 

(all p<0.001). In contrast, Tb.N* measured in all HR-pQCT images was significantly 

overestimated (p<0.001) when compared to the micro-CT measurements. No 

differences were found among the trabecular vBMD and BV/TVd measurement 

performed on the in situ HR-pQCT images across the 3 integration times, but Tb.N*, 

Tb.Thd and Tb.Spd measured from IS100, IS150 and IS200 images were all 

significantly different to one another (p<0.001); as the integration time increased, 

Tb.N* decreased and Tb.Thd and Tb.Spd increased. Trabecular vBMD, BV/TVd and 

Tb.N* measured from the in situ HR-pQCT images were significantly higher, and 

Tb.Spd was significantly lower, compared to the measurements from the EV100 HR-

pQCT image (p<0.001). Tb.Thd measured from the IS100 and IS150 was 

significantly lower than measurements from the EV100 HR-pQCT image (p<0.001), 

but there was no difference between the IS200 and EV100 measurement (p>0.99). 

 

 

4.4.2 Regression analyses in the common whole sample 

Regression analyses for all evaluable regions are shown in Table 2. There were 

strong correlations between BV/TV measured in the micro-CT images and BV/TVd 

computed from both in situ and ex vivo HR-pQCT images (r2 = 0.95-0.98). There 

was no difference between the BV/TV versus BV/TVd regression slopes (p=0.94) 

and the RMSEs were similar (0.8-0.9%). The BV/TVd maximum errors obtained from 

Table 4.1. Descriptive statistics for the micro-CT and HR-pQCT scan images. 

Measurements Micro-CT 
HR-pQCT 

IS200 IS150 IS100 EV100 
Tb.vBMD 
(mg HA/cm3) 

- 102c 
(64, 132) 

104c 
(67, 127) 

104c 
(64, 131) 

99 
(61, 132) 

BV/TV (%) 13.6 
(10.2, 16.2) 

8.7c 
(5.4, 10.7) 

8.7c 
(5.5, 10.6) 

8.7c 
(5.4, 10.9) 

8.2 
(5, 11) 

Tb.N (mm-1) 1.49 
(1.37, 1.62) 

1.98c 
(1.72, 2.44) 

2.14bc 
(1.84, 2.89) 

2.51abc 
(2.24, 3.32) 

1.79 
(1.48, 1.97) 

Tb.Th (mm) 0.128 
(0.119, 0.135) 

0.044 
(0.028, 0.053) 

0.040bc 
(0.025, 0.05) 

0.034abc 
(0.02, 0.046) 

0.046 
(0.029, 0.056) 

Tb.Sp (mm) 0.64 
(0.56, 0.7) 

0.46c 
(0.38, 0.55) 

0.42bc 
(0.33, 0.49) 

0.36abc 
(0.28, 0.41) 

0.51 
(0.45, 0.62) 

Abbreviations: in situ 100ms (IS100); in situ 150ms (IS150); in situ 200ms (IS200); ex vivo 100ms 
(EV100); trabecular vBMD (Tb.vBMD), bone volume fraction (BV/TV), trabecular number (Tb.N), 
trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp). 
N = 108 matched regions. Data are presented as median (25%, 75% percentile). Shaded areas 
indicate measurements that were directly measured. 
Measurements in bold are significantly different to all HR-pQCT scans (all p<0.001). 
a different to IS150, b different to IS200, c different to EV100 (all p<0.001). 
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the in situ HR-pQCT images were similar (2-2.3%), and the value measured from 

the ex vivo HR-pQCT image was apparently lower (1.4%). 

Weak to moderate correlations were found between Tb.N measured in the micro-CT 

and the in situ HR-pQCT images; the correlations were dependent on integration 

time (r2 = 0.33 for IS100 and r2 = 0.61 for IS200) with significant differences between 

the IS100 and IS200 regression slopes (p<0.01). There seemed to be lower RMSE 

and maximum error when the in situ integration time was increased from IS100 to 

IS200 (0.19 to 0.15 mm−1 and 0.67 to 0.46 mm−1, respectively). The Tb.N correlation 

improved further when measured by the ex vivo HR-pQCT image in comparison to 

the micro-CT image (r2 = 0.79) and the regression slope was significantly different to 

that obtained with the in situ comparisons (IS100, IS150 and IS200, p<0.001). Tb.N* 

measured from the ex vivo HR-pQCT image also seemed to have lower RMSE 

(0.11 mm−1) and maximum error (0.30 mm−1) compared measurements from the in 

situ HR-pQCT images. 

Moderate correlations were found for Tb.Thd estimated in all HR-pQCT images with 

respect to the respective micro-CT measurements (r2 = 0.53-0.59). There were no 

significant differences between the Tb.Thd regression slopes (p=0.73), and the 

RMSE and maximum error were all similar between the different HR-pQCT 

integration times. Weak to moderate correlations were found for Tb.Spd estimated in 

all HR-pQCT images with respect to Tb.Sp micro-CT measurements; in situ 

correlations were dependent on the integration time (r2 = 0.33 for IS100 and r2 = 0.55 

for IS200) and the correlation was found to increase when measured in the ex vivo 

HR-pQCT image (r2 = 0.66). There were no differences in Tb.Spd regression slopes 

(p=0.64), and the Tb.Spd RMSE and maximum error were all similar. 

Method comparison analyses using the Passing-Bablock regression for all regions 

found that linearity between HR-pQCT BV/TVd and Tb.Thd, in all scan conditions, 

and micro-CT BV/TV and Tb.Th could not be rejected (Table 9.1). HR-pQCT Tb.N* 

and Tb.Spd at IS100 compared to micro-CT Tb.N and Tb.Sp could be rejected from 

linearity, whereas increasing integration time (IS150 and IS200) and dissecting the 

calcaneus from the foot (EV100) could not be rejected from linearity. 
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Table 4.2. Regression analysis for the HR-pQCT vs. Micro-CT 
trabecular measurement across all regions. 

Sample r2 Intercept Slope RMSE Max. error 

Bone volume/total volumed (1) (n=104) 

IS200 0.96 0.050 1.000 0.009 0.021 

IS150 0.95 0.050 1.010 0.009 0.023 

IS100 0.96 0.050 1.000 0.008 0.020 

EV100 0.98 0.053 1.020 0.008 0.014 

Trabecular number (mm-1) (n=106) 

IS200 0.61 0.805 0.347§ 0.15 0.46 

IS150 0.44 0.921 0.263§ 0.18 0.59 

IS100 0.33 0.941 0.217*,§ 0.19 0.67 

EV100 0.79 0.678 0.469 0.11 0.30 

Trabecular thicknessd (mm) (n=107) 

IS200 0.55 0.103 0.588 0.009 0.025 

IS150 0.53 0.104 0.607 0.010 0.026 

IS100 0.55 0.106 0.663 0.009 0.023 

EV100 0.59 0.102 0.586 0.008 0.022 

Trabecular spacingd (mm) (n=107) 

IS200 0.55 0.367 0.556 0.07 0.21 

IS150 0.43 0.401 0.530 0.08 0.23 

IS100 0.33 0.402 0.627 0.09 0.24 

EV100 0.66 0.348 0.517 0.06 0.21 

Abbreviations: in situ 100ms (IS100); in situ 150ms (IS150); in situ 200ms (IS200); 
ex vivo 100ms (EV100); RMSE, root mean square error; max. error, maximum 
error from the regression equation. 
All r2 values are statistically significant, p<0.001. Comparison of the regression 
slopes between different HR-pQCT conditions: * p<0.01 compared to IS200; § 
p<0.001 compared to EV100. 
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4.4.3 Regression analysis in superior, middle and inferior regions of the 

calcaneus. 

We completed a regional analysis by grouping the 5 mm3 regions of interests into 

superior, middle and inferior regions of the calcaneal samples (Figure 4.1). A 

number of cubed regions from the inferior region were removed as the analysis 

returned a negative vBMD. The results within each of these regions for BV/TVd and 

Tb.N*, the measurements used to compute Tb.Thd and Tb.Spd from the HR-pQCT 

images, are shown in Table 4.3 and Table 4.4, respectively, with corresponding 

regression plots in the Figure 4.3. Data for Tb.Thd and Tb.Spd are shown in the 

Table 4.5 and Table 4.6, respectively. 

There were strong correlations at the superior, middle and inferior regions for BV/TV 

measured in the micro-CT images and BV/TVd computed from both in situ and ex 

vivo HR-pQCT images (r2 = 0.96-0.99, all p<0.001). The superior and middle region 

regression slopes for BV/TVd were significantly different to the inferior region, within 

each respective integration time in situ (p<0.017). The BV/TVd RMSE was below 1% 

in all regions. The maximum error was 1-2% for the in situ and ex vivo HR-pQCT 

images at the superior, middle and inferior regions.  

For the Passing-Bablok regression, linearity could not be rejected at any of the 

regions and in any of the scanning conditions between HR-pQCT BV/TVd and micro-

CT BV/TV (p > 0.05) (Table 9.2). The intercepts indicated that there were systematic 

differences for all BV/TV measurements between HR-pQCT and micro-CT (all > 0), 

showing HR-pQCT BV/TVd underestimated micro-CT BV/TV. The slopes indicated 

some proportional differences; at the superior region IS100 and IS200 had slopes 

slightly < 1 and the inferior region had proportional differences > 1 for the in situ HR-

pQCT scans. There were no proportional differences for the middle region for the in 

situ and ex vivo HR-pQCT scans.  

The correlation for Tb.N measured from micro-CT and HR-pQCT images was 

strongest in the superior region (r2 = 0.70-0.93, all p<0.001) compared to the middle 

region (r2 = 0.52-0.76, all p<0.001). No correlation was found for Tb.N in the inferior 

region (all p≥0.21). The strongest correlations were found for Tb.N measured in the 

ex vivo HR-pQCT compared to the micro-CT image, and was the only HR-pQCT 

image to be significantly, albeit moderately, correlated with micro-CT in the inferior 

region. All superior region regression slopes were significantly different to the middle 

(apart from IS100) and inferior regions, within each respective integration time. All 

middle region regression slopes were also significantly different to the inferior 
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region, within each respective integration time. A lower RMSE and maximum error 

were apparent at the superior and middle region with increasing integration time in 

situ, but this was not apparent at the inferior region in situ. 

For the Passing-Bablok regression, linearity could not be rejected at the superior 

and middle region for the in situ scans between HR-pQCT and micro-CT Tb.N (p > 

0.05). At the inferior region, of the in situ scans, only IS200 could not be rejected for 

linearity, whereas the IS100 and IS150 were rejected (both p = 0.04). Linearity was 

also rejected for EV100 at the superior region (p = 0.04), even though this condition 

and region had the strongest correlation between the methods (r = 0.92). There 

were systematic differences for all Tb.N measurements between HR-pQCT and 

micro-CT (all > 0), showing HR-pQCT Tb.N overestimated micro-CT Tb.N. The 

overestimation of Tb.N by HR-pQCT was lowest for the EV100 HR-pQCT scan 

within all regions. Whilst there were at least moderate-strong correlations between 

the methods at the superior and middle regions, there were no correlations for the 

inferior region between the in situ HR-pQCT scans and the micro-CT scans. The 

slopes indicated proportional differences for all Tb.N measurements, where the 

slopes were all < 1. The slopes increased as the integration time for the in situ HR-

pQCT scans increased; the EV100 had the highest slope value within each 

respective region. The Passing-Bablok regression results for Tb.Sp were also 

comparable to those found for Tb.N, due to the calculation that is used for HR-pQCT 

derived Tb.Spd (Table 9.5). 
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Table 4.3. Bone volume fraction regression data for the different HR-pQCT 
conditions at the three different regions. 

Sample Median (IQR) r2 Intercept Slope RMSE Max. error 

Superior (n=42) 

Micro-CT 0.159 (0.139, 0.187)      

IS200 0.105 (0.081, 0.126) 0.96 0.069 0.862§ 0.009 0.018 

IS150 0.103 (0.083, 0.124) 0.96 0.070 0.857§ 0.009 0.019 

IS100 0.105 (0.084, 0.124) 0.97 0.066 0.880§ 0.008 0.019 

EV100 0.102 (0.082, 0.130) 0.97 0.063 0.927*,§ 0.007 0.020 

Middle (n=43) 

Micro-CT 0.125 (0.097, 0.153)      

IS200 0.078 (0.046, 0.103) 0.96 0.053 0.954§ 0.007 0.020 

IS150 0.077 (0.046, 0.102) 0.96 0.052 0.962§ 0.008 0.022 

IS100 0.077 (0.044, 0.100) 0.96 0.053 0.967§ 0.007 0.021 

EV100 0.071 (0.044, 0.095) 0.99 0.051 1.030 0.004 0.013 

Inferior (n=21) 

Micro-CT 0.100 (0.075, 0.123)      

IS200 0.056 (0.036, 0.075) 0.98 0.035 1.160 0.005 0.010 

IS150 0.058 (0.036, 0.075) 0.98 0.033 1.180 0.005 0.012 

IS100 0.056 (0.035, 0.074) 0.98 0.035 1.160 0.005 0.010 

EV100 0.050 (0.025, 0.071) 0.99 0.049 1.070 0.004 0.008 

Abbreviations: in situ 100ms (IS100); in situ 150ms (IS150); in situ 200ms (IS200); ex 
vivo 100ms (EV100); RMSE, root mean square error; max. error, maximum error from 
the regression equation. 
Median (interquartile range) bone volume fraction (1) is presented within each 
integration time at each region.  
r2 values in bold are statistically significant, p<0.001. Comparison of regression slopes 
between the regions, within the same integration time: * p<0.017 compared to the 
middle region; § p<0.017 compared to the inferior region.  
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Table 4.4. Trabecular number regression data for the different HR-pQCT 
conditions at the three different regions. 

Sample Median (IQR) r2 Intercept Slope RMSE Max. error 

Superior (n=41) 

Micro-CT 1.51 (1.37, 1.65)      

IS200 1.87 (1.64, 2.10) 0.88 0.565 0.499*§ 0.10 0.20 

IS150 2.02 (1.79, 2.28) 0.82 0.601 0.454*§ 0.12 0.28 

IS100 2.36 (1.95, 2.59) 0.70 0.632 0.385§ 0.16 0.38 

EV100 1.81 (1.55, 1.98) 0.93 0.461 0.584*§ 0.07 0.17 

Middle (n=44) 

Micro-CT 1.56 (1.37, 1.67)      

IS200 1.99 (1.67, 2.56) 0.70 0.860 0.317§ 0.12 0.27 

IS150 2.13 (1.89, 2.96) 0.59 0.916 0.264§ 0.15 0.35 

IS100 2.49 (2.29, 3.44) 0.52 0.822 0.258§ 0.16 0.38 

EV100 1.86 (1.51, 2.07) 0.76 0.680 0.460§ 0.11 0.24 

Inferior (n=21) 

Micro-CT 1.45 (1.32, 1.47)      

IS200 2.06 (1.88, 2.36) 0.00 1.430 -0.013 0.10 0.22 

IS150 2.34 (2.19, 2.85) 0.05 1.510 -0.044 0.10 0.21 

IS100 2.87 (2.61, 3.30)  0.08 1.560 -0.054 0.10 0.20 

EV100 1.69 (1.13, 1.79) 0.50 1.110 0.196 0.07 0.20 

Abbreviations: in situ 100ms (IS100); in situ 150ms (IS150); in situ 200ms (IS200); ex 
vivo 100ms (EV100); RMSE, root mean square error; max. error, maximum error 
from the regression equation. 
Median (interquartile range) trabecular number (mm-1) is presented within each 
integration time at each region. 
r2 values in bold in all regions are statistically significant, p≤0.001. Comparison of 
regression slopes between the regions, within the same integration time: * p<0.017 
compared to the middle region; § p<0.017 compared to the inferior region. 
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Table 4.5. Trabecular thickness regression data for the different HR-pQCT 
conditions at the three different regions. 

Tb.Th (mm) Median (IQR) r2 Intercept Slope RMSE Max. error 

Region 1 to 8 (n=42) 

Micro-CT 0.135 (0.129, 0.146)      

IS100 0.047 (0.038, 0.051) 0.30 0.111 0.568 0.011 0.022 

IS150 0.051 (0.043, 0.058) 0.28 0.111 0.497 0.011 0.024 

IS200 0.054 (0.046, 0.062) 0.30 0.110 0.492 0.011 0.023 

EV100 0.057 (0.050, 0.066) 0.40 0.106 0.528 0.010 0.020 

Region 9 to 16 (n=42) 

Micro-CT 0.124 (0.115, 0.129)      

IS100 0.028 (0.021, 0.038) 0.50 0.105 0.617 0.007 0.013 

IS150 0.032 (0.026, 0.043) 0.45 0.104 0.545 0.007 0.014 

IS200 0.035 (0.029, 0.046) 0.46 0.103 0.526 0.007 0.014 

EV100 0.041 (0.029, 0.048) 0.57 0.102 0.534 0.006 0.013 

Region 17 to 24 (n=20) 

Micro-CT 0.120 (0.113, 0.130)      

IS100 0.018 (0.009, 0.025) 0.45 0.105 0.785 0.009 0.018 

IS150 0.022 (0.012, 0.030) 0.45 0.104 0.684 0.009 0.016 

IS200 0.025 (0.013, 0.034) 0.47 0.104 0.615 0.009 0.015 

EV100 0.028 (0.017, 0.036) 0.64 0.103 0.619 0.007 0.014 

Abbreviations: in situ 100ms (IS100); in situ 150ms (IS150); in situ 200ms (IS200); ex vivo 
100ms (EV100); RMSE, root mean square error; max. error, maximum error from the 
regression equation. 
Median (interquartile range) trabecular thickness (mm) is presented within each integration 
time at each region. 
r2 values in are statistically significant, p<0.001. Comparison of the regression slopes 
between the regions, within the same integration time: * p<0.017 compared to the middle 
region; § p<0.017 compared to the inferior region. 



 104 

Table 4.6. Trabecular spacing regression data for the different HR-pQCT 
conditions over the three different regions. 

Tb.Sp (mm) Median (IQR) r2 Intercept Slope RMSE Max. error 

Region 1 to 8 (n=42) 

Micro-CT 0.62 (0.54, 0.69)  

IS100 0.37 (0.34, 0.46) 0.54 0.306 0.775§ 0.08 0.18 

IS150 0.43 (0.39, 0.50) 0.71 0.266 0.769§ 0.06 0.13 

IS200 0.46 (0.42, 0.52) 0.80 0.236 0.792*§ 0.05 0.11 

EV100 0.49 (0.44, 0.58) 0.89 0.190 0.845*§ 0.04 0.07 

Region 9 to 16 (n=44) 

Micro-CT 0.60 (0.55, 0.69)  

IS100 0.37 (0.28, 0.41) 0.57 0.324 0.847§ 0.07 0.14 

IS150 0.43 (0.31, 0.51) 0.61 0.379 0.572§ 0.07 0.16 

IS200 0.47 (0.35, 0.57) 0.71 0.366 0.544§ 0.06 0.16 

EV100 0.50 (0.43, 0.63) 0.77 0.292 0.628§ 0.05 0.13 

Region 17 to 24 (n=21) 
Micro-CT 0.67 (0.66, 0.72)  

IS100 0.33 (0.29, 0.36) 0.06 0.757 -0.187 0.06 0.13 

IS150 0.38 (0.34, 0.43) 0.03 0.732 -0.091 0.06 0.13 

IS200 0.45 (0.41, 0.50) 0.05 0.709 -0.033 0.06 0.13 

EV100 0.56 (0.51, 0.87) 0.34 0.579 0.166 0.05 0.14 

Abbreviations: in situ 100ms (IS100); in situ 150ms (IS150); in situ 200ms (IS200); ex vivo 
100ms (EV100); RMSE, root mean square error; max. error, maximum error from the 
regression equation. 
Median (interquartile range) trabecular spacing (mm) is presented within each integration 
time at each region. 
r2 values in bold in the superior and middle regions are statistically significant, p<0.001. The 
r2 value in bold in the inferior region is statistically significant, p=0.005. Comparison of the 
regression slopes between the regions, within the same integration time: * p<0.017 
compared to the middle region; § p<0.017 compared to the inferior region. 
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4.4.4 Bland-Altman method comparison 

Bland-Altman plots for measurements in the superior, middle and inferior regions 

are presented for BV/TVd and Tb.N* in Fig. 3. Plots for Tb.Thd and Tb.Spd are 

available in the supplemental material 5. BV/TVd computed from the HR-pQCT 

images underestimated BV/TV measured by micro-CT. The mean biases for the in 

situ and ex vivo HR-pQCT images were similar between the integration times and 

regions: approximately 4-5%. Tb.N* measured by HR-pQCT images systematically 

overestimated Tb.N measured from the micro-CT images. The mean bias for Tb.N* 

decreased as the integration time increased in the in situ HR-pQCT images at all 

regions. The Tb.N* mean bias was lower in the ex vivo HR-pQCT images compared 

to the in situ HR-pQCT images. The mean bias (±SD) for IS100 and IS150 

increased from the superior to inferior regions (IS100: superior = −0.85 ± 0.40 mm−1, 

inferior = −1.46 ± 0.55 mm−1; IS150: superior = −0.56 ± 0.33 mm−1, inferior = −0.98 ± 

0.53 mm−1), whereas the mean bias for IS200 increased from the superior to middle 

regions and was similar for the middle to inferior regions (superior = −0.44 ± 0.28 

mm−1, middle = −0.58 ± 0.42 mm−1, inferior = −0.63 ± 0.41 mm−1). 
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Figure 4.4. Bland-Altman plots for calcaneus bone volume fraction and trabecular 
number measured from HR-pQCT images (IS100, IS150 and IS200, and EV100) 
compared to micro-CT image at different regions (superior, middle and inferior). 
Abbreviations: in situ 100ms (IS100); in situ 150ms (IS150); in situ 200ms (IS200); ex vivo 100ms 
(EV100). 
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Figure 4.5. Bland-Altman plots for calcaneus trabecular thickness and 
trabecular spacing measured from HR-pQCT images (IS100, IS150 and IS200, 
and EV100) compared to micro-CT image at the different regions (superior, 
middle and inferior). 
Abbreviations: in situ 100ms (IS100); in situ 150ms (IS150); in situ 200ms (IS200); ex vivo 
100ms (EV100). 
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4.5 Discussion5 

This Chapter describes the novel adaptation of HR-pQCT for the measurement of 

calcaneal BV/TVd and microstructure. Calcaneus BV/TVd and microstructure 

assessed at an isotropic 82 µm voxel size was validated against micro-CT at an 

isotropic 17 µm voxel size, which acted as a ‘gold-standard’ reference. HR-pQCT 

BV/TVd had a strong correlation across all scan conditions, explaining 95 to 98% of 

micro-CT BV/TV, when all regions were combined. This is important, as BV/TVd is a 

key measurement to predict bone strength [30, 164, 219] and has a strong 

association with fracture risk [220, 221].  

The strong correlation and underestimation of BV/TVd that was found with the 

calcaneus HR-pQCT scan images was consistent with previous studies at the distal 

radius and distal tibia [77, 163, 164]. The lower estimation of BV/TVd, derived from 

trabecular vBMD measurement by HR-pQCT, could be caused by the global 

threshold used to define bone tissue and lower signal-to-noise ratio resulting in a 

higher number of partial volume voxels in the HR-pQCT images compared to the 

micro-CT images. It should also be remembered that the HR-pQCT measurements 

were made in the intact bone, so that beam hardening artifacts caused by the intact 

cortex and surrounding bone structures may have also impacted on trabecular 

vBMD measurement [156]. Trabecular vBMD was similar at the different integration 

times. On removing the calcaneus from the foot, the trabecular vBMD and BV/TVd 

were significantly lower than the in situ scans, even though the absolute difference 

was relatively small. Dissection may have exposed the calcaneus to air bubbles that 

were undetectable in the HR-pQCT images, or else there may have been a 

reduction in image noise with removal of the surrounding bones and soft tissue. 

Nonetheless, a regression equation that is independent of integration time can be 

used to adjust calcaneus BV/TVd computed from HR-pQCT images to that 

measured by micro-CT (Y = 1.010*X + 0.050). 

Calcaneus Tb.N* was systematically overestimated, and Tb.Thd and Tb.Spd 

subsequently underestimated when measured by HR-pQCT using the standard 

patient analysis, consistent with previous studies at the radius and tibia [77, 163, 

164]. It has been well established that the accurate measurement of trabecular 

microstructure is dependent on the spatial resolution [77], which was equivalent to 

the calcaneus Tb.Th measured by micro-CT in the current study. The higher values 
                                                
5 The Discussion for this Chapter has been copied from the published manuscript. 
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of Tb.N* in purely trabecular samples measured by HR-pQCT compared to micro-

CT are in keeping with previous reports [77, 164], probably reflecting factors such as 

decreased signal-to-noise ratio and partial volume effects; factors that are 

exacerbated at the shorter integration times as observed in our study. A similar 

increase in Tb.N* for individual specimens has been reported when comparing a 

123 µm to 82 µm isotropic voxel size [77]. BV/TVd may be less susceptible to such 

factors as it is derived from trabecular vBMD, in which the averaging per cm-3 is 

likely to suppress differences between integration times, as has been demonstrated 

by summing the voxels for BV/TV measurement [30, 216, 222]. 

The direct measurement of Tb.N* is fundamental to determining Tb.Spd and Tb.Thd 

using plate-model assumptions. The HR-pQCT indirect patient analysis aims to 

preserve all trabeculae using a low global threshold in order to measure Tb.N* [172]. 

The caveat is that if an image has a low signal-to-noise ratio, image noise could be 

categorised as bone following application of the HR-pQCT threshold to segment to 

bone and marrow phases [159]; this is the possible mechanism of the greater 

overestimation of Tb.N* at lower integration times and in the inferior regions of the 

calcaneus. Increasing integration time improved the accuracy of Tb.N* in 

comparison to micro-CT, leading also to an improvement in Tb.Spd accuracy. 

However, Tb.Thd was not improved, due to its equal-weighted dependency on 

BV/TVd and Tb.N*. Weak correlations with Tb.Thd have been confirmed in studies at 

the radius and tibia despite strong correlations for BV/TVd and Tb.N* [77, 163]; this 

study therefore further highlights a limitation in the use of the plate-model 

assumptions using the first generation XtremeCT. A better signal-to-noise ratio, 

provided by a higher trabecular vBMD, was also reflected in the improved accuracy 

of Tb.N* in the denser superior region of the calcaneus than in the middle and, 

particularly, inferior regions. Furthermore, the regions with thinner trabeculae 

(middle and inferior) could be more susceptible to errors with the global threshold 

applied by the indirect HR-pQCT analysis, which could also explain differences in 

trabecular measurement accuracy compared to other studies [30, 77, 163, 164, 

172]. Other thresholds may improve the accuracy; for example, in femoral neck 

trabecular bone samples a local-derived direct assessment improved estimates of 

Tb.Thd and Tb.Spd, though the overall impact was relatively small [172]. 

The superior region scanned at 200 ms integration time had comparable correlation, 

slopes and accuracy for BV/TVd, Tb.N* and Tb.Spd compared to previous studies at 

the distal radius and distal tibia [77, 163, 164]. This is encouraging, as these 

validated protocols have been widely used in clinical studies [85, 220, 221, 223-
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225]. In addition to lower bone volume in the middle and inferior regions, the signal-

to-noise ratios may also be impacted by the surrounding bones of the foot at these 

levels in affecting the measurement of trabecular microstructure using HR-pQCT. 

The more marked differences in Tb.N* between the in situ and ex vivo scans at the 

inferior region suggest that this may be the case. In the same region, noise is likely 

to have contributed to the fact that although the ex vivo scan had similar Tb.N* 

values to the micro-CT, the correlation was still relatively weak. Additionally, the 

poorer estimation at these regions could be due to thinner trabeculae, which has 

been highlighted as an issue in a previous study comparing plate- and rod-like 

trabeculae at different voxel sizes [226].  

The results reinforce using 200 ms integration time for the calcaneus HR-pQCT 

scans to compensate for the x-ray absorption from the surrounding tissues. 

Practically, there would still be a low radiation exposure per 110 slices (6 µSv per 

scan). However, scan duration would be 4.2 minute (per 110 slices using the 

XtremeCT I), which is longer than the distal radius and distal tibia scans (2.8 

minute). This would increase the probability of participant movement and may 

consequently affect measurement precision error. Precision error of HR-pQCT 

measurements at the calcaneus has not been established in vivo. Distal radius and 

tibia error is already between 3 and 6% (least significant change 8-17%) for 

trabecular microstructure using rigid registration at 100 ms integration time [155, 

176, 177]. However, it can be questioned whether the accuracy at lower integration 

times could be accepted to improve reproducibility, which could be the case if 

BV/TVd, and possibly other volumetric measurements, were of primary interest. The 

comparison of different integration times in vivo therefore requires investigation. 

We have attempted to best represent in vivo conditions by obtaining HR-pQCT 

scans in situ, with bones, soft tissue and marrow intact, to inform the clinical 

translation of the method. However, we recognize there are several limitations to the 

study. First, and as has been discussed, the study was free from movement artifact, 

which would be expected to affect measurement accuracy in vivo. Second, 

measurements may have been impacted by the deterioration of bone mineral given 

the advanced age of the donors. We found that BV/TV measured by micro-CT was 

comparable to previous studies that have evaluated similar regions and specimens 

of a similar age and gender [197, 227, 228]; preliminary in vivo HR-pQCT 

measurements suggest derived BV/TVs of ~26% (unpublished data) and this is 

likely to be greater in a younger cohort. Assessment of calcaneus cortical bone was 

not undertaken due to the extremely thin cortices observed in our cohort that 
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affected the segmentation of the calcaneus cortical bone (HR-pQCT example Figure 

3.5; micro-CT example Figure 9.3); whether this would be possible in younger 

specimens remains to be determined. Third, in an attempt to broaden the BV/TV 

range that was validated, we evaluated smaller cubic regions of interest [216, 217], 

potentially increasing errors between modalities that would have been lessened by 

comparisons of larger cross-sectional area. Fourth, micro-CT analysis primarily 

used a fixed threshold, which was adapted for 4 regions (same specimen). Others 

have used an adaptive threshold for all samples [77] and this may be a factor in 

differences between the studies. Finally, we used the first generation XtremeCT 

device (isotropic voxel size = 82 µm, spatial resolution = 127-154 µm [96]) that uses 

plate model-assumptions to compute trabecular microstructure. The second 

generation XtremeCT device has a reported superior spatial resolution (isotropic 

voxel size = 61 µm, spatial resolution = 95 µm), which includes more independent 

measurements and may improve the direct estimation of trabecular microstructure 

[97]. Furthermore, the field of view is slightly larger and the scan time is shorter, 

which may better accommodate the quantification of calcaneus trabecular 

microstructure in vivo. 

4.6 Conclusion 

In summary, we have developed a protocol to scan the calcaneus using HR-pQCT 

that has achieved measurement correlation and accuracy comparable to previous 

validation studies performed at the distal radius and distal tibia. Here, scanning a 

superior region of the bone with a 200 ms scan integration time for the quantification 

of trabecular microstructure is preferred, based on the proposed protocol and 

integration times investigated in this study. Investigating inferior regions of the 

calcaneus and using lower integration time appears inaccurate. Future 

developments will include the testing of HR-pQCT integration times in vivo and 

determining measurement precision error, bearing in mind the potential for 

movement artifacts in longer scan durations. Such studies will determine whether 

calcaneus HR-pQCT scans could have a significant clinical utility in osteoporosis or 

podiatry research. 
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CHAPTER 5 QUANTIFYING CALCANEUS VOLUMETRIC 
BMD AND MICROSTRUCTURE IN VIVO 
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5.1 Introduction 

Chapter 4 found that a 200 ms integration time achieved predictions of trabecular 

BV/TVd and microstructure (mainly Tb.N*) at the calcaneus that were similar to 

those reported at the distal radius and distal tibia using the first generation 

XtremeCT [77, 163, 164]. There were also regional differences in the calcaneus 

tuberosity body (Chapter 3 and 4) and the prediction of trabecular microstructure 

(Tb.N* and Tb.Spd) was stronger at the superior region of the calcaneus compared 

to the middle and inferior regions of the bone (Chapter 4). Chapter 5 will present the 

translation of the developed method to a pilot study in vivo. Performing the HR-

pQCT method in vivo presents several challenges that are not encountered in 

cadaveric experiments: the physical positioning of the participants, reproducible 

alignment of the scanning region and minimising image artefacts from movement. 

5.1.1 Participant positioning 

The correct positioning of the participant is essential to obtain images of an 

acceptable quality for quantitative analysis and to ensure that the measurement 

precision error is low. Participants must also understand what to expect, so that they 

are comfortable during the image acquisition. This requires the scan technician to 

explain the process and to describe the examination and its duration [229]. 

Reiteration of the scan duration is an important preparatory step for HR-pQCT 

imaging, as the scan duration for a 9 mm stack of tomographic slices is at least 2.8 

minutes with the first generation XtremeCT. Therefore, minimising involuntary 

movements is fundamental to HR-pQCT image acquisition. 

From previous HR-pQCT studies, it has been assumed that the positioning for the 

distal tibia scans allows a more comfortable position than the radius scans due to 

the neutrality of the body’s position, i.e. similar to sitting in a chair (Figure 2.5). The 

body position for the calcaneus scans would be similar to distal tibia scan, however 

the positioning of the foot would be different, with plantar-flexion at the ankle joint 

rather than a neutral position (Chapter 3). The use of positioning aids made from 

low attenuation materials (foam wedges, plastic bags with foam pellets, and air-filled 

cushions) are encouraged to standardise positioning and minimise involuntary 

movements [158]. It is also important that contact between the positioning aid and 

skin is between firm and soft to ensure that comfort is optimal with the correct 

positioning [229]. Without these precautions, HR-pQCT measurement precision 
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error could be compromised through improper alignment [154, 176, 177] and image 

artefact caused by movement [94, 95]. 

5.1.2 Reproducible alignment of the scanned region 

Reproducible alignment of the HR-pQCT scan region can minimise error between 

repeat scans. Once participants are positioned in the XtremeCT gantry, the start 

point of the HR-pQCT scanning region is identified on a scout view. Variability in the 

positioning of the reference line can induce error between measurements. With the 

first generation XtremeCT, experienced operators had a 0.20 mm and 0.38 mm 

same-day precision error for identifying the anatomical landmark (start point) on the 

same scout view image for scans at the tibia and radius, respectively [154]. The 

resulting precision errors from this small misalignment at these sites, ranged from 

0.9-3.3% for measurements of volumetric BMD and from 2.5-12% for 

measurements of bone microstructure [154], which is supported by heterogeneous 

vBMD, Tb.N* and cortical thickness on a slice-by-slice basis [100, 203] and with ±2 

mm (distal and proximal) movement of the region of interest at the radius and tibia 

[203, 230]. Heterogeneity in trabecular vBMD and trabecular microstructure is 

anticipated with errors in the reference line placement for calcaneus HR-pQCT 

scans (Chapter 3).  

The misalignment of repositioned HR-pQCT images may lead to increased precision 

errors and compromise the detection of microstructure adaptations over time with 

interventions and disease. Image registration can overcome this limitation. Bonaretti 

and colleagues [154] demonstrated that removal of the positioning error with CSA-

based (2D) registration in radius and tibia HR-pQCT images, significantly lowered 

the precision error for volumetric BMD (< 1.3%) and microstructure measurements 

(1.3-8.9%; the highest was for cortical porosity). The CSA-based matching of 

images incorporated into the evaluation using the manufacturers’ standard methods 

does not take into account ‘out of plane’ differences. 3D registration, which does 

take into account image rotation and translation, has been reported to improve 

short-term measurement precision error compared to the CSA-based registration 

method [176, 177], although absolute differences were relatively small. The strength 

of 3D registration has been shown in bones with changing morphology, such as in 

mice with age and treatment [231] and in humans with disease [89]. The use of 3D 

registration identified greater radius cortical porosity in patients following kidney 

transplantation when compared to the CSA-based registration method, as well as 

identifying changes from positive non-linear to positive linear relationships between 

bone resorption markers and cortical porosity [89]. The improved sensitivity of 3D 
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registration could, therefore, be important in detecting small changes in trabecular 

microstructure from HR-pQCT images. 

5.1.3 Minimising image artefacts 

Movement is the primary cause of image artefact with HR-pQCT. At the end of each 

acquisition, the scan technician visually grades an image from a single reference 

slice taken from the centre of the HR-pQCT stack (more detail in 2.3.1.1). Severe 

artefacts that require the image acquisition to be repeated, based on manufacturer 

recommendations, include horizontal streaking, disruption of the cortical bone 

contiguity and smearing of the trabecular bone. Generally, there are lower 

frequencies of repeated measurements at the tibia compared to the radius, which 

has been associated with participant positioning [94, 95, 151, 155]. Movement has 

been associated with errors in volumetric BMD and microstructure measurements 

obtained with HR-pQCT. Between images without (best) and with severe artefacts 

(worst, and require repeating), the mean difference and precision error in 

measurements of trabecular microstructure increases, with discrepancies as high as 

20-30% and 10-12%, respectively [94, 95]. Measurements of volumetric BMD (total, 

trabecular and cortical) are not as severely affected, with the mean difference and 

precision error ranging from 1-7% and 1-5%, respectively [94, 95]. Importantly, the 

magnitudes of the precision errors caused by movement, which are accepted for 

analysis, are equivalent to biological variations with disease, pharmaceutical 

interventions and between clinical populations [80, 89, 224, 232, 233]. Therefore, 

minimising participant movement is critical when using HR-pQCT in vivo.  

5.1.4 Summary 

Sources of the error that occurs with HR-pQCT imaging in vivo need to be controlled 

in order to establish whether a 200 ms would be an acceptable integration time to 

quantitate calcaneus volumetric BMD and trabecular microstructure.  

Positioning is a source of error for HR-pQCT scanning. Participants need to be 

comfortable in the position that was tested in human cadaveric specimen. 

Reproducible identification of the anatomical landmarks to position the reference 

line would maximise the common volume between the repeat image acquisitions, 

although these positioning errors can be minimised by applying a 3D image 

registration procedure between the images. Image artefact caused by movement 

can be minimised using positioning aids to immobilise the limb, whilst maintaining 

participant comfort. The scan technician can control error from images with severe 

movement artefact by repeating the image acquisition or by removing the image 
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from the analysis. It is also important for the scan technician to develop familiarity 

with the imaging protocol to minimise precision errors. 

 

 

Figure 5.1. Summary of the in vivo sources of HR-pQCT precision error. 
Dashed lines indicate measures that are undertaken to minimise errors following image 
acquisition.  

5.2 Aims and objectives 

The aim of Chapter 5 is to optimise the quantitative assessment of the calcaneus 

using HR-pQCT in vivo. 

The objectives of Chapter 5 are: 

1. To compare image movement artefact grades between the 100ms and 

200ms integration time calcaneus HR-pQCT scans. 

2. To compare volumetric bone mineral density and trabecular microstructure 

between the 100ms and 200ms integration time calcaneus HR-pQCT 

images. 

3. To compare the volumetric bone mineral density and trabecular 

microstructure between the superior and inferior region of the calcaneus HR-

pQCT images. 

4. To identify practical issues in positioning of the participant and the lower-limb 

that would compromise the application of the calcaneus HR-pQCT in vivo.  

5.3 Methods 

5.3.1 Study design 

Professor Eugene McCloskey, Professor Graham Kemp, Dr Margaret Paggiosi and I 

designed the study. The study had a cross-sectional, randomised design, and 
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required participants to attend for a single visit. This study was given a favourable 

ethical opinion and approval by the Yorkshire & Humber - Sheffield Research Ethics 

Committee (reference 15/YH/0401). Sister Angela Green and I completed the 

participant recruitment and informed consent. Dr Margaret Paggiosi performed the 

HR-pQCT image acquisitions. I completed the HR-pQCT image registration and 

analysis; Jenna Fogden and Rhea Patel assisted with the semi-automated 

contouring of the HR-pQCT images. 

5.3.2 Positioning and Comfort Pilot study 

Dr Margaret Paggiosi and I piloted the calcaneus HR-pQCT scanning procedure on 

6 volunteer participants (using the same inclusion and exclusion criteria detailed in 

section 5.3.3) prior to obtaining 100 ms and 200 ms integration time HR-pQCT 

images. This pilot study was completed under the same ethics submission 

(reference 15/YH/0401). This enabled the scan technician to become familiar with 

performing the procedure and explaining it to the participant. This also enabled the 

investigator and scan technician to optimise the participants positioning, test 

different positioning aids and to ensure comfort during the image acquisition. 

Section 5.3.5 contains detail of the piloted procedure.  

5.3.3 Participants 

The sample size for the study was calculated from ex vivo experiments using human 

cadaveric specimens. According to these experiments, 5 samples were required to 

detect a mean reduction in Tb.N* by 0.5 mm-1 with the 200 ms compared to a 100 

ms scan integration time, with an alpha of 0.05, with 80% power. Tb.N* was chosen 

as the endpoint, as it changes with integration time and is critical to the estimation of 

Tb.Thd and Tb.Spd using the first generation XtremeCT. As the scans were collected 

in vivo, and due to the higher scan duration with 200 ms integration time compared 

to 100 ms, a higher risk of movement artefact was anticipated. The loss of either the 

200 ms, or the 100 ms, integration time images would render the participant’s other 

HR-pQCT images redundant from the analysis. Therefore, 10 participants were 

recruited to lower the risk of compromising study power due to high number of 

unacceptable HR-pQCT images. 

5 female and 5 male participants were recruited. Female participants had to be 

postmenopausal and male participants had to be over the age of 50 years. 

Participants had to be ambulatory and were excluded from the study if they had: 

• a BMI less than 18 or greater than 35 kg/m2;  
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• a condition or local abnormality that would impede positioning of the foot in 

the XtremeCT scanner; 

• or experienced previous bilateral fractures of the calcaneus.  

All participants were telephone-screened using the study eligibility criteria prior to 

attending the Clinical Research Facility. Eligible participants provided written 

informed consent.  

5.3.4 Descriptive statistics 

Weight (kg) was measured to the nearest 0.1 kg using an electronic balance scale 

(Seca: Birmingham, UK). Height (cm) was measured to the nearest 0.1 cm using an 

electronic, wall-mounted stadiometer (Seca 242, Seca: Birmingham, UK). BMI was 

calculated as (weight (kg)/ (height (m))2). 

5.3.5 Calcaneus HR-pQCT imaging 

5.3.5.1 Participant positioning 

HR-pQCT imaging of the calcaneus was performed using the first generation 

XtremeCT. Participants were seated upright with full extension of the knee. The 

non-dominant foot (or dominant foot if there was a contraindication for using the 

non-dominant foot) was positioned in the carbon fibre, lower limb cast used for the 

distal tibia scans, with plantar-flexion at the ankle joint to align the superior and 

inferior surfaces of the bone with the scout view (Figure 5.2), following suggestions 

from Chapter 3 (Section 3.4.2). Furthermore, this was a useful guide for the scan 

technician to ensure that foot positioning was similar between participants. 

To assist reproducible foot positioning, a customised, high-density foam wedge (6LB 

RECON, The Foam Shop: Taunton, UK) was placed underneath the foot. Foam 

wedges, with angles of 19.1 and 23.4°, were appropriate to align the calcaneus 

surfaces with the scout view (Figure 5.2B). The scan technician could then adjust 

the positioning with manual movement of the foot or by using smaller pieces of 

foam. Once positioning was optimised, the foot, ankle and lower calf were secured 

using pieces of foam and a thin bandage, which was wrapped around the lower calf 

and toes to minimise movement artefact during the scans. The same type of 

bandage was used across all participants, with consistent positioning. The bandage 

thickness was less than 2 mm and was no thicker than a sock. There was no 

evidence of x-ray attenuation by the bandage in the scout view or in HR-pQCT 

images. 
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5.3.5.2 Image acquisition 

Prior to the pilot study starting, custom software and two control files were added to 

the XtremeCT workstation by SCANCO Medical AG, to assist with identifying the 

start point of the scanning region. On the scout view, the superior peak of the 

tuberosity and the plantar fascia attachment to the calcaneal tuberosity was 

identified using the software by the scan technician. A reference line was then 

automatically placed at the mid-point between these two landmarks by the software, 

with a value in millimetres that was recorded by the scan technician. To identify the 

start point for the superior region of the calcaneus, +4.51 mm (control file 1) was 

added to the reference line at the mid-point of the bone. Following superior region 

image acquisition, the scan technician completed the same procedure (scout view, 

landmark and mid-point identification) and subtracted -13.53 mm (control file 2) to 

identify the start point for the inferior region image acquisition. The locations of the 

regions of interest by the control files were similar to those evaluated in cadaveric 

specimen (Chapters 3 and 4).  

HR-pQCT images of the calcaneus were collected using the standard clinical 

operational settings at the superior and inferior regions (Figure 5.2). The only 

adjustment was that the images were collected at 100 and 200 ms scan integration 

time, resulting in a 2.8 minute and 4.2 minute scan duration and an estimated 

radiation dose per scan of 3 and 6 µSv, respectively.  

The order of the integration times was randomised by coin toss, which the scan 

technician performed prior to positioning the participant’s foot in the XtremeCT 

scanning gantry. This enabled calibration of the XtremeCT with the correct 

integration time prior to each scan. The participant’s lower limb was removed from 

the XtremeCT following image acquisition at the first integration time and prior to 

image acquisition at the second integration time: the foot was not repositioned in the 

lower-limb cast between the two scans. The scan technician recorded the 

integration time and the measurement numbers on a pre-prepared workbook sheet. 

The investigator evaluating the calcaneus HR-pQCT images was blinded from this 

information and was not present during participant positioning and the image 

collection. The investigator was unblinded after the images had been evaluated.  

Immediately after the HR-pQCT image acquisition had finished, the scan technician 

qualitatively graded the image quality of the central slice of a low-resolution 

reconstruction from 1 to 4 (Figure 5.3). The image acquisition was repeated if the 

image grade was 3 or 4. If the best image grade was a 4, the image was excluded 
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from the study. There was only one repeat image acquisition per integration time, 

per region.  

 

5.3.5.3 Image reconstruction 

Calcaneus HR-pQCT image reconstruction followed the standard protocol provided 

by the manufacturer (Section 2.3.2). 

5.3.5.4 Image evaluation 

The semi-automated contouring of the calcaneus periosteal boundary was 

performed for all HR-pQCT image slices. The images were evaluated using the 

standard clinical evaluation script (Section 2.3.3) to segment the calcaneus from the 

marrow phase. Measurements reported from the evaluation were, total vBMD, 

trabecular vBMD, outer and inner trabecular vBMD, BV/TVd, Tb.N*, Tb.Thd and 

Tb.Spd (* – directly computed; d – derived). 

5.3.6 Image registration 

A 3D registration protocol was applied to minimise repositioning error between the 

100 ms and 200 ms integration time HR-pQCT images using the SCANCO Medical 

 
  

 

Grade 1 =  

‘No artefact’ 

Grade 2 =  

‘Slight’ 

Grade 3 = 

‘Pronounced’ 

Grade 4 = 

‘Unacceptable’ 

 
Figure 5.3 Examples of the different visual grading given to calcaneus HR-pQCT 
images. 
From grade 2 to 4, there are discontinuities in the calcaneus cortex (orange arrows), which 
become more severe as the grade increases. The explanation of this grading has been 
sourced from Engelke et al. [155]. 
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IPL registration module (Section 2.6.7.1). The maximised and cropped common 

volumes were calculated between the images (Figure 2.21). The cropped method 

was used to determine the common volume of interest for evaluation. The 

percentage common volume between the 100 ms and 200 ms integration time was 

compared to a 70% “cut off”, as used within our Research Group. Due to the 

exploratory nature of completing repeat image acquisitions, and the scan 

technician’s relatively little experience with the method, no images were excluded if 

the common volume of interest was below 70%. 

5.3.7 Statistical analysis 

Statistical analyses were performed in GraphPad Prism (7.0, GraphPad Software: 

La Jolla California, USA). A p<0.05 indicated statistical significance. HR-pQCT 

measurements were visually checked for normality, then statistically checked using 

a Shapiro-Wilk test. Normally distributed measurements were presented as a mean 

with a 95% confidence interval (95% CI) and non-normally distributed 

measurements were presented as a median with an interquartile range (IQR). 

Paired t-tests were used to compare normally distributed measurements and 

Wilcoxon-Rank tests to compare non-normally distributed measurements. 

5.3.7.1 Mid-point reference line precision error 

The SDRMS of the mid-point reference line positions [154] was calculated between 

each superior and inferior region image acquisitions: 20 in total (10 x 100 ms 

integration time, 10 x 200 ms integration time).  

5.3.7.2 Image quality grade comparison 

The relative frequency for the image quality grades were presented for 100 and 200 

ms integration time HR-pQCT images, at the superior and inferior regions of the 

calcaneus.  

5.3.7.3 100 ms vs. 200 ms integration time HR-pQCT measurements 

The percent common volume of interest was reported as a percentage of the 

number of slices in the common volume in comparison to the total number of slices 

that were obtained. Following the evaluation of the common volumes, the absolute 

difference for the HR-pQCT measurements was calculated between the 100 and 

200 ms integration time images. Linear regression analyses were performed to 

evaluate the correlation between the 100 and 200 ms integration time 

measurements; the r2, equation slope and intercept, and RMSE were calculated. 
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Bland-Altman methods were also performed to test for bias (mean and 95% Limits 

of Agreement (LoA)) between the 100 and 200 ms integration time measurements 

[218]. 

5.3.7.4 Superior versus inferior region comparison 

The absolute difference for the HR-pQCT measurements was calculated between 

the superior and inferior regions in the unregistered images. Pearson’s or 

Spearman’s correlations were performed to test associations for the HR-pQCT 

measurements between the superior and inferior regions of the calcaneus. 

5.4 Results 

5.4.1 Participant characteristics 

10 participated in the study, but only 9 completed the study and were included in the 

analysis. 1 participant was removed from the analysis due to discomfort in the hip 

joint when their limb was positioned in the XtremeCT scanning gantry. The 

participant had unacceptable image quality for a scan at the superior region of the 

calcaneus and a repeat could not be performed. Therefore, the results that are 

presented are from 9 participants (5 female and 4 male). The mean (±SD) age of 

participants was 62 (±5) years and the mean (±SD) BMI was 26.2 (±4.4) kg/m2. 

5.4.2 Mid-point reference line precision error 

The mid-point reference line SDRMS between the 18 separate acquisitions of the 

superior and inferior regions was 0.69 mm. 

5.4.3 Image quality grades 

Figure 5.4 shows the image quality grades from the calcaneus HR-pQCT images. 

Acceptable image quality grades were obtained at both integrations times and at 

both regions of the calcaneus. At 100 ms integration time, no HR-pQCT image 

acquisitions were repeated; at the superior region, 5 images had a ‘no artefact’ 

grade and 4 images had ‘slight’ artefacts. At 200 ms integration time, 4 HR-pQCT 

image acquisitions at the superior region were repeated due to ‘unacceptable’ 

image quality grades: these were all noted to be movement artefacts, rather than 

artefacts due to equipment errors. All repeat acquisitions at this integration time 

resulted in images with acceptable quality: 3 HR-pQCT images had a ‘no artefact’ 

grade and 6 HR-pQCT images had a ‘pronounced’ artefact grade. HR-pQCT images 

acquired at the inferior region of the calcaneus, at both 100 and 200 ms integration 



 126 

times had an equal number of ‘no artefact’ and ‘slight’ artefact grades, 7 and 2, 

respectively. 

 

 

 

5.4.4 Common volume of interest 

The median (IQR) for the image registration CPU time was 6 minutes (4, 11 

minutes) for the superior region and 6 minutes (5, 8 minutes) for the inferior region. 

For the maximised method, the median common volume between the 100 ms and 

200 ms integration time HR-pQCT images was 100% at the superior region (range 

92-100%) and 100% at the inferior region (95-100%) of the calcaneus. Figure 5.5 

shows the common volume of interest for the cropped method between the 100 and 

200 ms integration time HR-pQCT images – this method was used for the 

comparison of the images. The median (IQR) for the common volume was 84% (79, 

96%) at the superior region and 88% (71, 94%) at the inferior region; there were no 

statistical differences in the common volumes between the regions (p=0.81). 

 

 

  

 Figure 5.4. Image quality grading for the HR-pQCT 
images at different regions and at different integration 
times. 
Data shown for 9 participants.  
Abbreviations: Sup – Superior; Inf – Inferior. 
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  Figure 5.5. Common volume between the 100 ms and 200 ms 
integration time images using the cropped method. 
A ‘cut off’ for the common volume of interest was set at 70%, as 
recommended by the manufacturer and used within our Research 
Group.  

 

 

5.4.5 Integration time comparison 

Figure 5.6 and Figure 5.7 shows superior and inferior images, respectively, obtained 

at a 100 and 200 ms integration times, with pixels coloured for each integration time 

image and the common volume between the images. Table 5.1 shows the results 

from the integration time comparisons for the HR-pQCT measurements from 

superior and inferior region images.  

There were no differences in total vBMD, trabecular vBMD, outer trabecular vBMD 

and inner trabecular vBMD, and BV/TVd between the 100 ms and 200 ms 

integration time HR-pQCT images at both the superior and inferior region. Tb.N* 

was significantly lower at a 200 ms integration time compared to 100 ms integration 

time with mean (95% CI) differences at the superior (-0.5 (-0.6, -0.5), p<0.001) and 

inferior regions (-0.8 (-0.9, -0.7), p<0.001) respectively. A reduction in Tb.N* was 

found in all participants. There was significantly higher Tb.Thd (superior, p<0.001; 

inferior, p=0.004) and Tb.Spd (superior, p<0.001; inferior, p=0.004) in the 200 ms 

compared to the 100 ms integration time scans at the superior and inferior regions. 
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Superior region 

 

Figure 5.6. Calcaneus HR-pQCT images at the superior region performed 
at 100 ms and 200 ms integration times. 
2D slices of the calcaneus at 100 ms (A) and 200 ms (B) integration times. 3D 
segmented images at the axial (C), anterior-posterior (D) and medial-lateral view (E). 
White pixels represent the common volume between the 100 ms and 200 ms images. 
The red and blue pixels represent the 100 ms and 200 ms integration time 3D 
segmented images, respectively. 
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Inferior region 

 

Figure 5.7. Calcaneus HR-pQCT images at the inferior region performed at 100 ms 
and 200 ms integration times. 
2D slices of the calcaneus at 100 ms (A) and 200 ms (B) integration times. 3D segmented 
images at the axial (C), anterior-posterior (D) and medial-lateral view (E). 
White pixels represent the common volume between the 100 ms and 200 ms images. The 
red and blue pixels represent the 100 ms and 200 ms integration time 3D segmented 
images, respectively. 
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Figure 5.8 and Figure 5.9 shows the correlation and linear regression analyses 

between the 100 ms and 200 ms integration time HR-pQCT images. Total vBMD, 

trabecular vBMD, outer and inner Tb.vBMD was strongly correlated between the 

100 ms and the 200 ms integration time HR-pQCT images (r2 ≥ 0.97), and the 

RMSE appeared to be proportional to the absolute values within the regions (i.e. 

superior higher than inferior). BV/TVd was also strongly correlated (r2 = 0.95) and 

had a small RMSE (0.4-0.5%) for both regions. Tb.N* and Tb.Spd were also strongly 

correlated between the 100 ms and 200 ms integration time HR-pQCT images (r2 ≥ 

0.98). The Tb.N* and Tb.Spd RMSE was also higher for the inferior region compared 

to the superior region. Tb.Thd in the superior region of the calcaneus was strongly 

Table 5.1. Comparison of measurements obtained from the common volume 
between calcaneus HR-pQCT images acquired at 100 ms and 200 ms scan 
integration times. 

Superior region 100 ms 200 ms Δ p value 

Total vBMD, mg HA.cm-3 298 (260, 335) 297 (260, 334) -1 (-7, 5) 0.727 

Tb.vBMD, mg HA.cm-3 240 (210, 271) 241 (208, 274) 1 (-4, 5) 0.681 

Outer Tb.vBMD, mg HA.cm-3 271 (251, 312) 271 (252, 315) 39, -6# 0.055 

Inner Tb.vBMD, mg HA.cm-3  213 (168, 240) 208 (169, 246) 22, -23# >0.99 

BV/TVd, % 20 (17.5, 22.6) 20.1 (17.4, 22.8) 0.1 (-0.3, 0.4) 0.729 

Tb.N*, mm-1 3.2 (2.8, 3.6) 2.7 (2.3, 3) -0.5 (-0.6, -0.5) <0.001 

Tb.Thd, µm 60 (56, 71) 77 (67, 87) 14 (10, 18) <0.001 

Tb.Spd, µm 250 (210, 290) 313 (258, 369) 0, 45# 0.004 

 

Inferior region 100 ms 200 ms Δ p value 

Total vBMD, mg HA.cm-3 183 (140, 225) 182 (142, 222) -1 (-5, 4) 0.825 

Tb.vBMD, mg HA.cm-3 141 (110, 171) 142 (111, 172) 1 (-2, 4) 0.526 

Outer Tb.vBMD, mg HA.cm-3 204 (169, 234) 205 (168, 236) 1 (-1, 4)  0.210 

Inner Tb.vBMD, mg HA.cm-3 98 (67, 125) 104 (64, 124) 1 (-4, 5)  0.786 

BV/TVd, % 11.7 (9.2, 14.3) 11.8 (9.3, 14.3) 0.1 (-0.1, 0.3) 0.621 

Tb.N*, mm-1 3.1 (2.6, 3.6) 2.3 (1.7, 2.9) -0.8 (-0.9, -0.7) <0.001 

Tb.Thd, µm 38 (32, 43) 52 (46, 59) 15 (10, 19) <0.001 

Tb.Spd, µm 297 (243, 351) 426 (308, 543) 0, 45# 0.004 

Data shown for 9 participants.  
Δ (difference) = 200 ms minus 100 ms 
Mean (95% CI) difference for total vBMD, Tb.vBMD, Outer and Inner Tb.vBMD (inferior region 
only), BV/TV, Tb.N* and Tb.Thd. 
# non-normally distributed: median (IQR) and the number of positive (higher 100 ms) and negative 
(higher 200 ms) signed ranks for Outer and Inner Tb.vBMD (superior region only), Tb.Spd. 
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correlated between the 100 ms and 200 ms integration time HR-pQCT images, but 

was weakly correlated in the inferior region. The Tb.Thd was similar between both 

regions.  

Passing-Bablok regression was also performed between the 100 ms and 200 ms 

integration time scans, and the results were similar to those reported using linear 

regression, which is presented in the Appendix (Table 9.6). 

 

 

Figure 5.8. Correlations between volumetric bone mineral density 
measurements between the 100 ms and 200 ms integration time calcaneus 
HR-pQCT images. 
A – Total vBMD; B – Tb.vBMD; C – Outer Tb.vBMD; D – Inner Tb.vBMD.  
r2, coefficient of determination; RMSE, root mean square error. 
Red – Superior region; Blue – Inferior region. Dotted grey line indicates the line of unity. 
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Figure 5.9. Correlations between bone volume fraction and trabecular 
microstructure measurements between the 100 ms and 200 ms integration 
time calcaneus HR-pQCT images. 
A – BV/TVd; B – Tb.N*; C – Tb.Thd; D – Tb.Spd.  
r2, coefficient of determination; RMSE, root mean square error. 
Red – Superior region; Blue – Inferior region. Dotted grey line indicates the line of unity. 
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Tb.Spd were wider for the inferior region (-130 µm (95% LoA -300 µm, 40 µm)) 

compared to the superior region (-60 µm (95% LoA -110, 0 µm)). 

 

  

Figure 5.10. Bland-Altman plots between the 100 ms and 200 ms integration 
time HR-pQCT images. 
A – Total vBMD; B – Tb.vBMD; C – Outer Tb.vBMD; D – Inner Tb.vBMD; E – BV/TVd; F – 
Tb.N*; G – Tb.Thd; H – Tb.Spd.  
Superior region – Red; Inferior region – Blue; Mean bias – Solid line; 95% limits of agreement 
– dotted line. 
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5.4.6 Region comparison 

Table 5.2 shows the results from the superior and inferior region comparison. The 

superior region of the calcaneus had significantly greater total and trabecular vBMD, 

greater outer and inner trabecular vBMD, greater BV/TVd, and a greater Tb.N* and 

Tb.Thd, in comparison to the inferior region. Tb.Spd was significantly lower in the 

superior region of the calcaneus compared to the inferior region.  

Figure 5.11A-H shows the associations between the HR-pQCT measurements 

made at the superior and inferior regions of the calcaneus. All measurements had 

strong, positive correlations between the two regions. 

 

 

Table 5.2. Comparison between HR-pQCT measurements from 
unregistered superior and inferior regions of the calcaneus 
collected at 200 ms scan integration time. 

 Region Absolute difference 

Superior Inferior Δ p value 

Total vBMD,  
mg HA.cm-3 

293 (259, 328) 182 (143, 222) -111 (-130, -92) <0.001 

Tb.vBMD,  
mg HA.cm-3 

239 (209, 269) 142 (113, 172) -96 (-117, -76) <0.001 

Outer Tb.vBMD,  
mg HA.cm-3 

277 (251, 303) 205 (175, 236) -72 (-94, -50) <0.001 

Inner Tb.vBMD,  
mg HA.cm-3 

213 (179, 247) 100 (71, 129) -113 (-135, -90) <0.001 

BV/TVd, % 19.9 (17.4, 22.4) 11.9 (9.4, 14.3) -8 (-10, -6) <0.001 

Tb.N*, mm-1 2.6 (2.3, 3) 2.3 (1.7, 2.9) -0.3 (-0.6, 0) 0.034 

Tb.Thd, µm 77 (67, 86) 53 (46, 60) -24 (-30, -18) <0.001 

Tb.Spd, µm 301 (251, 377) 425 (308, 541) 0, 45# 0.004 

Data shown for 9 participants.  
Δ (difference) = inferior minus superior. 
Mean (95% CI) difference for total vBMD, Tb.vBMD, Outer Tb.vBMD, Inner Tb.vBMD, 
BV/TVd, Tb.N* and Tb.Thd. 
# non-normally distributed; median (IQR) and the number of positive (higher inferior) 
and negative (higher superior) signed ranks for Tb.Spd. 
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Figure 5.11. Correlations between volumetric bone mineral density and 
trabecular microstructure measurements between the superior and inferior 
regions of the calcaneus. 
Pearson’s correlation coefficient:  A – Total vBMD; B – Tb.vBMD; C – Outer Tb.vBMD; D – 
Inner Tb.vBMD; E – BV/TVd; F – Tb.N*; G – Tb.Thd.  
Spearman’s correlation coefficient:  H – Tb.Spd. 
Dotted grey line indicates the line of unity. 
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5.5 Discussion 

This Chapter described the adaptation of HR-pQCT for the measurement of bone 

density and trabecular microstructure in the human calcaneus in vivo. The change in 

trabecular number using a 200 ms scan integration time consolidates findings 

obtained from human cadaveric calcanei (Chapter 4), and therefore appears to be 

an important adaptation to the standard clinical protocol if quantifying calcaneus 

trabecular microstructure is of interest. The scanning procedure and image 

acquisition was well tolerated by most participants and consequently image quality 

grades were consistent with previous studies undertaken at the distal radius and 

distal tibia [94, 95, 151, 155] 

Increasing the exposure time of the HR-pQCT tomographic projections (integration 

time) led to significant changes in the recorded trabecular microstructure in vivo. 

With an increasing integration time, there was a decrease in Tb.N*. The magnitude 

of change in Tb.N* caused by this technical adaptation exceeded changes reported 

with biological variability. In context with studies completed in our Research Group 

that have used HR-pQCT, the mean difference exceeded that found between the 

different stages of skeletal development in males and females (16-18 years, 30-32 

years and >70 years) by approximately 2-3 fold [151], and was equivalent to the 

magnitude of increase found in adults with an obese BMI compared to normal BMI 

[21]. Furthermore, the mean difference in Tb.N* exceeded (i) the loss reported at the 

distal radius with a 3 year follow-up in postmenopausal women [191], (ii) the loss 

observed at the distal tibia with 60 days of bed-rest [189], and (iii) was comparable 

to the difference in radius Tb.N* between females below 20 years of age and 

females in their 80’s in a normative data collection [234]. The difference in Tb.N* by 

adapting the integration time for HR-pQCT image acquisition of the calcaneus can 

therefore be considered a technical adaptation that could produce ‘clinically 

significant’ changes.  

There was strong correlations for Tb.N* and Tb.Spd between 100 ms and 200ms 

HR-pQCT scans. There was also a strong correlation for Tb.Thd at the superior 

region, but weak at the inferior region. From this pilot sample, regression equations 

could be applied to remove differences between measurements of Tb.N* and 

Tb.Spd. Measurement bias appeared to exist between the 100 ms and 200 ms HR-

pQCT images in the inferior region (systematic decrease in Tb.N*, systematic 

increase in Tb.Spd), where there was also a wider 95% LoA compared to the 
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superior region. This poorer agreement could be explained by greater noise in the 

inferior region images, as highlighted in Chapter 4, considering that there appeared 

to be less movement artefacts than the superior region images, particularly for the 

200 ms integration time scans. The inferior region images also had greater 

regression errors for Tb.N* and Tb.Spd. Therefore, it may only be appropriate to 

adjust the trabecular microstructure measurements for the 100 ms integration time 

images from the superior region of the calcaneus. 

The higher number of images graded with a ‘pronounced’ artefact from the superior 

region at 200 ms integration time did not affect the overall outcome for studying 

Tb.N*. The percentage reduction in Tb.N* at a 200 ms integration time (-17% 

superior, -26% inferior) exceeded, or was equivalent to, the percentage increase 

reported between images with ‘no artefact’ and ‘pronounced’ artefact [94, 95]. It is 

possible that the higher image artefact grade may have contributed to the different 

absolute difference between the superior (-0.5 mm-1) and inferior regions (-0.8 mm-

1), and would be within the range of measurement differences reported by including 

images with and without ‘pronounced’ artefact [94, 155]. The larger change in Tb.N* 

at the inferior region could also be anticipated due to the anatomy of the calcaneus. 

Here, the inferior region encompassed the neutral area (Ward’s triangle) of the 

calcaneus in most participants. There seemed to be a higher number of ‘bone’ 

voxels in this region at 100 ms integration time (Figure 5.7), which would be 

detected as trabeculae using the Tb.N* computational algorithm. The removal of 

these voxels (i.e. noise) with the 200 ms integration time (Figure 5.7) would increase 

the marrow space and subsequently lower the Tb.N*. This may also contribute to 

the systematic bias reported with increasing Tb.N* at the inferior of the calcaneus.  

The heterogeneity in calcaneus trabecular BMD and microstructure between the 

superior and inferior regions was consistent with the regional variation reported in 

previous studies [197, 198]. For example, areas of low density (neutral area) have 

been identified by a lower inner trabecular vBMD at the inferior region by viewing 

the HR-pQCT images and measurements. The superior region of the calcaneus is 

exposed to high mechanical strains, which was reflected by the high total and 

trabecular vBMD; specifically, the outer trabecular vBMD would detect these regions 

at the sub-talar articular surfaces and at the Achilles tendon attachment. The 

variability in total vBMD between the superior and inferior region of the calcaneus 

was similar to the total vBMD difference reported between distal and proximal sites 

of the radius and tibia [87, 155, 203]. More proximal sites of the radius and tibia 

have a thicker cortex [87, 155, 203], which can facilitate the segmentation of the 
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endocortical boundary and therefore the separation of the cortical and trabecular 

bone phases for assessment of cortical thickness and porosity [155, 210]. However, 

it remains to be seen whether assessing different sites and/or envelopes of the 

same bone using HR-pQCT translates into a clinical impact. Whilst distinct 

differences between the superior and inferior region of the calcaneus were found, 

there were also strong, positive associations in measurements between the regions. 

It would be of interest to investigate the associations of the measurements change 

with osteoporosis, or pharmaceutical and lifestyle interventions. 

Several practical considerations have been identified in obtained calcaneus HR-

pQCT images in vivo: 

The positioning of the foot presented challenges to the scan technician. Some 

participants with larger feet were unable to fit the surrounding bones of the foot in 

the scanner field of view when HR-pQCT images were obtained at the inferior 

region of the calcaneus. This was apparent in 4 participants, all male, and was not 

an issue in any participant when imaging the superior region of the calcaneus. Being 

unable to contain the surrounding tissues within the field of view may have produced 

greater noise in the inferior region images, which would have affected the estimation 

of Tb.N*, as well as Tb.Thd and Tb.Spd [172]. However, this may be less of an issue 

when using the second generation XtremeCT, as the diameter of the field of view is 

14 mm larger than the first generation XtremeCT device.  

Using the lower limb cast for tibia image acquisitions also restricted positioning of 

the foot. The scan technician noted that the cast was too narrow at the location of 

the cast where the shank was positioned. This may have affected those with a 

larger foot size more. Customised positioning aids have been developed for HR-

pQCT imaging at the radius and tibia, and also for scans of fractured radii [212], the 

knee [93] and the metacarpals [90]. Customising positioning aids for the calcaneus 

HR-pQCT scans may be an important development to pursue  

A customised positioning cast might minimise image artefact caused by movement. 

Participants indicated that they could move their toes once in position for the 

calcaneus HR-pQCT image acquisition, in which additional foam wedges were then 

applied to restrict the movement. Movement of the fingers was also an issue 

highlighted with metacarpal HR-pQCT imaging, which has a 7-8 minute image 

acquisition duration. Barnabe and colleagues [90] subsequently proposed the use of 

a ridged splint combined with an inflatable positioning device to restrict this. A 

similar inflation device has also been used in studies monitoring fracture healing at 
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the distal radius, in which image acquisition lasted 5.6 minutes [212, 235]. When 

considering limitations in the agreement for inter-operator grading of HR-pQCT 

images [94, 155], minimising toe and foot movement to optimise calcaneus HR-

pQCT image quality would be critical to the wider translation of the protocol. 

However, apparatus to minimise movement of the foot is currently unavailable for 

the calcaneus HR-pQCT scans. 

The practical issue of positioning the foot was highlighted by the precision error 

(SDRMS) for identifying the calcaneus mid-point (= 0.69 mm, equivalent to 8 to 9 

slices at an 82 µm voxel size). Whilst this positional error could be removed by 

image registration in monitoring studies, it could cause errors when comparing 

different populations in cross-sectional studies. The equivalent measurements at the 

tibia and radius have been reported to be 0.2 mm (2-3 slices) and 0.38 mm (5-6 

slices), respectively, using an 82 µm voxel size [154]. However, Bonaretti and 

colleagues [154] completed these measurements by analysing the same image 

twice (radii = 45, tibia = 46) in custom-built software, where as the current work 

obtained the mid-point positional error from 2 separate scout view acquisitions, 

either side of a 2.8-4.2 minute HR-pQCT scan. Therefore, the calcaneus mid-point 

positional error measured in this work could be overestimated if the participants 

moved between the 2 scout view image acquisitions.  

There are also two technical adaptations that may explanation the greater mid-point 

positional error with the calcaneus scans. (1) The start and end position scaling was 

maximised for the calcaneus HR-pQCT scout view. This ensured that the scan 

technician could identify both anatomical landmarks and simultaneously check foot 

positioning. At the radius and tibia, the scout view scaling is smaller (i.e. more 

‘zoomed in’), therefore providing greater anatomical detail for reference line 

positioning. (2) There could also be difficulties in selecting the two anatomical 

landmarks on the calcaneus, in order to identify the mid-point of the bone. 

Difficulties have also been reported for single landmark identification for the radius 

HR-pQCT scans [151, 154, 176]. The landmark identification may, however, enable 

a form of anatomical standardisation for relative positioning of the region of interest. 

This has been recommended at the distal radius and distal tibia to allow more 

relevant comparisons between populations of different sizes (e.g. across sexes and 

ethnicity) and for normative database development [230, 236, 237]. Relative 

positioning of the calcaneus HR-pQCT scanning region of interest would depend on 

obtaining an absolute value between the two anatomical landmarks, which is 

currently not available in the XtremeCT software. 
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Finally, the potential limitations from the scout view scaling and the landmark 

identification may explain some of the variability in the common volume between 

participants for the 100 ms and 200 ms HR-pQCT image acquisitions. In relation to 

the ‘cut off’ proposed to excluded repositioned HR-pQCT images (< 70%), 1 

participant and 2 participants would have been removed from the analysis of the 

superior and inferior region of the calcaneus, respectively, without repositioning. 

Nevertheless, the median maximised common volume without repositioning of the 

foot was still higher than the 90-94% reported for repositioning at the radius and 

tibia [177, 188]. Some variability could have been expected due to the infancy of 

performing the protocol in vivo. Chapter 6 provides a more detailed insight into foot 

positioning and measurement precision error.  

5.6 Conclusion 

The Chapter reports work to determine a method to quantify calcaneus vBMD and 

trabecular microstructure in vivo using the first generation XtremeCT. HR-pQCT 

images have acceptable image quality grades at 100 ms and 200 ms integration 

times, in which a 200 ms integration time appears preferable for the quantification of 

trabecular microstructure, supporting findings from ex vivo experiments (Chapter 4). 
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CHAPTER 6 DETERMINING CALCANEUS HR-PQCT 
MEASUREMENT PRECISION 
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6.1 Introduction 

Chapter 5 piloted the calcaneus HR-pQCT imaging method in vivo. Images of an 

acceptable quality were collected, although there were more movement artefacts at 

200 ms compared to 100 ms integration time, and an image registration procedure 

was applied to correct for repositioning errors (i.e. foot position and anatomical 

landmark identification). Controlling for these factors has been shown to be 

important for minimising HR-pQCT measurement precision error. Quantifying the 

superior region of the calcaneus was recommended using the first generation 

XtremeCT, as it provides more accurate measurements (Chapter 4) and has fewer 

practical issues compared to the inferior region of the bone (Chapter 5). Chapter 6 

will present the short-term HR-pQCT measurement precision error for the superior 

region of the calcaneus in vivo. It will also present a site comparison analysis using 

HR-pQCT between the non-dominant and dominant calcaneus, and the calcaneus, 

distal radius and distal tibia.  

6.1.1 Precision error 

Precision is the “ability to reproduce the same numerical result in the setting of no 

real biologic change when the test is repeatedly performed in an identical fashion” 

[150]. However, no quantitative measurement is perfect in these conditions, where 

device variability and human error are key factors in precision error. Glüer and 

colleagues [238] presented an extensive overview of calculating precision errors in 

bone densitometry. Here, precision errors from individual subjects are pooled based 

on root-mean square averages. These can be collected as short-term precision 

errors (SD of repeat measurements) or long-term precision errors (SEE of changes 

over time), and can be presented in absolute or relative values. An insufficient 

degrees of freedom in the calculations could underestimate the precision errors by 

as much at 41% [238]; at least 27 degrees of freedom was recommended to 

achieve an upper 90% confidence limit of +30% of the mean precision error. A more 

recent ISCD position paper recommended using 30 degrees of freedom to achieve 

an upper 95% confidence limit of the precision error that is no more than 34% 

greater than the calculated value [239]. Falsely identifying or missing a BMD or 

microstructural change may lead to incorrect decisions that could affect patient care.  

Studies have calculated HR-pQCT measurement precision errors (Table 6.1). Those 

that have reported precision errors (as root mean square coefficient of variations, 

CV%RMS) with sufficient degrees of freedom [79, 151, 155, 177, 195, 240, 241], total 
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and trabecular vBMD ranged from 0.5-2.1% at the distal radius and 0.2-1.9% at the 

distal tibia, and trabecular microstructure ranged from 1.0-7.0% at the distal radius 

and 1.5-7.0% at the distal tibia. As previously highlighted in Chapter 5, participant 

and reference line positioning [154, 176, 177], and movement artefact [94, 95] 

contribute to these precision errors. Other contributing factors could be between-

subject differences, for instance comparing an adult with a normal T-score and an 

adult with an osteoporotic T-score. The lower bone mass and microstructure 

deterioration in the osteoporotic subject may increase the relative precision error 

[151, 155, 240]. The estimation of short-term precision error could also be 

dependent on whether measurements were made on the same-day or between 

different days [74, 242]. Between-day scanning may include device fluctuations and 

remove enhanced recall by the operator and participant in terms of positioning [74]. 

Image registration may remove the positioning bias, which may explain why there 

seems to be minimal influence of timing on HR-pQCT precision errors (Table 6.1). 

6.1.2 Least Significant Change 

The least significant change (LSC) provides a statistical indication to whether the 

magnitude of change in a measurement represents a real biologic change [150, 

243]. Changes that exceed a 95% LSC (2.77 times higher than the precision error) 

are considered biologically/clinically significant i.e. providing 95% confidence that a 

true biological change has occurred [243]. If applying the 95% LSC to the CV%RMS 

precision error reported in previous studies (Table 6.1), a clinically significant 

change in total and trabecular vBMD would range from 1.4-5.8% at the distal radius 

and 0.6-5.3% at the distal tibia, and trabecular microstructure would range from 2.8-

19.4% at the distal radius and 4.2-19.4% at the distal tibia. Examples of scenarios 

where the 95% LSC can be applied include: disease monitoring, where 3-year 

changes in distal radius cortical porosity, cortical area and trabecular area, and 

distal tibia cortical vBMD, cortical porosity and trabecular area exceeded the LSC in 

males and females over the age of 50 years [9]; treatment responses, where studies 

have reported statistically significant mean changes that were within the LSC’s, 

such as cortical porosity with teriparatide [84, 244, 245], and total and trabecular 

vBMD with anti-resorptive treatments [84, 86, 245]. 
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6.1.3 HR-pQCT image registration 

Image registration can lower HR-pQCT measurement precision error compared to 

no registration [177]. The comparison of precision errors following CSA-based (2D) 

registration and 3D registration in the same dataset has been undertaken twice at 

the distal radius and distal tibia, using different image registration methods and 

software [176, 177]. MacNeil and Boyd [176] transformed the grey-level HR-pQCT 

images using linear interpolation, which has been demonstrated in Chapter 2 to 

lower Tb.N* and potentially remove image noise (Figure 2.22). Ellouz et al., [177] 

transformed the masks (i.e. GOBJs) of the HR-pQCT images using the SCANCO 

IPL, therefore preserving the grey-level images (as described in Chapter 2 Section 

2.6.6). By removing angular deviations between images into account, 3D 

registration may more accurately determine the common volume between HR-pQCT 

images [177, 246]. This may improve the sensitivity to detect microstructural 

changes with disease and with interventions [89, 246]. 

6.1.4 Dominance  

Limb asymmetries have been established in humans. This is mostly apparent in 

individuals that have asymmetrical mechanical loads on their body, such as the 

upper extremities in young adult cricketers [247], tennis players [26-28], and in the 

take-off leg in conditioned jumpers (high, long and triple) [248]. Asymmetries have 

also been reported in the general population. Hildebrandt and colleagues [249] 

found significant, but small, asymmetries that favoured the dominant distal radius 

(cortical area +2.11%, failure load +3.00%) and non-dominant distal tibia (total 

vBMD +0.77%, cortical area +1.03% and cortical thickness +1.51%); the dominant 

limb defined by what hand participants write with and what foot participants would 

kick a ball with, respectively. In a large Korean population study (male = 815, female 

= 979), there were no distal radius asymmetries associated with dominance, apart 

from slightly higher aBMD in the non-dominant limb in male’s ≥ 61 years 

(approximately +0.010 g/cm-2), whereas the non-dominant calcaneus had 

significantly greater aBMD (mean ranged from 0.009-0.018 g/cm-2) in males and 

females ≤ 20 years, 21-40 years and 41-60 years [127]. The ‘cross-symmetry’ of 

bone properties at the lower limbs (non-dominant greater than dominant) [127, 249] 

has been attributed to loading characteristics from stabilising the body weight to 

facilitate movement of the dominant limb in activities, such as kicking a ball, and 

greater motor neuron excitability [250]. Nonetheless, the significant differences 

reported in these studies were small. There may also be asymmetrical loading 
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characteristics in older adults with the use of walking aids, history of hip or lower 

extremity fractures and osteoarthritis, independent from dexterity [251]. Therefore, 

measuring the effects of limb dominance is important to develop a standardised 

bone densitometry protocol at these sites.  

6.1.5 Site comparison 

The calcaneus is the largest tarsal bone and has a very high ratio of trabecular to 

cortical bone, which varies across different regions of interest. Other sites imaged 

using HR-pQCT, such as the radius and tibia, are long bones and have different 

trabecular-cortical ratios depending on the region that is studied [87, 155, 252]. 

Macro- and micro-structure differences can be expected between the radius and 

tibia due to mechanical forces from bearing weight. The distal tibia has a larger total 

CSA, higher trabecular vBMD, a thicker cortex and higher cortical porosity in 

comparison to the distal radius, which is apparent in males and females across a 

wide age range [151, 195, 234]. The total, trabecular and cortical vBMD, and 

stiffness, between the distal radius and distal tibia are also moderately-strongly 

correlated to one another [253, 254], and are stronger than those found between 

HR-pQCT measurements at the radius and tibia and QCT measurements at the 

lumbar spine and proximal femur [253, 255]. Furthermore, correlations are generally 

weaker with distal radius and distal tibia vBMD compared to lumbar spine and 

proximal femur aBMD [253, 255, 256], potentially due to the comparison of 

volumetric and areal projections. Eckstein and colleagues [228] also reported 

meagre correlations between trabecular bone specimens from the calcaneus, distal 

radius, proximal femur sites and the lumbar vertebral body. These weaker 

peripheral-central correlations are likely influenced by different rates of bone loss 

between central and peripheral sites [117]. The relationship between calcaneus 

vBMD and trabecular microstructure compared to measurements at the distal radius 

and distal tibia has not been reported using HR-pQCT. Furthermore, although weak-

moderate correlations have been reported between distal radius and distal tibia 

vBMD with central site aBMD, the relationship between calcaneus vBMD and 

central site aBMD has also not been previously reported.  

6.1.6 Summary 

In summary, quantifying the HR-pQCT measurements precision error at the superior 

region of the calcaneus will indicate the potential applicability of the method in 

clinical studies. This can be based on establishing upper boundaries for determining 

clinically significant changes (i.e. precision errors’ 95% LSC) in calcaneus total and 
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trabecular vBMD, and trabecular microstructure. The precision errors could be 

dependent on the image registration method that is used and may highlight areas to 

improve the protocol. Establishing whether there are calcaneal asymmetries in 

relation to limb dominance would help justify site selection to propose a 

standardised protocol and determine whether the other limb could be imaged where 

fracture may compromise a participant’s positioning. No study in vivo has quantified 

calcaneus vBMD and trabecular microstructure in comparison to peripheral sites 

using HR-pQCT and central sites using DXA.  

6.2 Aims and objectives 

The aim of Chapter 6 is to determine the short-term measurement precision error for 

calcaneus HR-pQCT images. 

Primary objectives of Chapter 6 are: 

1. To determine the short-term precision errors for volumetric bone mineral 

density and trabecular microstructure in calcaneus HR-pQCT images. 

2. To compare measurements’ coefficient of variation between unregistered, 

cross-sectional area (CSA)-based registered and 3D registered HR-pQCT 

images. 

The Chapter also aims to present preliminary analysis of the calcaneus HR-pQCT 

image measurements in comparison to peripheral and central sites of the skeleton.  

Secondary objectives of Chapter 6 are: 

1. To compare volumetric bone mineral density and trabecular microstructure 

between the non-dominant and dominant calcaneus HR-pQCT images. 

2. To compare volumetric bone mineral density and trabecular microstructure 

between calcaneus, distal radius and distal tibia HR-pQCT images. 

3. To test associations between calcaneus, distal radius and distal tibia 

volumetric BMD measurements, and lumbar spine and proximal femur areal 

BMD measurements. 

6.3 Methods 

6.3.1 Study design 

Professor Eugene McCloskey, Professor Graham Kemp, Dr Margaret Paggiosi and I 

designed the study. The study was a cross-sectional, observational design, with two 
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visits separated by approximately 4 weeks. The investigations were completed as a 

sub-study to the concurrent study ‘Clinical data to inform the MultiSim Project: 

Development of a modelling framework focused on the human musculoskeletal 

system’. The MultiSim Project is collecting a range of biological assessments from 

postmenopausal women, such as HR-pQCT scans of the radius, tibia and 

calcaneus, CT scans of the proximal femur and MRI of lower limbs, physical 

function and real-time activity monitoring data, as well as bone turnover markers. 

The project aims to use this data create a framework to personalise clinical 

decision-making and improve the prediction of whether musculoskeletal disease 

would occur, and what treatment would be most suitable.  

The study was given a favourable ethical opinion and approval by the East of 

England - Cambridge and Hertfordshire Research Ethics Committee (reference 

16/EE/0049). Sister Angela Green and Sister Julie Walker completed the participant 

recruitment and obtained informed consent. Dr Margaret Paggiosi performed the 

HR-pQCT image acquisitions. I completed the HR-pQCT image registration and 

analysis. 

6.3.2 Participants 

15 healthy premenopausal women were recruited into the sub-study. The sample 

size was chosen to have at least 30 degrees of freedom for the assessment of 

calcaneus HR-pQCT short-term measurement precision error, as recommended by 

the ISCD [239]. Greater detail of the calculations is provided in the statistical 

analysis (Section 6.3.6.3). 25 postmenopausal women with T-score ≤ −1 aim to be 

recruited as part of the MultiSim Project, 10 with no history of fracture or recent falls 

and 15 with recent falls with and without fractures. Recruitment of the 

postmenopausal women is on going and therefore not included in the Chapter 6 

analysis.  

Inclusion and exclusion criteria were as developed for the MultiSim Project. Briefly, 

participants needed to be willing to participate and able to give informed consent. 

Participants were excluded if they had a BMI lower than 18 or higher than 35 kg/m2; 

had a previous fracture of either calcaneus, bilateral fractures of the distal radius 

and/or tibia; a history of, or current, conditions known to affect bone metabolism and 

BMD, such as a diagnosed skeletal disease or arthritis, chronic hepatic or renal 

disease, coeliac and/or other malabsorption syndromes, hyperparathyroidism, 

hyperthyroidism and/or diagnosed endocrine disorders, hypocalcaemia or 

hypercalcaemia, diagnosed restrictive eating disorder, or diabetes mellitus; history 



 151 

of, or current, severe ischaemic heart disease, rheumatoid arthritis, ankylosing 

spondylitis, or cancer (concurrent); history of, or current neurological diseases 

affecting the neuromuscular system including Parkinson’s disease, stroke, muscular 

dystrophy, myopathies, myasthenia, cerebral trauma, or peripheral neuropathy; 

treatment for more than 3 months in a year or under treatment with oral 

corticosteroids; history of any long-term immobilisation (duration greater than three 

months); conditions or surgery which could prevent the acquisition or analysis of 

musculoskeletal images; use of medications or treatment known to affect bone 

metabolism other than calcium/vitamin D supplementation; alcohol intake greater 

than 21 units per week; any individual who has had a previous CT scan (regardless 

of time and site). Premenopausal women taking the contraceptive pill were not 

excluded from the study. 

All participants were telephone-screened using the study eligibility criteria prior to 

attending the Clinical Research Facility. Eligible participants provided written 

informed consent.  

6.3.3 Descriptive statistics 

As described in Chapter 5, Section 5.3.4. 

6.3.4 DXA Imaging 

At visit 1, lumbar spine and proximal femur DXA imaging followed protocols 

described in Section 2.1.2.  

6.3.5 HR-pQCT imaging 

6.3.5.1 Distal radius and distal tibia image acquisition 

At visit 1 (baseline), distal radius and distal tibia HR-pQCT images were collected 

and followed protocols described in Section 2.3.1. 

6.3.5.2 Calcaneus image acquisition 

The calcaneus HR-pQCT imaging followed the protocol described in Chapter 5, 

Section 5.3.5. 

At visit 1 (baseline) the superior region of the calcaneus was imaged twice using 

HR-pQCT. The images were collected at 100 ms integration time. The 100 ms 

integration time was preferred to the 200 ms integration time, due to concerns of 

higher movement artefacts at a 200 ms integration time using the current imaging 

apparatus. Losing participants’ HR-pQCT images due to movement artefacts would 
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have a negative affect on the statistical power of the precision error estimation. The 

2 calcaneus HR-pQCT images were obtained from the non-dominant foot, with 

repositioning between the 2 image acquisitions i.e. removing the participants’ lower 

limb from the XtremeCT scanner gantry, removing the foot from the lower-limb cast 

and standing out of the chair. The non-dominant foot was then placed back in the 

lower-limb cast, as previously described. 

At visit 2 (4 weeks after baseline) 1 calcaneus HR-pQCT image was obtained from 

the non-dominant foot and then 1 calcaneus HR-pQCT image was obtained from 

the dominant foot. Dominance was identified using similar methods described in 

Chapter 2 (Section 2.3.1). 

Short-term measurement precision error was obtained from the three non-dominant 

calcaneus HR-pQCT images. The first non-dominant calcaneus HR-pQCT image 

(collected at baseline) was used in the site comparison with the distal radius and 

distal tibia HR-pQCT images, and the lumbar spine and proximal femur DXA 

images.  

6.3.5.3 Image reconstruction 

All HR-pQCT images were reconstructed using the standard protocol provide by the 

manufacturers (Section 2.3.2). 

6.3.5.4 Calcaneus image registration 

Three different methods were used to compare the measurements from the three 

non-dominant calcaneus HR-pQCT images: (1) no registration, (2) CSA-based 

registration and (3) 3D registration. 

The evaluation of the HR-pQCT images without registration would include 

repositioning errors into the short-term precision error measurements.  

The CSA-based registration is a two-dimensional method that is the standard 

registration procedure implemented using the SCANCO IPL. This automatically 

matches the bone area on a slice-by-slice basis and translates the stack of slices to 

provide an optimal overlap and determine the common volume [165]. The slice shift 

and common volume using the CSA-based registration are automatically added to 

the HR-pQCT measurements datasheet that is exported from the XtremeCT 

workstation.  
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The 3D registration has been described in Section 2.6.7.1. Adaptations were made 

to the procedure to account for the third HR-pQCT image. The 3D registration code 

can be found in the thesis Appendix and is summarised in the following points: 

I. The baseline, same-day and 4-week images, as well as their GOBJs, were 

called into the IPL. Two separate registrations (same-day to baseline; 4-

week to baseline) were completed using the methods described in Section 

2.6.7.1, Step 1, II to VI. 

II. The same-day GOBJ was transformed and concatenated using the methods 

described in Section 2.6.7.1, Step 2, I and II.  

III. A threshold was applied to identify the common volume between the 

combined same-day to baseline GOBJs. 

IV. The 4-week to baseline transformation matrix was applied to the 4-week 

GOBJ.  

V. The transformed 4-week GOBJ was concatenated with the common volume 

of the baseline to same-day GOBJ. This created an image containing the 

three, spatially aligned, calcaneus HR-pQCT GOBJs (baseline, same-day 

and 4-week).  

VI. A threshold was applied to identify the common volume between the three 

GOBJs. 

VII. This common volume was then overlaid on the baseline HR-pQCT image. 

The respective transformation matrices were inverted and applied to overlay 

the common volume on the same-day and 4-week HR-pQCT images. 

No calcaneus HR-pQCT images were removed if the common volume for the CSA-

based and 3D registration was below 70%, to ensure that the sample size was 

preserved for estimating the short-term measurement precision error.  

6.3.5.5 Image evaluation 

All HR-pQCT images were evaluated using the steps described in Section 2.3.3. 

Measurements reported from the evaluation were total vBMD, trabecular vBMD, 

outer and inner trabecular vBMD, BV/TVd, Tb.N*, Tb.Thd and Tb.Spd (* – directly 

computed; d – derived). Total CSA was available in the analyses, apart from the 

calcaneus HR-pQCT image comparisons to calculate short-term measurement 

precision error, as it is not provided in the registered analysis worksheets. 

The unregistered and CSA-based registered calcaneus HR-pQCT images were 

evaluated using the procedure in section 2.3.3. The 3D registration only evaluated 

the common volumes following the procedure described in section 6.3.5.4. 
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For the site comparison analysis between the calcaneus, distal radius and distal 

tibia, the baseline, unregistered calcaneus HR-pQCT images were used. Calcaneus 

trabecular microstructure measurements were adjusted using regression equations 

derived from Chapter 5 (Equation 6.1, 6.2 and 6.3), to predict measurements using 

a 200 ms integration time from 100 ms integration time. This aimed to provide a 

more accurate estimation of trabecular microstructure measurements, in line with 

those found in validation studies at the distal radius and distal tibia [77, 163, 164], 

which has been reported in Chapter 4. These measurements have been labelled 

‘adjusted’ Tb.N*, Tb.Thd and Tb.Spd: 

	 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑇𝑏.𝑁∗  =  −0.579 + (1.011 × (100𝑚𝑠 𝑇𝑏.𝑁∗))  Equation 6.1 

	 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑇𝑏.𝑇ℎ!  =  −0.001 + (1.237 × (100𝑚𝑠 𝑇𝑏.𝑇ℎ!))  Equation 6.2 

	 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑇𝑏. 𝑆𝑝!  =  −0.072 + (1.501 × (100𝑚𝑠 𝑇𝑏. 𝑆𝑝!))  Equation 6.3 

6.3.6 Statistical analysis 

Statistical analyses were performed in GraphPad Prism (7.0, GraphPad Software: 

La Jolla California, USA), unless stated otherwise. A p<0.05 indicated statistical 

significance, unless stated otherwise. HR-pQCT measurements were visually 

checked for normality, and then statistically checked using a Shapiro-Wilk test. 

Normally distributed measurements were presented as a mean with a 95% CI and 

non-normally distributed measurements were presented as a median with an IQR. 

6.3.6.1 Mid-point reference line precision error 

The SDRMS of the mid-point reference line positions [154] was calculated between 

each superior image acquisition: 45 in total (15 x baseline, 15 x same-day, 15 x 4-

week). Please note that only the superior region HR-pQCT images are evaluated in 

this Chapter. 

6.3.6.2 Image registration 

The common volume for the calcaneus HR-pQCT images following the 3D 

registration was compared between scans obtained on the same-day (Scan 1-2), 4-

weeks apart (Scan1-3) and all 3 scans combined (All scans) using a Friedman test 

with Dunn’s multiple comparisons. A Mann-Whitney signed-rank test was used to 

compare the common volume between the CSA-based and 3D registration for all 

scans.  
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6.3.6.3 Calcaneus HR-pQCT measurement precision error 

The relative frequency for the calcaneus HR-pQCT image quality grades was 

calculated. 

Calculation of the calcaneus HR-pQCT measurements short-term precision error 

was performed in accordance with the ISCD recommendations [239], using the 

Advanced Precision Calculator (www.iscd.org). Measurements reported from the 

calculator were CV% (Equation 6.4), CV%RMS (Equation 6.5) and SDRMS (Equation 

6.6): 

	 𝐶𝑉% =  
𝑆𝐷!
𝑥!

 × 100  
Equation 6.4 

 

	

𝐶𝑉%!"# =  
𝐶𝑉%!

!

𝑚
 

!

!!!

  

Equation 6.5 

 

	

𝑆𝐷!"# =  
𝑆𝐷!
𝑚

!

!!!

 

Equation 6.6 

 

where j refers to an individual participant, 𝑆𝐷 is the measurement standard 

deviations between the three calcaneus HR-pQCT images, and 𝑥  is the 

measurement mean between the three calcaneus HR-pQCT images, and 𝑚 is the 

number of participants in the analysis. These measurements were expressed as 

both absolute and relative values. 

The LSC was calculated for each HR-pQCT measurement using a 95% confidence 

criterion [150]: 

	 𝐿𝑆𝐶 =  𝑃𝑟 × 2.77 Equation 6.7 

 

where 𝑃𝑟 is the precision value (either SDRMS or CV%RMS), 2.77 represents the 95% 

confidence level (1.96 i.e. ± 2SD), multiplied by the square root of 2 (= 1.414) to 

account for single precision singles undertaken at each time point. The LSC was 

also expressed as both absolute and relative values. 

HR-pQCT measurement SDRMS and CV%RMS were calculated within each 

registration method (no registration, CSA-based and 3D registration). The CV% was 

used to statistical compare the three registration methods, as the SDRMS and 
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CV%RMS are geometric means and therefore only provide one value for each 

outcome [240]. A Friedman test with Dunn’s multiple comparisons was performed to 

compare the CV% between the three registration methods.  

Linear regression analyses were performed to evaluate the correlation between the 

absolute slice shift in HR-pQCT slices with BSA-based registration (dependent 

variable) and the percentage change in the HR-pQCT measurements from the slice 

(total vBMD, trabecular vBMD and Tb.N*; independent variable). The r2, equation 

slope and intercept, and RMSE were calculated. This analysis aimed to determine 

whether the positive or negative slice shift from in vivo scans replicated the 

respective increase or decrease in trabecular vBMD reported in cadaveric specimen 

over a larger CSA (Section 3.6.3). 

6.3.6.4 Non-dominant vs. dominant 

Paired t-tests were performed to compare HR-pQCT measurements between the 

non-dominant and dominant calcaneus. 

6.3.6.5 Site comparison 

The relative frequency for the calcaneus, distal radius and distal tibia HR-pQCT 

image quality grades were calculated.  

A one-way ANOVA with a Bonferroni correction was performed to compare total 

vBMD, trabecular vBMD, outer trabecular vBMD, BV/TVd, Tb.N* and Tb.Thd 

between the calcaneus, distal radius and distal tibia (p<0.017). A Friedman test with 

a Dunn’s multiple comparisons was performed to compare inner trabecular vBMD 

and Tb.Spd between the calcaneus, distal radius and distal tibia. Similar tests were 

performed for the adjusted Tb.N*, Tb.Thd and Tb.Spd at the calcaneus in 

comparison to the distal radius and distal tibia. 

Pearson’s correlation analysis (with 95% CI) was performed to test the association 

for total vBMD, trabecular vBMD, outer trabecular vBMD, BV/TVd, Tb.N* and Tb.Thd 

between the calcaneus and the distal radius and distal tibia. Spearman’s correlation 

analysis (with 95% CI) was performed to test the association for inner trabecular 

vBMD and Tb.Spd between the calcaneus and the distal radius and distal tibia. 

Pearson’s correlation analysis was performed to test the association for total vBMD 

and trabecular vBMD from the calcaneus, distal radius and distal tibia, with lumbar 

spine aBMD. Spearman’s correlation analysis was performed to test the association 

for total vBMD and trabecular vBMD from the calcaneus, distal radius and distal 

tibia, with total hip and femoral neck aBMD.  
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6.3.6.6 Anthropometry vs. HR-pQCT imaging measurements 

Spearman’s correlation analysis (with 95% CI) was performed to test the association 

between weight and height with the HR-pQCT measurements at the calcaneus, 

distal radius and distal tibia: total CSA, total vBMD, trabecular vBMD, outer 

trabecular vBMD, inner trabecular vBMD, BV/TVd, Tb.N*, Tb.Thd and Tb.Spd. 

 

6.4 Results 

6.4.1 Participant characteristics 

Fifteen premenopausal women participated in the study. The participant’s 

descriptive statistics and DXA imaging measurements are presented in Table 6.2. 

 

Table 6.2. Participant descriptive statistics and 
DXA measurements. 

Age, years 32 (5) 

Height, m 1.64 (0.06) 

Weight, kg 65.0 (13.9) 

BMI, kg/m-2  24.1 (3.9) 

Lumbar spine aBMD, g/cm-2 1.070 (0.899, 1.100) 

Lumbar spine T-score 0.2 (-1.3, 0.5) 

Total hip aBMD, g/cm-2 0.951 (0.093) 

Total hip T-score 0.1 (0.8) 

Femoral Neck aBMD, g/cm-2 0.796 (0.079) 

Femoral Neck T-score -0.5 (0.7) 

Lumbar spine aBMD and T-score presented as median 
(IQR). All other data presented as mean (±SD) 

 

6.4.2 Calcaneus HR-pQCT measurement precision error 

6.4.2.1 Mid-point reference line precision error 

For the 45 individual acquisitions, the SDRMS was 1.26 mm, which corresponded to 

14.0% of the total stack length. Figure 6.1 shows the individual data for the mid-

point reference line placement between the first, second and third image 
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acquisitions as a CV%. There was no statistically significant effect of the image 

acquisition time on the mid-point reference line placement CV%.  

 

 

6.4.2.2 Calcaneus HR-pQCT image quality 

Figure 6.2 shows the relative frequency of the image quality grades from the 

calcaneus HR-pQCT image acquisitions, obtained for short-term measurement 

precision error analysis. An acceptable HR-pQCT image was obtained for each 

participant at each image acquisition time point.  

From the baseline HR-pQCT image acquisitions, 32% has no artefact, 47% had 

slight and/or pronounced artefact, and 21% had unacceptable artefacts (definitions 

in Section 2.3.1). The 4 images with unacceptable artefacts were repeated. All 

repeats had pronounced image artefacts and were included in the analysis. 1 HR-

pQCT image that had pronounced artefact was repeated, however the image grade 

did not improve. The scan technician deemed this acceptable for inclusion in the 

analysis.  

From the same-day HR-pQCT image acquisitions, 44% had no artefact, 56% had 

slight and pronounced image artefacts, and no images had unacceptable artefacts. 

 

 

 

 Figure 6.1. Box and Whisker plots for the mid-point 
reference line placement on the calcaneus HR-pQCT 
scout view. 
The coefficient of variation (%) for each individual participant is 
presented within each time point, with pooled median, IQR, and 
minimum and maximum values. A Friedman test was performed 
with Dunn’s corrected multiple comparisons. 
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1 HR-pQCT image that had pronounced artefact was repeated. The repeat had 

slight image artefact and was included in the analysis. 

From the 4-week HR-pQCT image acquisitions, 37% has no artefact, 47% had slight 

and pronounced artefact, and 16% had unacceptable artefacts. 3 unacceptable 

image acquisitions were repeated. 1 repeat had no artefact and 2 repeats had 

pronounced image artefacts, and were all included in the analysis. 1 HR-pQCT 

image that had pronounced artefact was repeated. The repeat had a slight image 

artefact grade and was included in the analysis. 

 

 

6.4.2.3 Image registration 

Figure 6.3 shows the common volume between the calcaneus HR-pQCT images 

following the 3D registration, with comparisons made between scans obtained on 

the same-day (Scan1-2), 4-weeks apart (Scan1-3) and all 3 scans combined (all 

scans).  

There was a significant effect of the scan combination on the common volume. The 

common volume was higher between Scan1-2 than all scans (rank sum difference = 

23.5, p<0.001). There were no differences in the common volume between the 

Scan1-2 and Scan1-3 (rank sum difference = 11, p=0.13), and between Scan1-3 

and all scans (rank sum difference = 12.5, p=0.07). 

 

 

 

 Figure 6.2. Image quality grades for the superior 
region calcaneus HR-pQCT images obtained for 
short-term measurement precision error calculation. 
Participants = 15. The number of HR-pQCT image acquisitions 
including repeats: Baseline = 19; Same-day = 16; 4-week = 19. 
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Between the three repeated and repositioned calcaneus HR-pQCT image 

acquisitions, the median (IQR) common volume was significantly greater for the 

CSA-based registration (90% (89, 93%)) compared to 3D registration (76% (70, 

79%)); sum of positive, negative ranks = 120, 0, p<0.001 (Figure 6.4).  

 

 

 

 

 Figure 6.3. Box and Whisker plots for the common volume 
percentage between the 3D registered HR-pQCT images at 
the superior region of the calcaneus. 
Scan 1-2 = baseline and same-day; Scan 1-3 = baseline and 4-week; 
All scans = baseline, same-day and 4-week. 
Data are presented for each participant within each integration time, 
with the median, interquartile range, and minimum and maximum 
values. Friedman test was performed with Dunn’s corrected multiple 
comparisons between the scan comparisons. 

 

 

 

 

 Figure 6.4. Box and Whisker plots for the common volume 
percentage between all scans at the superior region of the 
calcaneus following CSA-based and 3D registration.  
Data are presented for each participant within each integration time, 
with the median, interquartile range, and minimum and maximum 
values. A Wilcoxon-signed rank test was performed between the 
registration methods. 

 

Scan 1-2 Scan 1-3 All scans
50

60

70

80

90

100

Scan comparison

C
om

m
on

 v
ol

um
e 

(%
)

χ2(2)=19.8, p<0.001

p<0.001

CSA reg 3D reg
50

60

70

80

90

100

Registration method

C
om

m
on

 v
ol

um
e 

(%
)

p<0.001



 161 

 

6.4.2.4 Short-term precision error and the least significant change 

Table 6.3 shows the descriptive calcaneus HR-pQCT measurements, and the short-

term precision error (SDRMS and CV%RMS) and associated LSCs without registration, 

with CSA-based and 3D registration. Total and trabecular vBMD measurements 

short-term precision error was generally lower with CSA-based and 3D registration, 

when compared to measurements with no registration. Without registration the 

SDRMS ranged from 4-7 mg HA/cm-3 and the CV%RMS ranged from 1.5-2.4%; with 

CSA-based registration the SDRMS ranged from 2-5 mg HA/cm-3 and the CV%RMS 

ranged from 0.8-1.6%; and with 3D registration the SDRMS ranged from 2.4-4.9 mg 

HA/cm-3 and the CV%RMS ranged from 0.9-1.9%. BV/TVd and Tb.Thd followed a 

similar pattern to trabecular vBMD, where as Tb.N* and Tb.Spd were similar 

between the three methods. The trabecular microstructure CV%RMS precision error 

without registration ranged from 1.7-2.2%, with CSA-based registration ranged from 

1.4-1.8% and with 3D registration ranged from 1.6-1.8%. LSC measurements 

followed similar relationships to the SDRMS and CV%RMS. 

Figure 6.5A-H shows the CV% for total vBMD and trabecular vBMD, BV/TVd and 

trabecular microstructure measurements between the repeat, repositioned 

calcaneus HR-pQCT images with no registration, CSA-based and 3D registration. 

Post-hoc analyses are presented in the text as rank sum differences from the 

Friedman tests. 

There was no statistically significant effect of the registration method on total vBMD 

CV%. There was, however, a statistically significant effect of the registration method 

on trabecular vBMD, outer and inner trabecular vBMD CV%. The trabecular vBMD 

CV% was lower with CSA-based registration compared to no registration (16.5, 

p=0.008), and there were no differences in the CV% between 3D registration and no 

registration (9.0, p=0.30) and the CSA-based and 3D registration methods (-7.5, 

p=0.51). The outer trabecular vBMD CV% were lower with CSA-based (15.0, 

p=0.02) and 3D registration (13.5, p=0.04) compared to no registration, whereas 

there was no difference between the CSA-based and 3D registration methods (-1.5, 

p>0.99). The inner trabecular vBMD CV% was lower with CSA-based registration 

compared to no registration (15.5, p=0.01), whereas there were no differences 

between the 3D registration and no registration (11.5, p=0.11), and between the 

CSA-based and 3D registration methods (-4.0, p>0.99). 
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There was a statistically significant effect of the registration method on BV/TV CV%, 

following a similar relationship to trabecular vBMD. The BV/TV CV% was lower with 

CSA-based registration compared to no registration (15.5, p=0.01), whereas there 

were no differences between the 3D registration and no registration (8.5, p=0.36), 

and the CSA-based and 3D registration methods (-7.0, p=0.60). 

There were no statistically significant effects of the registration method on Tb.N*, 

Tb.Thd and Tb.Spd CV%. 
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Figure 6.5. Box and whisker plots of the superior region calcaneus 
volumetric BMD measurement coefficient of variation between the three 
repositioned HR-pQCT scans, without registration, after CSA-based and 3D 
registration. 
A − Total vBMD; B − Tb.vBMD; C − Outer Tb.vBMD; D − Inner Tb.vBMD; E − BV/TVd; F − 
Tb.N*; G − Tb.Thd; H − Tb.Spd. 
Data are presented for each participant within each registration method, with the median, 
IQR, and minimum and maximum values. Friedman test’s were performed with Dunn’s 
corrected multiple comparisons.  
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Figure 6.6 shows the percentage change in total vBMD, trabecular vBMD and Tb.N* 

with positive and negative slice shifts of the volume of interest, following CSA-based 

registration. For total vBMD (Figure 6.6A) and trabecular vBMD (Figure 6.6B), there 

were trends for an increase with a positive slice shift (i.e. movement of the region of 

interest in the superior direction) and a decrease with a negative slice shift (i.e. 

movement of the region of interest in the inferior direction). A weak-moderate 

prediction of the percentage change in total vBMD (r2 = 0.40, p<0.001), and a 

moderate prediction of the percentage change in trabecular vBMD (r2 = 0.62, 

p<0.001) could be made with slice shifts using a regression equation. In Figure 

6.6B, removal of the data point located at slice shift +21 and change in trabecular 

vBMD of +5.1% weakened the prediction (r2 = 0.57, p<0.001), but had a minimal 

effect on the regression slope, intercept or RMSE (Y = 0.296*X − 0.155, RMSE = 

1.6 mg HA/cm-3). There were no significant correlations for Tb.Thd and Tb.Spd. 

 

 

6.4.3 Non-dominant vs. dominant 

Table 6.4 shows the comparison between the HR-pQCT measurements from the 

non-dominant and dominant calcaneus. There were no differences in the total CSA, 

volumetric BMD and trabecular microstructure between the non-dominant and 

dominant calcaneus region. 

 

 
Figure 6.6. Percentage change in total volumetric BMD (A), trabecular volumetric 
BMD (B) and trabecular number (C) in relation to the slice shift in the superior 
region of the calcaneus. 
The slice shift was record from the CSA registration between the baseline and same-day HR-
pQCT images, and between the baseline and 4-week HR-pQCT images. 
Linear regression analyses: Total vBMD – r2 = 0.40 (p<0.001), Y = 0.231*X − 0.434, RMSE = 
2.1 mg HA/cm-3; Tb.vBMD – r2=0.63 (p<0.001), Y = 0.279*X − 0.190, RMSE = 1.6 mg HA/cm-3; 
Tb.N* – p=0.76. 
N = 15 participants, with 2 measurements. 
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6.4.4 Skeletal site comparison 

6.4.4.1 HR-pQCT image quality 

Figure 6.7 shows the HR-pQCT image quality grades between the calcaneus, distal 

radius and distal tibia image acquisitions. At the calcaneus, 21% of the scan images 

had an unacceptable image quality, 47% had a slight and pronounced image 

quality, and 32% had no artefact. At the distal radius, 54% of the scan image had an 

unacceptable image quality, 42% had a slight and pronounced image quality, and 

4% had no artefact. At the distal tibia, 6% of the scan images had an unacceptable 

image quality, 13% had a slight and pronounced image quality, and 81% had no 

artefact. Repeat calcaneus and distal tibia HR-pQCT images had acceptable image 

quality grades. Of the 9 repeated distal radius image acquisitions, 3 still had 

unacceptable image quality. 

Table 6.4. Comparison of measurements obtained from the non-dominant and 
dominant superior region of the calcaneus HR-pQCT images. 

 
Calcaneus site 

 Mean (95% CI)  
absolute difference 

Non-dominant Dominant  Δ p value 

Total CSA, mm-3 1266 (1183, 1348) 1287 (1170, 1403)  21.0 (-38.3, 80.3) 0.48 
Total vBMD,  
mg HA.cm-3 

345 (324, 366) 340 (323, 358)  -4.8 (-15.9, 6.4) 0.37 

Tb.vBMD,  
mg HA.cm-3 

258 (245, 271) 255 (244, 266)  -3.0 (-12.9, 6.8) 0.52 

Outer Tb.vBMD, 
mg HA.cm-3 

285 (274, 297) 282 (274, 290)  -3.2 (-9.8, 3.5) 0.32 

Inner Tb.vBMD, 
mg HA.cm-3 

240 (225, 254) 237 (222, 251)  -2.9 (-15.6, 9.7) 0.63 

BV/TVd, % 21.5 (20.4, 22.6) 21.3 (20.3, 22.2)  0.2 (-1.0, 0.5) 0.53 
Tb.N*, mm-1 3.17 (3.03, 3.30) 3.19 (3.06, 3.31)  0.02 (-0.04, 0.08) 0.42 
Tb.Thd, µm 68 (64, 72) 67 (63, 71)  -1 (-3, 1) 0.34 
Tb.Spd, µm 249 (238, 261) 248 (238, 259)  -1 (-7, 5) 0.73 

Data shown for 15 participants as mean (95% CI).  
Δ (difference) = Dominant minus non-dominant. 
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6.4.4.2 HR-pQCT site comparison 

12 participants with acceptable HR-pQCT image quality for the calcaneus, distal 

radius and distal tibia were included in the repeated measures analysis. 

Figure 6.8A-E shows the total CSA, total and trabecular volumetric BMD 

comparison between the superior region of the calcaneus, distal radius and distal 

tibia. Post-hoc analyses are presented in text as mean (95% CI) differences from 

the one-way ANOVAs (total CSA, total vBMD, trabecular vBMD and outer trabecular 

vBMD) and rank sum differences from the Friedman tests (inner trabecular vBMD). 

There were also significant effects of the skeletal site on total vBMD, trabecular 

vBMD, and outer and inner trabecular vBMD. Total vBMD was higher at the superior 

region of the calcaneus compared to the distal tibia (39 (17, 62) p<0.001), but not 

the distal radius (31 mg HA.cm-3 (-7, 69 mg HA.cm-3), p=0.13). Trabecular vBMD 

was higher at the superior region of calcaneus compared to the distal radius (107 

mg HA.cm-3 (92, 122 mg HA.cm-3), p<0.001) and the distal tibia (94 mg HA.cm-3 (76, 

112 mg HA.cm-3), p<0.001). The superior region of the calcaneus also had higher 

outer and inner trabecular vBMD: outer trabecular vBMD compared to the distal 

radius (75 mg HA.cm-3 (60, 91 mg HA.cm-3), p<0.001) and distal tibia (62 mg HA.cm-

3 (40, 84 mg HA.cm-3), p<0.001); inner trabecular vBMD compared to the distal 

radius (-20, p<0.001) and distal tibia (-16, p=0.003). There were no differences 

between distal radius and distal tibia total vBMD (-9 mg HA.cm-3 (-23, 41 mg HA.cm-

3), p>0.99), trabecular vBMD (-13 mg HA.cm-3 (-31, 5 mg HA.cm-3), p=0.22), outer 

 

 

 

 Figure 6.7. Image quality grades for superior region of the 
calcaneus, distal radius and distal tibia HR-pQCT images. 
Participants = 15.  
Number of HR-pQCT image acquisitions including repeats: Calcaneus 
= 19; Distal radius = 24; Distal tibia = 16.  

 

Calcaneus Distal radius Distal tibia
0

25

50

75

100

Anatomical site

R
el

at
iv

e 
fr

eq
ue

nc
y 

(%
) No artefact

Slight

Pronounced

Unacceptable



 168 

trabecular vBMD (13 mg HA.cm-3 (-8, 34 mg HA.cm-3), p=0.32) and inner trabecular 

vBMD (-4, p>0.99). 

 

 

Figure 6.8. Volumetric BMD measurement comparison between the 
superior region of the calcaneus, the distal radius and distal tibia.  
A – Total CSA; B – Total vBMD; C – Tb.vBMD; D – Outer Tb.vBMD; E – Inner 
Tb.vBMD. 
ANOVA (mean (95%CI)) – Total CSA, Total vBMD, Tb.vBMD and Outer Tb.vBMD; 
Friedman test (median (IQR)) – Inner Tb.vBMD. 
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Figure 6.9A-D shows the BV/TVd and trabecular microstructure measurement 

comparison between the superior region of the calcaneus, distal radius and distal 

tibia. Post-hoc analyses are presented in text as mean (95% CI) differences for the 

one-way ANOVAs (BV/TVd, Tb.N* and Tb.Thd) and rank sum differences for the 

Friedman test (Tb.Spd).  

There was a significant effect of the skeletal site on BV/TVd, Tb.N*, Tb.Spd, but not 

on Tb.Thd. BV/TVd at the superior region of the calcaneus was higher compared to 

the distal radius (8.9% (7.6, 10.1%), p<0.001) and distal tibia (7.8% (6.3, 9.3%), 

p<0.001), as was Tb.N* (distal radius 1.4 mm-1 (1.1, 1.6 mm-1), p<0.001; distal tibia 

(1.3 mm-1 (1.1, 1.6 mm-1), p<0.001), whereas Tb.Spd was lower compared to the 

distal radius (-19, p<0.001) and distal tibia (-17, p=0.002). There were no 

differences between the distal radius and distal tibia BV/TVd (-1.1% (-2.6, 0.1%), 

p=0.23), Tb.N* (-0.0 mm-1 (-0.3, 0.3 mm-1), p>0.99) and Tb.Spd (2, p>0.99). 

 

 
Figure 6.9. BV/TV and trabecular microstructure measurement comparison 
between the superior region of the calcaneus, the distal radius and distal 
tibia.  
A – BV/TVd; B – Tb.N*; C – Tb.Thd; D – Tb.Spd. 
ANOVA (mean, 95%CI) – BV/TVd, Tb.N*, Tb.Thd; Friedman test (median, IQR) – Inner 
Tb.vBMD.  
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Figure 6.10A-C shows the trabecular microstructure measurements for the superior 

region of the calcaneus following adjustment for the scan integration time (100 ms to 

200 ms) in comparison to the distal radius and distal tibia. Post-hoc analyses are 

presented in text as mean (95% CI) differences from the one-way ANOVAs 

(adjusted Tb.N* and Tb.Thd) and rank sum differences from the Friedman tests 

(adjusted Tb.Spd).  

There was a significant effect of the skeletal site on adjusted Tb.N*, similar to that 

found in the standard Tb.N*. The adjusted Tb.N* was higher at the calcaneus 

compared to the distal radius (0.8 mm-1 (0.5, 1.1 mm-1), p<0.001) and distal tibia 

(0.8 mm-1 (0.6, 0.1 mm-1), p<0.001). Additionally, there was a significant effect of the 

skeletal site on adjusted Tb.Spd, similar to the standard Tb.Spd, which was lower at 

the calcaneus compared to the distal radius (-19, p<0.001) and distal tibia (-17, 

p=0.002). There was also a significant effect of the skeletal site on adjusted Tb.Thd, 

which was not reported with the standard Tb.Thd. The adjusted Tb.Thd was higher at 

the superior region of the calcaneus compared to the distal radius (14 µm (1, 22 

µm), p<0.001), but was not different to the distal tibia (8 µm (-1, 18 µm), p=0.12).

 

 

6.4.5 Skeletal site correlation 

6.4.5.1 HR-pQCT: calcaneus, distal radius and distal tibia 

For the correlation analysis, 12 participants were analysed for the calcaneus-distal 

radius comparison and 15 participants were analysed for the calcaneus-distal tibia 

comparison, due to the availability of acceptable quality HR-pQCT images.  

 
Figure 6.10. Adjusted trabecular microstructure measurements from the superior 
region of the calcaneus in comparison to distal radius and distal tibia 
measurements. 
A – adjusted Tb.N*; B – adjusted Tb.Thd; C – adjusted Tb.Spd. 
ANOVA (mean (95%CI)) – adjusted Tb.N*, adjusted Tb.Thd; Friedman test (median (IQR)) – 
adjusted Tb.Spd.  
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Figure 6.11A-D shows the total and trabecular volumetric BMD correlation analysis 

between the calcaneus, distal radius and distal tibia. The calcaneus and distal 

radius was not significantly correlated for total vBMD and inner trabecular vBMD, 

but had a moderate, borderline significant correlation for outer trabecular vBMD and 

had a moderate-strong correlation for trabecular vBMD. The calcaneus and distal 

tibia were significantly correlated for all measurements. Total vBMD had a strong 

correlation, trabecular vBMD and inner trabecular vBMD had a moderate-strong 

correlation, and outer trabecular vBMD had a moderate correlation.  

 

 
Figure 6.11. Volumetric BMD measurement correlation between the 
superior region of the calcaneus, the distal radius and distal tibia.  
A – Total vBMD; B – Tb.vBMD; C – Outer Tb.vBMD; D – Inner Tb.vBMD. 
Red circle – calcaneus vs. radius (n=12); Blue square – calcaneus vs. tibia (n=15). 
Pearson’s correlation with 95% CI – Total vBMD, Tb.vBMD and Outer Tb.vBMD. 
Spearman’s correlation with 95% CI – Inner Tb.vBMD. 
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Figure 6.12A-D shows the BV/TVd and the trabecular microstructure correlation 

analysis between the calcaneus, distal radius and distal tibia; the corrected 

calcaneus trabecular microstructure measurements are reported in this analysis.  

The calcaneus and distal radius was moderate-strongly correlated for BV/TVd. There 

was no correlation between the calcaneus and the distal radius for Tb.N*, Tb.Thd 

and Tb.Spd. The calcaneus and distal tibia were moderate-strongly correlated for 

BV/TVd. There were moderate correlations between calcaneus and distal tibia 

Tb.Thd and Tb.Spd, and there was no correlation in Tb.N*. Correlation analysis 

results from the adjusted trabecular microstructure did not differ to the uncorrected 

trabecular microstructure. 

 
Figure 6.12. BV/TV and trabecular microstructure measurement correlation 
between the superior region of the calcaneus, the distal radius and distal 
tibia.  
A – BV/TV; B – Tb.N*; C – Tb.Thd; D – Tb.Spd. 
Red circle – calcaneus vs. radius (n=12); Blue square – calcaneus vs. tibia (n=15). 
Pearson’s correlation with 95% CI – BV/TVd, Tb.N*, Tb.Thd; Spearman’s correlation with 
95% CI – Tb.Spd. 
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6.4.5.2 HR-pQCT vs. DXA 

Figure 6.13 shows the correlation analysis between calcaneus, distal radius and 

distal tibia total vBMD and trabecular vBMD, and lumbar spine, total hip and femoral 

neck aBMD. No correlations were found between the calcaneus, tibia and radius 

total vBMD and trabecular vBMD, and the lumbar spine, total hip and femoral neck 

aBMD.  

 

Figure 6.13. Calcaneus, distal radius and distal tibia total and trabecular 
volumetric BMD correlation with lumbar spine, total hip and femoral neck areal 
BMD. 
Total vBMD vs. Lumbar spine (A), Total hip (C) and Femoral neck aBMD (E). 
Trabecular vBMD (Tb.vBMD) vs. Lumbar spine (B), Total hip (D) and Femoral neck aBMD (F).  
Red circles – distal radius; Blue squares – distal tibia; Green triangles – calcaneus. 
Pearson’s correlation with 95% CI – Lumbar spine aBMD; Spearman’s correlation with 95% CI 
– Total hip and Femoral neck aBMD.  
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6.4.6 Skeletal site vs. height and weight 

Table 6.5 shows the correlation analysis between the calcaneus, distal radius and 

distal tibia volumetric BMD, BV/TVd and trabecular microstructure measurements, 

and participants height and weight.  

The total CSA for each skeleton site was positively correlated with height. Distal 

radius and distal tibia total vBMD was negatively correlated with height, but the 

superior region calcaneus was not. However, calcaneus trabecular vBMD, outer and 

inner trabecular vBMD and BV/TVd were negatively correlated with height, whereas 

the distal radius and distal tibia were not for these measurements. Distal tibia and 

the superior region of the calcaneus Tb.Thd was negatively correlated with height, 

but the distal radius was not. Tb.N* and Tb.Spd were not significantly correlated with 

height at any of the skeletal sites.  

The total CSA for each skeleton site was positively correlated with weight. In 

comparison to the volumetric BMD measurements, weight was only correlated with 

trabecular vBMD at the superior region of the calcaneus, although this had 

borderline significance (p=0.05). There were no correlations between the distal 

radius and distal tibia with weight for any of the volumetric BMD measurements. 

Weight was positively correlated with Tb.N* at the superior region of the calcaneus, 

and negatively correlated with Tb.Thd and Tb.Spd. Distal tibia Tb.Thd was also 

negatively correlated with weight, but not Tb.N* or Tb.Spd, and weight was not 

correlated with trabecular microstructure measurements at the distal radius.  
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6.5 Discussion 

This Chapter described the evaluation of calcaneus HR-pQCT short-term 

measurement precision error in vivo. In comparison to the relative precision errors 

reported at the distal radius and distal tibia (Table 6.1), the calcaneus total vBMD 

and trabecular vBMD were within a similar range (0.9-1.9% vs. 0.5-2.1%) and the 

trabecular microstructure was towards the lower end of the range reported in the 

literature (1.4-1.8% vs. 1.0-7.0%). There seemed to be no additional benefit in 

applying 3D registration over CSA-based registration to align the HR-pQCT images. 

The calcaneus HR-pQCT image acquisitions seemed to be better tolerated (i.e. 

lower movement artefacts) by participants than the distal radius, but not the distal 

tibia image acquisitions. The superior region of the calcaneus also had greater 

trabecular vBMD and Tb.N* than the distal radius and distal tibia.  

The results show that controllable sources of precision error were minimised, such 

as positioning and movement artefacts. The image registration procedure was 

important to correct for the repositioning and mid-point reference line placement 

error. Marginal significance and trends were identified in improving calcaneus total 

and trabecular vBMD measurement precision errors. This has also been 

demonstrated at the distal radius and distal tibia in healthy premenopausal women 

[176, 177]. Also, the precision error for total and trabecular vBMD and trabecular 

microstructure seems independent of the registration method both in the work 

described in the Chapter and by Ellouz et al., [177]. MacNeil and Boyd [176] did 

report marginal improvements with 3D registration compared to CSA-based 

registration, however, the registration method may have artificially manipulated 

measurements with transformation of the grey-scale HR-pQCT images. The small 

changes with correction for angular deviations between the images could be 

supported by the uniformity of Tb.N* (which Tb.Thd and Tb.Spd are dependent on) at 

the distal radius and distal tibia [203, 230]. This uniformity could also be 

demonstrated in Tb.N* at the superior region of the calcaneus from the slice shifts 

(Figure 6.6), which also suggests that the precision for calcaneus trabecular 

microstructure are dependent on movement artefacts rather than repositioning error. 

A clinically significant change in calcaneus total vBMD and trabecular vBMD 

measurements could be reported with a change greater than 3.8% (13.5 mg HA/cm-

3) and 2.4-5.3% (6.7-13.2 mg HA/cm-3), respectively. These relative and absolute 

results are similar to other studies, if the 95% LSC criterion was applied (Table 6.1). 
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A clinically significant change in Tb.N*, Tb.Thd and Tb.Spd could be reported with a 

change greater than 4.4% (0.14 mm-1), 3.9% (3 µm) and 5.0% (10 µm), respectively, 

which would be lower than those reported from previous studies with the 95% 

criterion applied (precision error multiplied by 2.77) (Table 6.1). The SDRMS LSC 

reported by Ellouz et al., [177] was similar to the current study for Tb.N* (0.14-0.22 

mm-1) and also trabecular vBMD (5-10 mg HA/cm-3), which are used to calculated 

Tb.Thd and Tb.Spd. Furthermore, the precision for plate-like Tb.N* has been 

reported to be lower than rod-like Tb.N* (0.9-2.3% vs. 3.5-3.6%, respectively) [241] 

and is lower for cortical vBMD and cortical thickness at more proximal regions of the 

distal radius and tibia, which are denser and thicker [155]. Therefore, the lower 

relative precision errors and LSCs for calcaneus trabecular microstructure 

measurements could be attributed to higher Tb.vBMD and Tb.N* found at the 

superior region of the calcaneus. 

The preliminary comparison of the HR-pQCT images revealed no effect of 

dominance on the superior region of the calcaneus. Therefore, in agreement with 

Hildebrandt et al., [249], the non-dominant side should be imaged for the calcaneus 

HR-pQCT scans, and if contraindicated the dominant side can be used. Determining 

whether these findings are found with different ages and physical functions, and 

also in males, is outside of the scope of this work and would require testing in a 

larger sample size.  

Even with the small sample size, large inter-site differences were found between the 

superior region of the calcaneus and the distal radius and distal tibia. Calcaneal 

trabecular vBMD, including the outer and inner regions, was 1.4-2.3 fold higher than 

the distal radius and 1.3-1.9 fold higher than the distal tibia. This was reflected by 

higher Tb.N* and lower Tb.Spd, as well as a greater adjusted Tb.Thd compared to 

the distal tibia. The higher connectivity density and lower Tb.Sp found between 

calcaneus and distal radius trabecular specimens using micro-CT [228] supports the 

current HR-pQCT findings. However, making further inferences is difficult due to the 

lack of correlation between these peripheral sites vBMD and microstructure.  

The positive effect of mechanical loading and weight has been well established in 

relation to calcaneus QUS measurements and BMD [122, 123, 125, 127, 134, 138], 

as well as BMD, microstructure and geometry at central and other peripheral sites of 

the skeleton [21, 133, 134, 257, 258]. The Chapter’s preliminary findings may 

indicate a greater weight-bearing influence at the superior region of the calcaneus 

compared to the distal tibia, as shown by correlations with Tb.N*. The differences 

between the sites could be explained by the proximity of the respective regions of 
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interest to the articular surfaces, where compressive strains are higher. The superior 

region of the calcaneus includes bone that is in contact with the subtalar articular 

surface, whereas the distal tibia region of interest is located 22.5 mm proximal to the 

distal articular plateau, and has a larger cortical envelope. Movement of the region 

of interest towards the distal end of the tibia shows an increase in trabecular vBMD 

(i.e. increase in total vBMD and decrease in cortical BMC and thickness) [252]. The 

distal tibia region, as indicated by standard HR-pQCT measurement, shares 

compression, bending and torsional strains, which have been attributed to the 

higher cortical vBMD and thicker cortex [252, 259]. Interestingly, trabecular vBMD 

and Tb.N* at the subchondral proximal tibia and distal femur, which have high 

compressive mechanical loads with habitual locomotion, are comparable to the 

superior region of the calcaneus [93]. This preliminary data may suggest that the 

biological changes at the superior region of the calcaneus could be tapered by its 

weight bearing properties compared to the distal tibia. The data may also support a 

use in quantifying the superior region of the calcaneus in mechanical loading 

investigations.  

The correlation between height and some of the HR-pQCT measurements at the 

skeletal sites align with ‘errors’ caused by using fixed offsets for obtaining HR-pQCT 

scans [230, 236]. For the distal radius and distal tibia, the negative correlation 

between height and the total vBMD can be caused by imaging different sites of the 

long bone between people with different heights. In shorter people, who likely have 

shorter radii and tibia lengths, the region of interest would be more proximal 

compared to taller people due to the fixed offset that is applied from the anatomical 

landmarks at these sites [236]. Subsequently, shorter people would have a region 

imaged that has a thicker cortex with a greater cortical vBMD, which would have 

significant effect on total vBMD [203, 230]. The results in this Chapter would 

suggest a similar finding at the calcaneus. For example, shorter participants may 

have a smaller distance between the two fixed anatomical landmarks for the mid-

point reference line placement. Applying a fixed offset would then place the superior 

region of interest more ‘superior’ compared to taller participants, which may explain 

why trabecular vBMD increased as height decreased. This does highlight a 

limitation in applying the current positioning protocol in cross-sectional studies; but 

this could be overcome by using a relative offset for the scan position and a relative 

scan area [230].  

The site comparison analyses identified moderate to strong correlations for total and 

trabecular vBMD between the superior region of the calcaneus and distal tibia. Most 
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of the correlations between the calcaneus and the distal radius were weaker and 

insignificant, apart from trabecular vBMD. The small sample size in this Chapter 

limited the power to detect significant correlations between peripheral sites using 

HR-pQCT and central sites using DXA, whereas other studies have presented 

significant correlations [253-256]. However, the important comparison to make 

would be to fracture risk; total, trabecular and cortical vBMD, cortical area and 

thickness, trabecular number, and estimated bone stiffness and failure load at the 

distal radius and tibia can predict major osteoporotic fractures in addition to DXA 

and FRAX [80-82, 221]. Calcaneus QUS measurements and BMD can predict 

fracture risk [111, 140, 142], but do not seem to provide additional information to 

DXA measurements at the lumbar spine and hip [141]. It remains to be seen 

whether additional predictive measurements can be obtained using calcaneus HR-

pQCT measurements, particularly in comparison to those identified at the distal 

radius and distal tibia. 

There were limitations to this study that may have implications for the calcaneus 

precision error measurements and also the site comparison analyses.  

The calcaneus HR-pQCT measurements precision error may not be applicable to 

participants with osteoporosis. Participants with osteoporosis can have more 

challenging HR-pQCT images to contour and segment [151, 240], which could be 

anticipated due to the thin and apparent low mineralisation at the calcaneal cortices.  

The study was unable to control for all factors in measurement precision error. 

There were no large deviations in the calibration phantom densities during the 

measurement period (Figure 2.8). The study applied image registration to the 

calcaneus HR-pQCT images to correct for repositioning; however this may not 

eliminate all repositioning errors, as shown with and without repositioning in human 

cadaveric specimen [176]. Movement artefacts have also been well established due 

to the scan duration [94, 95, 260] and there is no method to correct for movement 

artefacts in images.  

Movement artefacts were particularly problematic in the distal radius HR-pQCT 

images compared to the calcaneus and distal tibia. This followed a consistent trend 

reported in other studies between the distal radius and distal tibia [94, 95, 151, 155]. 

Here, distal radius HR-pQCT images could not be obtained from all participants; 

therefore these participants were excluded from the repeated measures analysis. 

Nonetheless, inclusion of the 15 participants in calcaneus and distal tibia 

comparisons revealed similar results to those found with 12 participants. The image 
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quality grades also revealed that the foot position for calcaneus HR-pQCT scans 

leads to movement artefacts, as this was the only positional difference to the distal 

tibia scans, which had excellent image quality grades. Therefore, it could be thought 

that there is scope to minimise movement artefacts and lower precision error in the 

calcaneus HR-pQCT scans.  

A 100 ms integration time was selected for quantification of the precision error for 

calcaneus HR-pQCT measurements. The estimation of trabecular microstructure 

measurements at this integration time could be affected by greater image noise 

(Chapter 4), which may have contributed to the higher Tb.N* and lower trabecular 

microstructure precision error. The reasons for not choosing the 200 ms integration 

time for the precision error quantification were: (1) the loss of degrees of freedom for 

precision error estimation due to the increased likelihood of movement artefact at a 

200 ms integration time with the current imaging apparatus (shown in Chapter 5); 

(2) that the volumetric BMD measurements were not affected by integration time 

(Chapter 4 and 5); (3) and that there were reasonable correlations for the trabecular 

microstructure at the superior region of the calcaneus between the 100 ms and 200 

ms integration time scans in vivo (Chapter 5). 

A final limitation was identifying the calcaneus mid-point. The precision error was 

1.26 mm (equivalent to 15 HR-pQCT slices) and was poorer than Chapter 5 (0.69 

mm). The CV% for the mid-point identification was high in some participants, and 

may have been influenced by movement of the foot between the scout view 

acquisitions. As indicated in Chapter 5, the landmark identification and scaling of the 

scout view may exacerbate this error in comparison to measurements at the distal 

radius and distal tibia [154]. Whilst this error could be corrected for with image 

registration in longitudinal studies, the positional error reported in the mid-point 

identification (e.g. 15 HR-pQCT slices) may have a large impact in cross-sectional 

studies e.g. ±3% change in total vBMD and a ±4% change in trabecular vBMD 

(Figure 6.6). The procedure of reference line placement for the calcaneus HR-pQCT 

scans requires improvement for future studies.  

6.6 Conclusion 

The Chapter reports the calcaneus vBMD and trabecular microstructure short-term 

measurement precision error in vivo using the first generation XtremeCT. The 

precision error was comparable to that reported at the distal radius and distal tibia in 

previous studies, which lends support to the application of the method in vivo. The 
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superior region of the calcaneus has markedly different trabecular vBMD and 

microstructure compared to the distal radius and distal tibia, and also appears to be 

a more prominent weight-bearing region compared to the distal tibia. 
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CHAPTER 7 DISCUSSION 
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7.1 Main findings 

The aim of this thesis was to develop a method to quantify calcaneus vBMD and 

microstructure using HR-pQCT, which could be applied in vivo to monitor disease 

progression and the response to interventions for osteoporosis management. To 

achieve this, Chapter 2 to 6 described chronological research aims and objectives 

specific to developing the method, and determining measurement accuracy and 

reproducibility. 

Chapter 2 described the scanning methods used in the thesis. 3D image 

registration procedures were presented to (1) spatially align HR-pQCT and micro-

CT images and (2) determine a common volume mask between repeat HR-pQCT 

images, without manipulating image greyscale values i.e. vBMD and microstructure 

measurements. 

Chapter 3 proposed a foot position that aligned the superior and inferior surfaces of 

the calcaneus parallel to the scout view using human cadaveric feet. This position 

aimed to keep the surrounding tissues of the foot within the field of view. Local 

trabecular heterogeneity (vBMD and Tb.Thd) was identified along the superior-

inferior axis of the bone, and appreciable positional errors were induced by small 

shifts in the region of interest (±1.64 mm). 

Chapter 4 reported that measurements’ accuracy from calcaneus HR-pQCT images 

were comparable to previous validation studies performed at the distal radius and 

distal tibia. BV/TVd was strongly predicted and was independent of integration time 

and the region of interest. A 200 ms integration time seemed preferable for the 

quantification of calcaneus trabecular microstructure (Tb.N* and Tb.Spd) in situ, 

which was best predicted at the superior region of the bone. 

Chapter 5 found the calcaneus HR-pQCT scans were well tolerated by participants. 

Increasing the integration from 100 ms to 200 ms led to a reduction in calcaneus 

Tb.N*, which exceeded differences that have been associated with fracture risk at 

the distal radius and distal tibia in previous studies. The superior region of the 

calcaneus was measurable in all participants; however acquisition of the inferior 

region was impaired by the participants foot size and the dimension of the 

XtremeCT field of view.  

Chapter 6 found that calcaneus vBMD and trabecular microstructure could be 

measured with good precision in healthy premenopausal women. The precision 
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errors were similar between the CSA-based and 3D registration, and therefore 

either could be used to remove misalignment and find the common volume between 

repeat calcaneus HR-pQCT images. There were no dominance asymmetries in the 

calcaneus HR-pQCT measurements. The superior region of the calcaneus also had 

higher trabecular vBMD and Tb.N* compared to the standard distal tibia 

measurement region, and these measurements were moderate-strongly correlated 

with body weight. 

7.2 Original contributions and discussion 

My original contribution to the research area is a protocol to scan the calcaneus 

using HR-pQCT in vivo. Within the protocol there were several unique contributions 

that should be considered when utilising the method in studies and in continuing the 

method development.  

7.2.1 Foot positioning within the lower limb cast.  

Plantar-flexion at the ankle joint was the only positional change in comparison to the 

distal tibia HR-pQCT scans. This position was important to prevent surrounding 

tissues of the foot from crossing the field of view and avoid incomplete projections in 

the HR-pQCT images, potentially lead to an underestimation of vBMD 

measurements. This is a specific limitation to the dimensions of the XtremeCT field 

of view, but not using standard QCT and some pQCT devices. From scanning a 

small number of men and women (Chapter 5), the correct foot positioning (i.e. 

surrounding tissues within the field of view) was achieved when imaging the 

superior region of the calcaneus. However, this was not achieved when imaging the 

inferior region of the bone. Furthermore, the middle region (between the superior 

and inferior region, Chapters 3 and 4) in some participants may have also had 

surrounding tissues crossing the field of view from assessment of the HR-pQCT 

scout views.  

The physical size of the participant’s foot was an issue, but also utilising the lower 

limb cast (provided by the manufacturer for distal tibia HR-pQCT scans) restricted 

the correct positioning of the foot. The foot positioning and imaging apparatus may 

have also contributed to the greater presence of movement artefact at the 

calcaneus compared to in the tibia HR-pQCT images. There was difficulty in 

standardising the degree of plantar flexion, which affected the common volume 

between repositioned calcaneus HR-pQCT images. Therefore, even though the 



 186 

immobilisation of the foot was effective for the calcaneus HR-pQCT scans, 

positional aids and immobilisation procedures could be developed and implemented 

to improve the quality of the acquired images. 

7.2.2 Calcaneus microstructure accuracy is dependent on the region 

measured.  

The accuracy of the calcaneus BV/TVd and trabecular microstructure (Tb.N* and 

Tb.Spd) measured by the first generation XtremeCT was dependent on the region 

evaluated. The region with the strongest correlation and best accuracy for trabecular 

microstructure was the superior region when compared to micro-CT measurements. 

The correlation became weaker and less accurate as the quantities of soft tissue 

increased (inferior > middle > superior) and as the BV/TV got lower and the 

trabeculae got thinner (micro-CT Tb.Th: inferior < middle < superior). Dissection of 

the calcaneus from the foot improved the trabecular microstructure correlation and 

accuracy, supporting the impact that the surrounding tissues have on the 

measurements. This was particularly apparent at the inferior region, where there 

was no correlation for Tb.N* and Tb.Spd in situ and a significant, but weak, 

correlation following the dissection. Similar improvements in Tb.N* and Tb.Spd 

correlation and accuracy were also found between the superior and middle regions 

following dissection, suggesting that these regional differences were mainly 

dependent on calcaneal vBMD. The calcaneus CSA between the regions could also 

influence measurement accuracy (calcaneus CSA: superior < middle < inferior). 

This may also be apparent between the distal radius and distal tibia, with a greater 

overestimation of Tb.N* and a greater underestimation of Tb.Sp at the distal tibia 

[30]. The greater bone CSA may increase x-ray scatter and image noise [156], 

which may include noise as bone voxels with HR-pQCT image processing [172]. 

Therefore, even if foot positioning was improved for calcaneus HR-pQCT scans, the 

estimation of trabecular microstructure measurements may still be better at the 

superior region due to smaller CSA, combined with the higher vBMD.  

BV/TVd at the middle and inferior region could be utilised in studies if the foot 

positioning is improved, especially when considering that there were the strong 

correlations between HR-pQCT and micro-CT BV/TV. The middle region may, in 

fact, have the greatest clinical relevance, as it could be compared to existing data 

from a similar region of interest using BMD and BUA to determine fracture risk [111, 

140, 142] and monitor treatment response [145-147]. 
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7.2.3 Adaptation of the HR-pQCT scan integration time.  

Increasing scan integration time from 100 ms significantly improved the correlation 

and accuracy of the calcaneus trabecular microstructure HR-pQCT measurements 

(Tb.N* and Tb.Spd) compared to micro-CT. This work also appears to be the first to 

demonstrate the affect of integration time on HR-pQCT measurements in vivo. 

Increasing the integration time from 100 ms seemed to remove voxels that are noise 

from the images and increase the distance between the trabeculae ridges for 

measurement using the distance transformation method [165, 166]. Subsequently a 

200 ms integration time led to a significant decrease in Tb.N* and an increase in 

Tb.Thd and Tb.Spd, with vBMD measurements unperturbed, which supported 

findings from cadaveric experiments even though there were movement artefacts in 

the images. This presents a potential option to improve image quality and 

microstructure accuracy within first generation XtremeCT images. 

An increase in the integration time (50 to 100 ms) has been proposed as a 

necessary adaptation in imaging the knee using HR-pQCT due to the size of the 

joint [93]. Increasing the integration time would be most useful for the accuracy of 

measurements that that rely on distance-related calculations (e.g. Tb.N* (Chapter 

4), cortical thickness and cortical porosity [162]), and not attenuation-related 

measurements (e.g. vBMD and BV/TVd). Potentially adapting the integration time 

may be useful in imaging sites with greater surrounding tissues or material, such as 

proximal sites of the extremities or where a cast surrounds a site for immobilisation 

following a fracture [261]. A limitation from this adaptation is that there would be an 

increased likelihood of movement artefacts, which distance-related measurement 

precision is highly sensitive to [94, 95]. Added clinical value may need to be 

demonstrated before adapting HR-pQCT scan integration time.  

7.2.4 Precise calcaneus HR-pQCT measurements can be obtained in vivo.  

The current development of the procedure to quantify calcaneus HR-pQCT images 

demonstrates that the short-term precision error was robust for total and trabecular 

vBMD, and trabecular microstructure. This reflects a reduction in movement 

artefacts through immobilising the lower limb and of positional errors using an image 

registration workflow. The resulting measurement precision was comparable to 

those reported at the distal radius and distal tibia in previous work [79, 151, 155, 

177, 195, 240, 241].  

The calcaneus HR-pQCT measurements relative precision errors (CV%RMS) were 

lower than those reported using QUS in vivo (2-7% [113]). Therefore, with lower 
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LSCs and the capacity to complete volumetric and compartmental measurements, 

HR-pQCT would appear to be more capable in monitoring the intrinsic 

characteristics of the calcaneus over time compared to QUS. Nonetheless, these 

devices have different applications within osteoporosis, with QUS as a screening 

tool [113] and HR-pQCT as a research tool, but with potent clinical promise [234]. 

Determining whether clinically significant differences can be identified using the 

calcaneus HR-pQCT LSC would be an important next step, particularly regarding 

the trabecular microstructure, which appeared more precise than that found at the 

distal radius and distal tibia. This may make the superior region of the calcaneus an 

attractive candidate in clinical studies, particularly if investigating exercise studies or 

the interaction between load-bearing and other treatments. 

7.2.5 Calcaneus HR-pQCT image acquisition and processing differences 

compared to radius and tibia.  

Several adaptations to the procedure to image the calcaneus using HR-pQCT have 

been presented that are different to the measurement of the radius and tibia.  

The potential requirement for an increase in scan integration time has been 

discussed (Section 7.2.3). The calcaneus HR-pQCT scout view dimensions need to 

be maximised (0-150 mm) to ensure that the calcaneus is properly aligned. This 

removes anatomical detail compared to the radius and tibia scans, which have 

narrower scout view dimensions (90-120 mm and 73-103 mm, respectively). There 

is also difficulty in selecting a single, well-defined landmark to standardised 

calcaneus reference line positioning, due to the close proximity of the articular 

surfaces with surrounding bones of the foot. In contrast with the radius and tibia, two 

anatomical landmarks are selected to identify the mid-point, from which the 

reference point is determined to begin the calcaneus HR-pQCT image acquisition. 

The selection of the two landmarks is, however, essential to account for the 

difference in heel size between participants. This could be important to 

accommodate relative standardisation of this reference point, in alignment with 

recent recommendations for radius and tibia HR-pQCT scans [236]. 

The need for plantar-flexion at the ankle joint led to high variability in the calcaneus 

common volume between repeat HR-pQCT image acquisitions. The common 

volume (mean 76%, cropped method (Section 6.4.2.3)) was notably lower than that 

reported at the radius and tibia (88 and 82%, respectively) using similar methods 

[177]. Calcaneus total CSA (superior-inferior region) is significantly larger than the 

distal radius and distal tibia, particularly along the anterior-posterior axis of the bone. 
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Therefore, a small angular deviation in plantar-flexion at the ankle would be 

magnified in the calcaneus images, when compared to the same angular deviation 

at the radius and tibia. The magnified angular deviations would lead to a higher 

number of slices where the HR-pQCT image mask does not cover the whole 

calcaneus CSA (Figure 2.21); these slices were subsequently removed prior to 

image evaluation. Adjusting the manufacturer’s common volume cut off threshold 

(set at 70% and independent from bone size) may be required for the calcaneus 

HR-pQCT scans to account for these anatomical differences. Otherwise, a high 

proportion of participants’ calcaneus HR-pQCT images could be removed in 

longitudinal studies. 

The processing of the calcaneus HR-pQCT images is more complex. Completing 

the semi-automated contouring around the periosteal surface took upto 120 minutes 

in some participant’s images, whereas the same procedure in the radius and tibia 

took approximately 60-75 minutes. Calcaneus cortical segmentation would also be 

more time expensive to correct for errors in detecting the endocortical boundary, 

which has been reported to take upto 5 hours per distal radius and distal tibia scan 

[262], and is consistent with durations reported in our Research Group.  

7.3 Limitations 

Limitations of the various parts of the work have been described in the relevant 

Chapters. The following section summarises these limitations. 

The first generation XtremeCT device has several physical limitations. The device 

uses plate model-assumptions to compute trabecular microstructure as the spatial 

resolution (120-150 µm) is within the range of the physical dimensions of individual 

trabeculae (50-200 µm) and is the reason for the poor Tb.Thd accuracy [159, 163, 

164]. It also has a narrow gantry and field of view, which restricts the accessibility of 

the device for imaging the calcaneus. Some of these limitations could be overcome 

using the second generation XtremeCT, which has a slightly larger field of view (+14 

mm diameter) and has a superior spatial resolution (95 µm vs. 127-154 µm) that 

includes more model-independent measurements [97]. Whilst it may improve Tb.Th 

estimation, most differences between the two XtremeCT devices may be removed 

using regression equations (r2≥0.94) [190]. 

The present work only piloted the calcaneus HR-pQCT method in one position in 

vivo; the participant sat upright in a chair with their lower limb fixed in a cast (similar 

to the tibia HR-pQCT scans). Although this was suited to the equipment that was 
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available, participants are typically supine for calcaneus measurement using 

standard QCT and MRI, which may improve body stability and lower the likelihood 

of movement artefact. Other body positions could also be considered, such as lying 

on their side and imaging the sagittal plane of the calcaneus (as completed using 

histomorphometry in cadaveric specimens [197]), and lying prone to image 

perpendicularly to the superior and inferior surfaces of the main tuberosity body. 

These different positions may require customised imaging apparatus and potentially 

be restricted by the dimensions of the XtremeCT gantry. 

The work assumed that the HR-pQCT image filtering, segmentation and 

reconstruction within the standard patient evaluation were applicable to the 

calcaneus HR-pQCT images. This was selected to maintain consistency with the 

large body of clinical research at the distal radius and distal tibia, as well as 

metacarpals, using the first generation XtremeCT. These assumptions may have 

limitations, such as with changing bone mineralisation [172] and x-ray artefacts 

(beam hardening and scatter) with a different bone size [156] 

In the method development using human cadaveric feet, there was limited 

availability of specimens and no control over their condition and age. BV/TVd of the 

specimens was within the range found in the in vivo studies (~24% in specimen vs. 

~26% in vivo), although there were a small number of cadaveric samples towards 

the maximum value reported in vivo (Figure 9.4). 

Small sample sizes were used with the developmental nature of the in vivo work. 

These studies may have not been sufficiently powered for the secondary analyses 

reported. For example, in Chapter 5 the sample size (n=9) may have been too small 

to gain a reliable adjustment of the trabecular microstructure measurements at a 

200ms integration time using 100ms integration time HR-pQCT images, where 30 

participants has been recommended for measurement cross-calibrations by the 

ISCD [263]. In Chapter 6, 15 participants may have been too small to investigate 

site comparison and correlation analyses. Furthermore, the comparison of the 

dominant and non-dominant calcaneus was done in 15 healthy premenopausal 

women, and therefore the findings may not be representative of males and in 

younger and older individuals.  

Identifying the calcaneus mid-point on the scout view was a practical issue, which 

affected the common volume between repositioned HR-pQCT images. This would 

also have implications in cross-sectional studies, in which differences or the 

absence of differences could be due to region of interest placement rather than 
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bone biology [230]. The mid-point positional error (Chapter 5 and 6) may have also 

been overestimated with participant movement between the 2 scout views. Re-

evaluation using the recently developed HR-pQCT training software [154] may 

provide a more valid positional error estimate. Improving the contrast between the 

bone and background may benefit landmark identification, which could be achieved 

by increasing the scout view x-ray intensity.  

The precision errors that have been reported were quantified in healthy, female 

participants. This may not be representative of males. Furthermore, this may not be 

representative of older individuals and those that have suffered from osteopenia, 

which may increase the relative precision error measurements [151].  

7.4 Ongoing and future work 

Areas of ongoing and future work for the calcaneus HR-pQCT scans include: 

improving positioning aids, anatomical standardisation between participants, 

pursuing image-processing methods to quantify the trabecular and cortical bone 

compartments, the application and development of FE models, and completing 

population comparison and monitoring studies.  

Future work should aim to customise the lower limb positioning aid. This may 

improve foot alignment in relation to the field of view, standardise foot positioning 

between repositioned images, and minimise foot and toe movement. Four key 

features are proposed to achieve this: (1) the sole of the foot is in contact with a 

platform made from a solid, non-attenuating material, such as the carbon fibre that 

the lower limb cast is made from. (2) The platform should adjustable to support 

different degrees of plantar-flexion at the ankle joint, to simplify and standardised 

foot position within and between participants. (3) An inflatable device, similar to the 

one used for metacarpal imaging [90], should be positioned to immobilise the mid-

foot and toes, acting like a slipper that the foot fits within. (4) The lower limb cast 

diameter should be widened from the heel insert to the shank, to support positioning 

in participants with a larger foot size. If the customisation of the positioning aid is 

successful, longer scan duration could be used and other calcaneal regions could 

be imaged. Importantly, there may be less restriction of the foot size that can be 

used for the calcaneus HR-pQCT image acquisition. 

Future work should also optimise a procedure to complete anatomical 

standardisation for the calcaneus HR-pQCT scans. This would remove height 

dimorphisms between participants, which were potentially identified in Chapter 6. In 
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accordance with the work by Bonaretti et al. [236], a relative scan position could be 

defined based on the distance between the plantar-fascia attachment and the 

superior peak of the tuberosity, or even the participant’s height [230]. The scan 

length can then be collected with an equal number of slices either side of this 

relative scan position i.e. ±55 slices. Following image acquisition, a relative number 

of slices would be evaluated. These steps could make the calcaneus HR-pQCT 

scans more applicable in cross-sectional studies. 

With development of the procedure for calcaneus HR-pQCT image acquisition, 

more advanced image processing could be pursued. Improvements could be made 

in detecting the calcaneal endocortical boundary by lowering the minimum cortical 

thickness mask and lowering the threshold used for segmentation; which has only 

recently been applied to metacarpal joints [264]. Optimising the segmentation of the 

calcaneal cortex may improve the specificity in identifying local adaptations to 

extrinsic and environmental stimulus, particularly as adaptations with anti-resorptive 

and anabolic treatments at the extremities have been mainly located in the cortical 

envelope [84-86]. Future work could immediately assess the validity and 

reproducibility of calcaneus trabecular plates, rods and connectivity [265, 266] and 

fabric anisotropy [199, 219, 267]. The regional assessment of the calcaneus CSA 

might also be of interest, such as isolating areas of high mechanical loading at the 

subtalar articular surface and the Achilles tendon attachment. This would require the 

development of novel image processing scripts that are external to the Scanco IPL, 

as shown by Sode and colleagues [268]. 

An ongoing parallel project is investigating FE models of calcaneus trabecular bone 

using HR-pQCT and micro-CT images. With the available images, the effect of HR-

pQCT integration time on mechanical properties can be determined. These 

developments, combined with improve trabecular and cortical quantification, would 

improve the geometric and microstructural specificity that is needed for whole tissue 

level FE models of the calcaneus [269, 270] 

Pilot studies are being undertaken to better understand the clinical applicability of 

the calcaneus HR-pQCT images. Images are being collected from postmenopausal 

women with T-score ≤ −1.0 (n=25) with the methods reported in Chapter 6. This 

aims to investigate measurement precision error in participants at higher risk of 

fracture and provide additional data for the site comparison analyses. This may help 

to determine whether the superior region of the calcaneus offers similar or additional 

fracture risk insight compared to the distal tibia, or whether the potential higher 

weight bearing characteristics blunts trabecular adaptation to biological changes.  
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Data related to musculoskeletal health are also being collected in these 

postmenopausal women (as part of a separate study). Calcaneus HR-pQCT 

measurements could be associated with bone turnover markers, proximal femur 

QCT and FE measurements, and with physical function and real-time activity 

monitoring data in these participants, albeit only providing a snapshot in a small 

sample size. Calcaneus HR-pQCT images are also currently being collected from 

postmenopausal women prescribed teriparatide through routine clinical care. 

However, recruitment has been challenging due to the nature of the population and 

contraindications for study inclusion. Nonetheless, calcaneus BMD and 

microstructure have not been evaluated in response to anabolic treatments 

previously. With development, the method may assist in determining whether there 

is a mechano-interaction with anabolic treatments at peripheral sites of the skeleton, 

and how the response compares to the distal radius and distal tibia. 

7.5 Conclusion 

Calcaneus vBMD and trabecular microstructure can be quantified using HR-pQCT 

in vivo. Measurements at the superior region of the calcaneus were accurate and 

precise, and the region could be imaged within the physical constraints of the HR-

pQCT device. Increasing the scan integration time appeared to be an important 

adaptation to the scan settings for the quantification of calcaneus trabecular 

microstructure. There was notable heterogeneity in trabecular vBMD and 

microstructure between different calcaneal regions, with appreciable differences 

with small positional errors. Continued development in the positioning apparatus, 

positioning of a relative region of interest and image-processing procedures, would 

benefit the future application of this method.  
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CHAPTER 9 APPENDIX 

DXA quality control plots 

A 

 

B 

 

C 

 

D 

 

Figure 9.1: Quality control plots for the DXA outcomes 
A − Anthropomorphic spine phantom; B − Bone area; C − areal BMD; D − Bone mineral 
content. 
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Figure 9.2. HR-pQCT density phantom imaged and quantified at 3 different 
scan integration times (100, 150 and 200 ms). 
A – 100 mg HA/cm-3; B – 200 mg HA/cm-3; C – 400 mg HA/cm-3; D – 800 mg HA/cm-3. 
Legend: 100 ms – Red; 150 ms – Blue; 200 ms – Green. 
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Rigid image registration code 

3D registration of two HR-pQCT images 

! read in the AIM files for the HR-pQCT scan 1 (AIM1) and scan 2 (AIM2). 
 
/read 
  -name                      dk0:[microct.data. 0000XXXX.0000XXXX]c000XXXX.aim 
  -filename                  AIM1 
 
/read 
  -name                      dk0:[microct.data. 0000XXXX.0000XXXX]c000XXXX.aim 
  -filename                  AIM2 
 
! register HR-pQCT scan 1 and 2 
/iplreg 
/register 
  -in1                       AIM1 
  -gobj_filename_in1         none 
  -in2                       AIM2 
  -gobj_filename_in2         none 
  -Tmat_file_name            Tmat.DAT 
  -orientation_search        0 
  -initial_rotation          0.000 0.000 0.000 
  -initial_translation       0.000 0.000 0.000 
  -delta_rotation            0.100 0.100 0.500 
  -delta_translation         0.100 0.100 0.500 
  -resolution_scaling        10 4 1 
  -delta_scaling             1.000 0.100 0.100 
  -tolerance                 0.000010 
  -min_corr_coef             0.500000 
  -min_method                1 
  -object_func               1 
  -max_nr_iter               1000 
  -output_option             1 
 
! transform the common region of the GOBJ from scan 2 to scan 1.  
 
/gobj_to_aim 
  -gobj_filename             dk0:[microct.data. 0000XXXX.0000XXXX]c000XXXX.gobj 
  -output                    GOBJ1 
  -peel_iter                 0 
 
/gobj_to_aim 
  -gobj_filename             dk0:[microct.data. 0000XXXX.0000XXXX]c000XXXX.gobj 
  -output                    GOBJ2 
  -peel_iter                 0 
 
/transform 
  -in                        GOBJ2 
  -out                       OUT1 
  -Tmat_file_name            Tmat.DAT 
  -img_interpol_option       1 
  -el_size_mm_out            -1.000 -1.000 -1.000 
  -Tmat_invert               false 
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/set_value 
  -input                     GOBJ1 
  -value_object              10 
  -value_background          0 
 
/set_value 
  -input                     OUT1 
  -value_object              20 
  -value_background          0 
 
/add_aims 
  -input1                    GOBJ1 
  -input2                    OUT1 
  -output                    COMB1 
 
/threshold 
  -input                     COMB1 
  -output                    OVERLAYED_GOBJ1 
  -lower_in_perm_aut_al      25 
  -upper_in_perm_aut_al      100000.000000 
  -value_in_range            127 
  -unit                      5 
 
/togobj_from_aim 
  -input                     OVERLAYED_GOBJ1 
  -gobj_filename             
dk0:[microct.data.0000XXXX.0000XXXX]COMMON_FOLLOWUP.GOBJ 
  -min_elements              0 
  -max_elements              0 
  -curvature_smooth          1 
 
! Inverse transform the common region of the GOBJ from scan 1 to scan 2. 
 
/transform 
  -in                        GOBJ1 
  -out                       OUT2 
  -Tmat_file_name            Tmat.DAT 
  -img_interpol_option       1 
  -el_size_mm_out            -1.000 -1.000 -1.000 
  -Tmat_invert               true 
 
/set_value 
  -input                     OUT2 
  -value_object              20 
  -value_background          0 
 
/set_value 
  -input                     GOBJ2 
  -value_object              10 
  -value_background          0 
 
/add_aims 
  -input1                    GOBJ2 
  -input2                    OUT2 
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  -output                    COMB2 
 
/threshold 
  -input                     COMB2 
  -output                    OVERLAYED_BASELINE_GOBJ 
  -lower_in_perm_aut_al      15.000000 
  -upper_in_perm_aut_al      100000.000000 
  -value_in_range            127 
  -unit                      5 
 
/togobj_from_aim 
  -input                     OVERLAYED_BASELINE_GOBJ 
  -gobj_filename             
dk0:[microct.data.0000XXXX.0000XXXX]COMMON_BASELINE.GOBJ 
  -min_elements              0 
  -max_elements              0 
  -curvature_smooth          1 
 
 

3D registration of three HR-pQCT images 

! read in the AIM files for the HR-pQCT scan 1 (AIM1), scan 2 (AIM2) and scan 3 
(AIM3). 
 
/read 
  -name                      dk0:[microct.data. 0000XXXX.0000XXXX]c000XXXX.aim 
  -filename                  AIM1 
 
/read 
  -name                      dk0:[microct.data. 0000XXXX.0000XXXX]c000XXXX.aim 
  -filename                  AIM2 
 
/read 
  -name                      dk0:[microct.data. 0000XXXX.0000XXXX]c000XXXX.aim 
  -filename                  AIM3 
 
! register HR-pQCT scan 1 and scan 2. 
 
/register 
  -in1                       AIM1 
  -gobj_filename_in1         none 
  -in2                       AIM2 
  -gobj_filename_in2         none 
  -Tmat_file_name            Tmat1.DAT 
  -orientation_search        0 
  -initial_rotation          0.000 0.000 0.000 
  -initial_translation       0.000 0.000 0.000 
  -delta_rotation            0.100 0.100 0.500 
  -delta_translation         0.100 0.100 0.500 
  -resolution_scaling        10 4 1 
  -delta_scaling             1.000 0.100 0.100 
  -tolerance                 0.000010 
  -min_corr_coef             0.500000 
  -min_method                1 
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  -object_func               1 
  -max_nr_iter               1000 
  -output_option             1 
 
! register HR-pQCT scan 1 and 3. 
 
/register 
  -in1                       AIM1 
  -gobj_filename_in1         none 
  -in2                       AIM3 
  -gobj_filename_in2         none 
  -Tmat_file_name            Tmat2.DAT 
  -orientation_search        0 
  -initial_rotation          0.000 0.000 0.000 
  -initial_translation       0.000 0.000 0.000 
  -delta_rotation            0.100 0.100 0.500 
  -delta_translation         0.100 0.100 0.500 
  -resolution_scaling        10 4 1 
  -delta_scaling             1.000 0.100 0.100 
  -tolerance                 0.000010 
  -min_corr_coef             0.500000 
  -min_method                1 
  -object_func               1 
  -max_nr_iter               1000 
  -output_option             1 
 
! identify the common region between three HRpQCT scans. 
 
/gobj_to_aim 
  -gobj_filename             gobj1_file 
  -output                    GOBJ1 
  -peel_iter                 0 
 
/gobj_to_aim 
  -gobj_filename             gobj2_file 
  -output                    GOBJ2 
  -peel_iter                 0 
 
/gobj_to_aim 
  -gobj_filename             gobj3_file 
  -output                    GOBJ3 
  -peel_iter                 0 
 
/transform 
  -in                        GOBJ2 
  -out                       GOBJ2_transformed 
  -Tmat_file_name            Tmat1.DAT 
  -img_interpol_option       1 
  -el_size_mm_out            -1.000 -1.000 -1.000 
  -Tmat_invert               false 
 
/set_value 
  -input                     GOBJ1 
  -value_object              10 
  -value_background          0 
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/set_value 
  -input                     GOBJ2_transformed 
  -value_object              20 
  -value_background          0 
 
/add_aims 
  -input1                    GOBJ1 
  -input2                    GOBJ2_transformed 
  -output                    COMB1 
 
/threshold 
  -input                     COMB1 
  -output                    COMB1_seg 
  -lower_in_perm_aut_al      25.000000 
  -upper_in_perm_aut_al      100000.000000 
  -value_in_range            127 
  -unit                      5 
 
/transform 
  -in                        GOBJ3 
  -out                       GOBJ3_transformed 
  -Tmat_file_name            Tmat2.DAT 
  -img_interpol_option       1 
  -el_size_mm_out            -1.000 -1.000 -1.000 
  -Tmat_invert               false 
 
/set_value 
  -input                     COMB1_seg 
  -value_object              10 
  -value_background          0 
 
/set_value 
  -input                     GOBJ3_transformed 
  -value_object              20 
  -value_background          0 
 
/add_aims 
  -input1                    COMB1_seg 
  -input2                    GOBJ3_transformed 
  -output                    COMB2_seg 
 
/threshold 
  -input                     COMB2_seg 
  -output                    COMMONREGION_allgobjs 
  -lower_in_perm_aut_al      25.000000 
  -upper_in_perm_aut_al      100000.000000 
  -value_in_range            127 
  -unit                      5 
 
! Transform and copy the common region to the scan directories (Scan 1, Scan 2 
and Scan 3). 
 
/togobj_from_aim 
  -input                     COMMONREGION_allgobjs 
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  -gobj_filename             
dk0:[microct.data.0000XXXX.0000XXXX]commonregion_scan1.gobj 
  -min_elements              0 
  -max_elements              0 
  -curvature_smooth          1 
 
/transform 
  -in                        COMMONREGION_allgobjs 
  -out                       commonregion_allgobj2 
  -Tmat_file_name            "Tmat1.DAT" 
  -img_interpol_option       1 
  -el_size_mm_out            -1.000 -1.000 -1.000 
  -Tmat_invert               true 
 
/togobj_from_aim 
  -input                     commonregion_gobj2 
  -gobj_filename             
dk0:[microct.data.0000XXXX.0000XXXX]commonregion_scan2.gobj 
  -min_elements              0 
  -max_elements              0 
  -curvature_smooth          1 
 
/transform 
  -in                        COMMONREGION_allgobjs 
  -out                       commonregion_gobj3 
  -Tmat_file_name            Tmat2.DAT 
  -img_interpol_option       1 
  -el_size_mm_out            -1.000 -1.000 -1.000 
  -Tmat_invert               true 
 
/togobj_from_aim 
  -input                     commonregion_gobj3 
  -gobj_filename             
dk0:[microct.data.0000XXXX.0000XXXX]commonregion_scan3.gobj 
  -min_elements              0 
  -max_elements              0 
  -curvature_smooth          1 
 
Chapter 4 
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 Figure 9.3. Micro-CT images (isotropic 17.4 µm voxel size) of 
the posterior portions from one human cadaveric calcaneus. 
These samples were taken from the region that the Achilles tendon 
attaches to the calcaneus: A − superior slice; B – Middle slice; C – inferior 
slice. 
Note the thin cortex in comparison to the trabeculae. 
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Table 9.1. Passing-Bablok analysis for the HR-pQCT vs. Micro-CT 
trabecular measurement across all regions. 

Sample r Intercept (95% CI) Slope (95% CI) P value 

Bone volume/total volumed (1) 

IS200 0.98 0.0494 (0.0454, 0.0531) 1.0138 (0.9698, 1.0663) 0.30 

IS150 0.98 0.0480 (0.0446, 0.0519) 1.0318 (0.9826, 1.0888) 0.30 

IS100 0.99 0.0487 (0.0448, 0.0518) 1.0188 (0.9750, 1.0691) 0.30 

EV100 0.99 0.0516 (0.0495, 0.0534) 1.0333 (1.0063, 1.0588) 0.43 

Trabecular number (mm-1) 

IS200 0.70 0.6919 (0.5834, 0.7946) 0.4032 (0.3493, 0.4574) 0.30 

IS150 0.58 0.7776 (0.6377, 0.9095) 0.3329 (0.2659, 0.3947) 0.20 

IS100 0.48 0.7787 (0.5839, 0.9432) 0.2833 (0.2162, 0.3571) 0.05 

EV100 0.86 0.5624 (0.4612, 0.6565) 0.5279 (0.4716, 0.5785) 0.08 

Trabecular thicknessd (mm) 

IS200 0.73 0.0935 (0.0892, 0.1002) 0.7846 (0.6556, 0.9109) 1.00 

IS150 0.72 0.0958 (0.0903, 0.1011) 0.8211 (0.6812, 0.9556) 0.88 

IS100 0.75 0.0979 (0.0923, 0.1024) 0.8950 (0.7559, 1.0556) 0.74 

EV100 0.77 0.0945 (0.0902, 0.0994) 0.7375 (0.6317, 0.8481) 1.00 

Trabecular spacingd (mm) 

IS200 0.69 0.2705 (0.2185, 0.3260) 0.7545 (0.6432, 0.8733) 0.08 

IS150 0.59 0.2855 (0.2169, 0.3444) 0.7932 (0.6549, 0.9599) 0.20 

IS100 0.51 0.2101 (0.1055, 0.2992) 1.1588 (0.9154, 1.4673) 0.05 

EV100 0.87 0.2312 (0.1872, 0.2669) 0.7435 (0.6659, 0.8387) 0.08 

Abbreviations: in situ 100ms (IS100); in situ 150ms (IS150); in situ 200ms (IS200); 
ex vivo 100ms (EV100). 

All r values are statistically significant, p<0.001. 
A P value <0.05 indicates that there is no linear relationship between the two 
measurements. 
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Table 9.2. Passing-Bablok analysis of bone volume fraction data for 
the different HR-pQCT conditions at the three different regions. 

Sample r Intercept (95% CI) Slope (95% CI) P value 

Superior region 

IS200 0.98 0.0619 (0.0558, 0.0693) 0.9101 (0.8385, 0.9852) 0.28 

IS150 0.98 0.0609 (0.0547, 0.0709) 0.9271 (0.8393, 1.0045) 0.18 

IS100 0.99 0.0608 (0.0555, 0.0675) 0.9187 (0.8558, 0.9903) 0.08 

EV100 0.97 0.0596 (0.0551, 0.0661) 0.9771 (0.9034, 1.0235) 0.18 

Middle region 

IS200 0.98 0.0527 (0.0481, 0.0559) 0.9500 (0.9051, 1.0082) 0.20 

IS150 0.98 0.0520 (0.0474, 0.0552) 0.9536 (0.9081, 1.0227) 0.59 

IS100 0.98 0.0517 (0.0479, 0.0551) 0.9631 (0.9209, 1.0229) 0.36 

EV100 0.99 0.0519 (0.0488, 0.0532) 1.0243 (1.0000, 1.0609) 0.59 

Inferior region 

IS200 0.99 0.0343 (0.0287, 0.0398) 1.1781 (1.0882, 1.2787) 0.98 

IS150 0.98 0.0312 (0.0253, 0.0385) 1.2261 (1.1021, 1.3074) 0.72 

IS100 0.98 0.0341 (0.0279, 0.0409) 1.1803 (1.0818, 1.3000) 0.98 

EV100 0.99 0.0486 (0.0448, 0.0531) 1.0643 (0.9875, 1.1423) 0.36 

Abbreviations: in situ 100ms (IS100); in situ 150ms (IS150); in situ 200ms (IS200); 
ex vivo 100ms (EV100). 

All r values are statistically significant, p<0.001. 
A P value <0.05 indicates that there is no linear relationship between the two 
measurements. 
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Table 9.3. Passing-Bablok analysis of trabecular number data for the 
different HR-pQCT conditions at the three different regions. 

Sample r Intercept (95% CI) Slope (95% CI) P value 

Superior region 

IS200 0.84 0.4911 (0.3281, 0.6200) 0.5410 (0.4708, 0.6267) 0.18 

IS150 0.77 0.5169 (0.3286, 0.6862) 0.4956 (0.4127, 0.5916) 0.18 

IS100 0.63 0.5265 (0.2421, 0.7467) 0.4379 (0.3448, 0.5577) 0.08 

EV100 0.92 0.4034 (0.2724, 0.5174) 0.6119 (0.5540, 0.6857) 0.04 

Middle region 

IS200 0.83 0.7553 (0.6188, 0.9122) 0.3658 (0.2942, 0.4293) 0.59 

IS150 0.76 0.7946 (0.6211, 0.9601) 0.3257 (0.2425, 0.3982) 0.84 

IS100 0.70 0.6586 (0.3677, 0.8668) 0.3150 (0.2408, 0.4255) 0.36 

EV100 0.85 0.5816 (0.3949, 0.7360) 0.5176 (0.4268, 0.6060) 0.59 

Inferior region 

IS200 0.11 1.2804 (1.1540, 1.5156) 0.0884 (-0.0350, 0.1537) 0.36 

IS150 -0.16 1.3886 (1.1995, 1.6195) 0.0276 (-0.0749, 0.1124) 0.04 

IS100 -0.21 1.4500 (1.2459, 1.6750) 0.0002 (-0.0831, 0.0763) 0.04 

EV100 0.69 1.1028 (0.9075, 1.2473) 0.2038 (0.1208, 0.3170) 0.72 

Abbreviations: in situ 100ms (IS100); in situ 150ms (IS150); in situ 200ms (IS200); 
ex vivo 100ms (EV100). 

r values for inferior IS100, p=0.364; inferior IS150, p=0.480; inferior IS200, 
p=0.650. All other r values were statistically significant, p<0.001. 
A P value <0.05 indicates that there is no linear relationship between the two 
measurements. 
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Table 9.4. Passing-Bablok analysis of trabecular thickness data for 
the different HR-pQCT conditions at the three different regions. 

Sample r Intercept (95% CI) Slope (95% CI) P value 

Superior region 

IS200 0.35 0.0807 (0.0656, 0.1003) 0.9861 (0.6429, 1.2703) 0.82 

IS150 0.32 0.0824 (0.0658, 0.0994) 1.0118 (0.6955, 1.3667) 0.56 

IS100 0.36 0.0799 (0.0527, 0.0982) 1.2333 (0.8345, 1.8429) 0.08 

EV100 0.48 0.0820 (0.0621, 0.1008) 0.9270 (0.6216, 1.2750) 0.98 

Middle region 

IS200 0.69 0.0962 (0.0880, 0.1054) 0.7261 (0.5100, 0.9722) 0.84 

IS150 0.67 0.0977 (0.0889, 0.1061) 0.7598 (0.5412, 1.0143) 0.84 

IS100 0.72 0.0982 (0.0902, 0.1062) 0.8667 (0.6261, 1.1375) 0.84 

EV100 0.77 0.0945 (0.0874, 0.1019) 0.7157 (0.5400, 0.8957) 0.84 

Inferior region 

IS200 0.62 0.0901 (0.0798, 0.1069) 0.9826 (0.5816, 1.3333) 0.98 

IS150 0.61 0.0899 (0.0789, 0.1068) 1.1329 (0.6618, 1.5238) 0.98 

IS100 0.63 0.0927 (0.0809, 0.1062) 1.3047 (0.8429, 1.8824) 0.72 

EV100 0.76 0.0957 (0.0854, 0.1061) 0.8217 (0.5667, 1.1429) 0.98 

Abbreviations: in situ 100ms (IS100); in situ 150ms (IS150); in situ 200ms (IS200); 
ex vivo 100ms (EV100). 

r values for superior IS200, p=0.021; superior IS150, p=0.035; superior IS100, 
p=0.017; superior EV100, p=0.001; inferior IS200, p=0.003; inferior IS150, 
p=0.003; inferior IS100, p=0.002. All other r values were statistically significant, 
p<0.001. 
A P value <0.05 indicates that there is no linear relationship between the two 
measurements. 
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Table 9.5. Passing-Bablok analysis of trabecular spacing data for the 
different HR-pQCT conditions at the three different regions. 

Sample r Intercept (95% CI) Slope (95% CI) P value 

Superior region 

IS200 0.82 0.1829 (0.0944, 0.2357) 0.8998 (0.7566, 1.1100) 0.56 

IS150 0.75 0.1808 (0.0767, 0.2463) 0.9551 (0.7587, 1.2448) 0.82 

IS100 0.64 0.1423 (-0.0055, 0.2582) 1.1688 (0.8213, 1.6750) 0.56 

EV100 0.93 0.1500 (0.0889, 0.2074) 0.9257 (0.7948, 1.0627) 0.98 

Middle region 

IS200 0.82 0.3186 (0.2595, 0.3761) 0.6412 (0.5324, 0.7675) 0.84 

IS150 0.76 0.3059 (0.2417, 0.3847) 0.7370 (0.5683, 0.9063) 0.84 

IS100 0.73 0.2092 (0.0922, 0.3075) 1.1751 (0.9012, 1.5265) 0.36 

EV100 0.88 0.2434 (0.1876, 0.2843) 0.7171 (0.6297, 0.8380) 0.59 

Inferior region 

IS200 -0.11 0.5594 (0.0910, 0.6543) 0.2191 (0.0300, 1.2903) 0.36 

IS150 -0.25 0.5943 (0.2660, 0.6935) 0.1775 (-0.0680, 1.0571) 0.04 

IS100 -0.32 0.5564 (-0.5940, 0.6497) 0.3325 (0.0550, 3.8758) 0.04 

EV100 0.60 0.5592 (0.4919, 0.6237) 0.1876 (0.0746, 0.3074) 0.36 

Abbreviations: in situ 100ms (IS100); in situ 150ms (IS150); in situ 200ms (IS200); 
ex vivo 100ms (EV100). 

r values for inferior IS200, p=0.631; inferior IS150, p=0.268; inferior IS100, p=0.154; 
inferior EV100, p=0.004. All other r values were statistically significant, p<0.001. 
A P value <0.05 indicates that there is no linear relationship between the two 
measurements. 
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Table 9.6. Passing-Bablok regression for measurements between the 100 ms and 
200 ms integration time calcaneus HR-pQCT images. 

 Intercept (95% CI) Slope (95% CI) p value 
Superior 
Total vBMD, mg HA.cm-3 -4.602 (-52.113, 34.500) 1.012 (0.873, 1.176) 0.699 
Tb.vBMD, mg HA.cm-3 -23.182 (-74.937, 5.447) 1.104 (0.983, 1.316) 0.699 
Outer Tb.vBMD,  
mg HA.cm-3 

-8.118 (-29.940, 21.799) 1.038 (0.920, 1.111) 0.699 

Inner Tb.vBMD,  
mg HA.cm-3 # 

-22.611 (-100.807, 10.919) 1.103 (0.947, 1.477) 1.000 

BV/TVd, % -0.013 (-0.059, 0.006) 1.066 (0.971, 1.296) 0.699 
Tb.N*, mm-1 -0.641 (-1.989, 0.110) 1.029 (0.816, 1.483) 0.927 
Tb.Thd, µm -0.008 (-0.051, 0.013) 1.336 (1.000, 2.000) 1.000 
Tb.Spd, µm -0.071 (-0.199, 0.002) 1.504 (1.157, 2.000) 1.000 
 
Inferior 
Total vBMD, mg HA.cm-3 6.014 (-21.595, 20.427) 0.962 (0.898, 1.123) 0.699 
Tb.vBMD, mg HA.cm-3 2.714 (-15.426, 10.948) 0.985 (0.931, 1.114) 0.699 
Outer Tb.vBMD,  
mg HA.cm-3 

-3.682 (-33.346, 6.478) 1.025 (0.973,1.168) 0.699 

Inner Tb.vBMD,  
mg HA.cm-3 # 

3.895 (-14.500, 12.241) 0.958 (0.877, 1.160) 1.000 

BV/TVd, % 0.001 (-0.014, 0.009) 0.994 (0.933, 1.115) 0.699 
Tb.N*, mm-1 -1.715 (-2.506, -0.823) 1.277 (1.031, 1.529) 0.699 
Tb.Thd, µm -0.007 (-0.170, 0.022) 1.583 (0.900, 6.000) 0.699 
Tb.Spd, µm -0.252 (-0.343, -0.132) 2.317 (1.822, 2.664) 1.000 

Data shown for 9 participants.  
The Passing-Bablock regression was completed using XLSTAT 2017.4.45706 for Mac. 
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Figure 9.4. Histograms for the distribution of calcaneus BV/TV from 
the human cadaveric specimen and participants in vivo.  
Cadaveric specimen (red) – BV/TV from 108 samples from 10 cadavers, located 
at the superior, middle and inferior regions of the bone. 
In vivo (blue) – BV/TV from the superior and inferior regions from 9 participants 
in Chapter 5, and BV/TV from the superior region of the calcaneus from 15 
participants in Chapter 6. 
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