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Abstract

Model transformation languages (MTLs) are important for Model
Driven Engineering as they allow the automation of the engineer-
ing design process of hardware and software products, in particular
at the preliminary and detailed design phases. However, the theo-
ries from compiler optimization have not been reused substantively
in the development of MTLs. This makes the challenges associated
with the implementation of declarative MTLs harder to overcome,
in particular with respect to the synthesis of the execution plan
(a representation of the control component of the transformation
algorithm). The QVT Core MTL is a declarative language, part of
a set of standards proposed by the Object Management Group®
in order to support the adoption of Model Driven Engineering
(MDE). This research presents how instruction scheduling theo-
ries can be used for the synthesis of execution plans, in particular
for the QVT Core language. The main contributions are a novel
approach for performing data dependence analysis on the QVT
Core language and its use for the synthesis of execution plans, and
the application of metaheuristics to solve the scheduling problem
inherent to the synthesis of execution plans. The research demon-
strated the feasibility of applying compiler optimization techniques
in the design of MTLs and provides a methodology that can be
used to construct efficient execution plans that result in correct
transformations. The performance gains and correctness will help
the widespread use of the QVT Core language and encourage the
adoption of compiler optimization techniques in the implementa-
tion of other MTLs.
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1
Introduction

Some challenges associated with building larger and more
complex systems, such as simulation, formal verification
and modelling, can be solved by raising the level of ab-

straction used to represent the system as a whole or as a decom-
position of sub-systems, to represent specific system artefacts, or
to represent the system at specific design phases. An effect of the
system’s size and complexity, and of the differences in the design
phases, is that it is often the case that different abstraction levels
are used as part of the abstraction effort. In order to bridge the se-
mantic and syntactic gap between different abstraction levels the
system design process should be automated as much as possible.
Automation is key in order to receive the benefits in productivity
gain of the abstraction effort [41].

Model Driven Engineering (MDE) is a type of development
process that can ease the implementation of system artefacts and
to automate the design phases of these artefacts [87]. MDE pro-
motes two activities as part of the development process [60]. First,
the use of models as the realization of an abstraction of the system
under design1. That is, a model is used to represent a particular
abstraction of the system. The main goal of MDE is to allow mod-

1For the rest of the discussion when referring to the system it means the
system as a whole or its components.
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Chapter 1. Introduction

Figure 1.1: Typical Workflow of MDE Software Construction

els to be used to design, test, analyse, explore and implement the
system and its components. Second, the use of model management
languages (a particular type of programming languages) in order
to validate, analyse, construct and transform models. Of the vari-
ous existing model management languages, model transformation
languages (MTLs) are of particular interest as they allow the au-
tomatic synthesis of alternative model representations [87]. In the
context of this project, synthesis is understood as the combining of
separate entities into a single or unified entity. Given that models
can belong to different abstraction levels, MTLs are vital to enable
MDE to support automation.

A typical use of MDE is the automation of software construc-
tion, as presented in Fig. 1.1. The application code is generated
from a model that describes a software application at a high ab-
straction level, by a series of Model–to–model (M2M) and model–
to–text transformations. This research only considers M2M trans-
formations. In its simplest form, a M2M transformation takes as
input a source model and produces as output a target model. Note
that in general, the models in a M2M transformation are not re-
quired to be at different abstraction levels.

1.1 Motivation

A MTL is a Domain Specific Language (DSL) tailored specifi-
cally to the domain of model transformations. Most of the exist-
ing MTLs follow an imperative, declarative or hybrid paradigm. In
imperative languages, the program describes both the logic com-
ponent (what to do) and the control component (how to do it). In

4



1.1. Motivation

declarative languages, the program only describes the logic com-
ponent and the control component must be synthesized before or
during execution of the program. Hybrid languages support mixed
descriptions.

In some scenarios, declarative MTLs are preferable because
“particular services such as source model traversal, traceability
management and automatic bidirectionality can be offered by [the]
underlying reasoning engine.” [72]. This research project focuses on
the challenges associated to the execution of declarative MTLs, in
particular to the synthesis of the control component. This research
centres its attention to the particular case of the QVT Core [3]
(QVTc)2 - declarative - transformation language, one of the lan-
guages proposed by the Object Management Group® (OMG®) in
their framework for MDE: Model Driven Architecture (MDA) [2,
17]. The OMG® is an international, open membership, not-for-
profit technology standards consortium, that develops enterprise
integration standards for a wide range of technologies and indus-
tries. Another notable OMG®’s modelling standard is the Unified
Modelling Language®(UML®).

In a QVTc program the logic component specifies a set of con-
straints between the involved (source/target) models. The model
transformation is the result of modifying the involved models in
order to satisfy these constraints. The aim of this work is to au-
tomatically compute (synthesize) control components that, when
merged with the logic components and executed, are guaranteed
to modify the models such that the constraints are satisfied. That
is, they result in correct transformations.

One of the expected advantages of using DSLs, in general, is
runtime efficiency [93]. The result of an optimization process in
computer science is a software system that works more efficiently
and/or uses fewer resources. Optimization can be done in different
aspects of the system. The interest of this research is optimizations

2QVT is an initialism for Query/View/Transformation, which comes from
the full name of the OMG’s specification that defines the language: Meta
Object Facility (MOF) 2.0 Query/View/Transformation Specification.

5



Chapter 1. Introduction

that improve the performance of the execution of QVTc programs,
in particular with respect to execution time. In the case of MTLs,
the control component is accountable for the execution time of the
QVTc program. This translates to designing synthesis strategies
that exploit particular aspects of the MDE domain in order to
produce efficient control components. In the context of this project,
a synthesis strategy is the plan or method used for combining the
separate entities into a single or unified entity. Thus, the challenge
is to synthesize correct and efficient control components.

Efficiency requires a base–line to compare to. For the QVTc
language, given that during the field survey of this project no other
implementations of QVTc were found, a brute-force approach is
used as the base–line. The brute-force approach, referred hereafter
as the naïve approach, consists in executing the QVTc program’s
logic component in an arbitrary order. At this point it suffices to
consider a QVTc program as a set of operations. Thus, in the naïve
approach these operations are invoked in an arbitrary order, an in-
definite number of times, until a predefined termination condition
is encountered.

Correctness is achieved by guaranteeing that the synthesized
control components respect the semantics of QVTc. Thus, achiev-
ing efficiency is the main drive of this research project. This re-
search explores how compiler theory for General Purpose Lan-
guages (GPLs) can be adapted and applied to the synthesis of
the control component. In particular, we will explore the theories
related to instruction scheduling. Instruction scheduling aims at
modifying the order of execution given by a control component in
order to improve the efficiency of a program. Control component
synthesis can be viewed as a special case of instruction scheduling,
in which the control component does not define an initial order of
execution. Given that the instruction scheduling problem is NP-
hard [109, 44], this research explores the use of metaheuristics to
synthesize the control component. The use of heuristics means that
the best possible schedule is not found, but rather a good-enough

6



1.1. Motivation

solution.
Data dependence analysis is at the core of instruction schedul-

ing in compiler design [111, 10, 44]. The adoption of this principle
is a key component in the synthesis of the control component for
QVTc programs proposed in this research. The novel idea of this
research is that by formulating a strategy to perform data depen-
dence analysis on QVTc programs it is possible to construct their
associated control component.

The choice of working with the QVTc language is due to its
role in the MDE efforts. The QVT Specification [3] is part of a
theoretical underpinning that is envisaged to allow the construc-
tion of an “agreed-on systematic theory of model transformation
design” [89] and execution [114]. We anticipate that providing a
fully compliant implementation of the Meta Object Facility (MOF)
Query/View/Transformation (QVT) declarative languages would
greatly benefit the MDE community. The benefits include, but are
not limited to:

• Writing and executing model transformations using a lan-
guage defined in a standard.

• Other transformation languages/engines could be bench-
marked against a standard.

• Future research can concentrate on formulating a system-
atic and reliable theory of constructing model transforma-
tions [89] instead of being spread across the definition of
non-standard languages.

Systematic synthesis of the control component for programs writ-
ten in the QVTc language is a first step towards positioning QVTc
as one of the pillars of the systematic theory of model transforma-
tion design.

Model transformations are key to the MDE effort [28, 70, 61];
the ability to execute transformations efficiently would greatly im-
prove the benefits associated to using model transformation in dif-
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ferent aspects of the MDE process, including the automation of
the design process of hardware and software products.

1.2 Research Question
The question this research answers is:

Can correct and efficient control components for pro-
grams written in the QVTc language be systematically
synthesized for QVTc transformations?

where efficiency is measured against the naive approach.
In order to answer this question, this research project has three

hypotheses. The first two are directly related to the research ques-
tion. The third is a consequence of the use of metaheuristics in the
proposed approach.

Hypothesis 1 [Hypothesis] For a given QVTc program, execution
of the synthesized control component is guaranteed to be correct.

Hypothesis 2 [Hypothesis] For a given QVTc program, execution
of the best synthesized control component has a better performance
than the naive approach.

Hypothesis 3 [Hypothesis] For a given QVTc program, the best
synthesized control component has a good performance among all
the synthesized control components for that program.

Hypothesis 3 mentions all the synthesized control components
as for a given QVTc program it is possible to construct multiple
control components.

The objectives of this research project are:

• To identify how data dependence analysis can be applied to
declarative MTLs, in particular QVTc.

• To design and implement a data dependence analysis tool
that can extract the data dependence information of any
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(and all) Model Transformation Program (MTP) written in
QVTc.

• To design a model to represent execution plans for QVTc
programs.

• To design and implement a tool that can construct efficient
execution plans by exploiting the data dependence informa-
tion.

• To implement a tool that merges the logic component with
the execution plan to provide an executable QVTc program
(compilation).

• To evaluate the correctness of the constructed execution
plans, and use the knowledge gained from the evaluation to
propose improvements to the synthesis of execution plans.

• To evaluate the efficiency of the constructed execution plans,
and use the knowledge gained from the evaluation to propose
improvements to the synthesis of execution plans.

1.3 Thesis Contributions
The primary contributions made in this thesis are summarised
below:

• A novel methodology for synthesizing the control component
for MTPs written in the QVTc language.

• The demonstration of the feasibility of using the systematic
synthesis to construct control components for a variety of
MTPs written in the QVTc language.

• The formalization of transformation correctness for the
QVTc language.

• The formulation of a novel approach of identifying data de-
pendencies in MTPs written in the QVTc language.

9
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• The mapping of the QVTc control component synthesis
problem to the Ant Colony Optimization (ACO) metaheuris-
tic.

The secondary contributions made in this thesis are sum-
marised below:

• The definition of a novel representation for the control com-
ponent of MTPs written in the QVTc language.

• The formulation of the control component synthesis problem
as a scheduling problem.

• The implementation of a metaheuristic control component
synthesis framework for the QVTc language.

• The implementation of a merge operation to merge the syn-
thesized control component with the base QVTc MTP.

1.4 High–Level Overview
Figure 1.2 presents a high–level overview of the proposed solu-
tion. The QVTc MTP is first translated① into QVTm in order to
eliminate bi-directionality and normalize the transformation rules,
which is required by the data dependency analysis. The details
of these step can be found in Sect. 2.4.2. The data dependency
analysis② is responsible for extracting the data dependency in-
formation from the MTP. This process results in two artefacts:
the data dependence graph (DDG) discussed in Sect. 4.2 and the
input variable derivation information discussed in Sect. 4.5. The
DDG is then transformed③ into a foraging area (FA), which is a
representation more amenable for the ACO algorithm④. The de-
tails of the FA can be found in Sect. 5.2.1, while Sect. 5.3 presents
the implementation details of the ACO algorithm. The ACO algo-
rithm produces an execution plan (the best found) which is then
merged⑤ with the derivation information and the original QVTm
MTP to produce the complete QVTi MTP. The details of the
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merge are discussed in Sect. 5.5. The evaluation of the approach
is presented in Chap. 6, where the performance of the synthe-
sized plans are compared against the naïve plan approach, and
also against each other in order. For the former, even small per-
formance gains are important particularly in cases when the MTP
is going to be executed repeatedly. The latter is used to determine
if the best solution found is in fact the best performing solution.

Figure 1.2: High-level overview of the proposed solution.

1.5 Thesis Structure

Chapter 2 presents a review of related literature. The chapter
starts by introducing the MDE domain, discussing the role of mo-
del transformations within MDE, the key characteristics of model
transformations and presenting the QVT Specification (which de-
fines the syntax and semantics of the QVTc language). Next, it
presents a review of other transformation languages and highlights
the state of the infrastructure used as a base for the development
effort of the research project. Finally, it provides an introduction
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to the problem of instruction scheduling and describes the meta-
heuristics used in the proposed approach.

Chapter 3 provides a more detailed description of the QVT lan-
guage, with particular focus on the features relevant to the control
component synthesis problem. The chapter then presents an in–
depth analysis of the QVT language semantics in order to propose
a model to represent the control component for QVT transforma-
tions. This chapter also provides a formal definition of transfor-
mation correctness for QVT transformations.

Chapter 4 defines the control component synthesis problem as
a scheduling problem. It describes how data dependence analysis
is applied to a QVTc transformation in order to provide a solu-
tion for the control component synthesis problem. The chapter
introduces the concept of thoroughness as an additional condition
for constructing valid control components. Finally, it shows how
data dependence analysis can be extended in order to provide local
optimizations.

Chapter 5 further specializes the control component synthesis
problem by representing it as a combinatorial optimization prob-
lem. The chapter shows how data dependence analysis is used to
define an objective function for the combinatorial optimization
problem and then presents how the ACO metaheuristic can be
used to solve the combinatorial optimization problem. Next, the
chapter provides details on how the problem can be represented
for use with the ACO and then describe in detail the ACO imple-
mentation. The results of running the ACO implementation on a
set of development examples are summarized and discussed. Ad-
ditionally, the chapter presents the naïve control component used
as a baseline to evaluate the solutions found by the ACO imple-
mentation.

Chapter 6 presents an evaluation of the control component
synthesis. The evaluation consists of two main parts. In the first
one, the focus is on the observations of the behaviour of the ACO
implementation with respect to its ability to find a solution in
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a reasonable amount of time and its exploration of the solution
space. In the second part the focus is on the evaluation of the
correctness and the performance of the synthesized control com-
ponents. The performance analysis also provides validation of the
objective function that is defined in Chap. 5.

Chapter 7 summarizes the thesis contributions, discusses the
results and presents potential new/future research areas that emerge
from the work presented here.
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2
Field Survey and Review

This research presents a novel approach to the synthesis
of the control component of Model Transformation Pro-
gram (MTP)s written in the QVT Core [3] (QVTc) lan-

guage. The proposed approach builds on proven methodologies
from the domain of compiler design, in particular on the use of
data dependence analysis for instruction scheduling. The main
contribution of this research is the adaptation of these method-
ologies to the domain of model transformation languages (MTLs),
in particular for the QVTc language.

This chapter provides an overview of Model Driven Engineer-
ing (MDE) and MTLs, of the use of data dependence analysis for
instruction scheduling in compilers, metaheuristics and the use of
metaheuristics for instruction scheduling. The concepts introduced
are considered necessary to understand this thesis.

The purpose of Sect. 2.1 is to provide an introduction to
MDE and an overview of the characteristics of model transfor-
mations. Section 2.2 introduces the Meta Object Facility (MOF)
Query/View/Transformation (QVT) languages followed by a re-
view of existing implementations and other model transformation
languages/engines in Sect. 2.3. Next, Sect. 2.4 presents the de-
tails of the existing infrastructure used for the development of our
solution. Section 2.5 gives an overview of instruction scheduling
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in compilers and the use of data dependence analysis, and Sect.
2.6 introduces the use of metaheuristics for instruction scheduling.
Finally, Sect. 2.7 summarizes and concludes the discussion.

2.1 Model Driven Engineering
MDE is a type of development process that can ease the imple-
mentation of system artefacts and to automate the design phases
of these artefacts. MDE promotes two activities as part of the
development process [87]. First, the use of models as the realiza-
tion of an abstraction of the System under Design (SUD). Second,
the use of model management languages (a particular type of pro-
gramming languages) in order to validate, analyse, construct and
transform models.

A model of a system is regarded as an abstract representation
of the system that suppresses uninteresting details. Thus, the ab-
straction process can be considered as a process in which models
of the SUD are constructed at different abstraction levels. The
benefits of representing the system through various models is that
these models can be used, among other things, to predict the SUD
properties and behaviours [31], and for SUD analysis, synthesis and
verification [41].

In order for models to be effective they must be well-defined
and provide clear and unambiguous semantics. In the Model Dri-
ven Architecture (MDA) [2] framework proposed by the Object
Management Group® (OMG®), the semantics for models follows
a 3+1 layer architecture as illustrated in Fig. 2.1.

A model represents a system at level M1. This model
conforms to its metamodel defined at level M2 and the
metamodel itself conforms to the meta-metamodel at
level M3. The meta-metamodel conforms to itself [15].

In the automation process, metamodels are used to define the
concepts, semantics and restrictions of the different abstraction
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Figure 2.1: The 3+1 level MDA architecture (taken from [14])

levels. The Eclipse Modelling Framework (EMF) [95] is a very ma-
ture and widely used framework (M3 level) for specifying meta-
models and models. The EMF can be considered a pragmatic
implementation of the Meta Object Facility (MOF) [4] standard,
which is recommended by MDA for the M3 level.

The relations between two adjacent layers in the MDA de-
fine type-token distinctions, as observed in the object oriented
paradigm [64], as follows: If a model (Ma) conforms to metamodel
(MMa), then for a given model element X ∈Ma and its associated
metamodel element Y ∈MMa, the type-token relation is given by
meta(X, Y ), where meta(X, Y ) ↔ type(X) = Y . The various re-
lations between model and metamodel elements are summarized
by the relation conformsTo(Ma, MMa) [15]. This relation holds at
the global level. Further, subtyping is also supported at the meta-
model level, allowing the notion of substitutability to be observed
at the model level. That is, anywhere where an element X with
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type(X) = Y is expected, an element Z with type(Z) = W can be
used iff W is a subtype of Y .

The main aim of MDA is to define an approach that will pro-
vide the tools to materialize the “idea of separating the specifi-
cation of the operation of a system from the details of the way
that system uses the capabilities of its platform” [2]. Thus, in the
context of MDA, the SUD is designed at two levels: the platform–
independent model (PIM) and the platform–specific model (PSM).
However, abstraction can happen not only vertically (PIM to
PSM) but also horizontally (PIM to PIM, PSM to PSM) [72].
Horizontal abstraction can represent a refinement process, verti-
cal abstraction a realization process and, when the PSM to PIM
direction is considered, the vertical abstraction can also represent
a reverse engineering process [60].

2.1.1 Model Transformations

As mentioned previously, MDE enables the automation of the de-
sign process by promoting the use of models and of model man-
agement languages. Model management languages, in particular
model transformation languages, play a key role in this endeav-
our as they provide the tools to define and execute scripts that
describe how a model of the SUD at an abstraction level can be
automatically transformed to a model of the SUD at another (or
the same) abstraction level.

At its essence, a model transformation maps concepts from a
metamodel (read as abstraction level) to concepts of another meta-
model. If object oa belongs to a model that conforms-to metamodel
MMa, and it has to be transformed into an object ob that belongs
to a model that conforms-to metamodel MMb, then a transforma-
tion specifies how the attributes of oa (defined by MMa) can be
used to construct ob and populate its attributes (defined by MMb).

In simple terms, execution of a model transformation “takes
as input a model conforming to a given source metamodel and
produces as output another model conforming to a target meta-

18



2.1. Model Driven Engineering

Figure 2.2: Model Transformations.

model” [30], as presented in Fig. 2.2. The transformation is speci-
fied in a transformation definition, or simply the MTP. MTPs are
executed in a transformation engine (the term execution engine is
used interchangeably).

MTLs are used to express MTPs. In general, MTLs are Domain
Specific Languages (DSLs), although some approaches use General
Purpose Languages (GPLs) to express model transformations (see
Sec. 2.3.2). The benefits of using a DSL for model transformations
are the same as those observed for DSLs in other domains: Expres-
siveness is preferred over generality; this expressiveness facilitates
ease of use, with gains in productivity and (arguably) reduced
maintenance costs [73]. DSLs also make it easier for domain ex-
perts to work with the language as their notations and constructs
are usually closely related to the domain.

The features and characteristics of MTLs (and their engines),
have been summarized and classified by Mens et al., and Czarnecki
et al. The taxonomy proposed by Mens et al. [72] defines a set of
qualities that can be used to group tools, techniques or formalisms
used for model transformations. On the other hand, Czarnecki et
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al. [28] carry out an analysis of the model transformation domain
and provide an in-depth overview of the variabilities and com-
monalities of existing model transformation tools. The remainder
of this section discusses the features and characteristics of the
QVTc language in the frame of the aforementioned classifications.
In particular, it focuses on the classifications that are closely re-
lated to the data dependence analysis and the correctness of the
transformation.

2.1.2 Model Transformation Mechanisms

This categorisation [72] refers to the techniques from major pro-
gramming paradigms which are used by the transformation lan-
guage (and its execution engine or interpreter). Is the transfor-
mation language declarative or imperative? Is the transformation
executed via interpretation or compilation?

The QVTc language is a domain specific, declarative, rule
based, MTL. The declarative aspect is the main feature that drives
this research. Being declarative, a QVTc MTP only describes the
logic component (what to do) of the transformation algorithm,
and the control component (how to do it) must be synthesized ei-
ther at compilation or during execution. This research proposes a
method to synthesize the control component during compilation,
following the approached presented in Sect. 2.4.2. This allows the
use of existing compiler design techniques, specifically instruction
scheduling, during the synthesis process.

An important aspect of the language is that it is rule based. By
considering rules as the smallest units of a transformation [28] this
research will consider them as the starting point for data depen-
dence analysis. Section 4.2.1 defines the data dependence relations
between rules.

Another important aspect of the transformation mechanism is
tracing support.

This is concerned with the mechanisms for recording
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different aspects of transformation execution, such as
creating and maintaining trace links between source
and target model elements [28].

In some transformation languages the tracing is provided in the
form of a trace model, which holds the information of links be-
tween source and target model elements. The trace model can be
implicit or explicit. If implicit, the transformation engine is respon-
sible for defining its structure (possibly by defining a proprietary
trace metamodel) and for maintaining it. Further, the implicit case
precludes the use of existing trace models as additional informa-
tion available to the execution engine. That is, the implicit model
is always constructed from the ground up during execution.

If explicit, the programmer is responsible for defining the trace
model’s structure and for maintaining the information it contains.
Maintaining the information implies that the MTP must correctly
create the links between source and target model elements as re-
quired. In this case, the trace may contain information from previ-
ous executions (or created otherwise). In the QVTc language, the
trace is explicit. Section 2.2 describes how the language supports
the use of an explicit trace model.

2.1.3 What Needs to be Transformed into
what

This classification refers to the format of the source and target
models (MOF models, graphs, trees, databases, text, etc.), the
number of candidate models, the technical space (the domain of
the M3 level), endogenous versus exogenous (transformations of
models expressed in the same language versus expressed in differ-
ent languages), horizontal versus vertical (referring to the level of
abstraction of the models) and syntactical versus semantical trans-
formations [72]. From these, the format of the source and target
models and the technical space are of interest to data dependence
analysis. The former will place restrictions on the information that
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can be extracted from the metamodels and how models are ac-
cessed. The latter will determine the information that is available
for data dependence analysis.

Regarding the technical space, the selected QVTc execution en-
gine (see Sect. 2.4) supports the EMF at the M3 level. The EMF
provides an Application Programming Interface (API) that allows
clients to query a metamodel for information about the concepts
it defines (types), their attributes and the relations between them
(e.g. subtyping). This information will be crucial for the data de-
pendence analysis. The use of the EMF also determines the format
of the source and target models. As with the M3 level information,
the EMF provides an API that allows clients to query models for
information about their contents (elements), and also modify ex-
isting elements and/or create new ones. Each individual element
can be queried about its attributes, including its meta relations.
The available interactions with a model will determine how the
synthesized control component will access these models.

Another important aspect is that the QVTc language allows
the specification of n-way transformations [28], that is, transforma-
tions between more than two models. To support this, the QVTc
language provides a syntax in which each of the models accessed
by a rule is distinguishable from the others but in which there is
no clear distinction between source and target models. Although
during execution a single model must be specified as the target
model since any model can be the target hereafter all models in-
volved in the transformation will be referred to as the candidate
models. When an execution direction is defined, we will then refer
to the specific source model and the target model.

Additionally, the language uses syntactic typing [28], where
variables are associated with a metamodel element and as a re-
sult defines the type of elements it can hold. This will facilitate
the data dependence analysis because it allows identification of the
elements’ meta relations by using static analysis. Static analysis is
fundamental in order to perform the control component synthesis
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during compilation. Section 3.1 provides more details about the
QVTc language syntax, Sect. 4.2 shows how the language features
are used to perform the data dependence analysis and Sect. 2.4
presents details of the selected QVTc execution engine.

2.1.4 Verifying and Guaranteeing Correctness
of the Transformations

This aspect refers to questions such as, does the transformation
produce well-formed models from well-formed input models? Does
the transformation always complete, and are its results determin-
istic? Considerations regarding this aspect include:

• Can the transformation be tested (or its correctness proved
if the transformation language has a mathematical under-
pinning).

• How are incomplete or inconsistent models treated (fail-
ure/error classification, user assistance).

• Can the transformation be executed as a series of smaller
transformations.

• Is the transformation bi-directional.

• Is a trace mechanism provided (useful for debugging).

The QVTc language is a bi-directional MTL. However, the
QVT Specification [3] states that a QVTc transformation must be
executed in a particular direction. Further, although it supports
defining n-way transformations, during execution the selection of
a single model as the target model implies that the QVTc trans-
formation is in practice a many-to-one transformation. As such,
data dependence analysis must be performed in such a way that
the direction is taken into consideration.

A model will be classified as inconsistent when it does not con-
form to the metamodel it claims to conform-to. Inconsistency can
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refer to the model containing elements of types that are not de-
fined in the metamodel, elements missing required attributes, and
references to missing elements, among others. Dealing with in-
consistent models is delegated to the EMF as part of the loading
process of the source model(s) (the EMF will fail to load inconsis-
tent models). As a result, during evaluation, this research assumes
that models used as source model(s) is(are) consistent. As a re-
sult, assuming that the MTP is free of errors, execution of the
transformation should produce the expected target model.

Other important aspects are composition and tracing. The
QVTc language does not support transformation composition and
thus we do not consider the case of execution as a series of smaller
transformations. Since in QVTc the trace model is explicit, this
means that trace metamodel types must be also considered for
the data dependence analysis.

Given that the QVTc language does not have a formal seman-
tics, correctness of the synthesized control component cannot be
proved. Therefore, evaluation of correctness can only be achieved
empirically. Finally, it is important that the synthesized control
components guarantee that the execution will always complete and
that the results are deterministic.

2.2 The QVT Specification
Model Transformations are fundamental to MDA.

It is important that transformations can be devel-
oped as efficiently as possible. A standard syntax and
execution semantics for transformation [a transforma-
tion language] is an important enabler for an open
MDA tools chain [42].

To this end, the OMG® issued the QVT Request For Proposals
(RFP) [6] in 2002. The QVT RFP brought forth eight submissions.
From these, Gardner et al. [42] presents a set or recommendations
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Figure 2.3: QVT Architecture (taken from [3])

for the final QVT specification. Some of these recommendations,
like support for hybrid transformations, a simple declarative spec-
ification language, bi-directionality, composition and reuse, are
present in the final QVT specification. It is important to notice
that although the specification is still called Query/View/Trans-
formation, the query and view components are not defined in the
specification. It could be argued that both are special cases of
transformations.

The QVT specification “has a hybrid declarative/imperative
nature, with the declarative part being split into a two-level archi-
tecture” [3], as presented in Figure 2.3. The declarative nature is
provided by the QVT Relations [3] (QVTr) and QVTc languages,
while the imperative nature is provided by operational mappings
language. In the rest of this thesis, the QVT Declarative (QVTd)
acronym is used when referring to the Relations and Core lan-
guages.

The QVT languages are all intended for model-to-model trans-
formations. Transformations can be endogenous or exogenous as
well as horizontal or vertical. The languages also support multiple
input and output models and in the case of the QVTd also support
bi-directional transformation specifications.

The QVTr language is more abstract than the QVTc and QVT
Operational Mapping [3] (QVTo) languages, and intended for end
users. The QVTc language is defined using minimal extensions
to the Essential MOF (EMOF) and Object Constraint Language
(OCL) and is intended to provide the semantics of the Relations
language. This was one of the main reasons that the QVTc lan-
guage was selected for this research. By providing an execution
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engine for QVTc, then QVTr should be, in principle, supported
too. Further, the QVTc could be used by other transformation
languages as a compilation target language in order to provide
execution capabilities [114]. The Operational Mappings language
provides OCL extensions with side effects. Operational Mappings
can be invoked from the Relations or the Core languages. Finally,
the Black Box mechanism adds extension support by allowing op-
erations to be provided by external libraries.

Usually models involved in a transformation are referred to
as input/output or source/target models, denoting an explicit di-
rection in the transformation (the input/source model is trans-
formed into the output/target) model. However, considering the
multi-directionality and multiplicity of models involved in a QVT
transformation, the term candidate models is used throughout this
thesis to refer to the models involved in the transformation (as de-
fined in the specification). In places where a differentiation is nec-
essary the input/output or source/target models naming is used.
Input/source and output/target will be used interchangeably de-
pending on the references cited.

2.2.1 The Relations Language

As specified in the QVT specification,

In the relations language, a transformation between
candidate models is specified as a set of relations that
must hold for the transformation to be successful. A
candidate model is any model that conforms to a mo-
del type [3],

where, as defined in the specification, a model type is defined by a
metamodel. The QVTr language is a multi-directional declarative
language where “traces between elements involved in the transfor-
mation are created implicitly” [3].

A QVTr MTP consists of Relations that specify constraints
that must be satisfied by the elements of the candidate mod-
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els. The multi-directionality is defined by the number of domains
defined in a Relation (minimum two). Two language constructs,
when and where clauses, define the relationships that must hold
between the elements of the candidate models. The when predicate
expresses pre-conditions and the where predicate expresses corol-
laries (statements and rules that should execute after execution of
the rule’s body). The QVTr language does not support refinement
or extensions of Relations; only an override semantics is provided.
That is, transformation rules cannot be refined or extended.

The QVT specification defines the semantics of Pattern Match-
ing (how variables in a Relation are bound to elements in a model),
Enforce and Checking. The last two are defined as QVTr execu-
tion modes. In Enforce mode, the candidate models are modified
so that they satisfy the relations in a MTP; in Check mode the
candidate models are checked to assess if they satisfy the relations
in a MTP.

2.2.2 The Core Language

In the QVTc language,

a transformation is specified as a set of mappings that
declare constraints that must hold between the model
elements of a set of candidate models and the trace mo-
del. The candidate models are named, and the types
of elements they can contain are restricted by a model
type [3].

The QVTc language is a multi-directional, declarative transfor-
mation language where the trace model must be explicitly defined
and the mappings in a transformation refer to this model directly.
Thus, a QVTc MTP consists of mappings that specify the con-
straints between the candidate models and the trace model.

As in QVTr, multi-directionality is defined by the number of
domains defined in a mapping, with the difference that in QVTc
mappings can have zero or more domains. This particular distinc-
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tion allows a QVTc mapping to define constraints between ele-
ments of one (or more) model types and the trace model, or even
constraints between elements of the trace model only. A QVTc
transformation can also be executed in Check or Enforce mode.

In a nutshell, QVTc is a textual, declarative, rule based model
transformation language that reuses OCL as an expression lan-
guage for model navigation and modification. A QVTc mapping
(rule) is built around the concept of areas, as illustrated in Fig.
2.4. Each area consists of a bottom pattern and a guard pattern.
The guard pattern defines the constraints that a set of elements
must satisfy in order to be processed by the mapping. The bottom
pattern defines additional constraints the set of elements must sat-
isfy and modifications that the elements must undertake as part
of the transformation.

An area is related to a particular model. When the area is
related to a source or target model the area is called a domain.
In Fig. 2.4 there are two domains, one for the L (left) model and
another for the R (right) model. Each mapping is in itself an area.
All mappings (Middle Area) are related to the trace model and
provide the mechanism for managing the (explicit) tracing.

As presented in Sect. 2.1.2, the programmer must define its
structure (via a metamodel) and is responsible for creating the
links between the source and target model elements. The bottom
pattern and a guard pattern allow the user to define constraints
between the elements of the trace model, and between elements
of the trace model and the candidate models. Although explicit,
the QVTc semantics do not make it mandatory to use a trace
model. As a result there are no restrictions either on transferring
information directly between candidate models.

Patterns are specified as a set of variables, predicates (con-
straints) and assignments (modifications). The QVT specification
defines the semantics for pattern matching and bindings:

A match of a pattern results in zero or more valid
bindings. A binding is a unique set of values for all
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variables of the pattern. A valid binding of a pattern
is a binding where all the variables of the pattern are
bound to a value other than undefined, and where all
the predicates of the pattern evaluate to true [3].

The arrows in Fig. 2.4 define the dependencies between patterns
and help define the context of bindings. These relations are impor-
tant for data dependence analysis as they provide an initial guide
on what relations are important and a possible order in which
dependence should be performed, e.g. start at the guard patterns.

Figure 2.4: QVTc Areas and Pattern Dependencies (taken from [3])

2.2.3 Operational Mapping

This research focuses on the declarative subset of the QVT spec-
ification (QVTr and QVTc) and thus a detailed presentation of
QVTo is out of the scope of this survey. For completeness this sec-
tions presents a small overview and highlight the key differences
from the QVTd languages.

The QVTo language allows “to define transformations either
using a complete imperative approach or allows complementing re-
lational transformations with imperative operations” [3]. A QVTo
transformation is specified as a set of mapping operations in which
objects (elements) can be created and modified. The QVTo lan-
guage supports both transformation and mapping composition.
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The language also supports a forEach structure that allows iter-
ation over a block of expressions. The language provides implicit
tracing facilities and language constructs to access the trace infor-
mation.

2.3 A QVT Landscape

Almost 14 years after the adoption of the QVT specification and
the initial interest in the RFP, the available QVT transformation
engines are scarce, and none of them support all three languages.
In 2008, eight QVT tools where reported [68]; one for QVTc, four
for QVTr and two for QVTo. Of those, the following provide QVTc
or QVTr support:

• The OptimalJ (QVTc) project was abandoned by Com-
puware that same year.

• MediniQVT [62] provides a partial implementation of QVTr
but its performance has been reported to be unsatisfac-
tory [21].

• MOMENT-QVT claims to have conformance with QVTr
(except with respect to SyntaxExportable1 [85]) but it is no
longer available from the project website2.

• ModelMorf is a proprietary tool from Tata that is under
development, the latest publicly available version is a Beta
release3. Tata has recently authorized the use of their test
cases in the Eclipse QVTd Project.

1“SyntaxExportable: An implementation shall provide a facility to export
a model-to-model transformation in the concrete syntax of the language given
by the language dimension”[3].

2Moment: http://moment.dsic.upv.es/content/view/34/75/, last ac-
cessed 23/03/2017

3The company has been contacted as there was a possibility to get a demo
version of the latest release, http://www.tcs-trddc.com/trddc_website/
ModelMorf/ModelMorf.htm, last accessed 23/03/2017
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• The Atlas Transformation Language (ATL) tool was con-
ceived as a QVTr tool [68], however, the ATL evolved in
parallel to QVTr and, although they share similar architec-
tures and have a similar operational context [57], ATL does
not conform to the QVTr standard.

The Eclipse MMT project4 provides a QVTo and a QVTd sub–
projects. At the beginning of this research the QVTd project pro-
vided editors for QVTr and QVTc.

As a result of a growing interest in MDE in the software engi-
neering domain ATL is not the only project that provides support
for model transformations that has developed in parallel to QVT..
Other projects like the Epsilon Transformation Language (ETL)
(part of the Epsilon framework [80]), Kermeta [40], GReAT [8], VI-
ATRA [103] and MOTOE [61], have entered the model transfor-
mation scene. Some of these come from the software engineering
domain, although not all fall under the umbrella of the MDA,
and others from other disciplines like graph grammars (VIATRA,
GReAT) and linear optimisation (MOTOE).

2.3.1 QVT Issues

As with other specifications, the QVT specification has been sub-
ject to revisions that aim at fixing issues that have been identified
in the available releases. A small number of issues have been re-
ported against the version used as reference for this research (1.2).5

However, there are some issues against the languages’ semantics
that are not officially reported. Some of these unreported issues
have been outlined by Stevens [96, 97]. Most of the issues identi-
fied are relevant to bi-directionality and bijectivity. Further, the
difficulty in understanding the semantics of the QVTd languages
has played an important role in the lack of available implementa-

4Eclipse model to model transformation Project, http://wiki.eclipse.
org/MMT/

5The issues reported against version 1.2 can be found here: http://
issues.omg.org/issues/spec/QVT/1.2.
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tions [96]. From reading the specification as part of this literature
review, the existence of typographical errors, complex grammar
constructs and ambiguities is evident. The use of the OCL as the
language for writing expressions in QVT is a cause of some of
the issues [97]. For example, the use of OCL results in the lack
of a proper mechanism to test transformations and rule composi-
tion [97].

However, Stevens concludes that most of these issues are re-
lated to lack of detail in the specification and could be addressed
by revising and adding the missing information. The same could be
argued for the possible incompatibility between QVTr and QVTc
semantics identified by Stevens [96]. This survey was unable to
find any work that explored the reasons for the lack of a working
implementation of the QVTd languages, the extent of adoption of
the set of QVT languages and if there is a relation between the
two.

2.3.2 QVT Alternatives

Interestingly,

it sometimes happens that even those tools which use
‘QVT’ in their marketing literature do not actually
provide any of the three QVT languages, but rather,
provide a ‘QVT-like’ language [96].

Further, from the available tools that claim to support QVTr iden-
tified by Stevens [96], few provide support for bi-directional exe-
cution and only work in enforcement mode.

The landscape of model transformations is growing, with tools
that claim some conformance to QVT, that support the QVT lan-
guages by compiling them into another language, or that provide
bespoke MTLs. Since the list of all the available tools is quite ex-
tensive, this section lists some of them in different domains and
provide a brief description of the approach they take to model
transformations. The tools presented where selected based on the
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domain of the implementation, whether the tool implements the
QVT specification or another (e.g. bespoke language), and the im-
plementation strategy. This section presents tools that follow par-
ticular approaches that could provide interesting ideas that could
be adapted in order to support the control component synthesis.

InGreenyer et al. [43] Triple Graph Grammars (TGG) are used
to provide execution of QVTr transformations. They use the trans-
formation from QVTr to QVTc (given in the QVT Specification),
and a TGG transformation to map QVTc into TGG. Finally, the
resultant TGG program is executed by their TGG engine. They
support the EMF as the M3 level. The execution in their TGG
engine follows an interpreted approach. Further, they also provide
a mapping from QVTr to TGG, again using TGG. As part of the
mapping of QVT to TGG, the authors also identify aspects of
the QVT specification that leave “room for interpretation”: rule
execution order and bindings of variables across mappings/rules.

GREAT [26] uses programmed graph rewriting to provide sup-
port for model transformations. It is independent of QVT and uses
the Optimix language to define the patterns between model ele-
ments. However, the framework is limited to the transformation
of the UML class diagrams.

GReAT [8] (notice the small ‘e’) is another transformation lan-
guage based on graphs. Its authors propose a language similar to
the UML class diagrams to define the patterns used for matching.
Transformations are then described using a visual language that
allows the definition of patterns used in a transformation. Trans-
formations consist of rules and each rule is a block that receives
inputs and produces outputs (signals). Rules are cascaded by inter-
connecting input and output signals. Of interest is how signals are
used to interconnect rules, given that in data dependence analysis
it is important to identify the flow of data through the program.

Model transformations implemented using a linear program-
ming (LP) approach are discussed by Callow et al. [23]. To be able
to use LP, the authors propose a method for representing QVTr
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transformations as sets. Different sets are used to represent rules
and patterns, and are also used to represent the relations in a
pattern. The transformation execution itself is a complex process,
requiring the execution of two mixed integer linear programs. This
work has some shortcomings: some aspects of MOF meta-models
and the QVTr language are not captured by the defined sets, inher-
itance and arbitrary OCL statements are not fully supported, and
an automated transformation from QVTr to the aforementioned
sets is not provided (i.e. the sets have to be composed manually).
The LP approach provides insights into the definition of a cost
function for QVTr transformations. Such a function might be of
interest in order to compare different synthesized control com-
ponents in order to determine, for example, if a given synthesis
method provides better results.

MOTOE [61] also treats model transformations as an optimiza-
tion problem, but as with GReAT, its authors provide a bespoke
language to define patterns. Patterns are called mapping blocks:
“A mapping block gives the translation of a cohesive piece of a
source model to its equivalent in the target model” [61]. To exe-
cute the transformation they use PSO (a parallel population–based
computation technique) originally inspired from the flocking be-
haviour of birds. Briefly, the algorithm finds the best solution by
evaluating how well the elements of the model fit the mapping
block. This approach is interesting, given the use of a metaheuris-
tic to find a solution. However, there is no mention of support of
bi- or multi-directional transformations and it is not clear what
is the modelling technology supported. Of interest is how swarm
intelligence methods can be applied to the problem of executing
declarative MTLs.

XMorph [36] is a transformation language that was proposed
in response to the QVT RFP. However, XMorph is influenced by
an aspect-driven approach which makes its semantics unique in
the handling of target objects, as creation of target objects is im-
plicit. This allows for several rules to set properties of a single
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target object without the need to specify which rule creates it.
The transformation is also based on patterns (matched for input
elements and used as a template for output ones). In XMorph
(like in QVTc) traceability is explicit, with the use of trackings to
declare relationships between source and target elements.

Tefkat [94] is a model transformation engine that supports
XMorph. The engine has two primary components: a source-pattern
matcher and a target-pattern resolver. The source-pattern matcher
“checks the existence of object instances and the values of their
attributes while the target-pattern resolver may create objects or
set attribute values to ensure a target pattern holds” [94]. Of in-
terest is the distinction between a source and a target match,
which in the QVTd languages could be used to decompose rules
into smaller blocks. This decomposition can facilitate the synthe-
sis of the control component by separating access to the candidate
models.

Kermeta is the core language of a model-oriented platform [77].
It consists

of an extension to the Essential Meta-Object Facilities
(EMOF) 2.01 to support behavior definition. It pro-
vides an action language to specify the body of opera-
tions in metamodels. The action language of Kermeta
is imperative and object-oriented [76].

Different from other approaches, Kermeta is a fully fledged object
oriented programming language; “Kermeta has nothing specific
to model transformation, but being quite general purpose, it can
be used to implement mechanisms to support model transforma-
tions” [76]. To specify a model transformation a new class must
be defined for each pattern. The class has attributes to capture
the details of the patterns and a transformation operation is de-
fined which receives an input object and returns an output object.
The classes are then used by the Kermeta engine to execute the
complete transformation.
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FunnyQT [51] is a model query and transformation language
designed as an extension to Clojure, a Lisp Dialect. FunnyQT is
a Clojure API and as a result does not provide a specific syntax
for model transformations. Thus, transformation rules are essen-
tially Clojure expressions. For execution, the MTP execution is
delegated to the underlying Clojure virtual machine. “Clojure pro-
vides a large set of features including higher-order functions and
control structures that can be used directly” [51].

The ATL [56] is a domain-specific language for specifying mo-
del transformations. The ATL is inspired by the OMG®’s QVT
requirements, but “the actual ATL requirements have changed
over time as this language matured” [57]. The ATL provides both
declarative and imperative constructs and is therefore a hybrid
MTL. The ATL is a textual language in which transformations
are composed of rules. Each rule defines a pattern by specifying
the relation between elements of the input and output metamodel.
Transformations are uni-directional. For execution, the transfor-
mation is compiled and run in the ATL Virtual Machine. As in
QVT, relations are expressed using OCL expressions. In the archi-
tecture alignment between ATL and QVT presented in Jouault et
al. [57], declarative ATL is considered less abstract than QVTr as
it is restricted to unidirectional transformations and hybrid ATL is
considered at the same level as QVTr and QVTo (“ATL with im-
perative features has a lot of overlap with [QVTo] language ” [57]).

The Epsilon framework [80] provides a set of languages to work
with models, among which there is a transformation language: the
ETL [63]. The ETL has a textual syntax similar to the ATL, in
which a transformation is composed of rules and each rule speci-
fies a matching pattern between elements of the input and output
models. The ETL is unidirectional but supports multiple input
and output models. The ETL is a hybrid language and supports
annotations to extend and modify how patterns in the rule are
matched, to support abstract rules (useful for rule inheritance/ex-
tension) and to enhance traceability support.
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The landscape of QVTc alternatives presented in this section,
although not complete, provides an insight into the multiple ap-
proaches to model transformation. The selected alternatives cover
languages developed in different domains and with different tech-
nologies. The landscape omitted languages for which no imple-
mentation details where publicly available. From the surveyed ap-
proaches a consensus on the need for pattern matching capabilities
emerged. Pattern matching is needed to identify source model el-
ements of interest in the transformation and to define templates
that specify how output model elements are created. The chal-
lenges of supporting multi-directionality are widespread and most
of the referenced languages are limited to uni-directional trans-
formations. Further analysis and testing will be required to iden-
tify additional general limitations or de-facto assumptions. One of
these assumptions, at least from our experience with the ATL and
the ETL, and from the semantic explanation of other approaches,
is that each input element is transformed only once by each rule.
This may be an implicit requirement to prevent the transforma-
tion from entering an infinite loop (i.e. when all input elements
matched by input patterns have been transformed the transfor-
mation ends).

The aforementioned alternatives are all concerned with model–
to–model transformations. Another important area of research is
model–to–text transformations. Such transformations are usually
performed at the lowest level of abstraction to generate, for ex-
ample, the code of an application (in a particular programming
language) or the SQL statements to initialize a database. Since
the QVT standard does not define a language for model-to-text
transformations this survey does not include languages that sup-
port this type of transformations.
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2.4 Existing Infrastructure
Given that there are no available open source tools that support
the QVTc language, part of the current efforts of the Eclipse QVTd
project aim at providing execution capabilities for the declarative
languages. This section discusses some basic aspects required to
provide a tool that supports the QVTc language and then shows
the current state of the Eclipse QVTd project QVTc transforma-
tion tool.

2.4.1 Language Execution

In order to execute a transformation, i.e. create or update the can-
didate models, the transformation language must be executed on
a machine (computer). The process of enabling a language to run
on a specific machine is known as an implementation. Implemen-
tations can be divided into interpretation– and translation–based
approaches [111]:

Interpretation–based The main characteristic of the interpreted
approach is that the program (transformation) and the data
(candidate models) are evaluated simultaneously. “Every
construct c of the program is analysed and interpreted as
it is encountered during the execution – even if c has al-
ready been encountered” [111].

Translation–based In this approach the program and the data
are processed at two distinct phases of the execution. In the
first phase (compile–time), the program is translated to an-
other representation (e.g. assembler language or bytecode)
which can be directly executed by the machine. In the sec-
ond phase the alternative representation is executed on the
machine and data is accessed as required (run–time). Also
known as compiled, the translation–based approach pro-
vides a more efficient execution than interpretation–based
approach.
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As an alternative to hardware machines, the concept of virtual
machines was proposed as early as during the implementation of
early ALGOL60 compilers [111]. A virtual machine provides bene-
fits to compilation and interpretation implementations, as it pro-
vides instruction sets (machine core instructions) that are tailored
to the needs of the language. Thus, providing a virtual machine
for a transformation language is desirable as specific instructions
for model manipulation can be provided [56, 1].

The QVTc language is specified as an extension to the OCL,
which adds new elements to the language such as block interaction
mechanisms, semantic constructs and syntactic sugar [93]. Thus, a
virtual machine for QVTc can be conceived as an extension to the
OCL virtual machine:

Efficient evaluation of OCL is useful, but increas-
ingly OCL is now used within extended contexts such
as QVT or MOFM2T. These languages define an ex-
tended the [OCL] Abstract Syntax Tree (AST) and
so in principle are amenable to the same tree-walking
evaluation as the basic OCL AST. Nonetheless the
same basic interpreter can support native evaluation
and the code generator can be extended to the ex-
tended AST [112].

2.4.2 The Eclipse QVTc VM

The QVTc execution engine available from the Eclipse QVT De-
clarative project6 was used for the development of the proposed
solution. The main reason for this choice is that one of the con-
clusions of the field survey (see Sect. 2.3) is that this engine is
the only existing available implementation of a QVTc execution
engine freely available and actively developed. Since the Eclipse
QVT Declarative project was under active development at the
time this research was conducted, the development was branched

6https://projects.eclipse.org/projects/modeling.mmt.qvtd
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Figure 2.5: Bridging the QVTd to OCL semantic gap.

form the 0.13 RC4 release (7 June 2016). Further, modifications
have been made to the QVTi virtual machine, mainly to fix small
bugs in the QVTc to QVTm translation and in the interpreted
execution, and to change some of the existing behaviour. The rea-
sons for the changes in behaviour where mainly that the QVTd
project development was exploring alternative approaches to the
synthesis problem. The available engine provides two modes of
execution: compiled and interpreted. Given that at the time the
interpreted version was more stable and mature, this research uses
the interpreted execution mode.

The semantic differences between the QVTd languages and
OCL makes the implementation of the QVTc engine a complex
task. One way to solve the challenges of the semantic gap is to
progressively bridge the gap by using intermediate representations
and perform the required translations in a series of steps [41].

An initial solution following this approach driven by Edward
Willink was published [114] in the International Conference on Mo-
del Transformation (ICMT). The solution is based on the intro-
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duction of three additional QVTd languages: QVT Unidirectional
(QVTu), QVT Minimal (QVTm) and QVT Imperative (QVTi).
QVTu is intended to be the closest to QVTc and QVTi the closest
to OCL as presented in Fig. 2.5. Execution is provided by a QVTi
virtual machine.

QVTu is semantically a subset of QVTc and its intention is
to remove bi-directionality (by selecting an execution direction)
and explicitly define the execution mode (check or enforce). For
the QVTc to QVTu translation to take place, the user must select
an execution direction and an execution mode. Bi-directionality is
removed by transforming all statements (assignments) that mod-
ify the source model into constraints (predicates). If the execution
mode is check, all modifying statements are transformed into con-
straints.

QVTm is semantically a subset of QVTu and its intention is to
normalize the transformation. Normalization is done by eliminat-
ing mapping refinement and nested mappings. Refinement elimi-
nation is done by the combination of the refined mapping with the
refining mapping as defined by the QVT Specification [3]7. After
refinement elimination all nested mappings are removed by lifting
domains in nested mappings to their parent mapping. The lifted
domains are merged with their respective domains in the parent
mapping.

QVTi supports the same syntax and semantics of QVTm, but
adds new imperative language constructs. The additional language
constructs include iteration and mapping invocation. The impera-
tive language constructs must be synthesized as part of the trans-
lation step.

The QVTi virtual machine is responsible for three main activ-
ities:

• Source model traversal to query all elements of a given type
(allInstances).

7Section 9.14 Mapping Refinement
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• Mapping invocation for a set of variables bound to model
elements.

• Target model modification via new element creation and el-
ement modification (absent in OCL).

With the translation between the new languages in place and
an initial implementation of the QVTi virtual machine, this re-
search contributes to the Eclipse QVTd Project effort by propos-
ing the mechanism for synthesizing the imperative language con-
structs.

2.5 Control Component Synthesis
In this section we present how data dependence provides a synthe-
sis strategy for control component synthesis in the case of instruc-
tion scheduling. This approach is the base of the solution proposed
in this project. We will consider the transformation from QVTm to
QVTi as a compilation step. This compilation is a pre–processing
activity required to generate the imperative (QVTi) MTP that is
executed by the QVTi virtual machine. The QVTi MTP can be
then executed either by interpretation or compilation.

A MTP is a description of an algorithm that specifies how to
transform a source model (or models) into a target model (or mod-
els). A program is an algorithm representation that is meant to be
readable by a machine. Algorithms can be regarded as consisting
of a logic (L) and a control (C) component [65]:

A = (C, L) (2.1)

The logic component describes the knowledge about the problem
being solved by the algorithm. The control component determines
the way in which the knowledge can be used to solve the problem.
If C does not affect the meaning of the algorithm, then “different
algorithms A1 and A2, obtained by applying different methods of
control C1 and C2 to the same logic definitions L, are equivalent
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in the sense that they solve the same problems with the same
results” [65].

Compilation is described by Wilhelm et al. as a process in
which a program pK , which is written in a language K, is trans-
lated into a program pM , which is written in a machine (or assem-
bly) language M , of the real or virtual machine that will execute
the program [111]. Compilation can be then understood as a pro-
cess in which the algorithm ApK

= (CpK
, Lp) is transformed into

the algorithm ApM
= (CpM

, Lp). Since both algorithms share the
same logic, they must produce the same results. Program pK , has
a structure defined by language K, and its semantics (the mean-
ing of the program) is described by this structure. The job of the
compiler is to collect the semantics of a program in a semantic
representation and rephrase it in terms of the target language [44].

An MTP pm written in QVTm can be represented, using (2.1),
as Apm = (C∗

QV Tc
, Lp). Strictly speaking, given that the QVTm

language is declarative, the algorithm does not include a control
component. However, there exists an implicit control component
C∗ given by the semantics of the language. The compilation of
pm to a QVTi version pi, must then produce Api

= (CQV Ti
, Lp),

with Api
≡ Apm . The resulting algorithm Api

uses the imperative
constructs of the QVTi language to produce the same results.

The next section describes how the semantic representation of
an algorithm can be constructed. We will first go over some basic
compiler theory to introduce the concepts of instruction schedul-
ing and the role of data dependence analysis as part of compiler
optimizations.

2.5.1 The Abstract Syntax Tree (AST)

The first step in a compilation is to parse the text of the program.
The result of the parse stage is usually a syntax tree that represents
the program in terms of the grammar (or concrete syntax) of the
language. Given that syntax tree is closer to the grammar, an
additional step is taken to shift the emphasis from the syntax to

44



2.5. Control Component Synthesis

the semantic content of the program [44]. The result of this step is
the AST. This section introduces a simple arithmetic expressions
language that is used to explain the construction of the AST, how
the AST is used to schedule the execution of a program written
in this language, and how data dependence analysis is used for
scheduling optimizations.

Listing 2.1: Simple arithmetic expression grammar.
1 express ion → express ion ‘+’ term | express ion ‘− ’ term | term
2 term → term ‘∗ ’ f ac tor | term ‘/ ’ fac tor | fac tor
3 factor → i d e n t i f i e r | constant | ‘ ( ’ express ion ‘ ) ’

The grammar for the simple arithmetic expressions language
(K) is presented in Listing 2.1, written in a simplified BNF syntax.
Each line is a derivation rule, where the name to the left of the
arrow is a symbol. To the right of the arrow the sequence of symbols
determines a possible substitution for the symbol to the left. A
“|” is used to indicate different choices for the replacement.

In language K, an expression can be replaced by a term,
or by an expression and a term separated by either a + or
− character. This allows the construction of addition and sub-
traction expressions. Similarly, the derivation rule of a term al-
lows the construction of multiply and divide expressions. Finally,
the derivation rule of a factor allows using identifiers (names)
or constants (numbers) to define the factors (operands) of the
expression. Such grammar allows the construction of expressions
such as b+2*(3/a)-c or b*b-4*a*c. For the rest of this exposition
pK = b ∗ b4 ∗ a ∗ c.

A parser builds a parse tree by determining the best way to
replace parts of the expressions with the grammar derivations.
The parse tree of pK is presented in Fig. 2.6 and the equivalent
AST presented in Fig. 2.7. In the AST the information related to
the grammar is removed, leaving only the information relevant to
the syntactic structure. Notice that operator precedence defined
in the grammar is highlighted by the structure. Further, since
each operator has a clear semantic meaning, the expression can be
executed (a result calculated).
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Figure 2.6: Parse tree for expression b*b-4*a*c.

Figure 2.7: AST for expression b*b-4*a*c.

2.5.2 Instruction Scheduling

The AST is a good representation of the semantic meaning of an
algorithm. However, the compiler still needs to do an additional
step to produce the program pM that can run in the target ma-
chine. This additional step maps semantic constructs of the source
language K to specific executable instructions in the target ma-
chine and generates the target machine program pM .

Lets consider the case in which the target machine is a pure
register machine. A pure register machine can store values in a set
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Table 2.2: A simple register machine instruction set.

Instruction Action
load_C c, Rn Rn := c
load_M x, Rn Rn := x
store_R Rn, x x := Rn

add_R Rm, Rn Rn := Rn + Rm

sub_R Rm, Rn Rn := Rn −Rm

mul_R Rm, Rn Rn := Rn ×Rm

div_R Rm, Rn Rn := Rn ÷Rm

of registers and provides a basic set of instructions that can be
performed on the registers. Table 2.2 describes a simple register
machine that will be used for the remaining of this exposition. The
first set of instructions describe operations between memory (or a
constant) and a register: load the register with a value and store
the value in a register in memory. The instructions in the second
set perform an operation between two registers, leaving the result
in the second one.

Since the register operations map nicely to the semantics of
language K, the machine–ready AST can be constructed by re-
placing each of the nodes in the AST by its corresponding ma-
chine instruction. Assuming the target machine has an infinite
amount of registers, the translation is straightforward. A possible
machine–ready AST is presented in Fig. 2.8.

The second part of the step for generating pM is responsible
for instruction scheduling. For this, note that each node can only
be computed after the results of its children have been computed.
For example mul_R R2, R1 cannot be computed until load_M b, R2

and load_M b, R1 have been computed. This suggests that the in-
struction scheduling can be obtained by a depth-first traversal of
the machine–ready AST. In depth-first traversal, the child of a
node is explored before exploring its siblings. The resulting pM is
presented in Listing 2.2.
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Figure 2.8: AST for expression b*b-4*a*c using the machine registers
for storage.

Listing 2.2: Register machine code for the expression b*b-4*a*c
load_M b, R1
load_M b, R2
mul_R R2, R1
load_C 4, R3
load_M a, R4
mul_R R4, R3
load_M c, R5
mul_R R5, R3
sub_R R3, R1

2.5.3 Optimization and Data Dependence
Analysis

The assumption of infinite registers is unsound, given that a hard-
ware or virtual machine is bound to have a limit to its memory
size, and as a result, a limit to the number of registers it provides
(or alternative storage mechanism for computation, e.g. a stack).
In general, it is preferable that a program a) uses as few registers
(memory) as possible, and b) executes as fast as possible. Most
modern compilers will perform some sort of optimization during
generation of the machine program to reduce its memory use and
boost its performance (e.g. reduce execution time).

Careful analysis of the register machine code program pM pre-
sented in Listing 2.2 reveals that it is possible to use only three
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registers instead of five and that one instruction can be eliminated.
The result of making these optimizations is presented in Listing
2.3. Using fewer registers was possible by a simple optimization
that generates code for the child that requires the most regis-
ters first. Elimination of the double loading of b is done with a
more advanced optimization technique called common subexpres-
sion elimination.
Listing 2.3: Optimized register machine code for the expression
b*b-4*a*c

load_C 4, R2

load_M a, R3

mul_R R3, R2

load_M c, R2

mul_R R2, R3

load_M b, R1

mul_R R1, R1

sub_R R3, R1

Instruction selection, register allocation, common subexpres-
sion elimination, and other optimization techniques, are key to
finding an optimal machine program. However, these three ac-
tions are intertwined and finding an optimal machine program is
an NP-complete problem [44, 9]. NP-complete problems are, in
essence, problems for which a solution cannot be found in poly-
nomial time, that is, the time to solve the problem grows expo-
nentially as the size of the problem increases. From the different
optimization techniques, instruction scheduling optimization is of
interest because of its role in increasing processor utilization [75,
10], which results in reduced execution times. This research inves-
tigates how instruction scheduling techniques can be adopted in
order to synthesize the control component for programs written in
QVTc.

Instruction scheduling is usually performed on atomic blocks
of code, or basic blocks. A basic block is defined as a section of
code (one or more instructions) that has only one entry point (the
first line of code) and in which control will leave the block without
halting or branching [10]. The instruction scheduling problem is
then to find a schedule for the instructions within the block so
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it executes in the minimum number of clock cycles. In general
this problem is NP-hard [13, 48]. For NP-hard problems, as with
NP-complete problems, a solution cannot be found in polynomial
time. Additionally, once a solution is constructed for a NP-hard
problem, it may not be possible to verify it in polynomial time.

Different intermediate representations of the AST proposed to
solve this problem are: control flow graphs, def-use chains, data
dependence graphs, program dependence graphs [39], static single
assignment form [18], among others [82]. Although an ideal pro-
gram representation should include information about the flow of
control and the flow of data [82], some of these representations
only contain information about one of the two. This is the case for
declarative languages in which the control component is absent.

The alternate representation is constructed by analysing the
AST to identify control and data dependencies between instruc-
tions. The analysis can also be done on the machine-ready AST [48].
The data dependence analysis is usually performed on the AST be-
cause this representation makes data dependencies easier to iden-
tify between constructs of the user programming language.

Coming back to our example arithmetic expression language,
this language can be considered to be declarative. The program
(equation) only describes the logic: the calculation the program-
mer wishes to compute. There are no control constructs to indi-
cate how the calculation must be computed. If the semantics of
the language are respected, the compiler is free to execute the sub-
expressions in any order. For example, additional to the two cases
presented earlier, all register loading could be done first as in List-
ing 2.4. Note that in this last example mul_R R4, R3 is evaluated
first. These three programs will produce the same result.
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Figure 2.9: DDG for expression b*b-4*a*c.

Listing 2.4: Alternative register machine code for the expression
b*b-4*a*c

load_C 4, R3

load_M c, R5

load_M b, R1

load_M b, R2

load_M a, R4

mul_R R4, R3

mul_R R2, R1

mul_R R5, R3

sub_R R3, R1

A plausible data dependence graph (DDG) analysis for our
example expression b*b-4*a*c is presented in Fig. 2.9. This graph
reveals important information:

• There are no dependencies between the operations that load
the variables and constants. Hence, as in Listing 2.4, the
load operations can be invoked in any order with respect to
each other.

• The rest of the dependencies are due to the semantics of the
language: an operation needs its operands to be available
before it can be executed. Hence, a*4 depends on a and 4 to
be loaded and a*4*c depends on a*4 being evaluated and c

being loaded.

Instruction scheduling is built around the concept of predeces-
sors and successors in the DDG:

51



Chapter 2. Field Survey and Review

In a [data dependence graph], the predecessors of a
node i are the set of nodes j excluding i for which
there exists a directed path from j to i. Conversely,
the successors of i are the set of nodes j excluding i

for which there exists a directed path from i to j [47].

The instruction represented by a node i cannot be scheduled un-
til all its predecessors have been scheduled. All successors of the
instruction represented by a node i must appear after node i in
the schedule. Note that when used in conjunction with other op-
timization techniques additional considerations need to be taken.
For example, static single assignment form optimization can re-
sult in some instructions being discarded, in which case the pre-
decessor/successor scheduling constraints must be refined. Other
approaches to scheduling using data dependencies can be found in
Wolfe et al. [116], Halbwachs et al. [45], Sweany et al. [100], Bat-
tacharyya et al. [12], and Ferrante et al. [39].

2.5.4 Existing Solutions

The theories from compiler optimization (including instruction
scheduling) have not been reused in a substantive way in the devel-
opment of model transformation languages [89]. This is supported
by the very few articles that were found during this literature re-
view that detail how the control component is synthesized for the
existing declarative MTLs.

In the case of the ETL [63] and the ATL [58] languages the con-
trol component is synthesized as proposed by Jouault et al. [58]:
Rules are scheduled in the order they are defined in the MTP, with
the complete set of rules executed twice. In the first iteration each
rule is analysed, and new elements created according to the target
(output) elements of the rule. In the second iteration the logic of
each rule is executed. No further analysis is done, for example,
to execute the rules in a different (optimal) order. In the case of
FunnyQT [51], the author mentions that there is no compilation of
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the users MTP before delegating execution of the program to the
Clojure execution engine8. The Clojure interpreter may do some
optimizations, but no specific information about the transforma-
tion domains is available to the Clojure interpreter so these cannot
be considered optimizations of the transformation.

Although functional languages can be considered a subclass of
declarative languages, an important difference is that since there
exists an explicit relation between functions (i.e. one function is
computed by invoking a set of other functions), there is an initial
implicit ordering. This is similar to the relations defined by opera-
tors in the arithmetic expression language introduced previously,
that is, an operator can’t be evaluated by itself: its operands must
be evaluated first. Thus, optimization of functional languages fo-
cuses on finding the correct set of function invocations to obtain
a result as opposed to finding an order in which to invoke these
functions.

There exist declarative languages used in other domains. Ex-
amples of pure declarative languages include the Structured Query
Language (SQL), Prolog and Triple Graph Grammars (TGG). The
SQL has become the de facto language for data insert, query, up-
date and delete in relational data base systems. Prolog is a gen-
eral purpose programming language with applications in symbolic
computation such as natural language processing and artificial in-
telligence. TGGs are a techinique for defining the correspondence
between two graphs and to translate one graph to the other (bi–
directional) [88].

The SQL compiler is responsible for query optimization. This
process includes determining the order in which queries should
be invoked (query scheduling) and finding an optimal path for
computing join operations when the query spans multiple tables.
From the techniques applied to optimization of SQL queries the
method for selecting the optimal path for join computations are of
interest to this research. Optimal path selection involves evaluating

8Personal communication, May 2016
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the cost of each path to find the path with the least cost. The cost
is a function of the required I/O access (e.g. disk access) and CPU
utilization (instructions executed) [90, 55]. In SQL optimizations
the complete solution space of possible paths is explored, and the
best is selected.

Section 2.5.3 presented how multiple alternative schedules can
be constructed for the same program written in a declarative lan-
guage. Given that all versions produce the same (correct) result,
by assigning a cost to each it can then be used to pick the best
solution. The cost function should measure aspects relevant to the
particular application domain and according to which of these as-
pects are to be optimized.

A Prolog program consists of a set of clauses, where each clause
is either a fact or a rule about the problem to be solved. In Pro-
log, optimizations such as intelligent backtracking [67] use data
dependence analysis to tag previous clauses and provide smarter
backtracking choices. The backtracking mechanism aims at reduc-
ing the number of solutions constructed for evaluation. Instead of
construction all possible solutions, the interpreter keeps a partial
order of clauses that satisfy the solution. If adding a new clause to
the solution does not provide a correct result, the compiler/inter-
pret can backtrack to the last best known partial solution and start
from there. Although this type of optimization is done at runtime
and this research focuses on providing a compile time solution, the
idea of constructing a partial solution and reduce the number of
explored alternatives is interesting but was not adopted because
the semantics of QVTc are very difficult to validate in partial so-
lutions.

Triple Graph Grammars (TTG) are of particular interest as
they can also be used for model transformations. Data dependence
analysis can be used for deriving test cases for complete coverage
testing in TGG. However, the data dependencies are per pattern
(block), as opposed to individual variable instructions [50]. This
approach is interesting because many instructions are grouped
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together, reducing the number of nodes in the data dependence
graph. Further, since in this research the interest is in the execu-
tion order of the QVTc mappings, not the individual statements
inside the rule, considering each the complete MTP a basic block
and each mapping an instruction, seems a very plausible approach.

In the domain of graph transformations, Lauder et al. [70]
present an optimization to TGG execution called Precedence
TGGs. The authors identify data dependencies between rules and
use this information to topologically sort the nodes in a source
graph (model) as opposed to defining an schedule for the rules.
This is due to the fact that TGG execution is defined by source
graph traversal as opposed to rule traversal. Further, there is no
mention of the different execution alternatives and if the proposed
algorithm results in an optimal (sufficiently good execution) for a
given TGG program.

Although not directly related to declarative languages, the
problem of pattern matching has some similarities to that of in-
struction scheduling. In pattern matching, it is desirable to find
an optimal solution in which the constraints defined in a pattern
should be satisfied. A pattern consists of a set of variables, and a
set of constraints that place restrictions between the variables. The
size of the variable set is referred to as the arity. Varró et al. [104]
use metaheuristics to provide a solution to the problem of pattern
matching. Their approach proposes the use of a search plan to de-
termine the best way to match variables in the pattern. The best
search plan optimizes the order in which the constraints are sat-
isfied, by finding an optimal order in which elements of the types
involved in the pattern should be retrieved from the model(s).
Thus, their approach is also in the lines of TGG optimizations in
which the solution is a schedule on the model queries rather than
on the grammar/pattern statements.
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2.6 Ant Colony Metaheuristic

Recall that the instruction scheduling problem in compiler opti-
mization is NP-hard. Given the inability to find an algorithm that
can solve these types of problems in polynomial time, an accepted
approach is to use an algorithm that can find a good enough solu-
tion in polynomial time. In this case of instruction scheduling, a
good enough solution is a schedule that results in a correct (pro-
duces expected result) execution of the problem. Heuristics and
approximation algorithms are two methods that can be used for
finding a such a solution.

The main differences between the two approaches is that ap-
proximation algorithms can provide solutions that are within a
guaranteed factor of the optimal solution and that the run time
bounds can be defined [105]. On the other hand, heuristic algo-
rithms can only claim that the solution is good-enough and that
it can be found fast, where good-enough and fast are loosely de-
fined. This research focuses on using a heuristic approach, as our
objective is to demonstrate that the control component of a QVTc
transformation can be synthesized systematically, as opposed to
proving that a solution is within a guaranteed factor of the opti-
mal.

2.6.1 Metaheuristics

Metaheuristics are high-level problem-independent approaches for
solving optimization problems. A metaheuristic is an algorithmic
framework that provides a method to find a sufficiently good solu-
tion to an optimization problem. Metaheuristics tackle the prob-
lem of finding a near-optimal solution to a problem by efficiently
exploring the search space [20] (the set of all possible solutions to
the problem). One of the key features of metaheuristics is that a
particular metaheuristic can be applied to a wide range of prob-
lems. This is possible thanks to their ability to be tailored to a
specific domain with the use of heuristics, that is, the ranking
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method to differentiate better from worse solutions is configurable.
An important aspect of working with metaheuristics is selecting
one that fits the problem to be solved. The key aspects to consider
are the general strategy of the algorithm, the spread of the search
and the problem representation.

The general strategy of the algorithm can be classified into con-
structive and local search methods [20]. Local search algorithms
usually provide better quality solutions than constructive ones
(closer to the optimal value), but to do so they require the exis-
tence of an initial solution. The initial solution is then iteratively
replaced by a better one, selected from solutions that are close (in
the search space) to the latest best–found solution. Constructive
algorithms can construct a solution from scratch. The solution is
built by adding components until a solution is complete. The result
of adding a component can be evaluated to determine if adding
the component will result in a better or worse solution. For the
QVTc language the control component must be constructed from
the ground up and hence this research focuses on constructive al-
gorithms.

The spread of the search is related to the balance between di-
versification and intensification [20]. Diversification accounts for
how much of the search space is explored, while intensification
is related to the use (or not) of the search experience at later
search stages. More specifically, intensification locks an algorithm
on examining solutions that are close to the best solution(s) found
so far. Diversification on the other hand, allows the algorithm to
break from this lock and explore different areas of the search space.
Ideally, metaheuristics must have an optimal balance between di-
versification and intensification [20].

Finally, the problem representation relates to the required mo-
del, if any, that must be used to represent a problem in order
to use a particular algorithm. In trajectory methods (one group-
ing classification for metaheuristics) the problem does not need a
special representation. The only requirement is that the quality of
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each solution can be measured. In population-based methods (the
other grouping classification for metaheuristics) the problem rep-
resentation is important as the search algorithm must manipulate
the current best solution by applying mutation operators, or must
be able to construct and evaluate partial solutions. Given that the
state of the art on instruction scheduling optimizations is done
with the use of graph representations (see Sect. 2.5.3), the use of
population-based methods seems more appealing. A graph struc-
ture is easily encodable in order to apply mutation operators [69,
52] and is also amenable to partial construction and evaluation.

2.6.2 MAX −MIN Ant System

The Ant Colony Optimization (ACO) [33] is a cooperative heuris-
tics searching algorithm in which the agents replicate the be-
haviour of ants, originally introduced by Dorigo et al. [34]. In na-
ture, when exploring a foraging area for food, individual ants de-
posit a pheromone on the paths they wander. Foragers then use
the pheromone information to make decisions on what direction
to take, preferring paths in which the pheromone is stronger. This
method of communication is known as stigmergy. Foragers will re-
inforce the paths they traverse with their own pheromone. Since
pheromones decay over time, given two paths visited by the same
number of ants the shorter path will eventually be preferred as its
pheromone strength will be higher (ants take longer time to walk
the longer path and hence pheromone decays more). As a result,
although any single ant moves randomly, a collective knowledge
of the shortest paths to the food sources emerges.

The ACO is a constructive, population-based metaheuristic. To
be precise, it is a swarm intelligence metaheuristic, a sub-group of
population-based metaheuristics, that replicate the behaviour of a
particular animal as found in nature. Other examples of swarm in-
telligence metaheuristic are Particle Swarm optimization [37] and
the Artificial Bee colony [59], among others. The ACO draws from
the behaviour of ants, where a group of cooperating agents ex-
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plore the search space to find a good enough solution. The details
of the problem domain can be used to model the foraging area (the
foraging area can be an alternate representation of the problem)
or to place further restrictions on the paths the ants can follow
during exploration. The ACO has been used to solve a number
of NP–hard problems, such as the Travelling Salesman Problem
(TSP) [32], vehicle routing problem [46], process planning prob-
lem [110], minimum spanning tree problem (MST) [78], minimum–
weight rooted spanning arborescence (MWRSA) problem [19, 71]
and instruction scheduling problem for imperative languages [109].

The ACO works as follows. Initially the ants are placed on a
random component (part) of the solution. Each ant builds a solu-
tion by applying a state transition rule to pick the next component
that is added to the solution. The next component is selected using
a probabilistic choice which is biased by the pheromone informa-
tion τij and by local heuristic information ηij. The local heuristic
information is usually a measure of the cost (effort) of selecting
component j after selecting component i. For example, in the trav-
eling salesman problem9 (TSP), ηij is a function of the distance
between cities. Ants will prefer components with a high phero-
mone value and low heuristic value, choosing the next component
to add to the solution with probability:

pij =


[τij]α[ηij]β∑

l∈Ni

[τil]α[ηil]β
, if j ∈ Ni

0, otherwise
, (2.2)

where α and β(α, β ∈ Z+) are two configuration parameters to
assign weights to the relative importance of the pheromone and
the heuristic information, and Ni is the feasible neighbourhood,
that is, the components that the ant can add next to the solution.
Selection of the feasible neighbourhood is critical to guarantee
that the ants produce correct solutions. For example, in the TSP

9The traveling salesman problem is a problem requiring to find the tour
that visits n interconnected cities in the least total distance.
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problem, Ni is given by the cities the ant hasn’t visited yet. If the
ant could to visit a city twice, the solution would not be correct.

During construction, the ant deposits pheromones on the se-
lected component, and then selects the next one. The ant contin-
ues adding components until a complete solution is built. Once all
ants have terminated constructing their solution, the pheromone
on the components is updated using a global pheromone updating
rule. The updating rule is of the form:

τij = ρτij +
∑

s∈S∗|cj
i ∈s

g(s), (2.3)

where ρ ∈ (0, 1] is the evaporation rate, cj
i is the component as-

sociated with the pheromone, S∗ is a set of good solutions and
g(·) : S 7−→ R+ is a function that determines the quality of a
solution. This rule determines the rate of decay of the pheromone.

ACO algorithms typically differ in the way phero-
mone update is implemented: different specifications
of how to determine S∗ result in different instantia-
tions of update rule [(2.3)]. Typically, S∗ is a subset
of Siter ∪ {sgb}, where Siter is the set of all solutions
constructed in the current iteration of the main loop
and sgb is the best solution found since the start of the
algorithm (gb stands for global-best) [35]

Mimicking ants found in nature, components that are picked by a
larger number of ants will have higher pheromone values and thus
will be more likely to be part of a good solution.

The first ant colony metaheuristic, known as the Ant Sys-
tem [34], has been studied in depth [32, 35] and improved versions
have been proposed, in particular to optimize the balance between
diversification and intensification.

The Ant Colony System (ACS) [32] focused on increasing the
importance of exploitation by introducing a pseudo-random pro-
portional rule that alternates between exploration and exploita-
tion: with probability q0, 0 ≤ q0 < 1 the ant will move to com-
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ponent j for which the pheromone and heuristic information is
maximum. The pseudo-random proportional rule is of the form:

j =


arg max

cj
i ∈Nsp

{[τij × [ηij]β}, if q ≤ q0

S, otherwise
(2.4)

where S is a random selection according to the probability given
by (2.2), and Nsp is the set of solution components that may be
added while maintaining feasibility.

The MAX − MIN Ant System (MMAS) introduced by
Stützle et al., improves on the ACS and optimizes the balance
between diversification and intensification by using a stronger ex-
ploitation of the best solutions found during the search and in-
corporating a mechanisms to avoid search stagnation [98]. Search
stagnation happens when the algorithm focuses on intensification,
and as a result, solutions are only searched in the search space
close to the best solution found.

In the MMAS algorithm, only one ant is allowed to deposit
pheromones. This ant “may be the one which found the best solu-
tion in the current iteration (iteration–best ant) or the one which
found the best solution from the beginning of the trial (global–best
ant).” [98]. This ant is either the ant that found the best solution
in the current iteration (sib), or the ant that has found the best
solution from the beginning (sgb).

“The use of only one solution, either sib or sgb, for the phe-
romone update is the most important means of search exploita-
tion” [98]. This approach is referred to as the best ant feedback
strategy. Using only sgb it is possible that results concentrate too
fast around this solution, probably resulting in low quality solu-
tions. By allowing sib to be used and considering that the iteration–
best solution may differ considerably between iterations, a larger
area of the solution space can be explored. In fact, Stützle et al. [98]
show that a dynamical mixed best ant feedback strategy where sgb

is used more frequently as the search progress produces the best
results. Their proposed approach is as follows: use sib to update
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the pheromone information but at given intervals use sgb. The
value of the interval is gradually decreased (i.e. use sgb more fre-
quently) to veer the search from an early exploratory phase to a
late exploitation of the overall best solution phase.

Second, to avoid stagnation the amount of pheromone is lim-
ited to an interval [τmin, τmax]. By “limiting the influence of the
pheromone trails one can easily avoid the relative differences be-
tween the pheromone trails from becoming too extreme” [98]. This
has the effect that there are no components with significantly
higher pheromone values than the others. In ACS algorithms, stag-
nation occurs when at each choice point, the pheromone value in
one of the trails is significantly higher than for the rest. When
stagnation occurs, the probabilistic choice from (2.2) will lead the
ants to prefer the invocation with the highest pheromone over all
the others. When (2.4) is applied after each iteration, further re-
inforcement will be given to this invocation. Eventually, the ants
will construct the same solution over and over again and the ex-
ploration of the solution space stops. Stützle and Hoos [98] proved
that for MMAS to converge the values of τmin and τmax depend
on sgb and therefore must be updated after each iteration. As a
result, for iteration t, the upper and lower bounds [98] are given
by (2.5) and (2.6)

τmax(t) = 1
1− ρ

1
f(Qbest(t− 1))

(2.5)

τmin(t) = τmax(1− pdec)
(avg − 1)pdec

(2.6)

where pdec is given by

pdec = n
√

pbest (2.7)

where n is the number of components and avg = n/2. Without
pheromone limits, as a result of the state transition rule com-
ponents with significantly high pheromone values will always be
preferred by the ants, resulting in stagnation.
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2.6.3 Instruction Scheduling using the
MAX −MIN Ant System

Wang et al. [109] showed that theMAX −MIN Ant System is
able to generate consistently good scheduling results when com-
pared to other heuristic methods [109]. Further, instruction schedul-
ing using the MAX −MIN Ant System can outperform more
popular scheduling methods and scales well over different appli-
cations and problem sizes [108]. In these approaches the data flow
graph (DFG) is used as the foraging area of the ant colony [109,
108]. That is, the ants build a solution by visiting the nodes in
the DFG. Each node in the DFG is an operation and edges rep-
resent dependencies between operations. Given that a DFG only
represents the flow of data, this representation matches the re-
quirements of our problem, given that a QVTc program has no
explicit control information.

However, the main goal of our approach is to find solutions that
result in correct executions while the goal in [109] is to minimize
the execution time of the program. Another important difference
is that they use a set of well-known heuristics used for instruction
scheduling. These heuristics are constructed with the goal of re-
ducing the execution time. For example, the instruction mobility
heuristic gives a lower value to instructions that are more urgent
and must be executed soon; the successor number heuristic gives a
lower value to nodes with more successors as scheduling such nodes
has a higher probability of satisfying the greater number of depen-
dencies [109]. This research formulates a heuristic that will allow
the ant to pick mappings in an order that will result in a correct ex-
ecution. As in the instruction scheduling problem, these heuristics
must evaluate characteristics of the solution that are particular to
the model transformation domain. Section 5.3 presents a detailed
description on the use of theMAX −MIN Ant System to find
a solution to the QVTc control component synthesis problem.
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2.7 Summary
This chapter introduced the basic concepts of Model Driven Engi-
neering (MDE), the QVT Core [3] (QVTc) language as proposed
by the Object Management Group® (OMG®) and the existing
implementations of the language. The chapter followed with an
overview of the instruction scheduling problem and the use of data
dependence analysis as a means to solve it. Finally, the chapter
discussed how metaheuristics are applied to solve NP-hard prob-
lems, such as instruction scheduling (for imperative languages),
and introduced the MAX −MIN Ant System, a state-of-the
art approach that draws inspiration from the behaviour of ants to
solve NP-hard problems. Although theMAX −MIN Ant Sys-
tem has been successfully used for instruction scheduling in other
domains, its application to a new domain requires a precise for-
mulation of the problem representation, a careful selection of the
local heuristics and a correct construction of the feasible neigh-
bourhood. The remainder of these thesis presents a methodology
to perform data dependence analysis on QVTc programs, proposes
a problem representation based on data dependence analysis and
the semantics of the QVTc language, and presents how the syn-
thesis of QVTc control components can be achieved using the Ant
Colony System (ACS) metaheuristic.
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3
The Control Component

Model

The previous chapter characterized a Model Transformation
Program (MTP) as an algorithm and discussed that al-
gorithms are composed of a logic and control component

as defined by (2.1). In the case of a declarative language it was
discussed that the control component must be synthesized before
execution. This chapter looks at the problem of understanding the
logic component in a MTP written in QVT Core [3] (QVTc) (re-
ferred to onwards as a QVTc transformation). Understanding of
the logic component is a fundamental aspect of control component
synthesis as it allows us to determine the purpose of the logic and
the knowledge embedded in it.

This chapter gives an overview of the syntax and semantics of
QVTc to enable readers who are not familiar with the language to
follow the discussion on reasoning about the purpose of the logic
component. Then, the chapter presents an analysis of the purpose
of the logic from an execution point of view, which is used to de-
fine QVTc transformation execution correctness. This definition is
crucial in the synthesis process as it constitutes the main condition
for validating synthesized control components. Finally, analysis of
the required execution facilities of a control component is used to
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define a model for representing it. This model facilitates abstract
interpretation and use of algorithms for analysis and synthesis of
the control component. Understanding the knowledge embedded
in the logic component is presented in the next chapter.

Section 3.1 provides an overview of the syntax and semantics
of QVTc and Sect. 3.2 introduces a running example used in the
remainder of the thesis. The objective of Sect. 3.3 is to analyse the
purpose of the logic component by relating the language semantics
to the runtime execution of a transformation and to provide a def-
inition for a mapping invocation during execution; this definition
is used to formally define transformation execution correctness for
QVTc transformations. In order to facilitate analysis and use of
algorithms towards the definition of the synthesis process, Sect.
3.4 explores the basic construction blocks required to provide a
model for representing the control component and then continues
to present this model. Finally, Sect. 3.5 summarizes and concludes
the discussion.

3.1 QVTc Syntax and Semantics
Overview

This section presents an overview of the syntax and semantics of
the QVTc language (for a more detailed discussion please refer
to the Meta Object Facility (MOF) Query/View/Transformation
(QVT) Specification [3]). Note that in practice the data depen-
dency analysis and instruction scheduling are done by analysis if
the QVTm translation of the QVTc transformation. However, the
relevant language constructs and semantics are shared by the two
languages and thus the discussion is kept at the QVTc level.

In QVTc a transformation is defined as “a set of mappings that
declare constraints that must hold between the model elements of
the candidate models and the trace model” [3]. First, this section
looks at how the constraints are declared (the syntax), and later
at how the constraints are checked and enforced (the semantics).
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Figure 3.1: Simplified QVTc metamodel

3.1.1 QVTc Syntax

A simplified diagram of the QVTc abstract syntax is presented
in Fig. 3.1. In QVTc rules are called mappings (these terms are
used interchangeably). A Mapping can have multiple domains.
Each Domain represents a candidate model. Domains can be check-
able, enforceable or both (or none). Mappings and domains have a
GuardPattern and a BottomPattern. Patterns contain variables.
A Variable in a domain pattern must have a type from the candi-
date model represented by the domain. Variables in the mapping’s
patterns must have a type from the trace model. A realized vari-
able is a variable that creates a new instance of the type of the
variable in the respective model (candidate or trace).

Patterns have predicates. A Predicate is a boolean–valued
Object Constraint Language (OCL) expression. Predicates are
used to define relations between variables or conditions on the
values of the properties (attributes/references) of a variable. A
BottomPattern has assignments. An Assignment sets the value
of a property of an element or of a variable. For the former, the
element can be specified using an OCL expression, and in both
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cases the value is specified by an OCL expression.

Example 1. Consider the mapping p2s presented in Listing
3.1. At this stage it is only important to consider the syn-
tax, not the purpose of the mapping. The mapping has two
Domains: domain uml (line 2) and domain rdbms (line 5). The
GuardPattern of the domain uml has one variable (p) and one
predicate. The predicate will evaluate to True iff the value of
the kind attribute of variable p is equal to the string ’persistent’.
The BottomPattern of domain rdbms has one RealizedVariable:
s. The mapping’s bottom pattern has one RealizedVariable:
p2s, and two assignments. The first assignment sets the name
attribute of variable p2s to the value of the name attribute of
variable p. �

Listing 3.1: Mapping p2s showing the QVTc syntax
1 map p2s in demo {
2 uml(p : Package | ) {
3 p . kind = 'persistent' ;
4 }
5 enforce rdbms () {
6 realize s : Schema
7 }
8 where( ) {
9 realize p2s : PackageToSchema |

10 p2s . umlPackage := p ;
11 p2s . schema := s ;
12 }
13 map {
14 where( ) {
15 p2s .name := p .name ;
16 s .name := p2s .name ;
17 }
18 }
19 }

3.1.2 QVTc Semantics

In QVTc there are two modes of execution: checking and enforce-
ment:
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In checking mode, a transformation execution checks
whether the constraints hold between the candidate
models and the trace model, resulting in reporting
of errors when they do not. In enforcement mode, a
transformation execution occurs in a particular direc-
tion, which is defined by the selection of one of the
candidate models as the target model. The execution
of the transformation proceeds by, first checking the
constraints, and secondly attempting to make all the
violated constraints hold by modifying only the target
model and the trace model. [3]

In both modes, a mapping defines a one-to-one relation be-
tween the bottom pattern of the mapping and the bottom patterns
of the mapping’s domains. That is, the bottom patterns define the
constraints that must hold between elements of the candidate mod-
els and the trace model. This means that if the constraints of one
of the bottom patterns hold, then all the other bottom patterns’
constraints must hold too. The one-to-one constraint between the
bottom patterns is only checked or enforced if the constraints for
each guard pattern of that mapping hold.

“When a transformation is executed in checking mode, all the
mappings of the transformation are executed, by matching the pat-
terns, to check the one-to-one constraints” [3]. In checking mode,
all realized variables behave like normal variables and assignments
are treated as predicates (e.g. the value of a property must match
the value to be assigned). In enforcement mode:

When a transformation is executed in enforcement
mode in the direction of a target model, each map-
ping is executed to enforce the one-to-one constraint.
Firstly by matching the patterns (the same as in check-
ing mode), secondly by enforcing the one-to-one con-
straint if it is violated. Enforcement will only cause
changes to model elements of the trace model and the
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target model associated with the domain and its model
type [3].

If the mapping has multiple enforced domains, then all domains
that do not represent the direction are treated as checkable.

Example 2. Recall the mapping p2s introduced previously
(Listing 3.1). The mapping describes the relation between a
package from a UMLmodel and a schema in a relational database
(RDBMS) model. Thus, the purpose of the mapping is to trans-
form packages into schemas or vice–versa. Consider that the
transformation is executed in the direction of the RDBMS do-
main. That is, the RDBMS model is the target model. Further,
consider that there exists a Package for which the predicate in
line 3 is True (the package is persistent) and thus, the guard
pattern of the UML domain holds. As a result, the bottom
patterns must be checked/enforced. The check phase would in-
volve finding a PackageToSchema and a Schema for which the
assignments (treated as predicates) in lines 15 and 16 hold. If
the checking phase fails, then the enforcement would depend
on what elements are present in the trace model and candi-
date models. For example, if a PackageToSchema exists that
is related to the package via the umlPackage attribute, then a
new Schema will be created, and its attributes assigned accord-
ingly. �
This research only considers the case of transformation execu-

tion in enforcement mode. Further, it only considers rewrite execu-
tions in which the trace model and target model are considered to
be empty at the beginning of the transformation. As a result, bot-
tom patterns in the mapping and target domain are not checked,
only enforced. This restriction is a result of the implementation
of the Eclipse QVTc virtual machine which does not fully imple-
ment the check–enforce semantics of the language. For example, in
the mapping p2s presented in Listing 3.1 a new PackageToSchema
and a new Schema would be created for each package that satisfies
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the guard pattern. Finally, regarding the QVT specification [3] on
bindings: “one valid binding per instance of the type” of the vari-
able, the Eclipse QVTc virtual machine interprets this to mean
that variables are assigned elements (instances) of the models that
are of the type or of a subtype of the variable.

3.1.3 Transformation Correctness

The correctness of model transformations, namely to guarantee
that certain semantic properties hold for a transformation, is a cru-
cial aspect of transformation engineering. The typical correctness
properties of a model transformation are termination, confluence
(uniqueness) and behaviour preservation [38] Given that the QVT
Specification does not provide a formal definition of the seman-
tics of the QVTc language and as a result the correctness of the
synthesized control component cannot be proved. However, it is
important to note that termination depends on both the semantics
of the language and the MTP, and confluence and behaviour on
the MTP. Since the control component synthesis does not modify
the logic of the original QVTc MTP, the resulting control compo-
nent respects the termination, confluence and behaviour properties
of the original MTP.

Termination condition is partially given by the semantics of the
QVTc language due to its declarative nature, that is, the lack of
imperative constructs limits the possibility of writing MTP that do
not terminate (e.g. via infinite loop). However, an in–place trans-
formation (source and target model is the same model) can still be
non-terminating (a rule can produce and consume elements of the
same type, creating an infinite loop). By assuming that the MTP
is terminating, then the termination condition depends solely on
the language semantics. Section 3.3.2 presents how the language
semantics are used to define the concept of transformation correct-
ness that will be used to guide the control component synthesis
in this research.

This section presented an overview of the syntax and seman-
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tics of the QVTc language. The level of detail should be sufficient
to discuss the contributions of this thesis. Where necessary, ad-
ditional insights or discussions on the details of the syntax and
semantics will be given. The next section introduces the running
example used for the remaining of the thesis.

3.2 Running Example: UML to
RDBMS Model Transformation

The Unified Modelling Language (UML) to Relational Database
Management System (RDBMS) transformation is one of the most
used examples in the literature related to model transformations,
ranging from language implementations and triple graph gram-
mars [115, 101] to verification and testing [22, 74, 94]. Arguably
this happens because it involves two well –known domains of soft-
ware engineering, because it can be described by a very clear set
of rules and finally because it involves a non–trivial degree of com-
plexity. This example is also used in the QVT specification [3] for
both the QVT Relations [3] (QVTr) and QVTc languages. This
section gives an overview of the transformation and presents some
code snippets to explain its structure. The transformation used is
based on the one presented in the QVTc language examples in the
specification.

Although the original transformation (as presented in [3]) is
written in a bi–directional style, for the rest of the discussion it
is assumed that the transformation is executed in the RDBMS di-
rection and hence the code has been rewritten as a uni–directional
transformation to facilitate the discussion (all assignments in UML
domains are re-written as predicates where appropriate, and pred-
icates in the bottom pattern of RDBMS domains have been re-
moved). Effectively, the code used is what would have been ob-
tained from the QVTc to QVTu translation. The UML to RDBMS
name can be misleading, in effect, it is a transformation from
a minimal UML Classes/Package model to a minimal RDBMS

74



3.2. Running Example

schema model. Further, for most of the discussion a trimmed down
(simplified) version is used for readability1. The simplification is
not done because of limitations of our approach, but rather be-
cause the removed types and attributes in the metamodel (and
their corresponding mappings) would introduce duplication in the
discussion.

The simplified version does not support inheritance or asso-
ciations in the UML model, and does not create PrimaryKeys
for the RDBMS tables. Additionally, attributes can only be of
a PrimitiveDataType. Hereafter the simplified version is referred
to as the UML2RDBMS transformation. When compared to the
original complete transformation the simplified version is labelled
as UML2RDBMS Minimal and the original transformation as
UML2RDBMS Complete. Next sections present the metamodels
to which the trace model and candidate models conform to, before
discussing the rationale behind the mappings.

3.2.1 The Candidate Models’ Metamodels

Since in QVTc the middle/trace model has to be explicit, Fig. 3.2
presents the three metamodels used in the transformation. Dif-
ferent colours are used to identify the different metamodels. This
section outlines the characteristics of the metamodels.

The simplified minimal UML metamodel has a hierarchical
structure with a Package containing Classes and PrimitiveData-
Types, and Classes containing Attributes. An Attribute has
a PrimitiveDataType as a type, thus it is only possible to model
primitive attributes. The simplified minimal RDBMS metamodel
also exhibits a hierarchical structure with a Schema containing
Tables, and a Table containing Columns. The transformation is
straightforward: a Package becomes a Schema, each Class be-
comes a Table, and each Attribute of a Class becomes a Column
in the respective Table.

1The complete, original transformation is available in the QVTd Eclipse
Project as an example.
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Figure 3.2: Metamodels for the Simplified UML to RDBMS example.

3.2.2 The Transformation Mappings

This section gives an overview of the UML2RDBMS MTP. The ac-
companying models in Fig. 3.3 present a small example of a UML
model and the result of executing the transformation in the direc-
tion of the RDBMS domain. The UML model is to the top (green)
and the RDBMS model to the bottom (purple). The UML model
depicts the structure of a University and its students, courses, and
lecturers. For readability the mappings have been named using an
acronym of the full name, the listings have a comment with the
full name for guidance.

Listing 3.2: Mapping packageToSchema in UML to RDBMS.
11 /∗∗ packageToSchema ∗/
12 map p2s in umlRdbms {
13 uml(p : Package | ) { }
14 enforce rdbms () { realize s : Schema }
15 where( ) {realize p2s : PackageToSchema |
16 p2s . umlPackage := p ; p2s . schema := s ; }
17 map {
18 where( ) { p2s .name := p .name ; s .name := p2s .name ; } }
19 }

Listing 3.2 presents the code for mapping packageToSchema
(mp2s). This mapping creates a new Schema (line 14) and a Pack-

76



3.2. Running Example

Figure 3.3: Models for the UML (top) to RDBMS (bottom) example.

ageToSchema (line 15) for each Package. The schema will have
the same name as the package (line 18). In the example models
in Fig. 3.3 there is a resulting schema with name ‘University’ and
another with name ‘Industry’.

Listing 3.3: Mapping integerToNumber in UML to RDBMS.
20 /∗∗ integerToNumber ∗/
21 map i2n in umlRdbms {
22 uml(p : Package , prim : PrimitiveDataType |
23 prim . namespace = p ; prim .name = 'Integer' ; ) { }
24 check enforce rdbms () { sqlType : String | sqlType := 'NUMBER' ; }
25 where( p2s : PackageToSchema |
26 p2s . umlPackage = p ; ) {
27 realize p2n : PrimitiveToName |
28 p2n . owner := p2s ; p2n . pr imit ive := prim ;
29 p2n . typeName := sqlType ; }
30 map {
31 where( ) { p2n .name := prim .name + '2' + sqlType ; } }
32 }
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Mappings integerToNumber (mi2n), stringToVarchar
(ms2v) and booleanToBoolean (mb2b) perform the mapping
between UML types and RDBMS types. Note that in RDBMS
types are only strings stored in the type attribute of the Column,
thus there is no realized variable in the rdbms domain. For ex-
ample, Listing 3.3 presents the integerToNumber mapping,
in which a PrimitiveType named Integer will be mapped to the
rdbms string ‘NUMBER’. The other two mappings have an identical
structure but guard the primitive data type (line 23) by matching
is name to ‘Boolean’ and ‘String’ respectively, and will result in
RDBMS string values of ‘BOOLEAN’ and ‘VARCHAR’ respectively.

Listing 3.4: Mapping classToTable in UML to RDBMS.
59 /∗∗ classToTable ∗/
60 map c2t in umlRdbms {
61 uml(p : Package , c : Class |
62 c . kind = 'persistent' ; c . namespace = p ; ) { }
63 check enforce rdbms( s : Schema | ) {
64 realize t : Table |
65 t . kind := 'base' ; t . schema := s ; }
66 where( p2s : PackageToSchema |
67 p2s . umlPackage = p ; p2s . schema = s ; ) {
68 realize c2t : ClassToTable |
69 c2t . owner := p2s ; c2t . attOwner := c ; c2t . table := t ; }
70 map {
71 where( ) { c2t .name := c .name ; t .name := c2t .name ; } }
72 }

Listing 3.4 presents the code for mapping classToTable
(mc2t). The guards in the mapping validate two conditions: The
Class must have a ‘persistent’ kind (line 62) and the class’ names-
pace (p) must be related via the trace (p2s) to the Schema (s)
(line 67). In line 69 the trace information is updated and in line
71 the table name is assgined the name from the class. In the
example models in Fig. 3.3, there is a Table for each Class (all
classes are persistent), the resulting tables are correctly contained
in the appropriate Schema, and each Table has one Column for
each Attribute of the Class.

Primitive attributes of the Class are transformed by the map-
ping fromAttribute in Listing 3.5 (mfa). Similarly to the class-
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ToTable mapping, the guard validates the containment and
trace relations between the class, the attribute and the primitive
type. Notice that this mapping does not have a rdbms domain. The
trace AttributeToColumn stores all information of the attribute,
including a reference to the trace for the attribute’s type (line 80).

Listing 3.5: Mapping fromAttribute in UML to RDBMS.
73 /∗∗ fromAttribute ∗/
74 map fa in umlRdbms {
75 uml( c : Class , t : PrimitiveDataType , a : Attribute |
76 a . owner = c ; a . type = t ; ) { }
77 where( fao : AttributeOwner , p2n : PrimitiveToName |
78 fao . attOwner = c ; p2n . pr imit ive = t ; ) {
79 realize fa : AttributeToColumn |
80 fa . att r ibute := a ; fa . owner := fao ; fa . type := p2n ; }
81 map {
82 where( ) { fa .name := a .name ; } }
83 }

Finally, mapping attributeToColumn (ma2c) in Listing 3.6
creates the columns in the table for each of the attributes of the
class. The Column takes its type for the trace PrimitiveToName
and its name from the AttributeToColumn (line 94).

Listing 3.6: Mapping attributeToColumn in UML to RDBMS.
84 /∗∗ attributeColumn ∗/
85 map a2c in umlRdbms {
86 check enforce rdbms( t : Table | ) {
87 realize c : Column |
88 c . owner := t ; }
89 where( c2t : ClassToTable , a2c : AttributeToColumn ,
90 p2n : PrimitiveToName |
91 c2t . table = t ; a2c . owner = c2t ; a2c . type = p2n ; ) {
92 a2c . column := c ; }
93 map {
94 where( ) { c .name := a2c .name ; c . type := p2n . typeName ; } }
95 }

3.3 Purpose of the Logic Component
Recall that this research only considers the case in which the QVTc
transformation is executed in enforcement mode. In this mode of
execution, the purpose of a QVTc transformation is, as stated in
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the QVT Specification, to check the constraints and attempt to
make all the violated constraints hold by modifying only the target
model and the trace model. Given that this is not a formal defini-
tion, this section breaks down this definition to the mapping level
and formalizes the concept of mapping invocation. This concept is
used to define transformation correctness such that the definition
is in accordance to the purpose of the logic component.

3.3.1 Mapping Execution

In the QVTc syntax (Sect. 3.1.1) a domain specifies a set of model
elements of exactly one of the candidate models and the map-
ping itself (in the mapping’s guard and bottom patterns) specifies
elements from the trace model. This specification is done via vari-
ables. This section presents how the relation between metamodels
and models link to the notions of a type system [81]. This link will
allow to provide a definition of the execution of a mapping that
clearly states how the variables from the syntax can be associated
to elements of the candidate models and the trace model.

Section 2.1 presented how the relation conformsTo between
models and metamodels defines type-token relations between el-
ements of the model and elements of the metamodel. As such,
each metamodel element Y can be considered to be a class and
each model element X can be considered to be an object, where
meta(X, Y ) ↔ type(X) = Y and X is an instance–of Y , denoted
X n Y . Further, if Z is a subtype of Y , denoted Z ▹ Y , and
meta(W, Z), then type(W ) = Z but type(W ) ̸= Y . However, W

is an instance of both Z and Y : W n Z and W n Y .

Definition 1 (Transformation Mapping). A transforma-
tion mapping m = (T, V, S) consists of finite sets of T types of
interest, V variables, and S statements. A variable can hold a
model element as its value and ∀v ∈ V, type(v) ∈ T . A state-
ment can either be a predicate or an assignment. �
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At runtime, the relation value(v, e) denotes that a variable v

holds an element e of the candidate models or the trace model as its
value, such that given type(v) = t then value(v, e)→ ent. Thus, a
mapping can be considered a subroutine, where the statements in
S are the program instructions and variables in V the parameters.

In general, a subroutine can have input and output parameters.
It follows that some mapping’s variables can be labelled as input
and others as output parameters. In checking mode, all variables
are considered inputs. In enforcement mode and rewrite execution
(which is the interest of this research), it is possible to identify
which variables in the mapping are inputs and which are outputs.
Output variables are realized variables in the domains related to
the target model and realized variables in the mapping’s bottom
pattern (trace model). All other variables are inputs.

Definition 2 (Input and Output sets.). Given a transfor-
mation mapping me use IN(m) to denote the set of input types
of m (types of the input variables of m), and OUT (m) to de-
note the set of output types of m (types of the output variables
of m). �
Example 3. For the UML2RDBMS example the IN and OUT
sets for enforcement execution in the RDBMS direction are pre-
sented in tabular format in Table 3.1. Note that the type(v) = t

relation is depicted in the QVTc concrete syntax by a colon ‘:’,
v : t. �
Definition 3 (Input and Output variable sets.). Given
a transformation mapping m = (T, V, S), V IN(m) = {vk ∈
V |type(vk) ∈ IN(m)} and V OUT (m) = {vk ∈ V |type(vk) ∈
OUT (m)} are the set of input and output variables of m, re-
spectively. �
Having defined the IN and OUT sets, the definition of the ex-

ecution of a mapping in checking and enforcing mode is presented
next. Although this research is focused on the enforcing mode the
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Table 3.1: IN and OUT sets for the UML2RDBMS example.

IN OUT
mp2s Package PackageToSchema, Schema
mi2n Package, PrimitiveDataType PrimitiveToName
mb2b Package, PrimitiveDataType PrimitiveToName
ms2v Package, PrimitiveDataType PrimitiveToName
mc2t Package, Class, PackageToSchema,

Schema
ClassToTable, Table

mfa Class, PrimitiveDataType, At-
tribute, AttributeOwner, Primi-
tiveToName

AttributeToColumn

ma2c ClassToTable, AttributeToColumn,
PrimitiveToName, Table

Column

checking mode is also defined for completeness and to support def-
initions introduced later. Given that a mapping m is considered
a subroutine, m(σ) is used to represent an invocation of a given
mapping with a list of arguments σ. The arguments represent an
assignment of a value for each of the mapping parameters.

Definition 4 (Checking Mapping Invocation). In check-
ing mode a mapping m = (T, V, S), can be applied to the Carte-
sian product Σ�

m = E1 × · · · × En, where n = |V | . Each set
Ek represents all the possible values (vk, e)of vk ∈ V , such that
∀e ∈ Ek, e n type(vk). We will use m�(σ) to represent the invo-
cation of a mapping in checking mode. �
Definition 5 (Enforcing Mapping Invocation ). In enforce
mode a mapping m = (T, V, S), can be applied to the Cartesian
product Σ†

m = E1 × · · · × En, where n = |V IN(m)|. Each set
Ek represents all the possible values of vk ∈ V IN(m), such that
∀e ∈ Ek, e n type(vk). We will use m†(σ) to represent the invo-
cation of a mapping in enforcement mode. A mapping will gen-
erate (new elements) the Cartesian product Λ†

m = R1×· · ·×Rj,
where j = |V OUT (m)|. Each set Rk represents all the possible
values of vk ∈ V OUT (m), such that ∀r ∈ Rk, r n type(vk) �
Example 4. For mapping mc2t in the UML2RDBMS example,
given the models in Fig. 3.3 then V = {p, c, s, p2s} and some of
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the invocation argument tuples are (P1: Package, S1: Schema,

C2: Class, P2S1: P2S), (P1: Package, S1: Schema, C4:
Class, P2S1: P2S), (P1: Package, S2: Schema, C2: Class,

P2S1: P2S), and (P1: Package, S2: Schema, C2: Class,

P2S2: P2S). �
3.3.2 Transformation Correctness

The definition of the execution of mappings can be related to the
purpose of the logic component based on transformation execution
. For both checking and enforcing mapping invocations there are
three possible outcomes: NA (not applicable), True or False For
both invocation modes, evaluation is NA if ∃vk ∈ V |Ek = ∅, i.e.
there are no elements available to be assigned as variable values.
If applicable then: For checking mode, the result of invocation is
True if all constraints in the mapping hold and False if not; for
enforcing mode, the result of invocation is True if all guards in the
input domains hold and False if not.

For example, an invocation of mapping mc2t (Listing 3.4) with
a Class element as an argument, for which its kind attribute is
not equal to ’persistent´ will result in False. Further, any tuple
with value(p, P1) and value(s, S2) will also result in False, given
that schema S2 is not the schema created to represent package P1
and hence the guard of the mapping’s bottom pattern will fail. the
elements in σ are not applicable to the mapping.

In enforce-rewrite execution, at the start of the execution all
mappings with a guarded domain for the target model will eval-
uate to NA; variables in the target and trace models have unde-
fined values. At the end of the transformation there should exist
at least one parameter tuple for each mapping such that invoca-
tion of the mappings results in True (assuming the transformation
is free of errors and the source model(s) contain at least one el-
ement of the input types of interest of each mapping). Hence,
m†(σ) = True =⇒ m�(σ) = True. That is (in a defect-free im-
plementation of a QVTc execution engine), if there are no runtime
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exceptions, it is assumed that enforcement invocation always re-
sults in the necessary modifications in the target and trace model
so that the constraints in the transformation hold. Having for-
malized the concept of mapping invocations and related it to the
purpose of the logic component the definition of transformation
execution correctness is introduced next, in order to formalize the
purpose of the logic component at the transformation level.

Definition 6 (QVTc Transformation). A QVTc transforma-
tion Q = (O, M), consists of finite sets of O model–types and M

mappings. A model–type is defined by one or more metamod-
els, which in turn define the set of classes and property elements
that are expected by the transformation. At runtime, a candi-
date model is paired with a model–type. This pairing implies
that the candidate model contains elements of types defined by
the model–type’s metamodels. A domain represents the candi-
date model linked to the model–type. Additionally, the trace
model is also paired with a model–type and consequently the
trace model contains elements of types defined by the model–
type’s metamodels (the trace metamodel(s)). A mapping rep-
resents the trace model linked to the model–type. �
Definition 7 (Transformation execution correctness).
Given a QVTc transformation Q = (O, M), the transformation
execution is correct, if ∀m ∈ M. ∀σi ∈ Σm.m�(σi) = m†(σi) at
the end of the executionin enforcing mode. �
This section introduced an initial set of definitions that al-

low reasoning about the purpose of the logic component at the
mapping level and from this define the concept of transforma-
tion execution correctness. This definition will be fundamental in
validating any systematic process for synthesizing control compo-
nents.

84



3.4. Control Component Model

3.4 Control Component Model
An abstract representation of the problem can be useful to per-
form analyses and to apply optimization algorithms or techniques.
This section presents the Control Component Model, an abstract
representation defined for the control component. This model facil-
itates “abstract interpretation to be employed when designing al-
gorithms, which facilitates systematic algorithm development and
proof of correctness” [82]. For example, this model can be used to
validate that a specific control component observes transformation
execution correctness.

The proposed model exhibits the properties suggested by Pin-
gali et al. [82]:

• It should be executable.

• The representation must be efficiently traversed for data de-
pendence information.

• Loops should be represented explicitly, and the representa-
tion should be compact.

Executability is particularly important as the main goal of the
control component is to execute the QVTc transformation. This
type of representation has been proposed before for other declar-
ative languages, such as SQL [25, 55]. This section first identifies
the functionality that is provided by the existing QVTi virtual ma-
chine (see Sect. 2.4.2) and from this determines what functional-
ity must be provided by the control component. The functionality
needed will be used to determine what needs to be modelled.

The QVTi virtual machine is capable of executing mappings,
i.e. evaluate all the statements in the mapping for a given set
or arguments, and implements the QVTc semantics as defined in
the specification [3]. Further, it provides access to the candidate
models and trace model and their elements (for both query and
alteration), and also provides functionality to retrieve all elements
that are instances of a given type. However, it does not provide
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a control component. Given the functionality provided by the ex-
isting QVTc engine, the synthesized control component must be
responsible for calculating Σ for each mapping and invoking each
mapping for all the tuples in Σ. We refer to the process of cal-
culating Σm as element ascription. In the context of this project,
ascribing is understood as the action of assigning a model element
as the value of a variable.

Definition 8 (Control component Objective). The objec-
tive of the control component is to guarantee that all possible
permutations of elements for every mapping are considered for
ascription and that each mapping is invoked for all possible
permutations. �
Based on the above, the model for representing a control com-

ponent must support the abstraction of its two main functions. We
will refer to these functions as execution actions. The two available
execution actions are: All-Of-Kind Loop (all-loop for short) and In-
voke Mapping (map for short). The all-loop action iterates over the
elements of the candidate models that are of a given type or any
of its sub-types (denoted as A(type)); the map action represents
an enforce invocation of a given mapping (denoted as I(m)). The
term execution plan is used hereafter to refer to an abstract rep-
resentation of a control component built using execution actions,
as presented in Fig. 3.4.

The execution plan is a graph in which nodes represent execu-
tion actions and edges represent calls2 from one action to another.
The execution plan is a directed graph with a specially designated
root node that represents the execution entry point. A call to a
map action results in the invocation of the mapping associated to
the action. A call to an all-loop action results in the iteration over
all the elements of the given kind and all calls outgoing from the
all-loop action are called once for each iteration. Outgoing calls
from a map action are executed only if m†(σ) = True.

2The term call is used to to differentiate execution of the actions from
execution (invocation) of the mapping.
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Figure 3.4: An example abstract representation of the control compo-
nent.

The following constraints are defined for the execution plan:

• All-Of-Kind Loop actions can only have one incoming and
one outgoing edge.

• Invoke Mapping actions can have multiple incoming and out-
going edges.

• The execution plan is not a multigraph, and hence an action
can only invoke another action once.

Definition 9 (Invocation path). An invocation path ip(ms, mt) =
{I(ms), c1, A(t1), c2, . . . ,

A(tk), cn, I(mt)} is a finite sequence of alternating actions and
calls (c), which begins at map action I(ms) and ends at map
action I(mt).

Invocation paths define the sets that are available for ascription
for I(mt) as follows:
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Definition 10 (Map action ascription sets). In an execu-
tion plan, given the path ip(ms, mt) ascription for invocation
I(mt) can be applied to the Cartesian product L1×L2× . . . ×
Lk × Rs1 × Rs2 × . . . × Rsp , where Li represents the elements
iterated by all-loop action A(ti) in the path, and Rs1 . . . Rsj

are
the output elements of ms (from Definition 5). �
Execution plans are executable, with execution semantics de-

fined by outgoing edge order and edge traversing. Thus, execution
can be guided by a depth-first traversal starting at the root node.
To make execution repeatable, the execution plan graph guaran-
tees outgoing edge traversal order. For example, the execution plan
model can be easily used for interpreted execution or as a model
for code generation and compiled execution.

The execution plan is distinctly different from a physical oper-
ator tree used for SQL optimization [25], mainly by the fact that
the physical operator tree is designed to allow tree reduction, i.e.
the leaves represent data access in the database, and branches
represent how the data is merged, joined, looped, etc., to produce
the complete SQL query result. Hence, physical operator trees are
executed (reduced) bottom-up.

Example 5. Figure 3.4 presents a part of a possible execution
plan for the UML2RDBMS transformation. For mapping mp2s

the only all-loop action in a path from the root is Package, thus
the map action ascription sets for I(mp2s) are LPackage. For map-
ping mc2t there are four all-loop actions, thus the map action as-
cription sets for I(mc2t) are LPackage, LPackageToSchema, LClass, and
LSchema. For mapping mfa, the sets include the output elements
of the c2t mapping and the three all-loop actions. Thus, the
map action ascription sets for I(mfa) are RClassToTable, RTable,

LAttribute, LPrimitiveDataType, and LPrimitiveToName. �
Finally, it is crucial that all mappings in the transformation are

included in the execution plan. For that, the concept of execution
plan completeness is introduced.
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Definition 11 (Execution Plan Completeness). An execu-
tion plan is complete if for each mapping in the transformation
there exists an invocation action and the invocation action has
an incoming call edge. �
This section defined a model to represent the control com-

ponent and presented how element ascription is realized through
paths in the model. The next chapter describes how this model
and the ascription semantics can be used to explore how the pro-
posed optimizations can be achieved by changing the structure of
the model.

3.5 Summary
This chapter presented an overview of the syntax and semantics
of the QVTc and defined the control component model. This mo-
del will facilitate the analysis of control components and enable
systematic construction of execution plans. The chapter also pro-
vided the definition of transformation execution correctness that
is fundamental in validating the synthesized control components.
The next chapter shows examples of sub-optimal plans and shows
how the knowledge embedded in the logic can be used to construct
plans that are more optimal.
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4
Execution Plan Synthesis

Problem

The last chapter introduced the QVT Core [3] (QVTc) lan-
guage, described the relation between the language se-
mantics and the logic component and used the purpose of

the logic component to define the execution of QVTc transforma-
tions at the mapping level. The chapter then defined transforma-
tion correctness as a formalization of the purpose of the logic com-
ponent, based on the proposed execution definitions. With these
definitions in place, the chapter presented the execution plan as
an abstract representation (model) of the control component and
defined execution plan completeness. The definitions and the ex-
ecution plan are the first steps towards systematic synthesis of
control components for QVTc transformations.

This chapter defines the control component synthesis problem
as a scheduling problem and looks at the knowledge embedded in
the logic component in order to identify the information required
to find a solution. First, it discusses that part of that knowledge is
in the form of the data dependence information and then it shows
how data dependence analysis can be used to find a partial order
of the mappings in a transformation. A partial order is required for
solving scheduling problems and therefore to solve the control com-
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ponent synthesis problem. Then, it defines execution plan validity
and explores how the knowledge embedded in the logic component
can be used to achieve the goals of the scheduling problem. The
definitions and restrictions introduced in this chapter will be used
in the following chapter to guide the systematic construction of
solutions to the scheduling problem.

Section 4.1 presents the problem definition and Sect. 4.2 de-
fines the partial ordering of mappings. Next, Sect. 4.3 discusses the
limitations of the partial order to provide a correct transformation
execution and from these define execution plan validity. The ob-
jective of Sect. 4.4 is to present how context reuse can be used to
minimize the number of loops over elements of a type needed in the
execution plan, and Sect. 4.5 shows how data dependency analy-
sis can be used to minimize the number of mapping invocations.
Finally, Sect. 4.6 summarizes and concludes the discussion.

4.1 Problem Definition
Given that the execution plan is a model of the control component,
synthesis of the control component is equivalent to synthesis of the
execution plan. Section 3.4 defined execution plans and character-
ized them as executable via depth first traversal. We will refer to
the invocation order derived from the depth-first traversal as the
execution plan’s schedule. From this, a mapping mi is said to be
scheduled after mapping mj if invocation of mi follows mj in the
traversal (it does not have to be immediate). Consequently, syn-
thesis of the execution plan can be viewed as a scheduling problem
where the goal is to construct a tree–like structure that represents
the desired execution order.

Given the set of mappings of a QVTc transformation,
the mapping scheduling problem involves scheduling
the mappings so that the execution time of the trans-
formation is minimized, while ensuring transformation
correctness (from Definition 7).
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In compiler optimization, the instruction scheduling problem
is related to finding the optimal order in which instructions in a
program should be executed. The execution plan synthesis prob-
lem is related to the scheduling problem because the solution is
based on finding an optimal order in which mappings in a QVTc
transformation should be invoked. Since the instruction schedul-
ing problem is NP-hard [13], metaheuristics can be successfully
used to solve this kind of problems [109, 108, 7, 52, 92]. Given
the aforementioned relation, this research approaches the execu-
tion plan synthesis problem as a scheduling problem and uses a
metaheuristic to solve the synthesis problem.

Further, the solution space for the execution plan synthesis
problem can quickly become intractable, as discussed next. When
the solution space becomes intractable, metaheuristic algorithms
provide the means to find good enough solutions in a reduced
amount of time, by enabling efficient and effective exploration of
the solution space [20]. The execution plan can be considered as a
labelled tree (each mapping name is a label) in which the number
of labelled trees on n nodes, i.e. the solution space, is nn−2 [24].
However, given the vertex set {1, 2, 3}, the number of trees cal-
culated in Cayley [24], considers tree 1 v 2 v 3 to be equal to
tree 3 v 2 v 1. That is, trees with the same forward and back-
ward ordering are considered equal. Since in the execution plan
invoking mappings in 1 v 2 v 3 is different from invoking them
in 3 v 2 v 1, the solution space for the execution plan synthesis
problem is larger than nn−2. Otter [79] proved an asymptotic es-
timate to calculate the number of labelled trees which takes into
consideration the ordering. Deriving such an estimate for the case
of execution plans is out of the scope of this research, but it suf-
fices to state that both approaches suggest that the solution space
grows exponentially with the number of mappings.

Finally, for a given tuple of parameters σ of candidate and trace
model elements, the enforce invocation m†(σ) can be considered
constant across different execution plans. The reason for this is

93



Chapter 4. Execution Plan Synthesis Problem

that the execution plan does not modify the transformation map-
pings and hence, mapping execution (consider atomically) does
not depend on the structure of the execution plan. Thus, time dif-
ferences between execution plans only depend on the number of
times each mapping is invoked and the calculation of Σ (all possi-
ble combinations of σ) for each mapping invocation. Additionally,
invocation of mappings is non–pre–emptive (based on the used
implementation of the QVTc execution engine), that is, once a
mapping is invoked it must finish without being interrupted.

Based on all the above, the mapping scheduling problem is
defined as

1. Minimize the number of times each mapping is scheduled.

2. Minimize the number of times each mapping is invoked.

3. Minimize the number of invocations with a NA result.

4. Minimize the number of invocations with a False result.

4.2 Mapping Order using
Inter-Mapping Data Dependency
Analysis

A fundamental aspect of solving the execution plan scheduling
problem is to identify a partially ordered relationship among the
mappings [7, 109]. This section shows that a partial ordering can
be found using data dependence analysis. Data dependence anal-
ysis has been used in compiler optimization of imperative lan-
guages [116, 47], declarative languages [45, 25] and functional lan-
guages [67]. Data dependence analysis is mainly used to optimize
instruction scheduling (imperative languages) and to define in-
struction scheduling (declarative/functional languages), and can
be done statically or dynamically. Given that this research focuses
on synthesis of the control component as part of compilation, the
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data dependence analysis only uses information from static analy-
sis of the QVTc transformation program and the properties of the
metamodels of the candidate models and the trace model. This
section presents the use of data dependency analysis to define a
set of dependency relations between mappings that allow identifi-
cation of a partial ordering of mappings.

In the optimization of functional languages (a form of declara-
tive languages) the data dependence analysis is used to construct
a dataflow graph [12]. The dataflow graph representation only de-
scribes the flow of data between instructions. Each node represents
an instruction and the edges of the graph represent FIFO channels.
An instruction consumes data from its incoming FIFO channels
and places produced data in its outgoing FIFO channels. Based
on the functional languages case, this research proposes the use of
an alternative representation in the form of an element flow graph,
in which each node represents a mapping and each edge represents
a data dependency between two mappings. The edges represent the
flow of elements between mappings. The FIFO channels are not
required because data is managed directly by the QVTi virtual
machine.

Data analysis for a mapping can be done by looking at the
variables, predicates and assignments of the mapping. To define
a partial ordering of mappings it is only necessary to consider
the mappings as atomic blocks and to identify the dependencies
that exist due to the flow of elements between them. Given that
variables define the types of elements of interest of a mapping and
the types of new elements created by the mapping, partial ordering
is defined only based on data dependence at the variable level. The
type information that is embedded in the mapping’s variables is
captured in the IN and OUT sets (Definition 2).

To represent the flow of elements in the QVTc transforma-
tion, this section discusses the data relations between mappings
(inter-mapping relations) and uses these relations to define and
give examples of inter-mapping data dependence relations in a
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QVTc transformation. These definitions are based on the defini-
tions by Wolfe et al. [116] for data dependence analysis for imper-
ative languages.

4.2.1 Inter-Mapping Data Dependence
Relations

This section introduces the concepts of data dependence relations
and data dependence graph (the element flow graph) for a QVTc
transformation.

Definition 12 (Data Dependence Relations). Given two
mappings mv and mw, the following data relations may hold
true or the mappings may be data independent.

1. If some type X ∈ OUT (mv) and X ∈ IN(mw), then
mw is data-type dependent on mv denoted by mvδτ mw.
For more detailed specifications the type that defines the
dependency can be supplied (or a set of types): rvδτ

Xrw,
where X is the type that defines the relation.

2. If some types X ∈ OUT (mv) and Y ∈ IN(mw), and
Y ▹ X (Y is a subtype of X, see Sect. 2.1), then mw

is data-kind dependent on mv denoted by mvδγmw. For
more detailed specifications the type that define the de-
pendency can be supplied (or a set of types): mvδγ

Y ▹Xmw,
where Y ▹ X is the type inheritance that defines the re-
lation. �

Definition 13 (Indirect Data Dependence). Mapping mw

is data dependent on mv, denoted mvδmw, if mvδτ mw or
mvδγmw. For more detailed specifications the type that de-
fine the dependency can also be supplied (or a set of types):
mvδXmw =⇒ mvδτ

Xmw ∨ mvδγ
?▹Xmw. The question mark

denotes that the data-kind dependent relation can be to any
subtype of X. Mapping mw is indirectly data dependent on mv,
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denoted mv∆mw, if there are mappings mv1 , . . . , mvn , n > 0,
such that mvδmv1 , mv1δmv2 . . . mvn−1δmvn , mvnδmw. �
Definition 14 (Data Dependence Graph). All data de-
pendencies in a QVTc transformation of n mappings can be
represented by a data dependence graph G of n nodes, one for
each mi(1 ≤ i ≤ n). For each δτ and δγ relation between mv

and mw, there is a corresponding edge in G from the node
representing mv to the node representing mw. �
Example 6. The data dependence graph for the UML2RDBMS
example is shown in Fig. 4.1. Note that the figure only shows
one of the primitive data type mappings: integerToNumber
(mi2n), as the other mappings for primitive types have the same
dependencies. The data dependencies are as follows:

mp2sδ
τ
P ackageT oSchemami2n mp2sδ

τ
P ackageT oSchemamc2t

mp2sδ
τ
Schemamc2t mi2nδτ

P rimitiveT oNamemfa

mi2nδτ
P rimitiveT oNamema2c mc2tδ

τ
ClassT oT ablema2c

mc2tδ
τ
T ablema2c

mc2tδ
γ
AttributeOwner▹ClassT oT ablemfa

mfaδτ
AttributeT oColumnsma2c

mp2s∆mfa mp2s∆ma2c

mc2t∆mc2t mi2n∆ma2c�
4.2.2 Loops in the Data Dependence Graph

In the general case the data dependence graph (DDG) is not
guaranteed to be a Directed Acyclic Graph (DAG). This section
presents the two types of loops that can exist in the DDG: entry–
point loops and closed loops. The section discusses how the former
does not constrain the domain of DDG supported by the proposed
solution and the latter does.
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Figure 4.1: Data Dependence Graph for the UML2RDBMS example.

Entry–point Loops Consider that the metamodels in the
UML2RDBMS are extended in order to support nested pack-
ages and nested schemas (e.g. to represent multi-level federated
databases) to the metamodels in the UML2RDBMS example. A
package can then have multiple nested packages and a parent. The
same applies to schemas. Listing 4.1 presents a new mapping that
will support these changes.

Listing 4.1: Mapping to support nested packages and schemas in
UML2RDBMS.

97 map np in umlRdbms {
98 uml(p1 : Package , p2 : Package |
99 p2 . parent = p1 ; ) { }

100 enforce rdbms( s1 : Schema) {
101 realize s2 : Schema | s2 . parent := s1 ;}
102 where( p2s1 : PackageToSchema |
103 p2s1 . umlPackage = p ; p2s . schema1 = s ; ) {
104 realize p2s2 : PackageToSchema |
105 p2s2 . umlPackage := p2 ; p2s2 . schema := s2 ; }
106 map {
107 where( ) { p2s2 .name := p2 .name ; s2 .name := p2s2 .name ; } }
108 }

This mapping will result in a loop in the DDG given that
IN(mnp) ∩ OUT (mnp) = {PackageToSchema, Schema}, as pre-
sented in Fig. 4.2 (the mappings that are not involved in the
loop are not showed). Although mnp is in a loop, given that
OUT (mp2s) = {PackageToSchema, Schema}, we say that this

98



4.2. Mapping Order

Figure 4.2: Data Dependence Graph (partial) for the UML2RDBMS
example showing a dependence loop.

loop provides an entry point. The entry point allows mnp to ex-
ecute at least once (by using the output of mp2s) and hence it is
possible to construct a plan in which mnp is invoked and satisfy
Definition 11. Note that entry–point loops also apply for the case
in which the loop for mnp is larger than a self-loop.

Closed Loops Now consider the case where an UML Class can
have one super class, and a class can be the superclass of only one
class, and that the RDBMS tables support a similar structure1.
Mapping mc2t can be modified and add an additional mapping
added to consider the super class when creating the table, as pre-
sented in Listing 4.2. In this case IN(mc2t) = {Package, Class,

Schema, Table, PackageToSchema, ClassToTable}, IN(m9) =
{Class, Table, ClassToTable}, OUT (mc2t) = {Table,

ClassToTable} and OUT (m9) = {Table, ClassToTable}. How-
ever, there are no other mappings that produce {Table,

ClassToTable}, and hence m†
c2t(σ) = NA and m†

9(σ) = NA al-
ways. As a result, no tables would be generated, and hence the
transformation would be incorrect.

1This is not a realistic case, but helps to demonstrate the problem with
closes loops without introducing an additional example.
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Listing 4.2: Mappings in with a closed looped in the DDG
1 /∗∗ classToTable ∗/
2 map m5 in umlRdbms {
3 uml(p : Package , c : Class , sc : Class |
4 c . superClass = sc ; . . . ) { }
5 check enforce rdbms( s : Schema , rt : Table | ) {
6 realize t : Table |
7 t . superTable := rt ; . . . }
8 where( p2s : PackageToSchema , sc2t : ClassToTable |
9 p2s . umlPackage = p ; p2s . schema = s ;

10 sc2t . attOwner = sc ; sc2t . table = rt ; ) {
11 realize c2t : ClassToTable |
12 c2t . owner := p2s ; c2t . attOwner := c ; c2t . table := t ; }
13 . . .
14 }
15 /∗∗ supperClassToTable ∗/
16 map m9 in umlRdbms {
17 uml( c : Class , sc : Class |
18 sc . subclass = c ; ) { }
19 check enforce rdbms( t : Table ) {
20 realize rt : Table ; |
21 rt . kind := 'super' ; r t . part = rt ;}
22 where( c2t : ClassToTable |
23 c2t . attOwner = c ; c2t . table = t ; ) {
24 . . .
25 }
26 }

A different strategy is needed to resolve closed loops, i.e. loops
without an entry point. One alternative is the one adopted by the
Epsilon Transformation Language (ETL) and the Atlas Transfor-
mation Language (ATL) in which a first iteration over the map-
pings creates all required new elements and a second iteration
executes the statements in the mapping. This solution is provided
at the execution engine level. Making the changes to the existing
QVTc execution engine to add this functionality is out of the scope
of this project (see Chap. 6 and Chap. 7).

For transformations with loops in the DDG the algorithm will
fail graciously and issue an error message to the user indicating
that a loop was found and that as a result a plan cannot be syn-
thesized. The message includes information about the mappings
and the types involved in the loop. Note that transformations with
closed loops cannot be correctly executed with the naïve plan ei-
ther. In fact, this is a limitation of the implementation of the
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QVTc execution engine used in this research. The reason being
that creation of elements and assignment of their properties is an
atomic operation, i.e. execution of the mapping. For closed loops
a two stage create–update approach is needed (as implemented
in the ETL and ATL execution engines). The create–update ap-
proach can also be manually enforced by splitting the mappings
involved in the loop so that creation and assignment of properties
happen in separate mappings. Hence, the developer can use the
error information to modify the transformation and remove the
loop.

4.2.3 Precedence-Based Mapping Ordering

Precedence mapping ordering avoids reaching a state in which el-
ements of a type are not available for ascription for a mapping
invocation, i.e. m†(σ) = NA. Therefore, precedence mapping or-
dering allows minimization of the number of invocations with a
NA result.

Example 7. Consider the execution plan for the UML2RDBMS
example presented in Fig. 4.3. For static analysis it is assumed
that all-loop actions over types of the source model will al-
ways generate elements. The path to the invocation of ma2c

from root has an AttributeToColumn all-loop action. Since mfa

has not executed yet, there are no AttributeToColum elements
for ascription2 (see Sect. 3.4), and hence m†

a2c(σ) = NA. On
the contrary, for mfa there is a PrimitiveToName kind ac-
tion but in in this case, mi2n has executed so there are some
PrimitiveToName elements available for ascription. �
The term starvation is used in this research to refer the situa-

tion where a mapping invocation m†(σ) = NA due to a lack of ele-
ments of a type in IN(m). From this it follows that to avoid star-
vation, if for a given type X mapping mw has only one mvδXmw,

2An all-loop with no elements of the type will generate one dummy ele-
ment which effectively assigns an ’undefined’ value to the respective variable.
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Figure 4.3: One possible Execution Plan for the UML2RDBMS exam-
ple.

then mv must be invoked before mw. On the other hand, if for a
given type X mapping mw has multiple mv1δXmw, mv2δXmw, . . . ,

mvnδXmw, then at least one of the mv mappings must be invoked
before mw. Thus, data dependence relations can be used to identify
precedence relations that allow us to prevent starvation. Prevent-
ing starvation is equivalent to minimizing invocations with a NA

result. Partial ordering also contributes to minimizing the num-
ber of times a mapping is invoked because it is possible to find,
for each mapping, an order which maximises the number of suc-
cessors that are scheduled after the mapping. By maximizing the
number of invoked successors, the number of invocations needed
for a mapping is minimized.

Next, this section defines and gives examples of inter-mapping
precedence dependence relations in a QVTc transformation.

Definition 15 (Consumer and Supplier sets). The set
CNS(mi) denotes the consumer mappings of mi (mappings for
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which miδmj), and the set SPL(mi) denotes the supplier map-
pings of mi (mappings for which mjδmi). �
Definition 16 (Precedence Relations). If SPLt(mv) ⊆
SPL(mv) is the subset of supplier mappings of mv for a given
type t, where SPLt(mv) = {m : m ∈ SPL(rv) ∧mδtmv}, the
following relations are defined to represent the execution order
of mappings.

1. If |SPLt(mv)| = 1 then mv is execution–compulsory de-
pendent on SPLt(mv), i.e. execution of the mapping in
SPLt(mv) must precede execution of mv. Given mw ∈
SPLt(mv), this relation is denote by mwΦtmv.

2. If |SPLt(mv)| > 1, then mv is execution–alternative de-
pendent on SPLt(mv), i.e. execution of at least one map-
ping in SPLt(mv) must precede execution of mapping mv.
Given mw ∈ SPLt(mv) we denote this by mwΨtmv. �

Example 8. For the UML2RDBMS example the data prece-
dence relations are as follows (mb2b and ms2v represent the
booleanToBoolean and stringToVarchar mappings re-
spectively):

mp2sΦP ackageT oSchemami2n mp2sΦP ackageT oSchemamb2b

mp2sΦP ackageT oSchemams2v mp2sΦP ackageT oSchemamc2t

mp2sΦSchemamc2t mi2nΨP rimitiveT oNamemfa

mb2bΨP rimitiveT oNamemfa ms2vΨP rimitiveT oNamemfa

mc2tΦAttributeOwnermfa mc2tΦT ablema2c

mc2tΦClassT oT ablema2c mi2nΨP rimitiveT oNamema2c

mb2bΨP rimitiveT oNamema2c ms2vΨP rimitiveT oNamema2c

mfaΦAttributeT oColumnma2c �
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Definition 17 (Mapping order). We use the relationship
mw 4 mv to denote the order between mappings mv and mw,
such that mw 4 mv =⇒ mwΦtmv ∨mwΨtmv �
Any synthesized execution plan must respect the mapping or-

der.

Theorem 1: Let D be the mapping order of a QVTc transfor-
mation, then D is a non-strict partial order.

Proof: Reflexive If mv 4 mv then mwΦtmv∨mvΨtmv. mwΦtmv

is not possible as it represents a closed loop. If mvΨtmv,
then |SPL(mv)| > 1 and there must exist another map-
ping mx, such that mxδmv, which represents an entry—
loop, which are allowed.

Antisymmetric The mapping order is not antisymmetric. If
there exists mappings mv, mw, mx with v ̸= w ̸= x and
mxδtmv, mxδtmw, mvδtmw, mwδtmv, then mx, mw

∈ SPL(mv) and mx, mv ∈ SPL(mw) resulting in mv 4
mv and mw 4 mv but mv ̸= mw. �

4.2.4 Completing the Data Dependency
Graph

The definition of the DDG builds on the data dependence re-
lations, and these build on the IN and OUT sets of mappings.
However, it is usually the case that the source model(s) is(are)
not modified in a transformation and as a result the types of the
source metamodels do not appear in the OUT sets of any of the
mappings. As a result, it would be impossible to construct a partial
ordering that satisfies the data dependency relations that involve
the source metamodels’ types.

Going back to the producer-consumer analogy, the data depen-
dence is effectively missing a mapping that produces the elements
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Figure 4.4: Completed Data Dependence Graph for the UML2RDBMS
example.

that exist in the source model(s) at the beginning of the transfor-
mation execution. The definition of the control component model
has a root node that represents the execution entry point. Since
this action node does not represent invocation of an actual map-
ping, it can be safely assumed that it represents a dummy mapping
mα that in turn is responsible for producing elements of the types
of the source metamodel(s). Since the root is the entry point of
execution, all precedence relations to it are automatically satisfied
and all partial orders with respect to the root can be respected
too. Figure 4.4 presents the DDG for the UML2RDBMS with the
source types added. The figure uses a hierarchical layout (left to
right) to provide a notion of the partial order of mappings.

4.3 Ensuring Transformation
Correctness

Although the precedence partial order works to prevent starva-
tion, the lack of starvation in an execution plan is not enough
to guarantee that the plan will result in a correct transformation
execution.

Consider the execution plan for the UML2RDBMS example
presented in Fig. 4.5. This plan respects the precedence partial
order but results in an incorrect transformation execution. The
reason is that mappings mb2b and ms2v are executed at the end
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Figure 4.5: A non–thorough execution plan for the UML2RDBMS ex-
ample.

of the transformation. Both mappings generate PrimitiveToName
elements that are never consumed. Since mb2b ∈ SPL(mfa) and
ms2v ∈ SPL(mfa)

Lemma 1: Mapping partial order is a necessary, but not suffi-
cient condition for an execution plan to result in correct trans-
formation execution.

Proof: Consider the case in which ma, mb ∈ SPL(mv) (as in
the previous example), then ma 4 mv and mb 4 mv and any ex-
ecution plan in which the mappings appear in on of these orders
is valid [ma . . . mv . . . mb], [mb . . . mv . . . ma], [ma . . . mb . . . mv],
[mb . . . ma . . . mv]. Not that however, the first two cases will not
result in correct transformations because elements produces by
mb and ma respectively would not have been consumed by mv.�
The term surplus producer is used hereafter to refer to a map-

ping that produces elements that are not consumed by its con-
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sumers. That is, a mapping m is a surplus producer if there ∃mw ∈
CNS(m), such that mw is not scheduled after m.

Definition 18 (Execution Plan Thoroughness). An exe-
cution plan is thorough if, for every rule in the transformation,
all the created elements of a rule are consumed by the rule’s
consumers, i.e. ∀mw ∈ CNS(m), mw is scheduled after m. �
For example, in Fig. 4.5 an additional invocation to mfa could

be added at the end in order to make the plan thorough.

Definition 19 (Execution plan validity). An execution
plan is valid if it respects the mapping partial order and is
thorough. �
This definition of execution plan validity overlaps with the

correctness and completeness definitions formulated in Lauder et
al. [70] for triple graph grammar execution algorithms. This defi-
nition, however, allows validation of plans (algorithms) for declar-
ative, rule-base, transformation languages.

Partial order and the notion of thoroughness are directly re-
lated to the correctness of the transformation, and allow mini-
mization of the number of times a mapping is scheduled and the
number of times a mapping is invoked with an NA result. The op-
timal conceivable execution plan is one in which each mapping is
only scheduled once. Execution plan validity allows us to validate
if a given execution plan that is considered optimal (each mapping
is scheduled the optimal number of times) is valid or not. In the
general case, execution plan validity can be applied to any plan.

4.4 Mapping Invocation Optimization
via Context Reuse

Partial order is related to minimization of mapping scheduling
(number of times a mapping appears in the execution plan) in the
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execution plan scheduling problem. Another aspect of the execu-
tion plan scheduling problem is to minimize the number of times
each mapping is invoked (a mapping can be invoked multiple times
for each time it is scheduled in the execution plan). The number of
times a mapping is invoked, from a static analysis point of view,
depends on the number of all-loop actions that are present in the
invocation path that triggers the mapping execution. (see Defini-
tion 10).

All-loop actions iterate over all elements of a given type and as
such determine how many times a mapping is invoked. As the num-
ber of all-loop actions in an invocation path ip(ms, mt) increases,
the number of times the target mapping mt is invoked increases
exponentially. This section discusses an optimization mechanism
to minimize the number of all-loop actions in the invocation paths
of an execution plan. Section 4.5 shows how additional data de-
pendency analysis can be performed to minimize the number of
invocations with a False result.

Recall from Definition 10, that the elements for ascription
available in an invocation path depend on the source mapping
of the invocation path and the all-loop actions in the path. That
is, the invocation path defines the context scope available for in-
vocation of a mapping. Thus, for mapping mt = (T, V, S), and in-
vocation path (from Definition 9) ip(ms, mt) = {I(ms), c1, A(t1),
c2, . . . , A(tk), ck, I(mt)}, k ≤ |{v ∈ V : type(v) ∈ IN(m)}|, that
is, the number of all-loops can be lower than the number of input
variables. Thus, it is potentially possible to further optimize an
execution plans by using invocation paths that have a path source
ms that minimizes k, that is, most elements for ascription can be
obtained by the elements generated by ms.

One possible envisioned result of this optimization applied to
the execution plan of Fig. 4.5, is presented in Fig. 4.6. In order
to enable comparison, the figure preserves the execution order of
mappings. The improved execution plan has gone from 23 to 18
all-loop actions.
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Figure 4.6: Context reuse in the execution plan.

4.4.1 Context Reuse Limitations

Context reuse is desirable as it allows construction plans that with
invocation paths that use fewer all-loop actions. However, con-
text reuse is not always feasible. Consider the case in which the
UML metamodel from the running example is extended to support
Associations. The additional classes and properties added to the
original metamodels are presented in Fig. 4.7. The new mapping
required to transform associations is presented in Listing 4.3. Map-
ping mc2t is included for easy referencing. The mapping statements
have been omitted as intra-mapping dependence analysis only uses
the IN and OUT sets. Since the Association has a source and des-
tination class, it is necessary that both classes have already been
transformed and hence, the mapping has two ClassToTable and
two Table input variables with their corresponding trace model
classes.

Initially, since mc2tδ
τ
ClassT oT ablema2fk, mc2tδ

τ
ClassT oT ablema2fk and

mc2t 4 ma2fk, mc2t is a potential source for an invocation path to
ma2fk. However, notice that mc2t only generates one element of
each of these types (lines 114 and 118). Thus, the same element
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Figure 4.7: Additional classes to transform Associations.

would be used for ascription of the two variables in ma2fk. That is,
c2t → sc2t and c2t → dc2t (the same would happen with the ta-
ble). Hence, such a reuse will only work to transform associations
with the same source and destination class.

Listing 4.3: Mapping associationToForeignKey in UML2RDBMS.
110 map c2t in umlRdbms {
111 uml(p : Package , c : Class |
112 . . . ) { }
113 check enforce rdbms( s : Schema | ) {
114 realize t : Table |
115 . . . }
116 where( p2s : PackageToSchema |
117 p2s . umlPackage = p ; p2s . schema = s ; ) {
118 realize c2t : ClassToTable |
119 . . . }
120 . . .
121 }
122 /∗∗ associationToForeignKey ∗/
123 map a2fk in umlRdbms {
124 uml(p : Package , sc : Class , dc : Class , a : Association |
125 sc . kind = 'persistent' ; dc . kind = 'persistent' ;
126 sc . namespace = p ; a . source := sc ; a . dest inat ion := dc ;
127 a . namespace := p ; ) { }
128 check enforce rdbms( s : Schema , st : Table , dt : Table , rk :Key |
129 st . schema = s ; rk . owner = dt ; rk . kind = 'primary' ; ) {
130 . . .
131 }
132 where( p2s : PackageToSchema , sc2t : ClassToTable , dc2t : ClassToTable |
133 sc2t . owner = p2s ; p2s . umlPackage = p ; p2s . schema = s ;
134 sc2t . table = st ; dc2t . table = dt ; sc2t . umlClass = sc ;
135 dc2t . umlClass = dc ; ) {
136 . . .
137 }
138 . . .
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139 }

Using the same element for ascription of two variables can
cause invocations to result in NA. Hence, when optimizing an in-
vocation path ip(ms, mt) via context reuse the optimization needs
to guarantee that elements generated from ms are only ascribed to
one variable. As a result, all-loop actions that provide elements of
the types in OUT (mt) with multiple input variables in ms cannot
be removed from the path.

Additionally, although the types from the source metamodel
are assumed to be available at the root (see Sect. 4.2.4) this does
not imply that the root generates elements of these types. As
such, the context reuse optimizations can’t be applied to invo-
cation paths that start at the root. That is, invocations paths
ip(mroot, mi) will use all-loop actions for each of the arguments σ

in m†(σ).
Execution context reuse is a key aspect when minimizing the

number of all-loop actions required for an invocation action in an
execution plan and as a result minimize the number of times a
mapping is invoked.

4.5 Element Ascription Optimization
using Intra-Mapping Data
Dependency Analysis

So far, this chapter has illustrated how the information from the
mappings’ IN and OUT sets is used to determine the data de-
pendence relationships between mappings. This section looks at
the information available in the mappings’ statements, to identify
intra-mapping relations. Intra-mapping relations are relations that
exist between the mapping’s variables and that can be used to fur-
ther minimize the number of mapping invocations. The derivation
results in the need for less loops in order to ascribe the mapping’s
variables.
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The basic principles for the ideas explored in this section where
the result of joint discussions with Dr. Edward Willink. A parallel
research on the concept of derivation was later introduced by Dr.
Willink [113]. The similarities are mainly in the identification of
one of more variables can be identified as primary variables and
that other variables in the mapping can be derived from them.

Recall from Definition 5 that in enforce mode a mapping m =
(T, V, S), can be applied to Σm, where Σm isthe Cartesian prod-
uct of the elements that are consumed by the mapping. This sec-
tion shows that intra-mapping relations can be used to reduce the
number of sets and hence further reduce the number of required
all-loop actions and minimize the number of times each mapping is
invoked. This optimization reduces the time required to compute
Σm and the number of iterations for a mapping invocation. Fur-
ther, this section shows that the analysis used for this optimization
minimizes the invocations with a False result.

As presented in Sect. 2.2.2, a valid binding of a pattern is
a binding where all the variables of the pattern are bound to a
value other than undefined, and where all the predicates of the
pattern evaluate to true. Thus, the most efficient execution plan
is one in which mappings are only invoked on element tuples that
would result in valid bindings. Let’s consider mapping mfa in the
UML2RDBMS example, presented again in Listing 4.4 (partial).
The predicates in line 76 restrict the Attribute to be related to
the Class via the owner property, and the Attribute to be related
to the PrimitiveDataType via the type property. That is, a valid
binding is one in which the elements assigned to c, t, a, fao and
p2n fulfil these conditions. Thus, for the example models in Fig.
3.3, tuples {C4 : Class, A3 : Attribute, P r1 : PrimitiveDataType}
and {C4 : Class, A1 : Attribute, P r3 :PrimitiveDataType} do not
fulfil the predicates of the UML domain and thus are not suitable
for a valid binding. As a result, the mapping invocation for these
two tuples would be False.
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Listing 4.4: Mapping fromAttribute in UML2RDBMS.
73 /∗∗ fromAttribute ∗/
74 map m6 in umlRdbms {
75 uml( c : Class , t : PrimitiveDataType , a : Attribute |
76 a . owner = c ; a . type = t ; ) { }
77 where( fao : AttributeOwner , p2n : PrimitiveToName |
78 fao . attOwner = c ; p2n . pr imit ive = t ; ) {
79 . . .

This section argues that by considering predicates as selection
conditions rather than filtering conditions, generation of tuples
that result in False invocations can be pre–empted altogether. This
concept stems from the fact that predicate a.owner = c can be
read backwards: c = a.owner. Thus, instead of filtering the tuples
to find the ones in which cmatches the condition, the tuples can be
constructed by picking an a and evaluating a.owner to select a c
that will result in a tuple with a True invocation result. Hereafter,
a acts as the primary variable and c as the derived variable. In
this research, the process of identifying these relations is called
variable derivation.

It is important to note that QVTc predicates are Object Con-
straint Language (OCL) expressions and as such, it is possible to
construct expressions of much higher complexity than the form
<var>.<property>=<var> used in the previous example. As the
complexity of the expression increases (number of operators, vari-
ables, operation invocations, etc.) it is harder to identify relations
between variables that can be used as selection conditions. This
research limits the analysis to predicates of the form

<var>.<property>=<var>

given that it is the most common form of predicate observed in
the development transformations (see Sect. 6.1 for a discussion on
this limitation).

Example 9. For the mapping mfa in Listing 4.4 and the can-
didate models in Fig. 3.3, Σmfa

will consist of 3(Classes) ×
3(PrimitiveDataTypes)×4(Attributes)×3(AttributeOwner)×
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4(PrimitiveToName) = 432 tuples. By using selection condi-
tions this can be reduced to four, one per each attribute of each
class. That means that m†

fa(σ) = False in 428 of the cases. �

By using predicates as selection conditions, the ascription pro-
cess can be optimized by reducing the number of tuples in σ and
effectively minimizing the number of invocations with False results.
Elimination of all invocations with False results is impossible as
the static analysis cannot identify all possible relations between
variables. Given that this analysis can be done statically, it does
not affect the runtime performance.

Additionally, this research assumes that the candidate models
and trace model are Meta Object Facility (MOF) [4] models (or
models that exhibit the same characteristics, e.g. EMF [95] mod-
els). Thus, an element property may have an opposite property. An
opposite property allows properties to be evaluated in the opposite
direction of the property. That is, if Class A has a property child
of type B, and Class B has a property parent that is the opposite
of A.child, then a.child.parent = a.

Opposite properties can be used to reverse the QVTc predi-
cate as part of the analysis. For example, the owner property of
an attribute has an opposite property called attributes then the
predicate a.owner = c could be rewritten as c.attributes->
includes(a). For opposite properties with multiplicity greater
than 1 this rewrite is not useful. However, if the multiplicity was
one, then the predicate can be rewritten as c.attributes = a.
In this form, the predicate can be used as a selection condition
too. This rewrite broadens the possibilities for variables that can
be used as primary variables. Selecting which variables to use as
primary variables is discussed next.
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4.5.1 Intra-Mapping Data Dependence
Relations

This section introduces the concepts of property dependence rela-
tions and property dependence graph for a Model Transformation
Program (MTP) written in a QVTc. The definitions take into con-
sideration that the QVTc execution engine provides a functional-
ity in which missing opposite properties are added to the model
automatically. Thus, it is assumed that an opposite relation will
always exist. Further, although only single–valued properties are
of interest, multi–valued dependencies are also shown (mainly in
the opposite case) as they are useful for further optimizations (see
Sect. 4.5.2). These concepts facilitate the analysis of derivations.

Definition 20 (Property Dependence Relations). Given
mapping m = (T, V, S) and two variables vs, vt ∈ V , the fol-
lowing property relations may hold or the variables may be
independent.

1. If some predicate s ∈ S and s is of the form vs.p = vt,
then vt is direct-property dependent on vs and denote this
by vs

�
πpvt.

2. If some predicate s ∈ S and s is of the form vs.p = vt,
then vs is opposite-property dependent on vt and denote
this by vs

�
πpvt. �

Definition 21 (Indirect Property Dependence). Variable
vs is property dependent on vt, denoted vsπpvt, if vs

�
πpvt or

vs
�
πpvt. Variable vs is indirectly property dependent on vt, de-

noted vsΠvt, if there are variables vk1 , . . . , vkn , n ≥ 0, such
that vsπpi

vk1 . . . vknπpj
vt and all properties pi . . . pj are single–

valued. �
Definition 22 (Property Dependence Graph). All prop-
erty dependences in a mapping with n variables can be repre-
sented by a property dependence graph PDG of n nodes one for
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Figure 4.8: Property Dependence Graph for mfa in UML2RDBMS ex-
ample.

each vi (1 ≤ i ≤ n). For each �
πp and �

πp between vl and vk there
is a corresponding edge in PDG from the node representing vl

to the node representing vk. �
Example 10. The property dependence graph for mapping
mfa in the UML2RDBMS example is shown in Fig. 4.8. The
automatically created properties from the trace to the candi-
date models use the default naming scheme (middle, this name
is configurable through annotations in the metamodels) The
property dependencies are as follows:

a
�
πownerc c

�
πattributesa

fao
�
πattOwnerc c

�
πmiddlefao

t
�
πtypea a

�
πtypeOppositet

p2n
�
πprimitivet t

�
πprimitivep2n

aΠfao faoΠa

tΠfao p2nΠfao

aΠp2n p2nΠfao �
The property dependence graph (PDG) can be used to find all

derivations by selecting each of the input variables as the primary
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Figure 4.9: Context reuse in the execution plan.

variable. Derivations will allow us to further reduce the number of
kind actions needed in an execution plan.

Example 11. Figure 4.9 presents the result of applying deriva-
tion optimizations to the plan presented in Fig. 4.6. For exam-
ple, for the execution path ip(mc2t, mfa), the derivation can
be done by selecting variable fao as the primary variable. An
all-loop action for Attribute elements is still needed because
the attributes property of Class is multi-valued. Depending on
the invocation path there can be more alternatives to use as
the primary variable. Selection of the alternative that provides
the optimal performance is explained in detail in the synthesis
chapter, Sect. 5.2.1. In the figure the number of all-loop actions
has been reduced from 18 to 6. �

4.5.2 All-Of-Kind Action Refinement

For derivation, multi-valued properties (either direct or oppo-
site) are not useful. However, these properties can be used to
provide additional optimization. Consider mapping mfa in the
UML2RDBMS transformation, and the predicate a.owner = c
rewritten as c.attributes->includes(a). Although variable a
cannot be derived from variable c, notice that the mapping is

117



Chapter 4. Execution Plan Synthesis Problem

only interested in attributes that match this condition. Hence, if
c is selected as the primary variable, the Attribute all-loop ac-
tion does not need to loop over all existing attributes, just the
ones contained by c. In other words, multivalued properties can
be used to provide efficient (less iterations) all-loop actions. A new
type of action is added to the control component model to repre-
sent loops over attributes of a primary variable: multi-valued-loop
action (multivalue for short).

Intra-mapping data dependence relations are key to minimize
the number of all-loop actions because all-loop actions are no
longer always needed for secondary variables that cannot be di-
rectly derived from the primary variable. Additionally, it is also
key to minimize the number of invocations with a False result given
that derivation will ensure that elements in a tuple are more likely
to satisfy the mapping guards.

4.6 Summary
This chapter has described the synthesis problem as a scheduling
problem and defined the four minimization targets that define the
problem. It then showed how the knowledge embedded in the logic
component can be used to provide the definitions and conditions
that will enable these targets to be achieved during construction
of solutions to the problem, the execution plans. The chapter iden-
tified key restrictions on the structure of the execution plan with
regard to placement of invocation actions. The chapter showed
how data dependency analysis between variables in a mapping
can be used to minimize the number of mapping invocations. The
chapter also discussed the issue of loops in the dependency graph
and concluded that the scheduling problem can’t be solved for all
QVTc transformations. The next chapter uses the definitions and
conditions introduced in this chapter to construct the algorithm
that can construct an execution plan that is a valid solution to the
scheduling problem.
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5
Systematic Execution Plan

Synthesis

The last chapter argued that the execution plan synthe-
sis problem is a scheduling problem, and showed how
data dependence analysis can be used to provide defini-

tions and constraints to assess the validity of synthesized execution
plans. These definitions and constraints are important as they can
be used to guide the synthesis process and/or to validate synthe-
sized execution plans. That is, the enable the systematic synthesis
of execution plans.

Given the size of the solution space and the similarity of the ex-
ecution plan synthesis problem to the instruction scheduling prob-
lem, the last chapter also argued against the use of an exhaustive
NP scheduling algorithm to solve the execution plan synthesis
problem. As an alternative the use of a meta-heuristic algorithm
was proposed. A meta-heuristic algorithm can produce potentially
sub-optimal solutions, but the solutions are found within a real-
istic timeframe. This chapter presents how the MAX −MIN
Ant System (MMAS) [98] metaheuristic algorithm can be used
to solve the execution plan synthesis problem. The chapter shows
that the execution plan synthesis problem can be solved as a com-
binatorial optimization problem and then presents the observed
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results of the proposed algorithm in a set of development trans-
formation examples.

Section 5.1 describes a base execution plan that can be used as
an oracle to validate execution plans constructed using the system-
atic approach. Following, Sect. 5.2 argues for the use of the Ant
Colony Optimization (ACO) meta-heuristic to solve the execution
plan synthesis problem and formally defines the execution plan
synthesis problem as a combinatorial optimization problem. Sec-
tion 5.3 presents how the ACO meta-heuristic can be used in this
particular scenario and Sect. 5.4 shows how the definitions from
Chap. 4 are used to construct feasible neighbourhoods, a key as-
pect of the ACO meta-heuristic. Section 5.6 reports on the results
of the synthesis algorithm on the set of examples used for develop-
ment and tuning of the algorithm. Finally, Sect. 5.7 summarizes
and concludes the discussion.

5.1 A Base Control Component

No other implementations of the QVT Core [3] (QVTc) language
were found during the literature review of this research. Hence,
this section presents the algorithm that will act as a base con-
trol component to validate the correctness of synthesized control
components and as the benchmark for performance evaluation.
Target models generated by executing the synthesized execution
plans can be compared against target models generated using the
base control component. Performance of the synthesized execu-
tion plans is expected to be better than the performance of the
base control component. This algorithm is labelled as naïve, in
the sense that it does not use data dependency analysis to define
the execution order of mappings. The lack of ordering is key to
assess if the schedule of synthesized execution plans results in bet-
ter performance, which in this research is gauged by measuring
the execution time of the transformation. Since this research is
only interested in evaluating the scheduling of mappings, the base
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control component uses intra-mapping data dependence analysis
to reduce the number of all-instances loops. Hereafter, the term
naïve plan is used to refer to the execution plan constructed with
this algorithm.

Definition 8 discussed that all possible permutations of ele-
ments must be considered for ascription. These elements include
any elements that exist in the candidate models at the beginning of
the execution and any elements that are created during execution.
The implication of having to consider elements that are created
during execution is that given a mapping m, Σm cannot be calcu-
lated definitely before execution. A workaround is to calculate Σm

just before invoking the mapping. However, assuming mappings
are executed sequentially, m1 → m2 → · · · → mn, this still poses
the issue that if execution of mi creates some elements that must
be included in Σmj

, with j < i, then they would not have been
considered. To solve this, all mappings have to be invoked multi-
ple times, which guarantees that new elements will be considered
for ascription in future invocations of a mapping. In this case, a
terminating condition must be defined in order to guarantee that
the algorithm eventually finishes.

The implementation of the QVTc virtual machine used in this
research only supports enforcement at the mapping level. When
a mapping is invoked all the statements are executed in enforce-
ment mode. That means, all realized variables will create new
elements in the target/trace model and assignments will modify
the attributes of these new elements. As a result, if a rule is in-
voked twice with the same arguments, duplicate elements will be
created in the target/trace model. For example if mapping mp2s

(see Listing 3.2) was invoked for P1:Package in the example mo-
del (see Fig. 3.3) then two S1:Schema instances would be created
in the target model. To avoid this behaviour the algorithm uses a
cache mechanism to remember all invocations with a True or False
result. Invocations with NA results will be reattempted in later
iterations. This implementation detail limits the applicability of
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the engine as discussed in Chap. 7.
This implementation detail also implies that element instanti-

ation is the only change we can track as a flag that one or more
mappings have executed with a True result. Element instantiation
is important because it signals that mappings that previously re-
sulted in NA invocations might evaluate to True or False if invoked
again. Thus, the terminating condition can be defined as the lack
of change (element creation) in the target and trace models. If no
new elements are created, there is no point in re-invoking map-
pings that have previously resulted in NA invocations. The ter-
minating condition should only be tested after all mappings have
been invoked at least once.

Algorithm 1 Naïve declarative transformation execution
1: procedure execute(M)
2: repeat
3: forEach m in M do
4: forEach σ in Σm do
5: if notExecuted(m, σ) then
6: if m†(σ)̸= NA then
7: hasExecuted(m, σ)
8: end if
9: end if

10: end for
11: end for
12: until no changes in candidate models
13: end procedure

Algorithm 1 presents an algorithm that results in correct trans-
formation execution as per Definition 7 and takes into consid-
eration the requirements discussed previously. Procedure not-
Executed (line 5) tests if the mapping has been previously invoked
with a given σ. If m†(σ) ̸= NA, procedure hasExecuted caches
the information to avoid repeated invocations (notExecuted uses
the information cached by hasExecuted). Note that procedures
notExecuted and hasExecuted can be implemented by the trans-
formation engine as part of the mapping invocation functionality.
Hence, no additional execution actions are needed in order to rep-
resent the naive control algorithm as an execution plan. They are
included in the algorithm for completeness1.

1This additional functionality was introduced to the implementation used
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The outer loop (line 2) results in all mappings being invoked
as many times as necessary. Note also that at each iteration map-
pings can be invoked in any order. We assume that the terminating
condition is implemented in the execution engine and hence it is
not part of the execution plan. The reasons for this algorithm to
correctly execute a Model Transformation Program (MTP) writ-
ten in a QVTc are as follows:

1. All possible invocation orders are considered: execution can
start at any mapping and all mappings are visited (line 3).

2. All mappings are invoked as many times as necessary (line
2).

3. All possible combinations of candidate model elements are
used for ascription. New elements created by a mapping ex-
ecution will be available for ascription in the next iteration
(line 4).

4. Successful invocations, m(σ) ̸= NA, are cached to avoid du-
plicate element creation.

For the construction of the naïve plan the mappings will be
always visited in the same order for each iteration of the outer
loop, however the order of the rules is defined randomly during
construction.

5.2 The Execution Plan Synthesis
Problem as a Combinatorial
Optimization

The Ant System is a cooperative heuristics searching algorithm in
which the agents replicate the behaviour of ants, originally intro-
duced by Dorigo et al. [34]. Agents work individually to construct

in this research
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Figure 5.1: An Execution Plan and a Data Dependence Graph side by
side.

solutions to the problem by exploring the solution space randomly.
However, they share information about the solutions they find (in
the form of pheromones) allowing a collective knowledge of the
best solutions to emerge.

The ACO meta-heuristic is a metaheuristic for solving hard
combinatorial optimization problems [35] and was chosen because
it has been used with promising results in instruction scheduling
optimizations [109, 108].

Figure 5.1 presents the execution plan and the data depen-
dence graph (DDG) for the UML2RDBMS example side-by-side
(taken from Fig. 4.9 and Fig. 4.4 respectively). The information for
mappings mb2b and ms2v and the type information in the DDG
have been removed in order to aid readability. The figure indicates
a strong relation between the structure of the execution plan and
the structure of the DDG.

To further understand this relation, consider the DDG of Fig.
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(a) DDG

(b) Execution Plan A (c) Execution Plan B

Figure 5.2: Execution Plans and their relation to the Data Dependency
Graph.

5.2a and the execution plans of Fig. 5.2b and Fig. 5.2c. The all-loop
nodes in the execution plan and the type information in the DDG
have been removed to aid readability. Since all–loop actions can
only have one incoming and one outgoing edge this representation
of the execution plan respects the structure and consequently the
depth first search traversal order, and hence the execution order,
of the original execution plan. Notice that both execution plans
can be constructed by using a subset of the edges of the DDG.
Execution plan A uses the dotted edges and execution plan B the
dashed. Common edges are represented in Fig. 5.2a with a dot–
dash line.
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In fact, an execution plan (sans the loop actions) will have the
same structure as a subgraph of the DDG. The reason for this is
that invocations paths in the execution plan are always defined
based on the dependencies (edges) of the DDG. A result of this
fact is that construction of the execution plan can be understood
as the construction of spanning trees in the DDG. Further, since
execution plan synthesis problem is a minimization problem, it
is in fact a minimum spanning tree (arborescence) problem on
the DDG. This type of problem is a combinatorial optimization
problem and has been solved for other type of problems using the
ACO metaheuristic [71, 19].

In order to solve a combinatorial optimization problem with
the ACO algorithm, it must be modelled in the form of P =
(S, Ω, h) [35] where S is the search space defined by a finite or-
dered set of decision variables(hereafter called S-variables to dis-
tinguish them from QVTc variables), each with a finite domain
(see Sect. 5.2.1), Ω is a set of constraints among the S-variables
(defined next), and h : S 7−→ R+

0 is the objective function to be
minimized (see Sect. 5.2.3). “A feasible solution s ∈ S is an as-
signment to each S-variable of a value in its domain such that all
the problem constraints in Ω are satisfied” [35]. A feasible solution
s∗ ∈ S is called a global minimum of P if and only if we have
that h(s∗) ≤ h(s)∀s ∈ S, and S∗ ⊆ S denotes the set of all global
minima.

Section 4.1 discussed that the execution plan synthesis prob-
lem is a scheduling problem in which a mapping execution order
has to be found. Without loss of generality the execution plan
synthesis problem can be redefined as a scheduling problem in
which a mapping invocation order has to be found. That is, a
schedule for the invocation paths has to be found. For a transfor-
mation Q = (O, M), there are |M2| + |M | domain variables, one
for each possible path between all pair of mappings and one for
each path between the root mapping and all the other mappings.
Since a execution plan does not require that a mapping invoke
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all other mappings, then a domain variable can either be assigned
an ip ∈ IP or null. By considering that the variable index repre-
sents the schedule order, then an instantiation of all variables is
an execution plan. Ω can be defined based on Definition 19, that
is, a solution s ∈ S is feasible if the execution plan formed by the
decision variables with a value different than null is a valid plan.

5.2.1 The Invocation Graph

This section introduces the concept of Invocation Graph as an
alternative representation of the execution plan to be used for the
ACO algorithm, in order to provide a reduced domain for the
decision variables and to provide weight information that can be
used by the objective function.. The Invocation Graph is a weighted
rooted graph. A rooted graph is a graph in which one node is
labelled as the root of the graph. Traversal operations on a rooted
graph (e.g. depth-first search) will always start at the root node. A
weighted graph refers to an edge-weighted graph, that is, a graph
where edges have weights or values.

Definition 23 (Invocation Graph). Given the set of all pos-
sible invocation paths IP , the invocation graph IG =
(M, IP ′, ic), is a weighted rooted graph that consists of finite
sets M of mappings and IP ′ ⊆ IP of directed edges, and a
function ic : ip→ R that assigns each edge (invocation path) a
real–valued weight. Mapping root is the designated root node.
The domain of the S-variables in S is now IP ′. �
Section 4.5.1 showed that for a given invocation I(mj) the

property dependence graph (PDG) provides different alternative
ways to derive the invocation arguments. Hence, for a pair of map-
pings mi, mj there exists ip1(mi, mj), ip2(mi, mj), . . . , ipk(mi, mj)
different possible invocation paths between the mappings, where
each ipl uses a different variable derivation alternative.

Section 4.5 showed that by using derivation the number of all–
loop actions in a path can be reduced by eliminating them or by
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replacing them by multivalue actions that, arguably, will perform
fewer iterations. Hence, a particular derivation may determine the
optimal number of all-loop and multivalue actions for a given in-
vocation path. This research argues that it is possible to statically
compute an optimal derivation and therefore an optimal invoca-
tion path for a given pair of mappings. Hence, the IG is restricted
to optimal invocation paths, represented by IP ′ ⊆ IP .

Since variable derivation does not affect the mapping ordering,
nor is part of the additional validation conditions Ω, optimizing
variable derivation can be done as a local optimization and prior to
execution plan synthesis. Next sections show how the PDG can be
used to find the optimal derivation and hence optimal invocation
paths.

5.2.2 Property Dependence Graph Weights
and Spanning Arborescence Cost

In order to find an optimal derivation, we must be able to quanti-
tatively compare derivations. For this, we define a weighted PDG:

Definition 24 (Weighted Property Dependence Graph).
Given a mapping m = (T, V, S), a weighted property dependence
graph WPDG = (V, P, ds, dt, w) is a PDG (from Definition 22)
with additional functions ds, dt : P → V that assign each edge
source and target nodes, and a function w : P → R that assigns
each edge a real-valued weight.

The weight function is defined as follows:

w(p) =

1, if p is explicit

5, if p is implicit
(5.1)

These weights are arbitrary but express a difference in the com-
putation effort of the property derivation. Explicit properties
are defined in the metamodels and can be directly computed.
On the other hand, implicit properties are maintained by the
execution engine and thus additional processing is required to
store and retrieve their values. �
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The minimum derivation (MD) problem can be considered as
an extension to the minimum–weight rooted spanning arbores-
cence (MWRSA) [86, 71] problem. An arborescence is a directed
graph in which, given a vertex v (labelled the root) and any other
vertex u, there is exactly one directed path from the root to u.
The main differences are that the weighted property dependence
graph (WPDG) can be disconnected and that the node that pro-
vides the minimum arborescence has to be found (or nodes for the
disconnected case). In order to solve the MD problem, we need to
define the objective function to be minimized.

For this, this section introduces the concept of Derivation Path.

Definition 25 (Derivation Path). Given a WPDG and an
arborescence Rv with v ∈ V , a derivation path d = (p1, p2, . . . ,

pn) represents the property navigations required to derive a
secondary variable vs = dt(pn) from the primary variable vp =
ds(p1). The set of derivations paths of an arborescence is D(Rv).
A derivation path can have at most one multi-valued property.�
Section 4.5.2 showed that derivation from a multi-valued prop-

erty involves creating an additional multi-valued-loop action in
the invocation path. As a result, the variables after a multi-valued
property must be derived from the iterator of the multivalue ac-
tion, not from the primary variable.

The cost function value c(d) of a derivation path d is defined
as follows:

c(d) = 1 +


∑
p∈d

w(p) if no multi-valued property
∑

p∈d′
w(p) + ∑

p∈d′′
w(p) if one multi-valued property

(5.2)

where, given pk is the multi-valued property, d′ = (p1, p2, . . . , pk), k <

n and d′′ = (pk+1, pk+2, . . . , pn) The initial cost of one is to account
for the assignment of the primary variable (from the context or an
all-loop action iterator).
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The MD problem can then be technically described as follows.
Let Av be the set of all arborescences in WPDG rooted in variable
v made up from derivation paths. In this context, an arborescence
is a directed rooted tree in which all edges points away from the
root variable and each variable can appear only once, and where
there is at most one multi-valued property dependency edge. By
verifying that variables can appear only once, loops in the WPDG

can be broken. The objective function value (that is, the cost) of
an arborescence Rv ∈ Av is defined as follows:

f(Rv) :=
∑

d∈D(Rv)
c(d) (5.3)

The goal of the MD problem is to find a variable v′ and an
arborescence R∗

v′ ∈ Av′ such that the cost of R∗
v′ is smaller than or

equal to the cost of all other arborescences in Av′ and of all other
arborescences in Avi

∀ vi ∈ V . If the the WPDG is disconnected,
we can find the optimal arborescence for each sub-graph given that
derivations in sub-graphs are independent of each other.

Example 12. Figure 5.3 presents the weighted PDG for mfa

in the UML2RDBMS example, which complements the PDG
in Fig. 4.8. If variable p2n is selected as the root, then t can
be derived via primitive with a cost of 1. Next, a can be de-
rived via primitive.typeOpposite with a cost of 1 + 1 = 2.
For c, the typeOpposite property is multi-valued, which results
in a representing the iterator of multivalue action for a in
t.typeOpposite. Hence, c is derived from a via owner with
a cost of 1. And in a similar way, fao will be derived via
owner.middle with a cost of 1 + 5 = 6 (middle is implicit).
The total derivation cost will be 11 (1+2+1+6 +1). Table 5.1
presents the MD for mapping mfa. Each arborescence is repre-
sented by its edges (source, target) and an + is used to indicate
that an implicit iterator is used. It is important to note that as
seen in Table 5.1 it is possible for two or more MD to have the
same derivation cost. If multiple MD with the same cost are
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Figure 5.3: Weighted Property Dependence Graph for mfa in the
UML2RDBMS example.

Table 5.1: Cost of the arborescences for mapping mfa in the
UML2RDBMS example.

Root variable(s) Arborescence Cost
fao {(fao, c), (c, a), (a+, t), (t, p2n)} 11
c {(c, fao), (c, a), (a+, t), (t, p2n)} 14
a {(a, c), (c, fao), (a, t), (t, p2n)} 15
t {(t, p2n), (t, a), (a+, c), (c, fao)} 14

p2n {(p2n, t), (t, a), (a+, c), (c, fao)} 11

available for a given invocation path, then one can be picked
randomly. �
However, the derivation information alone is not enough to

determine the cost of an invocation path. Consider the case of
invocations from the root. In this case, an additional all-loop ac-
tion over all instances of the primary variable’s type is needed. In
general, an all-loop action over all instances of the primary vari-
able’s type is needed for each of the minimum derivations of the
WPDG, unless the primary variable can be assigned a value from
the context.

Additionally, the derivation process must be repeated for each
iteration of the primary variable and for each iteration of the
implicit iterators. Intuitively, the cost for an invocation path
ip(ms, mt) (Definition 9)is then of the form ic(ip) = f(R∗

v) ×
(L + N), where v ∈ Vmt , where R∗ is the minimum derivation
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of IP , L is a factor associated to the number of all-loop actions
over all instances and N is a factor associated to the number of
multivalue actions. Next, in order to understand the performance
relations of the all-loop actions and the derivations, the following
section shows how the ic function was derived empirically based
on the minimum derivations and the observed performance of the
different alternatives.

5.2.3 Deriving the Invocation Cost Formula

This section describes how the invocation cost formula was de-
rived.

The experience with relational system has shown that
the main purpose of a cost model is to differentiate
between good and bad executions, in fact, it is known,
from the [experience with relational system], that even
an inexact cost model can achieve this goal reasonably
well [66].

From this, the cost function used in this research has been de-
rived intuitively from observation. The derivation is done with the
objective of differentiating good and bad executions.

For the description of the empirical analysis this section intro-
duces a simpler transformation which creates a copy of a graph.
There are two main reasons for the use of a simpler transforma-
tion. First, in order to argue for the validity of the cost function
all possible execution plans for the transformation should be con-
structed and evaluated. Although it is a time–consuming task and
takes a considerable effort, with a simpler transformation the com-
plete solution space could be constructed in a reasonable amount
of time. Second, to analyse the DDG and relate its structure to
the observed performance results it is desirable to have a DDG of
a manageable size.

The metamodels for this example are presented in Fig. 5.4
and the PDG in Fig. 5.5. Mapping g2g transforms a graph into
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(a) Source/Target Meta-
model

(b) Trace Metamodel

Figure 5.4: Source/Target and Trace metamodels for the Graph to
Graph example.

Figure 5.5: PDG for the Graph to Graph example.

a graph, and n2n and e2e do the same respectively for nodes
and edges. For this transformation the mapping partial order is
given by g2g 4 n2n, g2g 4 e2e and n2n 4 e2e. A brute force
approach was used to construct the complete solution space for
the graph transformation. From this, the valid execution plans
were selected manually by inspection of their structure. The valid
execution plans include solutions with three distinct invocation
structures and with a wide range of derivation options. In total,
240 valid execution plans were found.

To compare the performance of the different plans a model
with approximately 100k elements was randomly generated. The
size of the model was chosen so the effect of loops and the invoca-
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Figure 5.6: Execution times for the 20 execution plans sample.(Fixed
Y-axis)

tion path size (number of loops) can be observed. The model was
generated using a semi-automated model generation strategy de-
veloped using the EMG tool [83]. If all-loop actions have a number
of iterations much smaller than multivalue actions or vice versa,
then it is possible that performance of plans with more of one
type of action than the other exhibit better performance related
to the number of iterations and not to the derivations. To avoid
this, the generation script is designed to have a balanced number
of elements of each type in the source metamodel. As a result,
the source model has multiple graphs (|G| = 233) and each graph
in turn has |N | + |E| = 466 elements. Although an all-loop over
Graph elements will have fewer iterations than an all-loop over
Node elements, it will have similar iterations as a multivalue loop
over Graph.nodes. Initially a sample of 20 plans was taken from
the total 240. Each plan was executed 10 times using the 100k-
element model as the source model. The results are presented in
Fig. 5.6.

The plot shows that three distinct subgroups of plans that
have similar execution times can be identified. These groups are
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highlighted in the figure by using different marker shapes. There is
a group that exhibits execution times around 5 seconds (triangle),
another around 170 seconds (circle) and the third one around 500
seconds (square). Each of the subgroups was analysed, taking into
consideration the structure of the plans, number of kind actions
and derivations used. It was found that the performance results
exhibit a proportional relation between the binding cost and the
number of all-loop actions, i.e. f(R∗) × L. Further, it was also
observed that for multivalued actions the effect was low for one or
two actions but increased exponentially for three or more. Finally,
the cost of implicit property access was adjusted as the results
indicate that the difference is not as big as initially assumed (5
fold). The adjusted value used for implicit properties is 1.2. The
final empirical formula for the invocation cost that better fitted
the observed results was(replaced T for R):

ic(ip) = f(R∗
v)× L + f(R∗

v)N (5.4)

Since the number of all-loop actions (L) and multivalue actions
(N) can be known from the derivation information, it is possible
to calculate the cost of any of the 240 valid execution plans of the
graph transformation.

To evaluate the cost formula, a new sample of 20 execution
plans was used. The cost for each of the execution plans was cal-
culated and each of them was executed with the 100k-element
model. Each execution plan was again executed 10 times. The re-
sults are shown in Fig. 5.7, were the execution plans in the x-axis
are sorted according to cost. The cost of each execution plan (5.4)
is shown above the box plot.

The graph reveals that performance can be used to group the
execution plans in three distinct groups. One group with an ex-
ecution time of around 4 seconds (M = 3884, SD = 255), an-
other group with an execution time of around 220 seconds (M =
226794, SD = 22240) and the final group (with only one plan)
with an execution time of around 600 seconds. The average me-
dian of each group is lower than the third quantile of the next
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group, so it can be concluded that in general, the performance of
each of the groups is better than the next group.

It is also important to note that all the execution plans in
each group have similar cost(5.4). For the 4 second group: (M =
44.8, SD = 10.9), and for the 220 second group: (M = 225, SD =
27.7). These results indicate that the cost function is good to dif-
ferentiate between good and bad executions. That is, picking any
of the execution plans within the lower cost ones would results in
a good execution (shorter time). Note that the differences in cost
between the best and the worst execution plan make it straight
forward to differentiate between good and bad plans. Also, even if
the execution plan with the best cost is not the best overall per-
forming execution plan, its performance is comparable to the best
performance.

Since same transformation was used for deriving the cost for-
mula the observed results were expected. Still, it is important to
validate that the relationship between cost and execution time
is caused by something other than random chance. For this, an
analysis of variance (ANOVA) test[11] was conducted. The null
hypothesis is that there is no significant difference between the
execution times of the execution plans.

The results of the ANOVA test are shown in Table 5.2. Since
p < .001, we can discard the null hypothesis. Thus, the execution
times of the plans are statistically different. To find if there is a
correlation between the cost and the observed execution time, a
Tukey Honest Significant Differences (Tukey-HSD) post-hoc test
was performed on the data. The Tukey-HSD results are presented
in Table 5.3. The results support the previous discussion on the
capacity of the cost function to differentiate between good and bad
executions.

With the cost function in place it is possible to generate the
IG for any QVTc transformation.

Example 13. The IG for the UML2RDBMS example is pre-
sented in Fig. 5.8. Note that as discussed, only the least-cost
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Figure 5.7: Cost evaluation on a 20 execution plans sample of the graph
transformation.

Table 5.2: ANOVA test results for the cost function.

df SumSq Mean Sq F value Pr(>F)
Cost 1 3.01E+12 3.01E+12 372 < .001

Residuals 198 1.60E+12 8.07E+09

derivation is used and as such the invocations for mfa have a
cost of 11 from other mappings except the root. The root cost
is 14 as the root only produces elements from the source mo-
del and hence can only produce Class or Attribute elements.
From these, using the Class has the best cost. �
There exists a risk in deriving the cost function based on only

one transformation. Mainly, it is possible that the derived cost
function is biased to transformations with similar characteristics
as the Graph2Graph and will not work in the general case. The be-
haviour of the cost function was revisited while developing the ex-
ecution plan synthesis algorithm for all the development examples
(see Sect. 5.6). Although an exhaustive evaluation was not carried
out (due to the effort to build all possible solutions and analyse the
DDG), the results observed during development provided enough
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Table 5.3: HSD test results for the cost function.

Group Plan Cost Execution time (ms)
a 20 408.6 5.98E+05
b 9 180 2.89E+05
b 18 255.6 2.35E+05
b 14 227.2 2.30E+05
b 17 254.4 2.30E+05
b 16 242.6 2.29E+05
b 13 224 2.25E+05
b 12 211.6 2.24E+05
b 19 259.8 2.20E+05
b 15 233.6 2.19E+05
b 10 182.2 2.17E+05
b 11 209.4 2.14E+05
c 7 55.2 4.62E+03
c 8 58.4 4.21E+03
c 6 50.2 3.95E+03
c 3 43 3.92E+03
c 1 28 3.86E+03
c 5 48 3.73E+03
c 4 45 3.72E+03
c 2 30.2 3.66E+03

Figure 5.8: Invocation graph IG for the UML2RDBMS example.
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confidence in the usefulness of the derived cost function. However,
an assessment of the effectiveness of the cost function was car-
ried out as part of the evaluation of the approach proposed in this
research (see Chap. 6).

5.2.4 The Objective Function

Given the problem model P = (S, Ω, h), so far the edges in the IG

have been identified as the domain for the values of the variables
in S and Ω has been related to Definition 19. To complete the
combinatorial optimization model problem this section defines the
objective function. Note that finding the minimum-cost execution
plan from the IG is also similar to the MWRSA [86, 71] problem.

Let EP be the set of all spanning subgraphs in IG that are
rooted in the root mapping. In this context, note that the spanning
subgraph is a directed rooted graph in which all arcs point away
from the root vertex and where loops are allowed. Moreover, note
that EP contains all subgraphs, not only the ones with maximal
size. The objective function value (that is, the weight) h(Q) of a
subgraph Q ∈ EP is defined as follows:

h(Q) :=
∑

ip∈edges(Q)
ic(ip) (5.5)

This objective function will allow us to find a spanning sub-
graph Q∗ ∈ EP such that the weight of Q∗ is smaller than or equal
to all other spanning subgraphs in EP found by the ACO algo-
rithm. Q∗ will be the best good-enough execution plan that can be
found. The main difference with respect to the MWRSA problem
is that IG is not a Directed Acyclic Graph (DAG). Concerning
existing work, the literature only offers solutions for the case in
which the graph is a DAG [19, 71]. Therefore, the proposed algo-
rithm must consider loops while evaluating h(Q) and Ω. This can
be easily implemented by keeping a cache of visited nodes which
allows identification of loops.

Given that the derivation information can be computed from
the PDG and hence the minimum derivations found, the IG can
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be computed before the execution plan synthesis algorithm is ex-
ecuted.

5.3 Ant Colony System for Execution
Plan Synthesis

The previous section showed how the execution plan synthesis
problem can be modelled as an optimization problem amenable
to be solved using the ACO metaheuristic. This section presents
the details of the implementation of the ACO algorithm. The sec-
tion starts by defining the foraging area and then presents the
algorithm details, including the pheromone update conditions, the
chosen settings for the algorithm parameters and the terminat-
ing condition. Details on the feasible neighbourhood selection are
presented in the next section.

5.3.1 The Foraging Area

Imagine that a grid is placed on the foraging area and the ants are
only allowed to travel from/to the nodes in the grid. An ant is con-
sidered to have constructed a solution depending on the problem
being solved by assessing, for example, the number of nodes the
ant has visited. Additional conditions include reaching a specific
target, number of visited nodes, visiting all nodes a given num-
ber of times, among others. Further conditions can be placed on
the links between nodes to allow/disallow ants to travel between
specific nodes. The construction graph represents this grid.

In the execution plan synthesis setting, a solution is con-
structed by assigning invocation paths to the variables in the so-
lution space. Hence, the nodes the ant must visit are the edges
from the invocation graph IG = (M, IP ′, ic) (see Definition 23).
We define the construction graph C(IG) for the Execution Plan
Synthesis (EPS) synthesis problem a directed graph on the l + 1
nodes {ip0, ip1, . . . , ipl}, with a designated origin node o := ip0 as
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proposed by Neumann et al. [78]. The edge set F of cardinality l2

is given by

F := {(ipi, ipj)|0 ≤ i ≤ l, 1 ≤ j ≤ l, i ̸= j} (5.6)

i.e., C is obtained from the complete directed graph by removing
all self-loops and the edges pointing to o.

When an ant visits a node in C it is choosing the next in-
vocation that will be scheduled. In this representation, the cost
measure ς(ipi, ipj) of each edge f ∈ F is the derivation cost asso-
ciated to the target node of the edge, that is ς((ipi, ipj)) = ic(ipj).
Additionally, a desirability measure τ(ipi, ipj) : D → R is added
to each edge. The desirability measure assigns each edge a real–
valued pheromone value.

5.3.2 The Synthesis Algorithm

Algorithm 2 ACS algorithm skeleton.
1: procedure ACS
2: initColony
3: initPheromoneTrails
4: repeat
5: resetColony
6: constructPlans
7: updateTrials
8: Qib ← bestIterationSolution
9: if h(Qib) < h(Qgb) then

10: Qgb ← Qib

11: end if
12: until termination condition
13: end procedure

The Ant Colony System (ACS) algorithm is presented in Al-
gorithm 2. Procedure initColony() initializes the colony and sets
the algorithm configuration parameters. Procedure initPheromon-
eTrails() initializes the pheromone values in C(IG). The main
loop is repeated until a termination condition is met (usually num-
ber of iterations or time limit). On each iteration of the main loop,
the ants construct valid execution plans and the pheromone values
are updated. After each iteration, the iteration–best solution (Qib)
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cost is compared to the global–best solution (Qgb), and if lower the
global–best solution is updated.

5.3.3 Plan Construction

Algorithm 3 Plan construction.
1: procedure constructPlans(colony)
2: forEach ant ∈ colony do
3: while ¬isSolutionReady(ant) do
4: IP ∗ ← getNeighbours(ant)
5: ip← stateTransition(IP ∗)
6: updateSolution(ant,ip)
7: end while
8: end for
9: end procedure

The plan construction algorithm is presented in Algorithm 3.
Each ant in the colony constructs a candidate solution by starting
with an empty solution and iteratively adding invocations to the
execution plan until it is complete, which is verified by procedure
isSolutionReady. Procedure getNeighbours calculates the
valid set of invocation paths the ant can visit next and procedure
stateTransition evaluates the state transition rule for each ant
on the neighbourhood. Finally, procedure updateSolution up-
dates the ant’s memory by adding the last selected invocation path
to the plan under construction, Qa. Next, this section describes the
state transition rule. The details of the neighbourhood selection
are presented in Sect. 5.4.

The candidate solution can be represented by a list of edges
Q = [ip1, ip2, . . . , ipn]. The order of the invocations edges in Q rep-
resents the structure of the execution plan as explained in Sect.
5.2.1. The state transition rule is defined as follows: an ant posi-
tioned at node ipr chooses the next invocation path to schedule
ips by applying the rule given by (from (2.4)):
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ips =


arg max

ipu∈N k
ipr

{[τ(ipr, ipu)]× [η(ipr, ipu)]β}, if q ≤ q0

S, otherwise
(5.7)

where arg maxx f(x) = {x | f(x) = maxx′ f(x′)}, τ is the phe-
romone, η = 1/ς is the inverse of the cost, q is a random num-
ber in U(0, 1) (standard uniform distribution), q0 is a parameter
(0 ≤ q0 ≤ 1), N k

ipr
is the set of invocations that an ant can visit

according to Ω (feasible neighbourhood), β is a parameter which
determines the relative importance cost vs. pheromone (β > 0),
and S is a random invocation selected according to the probability
distribution given by (from (2.2)):

pk(ipr, ips) =


[τ(ipr, ips)]α × [η(ipr, ips)]β∑

ipu∈N k
ipr

[τ(ipr, ipu)]α × [η(ipr, ipu)]β
, if s ∈ N k

ipr

0, otherwise
(5.8)

By multiplying the pheromone on edge (ipr, ips) by the heuris-
tic value (in this case the invocation cost), the probability distri-
bution favours the selection of invocations that are cheaper and
that have a higher level of pheromone.

The parameter q0 in (5.7) determines whether the ant favours
exploitation or biased exploration. Biased exploration, defined by
(5.8), encourages the ants to move to invocations with lower cost
and larger amount of pheromones. The problem with biased ex-
ploration is that the colony search can concentrate “early around
suboptimal solutions leading to a premature stagnation of the
search.” [98]. This effect is balanced with exploitation, in which
case ants can sometimes, if q ≤ q0 (the ant samples a random
number U(0, 1) when choosing the next invocation), move to in-
vocations with the highest cost. This choice enables the colony to
escape from local suboptimal search areas.

143



Chapter 5. Systematic Execution Plan Synthesis

5.3.4 Pheromone Trail Updating

One of the key aspects of the MMAS, is that only one ant is
allowed to deposit pheromones on the foraging area. This ant “may
be the one which found the best solution in the current iteration
(iteration–best ant) or the one which found the best solution from
the beginning of the trial (global–best ant).” [98]. Consequently,
the global pheromone updating rule is given by(from (2.3)):

τ(ipr, ips)← ρ× τ(ipr, ips) + Θτ best(ipr, ips) (5.9)

where ρ is the pheromone decay parameter and Θτ best(ipr, ips) =
1/h(Qbest), h(Q) is defined by (5.5) and Qbest denotes the iteration–
best (Qib) or the global–best solution (Qgb).

To select between Qib or Qgb, this research will follow the dy-
namical mixed best ant feedback strategy proposed by Stützle et
al. [98], where Qib is used to update the pheromone information but
at given intervals use Qgb. The intervals are given by frequency f gb.
The value of f gb is gradually increased to veer the search from an
early exploratory phase to a late exploitation of the overall best
solution phase. Section 5.3.5 shows how f gb is defined.

The second key aspect of the MMAS is that the range of
possible pheromone values is limited to the interval [τmin, τmax].
This research adjusts the pheromone intervals as presented in Sect.
2.6.2. The pheromone value obtained from (5.9) is truncated such
that τmin(t) ≤ τ(ipr, ips)(t) ≤ τmax(t).

5.3.5 Parameter Settings

Stützle et al. [99] presents a comprehensive study of the effects
of the different parameters in the behaviour of ACO algorithms.
The authors conclude that existing work on dynamic parameter
adaptation is inconclusive and lacks an in–depth understanding
of the effect of individual parameter’s settings. As a result, this
research uses static settings for the ACS algorithm. The parameter
settings are selected based on the observations in [98] and the
settings of the ACS algorithm [32].
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Table 5.4: Dynamic best ant feedback strategy frequency values.

Iteration (t) range f gb

0 < t ≤ 25 0
25 < t ≤ 75 5
75 < t ≤ 125 3
125 < t ≤ 250 2

t > 250 1

The parameter settings are as follows. For the random phero-
mone selection α = 1 [32] and β = 2 [98]. The number of ants is set
to 25, since it is the lower suggested value forMMAS and ACS
works better for smaller populations [32, 98]. Since local search is
not used, ρ = 0.75 was set as a middle point between 0.6 [98] and
a high value (e.g. 0.9) [32]. For q0 a value of 0.75 presents the best
trade–off between results with short and long runtimes [98]. For
τmin and τmax the default settings proposed by Stützle et al. [98]
are used. Since both values depend on f(Qbest), for τ(0) the phero-
mone is set to some arbitrary high value. After the first iteration,
the pheromone value will be between the imposed limits. Finally,
the dynamic best ant feedback strategy used is depicted in Table
5.4, taken from Stützle et al. [98].

All the configuration parameters are set to their initial values
in procedure initColony in Algorithm 2.

5.3.6 Termination Condition

Existing literature does not provide additional information on the
criteria to establish the termination condition for the ACO algo-
rithm. From Stützle et al. [98], a terminating condition of 2500×
(l + 1) iterations is set (recall that l + 1 is the number of nodes
in C), “which is sufficient to achieve convergence ofMMAS” [98].
Since the EPS problem is not comparable to any of the existing,
well documented graph path problems this research proposes a
different approach.

In the ACO, the agents will eventually start building plans
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that share a lot of common invocations with Qgb and hence it is
expected the cost of all these plans to be similar. Thus, f(Qib) is
expected to oscillate around f(Qgb). With this type of behaviour;
the terminating condition was defined based on the confidence in-
terval for the mean of the samples of f(Qib). Since the standard de-
viation of the population of f(Qib)s is unknown, the t−Confidence
Interval is used to estimate if the ACS is oscillating around a cost
interval that will likely include the mean of the complete popu-
lation of plans. The confidence interval can be used in this case
because the ants are randomly sampling the execution plans. The
algorithm terminates when the confidence interval of the solutions’
cost is below 0.05%.

5.4 Feasible Neighbourhood

In an ACS implementation, the constraints in Ω can either be used
to model the foraging area (the foraging area can be an alternate
representation of the problem) or to place further restrictions on
the paths the ants can follow during exploration. For example,
when using the ACS for solving problems like the TSP, the con-
straints in Ω are use to restrict the ants’ paths. In the TSP prob-
lem the feasible neighbourhood of an ant is all cities that the ant
has not visited yet. That is, the constraint that all cities must be
visited once is used to limit the possible cities to which the ant
can travel next. This research proposes the use of Ω to restrict
the feasible neighbourhood of the ants. By restricting the feasi-
ble neighbourhood, it is guaranteed that all constructed solutions
satisfy Ω. Next, we describe how these constraints can be used to
determine the feasible neighbourhood N k

ipr
when the ant needs to

transition to another node.
When Ω was introduced in Sect. 5.2, it was stated that these

constraints where defined by Definition 19, which places con-
straints on the structure of the solution being constructed in two
respects: partial order and thoroughness.
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5.4.1 Partial Ordering Validation

Given the construction graph C(IG), for an ant that is at node
ipr(msr , mtr), the algorithm to validate if ipf (msf

, mtf
) should be

added to N k
ipr

according to the partial ordering is presented in Al-
gorithm 4, where Q′ denotes the solution under construction. The
loop at line 3 validates the execution–compulsory dependent and
the loop at line 10 the execution–alternative dependent relations
from Definition 16. The first loop checks that all compulsory map-
pings have been invoked and the second loop checks that for each
type at least one of the alternative mappings has been invoked.

Algorithm 4 Partial order validation.
1: procedure partialOrderValidation(ipf , M)
2: valid← true
3: for all mp ∈M do
4: if mpΦmtf then
5: valid← valid ∧ ∃ipj ∈ Q′ |mtj = mu

6: end if
7: end for
8: if valid then
9: valid← false

10: for all z ∈ {υ ∈ IN(mtf ) : type(υ)} do
11: if |SP Lz(mtf )| > 1 then
12: valid← valid ∨ ∃ipj ∈ Q′ |mtj Ψυmtf

13: if valid then
14: break
15: end if
16: end if
17: end for
18: end if
19: return valid
20: end procedure

Example 14. Consider the construction step in Fig. 5.9. Note
that the presented IG has the adjusted cost values. At iteration
t − 1 the ant has moved to the invocation edge ipr(mp2s, mc2t)
(Fig. 5.9a), with the resulting Q′ in Fig. 5.9b.

Recall that the construction graph C(IG) connects each in-
vocation to all other invocations, so the ant could select any
of the remaining black invocations. However, by applying Al-
gorithm 4 invocations that will produce invalid plans can be
filtered out. Some of the available invocations (diamond boxed
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numbers) have been labelled to analyse their validation at iter-
ation t, based on the proposed algorithm.

1. mfaΦma2c∧mfa /∈ Q′: this invocation is not added to the
feasible neighbourhood.

2. mc2tΦmfa ∧mc2t ∈ Q′, and m12nΨmfa ∧m12n ∈ Q′: this
invocation is added to the feasible neighbourhood.

3. mp2sΦmb2b ∧ mp2s ∈ Q′: this invocation is added to the
feasible neighbourhood.

4. mfaΦma2c∧mfa /∈ Q′: this invocation is not added to the
feasible neighbourhood.

5. mp2sΦms2v ∧ mp2s ∈ Q′: this invocation is added to the
feasible neighbourhood. �

From this example there is one characteristic of the plan con-
struction that is worth mentioning: the plans are not constructed
following a possible execution order. In other words, the ant is not
restricted to continue building the plan just with possible invo-
cations paths from the last added invoked mapping. In the above
example, this means that the ant does not only look at invocations
paths that start at mc2t. In this case, since the invocations from
root to mb2b and ms2v have a lower cost, it is more probable that
the ant will pick one of them instead of invocations that start a
mc2t. This means that the ant constructs the solution randomly
and not following a plausible scheduling order.

5.4.2 Thoroughness Validation

Thoroughness is directly related to the creation and consumption
of types. That is, all producer–consumer relations must be satis-
fied. Consequently, thoroughness validation can only be performed
when all mappings have at least been scheduled once.

Consider the plan under construction presented in Fig. 5.10a.
This plan presents the behaviour discussed in Sect. 4.3 regarding
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(a) Foraging Options in the IG

(b) Q′

Figure 5.9: Feasible neighbourhood partial order validation.

thoroughness, in particular the PrimitiveToName elements pro-
duced by ms2v are never consumed. Since mfa ∈ CNS(ms2v), no
columns will be generated for attributes with a string primitive
type. In this case, N k

ipr
should include all invocations that have

mfa as a target to allow the ant to (possibly) pick an invocation
that will make the plan thorough next.

Additionally, consider the plan under construction presented in
Fig. 5.10b. At a first look, this plan seems to be thorough. Com-
pared to the previous case, mfa is invoked after mi2n, mb2b and
ms2v and hence all attributes of all primitive types are considered.
Further, mfa is invoked from mc2t consuming ClassToTable el-
ements produced, and finally ma2c is called from m6 consuming
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(a) Missing Consumers (b) Shadowed Consumers

Figure 5.10: Thoroughness validation of invocations in the feasible
neighbourhood.

all AttributeToColumn elements produced. However, note that
mc2t also produces Table elements. Arguably, since ma2c consumes
Table elements it should consume the elements produced by mc2t.
However, the Table element consumed by ma2c is derived from
a2c:AttributeToColum (via a2c.owner.table) and since a com-
plete static property access/write analysis is not performed, it is
impossible to prove that this derived element is the same one that
mc2t produced. As a result, ma2c is shadowed from consuming ele-
ments from mc2t and therefore, N k

ipr
should include all invocations

that have mc2t as a source. Shadowing refers to the fact that a map-
ping cannot see beyond the context of the source of its invocation
path and hence, cannot be assumed to consume types produced by
previous invocations if the variables of these types are not primary
variables and it an all-loop is not used for ascription.

5.4.3 Containment Relations

Finally, one interesting aspect of execution plan validation comes
from the semantics of the modelling technology, rather than from
the semantics of the QVTc language. In particular, this research
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considers the composition relations from the UML Specification [5],
which are supported by Meta Object Facility (MOF) models2.

Formally, composition is defined as follows. In the UML an
Association has a reference memberEnd:Property, that deter-
mines the (two or more) Properties that are involved in the
association. Each Property has an attribute aggregation: Aggre-
gationKind that specifies the kind of aggregation that applies to
the Property. When the aggregation is composite, it indicates that
the composite object has responsibility for the existence and stor-
age of the composed objects (parts). For example, in the UML
metamodel of the Minimal UML2RDBMS Example (Fig. 3.2), a
Package contains PackageElements, and a Class contains At-
tributes. If a package is removed from a model all its classes will
be removed too.

Now, consider mapping mfa in the Minimal UML2RDBMS
presented in Listing 3.5. Note that {Class, PrimitiveDataType}
⊂ IN(mfa) and Package /∈ IN(mfa). As a result the mapping
does not place any restriction on the container of the classes and
primitive data type (which complies to the UML semantics, i.e.
the type of an Attribute can be defined in any package, not just
the package in which the attribute’s owner is defined). If map-
ping mfa was invoked from mc2t and mc2t from mp2s then, it is
possible that for some invocations mfa would starve because the
package that owns the PrimitiveDataType might not have been
transformed yet and thus the required PrimitiveToName would
not exist (assuming mp2s invokes mi2n,mb2b and ms2v).

To solve this issue, the types in IN(m) are examined and
the respective metamodel is queried to identify the containment
relations between them. If two variables v1 : t1, v2 : t2, with
t1, t2 ∈ IN(m) each related by a containment association to t3,
then there must exist a third variable v3 : t3, and predicates
v1.p1 = v3 and v2.p2 = v3 (where p is the containment property).

2Note that we are referring to UML as the modelling capabilities sup-
ported by MOF[4] models, not the simplified UML domain in the running
example.
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That is, v1 and v2 must have the same container. If not, the in-
vocation cannot be added to N k

ipr
. Further, the mapping must be

invoked from the root (respecting the mapping ordering).

5.5 QVTi Generation

Once the best execution plan has been found the resulting QVTi
MTPmust be constructed. For this the loop and invocation actions
in the execution plan are transformed into QVTi for loops and
mapping calls respectively. Next, the derivation information from
the intra-mapping dependency analysis is used to create Object
Constraint Language (OCL) expressions that result in the correct
variable derivations from the invocation context and loops. Finally,
the mappings (QVTm) are inserted (without modification). The
result of the merge process is a QVTi Abstract Syntax Tree (AST)
which (using existing functionality) is then saved using the QVTi
concrete syntax in a text file.

5.6 Development Transformations

This section presents and overviews the transformations used for
development and testing of the ACS algorithm, referred to here-
after as the execution plan synthesis algorithm (EPSA). System-
atic evaluation of the EPSA is presented in Chap. 6. The inten-
tion of each transformation is discussed, and the solution found
by the EPSA presented. Particular characteristics of each exam-
ple and how they related to the generated execution plan are also
discussed.

In general, most of the development transformations exhibit
one–to–one relations between the concepts of the source domain
and the concepts of the target domain. In the representation of the
synthesized execution plans the derivation information has been
added to the invocation edges for completeness.
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All resulting plans were executed using the QVTc virtual ma-
chine and the target models where validated via visual inspection
and by comparison to the models generated by the naïve plan. In
all cases, all models were correct by inspection and both sets of
target models were identical.

The transformations were selected to explore different aspects
of the EPSA but to be of manageable size. The development
transformations have a low number of mappings so the different
artefacts (DDG, PDG, WPDG, minimum derivations and C) con-
structed as part of the synthesis could be verified manually and
that a step by step execution of the EPSA was easy to follow. The
examples were selected to have DDG with loops and PDG with
derivation paths involving multi-valued properties. In the figures
that show execution plans additional lables have been added to the
invocation edges in order to show the variable derivations used for
that invocation.

5.6.1 Families to Persons

The purpose of this transformation is to transform a model from a
domain where Families are represented by their member structure
(father, mother, sons/daughters), to a domain where Persons are
identified by their gender and full name. The respective metamod-
els are presented in Fig. 5.11. The complete transformation script
is presented in Annex 8.1.

The transformation consists of two mappings: Member2Male
and Member2Female. As their names imply each mapping is re-
sponsible for transforming a male and female member of the fam-
ily respectively, to their persons equivalents. For example, a father
becomes a male and a daughter becomes a female. This transfor-
mation is a very basic and its purpose was to test the minimal
behaviour of the EPSA. With no dependencies between rules, they
can be invoked in any order. Figure 5.12 presents the plan gener-
ated by the EPSA.
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(a) Families metamodel (b) Persons metamodel

Figure 5.11: Families2Persons Metamodels

Figure 5.12: Families2Persons Synthesized execution plan.

5.6.2 Upper to Lower

The Upper to Lower transformation is an extension to the graph
to graph transformation introduced in Sect. 5.2.3. The extension
consists in changing the case of the names of the input graph to
all lower case letters. The graph metamodel is presented in Fig.
5.13 The complete transformation script is presented in Annex 8.2.
The transformation consists of three rules, one for each type of the
graph metamodel.

Figure 5.14 presents the plan generated by the EPSA. Note
that an invocation of edge2edge from node2node would be invalid
because edge2edge consumes two variables of type Node. Mapping
edge2edge has been correctly invoked after all nodes have been
transformed.
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Figure 5.13: Graph Metamodel

Figure 5.14: Upper2Lower Synthesized execution plan.

5.6.3 HSV to HSL

The HSV (Hue, Saturation, Value) to HSL (Hue, Saturation, Lu-
minosity) transformation is similar to the Upper2Lower, in the
sense that both domains have a metamodel with the same struc-
ture. In this case the structure is a tree, in which each node can
have multiple children and a single parent. The metamodel is pre-
sented in Fig. 5.15. The complete transformation script is pre-
sented in Annex 8.3.

The transformation consists of two rules. One to transform the
root/top node (i.e. no parent) and a second rule that recursively
transforms the children. In particular this transformation exhibits
a loop due to recursion. The purpose of this example was to under-
stand the implications of recursive transformations in the execu-
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Figure 5.15: HSV and HSL Metamodel

Figure 5.16: HSV2HSL Synthesized execution plan.

tion plan construction. Figure 5.16 presents the plan generated by
the EPSA. Mapping HSV2HSLRecursion correctly invokes itself
in order to provide the recursive behaviour.

5.6.4 Hstm to Stm

The Hierarchical State Machine to (flat) State Machine trans-
formation is based on the Hstm2Stm QVT Relations [3] (QVTr)
transformation available in the Eclipse QVTd examples. As the
name implies, the transformation takes a hierarchical state ma-
chine at the input and produces a flattened state machine. The
metamodels are presented in Fig. 5.17. The complete transforma-
tion script is presented in Annex 8.4.

The transformation consists of three rules. Two rules to trans-
form leaf and container states (LStateToState and CStateToState)
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(a) Hstm metamodel

(b) Stm metamodel

Figure 5.17: Hstm2Stm Metamodels

respectively, and one additional rule to transform transitions. Fig-
ure 5.18 presents the plan generated by the EPSA. As with the
Upper2Lower example, the HTransToTrans mapping invocation
is restricted by Path Validity ( 4.3) and hence it cannot be in-
voked from the mappings that produce Stm::State elements as it
consumes two elements of this type.

5.6.5 UML to RDBMS Minimal

Figure 5.19 presents the plan generated by the EPSA for the run-
ning example. This plan is consistent with the different scenarios
that have been discussed in this and previous chapters. The com-
plete transformation script is presented in Annex 8.5.
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Figure 5.18: Hstm2Stm Synthesized execution plan.

Figure 5.19: Minimal UML2DBMS Synthesized execution plan.
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5.6.6 UML to RDBMS Complete

The UML to RDBMS transformation is based on the Meta Object
Facility (MOF) Query/View/Transformation (QVT) Specification
example. The complete transformation, as opposed to the running
example, has additional rules to handle associations and attributes
with complex types (i.e. an attribute that has a Class as a type).
Further, for attribute and association transformation, the hierar-
chy of classes is observed (i.e. inherited attributes and associations
are correctly transformed).

The transformation consists of 11 rules. Most of the rules are
one-to-one, except for the attribute rules which takes into consid-
eration primtive and complex types. Figure 5.20 presents the plan
generated by the EPSA.

5.6.7 Experimental Results for the
Development Transformations

In this section we report on experimental results obtained with the
EPSA algorithm on the development examples. The experiments
where performed on an Intel Core i5-4460 3.2GHz processor with
8 GB RAM, running Windows 10 and using a 64–bit Java VM
(version 1.8.0_111).

The results are given in Table 5.5, gathered over 25 trials for
each transformation. The table shows, for each transformation, the
cost of the best execution plan found, the average iteration (num-
bered from 0) at which the best execution plan was found, the
average time to find the best execution plan and the average max-
imum total number of iterations (i.e. after how many iterations the
algorithm stopped). Finally, the maximum total execution time of
the algorithm (i.e. the total execution time of the longest execu-
tion) is given. Only the best cost is reported as the objective of the
algorithm is to find the best plan. Later in this section a discussion
on the different costs is presented to analyse the space exploration
aspect of the algorithm.
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Figure 5.20: UML2DBMS Synthesized Plan
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Table 5.5: Comparison of the EPSA on the development transfor-
mations.

Example Best iavg tavg(s) imax tmax(s)
Families2Persons 5 0 0.014 205 2.23
Upper2Lower 28 0 0.013 219 3.03
HSV2HSL 13 0 0.011 205 2.68
Hstm2Stm 19 0 0.016 219 3.17
UML2RDBMS Minimal 29 0 0.085 246 19.0
UML2RDBMS 164 0 0.39 257 99.3

Given are the example name, the best solution cost, the average num-
ber of iterations iavg (numbered from 0), the average time tavg to find
the best solution in an iteration, the maximum number of iterations
imax and the maximum computation time tmax. Averages are taken
over 25 trials.

The results show that our algorithm is able to find solutions for
all the development transformations. It is interesting to note that
in all cases, the algorithm finds the best plan in the first iteration.
This behaviour can be attributed to three aspects:

1. TheMMAS algorithm with pheromone limits and pseudo–
random–proportional transition rule is designed to find an
optimal solution fast.

2. The low number of mappings translates to an invocation
graph with low fan–out/fan–in (number of edges leaving
and incoming a node respectively) measures. As a result,
the number of alternative invocations from each mapping is
limited.

3. For the larger examples (running example and the complete
UML2RDBMS), the metamodels have a very rigid contain-
ment structure which results in the feasible neighbourhood
being highly constrained by the containment relations (Sect.
5.4.3).

The descriptive statistics for the best solution cost, the average
number of iterations and the average time to find the best solution
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Table 5.6: Descriptive statistics for the Best, iteration found and time
taken.

Best iavg tavg(s)
M SD M SD M SD

Families2Persons 5.00 0 0 0 0.014 0.046
Upper2Lower 28.0 0 0 0 0.013 0.004
HSV2HSL 13.0 0 0 0 0.011 0.006
Hstm2Stm 19.0 0 0 0 0.016 0.033
UML2RDBMS Minimal 29.0 0 0 0 0.085 0.034
UML2RDBMS 164 0 0 0 0.39 0.028

Figure 5.21: Invalid Hstm2Stm execution plan under construction.

in an iteration presented in Table 5.6 suggest that it is only needed
to run the algorithm once to find the best solution. Further, they
also suggest that only one iteration is required to find the best
solution. The reason for this might be the size (number of rules)
of the transformations. Chapter 6 presents these same results in a
different set of transformations to determine if this behaviour can
be generalized.

It was observed that for the Hstm2Stm not all the ants are
able to find a solution in all the iterations. This is a result of how
the plans are constructed and the validation process. In particular,
thoroughness (Definition 18) cannot be validated until the plan is
complete. Thus, thoroughness is not evaluated until all mappings
have been invoked at least once. If at this point a plan is not thor-
ough, the algorithm will try to add additional invocations that
will guarantee thoroughness (by adding them to the ant’s feasible
neighbourhood, see Sect. 5.4). However, some of the required ad-
ditional invocations might not be available and hence the plan is
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left in an invalid state. For example, consider the partial plan in
Fig. 5.21. In order to make the plan thorough, and additional invo-
cation from mapping root to mapping HTransToTrans is needed.
However, since the execution plan is not a multigraph, it is im-
possible to add this additional invocation and as a result the plan
cannot be completed.

As mentioned previously, only the best cost is reported, but the
algorithm can find plans of others costs during the search. Further,
it may be possible that solutions with different structures have the
same cost (for example in the running example the mappings mi2n,
mb2b and ms2v invoked from mp2s will have the same cost regardless
of the order in which they are invoked). Given that two plans with
different structure can have the same cost, the cost information
is not sufficient to determine if the ants are constructing differ-
ent solutions. To further analyse the behaviour of the algorithm
additional data is needed.

For this, during execution plan construction, the number of
different plans of a given cost found during an iteration of the
algorithm is logged. The results are presented in Fig. 5.22, which
summarizes the information over the 25 trials. The figure only
shows the results for the Minimal UML2RDBMS and complete
UML2RDBMS. For the Families2Persons and Hstm2Stm examples
only two alternatives of the same cost exist; for the Upper2Lower
and HSV2HSL examples only 1 alternative for three different costs
exits.

The results indicate that the best plan is found more frequently
than the others, which is accordant with the characteristics of the
EPSA, i.e. the pseudo–random–proportional transition rule results
in ants constructing minimum cost execution plans (exploitation
preference) and as a result ants are more likely to find the best
solution.

Chapter 6 will also present results on the execution of the gen-
erated plans to compare them to each other and to the naïve plan.
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Figure 5.22: Number of execution plans constructed with the same cost.
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5.7 Summary
This chapter have presented the execution plan synthesis prob-
lem as a combinatorial optimization problem and described an
MMAS algorithm to solve the problem. This chapter provided an
alternative representation of the problem that is more amenable
to the MMAS algorithm and provided detailed information on
the key aspects of the implementation of the algorithm. Finally,
we have presented the results of running the implementation of
the proposed algorithm to synthesize execution plans for a set
of QVTc development transformations. The results are consistent
with the characteristics of theMMAS algorithm. The next chap-
ter presents the evaluation of the proposed algorithm by gener-
ating execution plans on a different set of QVTc transformations
and executing the synthesized execution plans using a set of oracle
candidate models.
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6
Evaluation

The last chapter introduced the execution plan synthesis al-
gorithm (EPSA), the algorithm proposed in this research
to find a solution for the Execution Plan Synthesis (EPS)

problem, and showed that the results on a set of initial examples
are encouraging. Since these examples were used to fine tune and
debug the algorithm, a different set of transformation examples
were used to perform the evaluation of the proposed algorithm.

This chapter presents the results of the experiments carried out
to evaluate the EPSA with respect to the three research hypothe-
ses. The experiments were designed to evaluate the correctness
of the synthesized execution plans, the performance of the best
synthesized execution plan versus the naïve plan (see Sect. 5.1)
and whether the cost function allows the algorithm to differenti-
ate good and bad execution plans (from a performance point of
view).

Correctness is the corner stone of the research question. There
is no point in constructing control components for QVT Core [3]
(QVTc) transformations if they do not result in correct trans-
formations. Correctness on its own, without looking into perfor-
mance, is paramount as it shows that the use of data dependence
analysis is a feasible approach to synthesizing execution plans.
Performance, measured against the naïve plan, will provide assur-
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ance that the cost of the additional time and processing needed for
synthesizing execution plans provides significant execution perfor-
mance gains. Evaluation of the cost function is critical to argue
that the cost function of the EPSA is a good differentiator of per-
formance. If it is not, it is not possible claim that the best solution
found by the EPSA is a good–enough solution. This chapter also
briefly discusses the computational results of the EPSA to show
that the algorithm behaves as expected from an Ant Colony Op-
timization (ACO) algorithm.

The evaluation is done in a set of unseen transformations se-
lected from a group of existing transformations available freely.
The set of unseen transformations are required to reduce the
threats to internal validity and external validity [91]. Mainly, us-
ing the development examples could be seen as using the same
test for pre– and post–testing. Hence the test would not tell us
anything about the EPSA performance. For external validity, a
set of transformations with different characteristics will help us
generalize to the theoretical population of all transformations. In
the results presentation the best synthesized execution plan is a
reference to the best solution found by the EPSA, that is, the
execution plan with the lowest cost.

The chapter begins in Sect. 6.1 by describing the selection cri-
teria for the evaluation transformations and then Sect. 6.2 to Sect.
6.10 give a small description of each of the selected transforma-
tions. Next, Sect. 6.11 discusses the behaviour of the EPSA and
presents details of the space exploration for each of the exam-
ples. Section 6.12 presents the two experiment designs carried out
during evaluation and gives the results for each of the evaluation
transformations. Finally, Sect. 6.15 summarizes and concludes the
discussion.
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Figure 6.1: Distribution of LOC and size for the transformations in the
ATL Zoo.

6.1 Evaluation Transformations
From the literature review conducted for this research, it was found
that the ATL Zoo1 seems to be the only publicly available reposi-
tory of model transformations. Figure 6.1 presents the distribution
of the Lines of Code (LOC) and size (measured in number of rules)
for all the available examples in the ATL Zoo. The LOC and size
information was used to select a representative sample from the
Atlas Transformation Language (ATL) Zoo to use as evaluation
transformations. Note that each example can be constituted by
one or more ATL transformation scripts. The data is taken over
the individual scripts, not per example.

The LOC distribution (Fig. 6.1a) shows that most of the scripts
have under 500 LOC and that from those, the majority has un-
der 200 LOC. The size (Fig. 6.1b) distribution shows that most
of the scripts have under 50 rules and that from those, the ma-
jority have under 15 rules. The selected transformation scripts
have rules in the range {min=3, max=31} and LOC in the range
{min=80,max=411}. These transformations are a representative
sample of the most common size and LOC values. Increasing the
number of transformations and including transformations with
larger sizes and LOC was considered but discarded due to the re-
quired effort to translate the transformations from ATL to QVTc

1https://www.eclipse.org/atl/atlTransformations/
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Table 6.1: Overview of the original validation examples.

Name Origin Language Mappings Lines of Code
Abstract2Concrete Eclipse QVTd QVTr 5 154
Mi2Si Eclipse QVTd QVTr 6 93
DNF Eclipse QVTd QVTr 9 400
PathExp2PetriNet ATL Zoo ATL 3 80
PetriNet2XML ATL Zoo ATL 5 210
TextualPathExp2PathExp ATL Zoo ATL 12 230
BibTeXML2DocBook ATL Zoo ATL 26 466
XSLT2XQuery ATL Zoo ATL 31 411
Railway2Control In House QVTc 7 168

(which includes rule translation, helper functions translation, def-
inition of the trace model, and debugging) and the similarity of
the larger transformations with those already selected.

The evaluation transformations group was augmented with
three transformations from the ModelMorf2 set of examples. In
this case, the examples were selected based on the number of rules
and perceived complexity from a visual inspection of the code. The
complexity is related to the number of input variables of each map-
ping and the purpose of the transformations. Finally, an in house
transformation that uses the train benchmark metamodel [102] for
the source model was added to the set of evaluation transforma-
tions. Given that this metamodel is intended for benchmarking
different model management languages we considered it appropri-
ate to include it in the group of evaluation transformations. The
selected transformations are presented in Table 6.1, details of size
and LOC is given.

Table 6.2 shows the size and LOC information for the evalua-
tion transformations after translated to QVTc. In general, the size
remains the same and the LOC decreases. The biggest change is
observed for the DNF example, in which the size increased from 9
to 18.

One of the identified limitations of this research was the possi-
ble existence of closed loops in the data dependence graph (DDG)

2ModelMorf (http://www.tcs-trddc.com/trddc_website/ModelMorf/
ModelMorf.htm, last accessed 23/03/2017)is a proprietary tool from Tata,
which has authorized the use of their test cases in the Eclipse Meta Object
Facility (MOF) Query/View/Transformation (QVT)d Project.
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Table 6.2: Overview of translated validation examples (sorted by LOC).

Name Mappings Lines of Code
Mi2Si 3 64
PathExp2PetriNet 3 80
Abstract2Concrete 5 105
BibTeXML2DocBook 6 150
Railway2Control 7 168
PetriNet2XML 5 200
TextualPathExp2PathExp 12 230
DNF 18 284
XSLT2XQuery 31 350

(see Sect. 4.2.2). This situation was not observed in any of the
development or evaluation transformations. Although the sample
size is small, it appears that closed loops are not that common.
Further, since closed looped can be broken by splitting up the in-
volved mappings their existence does not pose a significant threat
to the applicability of the presented approach.

The other important limitation was the static analysis of Ob-
ject Constraint Language (OCL) expressions in predicates was
limited to the pattern: <var>.<propertry>=<var>. As with the
development transformations this is the most common form of
predicate observed in the evaluation transformations. It was also
observed that this pattern was often used to verify multiplicity
associations via the opposite property. That is, if class A has a
reference b to elements of type B with multiplicity 0 to many, and
the opposite property a in type B exits, then elements a1:A and
b1:B these two predicates are equivalent:

a1.b->includes(b1);
b1.a = a1;

The latter was usually preferred. However, it was also observed
that some of the metamodels do not use opposite properties and
hence the first type of predicate has to be used. As a result, vari-
able derivation in transformations that reference metamodels that
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lack opposite result in the use of more multi-valued-loops. As dis-
cussed in Sect. ?? this will have an effect on the performance of
the transformations.

The following sections provide the details for each of the exam-
ples. The results are presented in Sect. 6.11 and Sect. 6.12. When
discussing the metamodels qualified type names will be used in
the form domain::type (domain: domain name, type: type name)
when types in the domains have the same name.

6.2 Abstract to Concrete

The Abstract to Concrete transformation is part of the Eclipse
QVTd project example transformations and was originally devel-
oped by Tata Consultancy as part of the ModelMorf project (an
implementation of the QVTr language). The example describes a
transformation of a simplified UML model to another simplified
UML model. The aim of this transformation is to generate, from
a source UML model, a target UML model that flattens the inher-
ited operations of a class. That is, a Class in the target model will
collect all the operations inherited from the closure of it’s super
classes that are abstract. Given that the transformation is endoge-
nous, the source and target models have the same structure.

6.2.1 Metamodels

The source and target domains are defined by the simplified UML
metamodel presented Fig. 6.2. A UML package is represented by
the Package element. This element is composed of zero or more
Type elements, which have a name (String) attribute. There are
two possible types: Class and PrimitiveDataType. Class ele-
ments have an isAbstract (boolean) attribute and an inheritsFrom
reference to another Class. The inheritsFrom relations defines the
super class of a Class. A Class element is composed of Operation
elements, which have a name (String) attribute. An Operation
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Figure 6.2: Abstract to Concrete class metamodel.

element is composed of Parameter elements, which have a name
(String) attribute.

6.2.2 Mappings Specification

These are the high–level description of the rules to transform the
simplified UML model (umlIn) to a flattened simplified UML mo-
del (umlOut).

• For each umlIn::Package element a umlOut::Package el-
ement is created. The name of the created Package is the
same as the one from the source Package.

• For each umlIn::Class that inheritsFrom an abstract class
(i.e. isAbstract = True), a umlOut::Class is created. The
created class has a copy of each of the operations in the
abstract class.

• For each umlIn::PrimitiveDataType element an equivalent
umlOut::PrimitiveDataType element is created. The name
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of the created PrimitiveDataType is the same as the one
from the source PrimitiveDataType.

6.2.3 QVTc Code

The QVTc code for the Abstract to Concrete transformation con-
sists of four (4) mappings and one (1) query. The query subClasses
provides all the subclasses of a Class element, given that the meta-
model does not provide this information. We only discuss the de-
tails of two of the mappings, the complete code can be found in
Annex 8.7.

AbstractClassToConcreteClass. This mapping, presented in
Listing 6.1, identifies classes from the source model, umlIn domain,
that inherit from (line 47) an abstract class (line 49). For each of
this classes a class is generated in the output model (line 51),
umlOut domain. Additionally, a trace element is created (line 57)
which keeps a reference to the input class (line 59), the abstract
class (line 58) and the created class (line 60). The middle domain
is used to find the generated package (pOut:umlOut::Package)
for the input class’ owner: lines 45, 55 and 56. This mapping has
five input and two output variables. In the input variables two
have the same type: umlIn::Class.

Listing 6.1: AbstractClassToConcreteClass mapping in Abstract to
Concrete example.

43 map AbstractClassToConcreteClass in AbstractToConcrete {
44 umlIn ( pIn : Package , cc1 : Class , ac : Class |
45 cc1 . owner = pIn ;
46 not cc1 . inheritsFrom . oclIsUndefined ( ) ;
47 cc1 . inheritsFrom = ac ;
48 ac . owner = pIn ;
49 ac . isAbstract ; ) { }
50 enforce umlOut (pOut : Package ) {
51 realize cc2 : Class |
52 cc2 . owner := pOut ;
53 }
54 where (p2p : PackageToPackage |
55 p2p . pIn = pIn ;
56 p2p . pOut = pOut ; ) {
57 realize p2c : ParentToChild |
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58 p2c . parent := ac ;
59 p2c . c l a s s := cc1 ;
60 p2c . concreteClass := cc2 ;
61 p2c . owner := p2p ;
62 }
63 map {
64 where( ) {
65 p2c .name := cc1 .name ;
66 cc2 .name := p2c .name ;
67 }
68 }
69 }

OperationToOperation. This mapping, presented in Listing
6.2, identifies operations from the source model, umlIn domain,
that are contained (line 77) in an abstract class (line 73) that is the
super class of another class (line 76). For each of this operations an
operation is generated in the output model (line 79). Additionally,
a trace element is created (line 86) which keeps a reference to
the input and output operations, lines 87 and 88. The middle
domain is used to find the generated class (cc2:umlOut::Class)
for the class that inherits from the operation’s owner class. The
generated operation is added as a child of the output class, line
80. This mapping has five input and two output variables. In the
input variables two have the same type: umlIn::Class.

The remaining mappings generate the required Package, Para-
meter and PrimitiveDataType elements.

Listing 6.2: OperationToOperation mapping in Abstract to Concrete
example.

71 map OperationToOperation in AbstractToConcrete {
72 umlIn (pc : Class , sc : Class , aco : Operation |
73 pc . isAbstract ;
74 subClasses (pc )−>notEmpty( ) ;
75 not sc . inheritsFrom . oclIsUndefined ( ) ;
76 sc . inheritsFrom = pc ;
77 aco . owner = pc ; ) { }
78 enforce umlOut ( cc2 : Class | ) {
79 realize cco : Operation |
80 cco . owner := cc2 ;
81 }
82 where ( p2c : ParentToChild |
83 p2c . c l a s s = sc ;
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84 p2c . parent = pc ;
85 p2c . concreteClass = cc2 ; ) {
86 realize o2o : OperationToOperation |
87 o2o . abstract := aco ;
88 o2o . concrete := cco ;
89 o2o . c l a s s := p2c ;
90 }
91 map {
92 where( ) {
93 o2o .name := aco .name ;
94 o2o .name := cco .name ;
95 aco .name := o2o .name ;
96 cco .name := o2o .name ;
97 }
98 }
99 }

6.3 BibteXML to DocBook

The BibTeXML to DocBook example is part of the ATL Zoo.
The BibTeXML to DocBook example describes a transformation
of a BibTeXML model to a DocBook model. BibTeXML [84] is
an XML-based format for the BibTeX bibliographic tool. Doc-
Book [107] is an XML-based format for document composition.
The aim of this transformation is to generate, from a BibTeXML
model, a DocBook model that presents the bibliographic informa-
tion in four different sections. The first section provides the full
list of bibliographic entries. The second section provides the sorted
list of the different authors referenced in the bibliography. The
third section presents the titles of the bibliography titled entries.
Finally, the last section provides the list of referenced journals.
The transformation is exogenous, and the source and target meta-
models have very distinct structures. The source metamodel has
a very flat structure and most of its classes have multiple inheri-
tance. The target metamodel, on the contrary, has a hierarchical
structure with four levels of containment and only three of its
classes use inheritance (single).
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Figure 6.3: BibTeXML metamodel.

6.3.1 Metamodels

The source metamodel is a simplified version of the type structure
of the BibTeXML [84] specification. The metamodel only considers
the fields defined as mandatory in BibTeX, as presented in Fig. 6.3.
A BibTeXML bibliography is modelized by the BibTeX element.
This element is composed of one or more BibTexEntry elements.
BibTexEntry has five subclasses to group the major type of bibtex
entries. These five classes define the mandatory attributes, such
as year (DatedEntry), title (Titled Entry), etc. These five sub-
classes are in turn subclassed to provide the actual bibtex entry
types: Article, Proceedings, Book, etc. There are in total 13
possible entry types.

The target metamodel represents a subset if the DocBook [107]
specification, as presented in Fig. 6.4. A DocBook is modelized as
a DocBook element. This element is composed of one or more Book
elements, which in turn are composed of one or more Article
elements. An Article can have multiple sections and finally each
section is composed of Para (paragraph) elements that hold the

179



Chapter 6. Evaluation

Figure 6.4: DocBook metamodel.

content.

6.3.2 Mappings Specification

These are the high–level description of the rules to transform the
BibTexML model to a DocBook model. The transformation can be
considered in its whole as a query that collects the information of
all BibTex entries (title, authors, year, journal, etc) in a section,
and also creates a list of authors, a list of titles, and a list of
journals.

• For each BibTexFile element a DocBook and an Article
element are created. Additionally, four Sect1 sections are
added to the article, with names References List, Author
List, Title List and Journal List.

• For each distinct Author element a Paragraph element is
created, with it contents assigned to the author’s name.

• For each BibTexEntry one, two or three Paragraph elements
are created. This paragraph contains the complete entry in-
formation, the entry title (when applicable) and the entry
journal (when applicable).
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6.3.3 QVTc Code

The QVTc code for the BibTexML to DocBook transformation
consists of six mappings and four queries. The queries authorSet,
titleSet and journalSet keep track of the transformed elements to
avoid duplicates. The query buildEntryPara concatenates the Bib-
TeX entry information into a single string. We only discuss the
details of two of the mappings, the complete code can be found in
Annex 8.8.

Main. This mapping, presented in Listing 6.3 performs the first
part of the transformation, creating the required DocBook sections
from a single BibTeXFile element. This mapping has one input
and eight output variables. Four of the eight output variables have
the same type: Sect1.

Listing 6.3: Main mapping in BibTeXML to DocBook example.
20 map Main in bibtex2docbook {
21 check bibtex ( bib : BibTeXFile ){}
22 enforce docbook () {
23 realize doc : DocBook , realize book : Book , realize art : Art ic le ,
24 realize se1 : Sect1 , realize se2 : Sect1 , realize se3 : Sect1 ,
25 realize se4 : Sect1 |
26 doc . books := OrderedSet{book };
27 book . a r t i c l e s := OrderedSet{ art } ;
28 art . sections_1 := OrderedSet{se1 , se2 , se3 , se4 } ;
29 se1 . t i t l e := 'References List' ;
30 se2 . t i t l e := 'Authors List' ;
31 se3 . t i t l e := 'Titles List' ;
32 se4 . t i t l e := 'Journals List' ;
33 }
34 where ( ) {
35 realize bib2doc : Bib2Doc |
36 bib2doc . f i l e := bib ;
37 bib2doc . doc := doc ;
38 }
39 }

EntryToPara. This mapping, presented in Listing 6.4 performs
the transformation of a BibTeXEntry to a Para that contains all
the information of the entry. Note that this mapping extends the
InfoToPara mapping, which is also presented in the listing. The
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corresponding section is found by name (line 60), and the buildEn-
tryPara query is invoked to create the paragraph content (line 65).
This mapping has one two input and three output variables.

Listing 6.4: Main mapping in BibTeXML to DocBook example.
41 map InfoToPara in bibtex2docbook {
42 enforce docbook ( se : Sect1 ) {
43 realize p : Para |
44 se . paras := se . paras−>including (p) ;
45 }
46 where ( ) { −−f b : FromBibtex) {
47 realize e2p : InfoToPara ,
48 realize fb : FromBibtex |
49 e2p . para := p ;
50 }
51 map {
52 where( ) {
53 p . content := fb . in fo ;
54 }
55 }
56 }

58 map EntryToPara in bibtex2docbook refines InfoToPara {
59 check bibtex ( entry : BibTeXEntry) {}
60 enforce docbook ( se . t i t l e = 'References List' ; ) {}
61 where ( ) {
62 realize fb : FromEntry |
63 e2p . fromEntry := fb ;
64 fb . entry := entry ;
65 fb . in fo := buildEntryPara ( entry ) ;
66 }
67 }

6.4 Disjunctive Normal Form
The Disjunctive Normal Form (DNF) transformation is part of
the Eclipse QVTd project example transformations and was orig-
inally developed by Tata Consultancy as part of the ModelMorf
project (an implementation of the QVTr language). The example
describes a transformation to perform simplification/reduction of
an arbitrary boolean expression into disjunctive normal form by
using DeMorgan’s law and the distributive law. The aim of this
transformation is to perform the transformations listed in Table
6.3, where . is the conjunction logic operator (And), + is the dis-
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Law Input Output
Distributive a.(b + c) (a.b) + (a.c)
Distributive (b + c).a (b.a) + (c.a)
DeMorgan ¬(a + b) ¬a.¬b
DeMorgan ¬(a.b) ¬a + ¬b

Table 6.3: Disjunctive Normal Form transformations.

junction logic operator (Or) and ¬ is the negation logic operator
(NOT). Note that for conversion to DNF only the OR Distributive
law is used. The original transformation is an in-place transforma-
tion. Since the version of the QVTc engine we are use does not
support this mode of execution, our QVTc translation is not an
in-place transformation. This particular transformation highlights
the semantic differences between QVTc and QVTr languages that
results in QVTc transformations being more verbose. As a result,
the QVTc transformation has 26 rules vs. only 9 in QVTr.

6.4.1 Metamodels

The transformation is endogenous, with the source and target do-
mains defined by the boolean expression metamodel in Fig. 6.5.
A boolean expression is represented by the BooleanExpr element.
This element is composed of one (1) or more Expr elements, which
in turn reference one (1) or more Expr elements. The metamodel
describes a boolean expression tree similar to what would be con-
structed by a binary expression tree, with the difference that the
metamodel does not restrict Expr elements to only have two (2)
nested expressions. Expressions can be of type And, Or, NOT and
Literal.

6.4.2 Mappings Specification

The transformation rules obey the descriptions presented in Table
6.3, and can be expressed in a high level as follows:

• For each bexp::And expression that has two nested expres-
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Figure 6.5: Boolean expression metamodel.

sions, one bexp::Expr and one bexp::Or, a dnf::Or expres-
sion is generated that has two nested dnf::And expressions.
Additionally, one dnf::Expr expression is generated as the
input bexp::Expr has to be duplicated.

• For each bexp::Not expression that has a nested bexp::And
or bexp::Or expression, an bexp::Exp is generated that has
two nested bexp::Not expressions. The generated expression
is an dnf::Or if the input nested expression is an bexp::And,
and a dnf::And if the input expression is an bexp::Or.

• All other expressions are copied to the output model.

6.4.3 QVTc Code

The QVTc code for the DNF transformation consists of 26 map-
pings and one (1) query. We only discuss the details of two of the
mappings that deal with distributive transformations, the com-
plete code can be found in Annex 8.9. This example is very com-
plex and the complete QVTc code should be consulted to under-
stand how the transformation works.

OrDistribution. This mapping, presented in Listing 6.5, is re-
sponsible for the distribution equivalences: a.(b+c) = (a.b)+(a.c)
or (b + c).a = (b.a) + (c.a). It identifies bexp:And expressions from
the source model that are composed of a bexp:Or and another
expression (lines 162-165). The rule assumes that the a term from
the source expression is used to construct the b.a And, and hence, a
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copy of it must be created in order to construct the c.a expression.
Note that this rule is based on the logical and being commutative,
that is c.a = a.c. The required information for the copy is placed
in the trace model, via the OrDistributionCopy element. Given
that a, b and c are expressions that can also be distributed or split
via DeMorgan’s law, the trace model (via the Expr2MultExpr ele-
ment) is again used to keep the references of the source expressions
(line 173) and it’s parent target expression (line 174). The actual
assignment of the final expressions is thus delayed until it can be
decided if each of the expressions was further transformed. This
mapping has three input and 6 output variables.

Listing 6.5: OrDistribution in DNF example.
157 map OrDistribution in dnf {
158 check bexp( e1 :And, e2 : Or , a : Expr |
159 e2 <> a ;
160 e1 . expr−>includes ( e2 ) ;
161 e1 . expr−>includes (a) ; ) {}
162 enforce dnf () {
163 realize e3 : Or , realize e4 :And, realize e5 :And |
164 e3 . expr := Sequence{e4 , e5 } ;
165 }
166 where( ) {
167 realize or2and : OrDistribution , realize

a2a_c : OrDistributionCopy ,
168 realize disor2ands : Expr2MultExpr |
169 or2and . beExpr := e1 ;
170 or2and . dnfExpr := e3 ;
171 or2and . ID := e1 . ID ;
172 or2and . beParentExpr := e1 . parent ;
173 e3 . ID := or2and . ID ;
174 a2a_c . beExpr := a ;
175 a2a_c . dnfAndDist := i f e1 . expr−>indexOf (a) = 1 then e5
176 else e4
177 endif ;
178 a2a_c . ID := a . ID + '_c' ;
179 disor2ands . beExpr := e2 ;
180 disor2ands . dnfExprs := Sequence(exprMM : : Not){e4 , e5 } ;
181 −−disor2ands . ID := e2 .ID;
182 e4 . ID := e2 . ID + '_1' ;
183 e5 . ID := e2 . ID + '_2' ;
184 }
185 }
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Expr2ExprCopy This mapping, presented in Listing 6.6, is re-
sponsible for copying the a expressions in an Or ditribution, as
presented in the previous section. This mapping is intended to
be refined by mappings for the specific type of expression, that
is, in line 191 we would expect the correct type of expression to
be constructed. Finally, since all but the LiteralExp can have
nested expressions, this rule will result in a recursive invocation
until the expression to be copied is a LiteralExp. This mapping
has two input and two output variables. The recursion is done via
the Expr2ExprCopy_Rec mapping presented in Listing 6.7.

Listing 6.6: Expr2ExprCopy in DNF example.
188 map Expr2ExprCopy in dnf {
189 check bexp(a : Expr | ) { }
190 enforce dnf () {
191 realize adnf : Expr |
192 } where( e2e_c : OrDistributionCopy |
193 e2e_c . beExpr = a ;
194 ) {
195 realize e2e_d : Expr2ExprCopy |
196 e2e_d . beExpr := a ;
197 e2e_d . dnfExpr := adnf ;
198 e2e_d . ID := a . ID + '_c' ;
199 adnf . ID := e2e_d . ID ;
200 adnf . parent := e2e_c . dnfAndDist ;
201 }
202 }

Listing 6.7: Expr2ExprCopy_Rec in DNF example.
223 map Expr2ExprCopy_Rec in dnf {
224 check bexp(a : Expr , aparent : Expr |
225 aparent . expr−>includes (a) ;
226 ) { }
227 enforce dnf () {
228 realize adnf : Expr |
229 } where( e2ep : Expr2ExprCopy |
230 e2ep . beExpr = aparent ;
231 ) {
232 realize e2e_r : Expr2ExprCopy |
233 e2e_r . beExpr := a ;
234 e2e_r . dnfExpr := adnf ;
235 e2e_r . ID := a . ID + '_rc' ;
236 adnf . ID := e2e_r . ID ;
237 adnf . parent := e2ep . dnfExpr ;
238 }
239 }
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6.5 Multiple Inheritance (Mi) to
Single Inheritance(Si)

The Multiple Inheritance to Single Inheritance (Mi2Si) transforma-
tion is part of the Eclipse QVTd project example transformations
and was originally developed by Tata Consultancy as part of the
ModelMorf project (an implementation of the QVTr language).
The transformation addresses the transformation of an UML Class
hierarchy with multiple inheritance to a Java Class hierarchy with
single inheritance. The aim of this transformation is to generate,
from an UML (simplified) class hierarchy, a Java (simplified) class
hierarchy by defining a multiple-inheritance (MI) interface hierar-
chy corresponding to the MI UML class hierarchy and to establish
implementation links between the class hierarchy and the imple-
mentation hierarchy. This transformation implements one of sev-
eral approaches [29, 27] that have been proposed for this problem.

6.5.1 Metamodels

The transformation is exogenous, with the source and target do-
mains defined by the UML and Java metamodels respectively, pre-
sented in Fig. 6.5. A UML package is represented by the Package
element. This element is composed of Class elements, which have
a name (String) attribute. A Class has zero or more super-classes
(reference supers) and zero or more sub-classes (reference subs).

A Java package is represented by the Package element. This
element is composed of Class and Interface elements. A Class
has a name (String) and an isAbstract (boolean) attribute, and
services and delagatesTo references to a Class. A Class can im-
plement (reference implements) zero or more Interface elements.
An Interface has a name (String) attribute and can extend zero
or one interfaces, and can be implementedBy one or more classes.
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(a) UML metamodel

(b) Java metamodel

Figure 6.6: Meatamodels for the Mi2Si transformation.

6.5.2 Mappings Specification

The transformation rules perform two tasks: transform each UML
Class into a Java Class + Interface pair and generate an in-
terface hierarchy (via implements) that represents the UML class
hierarchy (from supers).

• For each uml::Package element a java::Package element
is created.

• For each uml::Class, a java::Class and a java::Inter-
face are created. The name of the created Class is the same
as the one from the source Class. For the Interface name an
‘I’ is used as a prefix to the name of the source Class.

• For each relation of a uml::Class to a super uml::Class,
the generated java::Class will implement the generated
java::Interface for the super class.
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6.5.3 QVTc Code

The QVTc code for the Mi2Si transformation consists of 3 map-
pings. We only discuss the details of two of the mappings, the
complete code can be found in Annex 8.10.

ClassInPackage This mapping, presented in Listing 6.8, trans-
forms all uml::Class elements contained in a uml:Package (line
37) to a java::Class and a java::Interface. A trace element
is created for each of the generated elements (line 48) which keep
references to the input java::Class and generated elements. Fi-
nally, the name of the java::Class is copied from the name of
the the name of the uml::Class (line 56–57) and the name of
the interface is the concatenation of the letter ‘I’and the name
of the uml::Class (line 58). The middle domain is used to place
the generated elements in the generated java::Package for the
uml::Package that contains the input class. This mapping has
four input and four output variables.

Listing 6.8: ClassInPackage in Mi2Si example.
35 map ClassInPackage in Mi2Si {
36 check uml(p1 : Package , c1 : Class |
37 p1 . containsClass−>includes ( c1 ) ; ) {
38 }
39 enforce java (p2 : Package ) {
40 realize c2 : Class , realize i : In te r face |
41 c2 . implements := Sequence{ i } ;
42 p2 . containsClass := p2 . containsClass−>including ( c2 ) ;
43 p2 . conta ins I t e r face := p2 . conta ins I ter face−>including ( i ) ;
44 }
45 where (p2p : Package2Package |
46 p2p . umlPackage = p1 ;
47 p2p . javaPackage = p2 ; ) {
48 realize c2c : RClass2Class , realize c2 i : Class2Inter face |
49 c2 i . umlClass := c1 ;
50 c2 i . javaInter face := i ;
51 c2c . umlClass := c1 ;
52 c2c . javaClass := c2 ;
53 }
54 map {
55 where ( ) {
56 c2c .name := c1 .name ;
57 c2 .name := c2c .name ;
58 c2 i .name := 'I' + c1 .name ;
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59 i .name := c2 i .name ;
60 }
61 }
62 }

ClassSuperToImplements This mapping, presented in List-
ing 6.9, identifies class–superclass relation {umlc1:uml::Class,
umlc2:uml::Class} (line 66) and transforms that hierarchy into
an implementation relation, where the generated java::Class for
umlc1 implements the generated java::Interface for umlc2 (line
69). The middle domain is used to correctly reference the gener-
ated elements. This mapping has 6 input and no output variables.

Listing 6.9: ClassSuperToImplements in Mi2Si example.
64 map ClassSuperToImplements in Mi2Si {
65 check uml(umlc1 : Class , umlc2 : Class |
66 umlc1 . supers−>includes (umlc2) ;
67 ) { }
68 enforce java ( javac1 : Class , javai2 : Inte r face ) {
69 javac1 . implements := javac1 . implements−>including ( javai2 ) ;
70 }
71 where ( c2to i : Class2Inter face , c12c : Class2Class |
72 c12c . umlClass = umlc1 ;
73 c12c . javaClass = javac1 ;
74 c2to i . umlClass = umlc2 ;
75 c2to i . javaInter face = javai2 ;
76 ) { }
77 }

6.6 Text Path Expression to Path
Expression

The Path Expression to Petri Net example is part of the ATL
Zoo. The original example is actually a three–step transformation
sequence that produces an XML Petri net representation (in the
PNML format) from a textual definition of a Path Expression. The
example is available online from the ATL Zoo website3, where the

3https://www.eclipse.org/atl/atlTransformations/
#PathExp2PetriNet, last visited 08-02-2017.
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path f;(g;h + k;m*;n);(p+q);s end
Figure 6.7: Textual path expression example.

complete documentation can be found. In this, and the follow-
ing two Sections (6.7, 6.8) we will provide an overview of each
of the three steps of the transformation, focusing on key aspects
rather than a complete exposition of the example. The example
Path Expression used in the discussion is taken from the ATL ex-
ample description and as such some of the descriptions are taken
directly from the example reference document and added here for
completeness. The transformation assumes that a parser exists in
order to generate the concrete syntax model from the actual test
representation.

The first step of the transformation, Text Path Expression to
Path Expression, is a concrete syntax to abstract syntax trans-
formation for Path Expressions. This transformation addresses
the problem of going from a text representation of a Path Ex-
pression to an abstract syntax representation that is amenable to
graphical representation. Consider the Path Expression presented
in textual form in Fig. 6.7. This Path Expression is composed of a
simple transition (“f”), followed by a composed alternative transi-
tion (“g;h + k;m*;n”), followed by a simple alternative transition
(“p+q”), and a final simple transition (“s”). The Path Expression
representation of this expression is presented in Fig. 6.8. Given
that the abstract syntax has explicit states (represented by the
circles in Fig. 6.8), the aim of this transformation is thus to gen-
erate the explicit states from their implicit representation in the
concrete syntax.

6.6.1 Metamodels

The transformation is exogenous, with the source and target do-
mains defined by the TextualPathExp and PathExp metamodels
respectively, presented in Fig. 6.9. A Textual Path Expression is
represented by the TextualPathExp element, which is composed
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Figure 6.8: Graphical path expression example.

of one Path elements. A path contains one or more Transition
elements. Transitions can be multiple or not, and there are two
kind of transitions: PrimitiveTrans and AlternativeTrans. Al-
ternative transitions are composed of one or more Path elements.

A Path Expression is represented by the PathExp element,
which is composed of zero or more Transition elements, and one
or more State elements. A State can have zero or more out-
going and incoming Transition elements. A Transition has a
source and a target State. PathExp and Transition inherit from
Element, which gives them a name (String) attribute.

6.6.2 Mappings Specification

The transformation rules perform three tasks: generate the equiv-
alent transitions in the PathExp model (path domain), generate
the required states in the PathExp model and correctly assign the
State’s source and target transitions. The transformation makes
the following assumptions:

• AlternativeTrans should not be multiple (i.e. only simple
loops can be defined).

• The first and the last transitions of a Path, including the root
Path (the path in the TextualPathExp element), should not
be multiple.

• The first transition of the input model must be a Primitive-
Trans.
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(a) Textual Path Expression metamodel

(b) Path Expresion metamodel

Figure 6.9: Metamodels for the TextualPathExp2PathExp transforma-
tion.

The transformation can be described as follows:

• For each PrimitiveTrans element a Transition element is
created.

• For each PrimitiveTrans that is not multiple and is not the
last transition in a Path, a State element is created, which
is the target of the crated transition.

• For each AlternativeTrans element a State element is cre-
ated.

• For each PrimitiveTrans that is not the last transition in a
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Path or the first transition in the root path, the source state
is the State created for the previous text::Transition in
the Path, where the previous transition is computed as fol-
lows:

– If the Transition is not the first in the path, then
the previous is the first non-multiple Transition that
precedes the transition. E.g. in the example path, for
transition h the previous is g and for n is k.

– If the Transition is the first in the path, then the
previous is the first non-multiple Transition that pre-
cedes the AlternateTrans that owns the path. E.g. in
the example path, for transition k the previous is f, and
for q is the AlternateTrans that forms the diamond
structure.

• For each PrimitiveTrans that is the last transition in a
Path, the source State is the one created for the previous
transition (as explained above) and the target State is the
state generated for the AlternateTrans that owns the path.

• For the first PrimitiveTrans in the root path, an additional
State is created to be the source of the Transition.

6.6.3 QVTc Code

The QVTc code for the TextualPathExp to PathExp transforma-
tion consists of 9 mappings and 3 queries. We only discuss the
details of two of the mappings, the complete code can be found in
Annex 8.12.

SingleTransition. This mapping transforms a PrimitiveTran-
sition whose isMultiple attribute is False, into a Transition, the
code is presented in Listing 6.10. Note that this mapping refines
PrimitiveTransition also presented in the listing. The name of the
source transition is used (line 48) to assign the name of the target
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transition. This rule also creates the target State of the transition.
The source cannot be created because it depends on the location
of the transition in the path. This mapping has four input and
three output variables.

Listing 6.10: PrimitiveTransition in TextualPathExp to PathExp ex-
ample.

33 map PrimitiveTransit ion in text2model {
34 check text ( tpe_pt : PrimitiveTrans ) { }
35 enforce path (pe : PathExp) {
36 realize pe_t : Transit ion |
37 pe_t . PathExp := pe ;
38 }
39 where ( tpe2pe : TextPath2Path |
40 tpe2pe . pathexp = pe ; ) {
41 realize t2t : PrimitiveTrans2SubPath |
42 t2t . textTrans := tpe_pt ;
43 t2t . pathTrans := pe_t ;
44 }
45 map {
46 where( ) {
47 t2t .name := tpe_pt .name ;
48 pe_t .name := t2t .name ;
49 }
50 }
51 }

53 −− A PrimitiveTrans that i s not mult ip le generates a state ,
54 −− add i t iona l l y to the trans i t ion . The s ta te i s the targe t of the
55 −− t rans i t ion
56 map SingleTransit ion in text2model refines PrimitiveTransit ion {
57 check text (not tpe_pt . i sMult ip le ; ) { }
58 enforce path () {
59 realize pe_ts : State |
60 pe_ts . PathExp := pe ;
61 pe_t . target := pe_ts ;
62 }
63 where( ) {
64 t2t . s tate := pe_ts ;
65 }
66 }

TransitionSource. This mapping, presented in Listing 6.11, is
responsible for assigning the source state for a Transformation
created from a PrimitiveTransition. The source State is re-
solved by using the trace. The t2t_prev:Tansition2Transition
will point to the correct transition, which is created either from
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an Alternative transition (if tpe_pt:PrimitiveTrans is the last
transition in an alternative path) or a Primitive transition (if
tpe_pt:PrimitiveTrans is not the last transition in a path.) This
mapping has five input and no output variables.

Listing 6.11: TransitionSource in TextualPathExp to PathExp example.
104 map TransitionSource in text2model {
105 check text ( tpe_pt : PrimitiveTrans ) { }
106 enforce path (pe_t : Transition , pe_s : State ) {
107 pe_t . source := pe_s ;
108 }
109 where( t2t : PrimitiveTrans2SubPath , t2t_prev : Tansition2Transition |
110 t2t . textTrans = tpe_pt ;
111 t2t . prevTrans = t2t_prev . textTrans ;
112 t2t . pathTrans = pe_t ;
113 t2t_prev . s tate = pe_s ; ) { }
114 }

6.7 Path Expression to Petri Net
The second step of the Path Expression to Petri Net example, is
a transformation from the PathExp domain to the PetriNet do-
main. The main difference between these two domains is that in
the latter the arcs that connect places/states and transitions are
modelled. This transformation addresses the problem of represent-
ing the arcs. The similarities and small changes can be observed
in Fig. 6.10. This figure is almost the same as Fig. 6.8, except that
in this case the transition is represented by a bar, as opposed to
an arc.

6.7.1 Metamodels

The transformation is exogenous, with the source and target do-
mains defined by the PathExp (pt) and PetriNet (pn) metamod-
els respectively, with the latter presented in Fig. 6.11. A PetriNet
is represented by the PetriNet element, which is composed of
one Place, Transition and Arc elements. A Place has a target
TransToPlaceArc and a source PlaceToTransArc. A Transition
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Figure 6.10: Petri Net example.

Figure 6.11: Petri Net metamodel.

has a source TransToPlaceArc and a target PlaceToTransArc.
Place, Transition and PetriNet elements have a name attribute.

6.7.2 Mappings Specification

The transformation performs a major task: transform a transition
in the PathExp to the required Transition and Arcs in the PetriNet
model. For each PathExp element a PetriNet element is created.
Similarly, for each State a Place element is created. Finally,
for each pt:Transition a pn:Transtion, a TransToPlaceArc
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and a PlaceToTransArc elements are created. The arc use the
pt:Transition source and target information to reference the re-
spective incoming and outgoing Place elements, respectively.

6.7.3 QVTc Code

The QVTc code for the Path Expression to Petri Net transforma-
tion consists of three mappings. We only discuss the details of one
of the mappings, the complete code can be found in Annex 8.7.

Transition2Transition. This mapping, presented in Listing
6.12, is responsible for creating a Transition, a TransToPlaceArc
and a PlaceToTransArc. Then, the correct references are set by
using the trace model to resolve the required places (lines 58–64).
This mapping has nine input variables and six output variables.

Listing 6.12: Transition2Transition in PathExp to Petri Net.
46 map Transit ion2Transit ion in path2petri {
47 check path ( pt : Transition , pe : PathExp , ss : State , t s : State |
48 pe . t rans i t ions −>includes ( pt ) ;
49 pt . source = ss ;
50 pt . target = ts ;
51 ) { }
52 enforce pet r i (pn : PetriNet , sp : Place , tp : Place ) {
53 realize nt : Transition , realize pn_ia : PlaceToTransArc ,
54 realize pn_oa : TransToPlaceArc |
55 pn . t ra n s i t i o n s := pn . t rans i t ions −>including ( nt ) ;
56 pn . arcs := pn . arcs−>including (pn_ia) ;
57 pn . arcs := pn . arcs−>including (pn_oa) ;
58 pn_ia . weight := 1;
59 pn_ia . source := sp ;
60 pn_ia . target := nt ;
61 pn_oa . weight := 1;
62 pn_oa . source := nt ;
63 pn_oa . target := tp ;
64 }
65 where (pe2pn : PathExp2PetriNet , ss2sp : State2Place ,

ts2tp : State2Place |
66 pe2pn . pathexp = pe ;
67 pe2pn . petr inet = pn ;
68 ss2sp . s tate = ss ;
69 ss2sp . place = sp ;
70 ts2tp . s tate = ts ;
71 ts2tp . place = tp ;
72 ) {
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73 realize t2t : Trans2Trans , realize t2tInc : Trans2InArc ,
74 realize t2tOut : Trans2OutArc |
75 t2t . pathTrans := pt ;
76 t2t . netTrans := nt ;
77 t2tInc . source := ss2sp ;
78 t2tInc . target := t2t ;
79 t2tOut . source := t2t ;
80 t2tOut . target := ts2tp ;
81 t2t .name := pt .name ;
82 nt .name := t2t .name ;
83 }
84 }

6.8 Petri Net to PNML(XML)
The third, and final, step of the Path Expression to Petri Net ex-
ample, is a transformation from the PetriNet domain to the XML
domain. The XML model will provide an XML representation of
the PetriNet in PNML format4. The main responsibility of this
transformation is to correctly generate identification numbers (id)
for each of the petri net elements, as cross-references in PNML
are based on id values. The transformation exploits the fact that
containers in the PetriNet metamodel are ordered, and hence the
position of an element in its container is used to provide this infor-
mation. The transition is, as with the PathExp to PetriNet (Sect.
6.7), straight forward, with one mapping to transform elements
of each of the PetriNet classes into it’s XML representation. Note
that the used XML metamodel is a simplified version of the XML
specification.

6.8.1 Metamodels

The transformation is exogenous, with the source and target do-
mains defined by the PetriNet and XML metamodels respectively,
with the latter presented in Fig. 6.11. A PNML document is rep-
resented as a Root element, which is composed of 0 (zero) or more
Node elements. A Node has a value and name attributes that are

4http://www.pnml.org. last accessed 10/05/2017
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Figure 6.12: PNML (XML) metamodel.

used to store information about the node. A Node can be of three
types: Attribute, Text or Element. Element elements are used
to model parent-child relationships, with the name attribute use
to encode the name of the modelled XML tag.

6.8.2 Mappings Specification

The transformation constructs an XML Element for each ele-
ment in the Petri Net. This element is composed of one or more
Attribute and Element elements. When creating representations
for Place, Transition and Arc elements, the position in the col-
lection that contains the element is used to provide an id. To avoid
duplicates, the Transition id’s are offset by the total number of
places, and the Arc id’s are offset by the total number of places
and transitions.

6.8.3 QVTc Code

The QVTc code for the Petri Net to PNML(XML) transforma-
tion consists of five mappings. There is a separate mapping for
TransToPlaceArc and for PlaceToTransArc elements. We only
discuss the details of one of the mappings, the complete code can
be found in Annex 8.7.
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PlaceToTransArc. This mapping, presented in Listing 6.13, is
responsible for creating an Element, and three Attribute ele-
ments to represent a PlaceToTransArc. As mentioned previously,
the element’s id is calculated using the position information (line
162–164). Likewise, the source and target references are found by
using the same logic to calculate the id’s for the source Place and
target Transition (lines 166 and 168). This mapping has three
input and five output variables.
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Listing 6.13: PlaceToTransArc in Petri Net to PNML(XML).
135 map PlaceToTransArc in petri2xml {
136 check pet r i (pn : PetriNet ) {
137 pn_a: PlaceToTransArc |
138 pn . arcs−>includes (pn_a) ;
139 }
140 enforce xml( net : Element ) {
141 realize xml_arc : Element ,
142 realize id : Attribute ,
143 realize source : Attribute ,
144 realize target : Attribute |
145 xml_arc .name := 'arc' ;
146 xml_arc . chi ldren := Sequence{id , source , target } ;
147 id .name := 'id' ;
148 net . chi ldren := net . chi ldren−>including (xml_arc) ;
149 }
150 where( pn2root : PetriNet2Root |
151 pn2root . petriNet = pn ;
152 pn2root . net = net ; ) {
153 realize p2a : Place2TransArc |
154 p2a .pn_a := pn_a;
155 p2a . xml_arc := xml_arc ;
156 p2a . id := id ;
157 p2a . source := source ;
158 p2a . target := target ;
159 }
160 map {
161 where( ) {
162 id . value := pn . places−>s ize ( ) . toStr ing () +
163 pn . t rans i t ions −>s ize ( ) . toStr ing () +
164 pn . arcs−>indexOf (pn_a) . toStr ing () ;
165 source .name := 'source' ;
166 source . value :=

pn . places−>indexOf (pn_a. source ) . toStr ing () ;
167 target .name := 'target' ;
168 target . value := pn . places−>s ize ( ) . toStr ing () +
169 pn . t rans i t ions −>indexOf (pn_a. target ) . toStr ing () ;
170 }
171 }
172 }

6.9 Railway to Control

This transformation was developed as part of this research. The
example is based on the train benchmark metamodel [102], which
contains the most typical EMF model constructs. The transfor-
mation considers that the train domain can be used model a
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toy model train, and we are interested in automating the sig-
nals (semaphores) and switches that control the toy model train
behaviour. The transformation is used to create a model of a con-
trol system that can be used to monitor the state of the toy model
train and, for example, automate the toy railway to allow multiple
trains to run on it.

6.9.1 Metamodels

The transformation is exogenous, with the source and target do-
mains are defined by the TrainBenchmark and Control metamod-
els respectively, presented in Fig. 6.13 and Fig. 6.14. A railway is
represented by a RailwayContainer element. This element is com-
posed of zero or more Region elements, and zero or more Route
elements. A Region represents a section of the railway composed
of zero or more Track elements. A Track element can either be
a Switch (connecting other track elements) or a Segment element
with a given lenght and a set of neighbor elements. A Route (i.e.
a course that can be followed by a train) is composed of a set
of SwitchPosition elements, i.e. by following the switches in the
given positions the course can be followed. A Route has an entry
and exit Semaphore.

The control is represented as a RailwayControl element. This
element is composed of Route and SemaphoreSignal elements. A
Route is composed of TrackSection and SwitchSignal elements.
The control can also have Train elements that follow a plan made
up of zero or more Semaphore signals. Finally, a Route element
can join or fork into other routes to allow route composition.

6.9.2 Mappings Specification

These are the high–level description of the rules to transform a
Train Benchmark model (rail) to Control model (control).

• For each rail::Route element a control::Route element
is created.
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Figure 6.13: Railway metamodel.

Figure 6.14: Control metamodel.

• For each rail::Semaphore used in a rail::Route, a con-
trol::SemaphoreSignal is created.

• For each rail::Sensor a control::TrackSection is cre-
ated. The track section is made up of all the rail::Track-
Elements monitored by the sensor (tracked by id).

• For each rail:SwitchPosition a control::SwitchSignal
is created.

• Finally, the rail::Semaphore is also used to correctly cre-
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ate the fork and join information of each control::Route
element.

6.9.3 QVTc Code

The QVTc code for the Railway to Control transformation consists
of seven mappings and one query. The query getSensorElementsIds
collects the id information of all the rail::TrackElement ele-
ments monitored by a rail::Sensor. We only discuss the details
of two of the mappings, the complete code can be found in Annex
8.14.

Semaphore2signal. This mapping, presented in Listing 6.14, is
responsible for transforming a rail::Semaphore into a control-
::SemaphoreSignal. The semaphore has to be part of the seg-
ments that compose a region: predicates in lines 51–53. The cre-
ated control::SemaphoreSignal is allocated to the correspond-
ing RailwayControl, line 57. This mapping has six input and two
output variables.

Listing 6.14: Mapping semaphore2signal in the Railway to Control ex-
ample.

49 map semaphore2signal in r2c {
50 check r a i l ( rc : RailwayContainer , r : Region , seg : Segment ,

s : Semaphore |
51 rc . regions−>includes ( r ) ;
52 r . elements−>includes ( seg ) ;
53 seg . semaphores−>includes ( s ) ;
54 ) { }
55 enforce contro l ( c : RailwayControl ) {
56 realize ss : SemaphoreSignal |
57 ss . controledBy := c ;
58 }
59 where ( r2c : Railway2Control |
60 r2c . railway = r ;
61 r2c . contro l = c ;
62 ) {
63 realize s2s : Semaphore2Signal |
64 s2s . semaphore := s ;
65 s2s . s i gna l := ss ;
66 }
67 map {
68 where( ) {
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69 s2s . id := s . id ;
70 s2s . id := ss . id ;
71 s . id := s2s . id ;
72 s . id := s2s . id ;
73 ss . s tate :=
74 i f s . s i gna l = railway : : Signal : :FAILURE then
75 contro l : : Light : :RED
76 else
77 i f s . s i gna l = railway : : Signal : :STOP then
78 contro l : : Light : :RED
79 else
80 contro l : : Light : :GREEN
81 endif
82 endif ;
83 }
84 }
85 }

Semaphore2fork. This mapping, presented in Listing 6.15, is
responsible for assigning the fork relations of a control::Route.
It uses the information in the rail::Semaphore to match the
Control elements to the rail::Routes that are connected via the
rail::Semaphore, using the exit and entry information (lines 166–
171). This mapping has 13 input and no output variables.

Listing 6.15: Mapping semaphore2signal in the Railway to Control ex-
ample.

164 map semaphore2fork in r2c {
165 check r a i l ( r : RailwayContainer , s r : Route , f r1 : Route , f r2 : Route ,

s : Semaphore |
166 r . routes−>includes ( sr ) ;
167 r . routes−>includes ( f r1 ) ;
168 r . routes−>includes ( f r2 ) ;
169 sr . ex i t = s ;
170 f r1 . entry = s ;
171 f r2 . entry = s ; ) {

173 }
174 enforce contro l ( c : RailwayControl , sc : Route , fc1 : Route ,

fc2 : Route) {
175 sc . forks := Sequence{fc1 , fc2 } ;
176 }
177 where ( r2c : Railway2Control , er2c : Route2Route ,
178 fr2c1 : Route2Route , f r2c2 : Route2Route |
179 r2c . railway = r ;
180 r2c . contro l = c ;
181 er2c . railwayRoute = sr ;
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182 er2c . controlRoute = sc ;
183 fr2c1 . railwayRoute = fr1 ;
184 fr2c1 . controlRoute = fc1 ;
185 fr2c2 . railwayRoute = fr2 ;
186 fr2c2 . controlRoute = fc2 ;

188 ) { }
189 }

6.10 XSLT to XQuery

The XSLT to XQuery example is part of the ATL Zoo, available
online from the ATL Zoo website5, describes a simplified trans-
formation of XSLT code to XQuery code [16]. XSL (eXtensible
Stylesheet Language) is a styling language for XML, and XSLT
stands for XSL Transformations. XSLT can be used to transform
XML documents into other formats, such as HTML. XQuery is a
language designed to query XML documents in order to find and
extract elements and attributes. The transformation aims at repre-
senting the XSLT as a series of XQueries. We provide an overview
of the domains involved and a general description of the transfor-
mation. Further details can be found in the ATL Zoo website.

6.10.1 Metamodels

The source domain is defined by a simplified XSLT metamodel,
presented in Fig. 6.15, where not all the available constructs have
been modelled. For example the for-each, and copy-of constructs
have been omitted. Consequently, this constructs are not taken
into consideration in the transformation. An XSLT is represented
by the XSLTNode, which allow construction of the transformation
by composing other XSLTNode and (plain XML) Node elements.
The XSLTNode is subclassed in order to provide the XSLT con-
structs such as Choose, Sort and If.

5https://www.eclipse.org/atl/atlTransformations/#XSLT2XQuery,
last visited 08-02-2017.
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Figure 6.15: XSLT metamodel.

The target domain is defined by the XQuery metamodel pre-
sented in Fig. 6.16. An XQuery program is represented by the
XQueryProgram element, which is composed of zero or more Exe-
cutableExpression elements. ExecutableExpression can be
FLWOR expressions, function calls (FunctionCall) and function
declarations (FunctionDeclaration). The main expressions in
XQuery are modelled by the FLWOR expression, which is composed
of OrderBy, Let, For, Where and Return elements (expressions).
FLOWR expresions are composed of other expressions, either XPath
or Boolean. The XQuery metamodel also defines elements that
belong to the XML domain: Node. ElementNode, TextNode, etc.

6.10.2 Mappings Specification

The transformation rules perform three tasks: create an XQuery-
Program from an XSLTRootNode, transform XSLT elements into
XQuery expressions and copy the required XML elements and at-
tributes.

The transformation can be described as follows:

• For each XSLT Template an XQuery FunctionDeclaration
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Figure 6.16: XQuery metamodel.

is created. The function declaration is assigned the required
parameters and Return expression. A FLOWR and For ele-
ments are created to represent the template.

• XSLT If elements are transformed into a FLWOR expression
composed of a Where and Return expressions to represent
the if logic.

• XSLT Elements and Attributes are copied from the XSLT
model to the XQuery model.

6.10.3 QVTc Code

The QVTc code for the XSLT to XQuery transformation consists
of 31 mappings. We only discuss the details of two of the mappings,
the complete code can be found in Annex 8.12. In general, there
are 4–5 mappings for each of the major transformations: If to
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FLOWR, Template to FunctionCall, and Element and Attribute
copy.

If2FLOWR. This mapping, presented in Listing 6.16, is the
base mapping for If to FLOWR transformations. It creates the re-
quired XQuery elements (lines 114–119) and the trace elements.
One of the rules that refines this mapping, If2FLOWR_Top is also
presented in the listing. In that mapping, the If node is identified
and the correct expression for the Where expression is created, line
143.

Listing 6.16: If2FLOWR mapping in XSLT to XQuery example.
112 map If2FLOWR in XSLT2XQuery refines FromNode {
113 enforce xq () {
114 realize out :FLWOR,
115 realize var l e t : Let ,
116 realize letExpress ion : XPath ,
117 realize _where : Where ,
118 realize whereExpression : BooleanExp ,
119 realize return : Return |
120 out . _let := var l e t ;
121 out . _where := _where ;
122 out . return := return ;
123 var l e t . express ion := letExpress ion ;
124 var l e t . var := '$var' ;
125 letExpress ion . value := '$var' ;
126 _where . express ion := whereExpression ;
127 }
128 where( ) {
129 realize fn :If2FLOWR |
130 fn . exp := out ;
131 fn . var l e t := var l e t ;
132 fn . letExpress ion := letExpress ion ;
133 fn . _where := _where ;
134 fn . whereExpression := whereExpression ;
135 }
136 }

138 map If2FLOWR_Top in XSLT2XQuery refines If2FLOWR {
139 xs (node : I f |
140 node . parentNode . oclIsTypeOf (XSLT: : Template ) ; ) { }
141 where( ) {
142 fn . node := node ;
143 whereExpression . value := '$var/' + node . t e s t ;
144 }
145 }
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ApplyTemplate2FunctionCall. This mapping, presented in
Listing 6.17, creates a FunctionCall from an ApplyTemplates
element. One of the rules that refines this mapping, ApplyTem-
plate2FunctionCall_Top is also presented in the listing. In that
mapping, the value of the function’s parameter is assigned (line
200).

Listing 6.17: If2FLOWR mapping in XSLT to XQuery example.
179 map ApplyTemplate2FunctionCall in XSLT2XQuery refines FromNode {
180 xs () { }
181 enforce xq () {
182 realize out : FunctionCall ,
183 realize parameter : XPath |
184 out . parameters := Sequence{ parameter } ;
185 }
186 where( ) {
187 realize fn : ApplyTemplate2FunctionCall |
188 fn . out := out ;
189 fn . parameter := parameter ;
190 }
191 }

193 map ApplyTemplate2FunctionCall_Top in XSLT2XQuery refines
ApplyTemplate2FunctionCall {

194 xs (node : ApplyTemplates |
195 node . parentNode . oclIsTypeOf (XSLT: : Template ) ;
196 ) { }
197 where( ) {
198 fn . node := node ;
199 out .name := 'fct' + node . select ;
200 parameter . value := '$var/' + node . select ;
201 }
202 }

6.11 Execution Plan Synthesis
Algorithm Evaluation

This section presents the evaluation results of the EPSA. These
results provide information regarding the space exploration aspect
of the EPSA.
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6.11.1 Method

Similarly to the method used in Sect. 5.6.7, we captured the details
of the execution of the EPSA. These details include:

• The best plan, if any, found at each iteration.

• The cost of the best solution.

• The plan of the best solution.

• The iteration number at which the best solution was found.

• The time at which the best iteration was found.

• The total number of iterations.

• The cost of each of the plans found at each iteration.

• The id (hash) of each of the plans found at each iteration.
Given that plans with different structure can have the same
cost, we are interested in also being able to differentiate be-
tween plans of the same cost.

• The success of the exploration, i.e. a solution can be found.

For each transformation, the EPSA algorithm synthesized ex-
ecution plans for a total of 25 trials. All trials where done in the
same computer (i5 processor, 8gb RAM, Windows 10, Java 8), and
the results of each run logged after completion.

6.11.2 Results

The results of the execution of the EPSA are summarized in Table
6.4. The table presents, for each transformation, the cost of the
best execution plan found, the average iteration (numbered from
0) at which the best execution plan was found, the average time
to find the best execution plan and the average maximum total
number of iterations (i.e. after how many iterations the algorithm
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Table 6.4: Comparison of the EPSA on the validation examplesa.

Example Best iavg tavg(ms) imax tmax(s) εavg (%)

Abstract2Concrete 53 0 0.038 237 8.59 0
BibTeXML2DocBook 31 2 0.46 237 29.3 37.5
DNF 56 104 1424 270 4921 38.9
Mi2Si 33 0 0.012 219 3.00 0
TextualPathExp2PathExpb 107 64.9 28.3 306 150 99.2
PathExp2PetriNet 69 0 0.014 219 3.41 0
PetriNet2XML 100 118 370 237 46442 2.26
Railway2Control 271 0 0.15 246 34.6 0
XSLT2XQuery – – – – – –
a Given are the example name, the best solution cost, the average number of iterations

iavg (numbered from 0), the average time tavg in seconds to find the best solution in an
iteration, the maximum number of iterations imax, the maximum time tmax in seconds
taken to find a solution and the average error rate εavg. Averages are taken over 25
trials.

b A solution was found only in 18 of the 25 trials.

stopped). Finally, the maximum total execution time of the algo-
rithm (i.e. the total execution time of the longest execution) and
average error rate. The average error rate measures how many of
the iterations failed to produce an execution plan (see Sect. 5.6.7).

Of notable importance is the lack of results for the
XSLT2XQuery transformation. In the 25 trials, the EPSA was
not able to synthesize an execution plan for this transformation.
To have more insight into this particular transformation the time
limit for plan construction was disabled and the EPSA executed
again. However, even without the time constraint a solution could
not be found.

Figure Fig. 6.17 presents the details of the cost of the best
solution found in each iteration. The examples are labelled by
position as they appear in Table 6.4. In six of the examples the
best cost plan reported in Table 6.4 is the best cost plan found in
each of the iterations. In examples DNF and PetriNet2XML the
best cost plan reported is the minimum of the found best plans.
Further, in both cases the data is skewed to the top, indicating
that for these examples a single run would be less likely to return
the best over-all execution plan found. However, the range in both
cases is small, indicating that a low cost solution would be found.
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Figure 6.17: Cost of the best solution found at each iteration.

In five of the examples the best solution is found within the
third iteration of the algorithm. For the rest of the examples, the
best solution is found after around 64, 104 or 118 iterations. For
the selected transformations, there seems to be no intermediate
result, that is, the best solution is found very fast or much slower
(2 orders of magnitude more iterations are needed). It is important
to note that the transformations for which finding a solution takes
longer have large sizes and high LOC.

However, the table reveals that for the examples that require
more iterations, the time to arrive to a solution is not proportional
to the number of iterations. For the DNF example finding a solution
takes considerably longer (three orders of magnitude) than for
the TextualPathExp2PathExp and PetriNet2XML examples. The
total number of iterations (M = 245, SD = 24.8) suggests that
the required iterations for the algorithm to converge to the best
solution is also dependant on the particular transformation (recall
from Sect. 5.3.6 that the termination condition is based on the
convergence of cost of the explored solutions).

Next, this section presents an overview of the space exploration
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for each of the evaluation transformations. The summary presents
the plans-per-cost found during one of the trials of the experiment.
The information is presented in two plots. The first plot is the
distribution of the total number of execution plans per cost and the
second plot is the distribution of the distinct number of execution
plans per cost. The distributions are used to discuss the behaviour
of the EPSA with respect to intensification and diversification.

The total plans-per-cost distribution is expected to be skewed
right, indicating that the EPSA is more likely to find solutions of
lower cost. It is also expected that the total plans-per-cost distri-
bution presents a peak near or on the best cost found, indicating
that the EPSA intensifies the search around plans with the best
cost. The number of different costs tells little about diversification
given that execution plans of different structure can have the same
cost. The distinct plans-per-cost distribution provides additional
information to discuss diversification. Higher number of alterna-
tives indicates that the EPSA does not always constructs the same
execution plans for a given cost, and hence is evidence of diversifi-
cation. If the peak in the total plans-per-cost distribution coincides
with a high number of distinct plans, then the EPSA is balanced.
That is, although a lot of solutions where found around an optimal
cost (intensification), the solutions are distinct (diversification).

For plans with large number of alternatives found, the x-axis
(plan cost) does not show labels for all the costs to avoid cluttering.
However, the x-axis is a categorical axis and hence the numerical
value of the cost is not correctly represented by the position along
the axis.

Abstract2Concrete. In the presented trial, the cost of the so-
lutions ranged from 53.0 to 102 (M = 54.3, SD = 7.85). The
total plans–per–cost distribution, presented in Fig. 6.18a, has the
expected shape. The EPSA synthesized 6 distinct plans in total,
and the distinct plans-per-cost distribution presented in Fig. 6.18b
suggests that, in this trial, the EPSA was unbalanced, favouring
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(a) Total execution plans per Cost.
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(b) Distinct execution plans per Cost.

Figure 6.18: EPSA results for the Abstract2Concrete example.

intensification.

BibTeXML2DocBook. In the presented trial, the cost of the
solutions ranged from 31.0 to 56.0 (M = 33.7, SD = 5.31). The
total plans–per–cost distribution, presented in Fig. 6.19a, has the
expected shape. The EPSA synthesized 413 distinct plans in total
and the distinct plans-per-cost distribution presented in Fig. 6.19b
suggests that, in this trial, the EPSA was balanced, with good
intensification and diversification.

DNF. In the presented trial, the cost of the solutions ranged
from 59.0 to 161 (M = 85.6, SD = 11.5). The total plans–per–
cost distribution, presented in Fig. 6.20a, has the expected shape.
However, note that the peak is more pronounced, with most of the
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(b) Distinct execution plans per Cost.

Figure 6.19: EPSA results for the BibTeXML2DocBook example.

number of plans of other cost being orders of magnitude smaller
than for the most frequent cost. The EPSA synthesized 3574 dis-
tinct plans in total and the distinct plans-per-cost distribution
presented in Fig. 6.20b suggests that, in this trial, the EPSA was
balanced, with good intensification and diversification. Note that
in this trial the best solution is only found until the last 15 itera-
tions which explains the low number of plans of this cost.

Mi2Si. In the presented trial, only two alternative solutions were
found, with costs 33.0 and 44.0. The total plans–per–cost, pre-
sented in Fig. 6.21a suggests that, in this trial, the EPSA favoured
intensification.
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Figure 6.20: EPSA results for the DNF example.
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Figure 6.21: EPSA results for the Mi2Si example.
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Figure 6.22: EPSA results for the TextualPathExp2PathExp example.
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Figure 6.23: EPSA results for the PathExp2PetriNet example.

TextualPathExp2PathExp. In the presented trial, only two
alternative solutions were found, with costs 107 and 114. The total
plans–per–cost distribution, presented in Fig. 6.22a suggests that,
for this trial, the EPSA was balanced, with good intensification
and diversification. The reason for this is that the plans of cost
114 represented almost a third of the total number of plans. There
is only one plan per cost, i.e. no distinct plans

PathExp2PetriNet. In the presented trial, only two alterna-
tive solutions were found, with costs 69 and 80. The total plans–
per–cost distribution, presented in Fig. 6.23a suggests that, for
this trial, the EPSA favoured intensification. There is only one
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(b) Distinct Execution plans per Cost.

Figure 6.24: EPSA results for the PetriNet2XML.

plan per cost, i.e. no distinct plans

PetriNet2XML. In the presented trial, the cost of the solutions
ranged from 102 to 366 (M = 186, SD = 51.1). The total plans–
per–cost distribution, presented in Fig. 6.24a, has the expected
shape. However, note that the peak is not at the best cost found.
The EPSA synthesized 5826 distinct plans in total and the distinct
plans-per-cost distribution presented in Fig. 6.24b suggests that,
in this trial, the EPSA was balanced, with good intensification
and diversification. A closer look at the distributions reveals that
they are almost identical. This indicates that each unique plan was
found a very few times, which in turn is evidence of a very high
diversification.
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Figure 6.25: EPSA results for the Railway to Control example.

Railway2Control. In the presented trial, the cost of the solu-
tions ranged from 271 to 282 (M = 271, SD = 1.02). The total
plans–per–cost distribution, presented in Fig. 6.25a, has the ex-
pected shape. The EPSA synthesized 22 distinct plans in total and
Fig. 6.25b suggests that, in this trial, the EPSA was balanced.

6.12 Correctness, Performance and
Cost Function Evaluation

The evaluation was done over three criteria, one for each of the
research hypotheses:

1. Whether the execution of synthesized execution plans result
in correct transformations (Hypothesis 1).
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2. Whether the performance of the best synthesized execution
plan is better than the performance of the naïve plan (Hy-
pothesis 2).

3. Whether the performance of the best synthesized execution
plan is amongst the best performing solutions (Hypothe-
sis 3).

For the first criterion the synthesized plans were executed using
a set of source models of similar size but varying structure. To
build enough confidence on the ability of the EPSA to synthesize
execution plans that result in correct transformations a total of 30
distinct plans are used to evaluate each transformation. The size
of the source models was selected to facilitate manual inspection of
the models. Varying the structure of the source model reduces the
risk of the synthesized execution plans to only execute correctly
for certain models.

The 30 models for each transformation are randomly gener-
ated using a semi-automated model generation strategy developed
using the EMG tool [83]. The generation script for each transfor-
mation is designed to have a balanced number of elements of each
type in the source metamodel (the scripts can be found in An-
nex 9). Further, the values/multiplicity of attributes/associations
(or the lack of values) is also randomized based on the conditions
defined in the transformation’s guard patterns. The goal is that
the models have both elements that satisfy and do not satisfy the
guard patterns.

For evaluation of the first criterion, the naïve plan (see Sect.
5.1) is used as an oracle, that is, the models generated by the
synthesized plans will be compared against the plans generated by
the naïve plan. For the transformations originally from the ATL
Zoo, the generated models will also be compared to the models
generated from the execution of the original ATL transformation.
It is expected that for all transformations for all source models,
the target models are identical to those generated by the naïve
plan (and the original ATL transformation when available).
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For the second and third criteria the synthesized plans were
executed using one source model with a large number of elements.
Using a model with a large number of elements is desirable to eval-
uate performance, as it highlights the effects of loops and invoca-
tions that have NA results. It is expected that the best synthesized
execution plan has better performance than the naïve plan. Also,
it is expected that best synthesized execution plans has a perfor-
mance similar to the best performing solutions. For this criteria,
the results of ANOVA and Tukey HSD tests are presented in or-
der to show the location of the best solution, performance wise,
amongst all the solutions.

6.12.1 Method

The evaluation will be performed in the test transformations in-
troduced previously, except for the XSLT2XQuery transformation
for which no valid synthesized plans where found. Given that the
possible number of synthesized plans is significant, during plan
synthesis a random sample of all the plans constructed by the al-
gorithm was taken. Additionally, given that the cost function is be-
ing evaluated, the sample was taken based on the cost, that is, the
number of samples depends on the total number of distinct costs.
Further, for some transformations (like the Railway2Control) al-
though only a few different costs appear in the results, for some
of the costs a high number of alternative plans of that cost are
found. In this case, several plans of the same cost are included in
the sample.

Initially the sample size is limited to 25 execution plans. This
limit was set in order to limit the total time needed to run the
experiments. The sample was taken from a single trial given that
in production the synthesis would only be executed once. The
sample was taken from the trial used in the overview of the space
exploration in Sect. 6.11.2. During execution, after each iteration
a random solution of one of the ants is added to the sample, if the
sample size is not reached. Plans are stored in a set using their id,
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Table 6.5: Alternative plans for each example.

Example Sample Size Min Cost Max Cost
Abstract2Concrete 6 53 102
BibTeXML2DocBook 17 31 56
DNF 25 81 251
Mi2Si 2 33 44
TextualPathExp2PathExp 6 141 148
PathExp2PetriNet 2 69 80
PetriNet2XML 12 61 364
Railway2Control 8 271 282

thus the same execution plan cannot be added twice to the sample.
However, plans with the same cost are allowed. At the end of the
EPSA execution an execution plan with the best cost is added
to the sample, if not present. Table 6.5 summarizes the sample
execution plan information. Note that for the transformations for
which few cost alternatives where synthesized the sample size is
smaller.

For each transformation two sets of experiments are conducted.
The first experiment is used to look at the first criterion. The
second experiment is used to look at the second and third criteria.

In the first experiment, correctness of the target model from
the synthesized plans is measured by comparing it to the oracle
model (or models where available) and by manual inspection. On
average, the source models have 20 elements.

For each transformation the procedure was as follows. The
naïve plan was executed for the 30 source models and the result
target models saved to be used as oracles. If the transformation
was translated from ATL, the original ATL transformation was
executed for the 30 source models and the result target models
saved to be used as oracles. The best synthesized execution plan
was executed for the 30 source models and the target models saved.
An initial evaluation was done using EMF Compare6 to compare
each of the models to the corresponding oracle (and ATL oracle).

6EMF Compare tool, the Eclipse Foundation. http://www.eclipse.org/
modeling/emft/?project=compare.
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A final evaluation was done using visual inspection of the models,
comparing their structure and the value of the model elements’ at-
tributes. All trials where done in the same computer (i7 processor,
8gb RAM, windows 10, Java 8), and the results of each run logged
after completion. For the ATL the EMFTVM [106] was used for
execution of the transformations. The process was repeated for all
the other synthesized execution plans.

In the second experiment, a repeated measures design was
used. There was one independent variable: the cost of the exe-
cution plan (from the cost function). There was one dependant
measure that was analysed: the execution time of the transfor-
mation (for a given model). As mentioned previously the size of
the models (for each example) should be large in order to high-
light the structural differences of the synthesized execution plans.
However, due to time constrains the sizes were selected in order to
keep the execution time within 20 minutes. The time constraint
on the execution time is placed in order to limit the time needed
to complete the experiments (worst case: 1 transformation × 20
minutes × 25 trials × 25 samples = 8 days). Execution of each
plan was done over 25 trials. All trials where done in the same
computer (i7 processor, 8GB RAM, Windows 10, Java 8), and the
results of each run logged after completion.

6.12.2 Correctness Results

For the first experiment, the comparison of the generated mod-
els for all synthesized execution plans vs. the generated models
from the naïve plan showed no differences, for all the evaluation
transformations. For the evaluation transformations with an ATL
version, comparison against the generated models from the original
ATL transformation execution also showed no differences. Manual
inspection of the target plans also confirmed their correctness, con-
firming the model comparison results. These results indicate that
the synthesized execution plans result in correct transformation
execution for all the evaluation transformations.

225



Chapter 6. Evaluation

6.12.3 Performance and Cost Results

This section presents the results of the second experiment. Analy-
sis of the second criterion are presented first, followed by analysis
of the third criterion. In all figures the synthesized plans will be
labelled with their respective cost and ‘naive’ will be used to label
the naïve plan. Given that multiple execution plans can have the
same cost, a suffix of the form _n is used to differentiate execution
plans of the same cost.

Abstract2Concrete. For the second experiment the source mo-
del for this transformation has 42000 elements. The results in order
to evaluate the second criterion are presented in Fig. 6.26. The
graph reveals that the execution time distribution of the naïve
plan is higher than the best execution plan, which is supported
by the numerical values. The median execution time for the best
execution plan (128988) is lower than for the naïve plan (134420).
In fact, it should be noted that the third quartile of the best
execution plan’s distribution (131887) is lower than the median
execution time for the naïve plan. We therefore conclude that in
general, the best execution plan has a better performance than
the naïve plan.

Analysis of variance showed a main effect of the plan type on
the performance for the plans, F (1, 48) = 430, p < .001, ηp2 =
0.90. Further, the results of a post-hoc Tukey HSD (α = 0.05)
test show that the execution times of both plans are significantly
different. These results support the observations from Fig. 6.26.

The results to evaluate the third criterion are presented in
Fig. 6.27. The figure shows a scatter plot of the execution times
of the synthesized execution plans over the 25 trials. The black
line marks the median value of the measurements. Analysis of
variance showed that there is no statistically significant effect of
cost on the performance for the execution plans, F (5, 144) = 1.20,
p = 0.31, ηp2 = 0.040. Although the results were not statistically
significant, they indicate that the best execution plan has the best
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Figure 6.26: Execution time of the best execution plan vs. the naïve
plan for the Abstract2Concrete example.

performance (on average).

BibTeXML2DocBook. For the second experiment the source
model for this transformation has 609 elements. The results in
order to evaluate the second criterion are presented in Fig. 6.28.
The graph reveals that the execution time distribution of the naïve
plan is higher than the best execution plan, which is supported
by the numerical values. The median execution time for the best
execution plan (104642) is lower than for the naïve plan (238933).
In fact, it should be noted that the third quartile of the best
execution plan’s distribution (104517) is lower than the median
execution time for the naïve plan. We therefore conclude that in
general, the best execution plan has a better performance than
the naïve plan.

Analysis of variance showed a main effect of the plan type on
the performance for the plans, F (1, 51) = 28.3, p < .001, ηp2 =
0.36. Further, the results of a post-hoc Tukey HSD (α = 0.05)
test show that the execution times of both plans are significantly
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Figure 6.27: Execution time of the synthesized execution plans for the
Abstract2Concrete transformation.
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Figure 6.28: Execution time of the best execution plan vs. the naïve
plan for the BibTeXML2DocBook transformation.
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different. These results support the observations from Fig. 6.28.
The results to evaluate the third criterion are presented in

Fig. 6.29. The figure shows a scatter plot of the execution times
of the synthesized execution plans over the 25 trials. The black
line marks the median value of the measurements. Analysis of
variance showed a main effect of cost on the performance for the
execution plans, F (15, 430) = 995, p = .000, ηp2 = 0.97. In the
figure it can be observed that the execution plans can be grouped
into four groups based on the median performance. A Tukey HSD
(α = 0.05) post-doc test supports this observation:

Group a: 31.0_14, 31.0_21, 32.0_12, 41.0_15, 42.0_1, 43.0_10,
46.0_19, 47.0_3.

Group b: 33.0_22, 37.0_11, 43.0_2, 50.0_9.

Group c: 36.0_13.

Group d: 52.0_0, 54.0_6, 56.0_5.

These results indicate that the best solution, although not being
in the best performing group, has a performance amongst the best
for the transformation.

DNF. For the second experiment the source model for this trans-
formation has 309 elements. The results in order to evaluate the
second criterion are presented in Fig. 6.30. The graph reveals that
the execution time distribution of the naïve plan is higher than the
best execution plan, which is supported by the numerical values.
The median execution time for the best execution plan (8062) is
lower than for the naïve plan (783658). In fact, it should be noted
that the third quartile of the best execution plan’s distribution
(8015) is lower than the median execution time for the naïve plan.
We therefore conclude that in general, the best execution plan has
a better performance than the naïve plan.

Analysis of variance showed a main effect of the plan type on
the performance for the plans, F (1, 48) = 824, p = .000, ηp2 =
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Figure 6.29: Execution time of the synthesized execution plans for the
BibTeXML2DocBook example.
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Figure 6.30: Execution time of the best execution plan vs. the naïve
plan for the DNF transformation.
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0.94. Further, the results of a post-hoc Tukey HSD (α = 0.05)
test show that the execution times of both plans are significantly
different. These results support the observations from Fig. 6.30.

The results in order to evaluate the third criterion are pre-
sented in Fig. 6.31. The figure shows a scatter plot of the exe-
cution times of the synthesized execution plans over the 25 trials.
The black line marks the median value of the measurements. Anal-
ysis of variance showed a main effect of cost on the performance
for the execution plans, F (12, 312) = 89842, p < .001, ηp2 = 1.00.
In the figure it can be observed that the execution plans can be
grouped into three groups based on the median performance. A
Tukey HSD (α = 0.05) post-doc test supports this observation,
but evidences the existence of four groups:

Group a: 101.0_3, 121.0_11, 156.0_6, 81.0_2, 82.0_10, 82.0_14,
83.0_9, 89.0_24, 90.0_20, 91.0_16.

Group b: 145.0_8.

Group c: 147.0_12.

Group d: 160.0_17.

These results indicate that the best solution has a performance
amongst the best for the transformation.

Mi2Si. For the second experiment the source model for this
transformation has 93 elements. The results in order to evaluate
the second criterion are presented in Fig. 6.32. The graph reveals
that the execution time distribution of the naïve plan is higher
than the best execution plan, which is supported by the numerical
values. The median age for the best execution plan (391573) is
lower than for the naïve plan (744785). In fact, it should be noted
that the third quartile of the best execution plan’s distribution
(393297) is lower than the median execution time for the naïve
plan. We therefore conclude that in general, the best execution
plan has a better performance than the naïve plan.

231



Chapter 6. Evaluation

81
.0_

2

82
.0_

10

82
.0_

14

83
.0_

9

89
.0_

24

90
.0_

20

91
.0_

16

10
1.0

_3

12
1.0

_1
1

14
5.0

_8

14
7.0

_1
2

15
6.0

_6

16
0.0

_1
7

Plan

0

20000

40000

60000

80000

100000

120000

140000

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

Figure 6.31: Execution time of the synthesized execution plans for the
DNF transformation.
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Figure 6.32: Execution time of the best execution plan vs. the naïve
plan for the Mi2Si transformation.

232



6.12. Correctness, Performance and Cost Function Evaluation

33.0_0 44.0_1
Plan

388000

390000

392000

394000

396000

398000

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

Figure 6.33: Execution time of the synthesized execution plans for the
Mi2Si transformation.

Analysis of variance showed a main effect of the plan type on
the performance for the plans, F (1, 48) = 87114, p = .000, ηp2 =
1.00. Further, the results of a post-hoc Tukey HSD (α = 0.05)
test show that the execution times of both plans are significantly
different. These results support the observations from Fig. 6.32.

The results to evaluate the third criterion are presented in Fig.
6.33. The figure shows a scatter plot of the execution times of the
synthesized execution plans over the 25 trials. The black line marks
the median value of the measurements. synthesized the best solu-
tion is the best performing too. Analysis of variance showed that
there is no statistically significant effect of cost on the performance
for the execution plans, F (1, 48) = 1.18, p = 0.28, ηp2 = 0.024.
Given than only two alternative execution plans were synthesized,
the best solution exhibits the best performance.

TextualPathExp2PathExp. For the second experiment the
source model for this transformation has 37 elements. The results
in order to evaluate the second criterion are presented in Fig. 6.34.
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Figure 6.34: Execution time of the best execution plan vs. the naïve
plan for the TextualPathExpnewtextPathExp transformation.

The graph reveals that the execution time distribution of the naïve
plan is lower than the best execution plan, which is supported by
the numerical values. The median age for the best execution plan
(37495) is lower than for the naïve plan (9159). In fact, it should
be noted that the first quartile of the best execution plan’s distri-
bution (37187) is higher than the median execution time for the
naïve plan. We therefore conclude that in general, the naïve plan
has a better performance than the best execution plan.

Analysis of variance showed a main effect of cost on the perfor-
mance for the execution plans, F (1, 48) = 5912, p < .001, ηp2 =
0.99. Further, the results of a post-hoc Tukey HSD (α = 0.05)
test show that the execution times of both plans are significantly
different. These results support the observations from Fig. 6.34.

The results to evaluate the third criterion are presented in Fig.
6.35. The figure shows a scatter plot of the execution times of
the synthesized execution plans over the 25 trials. The black line
marks the median value of the measurements. Analysis of variance
showed that there is no statistically significant effect of cost on
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Figure 6.35: Execution time of the synthesized execution plans for the
TextualPathExpnewtextPathExp transformation.

the performance for the execution plans, F (1, 48) = 0.27,ns). One
side this shows that the best solution is the best performing too,
amongst the synthesized plans. It also indicates that there is no
other synthesized plan that has a better performance than the
naïve plan.

PathExp2PetriNet. For the second experiment the source mo-
del for this transformation has 210 elements. The results in order
to evaluate the second criterion are presented in Fig. 6.36. The
graph reveals that the execution time distribution of the naïve
plan is higher than the best execution plan, which is supported
by the numerical values. The median execution time for the best
execution plan (19012) is lower than for the naïve plan (52324). In
fact, it should be noted that the third quartile of the best execu-
tion plan’s distribution (19087) is lower than the median execution
time for the naïve plan. We therefore conclude that in general, the
best execution plan has a better performance than the naïve plan.

Analysis of variance showed a main effect of cost on the per-
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Figure 6.36: Execution time of the best execution plan vs. the naïve
plan for the PathExp2PetriNet transformation.

formance for the execution plans, F (1, 48) = 201, p < .001, ηp2 =
0.81. Further, the results of a post-hoc Tukey HSD (α = 0.05)
test show that the execution times of both plans are significantly
different. These results support the observations from Fig. 6.36.

The results to evaluate the third criterion are presented in Fig.
6.37. The figure shows a scatter plot of the execution times of
the synthesized execution plans over the 25 trials. The black line
marks the median value of the measurements. synthesized the best
solution is the best performing too. Analysis of variance showed
a main effect of cost on the performance for the execution plans,
F (1, 49) = 5.36, p = 0.025, ηp2 = 417. Further, the results of a
post-hoc Tukey HSD (α = 0.05) test show that the execution times
of the two synthesized plans are significantly different. The results
show that the best plan ( (M = 5387, SD = 153)) has a better
performance the the other synthesized plan ( (M = 5459, SD =
289)).
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Figure 6.37: Execution time of the synthesized execution plans for the
PathExp to Petri Net transformation.

PetriNet2XML. For the second experiment the source model
for this transformation has 23000 elements. The results in order to
evaluate the second criterion are presented in Fig. 6.38. The graph
reveals that the execution time distribution of the naïve plan is
lower than the best execution plan, which is supported by the nu-
merical values. The median execution time for the best execution
plan (380195) is higher than for the naïve plan (347836). In fact, it
should be noted that the first quartile of the best execution plan’s
distribution (379779) is higher than the median execution time
for the naïve plan. We therefore conclude that in general, the best
execution plan has a worse performance than the naïve plan.

Analysis of variance showed a main effect of cost on the perfor-
mance for the plans, F (1, 48) = 288, p < .001, ηp2 = 0.86. Further,
the results of a post-hoc Tukey HSD (α = 0.05) test show that the
execution times of both plans are significantly different. These re-
sults support the observations from Fig. 6.38.

The results to evaluate the third criterion are presented in
Fig. 6.39. The figure shows a scatter plot of the execution times
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Figure 6.38: Execution time of the best execution plan vs. the naïve
plan for the PetriNet2XML transformation.

of the synthesized execution plans over the 25 trials. The black
line marks the median value of the measurements. Analysis of
variance showed a main effect of cost on the performance for the
execution plans, F (21, 528) = 838, p = 0, ηp2 = 0.97. In the figure
it can be observed that the execution plans can be grouped into
different groups based on the median performance. A Tukey HSD
(α = 0.05) post-doc test supports this observation:

Group a: 115.0_18, 61.0_23.

Group b: 133.0_6, 136.0_0, 138.0_5, 153.0_1.

Group c: 148.0_2, 152.0_14, 153.0_1.

Group d: 166.0_12, 167.0_13, 170.0_11, 176.0_10.

Group e: 184.0_8, 189.0_9.

Group f: 188.0_3, 201.0_7, 207.0_19, 218.0_4.

Group g: 203.0_16, 207.0_19, 218.0_4.

Group h: 236.0_21.
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Figure 6.39: Execution time of the synthesized execution plans for the
PetriNet2XML transformation.

Group i: 285.0_22.

Group j: 364.0_20.

These results indicate that the best solution has a performance
amongst the best for the transformation.

Railway2Control. For the second experiment the source mo-
del for this transformation has 41 elements. The results in order to
evaluate the second criterion are presented in Fig. 6.40. The graph
reveals that the execution time distribution of the naïve plan is
higher than the best execution plan, which is supported by the
numerical values. The median execution time for the best execu-
tion plan (2576) is lower than for the naïve plan (90532). In fact, it
should be noted that the third quartile of the best execution plan’s
distribution (46440) is lower than the median execution time for
the naïve plan. We therefore conclude that in general, the best
execution plan has a worse performance than the naïve plan. It is
also important to note that the performance times for the naïve
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Figure 6.40: Execution time of the best execution plan vs. the naïve
plan for the Railway2Control transformation.

plan have has a much larger variability than the temperatures in
San Francisco (Range: 48139 vs. 181. IQR: 44566 vs. 28.0).

Analysis of variance showed a main effect of cost on the per-
formance for the execution plans, F (1, 48) = 184, p < .001, ηp2 =
0.79. Further, the results of a post-hoc Tukey HSD (α = 0.05)
test show that the execution times of both plans are significantly
different. These results support the observations from Fig. 6.40.

The results to evaluate the third criterion are presented in Fig.
6.39. The figure shows a scatter plot of the execution times of
the synthesized execution plans over the 25 trials. The black line
marks the median value of the measurements. Analysis of variance
showed that there is no statistically significant effect of cost on the
performance for the execution plans, F (7, 192) = 1.46, p = 0.18,
ηp2 = 0.051. Although the results were not statistically significant,
they indicate that one plan exhibits a performance slightly better
than the rest: plan 279.0_10. Still, the best plan has a performance
amongst the best for the transformation.
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Figure 6.41: Execution time of the synthesized execution plans for the
Railway2Control transformation.

6.13 Discussion
The evaluation of the proposed approach yielded the following
findings:

1. The EPSA was able to synthesize an execution plan for 8 of
the 9 evaluation transformations.

2. Execution of the best synthesized execution plans produced
a correct transformation for all 8 synthesized evaluation
transformations.

3. Execution of a sample of all synthesized execution plans for
each of the 8 synthesized evaluation transformations pro-
duced a correct transformation in all the cases.

4. The best synthesized execution plans had a better perfor-
mance than the naive approach in 6 of the 8 synthesized
evaluation transformations.

5. The best synthesized execution plans had the best perfor-
mance of all synthesized execution plans in 7 of the 8 eval-
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uation transformations and it was amongst the best in the
other one.

From these findings the following conclusions were drawn: It
is possible to systematically synthesize execution plans for QVTc
that result in correct transformations. Additionally, it is possible
to systematically synthesize execution plans that have a better
performance than the naive approach. Finally, the use of a meta-
heuristic approach is a viable alternative for execution plan syn-
thesis as it is often the case that the best solution exhibits the best
performance.

The failure to synthesize an execution plan for the XSLT2-
XQuery transformation limits the applicability of this approach
and does not allow the findings to be generalized to all QVTc
transformations. Taking a closer look at the execution logs of the
algorithm, the construction always gets to a stage in which no
further invocations can be added to the execution plan. This be-
haviour was first discussed in Sect. 4.3 and it indicates that the
EPSA fails to produce a thorough execution plan. One possible
solution is to make the execution plan a multi-graph. This would
allow mappings to be re-invoked in order to consume the surplus
elements in order to make the plan thorough. The risk with this
modification is that it can result in infinite execution plans. The
reason is that adding the additional invocation can in turn pro-
duce new surplus elements, for which another mapping must be
invoked. This new invocation can result in new surplus elements,
for which new invocations must be added. It is evident that this
behaviour can be repeated indefinitely.

In general, the results show that the EPSA behaves as ex-
pected, with the effects of intensification and diversification (see
Sect. 2.6.2) more visible for some transformations than for others.
In cases in which a significant number of alternatives are found,
the algorithm intensifies the search around solutions of low cost
(in some cases the best cost) as expected. These results support
the argument that the problem definition and its adaptation to be
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solved with the ACO metaheuristic are correct. It is also clear that
the number of alternative solutions depends on the transforma-
tion. Although transformations with small size and low LOC tend
to have smaller space explorations (low number of total execution
plans) this is not the case for the PetriNet to PNML example.

Although for some transformations there was little evidence
of diversification, these transformations also exhibit very few al-
ternative costs and very few alternative plans per cost. That is,
the diversification may have been limited by the number of valid
execution plans that can be constructed.

At a first glance it seems relevant to discuss the correlation be-
tween the transformation size (mappings/loc) and the execution
time results. However, note that the execution time also depends
on the size of the source model(s). Hence, it is not possible to
directly compare the executions times of the different transforma-
tions.

Further research on the characteristics of the transformation
and the DDG would be needed in order to determine if the be-
haviour of the EPSA with respect to intensification and diversifica-
tion could be improved. The idea is that the EPSA can be further
configured for a particular transformation. For example, if we can
predict that few alternative execution plans can be constructed, it
is possible to configure the algorithm to promote intensification.

The results of the second experiment do not allow the findings
to be generalized to all QVTc transformations. To help us get a
better picture, Table 6.6 summarizes the conclusions for the second
experiment with respect to the performance and cost function.
Criterion II is the performance of the best synthesized execution
plan vs. the naïve plan and criterion III is the effectiveness of the
cost function to differentiate between good and bad executions.
A ‘+’ indicates that the results support the criteria and a ‘-’ that
they oppose the criteria.
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Table 6.6: Performance and Cost evaluation for the evaluation exam-
ples[Additional data and description].

Criteria

II Execution time
difference(s) III Rank

Abstract2Concrete + 5.43 + ~
BibTeXML2DocBook + 134 + 2
DNF + 699 + 1
Mi2Si + 353 + ~
TextualPathExp2PathExp - −28.3 + ~
PathExp2PetriNet + 36.8 + 1
PetriNet2XML - −32.4 + 1
Railway2Control + 44.2 + ~

Given are the example name, and evidence of the II and III criteria.
Criterion II is the difference in median execution time of the best plan
vs the naïve plan (positive times indicate improvement). Criterion III
is the ranking of the best plan vs. the other synthesized plans (ranked
based on the median execution time, 1 is the highest rank; ~ indicates
no statistical significance between execution plans). Results were taken
over 25 trials.

6.13.1 Criterion II

Only two of the seven examples oppose criterion II: Textual-
PathExp2PathExp and PetriNet2XML. For the TextualPathExp2-
PathExp transformation a close inspection of the naïve plan re-
veals a O(n6) complexity while for the best-cost synthesized exe-
cution plan it is O(n7). The additional complexity could explain
the differences in performance. The complexity of both plans could
also explain why for these transformations the test models only
had tens of elements (as opposed to tens of thousands). The addi-
tional complexity is the result of an additional loop in the best-cost
synthesized execution plan. Since both invocations are from the
root mapping, this indicates that the derivation algorithm fails to
identify the optimal derivation in the synthesized case. Closer in-
spection of the specific mapping reveals that both derivations have
the same cost and hence one is picked randomly. The derivation
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cost formula could be adjusted using the observations from this
transformation so that these derivations have different cost and
favouring the derivation that results in fewer loops.

In the PetriNet2XML the problem can be attributed to that
all mappings, except the main, produce and consume elements of
type XML:Element. This results in two behaviours. All mappings
invoke themselves and all mappings invoke all other mappings. In
the naïve plan all mappings are scheduled only once, which results
in less total invocations. However, with the proposed data depen-
dence analysis it is impossible to identify that not all invocations
are needed. A possible solution would be to make the data de-
pendence pattern based. That is, there is not a dependency on a
set of types, but on a pattern of elements and their relations. In
the PetriNet2XML example this would result in the dependencies
to exist only between the main mapping and the other mappings,
eliminating the self loops in the DDG which will results in no loops
in the execution plan.

For the plans that satisfy the criterion, the gain in performance
are from a few seconds to almost 700. Given that in practice a mo-
del transformation would be expected to be executed repeatedly,
an improvement of a few seconds can have considerable effects in
the long run. For example, the 5.43s of the Abstract2Concrete
would result in a gain of around a minute after 10 executions.
Such a transformation could be part of a build system intended
to produce executable code using information from the abstract
UML model, which in turn could be part of a continuous integra-
tion workflow. Developers making changes to the abstract model
would benefit greatly from the gain in execution time.

More substantial gains, such as the 700 seconds in the DNF ex-
ample could be critical for transformations used in user interfaces.
This type of transformation could be used by a math application
to provide a DNF reduction of boolean operations. The improve-
ment in performance signifies the difference between a tool that
may appear unresponsive to the user (wait around 11 minutes for a
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result) and a tool that provides result in a reasonable time (around
8 seconds).

6.13.2 Criterion III

All the examples support criteria III. For 4 of the 8 examples
(Abstract2Concrete, Mi2Si, TextualPathExp2PathExp, and Rail-
way2Control) there was no significant difference between the exe-
cution times of synthesized execution plans of different cost. Since
we are only interested in differentiating between good and bad
executions, the lack of significant difference does not impede the
ability to do so. That is, the best solution is amongst the best per-
forming ones. However, these examples could be further analysed
to determine the cause of the similarities in performance and use
this information to fine tune the cost function. This could lead to a
better cost function that no only differentiates between good and
bad executions, but that is also a good predictor of performance.

6.14 Threats to Validity
[Threats to validity section...] The major threads to validity of the
evaluation are the size of the empirical deduction of the cost func-
tion, the sample of model transformations and the source models
used. In the case of the source models, given that these models
where generated randomly they might not correctly represent the
structure and size of models used in real case scenarios. Given
that the number of times a mapping is executed depends on the
actual number of elements of the types of its input set, then it
is possible that some execution plans favour a particular model
structure. Recall the Graph to Graph example used in Sect. 5.2.3.
If the source graph is disconnected, then a execution plan that in-
vokes the edge2edge mapping from the node2node mapping would
attempt to execute edge2edge for each execution of node2node. An-
other plan in which edge2edge is invoked from the root will only
attempt to execute the edge2edge mapping as many times as edges
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exist in the model. Although not all attempts of the first case will
succeed (the mapping code will not be executed) given that many
will result in NA (not all nodes may have edges) the overhead of
attempting the ascription can have a negative effect in the perfor-
mance for source graphs with considerable number of nodes.

In the case of the size of the sample of model transformations,
the failure to synthesize execution plans for the XSLT2XQuery
(the example with the largest number of mappings) indicates that
the behaviour of the synthesis algorithm or the constructions con-
straints needs further analysis for larger transformations. One of
the possible reasons for this is in the thoroughness validation (see
Sect. 5.4.2). Consider a transformation such that mwΨtmv and
mvΨtmw, and that a plan is constructed such that the last map-
ping invoked is mw. The thoroughness validation will indicate that
mw is a surplus producer, which might result in an invocation to
mv being added to the execution plan. However, now mv is a sur-
plus producer which might result in an invocation to mw to be
added to the execution plan. This could result in a loop of mv and
mw invocations being added to the execution plan, with the result
that a valid plan cannot be constructed in the allotted time.

The empirical deduction of the cost function for execution
plans using a single example can result in a cost function that
is highly biased towards the particular example used. The effects
of this approach can be easily seen in the BibTeXML2DocBook
example, where low cost plans show the worst performance. Or in
the Railway2Control example where the difference in performance
of the different plans are not statistically significant. In the for-
mer it is possible that the cost function is not correctly taking into
consideration complexity (i.e. the presence of more loop actions)
and in the latter, it is possible that all the plans should actually
have the same cost.
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6.15 Summary
This chapter presented the examples selected for evaluation of the
proposed approach, the computational results of the EPSA and
the results obtained for the two experiments designed to test the
research hypotheses. The first experiment produced evidence that
the best synthesized execution plan results in correct transforma-
tions for all the evaluation transformations. The second exper-
iment produced evidence that in all but two of the evaluation
transformations, the best synthesized execution plan has a better
performance than the naïve plan. The second experiment also pro-
duced evidence that best plan had either the best performance or
one of the best performances. The next chapter presents the con-
clusions of this project, including a discussion on these results.
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7.1 Summary of Contributions
Model transformation languages (MTLs) are important for Model
Driven Engineering (MDE) as they allow the automation of certain
phases of the design process of hardware and software products,
in particular at the preliminary and detailed design phases. The
implementation of the execution engine of a declarative MTL in-
volves the synthesis of the control component. as part of either
the compilation or execution of the program. Synthesis of efficient
control components is challenging because the semantics of the
MTL must be preserved and because of the size of the solution
space of possible execution plans for a particular Model Transfor-
mation Program (MTP). In order to overcome the implementation
challenge, in particular for the QVT Core [3] (QVTc) language,
this research proposed the adoption of compiler theories used in
the implementation of General Purpose Languages (GPLs). This
research has shown that instruction scheduling based on data de-
pendence analysis is a feasible approach for synthesizing efficient
control components.

This project answers the research question, stated in Sect. 1.2:

Can correct and efficient control components for pro-
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grams written in the QVTc language be systematically
synthesized for QVTc programs.

by providing a method for synthesis and evidence to support the
hypotheses that synthesized control components produce correct
transformations, that the synthesized control components have a
better performance than the naive approach and that the proposed
cost function is effective in differentiating between good and bad
executions.

This research showed that inter-mapping data dependence in-
formation can be used to define a precedence-based partial order-
ing of the mappings in a QVTc transformation. The inter-mapping
data dependence relations are the result of the producer–consumer
relations between mappings. A mapping consumes elements of
some types, given by the types of the mapping’s input variables
(normal variables in the QVTc syntax). A mapping produces ele-
ments of some types, given by the types of the mapping’s output
variables (realized variables in the QVTc syntax). A data depen-
dence relation exists between a mapping that produces elements
of a given type and the mappings that consume elements of that
type. The inter-mapping data dependence relations are captured
in a data dependence graph (DDG).

Scheduling using the precedence-based partial order minimizes
the number of times a mapping needs to be scheduled and min-
imizes mapping invocations that have a NA result. This research
showed that mapping partial order is a necessary, but not sufficient
condition for an execution plan to result in correct transformation
execution (Lemma 1). In order to guarantee correctness the con-
cept of thoroughness was introduced (Definition 18).

This research also showed that data dependence analysis can
be applied to the variables and predicates in a QVTc mapping
(intra–mapping relations) and that the variable data dependencies
can be used to optimize the constructions of the argument tuples
needed for mapping invocations. The result of the intra–mapping
data dependence analysis was called variable derivation. Variable

250



7.1. Summary of Contributions

derivation results in some of the mapping’s input variables to be
derived (their value calculated) from a primary variable. A loop
over all elements of a type is not needed to find values for the
derived variables. As a result, the number of loops in an invoca-
tion path is minimized and this results in a minimization of the
number of times a mapping is invoked. Further, variable deriva-
tion is achieved using the information from the mapping’s guards
(predicates). Hence, derived variables are guaranteed to satisfy
the predicate used to determine its derivation. This minimizes the
number of invocations with a False result.

After arguing that synthesis of the execution plan is a schedul-
ing problem, this research showed that the problem is in partic-
ular a minimum–weight rooted spanning arborescence (MWRSA)
problem on the DDG. As such, the execution plan synthesis prob-
lem is a combinatorial optimization problem amenable to be solved
using the Ant Colony Optimization (ACO) metaheuristic [71, 19].
This research showed that the execution plan synthesis problem
can be modelled in the form P = (S, Ω, h), which is the problem
representation used by the ACO metaheuristic [35]. In this model,
S is the search space defined by all possible execution plans. Ω are
the constraints that determine if an execution plan is feasible and
correspond to Definition 19. h : S 7−→ R+

0 is the objective function
to be minimized, which in this case assigns an execution cost to
each execution plan.

This research presented how the variable derivation informa-
tion can be used to find the optimal invocation paths for a QVTc
transformation. Using only the optimal invocation paths to con-
struct execution plans reduces the search space. A cost function
that weights the derivations used in an invocation path was de-
rived empirically.

This research provided an implementation of the MAX −
MIN Ant System (MMAS) algorithm [98] used for finding a
solution to the execution plan is a synthesis problem. The adap-
tations include an alternative representation of the execution plan
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that can be used as the foraging area of the algorithm, a terminat-
ing condition and the calculation of the feasible neighbourhood.

The evaluation of the proposed approach was conducted via
two experiments. The first experiment evaluated the correctness of
the synthesized execution plans. The second experiment evaluated
the performance of the best synthesized execution plan against
the naive approach and the accuracy of the cost function to dis-
tinguish between good and bad executions. For evaluation a set of
nine unseen transformations was used. The evaluation suggested
that construction of efficient execution plans for QVTc MTP is
feasible and that the gain in performance can be in the range of a
few seconds to several hundreds. Small performance gains are im-
portant in cases when the MTP is going to be executed repeatedly
(e.g. as part of a continuous integration workflow) and big perfor-
mance gains can make the use of model driven engineering more
attractive for domains as user interfaces (where the performance
gains of hundreds of seconds result in an increase usability for the
end users.)

7.2 Future Work

All the examples and code base of the proposed approach have
been made publicly available, with the intention that they can
be reused by the model driven engineering community. The code
base also includes a working QVTi execution engine, which can
be used to execute the synthesized execution plans. This allows
other researchers to synthesize execution plans for their QVTc
transformations and then execute the best plan using their existing
models.

The availability of the development and evaluation examples
is also useful as they can be used to continue the research in im-
proving the presented approach with respect to the cost function
and the execution plan synthesis algorithm. For the cost function,
it would be interesting to analyse the synthesized execution plans
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and try to improve it so that it does not only allow the distinc-
tion between good and bad plans, but that is also a predictor
of performance, i.e. the cost is proportional to the performance.
For the synthesis algorithm, the XSLT2XQuery example could be
debugged to further understand the reason for not been able to
produce a result. The results of the analysis could be used to im-
prove the neighbourhood construction. Given that some of the
transformations used are part of the ATL Zoo, it is possible that
there exist source models that have been created as part of a real
case scenario. Repeating the evaluation with these models would
provided additional evidence on the feasibility of the approach and
its use in practice.

One of the aspects that was not addressed in this research,
and that remains an open question, is the complexity of the DDG.
Complexity of graphs has been analysed in domains such as net-
working in order to understand how network traffic is affected by
the network topology [49]. It would be interesting to research on
which, if any, of this metrics apply to the DDG and how this
affects the synthesis algorithm. Are different synthesis strategies,
different ACO settings, stronger/lazier constrains during execu-
tion plan construction required based on the DDG topology? For
some transformations the best execution plan was found in the first
iterations. Is this behaviour related DDG topology, and hence can
the DDG topology be used to guide the number of iterations that
are done to produce a result?

The Meta Object Facility (MOF) Query/View/Transformation
(QVT) Specification was expected to be the “de facto”when it was
introduced several years ago. With the recent efforts of the Eclipse
QVT Declarative project a full implementation of the QVT Re-
lations [3] (QVTr) and QVTc languages should be finally made
available. Although its late arrival might impede it to become the
“de facto”language, it can still be used as a referent for evaluation
and possibly as a base execution engine for other transformation
languages. By using the ideas proposed on this research, the QVT
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declarative engine could become the reference for MTLs imple-
mentation with respect to adopting proven compiler techniques
into the execution of MTPs.

Other areas of future research are, but not limited to, dis-
cussed next. Data dependence based execution plan synthesis can
be used in other rule based declarative transformation languages.
The base of the control component model is the notion of map-
ping invocation and iteration over elements of a type in order to
create the arguments needed for the invocation. The base of the
scheduling of rules is the notion of producer–consumer relations
between mappings. This behaviour is observed, to some degree,
by all rule based declarative transformation languages. That is,
during invocation a rule consumes a tuple of elements (arguments)
and produces a tuple of elements (result). As such, extending this
approach to other transformation languages should be straightfor-
ward. For this, three major activities are required:

1. Extend/modify the execution plan to include additional ac-
tions based on the language semantics.

2. Adjust the data dependency analysis to cover other semantic
rules that determine consumer-producer relations between
mappings.

3. Determine how the generated execution plan can be incor-
porated into the execution.

For example, in the Epsilon Transformation Language (ETL)
mappings can be annotated to consume elements that are strictly
of the input type. This would require the use of, for example, an
additional all-of-type loop action (that does not loop over elements
of sub-types). Also, in the Atlas Transformation Language (ATL)
language the trace model is implicit and as such dependencies
must also be identified by analysing uses of the resolveTemp (a
language construct to access the trace model). Further, if the lan-
guage does not provide imperative constructs to make execution
plan part of the original transformation code, the execution engine
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could require modifications so that it can compile or interpret the
execution plan.

Since this research assumed a rewrite enforce execution mode,
additional research is necessary to understand what effects other
modes of execution have on the DDG and how this affect the syn-
thesis of the execution plan. Additional optimizations are possi-
ble by improving the intra–mapping dependence analysis in or-
der to support the analysis more complex predicates, such as
<varA>.<property>->includes (<varB>). Additional research
should be planned in order to consider this and other common pat-
terns into the dependence analysis and variable derivation. This
should further reduce the number of loops in the invocation paths.

In this research the ACO algorithm parameters were chosen
based on previous work that solved problems not directly com-
parable to the execution plan synthesis problem. An interesting
area of future research is the effect of the parameter settings on
the behaviour of the synthesis algorithm. Further, it would also
be interesting to compare the use of different metaheuristics for
the synthesis algorithm. This could be then mixed with the DDG
complexity analysis to possible determine if particular metaheuris-
tics are better suited for particular DDG topologies. An important
question is whether the ACO metaheuristic provides better results
than a random search approach and/or if the additional effort is
justified.

When alternative transformations exist, which result in equiv-
alent target models, “the transformation designer must be able to
identify which alternative transformations produce models with
the desired quality attributes” [54]. Another possible direction of
future research is to understand if the structure of the synthesized
execution plans has an effect on the quality aspects of the gener-
ated target models. Or, alternatively, if the expected performance
of a synthesized execution plans for a particular transformation
alternative can be an additional metric for quantifying the quality
of the transformation. For this, additional experiments from the
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point of view of the transformation designers should be carried
out. These experiments could include how knowing the expected
performance of the transformation can guide the development of
the MTP and how providing feedback of the MTP’s DDG topol-
ogy could be used by the developer to refactor the transformation
in order to improve the execution performance.

Given that termination property of a MTP does depend on
the execution plans, an open challenge is that if given a QVTc
MTP that is correct (with respect to termination, confluence and
behaviour preservation) the proposed definition of transformation
correctness could be extended to prove that the resulting QVTi
MTP (based on the synthesized execution plan) is correct. For this
it would also be necessary to determine the effect of the merging
phase in the termination property of the MTP.

Finally, finding a correlation between the transformation size
(mappings/loc) and the execution time is an interesting research
that can help get a better understanding of the aspects that af-
fect the cost function. For example, if two alternative MTP for
the same transformation, with different number of mappings have
similar execution times (for the same source model), assuming
the MTP with fewer mappings has lower cost, then it might be
the case that the cost is not dependant on the number of map-
pings only, but on additional properties of the execution plan: e.g.
depth/breath.
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8
QVTc Transformations

8.1 Families to Persons

Listing 8.1: Complete Families to Persons example.
1 import fMM : 'Families.ecore' : : Families ;
2 import pMM : 'Persons.ecore' : : Persons ;
3 import f2pMM : 'Families2Persons.ecore' : : Families2Persons ;

5 transformation F2P {
6 family imports fMM;
7 person imports pMM;
8 imports f2pMM;
9 }

11 −− Last names always come from my Family . ∗Adams∗ and ∗Eves∗ ( i . e .
root members

12 −− of a family tree might not have a family
13 query F2P : : familyName(member : Families : : Member) : String {
14 i f (not member . familySon . oclIsUndefined ( ) ) then
15 member . familySon . lastName
16 else
17 i f (not member . familyDaughter . oclIsUndefined ( ) ) then
18 member . familyDaughter . lastName
19 else
20 ''
21 endif
22 endif
23 }

25 query F2P : : isFemale (member : Families : : Member) : Boolean {
26 i f (not member . familyMother . oclIsUndefined ( ) ) then
27 true

259



Chapter 8. QVTc Transformations

28 else
29 i f (not member . familyDaughter . oclIsUndefined ( ) ) then
30 true
31 else
32 false
33 endif
34 endif
35 }

37 map Member2Male in F2P {
38 check family ( s : Member |
39 not isFemale ( s ) ; ) {}
40 enforce person () {
41 realize t : Male |
42 }
43 where ( ) {
44 realize m2m : Member2Male |
45 m2m.member := s ;
46 m2m. person := t ;
47 }
48 map {
49 where ( ) {
50 t . fullName := s . firstName + ' ' + familyName( s ) ;
51 }
52 }
53 }

55 map Member2Female in F2P {
56 check family ( s : Member |
57 isFemale ( s ) ; ) { }
58 enforce person () {
59 realize t : Female |
60 }
61 where ( ) {
62 realize m2m : Member2Female |
63 m2m.member := s ;
64 m2m. person := t ;
65 }
66 map {
67 where ( ) {
68 t . fullName := s . firstName + ' ' + familyName( s ) ;
69 }
70 }
71 }

8.2 Upper to Lower

Listing 8.2: Complete Upper to Lower example.
1 import SimpleGraph : 'SimpleGraph.ecore#/' ;
2 import SimpleGraph2Graph : 'SimpleGraph2Graph.ecore#/' ;
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4 transformation Upper2Lower
5 {
6 upperGraph imports SimpleGraph ;
7 lowerGraph imports SimpleGraph ;
8 imports SimpleGraph2Graph ;
9 }

10 /∗
11 ∗ Don’ t use r e a l i z e keywords on the two i n i t i a l domains indicates

that both models must e x i s t and at l e a s t have the root node
defined?

12 ∗/

14 map graph2graph in Upper2Lower
15 {
16 check enforce upperGraph () {
17 realize g1 : Graph
18 |}

20 enforce lowerGraph () {
21 /∗
22 ∗ Enforced domains should at l e a s t have one rea l i z ed

var iab le ?
23 ∗/
24 realize g2 : Graph
25 |}

27 where( ) {
28 /∗
29 ∗ Although in the example i s not rea l i zed , a l l middle

model var iab l e s should be rea l i z ed
30 ∗ or does the middle model i s a lso expected to have at

l e a s t the i n i t i a l element?
31 ∗/
32 realize g2g : SimpleGraph2Graph : : Graph2Graph
33 |
34 g2g . graph1 := g1 ;
35 g2g . graph2 := g2 ;
36 }

38 map
39 {

41 where( ) {
42 g2g .name := g1 .name . toLowerCase () ;
43 g2g .name := g2 .name . toUpperCase () ;
44 g1 .name := g2g .name ;
45 g2 .name := g2g .name ;
46 }
47 }
48 }
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50 map node2node in Upper2Lower
51 {
52 check enforce upperGraph(g1 : Graph
53 | ) {
54 realize n1 : Node
55 |
56 n1 . graph := g1 ;
57 }

59 enforce lowerGraph (g2 : Graph
60 | ) {
61 realize n2 : Node
62 |
63 n2 . graph := g2 ;
64 }

66 where( g2g : SimpleGraph2Graph : : Graph2Graph
67 |
68 g2g . graph1 = g1 ;
69 g2g . graph2 = g2 ; ) {
70 realize n2n : SimpleGraph2Graph : : Node2Node
71 |
72 n2n . owner := g2g ;
73 n2n . node1 := n1 ;
74 n2n . node2 := n2 ;
75 }

77 map
78 {

80 where( ) {
81 n2n . l abe l := n1 . l abe l . toLowerCase () ;
82 n2n . l abe l := n2 . l abe l . toUpperCase () ;
83 n1 . l abe l := n2n . l abe l ;
84 n2 . l abe l := n2n . l abe l ;
85 }
86 }
87 }

89 map edge2edge in Upper2Lower
90 {
91 enforce upperGraph(g1 : Graph ,
92 sn1 : Node ,
93 tn1 : Node
94 | ) {
95 realize e1 : Edge
96 |
97 e1 . graph := g1 ;
98 e1 . source := sn1 ;
99 e1 . target := tn1 ;

100 }
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102 enforce lowerGraph (g2 : Graph ,
103 sn2 : Node ,
104 tn2 : Node
105 | ) {
106 realize e2 : Edge
107 |
108 e2 . graph := g2 ;
109 e2 . source := sn2 ;
110 e2 . target := tn2 ;
111 }

113 where( g2g : SimpleGraph2Graph : : Graph2Graph ,
114 sn2n : SimpleGraph2Graph : : Node2Node ,
115 tn2n : SimpleGraph2Graph : : Node2Node
116 |
117 g2g . graph1 = g1 ;
118 g2g . graph2 = g2 ;
119 sn2n . owner = g2g ;
120 sn2n . node1 = sn1 ;
121 sn2n . node2 = sn2 ;
122 tn2n . node1 = tn1 ;
123 tn2n . node2 = tn2 ; ) {
124 realize e2e : SimpleGraph2Graph : : Edge2Edge
125 |
126 e2e . owner := g2g ;
127 e2e . edge1 := e1 ;
128 e2e . edge2 := e2 ;
129 e2e . source := sn2n ;
130 e2e . target := tn2n ;
131 }
132 }

8.3 HSV to HSL

Listing 8.3: Complete HSV to HSL example.
1 import SimpleGraph : 'SimpleGraph.ecore#/' ;
2 import SimpleGraph2Graph : 'SimpleGraph2Graph.ecore#/' ;

4 transformation Upper2Lower
5 {
6 upperGraph imports SimpleGraph ;
7 lowerGraph imports SimpleGraph ;
8 imports SimpleGraph2Graph ;
9 }

10 /∗
11 ∗ Don’ t use r e a l i z e keywords on the two i n i t i a l domains indicates

that both models must e x i s t and at l e a s t have the root node
defined?

12 ∗/
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14 map graph2graph in Upper2Lower
15 {
16 check enforce upperGraph () {
17 realize g1 : Graph
18 |}

20 enforce lowerGraph () {
21 /∗
22 ∗ Enforced domains should at l e a s t have one rea l i z ed

var iab le ?
23 ∗/
24 realize g2 : Graph
25 |}

27 where( ) {
28 /∗
29 ∗ Although in the example i s not rea l i zed , a l l middle

model var iab l e s should be rea l i z ed
30 ∗ or does the middle model i s a lso expected to have at

l e a s t the i n i t i a l element?
31 ∗/
32 realize g2g : SimpleGraph2Graph : : Graph2Graph
33 |
34 g2g . graph1 := g1 ;
35 g2g . graph2 := g2 ;
36 }

38 map
39 {

41 where( ) {
42 g2g .name := g1 .name . toLowerCase () ;
43 g2g .name := g2 .name . toUpperCase () ;
44 g1 .name := g2g .name ;
45 g2 .name := g2g .name ;
46 }
47 }
48 }

50 map node2node in Upper2Lower
51 {
52 check enforce upperGraph(g1 : Graph
53 | ) {
54 realize n1 : Node
55 |
56 n1 . graph := g1 ;
57 }

59 enforce lowerGraph (g2 : Graph
60 | ) {
61 realize n2 : Node
62 |
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63 n2 . graph := g2 ;
64 }

66 where( g2g : SimpleGraph2Graph : : Graph2Graph
67 |
68 g2g . graph1 = g1 ;
69 g2g . graph2 = g2 ; ) {
70 realize n2n : SimpleGraph2Graph : : Node2Node
71 |
72 n2n . owner := g2g ;
73 n2n . node1 := n1 ;
74 n2n . node2 := n2 ;
75 }

77 map
78 {

80 where( ) {
81 n2n . l abe l := n1 . l abe l . toLowerCase () ;
82 n2n . l abe l := n2 . l abe l . toUpperCase () ;
83 n1 . l abe l := n2n . l abe l ;
84 n2 . l abe l := n2n . l abe l ;
85 }
86 }
87 }

89 map edge2edge in Upper2Lower
90 {
91 enforce upperGraph(g1 : Graph ,
92 sn1 : Node ,
93 tn1 : Node
94 | ) {
95 realize e1 : Edge
96 |
97 e1 . graph := g1 ;
98 e1 . source := sn1 ;
99 e1 . target := tn1 ;

100 }

102 enforce lowerGraph (g2 : Graph ,
103 sn2 : Node ,
104 tn2 : Node
105 | ) {
106 realize e2 : Edge
107 |
108 e2 . graph := g2 ;
109 e2 . source := sn2 ;
110 e2 . target := tn2 ;
111 }

113 where( g2g : SimpleGraph2Graph : : Graph2Graph ,
114 sn2n : SimpleGraph2Graph : : Node2Node ,
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115 tn2n : SimpleGraph2Graph : : Node2Node
116 |
117 g2g . graph1 = g1 ;
118 g2g . graph2 = g2 ;
119 sn2n . owner = g2g ;
120 sn2n . node1 = sn1 ;
121 sn2n . node2 = sn2 ;
122 tn2n . node1 = tn1 ;
123 tn2n . node2 = tn2 ; ) {
124 realize e2e : SimpleGraph2Graph : : Edge2Edge
125 |
126 e2e . owner := g2g ;
127 e2e . edge1 := e1 ;
128 e2e . edge2 := e2 ;
129 e2e . source := sn2n ;
130 e2e . target := tn2n ;
131 }
132 }

8.4 Hstm to Stm

Listing 8.4: Complete Hstm to Stm example.
1 import 'HSVTree.ecore' : : HSVTree ;
2 import 'HSLTree.ecore' : : HSLTree ;
3 import 'HSV2HSL.ecore' : :HSV2HSL;

5 transformation hsv2hsl {
6 hsv imports HSVTree ; −− Should spec i fy the correct package
7 hs l imports HSLTree ; −−
8 imports HSV2HSL;
9 }

11 /∗ The hsv , hls , rgb operations where adapted from
https :// g i s t . g i thub .com/mjackson/5311256

12 ∗ The colors are stored in the models with these ranges :
13 ∗ HSV:
14 ∗ H in [0 , 360]
15 ∗ S in [0 , 100]
16 ∗ V in [0 , 100]
17 ∗ HSL:
18 ∗ H in [0 , 360]
19 ∗ S in [0 , 100]
20 ∗ L in [0 , 100]
21 ∗ RGB:
22 ∗ H in [0 , 1]
23 ∗ S in [0 , 1]
24 ∗ V in [0 , 1]
25 ∗/

27 query hsv2hsl : : rgb2hsl ( rgb :Sequence(Real) ) : Sequence(Real) {
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28 let r : Real = rgb−>at (1) ,
29 g : Real = rgb−>at (2) ,
30 b : Real = rgb−>at (3) ,
31 rgbReal = Sequence{r , g , b} ,
32 max: Real = rgbReal−>iterate (x : Real , y : Real=0 | y .max(x) ) ,
33 min : Real = rgbReal−>iterate (x : Real , y : Real=1 | y . min(x) ) ,
34 l : Real = (max+min)/2
35 in
36 i f max = min then
37 Sequence{0 , 0 , l ∗100}
38 else
39 let c : Real = max−min ,
40 s : Real = i f l < 0.5 then
41 c / (max+min)
42 else
43 c / (2−max−min)
44 endif ,
45 r1 : Real = ((max−r )/6 + c /2)/c ,
46 g1 : Real = ((max−g)/6 + c /2)/c ,
47 b1 : Real = ((max−b)/6 + c /2)/c
48 in
49 i f max = r then
50 let h : Real = b1 − g1
51 in
52 Sequence{h∗360 , s ∗100 , l ∗100}
53 else
54 i f max = g then
55 let h : Real = 1/3 + r1 − b1
56 in
57 Sequence{h∗360 , s ∗100 , l ∗100}
58 else −− max = b
59 let h : Real = 2/3 + g1 − r1
60 in
61 Sequence{h∗360 , s ∗100 , l ∗100}
62 endif
63 endif
64 endif
65 }

67 query hsv2hsl : : hsl2rgb ( hs l :Sequence(Real) ) : Sequence(Real) {

69 let h : Real = hsl−>at (1) ,
70 s : Real = hsl−>at (2) /100 ,
71 l : Real = hsl−>at (3) /100 ,
72 c : Real = 1 − (2∗ l −1) . abs () ∗s ,
73 h2 : Real = (h/60) ,
74 hmod: Real = h2 . f l o o r () .mod(2) + (h/60 − h2 . f l o o r () ) ,
75 x : Real = c∗(1−(hmod−1) . abs () ) ,
76 m: Real = l − 0.5∗ c
77 in
78 i f h2 < 1 then
79 Sequence{c+m, x+m, m}
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80 else
81 i f h2 < 2 then
82 Sequence{x+m, c+m, m}
83 else
84 i f h2 < 3 then
85 Sequence{m, c+m, x+m}
86 else
87 i f h2 < 4 then
88 Sequence{m, x , c}
89 else
90 i f h2 < 5 then
91 Sequence{x+m, m, c+m}
92 else
93 Sequence{c+m, m, x+m}
94 endif
95 endif
96 endif
97 endif
98 endif
99 }

101 query hsv2hsl : : rgb2hsv ( rgb :Sequence(Real) ) : Sequence(Real) {
102 let r : Real = rgb−>at (1) ,
103 g : Real = rgb−>at (2) ,
104 b : Real = rgb−>at (3) ,
105 rgbReal = Sequence{r , g , b} ,
106 max: Real = rgbReal−>iterate (x : Real , y : Real=0 | y .max(x) ) ,
107 min : Real = rgbReal−>iterate (x : Real , y : Real=1 | y . min(x) ) ,
108 v : Real = max
109 in
110 i f max = min then
111 Sequence{0 , 0 , v∗100}
112 else
113 let c : Real = max−min ,
114 s : Real = c/max,
115 r1 : Real = ((max−r )/6 + c /2)/c ,
116 g1 : Real = ((max−g) /6 + c /2)/c ,
117 b1 : Real = ((max−b)/6 + c /2)/c
118 in
119 i f max = r then
120 let h : Real = b1 − g1
121 in
122 Sequence{h∗360 , s ∗100 , v∗100}
123 else
124 i f max = g then
125 let h : Real = 1/3 + r1 − b1
126 in
127 Sequence{h∗360 , s ∗100 , v∗100}
128 else −− max = b
129 let h : Real = 2/3 + g1 − r1
130 in
131 Sequence{h∗360 , s ∗100 , v∗100}
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132 endif
133 endif
134 endif
135 }

137 query hsv2hsl : : hsv2rgb ( hsv :Sequence(Real) ) : Sequence(Real) {
138 let h : Real = hsv−>at (1) ,
139 s : Real = hsv−>at (2) /100 ,
140 v : Real = hsv−>at (3) /100 ,
141 i : Integer = (h/60) . f l o o r () ,
142 f : Real = h/60 − i ,
143 p : Real = v ∗ (1 − s ) ,
144 q : Real = v ∗ (1 − f ∗ s ) ,
145 t : Real = v ∗ (1 − (1 − f ) ∗ s )
146 in
147 i f i = 0 then
148 Sequence{v , t , p}
149 else
150 i f i = 1 then
151 Sequence{q , v , p}
152 else
153 i f i = 2 then
154 Sequence{p , v , t}
155 else
156 i f i = 3 then
157 Sequence{p , q , v}
158 else
159 i f i = 4 then
160 Sequence{t , p , v}
161 else
162 Sequence{v , p , q}
163 endif
164 endif
165 endif
166 endif
167 endif
168 }

170 map HSV2HSLRoot in hsv2hsl {
171 check hsv ( hsvRoot : HSVNode |
172 hsvRoot . parent = null ; ) { }
173 check enforce hs l ( ) {
174 realize hslRoot : HSLNode |
175 hslRoot . parent := null ;
176 }
177 where( ) {
178 realize middleRoot : HSVNode2HSLNode |
179 middleRoot . hsv := hsvRoot ;
180 middleRoot . hs l := hslRoot ;
181 middleRoot . parent := null ;
182 }
183 map {
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184 where( ) {
185 middleRoot .name := hsvRoot .name ;
186 middleRoot .name := hslRoot .name ;
187 hsvRoot .name := middleRoot .name ;
188 hslRoot .name := middleRoot .name ;
189 middleRoot . rgb := hsv2rgb ( hsvRoot . hsv ) ;
190 middleRoot . rgb := hsl2rgb ( hslRoot . hs l ) ;
191 hsvRoot . hsv := rgb2hsv ( middleRoot . rgb ) ;
192 hslRoot . hs l := rgb2hsl ( middleRoot . rgb ) ;
193 }
194 }
195 }

197 map HSV2HSLRecursion in hsv2hsl {
198 check enforce hsv ( hsvParent : HSVNode | ) {
199 realize hsvNode : HSVNode |
200 hsvNode . parent := hsvParent ;
201 }
202 check enforce hs l ( hslParent : HSLNode | ) {
203 realize hslNode : HSLNode |
204 hslNode . parent := hslParent ;
205 }
206 where( middleParent : HSVNode2HSLNode |
207 middleParent . hsv = hsvParent ;
208 middleParent . hs l = hslParent ;
209 ) {
210 realize middleNode : HSVNode2HSLNode |
211 middleNode . parent := middleParent ;
212 middleNode . hsv := hsvNode ;
213 middleNode . hs l := hslNode ;
214 }
215 map {
216 where ( ) {
217 middleNode .name := hsvNode .name ;
218 middleNode .name := hslNode .name ;
219 hslNode .name := middleNode .name ;
220 hsvNode .name := middleNode .name ;
221 middleNode . rgb := hsv2rgb (hsvNode . hsv ) ;
222 middleNode . rgb := hsl2rgb ( hslNode . hs l ) ;
223 hsvNode . hsv := rgb2hsv (middleNode . rgb ) ;
224 hslNode . hs l := rgb2hsl (middleNode . rgb ) ;
225 }
226 }
227 }

8.5 UML to RDBMS Minimal

Listing 8.5: CompleteUML to RDBMS Minimal example.
1 import MinUML : 'MinimalUML.ecore#/' ;
2 import MinRDBMS : 'MinimalRDBMS.ecore#/' ;
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3 import MinUML2RDBMS : 'MinimalUML2RDBMS.ecore#/' ;

5 transformation umlRdbms {
6 uml imports minimaluml ;
7 rdbms imports minimalrdbms ;
8 imports minimaluml2rdbms ;
9 }

11 /∗∗ packageToSchema ∗/
12 map p2s in umlRdbms {
13 uml(p : Package | ) { }
14 enforce rdbms () { realize s : Schema }
15 where( ) {realize p2s : PackageToSchema |
16 p2s . umlPackage := p ; p2s . schema := s ; }
17 map {
18 where( ) { p2s .name := p .name ; s .name := p2s .name ; } }
19 }
20 /∗∗ integerToNumber ∗/
21 map i2n in umlRdbms {
22 uml(p : Package , prim : PrimitiveDataType |
23 prim . namespace = p ; prim .name = 'Integer' ; ) { }
24 check enforce rdbms () { sqlType : String | sqlType := 'NUMBER' ; }
25 where( p2s : PackageToSchema |
26 p2s . umlPackage = p ; ) {
27 realize p2n : PrimitiveToName |
28 p2n . owner := p2s ; p2n . pr imit ive := prim ;
29 p2n . typeName := sqlType ; }
30 map {
31 where( ) { p2n .name := prim .name + '2' + sqlType ; } }
32 }
33 /∗∗ booleanToBoolean ∗/
34 map b2b in umlRdbms {
35 uml(p : Package , prim : PrimitiveDataType |
36 prim . namespace = p ; prim .name = 'Boolean' ; ) { }
37 check enforce rdbms () { sqlType : String | sqlType := 'BOOLEAN' ; }
38 where( p2s : PackageToSchema |
39 p2s . umlPackage = p ; ) {
40 realize p2n : PrimitiveToName |
41 p2n . owner := p2s ; p2n . pr imit ive := prim ;
42 p2n . typeName := sqlType ; }
43 map {
44 where( ) { p2n .name := prim .name + '2' + sqlType ; } }
45 }
46 /∗∗ stringToVarchar ∗/
47 map s2v in umlRdbms {
48 uml(p : Package , prim : PrimitiveDataType |
49 prim . namespace = p ; prim .name = 'String' ; ) { }
50 check enforce rdbms () { sqlType : String | sqlType := 'VARCHAR' ; }
51 where( p2s : PackageToSchema |
52 p2s . umlPackage = p ; ) {
53 realize p2n : PrimitiveToName |
54 p2n . owner := p2s ; p2n . pr imit ive := prim ;
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55 p2n . typeName := sqlType ; }
56 map {
57 where( ) { p2n .name := prim .name + '2' + sqlType ; } }
58 }
59 /∗∗ classToTable ∗/
60 map c2t in umlRdbms {
61 uml(p : Package , c : Class |
62 c . kind = 'persistent' ; c . namespace = p ; ) { }
63 check enforce rdbms( s : Schema | ) {
64 realize t : Table |
65 t . kind := 'base' ; t . schema := s ; }
66 where( p2s : PackageToSchema |
67 p2s . umlPackage = p ; p2s . schema = s ; ) {
68 realize c2t : ClassToTable |
69 c2t . owner := p2s ; c2t . attOwner := c ; c2t . table := t ; }
70 map {
71 where( ) { c2t .name := c .name ; t .name := c2t .name ; } }
72 }
73 /∗∗ fromAttribute ∗/
74 map fa in umlRdbms {
75 uml( c : Class , t : PrimitiveDataType , a : Attribute |
76 a . owner = c ; a . type = t ; ) { }
77 where( fao : AttributeOwner , p2n : PrimitiveToName |
78 fao . attOwner = c ; p2n . pr imit ive = t ; ) {
79 realize fa : AttributeToColumn |
80 fa . att r ibute := a ; fa . owner := fao ; fa . type := p2n ; }
81 map {
82 where( ) { fa .name := a .name ; } }
83 }
84 /∗∗ attributeColumn ∗/
85 map a2c in umlRdbms {
86 check enforce rdbms( t : Table | ) {
87 realize c : Column |
88 c . owner := t ; }
89 where( c2t : ClassToTable , a2c : AttributeToColumn ,
90 p2n : PrimitiveToName |
91 c2t . table = t ; a2c . owner = c2t ; a2c . type = p2n ; ) {
92 a2c . column := c ; }
93 map {
94 where( ) { c .name := a2c .name ; c . type := p2n . typeName ; } }
95 }

8.6 UML to RDBMS

Listing 8.6: Complete UML to RDBMS example.
1 import SimpleUML : 'SimpleUML.ecore#/' ;
2 import SimpleRDBMS : 'SimpleRDBMS.ecore#/' ;
3 import SimpleUML2RDBMS : 'SimpleUML2RDBMS.ecore#/' ;

5 transformation umlRdbms
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6 {
7 uml imports simpleuml ;
8 rdbms imports simplerdbms ;
9 imports simpleuml2rdbms ;

10 }

12 /∗
13 ∗ −− Package and Schema mapping
14 ∗ c lass PackageToSchema {
15 ∗ composite classesToTables : Set ( ClassToTable ) opposites owner ;
16 ∗ composite primitivesToNames : Set (PrimitiveToName) opposites

owner ;
17 ∗ name : String ;
18 ∗ −− uml
19 ∗ umlPackage : Package ;
20 ∗ −− rdbms
21 ∗ schema : Schema;
22 ∗ }
23 ∗/

25 map packageToSchema in umlRdbms
26 {
27 uml() {
28 p : Package
29 }
30 enforce rdbms () {
31 realize s : Schema
32 }
33 where( ) {
34 realize p2s : PackageToSchema |
35 p2s . umlPackage := p ;
36 p2s . schema := s ;
37 }
38 map
39 {
40 where( )
41 {
42 p2s .name := p .name ;
43 p2s .name := s .name ;
44 p .name := p2s .name ;
45 s .name := p2s .name ;
46 }
47 }
48 }

50 /∗
51 ∗ −− Primitive data type marshaling
52 ∗ c lass PrimitiveToName {
53 ∗ owner : PackageToSchema opposites primitivesToNames ;
54 ∗ name : String ;
55 ∗ −− uml
56 ∗ primit ive : PrimitiveDataType ;
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57 ∗ −− rdbms
58 ∗ typeName : String ;
59 ∗ }
60 ∗/
61 map primitiveToName in umlRdbms
62 {
63 uml(p : Package )
64 {
65 prim : PrimitiveDataType |
66 prim . namespace = p ;
67 }
68 check enforce rdbms ()
69 {
70 sqlType : String
71 }
72 where( p2s : PackageToSchema |
73 p2s . umlPackage = p ; )
74 {
75 realize p2n : PrimitiveToName |
76 p2n . owner := p2s ;
77 p2n . pr imit ive := prim ;
78 p2n . typeName := sqlType ;
79 }
80 map
81 {
82 where( )
83 {
84 p2n .name := prim .name + '2' + sqlType ;
85 }
86 }
87 }

89 map integerToNumber in umlRdbms refines primitiveToName
90 {
91 uml()
92 {
93 prim .name = 'Integer' ;
94 }
95 check enforce rdbms ()
96 {
97 sqlType := 'NUMBER' ;
98 }
99 }

101 map booleanToBoolean in umlRdbms refines primitiveToName
102 {
103 uml()
104 {
105 prim .name = 'Boolean' ;
106 }
107 check enforce rdbms ()
108 {
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109 sqlType := 'BOOLEAN' ;
110 }
111 }

113 map stringToVarchar in umlRdbms refines primitiveToName
114 {
115 uml()
116 {
117 prim .name = 'String' ;
118 }
119 check enforce rdbms () {
120 sqlType := 'VARCHAR' ;
121 }
122 }

124 −− Queries can now be at the root of the transformation
125 /∗
126 map f l a t t e n i n g in umlRdbms re f ines associationToForeignKey ,

a t t r i b u t e s {}
127 ∗/

129 query umlRdbms : : getAllSupers ( c l s : SimpleUML : : Class ) :
Set(SimpleUML : : Class )

130 {
131 c l s . general−>col lect ( gen |

getAllSupers ( gen ) )−>including ( c l s )−>asSet ( )
132 }

134 query umlRdbms : : getAl lAttr ibutes ( c l s : SimpleUML : : Class ) :
Set(SimpleUML : : Attribute )

135 {
136 getAllSupers ( c l s )−>col lect ( c | c . a t t r ibutes )−>asSet ( )
137 }

139 query umlRdbms : : getAllForwards ( c l s : SimpleUML : : Class ) : Set(
SimpleUML : : Association )

140 {
141 getAllSupers ( c l s )−>col lect ( c | c . forward )−>asSet ( )
142 }

145 /∗
146 ∗ −− Class and Table mapping
147 ∗ c lass ClassToTable extends FromAttributeOwner , ToColumn {
148 ∗ owner : PackageToSchema opposites classesToTables ;
149 ∗ composite associationToForeignKeys :
150 ∗ OrderedSet ( AssociationToForeignKey ) opposites owner ;
151 ∗ name : String ;
152 ∗ −− uml
153 ∗ umlClass : Class ;
154 ∗ −− rdbms
155 ∗ tab l e : Table ;
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156 ∗ primaryKey : Key;
157 ∗ }
158 ∗/

160 map classToTable in umlRdbms
161 {
162 check enforce uml(p : Package | )
163 {
164 realize c : Class |
165 c . kind := 'persistent' ;
166 c . namespace := p ;
167 }
168 check enforce rdbms( s : Schema | )
169 {
170 realize t : Table |
171 default t . kind := 'base' ;
172 t . schema := s ;
173 t . kind <> 'meta' ;
174 }
175 where( p2s : PackageToSchema |
176 p2s . umlPackage = p ;
177 p2s . schema = s ; )
178 {
179 realize c2t : ClassToTable |
180 c2t . owner := p2s ;
181 c2t . umlClass := c ;
182 c2t . table := t ;
183 }
184 map
185 {
186 where( )
187 {
188 c2t .name := c .name ;
189 c2t .name := t .name ;
190 c .name := c2t .name ;
191 t .name := c2t .name ;
192 }
193 }
194 map
195 {
196 check enforce rdbms ()
197 {
198 realize pk : Key ,
199 realize pc : Column |
200 pk . owner := t ;
201 pk . kind := 'primary' ;
202 pc . owner := t ;
203 default pc . keys := Set(SimpleRDBMS : : Key){pk };
204 default pc . type := 'NUMBER' ;
205 pc . keys−>includes (pk) ;
206 }
207 where( )
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208 {
209 c2t . primaryKey := pk ;
210 c2t . column := pc ;
211 }
212 map
213 {
214 check enforce rdbms ()
215 {
216 pc .name := t .name + '_tid' ;
217 pk .name := t .name + '_pk' ;
218 }
219 }
220 }
221 }
222 /∗
223 ∗ −− Association and ForeignKey mapping
224 ∗ c lass AssociationToForeignKey extends ToColumn {
225 ∗ referenced : ClassToTable ;
226 ∗ owner : ClassToTable opposites associationToForeignKeys ;
227 ∗ name : String ;
228 ∗ −− uml
229 ∗ associat ion : Association ;
230 ∗ −− rdbms
231 ∗ foreignKey : ForeignKey ;
232 ∗ }
233 ∗/

235 map associationToForeignKey in umlRdbms
236 {
237 check enforce uml(p : Package , sc : Class , dc : Class |
238 sc . kind = 'persistent' ;
239 dc . kind = 'persistent' ;
240 sc . namespace = p ; )
241 {
242 realize a : Association |
243 getAllForwards ( sc )−>includes (a) ;
244 default a . source := sc ;
245 getAllSupers ( dc )−>includes (a . dest inat ion ) ; −− How does

associat ions work with inheritance?
246 default a . dest inat ion := dc ;
247 default a . namespace := p ;
248 }
249 check enforce rdbms( s : Schema , st : Table , dt : Table , rk :Key |
250 st . schema = s ;
251 rk . owner = dt ;
252 rk . kind = 'primary' ; )
253 {
254 realize fk : ForeignKey ,
255 realize f c : Column |
256 fk . owner := st ;
257 f c . owner := st ;
258 fk . refersTo := rk ;
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259 default f c . foreignKeys := Set(SimpleRDBMS : : ForeignKey ){ fk } ;
260 f c . foreignKeys−>includes ( fk ) ;
261 }

263 where( p2s : PackageToSchema , sc2t : ClassToTable , dc2t : ClassToTable |
264 sc2t . owner = p2s ;
265 p2s . umlPackage = p ;
266 p2s . schema = s ;
267 sc2t . table = st ;
268 dc2t . table = dt ;
269 sc2t . umlClass = sc ;
270 dc2t . umlClass = dc ; )
271 {
272 realize a2f : AssociationToForeignKey |
273 a2f . owner := sc2t ;
274 a2f . re ferenced := dc2t ;
275 a2f . a s soc ia t ion := a ;
276 a2f . foreignKey := fk ;
277 a2f . column := fc ;
278 }
279 map
280 {
281 where( ) {
282 a2f .name := i f a . dest inat ion = dc and a . source = sc
283 then a .name
284 else i f a . dest inat ion <> dc and a . source = sc
285 then dc .name + '_' + a .name
286 else i f a . dest inat ion = dc and a . source <> sc
287 then a .name + '_' + sc .name
288 else dc .name + '_' + a .name + '_' + sc .name
289 endif endif endif ;
290 a .name := i f a . dest inat ion = dc and a . source = sc
291 then a2f .name
292 else a .name
293 endif ;
294 fk .name := a2f .name ;
295 a2f .name := fk .name ;
296 fc .name := a2f .name + '_tid' ;
297 }
298 }
299 map
300 {
301 where( )
302 {
303 fc . type := rk . column−>f i r s t ( ) . type ;
304 }
305 }
306 }
307 /∗
308 ∗ −− a t t r i b u t e mapping
309 ∗ abstract c las s FromAttributeOwner {
310 ∗ composite fromAttributes : Set ( FromAttribute ) opposites owner ;
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311 ∗ }
312 ∗ abstract c las s FromAttribute {
313 ∗ name : String ;
314 ∗ kind : String ;
315 ∗ owner : FromAttributeOwner opposites fromAttributes ;
316 ∗ l e a f s : Set (AttributeToColumn) ;
317 ∗ −− uml
318 ∗ a t t r i b u t e : Attr ibute ;
319 ∗ }
320 ∗ abstract c las s ToColumn {
321 ∗ −− rdbms
322 ∗ column : Column;
323 ∗ }
324 ∗ c lass NonLeafAttribute extends FromAttributeOwner , FromAttribute {
325 ∗ l e a f s := fromAttributes . l e a f s ;
326 ∗ }
327 ∗ c lass AttributeToColumn extends FromAttribute , ToColumn {
328 ∗ type : PrimitiveToName ;
329 ∗ }
330 ∗/

332 map att r ibutes in umlRdbms
333 {
334 check enforce uml( c : Class | )
335 {
336 realize a : Attribute |
337 default a . owner := c ;
338 getAl lAttr ibutes ( c )−>includes (a) ;
339 }
340 where( fao : FromAttributeOwner | )
341 {
342 realize fa : FromAttribute |
343 fa . att r ibute := a ;
344 fa . owner := fao ;
345 }
346 map
347 {
348 where( )
349 {
350 fa . kind := a . kind ;
351 a . kind := fa . kind ;
352 }
353 }
354 }

356 map c lassAttr ibutes in umlRdbms refines att r ibutes
357 {
358 where( fao : ClassToTable |
359 fao . umlClass = c ; )
360 {}
361 map
362 {
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363 where( )
364 {
365 fa .name := a .name ;
366 a .name := fa .name ;
367 }
368 }
369 }

371 map primit iveAttr ibute in umlRdbms refines att r ibutes
372 {
373 check enforce uml( t : PrimitiveDataType | )
374 {
375 a . type := t ;
376 }
377 where(p2n : PrimitiveToName |
378 p2n . pr imit ive = t ; )
379 {
380 realize fa : SimpleUML2RDBMS: : AttributeToColumn |
381 fa . type := p2n ;
382 }
383 map
384 {
385 where( )
386 {
387 fa . l e a f s := Set(SimpleUML2RDBMS: : AttributeToColumn ) { fa } ;
388 }
389 }
390 }

392 map complexAttributeAttributes in umlRdbms refines att r ibutes
393 {
394 check uml( ca : Attribute |
395 ca . type = c ; )
396 {}
397 where( fao : NonLeafAttribute |
398 fao . att r ibute = ca ; )
399 {}
400 map
401 {
402 where( )
403 {
404 /∗ TODO We should add ca .name because i f we have two

complex
405 ∗ a t t r i b u t e s of the same type , the columns would be

i d e n t i c a l ?
406 ∗/
407 fa .name := fao .name + '_' + a .name ;
408 }
409 }
410 }

412 map complexAttribute in umlRdbms refines att r ibutes

280



8.6. UML2RDBMS

413 {
414 check uml( t : Class | )
415 {
416 a . type = t ;
417 }
418 where( )
419 {
420 realize fa : NonLeafAttribute |
421 }
422 map
423 {
424 where( )
425 {
426 fa . l e a f s := fao . fromAttributes . l e a f s ;
427 }
428 }
429 }

431 map c lassPr imit iveAttr ibutes in umlRdbms refines c lassAttr ibutes ,
pr imit iveAttr ibute {}

433 map classComplexAttributes in umlRdbms refines c lassAttr ibutes ,
complexAttribute {}

435 map complexAttributePrimitiveAttributes in umlRdbms refines
complexAttributeAttributes , pr imit iveAttr ibute {}

437 map complexAttributeComplexAttributes in umlRdbms refines
complexAttributeAttributes , complexAttribute {}

439 /∗
440 ∗ −− column mapping
441 ∗/
442 query umlRdbms : : getAllLeafAtributes ( fao :

SimpleUML2RDBMS: : FromAttributeOwner ) :
Set(SimpleUML2RDBMS: : AttributeToColumn )

443 {
444 let l e a f s : Set(SimpleUML2RDBMS: : AttributeToColumn ) =

fao . fromAttributes
445 −>selectByKind (SimpleUML2RDBMS: : AttributeToColumn ) in
446 l ea f s −>includingAl l ( fao . fromAttributes
447 −>selectByKind (SimpleUML2RDBMS: : NonLeafAttribute )
448 −>col lect ( nla |

getAllLeafAtributes ( nla . oclAsType(SimpleUML2RDBMS: : FromAttributeOwner ) ) ) )
449 }

451 map attributeColumns in umlRdbms
452 {
453 check enforce rdbms( t : Table | )
454 {
455 realize c : Column |
456 c . owner := t ;
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457 c . keys−>s ize ( ) = 0;
458 c . foreignKeys−>s ize ( ) = 0;
459 }
460 where( c2t : ClassToTable |
461 c2t . table = t ; )
462 {
463 realize a2c : AttributeToColumn |
464 a2c . column := c ;
465 −− de fau l t a2c . owner := c2t ; −− Default assignments should

not be used for check .
466 −−fao . fromAttributes . l ea f s −>includes (a2c) ;
467 getAllLeafAtributes ( c2t )−>includes ( a2c ) ;
468 }
469 map
470 {
471 where(p2n : PrimitiveToName | )
472 {
473 ct : String |
474 a2c . type := p2n ;
475 ct := c . type ;
476 ct := p2n . typeName ;
477 p2n . typeName := ct ;
478 c . type := ct ;
479 }
480 }
481 map
482 {
483 where( )
484 {
485 c .name := a2c .name ;
486 a2c .name := c .name ;
487 }
488 }
489 map
490 {
491 where( )
492 {
493 c . kind := a2c . kind ;
494 a2c . kind := c . kind ;
495 }
496 }

498 } −− end of module UmlRdbmsTransformation

8.7 Abstract to Concrete

The example describes a transformation of a simplified UMLmodel
to another simplified UML model. The aim of this transformation
is to generate, from a source UML model, another UML model
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that flattens the inherited operations of a class. That is, a Class
in the target model will collect all the operations inherited from
the closure of it’s super classes that are abstract.

Listing 8.7: Complete Abstract to Concrete example.
14 import UMLMM : 'ClassMM.ecore' : : ClassMM;
15 import ABS2CONC : 'ClassAbstractToConcrete.ecore' : : abs2conc ;

17 /∗∗
18 ∗ Produces model that h i g h l i g h t s which c las ses need to implement
19 ∗ methods ex i s t ing in the i r abstract superc lass .
20 ∗/
21 transformation AbstractToConcrete {
22 umlIn imports UMLMM;
23 umlOut imports UMLMM;
24 imports ABS2CONC; }

26 map PackageToPackage in AbstractToConcrete {
27 umlIn ( pIn : Package ) { }
28 enforce umlOut () {
29 realize pOut : Package | }
30 where( ) {
31 realize p2p : PackageToPackage |
32 p2p . pIn := pIn ;
33 p2p . pOut := pOut ;
34 }
35 map {
36 where( ) {
37 p2p .name := pIn .name ;
38 pOut .name := p2p .name ;
39 }
40 }
41 }

43 map AbstractClassToConcreteClass in AbstractToConcrete {
44 umlIn ( pIn : Package , cc1 : Class , ac : Class |
45 cc1 . owner = pIn ;
46 not cc1 . inheritsFrom . oclIsUndefined ( ) ;
47 cc1 . inheritsFrom = ac ;
48 ac . owner = pIn ;
49 ac . isAbstract ; ) { }
50 enforce umlOut (pOut : Package ) {
51 realize cc2 : Class |
52 cc2 . owner := pOut ;
53 }
54 where (p2p : PackageToPackage |
55 p2p . pIn = pIn ;
56 p2p . pOut = pOut ; ) {
57 realize p2c : ParentToChild |
58 p2c . parent := ac ;
59 p2c . c l a s s := cc1 ;
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60 p2c . concreteClass := cc2 ;
61 p2c . owner := p2p ;
62 }
63 map {
64 where( ) {
65 p2c .name := cc1 .name ;
66 cc2 .name := p2c .name ;
67 }
68 }
69 }

71 map OperationToOperation in AbstractToConcrete {
72 umlIn (pc : Class , sc : Class , aco : Operation |
73 pc . isAbstract ;
74 subClasses (pc )−>notEmpty( ) ;
75 not sc . inheritsFrom . oclIsUndefined ( ) ;
76 sc . inheritsFrom = pc ;
77 aco . owner = pc ; ) { }
78 enforce umlOut ( cc2 : Class | ) {
79 realize cco : Operation |
80 cco . owner := cc2 ;
81 }
82 where ( p2c : ParentToChild |
83 p2c . c l a s s = sc ;
84 p2c . parent = pc ;
85 p2c . concreteClass = cc2 ; ) {
86 realize o2o : OperationToOperation |
87 o2o . abstract := aco ;
88 o2o . concrete := cco ;
89 o2o . c l a s s := p2c ;
90 }
91 map {
92 where( ) {
93 o2o .name := aco .name ;
94 o2o .name := cco .name ;
95 aco .name := o2o .name ;
96 cco .name := o2o .name ;
97 }
98 }
99 }

101 map DataTypeToDataType in AbstractToConcrete {
102 umlIn( dt : PrimitiveDataType , p : Package |
103 dt . owner = p ; ) { }
104 enforce umlOut(po : Package | ) {
105 realize dto : PrimitiveDataType |
106 dto . owner := po ;
107 }
108 where(p2p : PackageToPackage |
109 p2p . pIn = p ;
110 p2p . pOut = po ; ) {
111 realize dt2dt : DataTypeToDataType |
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112 dt2dt . dIn := dt ;
113 dt2dt . dOut := dto ;
114 }
115 map {
116 where( ) {
117 dt2dt .name := dt .name ;
118 dto .name := dt2dt .name ;
119 }
120 }
121 }

123 map ParameterToParameter in AbstractToConcrete {
124 umlIn ( aco : Operation , acop : Parameter , dt : PrimitiveDataType |
125 aco . owner . isAbstract ;
126 acop . operation = aco ;
127 acop . type = dt ; ) { }
128 enforce umlOut ( cco : Operation , dto : PrimitiveDataType ) {
129 realize ccop : Parameter |
130 ccop . operation := cco ;
131 }
132 where ( o2o : OperationToOperation , d2d : DataTypeToDataType |
133 o2o . abstract = aco ;
134 o2o . concrete = cco ;
135 d2d . dIn = dt ;
136 d2d . dOut = dto ; ) {
137 realize p2p : ParameterToParameter |
138 p2p . abstract := acop ;
139 p2p . concrete := ccop ;
140 p2p . operation := o2o ;
141 }
142 map {
143 where( ) {
144 p2p .name := acop .name ;
145 ccop .name := p2p .name ;
146 p2p . type := d2d ;
147 ccop . type := dto ;
148 }
149 }
150 }

152 query AbstractToConcrete : : subClasses ( c l a s s : ClassMM : : Class ) :
153 Set(ClassMM : : Class ) {
154 ClassMM : : Class . allInstances ( )−>select ( c :ClassMM : : Class |
155 c . inheritsFrom = c l a s s )
156 }
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8.8 BibTeXML to DocBook
The BibTeXML to DocBook example describes a transformation
of a BibTeXML model to a DocBook model. BibTeXML [84] is
an XML-based format for the BibTeX bibliographic tool. Doc-
Book [107] is an XML-based format for document composition.

Listing 8.8: Complete BibTeXML to DocBook example.
9 import BibTexMM : 'BibTeX.ecore' : : BibTeX ;

10 import DocBookMM : 'DocBook.ecore' : : DocBook ;
11 import BibTex2DocBookMM : 'BibTex2DocBook.ecore' : : Trace ;

14 transformation bibtex2docbook {
15 bibtex imports BibTexMM;
16 docbook imports DocBookMM;
17 imports BibTex2DocBookMM;
18 }

20 map Main in bibtex2docbook {
21 check bibtex ( bib : BibTeXFile ) {}
22 enforce docbook () {
23 realize doc : DocBook , realize book : Book , realize art : Art ic le ,
24 realize se1 : Sect1 , realize se2 : Sect1 , realize se3 : Sect1 ,
25 realize se4 : Sect1 |
26 doc . books := OrderedSet{book };
27 book . a r t i c l e s := OrderedSet{ art } ;
28 art . sections_1 := OrderedSet{se1 , se2 , se3 , se4 } ;
29 se1 . t i t l e := 'References List' ;
30 se2 . t i t l e := 'Authors List' ;
31 se3 . t i t l e := 'Titles List' ;
32 se4 . t i t l e := 'Journals List' ;
33 }
34 where ( ) {
35 realize bib2doc : Bib2Doc |
36 bib2doc . f i l e := bib ;
37 bib2doc . doc := doc ;
38 }
39 }

41 map InfoToPara in bibtex2docbook {
42 enforce docbook ( se : Sect1 ) {
43 realize p : Para |
44 se . paras := se . paras−>including (p) ;
45 }
46 where ( ) { −−f b : FromBibtex) {
47 realize e2p : InfoToPara ,
48 realize fb : FromBibtex |
49 e2p . para := p ;
50 }
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51 map {
52 where( ) {
53 p . content := fb . in fo ;
54 }
55 }
56 }

58 map EntryToPara in bibtex2docbook refines InfoToPara {
59 check bibtex ( entry : BibTeXEntry) {}
60 enforce docbook ( se . t i t l e = 'References List' ; ) {}
61 where ( ) {
62 realize fb : FromEntry |
63 e2p . fromEntry := fb ;
64 fb . entry := entry ;
65 fb . in fo := buildEntryPara ( entry ) ;
66 }
67 }

69 map AuthorToPara in bibtex2docbook refines InfoToPara {
70 check bibtex (a : Author |
71 not authorSet ()−>includes (a . author ) ;
72 ) {}
73 enforce docbook ( se . t i t l e = 'Authors List' ; ) {}
74 where ( ) {
75 realize fb : FromAuthor |
76 fb . author := a ;
77 fb . in fo := a . author ;
78 }
79 }

81 map TitleToPara in bibtex2docbook refines InfoToPara {
82 check bibtex ( e : TitledEntry |
83 not t i t l e S e t ()−>includes ( e . t i t l e ) ;
84 ) {}
85 enforce docbook ( se . t i t l e = 'Titles List' ; ) {}
86 where ( f e : FromEntry |
87 f e . entry = e ; ) {
88 realize fb : FromTitle |
89 fb . entry := e ;
90 fb . in fo := e . t i t l e ;
91 f e . l e a f s := fe . l ea f s −>including ( fb ) ;
92 }
93 }

95 map JournalToPara in bibtex2docbook refines InfoToPara {
96 check bibtex (a : Art i c l e |
97 not t i t l e S e t ()−>includes (a . journal ) ;
98 ) {}
99 enforce docbook ( se . t i t l e = 'Journals List' ; ) {}

100 where ( f e : FromEntry |
101 f e . entry = a ; ) {
102 realize fb : FromArticle |
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103 fb . a r t i c l e := a ;
104 fb . in fo := a . journal ;
105 f e . l e a f s := fe . l ea f s −>including ( fb ) ;
106 }
107 }

109 −− This helper makes sure we only transform authors once by checking
what i s

110 −− already transformed .
111 −− RETURN: Sequence (BibTeX : : Author)
112 query bibtex2docbook : : authorSet () : Sequence(String )
113 {
114 BibTex2DocBookMM : : FromAuthor . allInstances ( )−>col lect ( e |

e . in fo )−>asSequence ( )
115 }

117 −− This helper makes sure we only transform t i t l e s once by checking
what i s

118 −− already transformed .
119 −− RETURN: Sequence (BibTeX : : Author)
120 query bibtex2docbook : : t i t l e S e t () : Sequence(String )
121 {
122 BibTex2DocBookMM : : FromTitle . allInstances ( )−>col lect ( e |

e . in fo )−>asSequence ( )
123 }

125 −− This helper makes sure we only transform journals once by
checking what i s

126 −− already transformed .
127 −− RETURN: Sequence (BibTeX : : Author)
128 query bibtex2docbook : : journalSet () : Sequence(String )
129 {
130 BibTex2DocBookMM : : FromArticle . allInstances ( )−>col lect ( e |

e . in fo )−>asSequence ( )
131 }

133 −− This helper bu i ld s a s t r ing containing a l l information on a
given BibTeXEntry .

134 −− Content of the generated s t r ing depends on the entry type .
135 −− IN: BibTeX : : BibTeXEntry
136 −− RETURN: String
137 query bibtex2docbook : : buildEntryPara ( entry :BibTexMM: : BibTeXEntry) :

String
138 {
139 '[' + entry . id + ']' +
140 ' ' + entry . oclType () .name +
141 ( i f entry . oclIsKindOf (BibTeX : : TitledEntry ) then
142 ': ' + entry . oclAsType(BibTeX : : TitledEntry ) ? . t i t l e
143 else '' endif ) +
144 ( i f entry . oclIsKindOf (BibTeX : : AuthoredEntry ) then
145 entry . oclAsType(BibTeX : : AuthoredEntry ) ? . authors?−>iterate ( e ;

s t r : String = ': ' | s t r + e . author + '; ')
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146 else '' endif ) +
147 ( i f entry . oclIsKindOf (BibTeX : : DatedEntry) then
148 ': ' + entry . oclAsType(BibTeX : : DatedEntry) ? . year
149 else '' endif ) +
150 ( i f entry . oclIsKindOf (BibTeX : : BookTitledEntry ) then
151 ': ' +

entry . oclAsType(BibTeX : : BookTitledEntry ) ? . bookt i t l e
152 else '' endif ) +
153 ( i f entry . oclIsKindOf (BibTeX : : ThesisEntry ) then
154 ': ' + entry . oclAsType(BibTeX : : ThesisEntry ) ? . school
155 else '' endif ) +
156 ( i f entry . oclIsKindOf (BibTeX : : Art i c l e ) then
157 ': ' + entry . oclAsType(BibTeX : : Art i c l e ) ? . journal
158 else '' endif ) +
159 ( i f entry . oclIsKindOf (BibTeX : : Unpublished ) then
160 ': ' + entry . oclAsType(BibTeX : : Unpublished ) ? . note
161 else '' endif ) +
162 ( i f entry . oclIsKindOf (BibTeX : : Book) then
163 ': ' + entry . oclAsType(BibTeX : : Book) ? . publ isher
164 else '' endif ) +
165 ( i f entry . oclIsKindOf (BibTeX : : InBook) then
166 ': ' +

entry . oclAsType(BibTeX : : InBook) ? . chapter . toStr ing ()
167 else '' endif )
168 }

8.9 DNF
The example describes a transformation of a simplified UMLmodel
to another simplified UML model. The aim of this transformation
is to generate, from a source UML model, another UML model
that flattens the inherited operations of a class. That is, a Class
in the target model will collect all the operations inherited from
the closure of it’s super classes that are abstract.

Listing 8.9: Complete DNF example.
16 import exprMM : 'DNFMM.ecore' : : booleanexp ;
17 import traceMM : 'DNF2DNF.ecore' : : be2dnf ;

19 transformation dnf {
20 bexp imports exprMM;
21 dnf imports exprMM;
22 imports traceMM ;
23 }

25 map BooleanExprs in dnf {
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26 bexp( root : BooleanExprs ) { }
27 enforce dnf () {
28 realize rootdnf : BooleanExprs |
29 }
30 where( ) {
31 realize r2r : Root2Root |
32 r2r . be := root ;
33 r2r . dnf := rootdnf ;
34 }
35 }

37 −− All l i t e r a l s are transformed
38 map Lit2Lit in dnf {
39 check bexp(a : L i t e ra l | ) { }
40 enforce dnf () {
41 realize adnf : L i t e ra l |
42 } where( ) {
43 realize e2e : Lit2Lit |
44 e2e . beExpr := a ;
45 e2e . dnfExpr := adnf ;
46 e2e .name := a .name ;
47 e2e . ID := a . ID ;
48 e2e . beParentExpr := a . parent ;
49 adnf .name := e2e .name ;
50 adnf . ID := e2e . ID ;
51 }
52 }

54 −− Copy a l l And expressions that are not OrDistributive or DeMorgan
55 map And2AndNoDist in dnf {
56 check bexp(andbe :And |
57 andbe . parent . oclIsUndefined ( ) or
58 (not andbe . parent . oclIsUndefined ( ) and
59 not andbe . parent . oclIsTypeOf (Not) and
60 not andbe . expr−>exists ( e | e . oclIsTypeOf (Or) ) −− and

(andbe . parent . oclIsTypeOf (And) and not
andbe . parent . expr−>e x i s t s (e | e . oclIsTypeOf (Or) ) )

61 ) ;
62 ) { }
63 enforce dnf () {
64 realize anddnf :And |
65 }
66 where( ) {
67 realize e2e : Expr2Expr |
68 e2e . beExpr := andbe ;
69 e2e . dnfExpr := anddnf ;
70 −− I f parent i s OrDistribution , my parent ( i f dnf ) i s my

s i b l i n g
71 e2e . beParentExpr := i f not andbe . parent . oclIsUndefined ( ) and
72 andbe . parent . oclIsTypeOf (And) and
73 andbe . parent . expr−>exists ( e |

e . oclIsTypeOf (Or) ) then
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74 andbe . parent . expr−>select ( e | e <>
andbe)−>f i r s t ( )

75 else
76 andbe . parent
77 endif ;
78 e2e . ID := andbe . ID ;
79 anddnf . ID := e2e . ID ;
80 }
81 }

83 −− Copy a l l Or expressions that are not OrDistributive or DeMorgan
84 map Or2OrNoDist in dnf {
85 check bexp( orbe :Or) {
86 orbe . parent . oclIsUndefined ( ) or (
87 not orbe . parent . oclIsUndefined ( ) and
88 not orbe . parent . oclIsTypeOf (Not) and
89 (not ( orbe . parent . oclIsTypeOf (And) and
90 orbe . parent . expr−>exists ( e | e . oclIsTypeOf (Or) ) ) ) ) ;
91 }
92 enforce dnf () {
93 realize ordnf :Or |
94 }
95 where( ) {
96 realize e2e : Expr2Expr |
97 e2e . beExpr := orbe ;
98 e2e . dnfExpr := ordnf ;
99 e2e . beParentExpr := orbe . parent ;

100 e2e . ID := orbe . ID ;
101 ordnf . ID := e2e . ID ;
102 }
103 }

105 −− First push the negations down to the leaves of the syntax tree
using

106 −− De Morgan ’ s laws and double−negation el imination .
107 −− ~(a+b) = ~a.~ b
108 map DeMorganOr in dnf {
109 check bexp(nbe : Not , orbe :Or |
110 nbe . expr−>includes ( orbe ) ; ) { }
111 enforce dnf () {
112 realize anddnf :And, realize anot : Not , realize bnot : Not |
113 anddnf . expr := Sequence{anot , bnot } ;
114 }
115 where ( ) {
116 realize not2and : DeMorgan , realize notor2nots : Expr2MultExpr |
117 not2and . beExpr := nbe ;
118 not2and . dnfExpr := anddnf ;
119 not2and . ID := nbe . ID ;
120 not2and . beParentExpr := nbe . parent ;
121 anddnf . ID := not2and . ID ;
122 notor2nots . beExpr := orbe ;
123 notor2nots . dnfExprs := Sequence(exprMM : : Not){anot , bnot } ;
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124 notor2nots . ID := orbe . ID ;
125 anot . ID := notor2nots . ID + '_1' ;
126 bnot . ID := notor2nots . ID + '_2' ;
127 }
128 }

130 −− ~(a . b) = ~a+~b
131 map DeMorganAnd in dnf {
132 check bexp(nbe : Not , andbe :And |
133 nbe . expr−>includes (andbe) ; ) { }
134 enforce dnf () {
135 realize ordnf : Or , realize anot : Not , realize bnot : Not |
136 ordnf . expr := Sequence{anot , bnot } ;
137 }
138 where ( ) {
139 realize not2or : DeMorgan , realize notand2nots : Expr2MultExpr |
140 not2or . beExpr := nbe ;
141 not2or . dnfExpr := ordnf ;
142 not2or . ID := nbe . ID ;
143 not2or . beParentExpr := nbe . parent ;
144 ordnf . ID := not2or . ID ;
145 notand2nots . beExpr := andbe ;
146 notand2nots . dnfExprs := Sequence(exprMM : : Not){anot , bnot } ;
147 notand2nots . ID := andbe . ID ;
148 anot . ID := notand2nots . ID + '_1' ;
149 bnot . ID := notand2nots . ID + '_2' ;
150 }
151 }

153 −− Then f l o a t the dis junct ions to the top using the d i s t r i b u t i v e law
154 −− (a) . ( b+c) = (a . b) + (a . c)
155 −− (b+c) . a = (b . a) + (c . a)
156 −− 6.(13+17) = (6.13) + (6c .17
157 map OrDistribution in dnf {
158 check bexp( e1 :And, e2 : Or , a : Expr |
159 e2 <> a ;
160 e1 . expr−>includes ( e2 ) ;
161 e1 . expr−>includes (a) ; ) {}
162 enforce dnf () {
163 realize e3 : Or , realize e4 :And, realize e5 :And |
164 e3 . expr := Sequence{e4 , e5 } ;
165 }
166 where( ) {
167 realize or2and : OrDistribution , realize

a2a_c : OrDistributionCopy ,
168 realize disor2ands : Expr2MultExpr |
169 or2and . beExpr := e1 ;
170 or2and . dnfExpr := e3 ;
171 or2and . ID := e1 . ID ;
172 or2and . beParentExpr := e1 . parent ;
173 e3 . ID := or2and . ID ;
174 a2a_c . beExpr := a ;
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175 a2a_c . dnfAndDist := i f e1 . expr−>indexOf (a) = 1 then e5
176 else e4
177 endif ;
178 a2a_c . ID := a . ID + '_c' ;
179 disor2ands . beExpr := e2 ;
180 disor2ands . dnfExprs := Sequence(exprMM : : Not){e4 , e5 } ;
181 −−disor2ands . ID := e2 .ID;
182 e4 . ID := e2 . ID + '_1' ;
183 e5 . ID := e2 . ID + '_2' ;
184 }
185 }

187 −− Copy expressions in OrDistributive
188 map Expr2ExprCopy in dnf {
189 check bexp(a : Expr | ) { }
190 enforce dnf () {
191 realize adnf : Expr |
192 } where( e2e_c : OrDistributionCopy |
193 e2e_c . beExpr = a ;
194 ) {
195 realize e2e_d : Expr2ExprCopy |
196 e2e_d . beExpr := a ;
197 e2e_d . dnfExpr := adnf ;
198 e2e_d . ID := a . ID + '_c' ;
199 adnf . ID := e2e_d . ID ;
200 adnf . parent := e2e_c . dnfAndDist ;
201 }
202 }

204 map Lit2LitCopy in dnf {
205 check bexp(a : L i t e ra l ) { }
206 enforce dnf () {
207 realize adnf : L i t e ra l |
208 } where( e2e_c : OrDistributionCopy |
209 e2e_c . beExpr = a ;
210 ) {
211 realize e2e_d : Lit2LitCopy |
212 e2e_d . beExpr := a ;
213 e2e_d . dnfExpr := adnf ;
214 e2e_d . ID := a . ID + '_c' ;
215 adnf . ID := e2e_d . ID ;
216 adnf . parent := e2e_c . dnfAndDist ;
217 e2e_d .name := a .name + '_c' ;
218 adnf .name := e2e_d .name ;
219 }
220 }

222 −− Deep copy expressions
223 map Expr2ExprCopy_Rec in dnf {
224 check bexp(a : Expr , aparent : Expr |
225 aparent . expr−>includes (a) ;
226 ) { }
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227 enforce dnf () {
228 realize adnf : Expr |
229 } where( e2ep : Expr2ExprCopy |
230 e2ep . beExpr = aparent ;
231 ) {
232 realize e2e_r : Expr2ExprCopy |
233 e2e_r . beExpr := a ;
234 e2e_r . dnfExpr := adnf ;
235 e2e_r . ID := a . ID + '_rc' ;
236 adnf . ID := e2e_r . ID ;
237 adnf . parent := e2ep . dnfExpr ;
238 }
239 }

241 map Lit2LitCopy_Rec in dnf {
242 check bexp(a : Litera l , aparent : Expr |
243 aparent . expr−>includes (a) ; ) { }
244 enforce dnf () {
245 realize adnf : L i t e ra l |
246 } where( e2ep : Expr2ExprCopy |
247 e2ep . beExpr = aparent ; ) {
248 realize e2e_r : Lit2LitCopy |
249 e2e_r . beExpr := a ;
250 e2e_r . dnfExpr := adnf ;
251 e2e_r . ID := a . ID + '_rc' ;
252 adnf . ID := e2e_r . ID ;
253 adnf . parent := e2ep . dnfExpr ;
254 e2e_r .name := a .name ;
255 adnf .name := e2e_r .name ;
256 }
257 }

261 map And2AndCopy in dnf refines Expr2ExprCopy {
262 check bexp(a :And) { }
263 enforce dnf () {
264 realize adnf :And |
265 } where( ) { }
266 }

268 map Or2OrCopy in dnf refines Expr2ExprCopy {
269 check bexp(a :Or) { }
270 enforce dnf () {
271 realize adnf :Or |
272 } where( ) { }
273 }

275 map Or2OrCopy_Rec in dnf refines Expr2ExprCopy_Rec {
276 check bexp(a :Or) { }
277 enforce dnf () {
278 realize adnf :Or |
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279 } where( ) { }
280 }

282 map And2AndCopy_Rec in dnf refines Expr2ExprCopy_Rec {
283 check bexp(a :And) { }
284 enforce dnf () {
285 realize adnf :And |
286 } where( ) { }
287 }

289 map SetMultiParent in dnf {
290 check bexp( e : Expr |
291 not e . parent . oclIsUndefined ( ) ; ) { }
292 where ( e2e : Expr2Expr , e2ep : Expr2MultExpr |
293 not e2e . beParentExpr . oclIsUndefined ( ) ;
294 e2e . beExpr = e ;
295 e2ep . beExpr = e2e . beParentExpr ; ) {
296 e2e . dnfExpr . parent := let pos = e . parent . expr−>indexOf ( e ) in
297 e2ep . dnfExprs−>at ( pos ) ;
298 }
299 }

301 map SetParent in dnf {
302 check bexp( e : Expr |
303 not e . parent . oclIsUndefined ( ) ; ) { }
304 where ( e2e : Expr2Expr , e2ep : Expr2Expr |
305 not e2e . beParentExpr . oclIsUndefined ( ) ;
306 e2e . beExpr = e ;
307 e2ep . beExpr = e2e . beParentExpr ; ) {
308 e2e . dnfExpr . parent := e2ep . dnfExpr ;
309 }
310 }

312 map SetRootParent in dnf {
313 check bexp( e : Expr |
314 e . parent . oclIsUndefined ( ) ; ) { }
315 enforce dnf ( dnfExpr : Expr , root : BooleanExprs ) {
316 root . hasExpr := root . hasExpr−>including ( dnfExpr ) ;
317 }
318 where ( e2e : Expr2Expr |
319 e2e . beExpr = e ;
320 e2e . dnfExpr = dnfExpr ; ) {
321 }
322 }

8.10 Mi to Si
The example addresses the issue of transforming an UML Class
hierarchy with multiple inheritance to a Java Class hierarchy with

295



Chapter 8. QVTc Transformations

single inheritance. The aim of this transformation is to generate,
from an UML (simplified) class hierarchy, a Java (simplified) class
hierarchy by defining a multiple-inheritance (MI) interface hierar-
chy corresponding to the MI UML class hierarchy and to establish
implementation links between the class hierarchy and the imple-
mentation hierarchy.

Listing 8.10: Complete Mi2Si example.
13 import umlmmmi : 'umlMM.ecore' : : umlmmmi;
14 import javammsi : 'javaMM.ecore' : : javammsi ;
15 import uml2java : 'uml2java.ecore' : : umlmi2javasi ;

17 transformation Mi2Si {
18 uml imports umlmmmi;
19 java imports javammsi ;
20 imports uml2java ;
21 }

23 map PackageToPackage in Mi2Si {
24 uml( pIn : Package ) {}
25 enforce java () {
26 realize pOut : Package
27 }
28 where ( ) {
29 realize p2p : Package2Package |
30 p2p . umlPackage := pIn ;
31 p2p . javaPackage := pOut ;
32 }
33 }

35 map ClassInPackage in Mi2Si {
36 check uml(p1 : Package , c1 : Class |
37 p1 . containsClass−>includes ( c1 ) ; ) {
38 }
39 enforce java (p2 : Package ) {
40 realize c2 : Class , realize i : In te r face |
41 c2 . implements := Sequence{ i } ;
42 p2 . containsClass := p2 . containsClass−>including ( c2 ) ;
43 p2 . conta ins I t e r face := p2 . conta ins I ter face−>including ( i ) ;
44 }
45 where (p2p : Package2Package |
46 p2p . umlPackage = p1 ;
47 p2p . javaPackage = p2 ; ) {
48 realize c2c : RClass2Class , realize c2 i : Class2Inter face |
49 c2 i . umlClass := c1 ;
50 c2 i . javaInter face := i ;
51 c2c . umlClass := c1 ;
52 c2c . javaClass := c2 ;
53 }
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54 map {
55 where ( ) {
56 c2c .name := c1 .name ;
57 c2 .name := c2c .name ;
58 c2 i .name := 'I' + c1 .name ;
59 i .name := c2 i .name ;
60 }
61 }
62 }

64 map ClassSuperToImplements in Mi2Si {
65 check uml(umlc1 : Class , umlc2 : Class |
66 umlc1 . supers−>includes (umlc2) ;
67 ) { }
68 enforce java ( javac1 : Class , javai2 : Inte r face ) {
69 javac1 . implements := javac1 . implements−>including ( javai2 ) ;
70 }
71 where ( c2to i : Class2Inter face , c12c : Class2Class |
72 c12c . umlClass = umlc1 ;
73 c12c . javaClass = javac1 ;
74 c2to i . umlClass = umlc2 ;
75 c2to i . javaInter face = javai2 ;
76 ) { }
77 }

8.11 Text Path Expression to Path
Expression

The Text Path Expression to Path Expression is the first step of
the PathExp to PetriNet transformation. It is a concrete syntax to
abstract syntax transformation for Path Expressions. This trans-
formation addresses the problem of going from a text represen-
tation of a Path Expression to an abstract syntax representation
that is amenable to graphical representation.

Listing 8.11: Complete TextualPathExp to PathExp example.
1 import textPathMM : 'TextualPathExp.ecore' : : textualPathExp ;
2 import pathExpMM : 'PathExp.ecore' : : PathExp ;
3 import text2pathMM : 'Text2PathExp.ecore' : : Text2PathExp ;

5 transformation text2model {
6 text imports textPathMM ;
7 path imports pathExpMM;
8 imports text2pathMM ;
9 }
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11 /∗ This mapping determines a one−to−one re la t ion between a
12 ∗ TextualPathExp and a PathExp .
13 ∗/
14 map Main in text2model {
15 check text ( tpe : TextualPathExp) { }
16 enforce path () {
17 realize pe : PathExp |
18 }
19 where ( ) {
20 realize tpe2pe : TextPath2Path |
21 tpe2pe . textpathexp := tpe ;
22 tpe2pe . pathexp := pe ;
23 }
24 map {
25 where( ) {
26 tpe2pe .name := tpe .name ;
27 pe .name := tpe2pe .name ;
28 }
29 }
30 }

32 −− A PrimitiveTransition always generates a Transition
33 map PrimitiveTransit ion in text2model {
34 check text ( tpe_pt : PrimitiveTrans ) { }
35 enforce path (pe : PathExp) {
36 realize pe_t : Transit ion |
37 pe_t . PathExp := pe ;
38 }
39 where ( tpe2pe : TextPath2Path |
40 tpe2pe . pathexp = pe ; ) {
41 realize t2t : PrimitiveTrans2SubPath |
42 t2t . textTrans := tpe_pt ;
43 t2t . pathTrans := pe_t ;
44 }
45 map {
46 where( ) {
47 t2t .name := tpe_pt .name ;
48 pe_t .name := t2t .name ;
49 }
50 }
51 }

53 −− A PrimitiveTrans that i s not mult ip le generates a state ,
54 −− add i t iona l l y to the trans i t ion . The s ta te i s the targe t of the
55 −− t rans i t ion
56 map SingleTransit ion in text2model refines PrimitiveTransit ion {
57 check text (not tpe_pt . i sMult ip le ; ) { }
58 enforce path () {
59 realize pe_ts : State |
60 pe_ts . PathExp := pe ;
61 pe_t . target := pe_ts ;
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62 }
63 where( ) {
64 t2t . s tate := pe_ts ;
65 }
66 }

68 −− The root t rans i t ion also generates i t s source s ta te
69 map RootTransition in text2model refines SingleTransit ion {
70 check text ( tpe : TextualPathExp |
71 tpe . path . t rans i t ions −>f i r s t ( ) = tpe_pt ; ) { }
72 enforce path () {
73 realize pe_ss : State |
74 pe_ss . PathExp := pe ;
75 pe_t . source := pe_ss ;
76 }
77 }

79 −− A Primitive in the root path
80 map TransitionInRoothPath in text2model refines SingleTransit ion {
81 check text ( tpe : TextualPathExp |
82 getPath ( tpe_pt ) = tpe . path ;
83 tpe . path . t rans i t ions −>f i r s t ( ) <> tpe_pt ; ) { }
84 where( ) {
85 t2t . prevTrans := getPreviousTransit ion ( tpe_pt , tpe . path ) ;
86 }
87 }

89 −− A primit ive t rans i t ion in an altTran path i t i s not the l a s t
90 −− t rans i t ion in the path
91 map TransitionInAltPath in text2model refines SingleTransit ion {
92 check text ( getPath ( tpe_pt ) . t rans i t ions −>last ( ) <> tpe_pt ;
93 AlternativeTrans . allInstances ( )
94 −>exists ( at | at . altPaths
95 −>includes ( getPath ( tpe_pt ) ) ) ; ) { }
96 where( ) {
97 t2t . prevTrans :=
98 getPreviousTransit ion ( tpe_pt , getPath ( tpe_pt ) ) ;
99 }

100 }

102 −− PrimitiveTrans in the root or a l t path always have as source the
103 −− targe t of the previous trans i t ion
104 map TransitionSource in text2model {
105 check text ( tpe_pt : PrimitiveTrans ) { }
106 enforce path (pe_t : Transition , pe_s : State ) {
107 pe_t . source := pe_s ;
108 }
109 where( t2t : PrimitiveTrans2SubPath , t2t_prev : Tansition2Transition |
110 t2t . textTrans = tpe_pt ;
111 t2t . prevTrans = t2t_prev . textTrans ;
112 t2t . pathTrans = pe_t ;
113 t2t_prev . s tate = pe_s ; ) { }
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114 }

116 −− PrimitiveTransitions that are mult ip le
117 map MultipleTransit ion in text2model refines PrimitiveTransit ion {
118 check text ( tpe_pt . i sMult ip le ; ) { }
119 where( ) {
120 t2t . prevTrans :=
121 getPreviousTransit ion ( tpe_pt , getPath ( tpe_pt ) ) ;
122 }
123 }

125 −− Source and targe t of a mult ip le t rans i t ion are the same
126 map MultipleTransitionSource in text2model {
127 check text ( tpe_pt : PrimitiveTrans ) { }
128 enforce path (pe_t : Transition , pe_s : State ) {
129 pe_t . source := pe_s ;
130 pe_t . target := pe_s ;
131 }
132 where( t2t : PrimitiveTrans2SubPath , t2t_prev : Tansition2Transition |
133 t2t . textTrans = tpe_pt ;
134 t2t . textTrans . i sMult ip le ;
135 t2t . prevTrans = t2t_prev . textTrans ;
136 t2t . pathTrans = pe_t ;
137 t2t_prev . s tate = pe_s ; ) { }
138 }

140 −− A primit ive t rans i t ion in an altTran path i t i s the l a s t
141 −− t rans i t ion in the path
142 map LastTransitionInAltPath in text2model
143 refines PrimitiveTransit ion {
144 check text ( tpe_at : AlternativeTrans |
145 getPath ( tpe_pt ) . t rans i t ions −>last ( ) = tpe_pt ;
146 tpe_at . altPaths−>includes ( getPath ( tpe_pt ) ) ; ) { }

148 where( ) {
149 realize t2t : LastPtimTransToSubPath |
150 t2t . prevTrans :=
151 getPreviousTransit ion ( tpe_pt , getPath ( tpe_pt ) ) ;
152 t2t . pathOwner := tpe_at ;
153 }
154 }

156 map LastTransitionInAltPathEnds in text2model {
157 check text ( tpe_pt : PrimitiveTrans ) { }
158 enforce path (pe_t : Transition , pe_ss : State , pe_ts : State ) {
159 pe_t . source := pe_ss ;
160 pe_t . target := pe_ts ;
161 }
162 where( t2t : LastPtimTransToSubPath , t2t_prev : Tansition2Transition ,
163 a l t t 2 s : AltTrans2State |
164 t2t . prevTrans = t2t_prev . textTrans ;
165 t2t . pathTrans = pe_t ;
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166 t2t_prev . s tate = pe_ss ;
167 a l t t 2 s . textTrans = t2t . pathOwner ;
168 a l t t 2 s . s tate = pe_ts ; ) { }
169 }

171 −− This ru le generates the State element that c loses an input
172 −− AlternativeTransit ion element . The generated State i s the one at
173 −− which the d i f f e r e n t a l t e rna t i ve paths of the AlternativeTransit ion
174 −− jo in .
175 map AlternativeTransit ion in text2model {
176 check text ( tpe_at : AlternativeTrans ) {}
177 enforce path (pe : PathExp) {
178 realize pe_s : State |
179 pe_s . PathExp := pe ;
180 }
181 where( tpe2pe : TextPath2Path |
182 tpe2pe . pathexp = pe ; ) {
183 realize t2t : AltTrans2State |
184 t2t . textTrans := tpe_at ;
185 t2t . s tate := pe_s ;
186 }
187 }

189 −− Get the path that contains a trans i t ion
190 query text2model : : getPath ( trans : textPathMM : : Transit ion )
191 : textPathMM : : Path {
192 textPathMM : : Path . allInstances ( )
193 −>select (a | a . t rans i t ions −>includes ( trans ) )
194 −>asSequence ( )−>f i r s t ( )
195 }

197 −− Determine i f a t rans i t ion i s the f i r s t of a path
198 query text2model : : isFirstOfPath ( t : textPathMM : : Transit ion ) : Boolean {
199 let p : textPathMM : : Path = getPath ( t )
200 in t = p . t rans i t ions −>f i r s t ( )
201 }

203 −− Returns the previous non−mult ip le PrimitiveTransition . I f the
204 −− t rans i t ion i s the f i r s t of a path in an AltTransition , then the
205 −− previous trans i t ion i s the one before the AltTransition .
206 query text2model : : getPreviousTransit ion (
207 pt : textPathMM : : PrimitiveTrans ,
208 p : textPathMM : : Path ) : textPathMM : : Transit ion {

210 i f isFirstOfPath ( pt ) then
211 let a l t : textPathMM : : AlternativeTrans =
212 textPathMM : : AlternativeTrans . allInstances ( )
213 −>select (a | a . altPaths−>includes (p) )
214 −>asSequence ( )
215 −>f i r s t ( )
216 in let p2 : textPathMM : : Path = getPath ( a l t )
217 in let i : Integer = p2 . t rans i t ions −>indexOf ( a l t )
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218 in let t : textPathMM : : Transit ion =
219 p2 . t rans i t ions −>at ( i −1) in
220 i f t . i sMult ip le then
221 getPreviousTransit ion (
222 t . oclAsType(textPathMM : : PrimitiveTrans ) ,
223 p2)
224 else
225 t
226 endif
227 else
228 let i : Integer = p . trans i t ions −>indexOf ( pt )
229 in let t : textPathMM : : Transit ion =
230 p . t rans i t ions −>at ( i −1) in
231 i f t . i sMult ip le then
232 getPreviousTransit ion (
233 t . oclAsType(textPathMM : : PrimitiveTrans ) , p)
234 else
235 t
236 endif
237 endif
238 }

8.12 Path Expression to Petri Net
The Path Expression to Petri Net example describes a transfor-
mation from a path expression to a Petri net. This Annex provides
the complete transformation code of the whole transformation se-
quence that enables to produce an XML Petri net representation
(in the PNML format) from a textual definition of a path expres-
sion.

Listing 8.12: Complete PathExpression to PetriNet example.
1 import pathExpMM : 'PathExp.ecore' : : PathExp ;
2 import petriNetMM : 'PetriNet.ecore' : : PetriNet ;
3 import path2petriMM : 'PathExp2PetriNet.ecore' : : PathExp2PetriNet ;

5 transformation path2petri {
6 path imports pathExpMM;
7 pet r i imports petriNetMM ;
8 imports path2petriMM ;
9 }

11 map Main in path2petri {
12 check path (pe : PathExp) {}
13 enforce pet r i ( ) {
14 realize pn : PetriNet |
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15 pn .name = 'path' ;
16 }
17 where( ) {
18 realize pe2pn : PathExp2PetriNet |
19 pe2pn . pathexp := pe ;
20 pe2pn . petr inet := pn ;
21 pe2pn .name := pe .name ;
22 pn .name := pe2pn .name ;
23 }
24 }

26 −− since incoming and outgoing have opposites . l e t the trans i t ion
handle them

27 map StateToPlace in path2petri {
28 check path ( s : State , pe : PathExp |
29 pe . states−>includes ( s ) ;
30 ) { }
31 enforce pet r i (pn : PetriNet ) {
32 realize p : Place |
33 p .name := '' ; −− To provide same r e s u l t s as ATL
34 pn . places := pn . places−>including (p) ;
35 }
36 where (pe2pn : PathExp2PetriNet |
37 pe2pn . pathexp = pe ;
38 pe2pn . petr inet = pn ;
39 ) {
40 realize s2p : State2Place |
41 s2p . s tate := s ;
42 s2p . place := p ;
43 }
44 }

46 map Transit ion2Transit ion in path2petri {
47 check path ( pt : Transition , pe : PathExp , ss : State , t s : State |
48 pe . t rans i t ions −>includes ( pt ) ;
49 pt . source = ss ;
50 pt . target = ts ;
51 ) { }
52 enforce pet r i (pn : PetriNet , sp : Place , tp : Place ) {
53 realize nt : Transition , realize pn_ia : PlaceToTransArc ,
54 realize pn_oa : TransToPlaceArc |
55 pn . t ra n s i t i o n s := pn . t rans i t ions −>including ( nt ) ;
56 pn . arcs := pn . arcs−>including (pn_ia) ;
57 pn . arcs := pn . arcs−>including (pn_oa) ;
58 pn_ia . weight := 1;
59 pn_ia . source := sp ;
60 pn_ia . target := nt ;
61 pn_oa . weight := 1;
62 pn_oa . source := nt ;
63 pn_oa . target := tp ;
64 }
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65 where (pe2pn : PathExp2PetriNet , ss2sp : State2Place ,
ts2tp : State2Place |

66 pe2pn . pathexp = pe ;
67 pe2pn . petr inet = pn ;
68 ss2sp . s tate = ss ;
69 ss2sp . place = sp ;
70 ts2tp . s tate = ts ;
71 ts2tp . place = tp ;
72 ) {
73 realize t2t : Trans2Trans , realize t2tInc : Trans2InArc ,
74 realize t2tOut : Trans2OutArc |
75 t2t . pathTrans := pt ;
76 t2t . netTrans := nt ;
77 t2tInc . source := ss2sp ;
78 t2tInc . target := t2t ;
79 t2tOut . source := t2t ;
80 t2tOut . target := ts2tp ;
81 t2t .name := pt .name ;
82 nt .name := t2t .name ;
83 }
84 }

8.13 Petri Net to PNML(XML)
The Petri Net to PNML(XML) example describes a transforma-
tion from the PetriNet domain to the XML domain. The XML mo-
del will provide an XML representation of the PetriNet in PNML
format1. The transition is, as with the PathExp to PetriNet (Sect.
8.12), straight forward, with one mapping to transform elements
of each of the PetriNet classes into it’s XML representation. Note
that the used XML metamodel is a simplified version of the XML
specification.

Listing 8.13: Complete Petri Net to PNML(XML) example.
1 import petriNetMM : 'PetriNet.ecore' : : PetriNet ;
2 import xmlMM : 'XML.ecore' : :XML;
3 import petri2xmlMM : 'PetriNet2XML.ecore' : : PetriNet2XML ;

5 transformation petri2xml {
6 pet r i imports petriNetMM ;
7 xml imports xmlMM;
8 imports PetriNet2XML ;
9 }

1http://www.pnml.org. last accessed 10/05/2017
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11 /∗∗
12 ∗ Rule ’Main ’
13 ∗ This ru le generates the ”pnml” root tag from the input PetriNet

element .
14 ∗ This tag has an ”xmlns” a t t r i b u t e and a ”net” element as ch i ld

element .
15 ∗ The ”net” tag has an ” id ” , a ” type” and a ”name” at t r i bu tes , and

the
16 ∗ fo l lowing chi ldren elements :
17 ∗ a ” place ” element for each Place of the input PetriNet model
18 ∗ a ” trans i t ion ” element for each Transition of the input PetriNet

model
19 ∗ an ”arc” element for each Arc of the input PetriNet model .
20 ∗/
21 map Main in petri2xml {
22 check pet r i (pn : PetriNet ) {}
23 enforce xml () {
24 realize root : Root ,
25 realize xmlns : Attribute ,
26 realize id : Attribute ,
27 realize type : Attribute ,
28 realize net : Element ,
29 realize name : Element ,
30 realize text : Element ,
31 realize val : Text |
32 root .name := 'pnml' ;
33 root . chi ldren := Sequence{xmlns , net } ;
34 xmlns .name := 'xmlns' ;
35 xmlns . value :='http://www.example.org/pnpl' ;
36 net .name := 'net' ;
37 net . chi ldren := Sequence{id , type , name};
38 id .name := 'id' ;
39 id . value := 'n1' ;
40 type .name := 'type' ;
41 type . value := 'http://www.example.org/pnpl/PTNet' ;
42 name .name := 'name' ;
43 name . chi ldren := Sequence{ text } ;
44 text .name := 'text' ;
45 text . chi ldren := Sequence{val } ;

47 }
48 where( ) {
49 realize pn2root : PetriNet2Root |
50 pn2root . petriNet := pn ;
51 pn2root . root := root ;
52 pn2root . xmlns := xmlns ;
53 pn2root . id := id ;
54 pn2root . type := type ;
55 pn2root . net := net ;
56 pn2root .name := name ;
57 pn2root . text := text ;
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58 pn2root . val := val ;
59 }
60 map {
61 where ( ) {
62 val . value := pn .name ;
63 }
64 }
65 }

67 map Place in petri2xml {
68 check pet r i (pn : PetriNet ) {
69 pn_s : Place |
70 pn . places−>includes (pn_s) ;
71 }
72 enforce xml( net : Element ) {
73 realize xml_place : Element ,
74 realize id : Attribute ,
75 realize name : Element ,
76 realize text : Element ,
77 realize val : Text |
78 xml_place .name := 'place' ;
79 xml_place . chi ldren := Sequence{id , name};
80 id .name := 'id' ;
81 name .name := 'name' ;
82 name . chi ldren := Sequence{ text } ;
83 text .name := 'text' ;
84 text . chi ldren := Sequence{val } ;
85 net . chi ldren := net . chi ldren−>including ( xml_place ) ;
86 }
87 where( pn2root : PetriNet2Root |
88 pn2root . petriNet = pn ;
89 pn2root . net = net ; ) {
90 realize p2e : Place2Element |
91 p2e . place := pn_s ;
92 p2e . xml_place := xml_place ;
93 p2e . id := id ;
94 p2e .name := name ;
95 p2e . text := text ;
96 p2e . val := val ;

98 }
99 map {

100 where ( ) {
101 id . value := pn . places−>indexOf (pn_s) . toStr ing () ;
102 val . value := pn_s .name ;
103 }
104 }
105 }

107 map Transit ion in petri2xml {
108 check pet r i (pn : PetriNet ) {
109 pn_t : Transit ion |
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110 pn . t rans i t ions −>includes (pn_t) ;
111 }
112 enforce xml( net : Element ) {
113 realize xml_trans : Element ,
114 realize trans_id : Attribute |
115 xml_trans .name := 'transition' ;
116 xml_trans . ch i ldren := Sequence{trans_id } ;
117 trans_id .name := 'id' ;
118 net . chi ldren := net . chi ldren−>including ( xml_trans ) ;
119 }
120 where ( pn2root : PetriNet2Root |
121 pn2root . petriNet = pn ;
122 pn2root . net = net ; ) {
123 realize t2e : Transition2Element |
124 t2e . xml_trans := xml_trans ;
125 t2e . trans_id := trans_id ;
126 }
127 map {
128 where( ) {
129 trans_id . value := pn . places−>s ize ( ) . toStr ing () +
130 pn . t rans i t ions −>indexOf (pn_t) . toStr ing () ;
131 }
132 }
133 }

135 map PlaceToTransArc in petri2xml {
136 check pet r i (pn : PetriNet ) {
137 pn_a: PlaceToTransArc |
138 pn . arcs−>includes (pn_a) ;
139 }
140 enforce xml( net : Element ) {
141 realize xml_arc : Element ,
142 realize id : Attribute ,
143 realize source : Attribute ,
144 realize target : Attribute |
145 xml_arc .name := 'arc' ;
146 xml_arc . ch i ldren := Sequence{id , source , target } ;
147 id .name := 'id' ;
148 net . chi ldren := net . chi ldren−>including (xml_arc) ;
149 }
150 where( pn2root : PetriNet2Root |
151 pn2root . petriNet = pn ;
152 pn2root . net = net ; ) {
153 realize p2a : Place2TransArc |
154 p2a .pn_a := pn_a;
155 p2a . xml_arc := xml_arc ;
156 p2a . id := id ;
157 p2a . source := source ;
158 p2a . target := target ;
159 }
160 map {
161 where( ) {
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162 id . value := pn . places−>s ize ( ) . toStr ing () +
163 pn . t rans i t ions −>s ize ( ) . toStr ing () +
164 pn . arcs−>indexOf (pn_a) . toStr ing () ;
165 source .name := 'source' ;
166 source . value :=

pn . places−>indexOf (pn_a. source ) . toStr ing () ;
167 target .name := 'target' ;
168 target . value := pn . places−>s ize ( ) . toStr ing () +
169 pn . t rans i t ions −>indexOf (pn_a. target ) . toStr ing () ;
170 }
171 }
172 }

176 map TransToPlaceArc in petri2xml {
177 check pet r i (pn : PetriNet ) {
178 pn_a: TransToPlaceArc |
179 pn . arcs−>includes (pn_a) ;
180 }
181 enforce xml( net : Element ) {
182 realize xml_arc : Element ,
183 realize id : Attribute ,
184 realize source : Attribute ,
185 realize target : Attribute |
186 xml_arc .name := 'arc' ;
187 xml_arc . chi ldren := Sequence{id , source , target } ;
188 id .name := 'id' ;
189 net . chi ldren := net . chi ldren−>including (xml_arc) ;
190 }
191 where( pn2root : PetriNet2Root |
192 pn2root . petriNet = pn ;
193 pn2root . net = net ; ) {
194 realize t2p : Trans2PlaceArc |
195 t2p . xml_arc := xml_arc ;
196 t2p . id := id ;
197 t2p . source := source ;
198 t2p . target := target ;
199 }
200 map {
201 where( ) {
202 id . value := pn . places−>s ize ( ) . toStr ing () +
203 pn . t rans i t ions −>s ize ( ) . toStr ing () +
204 pn . arcs−>indexOf (pn_a) . toStr ing () ;
205 source .name := 'source' ;
206 source . value := pn . places−>s ize ( ) . toStr ing () +
207 pn . t rans i t ions −>indexOf (pn_a. source ) . toStr ing () ;
208 target .name := 'target' ;
209 target . value :=

(pn . places−>indexOf (pn_a. target ) ) . toStr ing () ;
210 }
211 }
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212 }

8.14 Railway to Control
The example is based on the train benchmark metamodel [102],
which the authors claim contains the most typical class diagram
constructs. The transformation considers that the train domain
can be used model a toy model train, and we are interested in
automate the signals (semaphores) and switches that control the
toy model train behaviour. The transformation is used to create a
model of a control system that can be used to monitor the state
of the toy model train and, for example, automate the toy railway
to allow multiple trains to run on it.

Listing 8.14: Complete Railway to Control example.
1 import railway : 'Railway.ecore#/' ;
2 import contro l : 'Control.ecore#/' ;
3 import rai lway2control : 'Railway2Control.ecore#/' ;

5 transformation r2c {
6 r a i l imports railway ;
7 contro l imports contro l ;
8 imports rai lway2control ;
9 }

11 map rai lway2control in r2c {

13 check r a i l ( r : RailwayContainer ) { }
14 enforce contro l ( ) {
15 realize c : RailwayControl |
16 }
17 where ( ) {
18 realize r2c : Railway2Control |
19 r2c . railway := r ;
20 r2c . contro l := c ;
21 }
22 }

24 map route2route in r2c {
25 check r a i l ( cont : RailwayContainer , r r : Route |
26 cont . routes−>includes ( rr ) ; ) { }
27 enforce contro l ( c t r l : RailwayControl ) {
28 realize cr : Route |
29 cr . controledBy := c t r l ;
30 }
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31 where ( r2c : Railway2Control |
32 r2c . railway = cont ;
33 r2c . contro l = c t r l ;
34 ) {
35 realize r2r : Route2Route |
36 r2r . railwayRoute := rr ;
37 r2r . controlRoute := cr ;
38 }
39 map {
40 where( ) {
41 r2r . id := rr . id ;
42 r2r . id := cr . id ;
43 rr . id := r2r . id ;
44 cr . id := r2r . id ;
45 }
46 }
47 }

49 map semaphore2signal in r2c {
50 check r a i l ( rc : RailwayContainer , r : Region , seg : Segment ,

s : Semaphore |
51 rc . regions−>includes ( r ) ;
52 r . elements−>includes ( seg ) ;
53 seg . semaphores−>includes ( s ) ;
54 ) { }
55 enforce contro l ( c : RailwayControl ) {
56 realize ss : SemaphoreSignal |
57 ss . controledBy := c ;
58 }
59 where ( r2c : Railway2Control |
60 r2c . railway = r ;
61 r2c . contro l = c ;
62 ) {
63 realize s2s : Semaphore2Signal |
64 s2s . semaphore := s ;
65 s2s . s i gna l := ss ;
66 }
67 map {
68 where( ) {
69 s2s . id := s . id ;
70 s2s . id := ss . id ;
71 s . id := s2s . id ;
72 s . id := s2s . id ;
73 ss . s tate :=
74 i f s . s i gna l = railway : : Signal : :FAILURE then
75 contro l : : Light : :RED
76 else
77 i f s . s i gna l = railway : : Signal : :STOP then
78 contro l : : Light : :RED
79 else
80 contro l : : Light : :GREEN
81 endif
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82 endif ;
83 }
84 }
85 }

88 map sensor2sect ion in r2c {
89 check r a i l ( r r : Route , s : Sensor |
90 rr . gathers−>includes ( s ) ; ) { }
91 enforce contro l ( cr : Route) {
92 realize ts : TrackSection |
93 ts . partOf := cr ;
94 }
95 where ( r2r : Route2Route |
96 r2r . railwayRoute = rr ;
97 r2r . controlRoute = cr ;
98 ) {
99 realize s2s : Sensor2Section |

100 s2s . sensor := s ;
101 s2s . sect ion := ts ;
102 }
103 map {
104 where( ) {
105 ts . trackElementsIds := getSensorElementsIds ( s ) ;
106 ts . id := s . id ;
107 }
108 }
109 }

111 map switchPos2signal in r2c {
112 check r a i l ( r r : Route) {
113 sp : SwitchPosition |
114 sp . route = rr ;
115 }
116 enforce contro l ( cr : Route) {
117 realize ss : SwitchSignal |
118 ss . route := cr ;
119 }
120 where ( r2r : Route2Route |
121 r2r . railwayRoute = rr ;
122 r2r . controlRoute = cr ; ) {
123 realize s2s : Switch2Signal |
124 s2s . pos i t ion := sp ;
125 s2s . s i gna l := ss ;
126 }
127 map {
128 where( ) {
129 ss . switchId := sp . target . id ;
130 ss . pos i t ion :=
131 i f sp . pos i t ion = railway : : Posit ion : :FAILURE then
132 contro l : : Posit ion : :FAILURE
133 else
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134 i f sp . pos i t ion = railway : : Posit ion : :STRAIGHT then
135 contro l : : Posit ion : :STRAIGHT
136 else
137 contro l : : Posit ion : :DIVERGING
138 endif
139 endif ;

141 }
142 }
143 }

145 map semaphore2join in r2c {
146 check r a i l ( rc : RailwayContainer , er : Route , j r : Route , s : Semaphore

|
147 rc . routes−>includes ( er ) ;
148 rc . routes−>includes ( j r ) ;
149 er . ex i t = s ;
150 j r . entry = s ; ) { }
151 enforce contro l ( c : RailwayControl , ec : Route , j c : Route) {
152 ec . j o in s := jc ;
153 }
154 where ( r2c : Railway2Control , er2c : Route2Route , j r2c : Route2Route |
155 er2c . railwayRoute = er ;
156 er2c . controlRoute = ec ;
157 j r2c . railwayRoute = j r ;
158 j r2c . controlRoute = jc ;
159 r2c . railway = rc ;
160 r2c . contro l = c ;
161 ) { }
162 }

164 map semaphore2fork in r2c {
165 check r a i l ( r : RailwayContainer , s r : Route , f r1 : Route , f r2 : Route ,

s : Semaphore |
166 r . routes−>includes ( sr ) ;
167 r . routes−>includes ( f r1 ) ;
168 r . routes−>includes ( f r2 ) ;
169 sr . ex i t = s ;
170 f r1 . entry = s ;
171 f r2 . entry = s ; ) {

173 }
174 enforce contro l ( c : RailwayControl , sc : Route , fc1 : Route ,

fc2 : Route) {
175 sc . forks := Sequence{fc1 , fc2 } ;
176 }
177 where ( r2c : Railway2Control , er2c : Route2Route ,
178 fr2c1 : Route2Route , f r2c2 : Route2Route |
179 r2c . railway = r ;
180 r2c . contro l = c ;
181 er2c . railwayRoute = sr ;
182 er2c . controlRoute = sc ;
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183 fr2c1 . railwayRoute = fr1 ;
184 fr2c1 . controlRoute = fc1 ;
185 fr2c2 . railwayRoute = fr2 ;
186 fr2c2 . controlRoute = fc2 ;

188 ) { }
189 }

191 query r2c : : getSensorElementsIds ( sensor : railway : : Sensor ) :
Sequence(Integer )

192 {
193 sensor . monitors . id
194 }

8.15 XSLT to XQuery
The XSLT to XQuery example is part of the ATL Zoo, available
online from the ATL Zoo website2, describes a simplified trans-
formation of XSLT code to XQuery code [16]. XSL (eXtensible
Stylesheet Language) is a styling language for XML, and XSLT
stands for XSL Transformations. XSLT can be used to transform
XML documents into other formats, such as HTML. XQuery is
a language designed to query XML documents in order to find
and extract elements and attributes. The transformation aims at
representing the XSLT as a series of XQueries.

Listing 8.15: Complete XSLT to XQuery example.
1 import XQuery : 'XQuery.ecore#/' ;
2 import XSLT : 'XSLT.ecore#/' ;
3 import XSLT2XQuery : 'XSLT2XQuery.ecore' : : XSLT2XQuery;

5 transformation XSLT2XQuery
6 {
7 xs imports XSLT;
8 xq imports XQuery ;
9 imports XSLT2XQuery;

10 }

12 map P2P in XSLT2XQuery {
13 xs ( x s l t :XSLTRootNode) { }
14 enforce xq () {
15 realize out : XQueryProgram ,

2https://www.eclipse.org/atl/atlTransformations/#XSLT2XQuery,
last visited 08-02-2017.
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16 realize f lwor :FLWOR,
17 realize f o r : For ,
18 realize forExpression : XPath ,
19 realize return : Return |
20 f lwor . xQueryProgram := out ;
21 f lwor . fo r := for ;
22 f lwor . return := return ;
23 fo r . express ion := forExpression ;
24 }
25 where ( ) {
26 realize xslt2program : XSLTRootNode2XQueryProgram |
27 xslt2program . x s l t := x s l t ;
28 xslt2program . out := out ;
29 xslt2program . f lwor := flwor ;
30 xslt2program . fo r := for ;
31 xslt2program . forExpression := forExpression ;
32 xslt2program . return := return ;
33 fo r . var := '$var' ;
34 forExpression . value := 'document(\"xmlFile.xml\")/*' ;
35 }
36 }

38 map Template2FLOWR in XSLT2XQuery {
39 xs ( x s l t :XSLTRootNode, template : Template |
40 x s l t . nodes−>includes ( template ) ;
41 template . match <> '/' ; ) { }
42 enforce xq( prog : XQueryProgram) {
43 realize out : FunctionDeclaration ,
44 realize f lwor :FLWOR,
45 realize f o r : For ,
46 realize forExpression : XPath ,
47 realize return : Return |
48 out . express ion := Sequence { f lwor } ;
49 out . xQueryProgram := prog ;
50 f lwor . xQueryProgram := out ;
51 f lwor . fo r := for ;
52 f lwor . return := return ;
53 fo r . express ion := forExpression ;
54 forExpression . value := '$paramVar' ;
55 }
56 where( xslt2program : XSLTRootNode2XQueryProgram |
57 xslt2program . x s l t = x s l t ;
58 xslt2program . out = prog ; ) {
59 realize template2flwor :Template2FLOWR |
60 template2flwor . template := template ;
61 template2flwor . out := out ;
62 template2flwor . f lwor := flwor ;
63 template2flwor . fo r := for ;
64 template2flwor . forExpression := forExpression ;
65 template2flwor . return := return ;
66 template2flwor . match := template . match ;
67 out .name := 'fct' + template . match ;
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69 }
70 }

72 map NodeFrom_Root in XSLT2XQuery {
73 xs ( x s l t :XSLTRootNode, t : Template |
74 t . parentNode = x s l t ;
75 t . match = '/' ; ) { }
76 enforce xq( root_return : Return ) { }
77 where( xslt2program : XSLTRootNode2XQueryProgram |
78 xslt2program . x s l t = x s l t ;
79 xslt2program . return = root_return ; ) { }
80 }

82 map NodeFrom_Template in XSLT2XQuery {
83 xs ( t : Template |
84 t . match <> '/' ; ) { }
85 enforce xq( t_return : Return ) { }
86 where( template2flwor :Template2FLOWR |
87 template2flwor . template = t ;
88 template2flwor . return = t_return ; ) { }
89 }

91 map NodeFrom_ElementNode in XSLT2XQuery {
92 xs ( elementNode : ElementNode | ) { }
93 enforce xq( parentNode : ElementNode) { }
94 where( fn : ElementNode2ElementNode |
95 fn . out = parentNode ; ) { }
96 }

98 map FromNode in XSLT2XQuery {
99 where ( ) { realize fn :FromNode }

100 }

102 map NestedNode in XSLT2XQuery refines FromNode {
103 xs ( parent : Node , node : Node |
104 node . parentNode = parent ;
105 ) { }
106 where ( fno :FromNodeOwner | ) {
107 fn . node := node ;
108 fn . owner := fno ;
109 }
110 }

112 map If2FLOWR in XSLT2XQuery refines FromNode {
113 enforce xq () {
114 realize out :FLWOR,
115 realize var l e t : Let ,
116 realize letExpress ion : XPath ,
117 realize _where : Where ,
118 realize whereExpression : BooleanExp ,
119 realize return : Return |
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120 out . _let := var l e t ;
121 out . _where := _where ;
122 out . return := return ;
123 var l e t . express ion := letExpress ion ;
124 var l e t . var := '$var' ;
125 letExpress ion . value := '$var' ;
126 _where . express ion := whereExpression ;
127 }
128 where( ) {
129 realize fn :If2FLOWR |
130 fn . exp := out ;
131 fn . var l e t := var l e t ;
132 fn . letExpress ion := letExpress ion ;
133 fn . _where := _where ;
134 fn . whereExpression := whereExpression ;
135 }
136 }

138 map If2FLOWR_Top in XSLT2XQuery refines If2FLOWR {
139 xs (node : I f |
140 node . parentNode . oclIsTypeOf (XSLT: : Template ) ; ) { }
141 where( ) {
142 fn . node := node ;
143 whereExpression . value := '$var/' + node . t e s t ;
144 }
145 }

147 map If2FLOWR_FromRoot in XSLT2XQuery refines If2FLOWR_Top,
NodeFrom_Root {

148 xs (node . parentNode = t ; ) { }
149 enforce xq () {
150 out . returnEx := root_return ;
151 }
152 }

154 map If2FLOWR_FromTemplate in XSLT2XQuery refines If2FLOWR_Top,
NodeFrom_Template {

155 xs (node . parentNode = t ; ) { }
156 enforce xq () {
157 out . returnEx := t_return ;
158 }
159 }

161 map If2FLOWR_FromElementNode in XSLT2XQuery refines If2FLOWR_Top,
NodeFrom_ElementNode {

162 xs (node . parentNode = elementNode ; ) { }
163 enforce xq () {
164 out . parentNode := parentNode ;
165 }
166 }

168 map If2FLOWR_Recursive in XSLT2XQuery refines If2FLOWR, NestedNode {
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169 xs (node : I f |
170 not node . parentNode . oclIsTypeOf (XSLT: : Template ) ; ) {
171 }
172 enforce xq( fno_return : Return | ) { }
173 where( fno . return = fno_return ; ) {
174 out . returnEx := fno_return ;
175 whereExpression . value := '$var/' + node . t e s t ;
176 }
177 }

179 map ApplyTemplate2FunctionCall in XSLT2XQuery refines FromNode {
180 xs () { }
181 enforce xq () {
182 realize out : FunctionCall ,
183 realize parameter : XPath |
184 out . parameters := Sequence{ parameter } ;
185 }
186 where( ) {
187 realize fn : ApplyTemplate2FunctionCall |
188 fn . out := out ;
189 fn . parameter := parameter ;
190 }
191 }

193 map ApplyTemplate2FunctionCall_Top in XSLT2XQuery refines
ApplyTemplate2FunctionCall {

194 xs (node : ApplyTemplates |
195 node . parentNode . oclIsTypeOf (XSLT: : Template ) ;
196 ) { }
197 where( ) {
198 fn . node := node ;
199 out .name := 'fct' + node . select ;
200 parameter . value := '$var/' + node . select ;
201 }
202 }

204 map ApplyTemplate2FunctionCall_FromRoot in XSLT2XQuery refines
ApplyTemplate2FunctionCall_Top , NodeFrom_Root {

205 xs (node . parentNode = t ; ) { }
206 enforce xq () {
207 out . returnEx := root_return ;
208 }
209 }

211 map ApplyTemplate2FunctionCall_FromTemplate in XSLT2XQuery refines
ApplyTemplate2FunctionCall_Top , NodeFrom_Template {

212 xs (node . parentNode = t ; ) { }
213 enforce xq () {
214 out . returnEx := t_return ;
215 }
216 }

317



Chapter 8. QVTc Transformations

218 map ApplyTemplate2FunctionCall_FromElementNode in XSLT2XQuery
refines ApplyTemplate2FunctionCall_Top , NodeFrom_ElementNode {

219 xs (node . parentNode = elementNode ; ) { }
220 enforce xq () {
221 out . parentNode := parentNode ;
222 }
223 }

225 map ApplyTemplate2FunctionCall_Recursive in XSLT2XQuery refines
ApplyTemplate2FunctionCall , NestedNode {

226 xs (node : ApplyTemplates |
227 not node . parentNode . oclIsTypeOf (XSLT: : Template ) ; ) { }
228 enforce xq( fno_return : Return | ) { }
229 where( fno . return = fno_return ; ) {
230 out . returnEx := fno_return ;
231 out .name := 'fct' + node . select ;
232 parameter . value := '$var/' + node . select ;
233 }
234 }

236 map ValueOf2ReturnXPath in XSLT2XQuery refines NestedNode {
237 xs (node : ValueOf ) {}
238 enforce xq () {
239 realize out : ReturnXPath |
240 }
241 where( ) {
242 out . value := '$var/' + node . select ;
243 }
244 }

246 map ElementNode2ElementNode in XSLT2XQuery refines FromNode {
247 xs ( ) {}
248 enforce xq () {
249 realize out : ElementNode |
250 }
251 where( ) {
252 realize fn : ElementNode2ElementNode |
253 fn . out := out ;
254 }
255 }

257 map ElementNode2ElementNode_Top in XSLT2XQuery refines
ElementNode2ElementNode {

258 xs (node : ElementNode |
259 (node .name <> 'xsl:otherwise') and
260 (node .name <> 'xsl:when') and
261 (node .name <> 'xsl:choose') and
262 (node .name <> 'xsl:copy-of') and
263 (node .name <> 'xsl:sort') and
264 (node .name <> 'xsl:foreach') and
265 (node .name <> 'xsl:if') and
266 (node .name <> 'xsl:apply-templates') and
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267 (node .name <> 'xsl:value-of') and
268 (node .name <> 'xsl:template') and
269 (node .name <> 'xsl:stylesheet') ;
270 node . parentNode . oclIsTypeOf (XSLT: : Template ) ;

) { }
271 where( ) {
272 fn . node := node ;
273 out .name := node .name ;
274 }
275 }

277 map ElementNode2ElementNode_FromRoot in XSLT2XQuery refines
ElementNode2ElementNode_Top , NodeFrom_Root {

278 xs (node . parentNode = t ; ) { }
279 enforce xq () {
280 out . returnEx := root_return ;
281 }
282 }

284 map ElementNode2ElementNode_FromTemplate in XSLT2XQuery refines
ElementNode2ElementNode_Top , NodeFrom_Template {

285 xs (node . parentNode = t ; ) { }
286 enforce xq () {
287 out . returnEx := t_return ;
288 }
289 }

291 map ElementNode2ElementNode_FromElementNode in XSLT2XQuery refines
ElementNode2ElementNode_Top , NodeFrom_ElementNode {

292 xs (node . parentNode = elementNode ;
293 ) { }
294 enforce xq () {
295 out . parentNode := parentNode ;
296 }
297 }

299 map ElementNode2ElementNode_Recursive in XSLT2XQuery refines
ElementNode2ElementNode , NestedNode {

300 xs (node : ElementNode |
301 (node .name <> 'xsl:otherwise') and
302 (node .name <> 'xsl:when') and
303 (node .name <> 'xsl:choose') and
304 (node .name <> 'xsl:copy-of') and
305 (node .name <> 'xsl:sort') and
306 (node .name <> 'xsl:foreach') and
307 (node .name <> 'xsl:if') and
308 (node .name <> 'xsl:apply-templates') and
309 (node .name <> 'xsl:value-of') and
310 (node .name <> 'xsl:template') and
311 (node .name <> 'xsl:stylesheet') ;
312 not node . parentNode . oclIsTypeOf (XSLT: : Template ) ;
313 ) { }
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314 enforce xq( fno_return : Return | ) {
315 }
316 where(
317 fno . return = fno_return ;
318 ) {
319 out . returnEx := fno_return ;
320 }
321 }

323 map Attribute2Attribute in XSLT2XQuery refines FromNode {
324 xs () {}
325 enforce xq () {
326 realize out : AttributeNode |
327 }
328 where ( ) {
329 realize fn : Attribute2Attribute |
330 fn . exp := out ;

332 }
333 }

335 map Attribute2Attribute_Top in XSLT2XQuery refines
Attribute2Attribute {

336 xs (node : AttributeNode |
337 (node .name <> 'xsl:otherwise') and
338 (node .name <> 'xsl:when') and
339 (node .name <> 'xsl:choose') and
340 (node .name <> 'xsl:copy-of') and
341 (node .name <> 'xsl:sort') and
342 (node .name <> 'xsl:foreach') and
343 (node .name <> 'xsl:if') and
344 (node .name <> 'xsl:apply-templates') and
345 (node .name <> 'xsl:value-of') and
346 (node .name <> 'xsl:template') and
347 (node .name <> 'xsl:stylesheet') ;
348 ) { }
349 where( ) {
350 fn . node := node ;
351 out .name := node .name ;
352 out . value := node . value ;
353 }
354 }

356 map Attribute2Attribute_FromRoot in XSLT2XQuery refines
Attribute2Attribute_Top , NodeFrom_Root {

357 xs (node . parentNode = t ;
358 ) { }
359 enforce xq () {
360 out . returnEx := root_return ;
361 }
362 }
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364 map Attribute2Attribute_FromTemplate in XSLT2XQuery refines
Attribute2Attribute_Top , NodeFrom_Template {

365 xs (node . parentNode = t ;
366 ) { }
367 enforce xq () {
368 out . returnEx := t_return ;
369 }
370 }

372 map Attribute2Attribute_FromElementNode in XSLT2XQuery refines
Attribute2Attribute_Top , NodeFrom_ElementNode {

373 xs (node . parentNode = elementNode ;
374 ) { }
375 enforce xq () {
376 out . parentNode := parentNode ;
377 }
378 }
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9
EMG Model Generation

Scripts

9.1 Abstract to Concrete
The example describes a transformation of a simplified UMLmodel
to another simplified UML model. The aim of this transformation
is to generate, from a source UML model, another UML model
that flattens the inherited operations of a class. That is, a Class
in the target model will collect all the operations inherited from
the closure of it’s super classes that are abstract.

Listing 9.1: Model generator code for the Abstract to Concrete example.
1 pre {
2 /∗∗
3 For convenience make t o t a l a mult of 3 > 10
4 p = # of Packages
5 c = # classes
6 o = # operations
7 r = # parameters
8 d = # PrimitiveDataTypes
9 ∗/

10 var p : Integer = tota l /10;
11 // Three random numbers 0 . . t o t a l
12 var quant = nextAddTo(3 , to ta l ) ;
13 var c ;
14 var o ;
15 i f ( quant . at (0) > quant . at (1) ) {
16 c = quant . at (1) ;
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17 o = quant . at (0)−c ;
18 }
19 e l s e {
20 c = quant . at (0) ;
21 o = quant . at (1)−c ;
22 }
23 var r = quant . at (2) ;
24 }

26 $instances p
27 @l i s t ps
28 operation Package create ()
29 {
30 s e l f .name = 'P_' + nextCamelCaseString (20 , 5) ;
31 }

33 $instances p
34 @l i s t dts
35 operation PrimitiveDataType create ()
36 {
37 s e l f .name = 'String' ;
38 s e l f . owner = nextFromListAsSample ("ps" ) ;
39 }

41 $instances c
42 @l i s t c l s s
43 operation Class create ()
44 {
45 s e l f .name = 'C_' + nextCamelCaseString (20 , 5) ;
46 s e l f . i sAbstract = nextBoolean () ;
47 s e l f . owner = nextFromList ("ps" ) ;
48 var op = new Operation () ;
49 i f ( nextBoolean () ) {
50 op .name = 'get' + nextCamelCaseString (20 , 5) ;
51 }
52 e l s e {
53 op .name = 'set' + nextCamelCaseString (20 , 5) ;
54 }
55 op . owner = s e l f ;
56 }

58 $instances o
59 operation Operation create ()
60 {
61 i f ( nextBoolean () ) {
62 s e l f .name = 'get' + nextCamelCaseString (20 , 5) ;
63 }
64 e l s e {
65 s e l f .name = 'set' + nextCamelCaseString (20 , 5) ;
66 }
67 s e l f . owner = nextFromList ("clss" ) ;
68 }
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70 $instances r
71 operation Parameter create ()
72 {
73 s e l f .name = 'R_' + nextCamelCaseString (20 , 5) ;
74 s e l f . ‘ operation ‘ = nextFromCollection ( Operation . a l l ( ) ) ;
75 s e l f . type :=

s e l f . ‘ operation ‘ . owner . owner . ownedTypes . selectOne ( t |
t . isTypeOf( PrimitiveDataType ) ) ;

76 }

79 $probabi l i ty 0.3
80 pattern ClassInher itance
81 p : Package ,
82 cc1 : Class
83 from : p . ownedTypes ,
84 ac : Class
85 from : p . ownedTypes
86 guard : ac . isAbstract = true and ac <> cc1
87 {
88 onmatch {
89 cc1 . inheritsFrom = ac ;
90 }
91 }

93 post {
94 "GenDone" . println ( ) ;
95 }

9.2 BibTeXML to DocBook
The BibTeXML to DocBook example describes a transformation
of a BibTeXML model to a DocBook model. BibTeXML [84] is
an XML-based format for the BibTeX bibliographic tool. Doc-
Book [107] is an XML-based format for document composition.

Listing 9.2: Model generator code for the BibTeXML to DocBook ex-
ample.

1 pre {
2 var id : Integer = 1;
3 var num_files : Integer = tota l /10;
4 var num_art = 0;
5 var num_tech = 0;
6 var num_unpub = 0;
7 var num_man = 0;
8 var num_proc = 0;
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9 var num_inproc = 0;
10 var num_booklet = 0;
11 var num_book = 0;
12 var num_coll = 0;
13 var num_inbook = 0;
14 var num_misc = 0;
15 var num_pthesis = 0;
16 var num_mthesis = 0;
17 while ( to ta l > 0) {
18 var pick = nextInteger (12) ;
19 switch ( pick ) {
20 case 0 : num_art += 1;
21 case 1 : num_tech += 1;
22 case 2 : num_unpub += 1;
23 case 3 : num_man += 1;
24 case 4 : num_proc += 1;
25 case 5 : num_inproc += 1;
26 case 6 : num_booklet += 1;
27 case 7 : num_book += 1;
28 case 8 : num_coll += 1;
29 case 9 : num_inbook += 1;
30 case 10: num_misc += 1;
31 case 11: num_pthesis += 1;
32 case 12: num_mthesis += 1;
33 }
34 tota l −= 1;
35 }
36 var auth = (num_art + num_tech + num_unpub + num_inproc +
37 num_book + num_coll + num_inbook +
38 num_pthesis + num_mthesis) ∗ 2 ;
39 var journals : Sequence = Sequence{"Academy of Management

Journal" ,"Academy of Management Review" ,"Accounting,
Organizations and Society" ,"Administrative Science
Quarterly" ,"American Economic Review" ,"Contemporary
Accounting Research" ,"Econometrica" ,"Entrepreneurship
Theory and Practice" ,"Harvard Business Review" ,"Human
Relations" ,"Human Resource Management" ,"Information
Systems Research" ,"Journal of Accounting and
Economics" ,"Journal of Accounting Research" ,"Journal of
Applied Psychology" ,"Journal of Business
Ethics" ,"Journal of Business Venturing" ,"Journal of
Consumer Psychology" ,"Journal of Consumer
Research" ,"Journal of Finance" ,"Journal of Financial and
Quantitative Analysis" ,"Journal of Financial
Economics" ,"Journal of International Business
Studies" ,"Journal of Management" ,"Journal of Management
Information Systems" ,"Journal of Management
Studies" ,"Journal of Marketing" ,"Journal of Marketing
Research" ,"Journal of Operations Management" ,"Journal of
Political Economy" ,"Journal of the Academy of Marketing
Science" ,"Management Science" ,"Manufacturing and Service
Operations Management" ,"Marketing Science" ,"MIS
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Quarterly" ,"Operations Research" ,"Organization
Science" ,"Organization Studies" ,"Organizational Behavior
and Human Decision Processes" ,"Production and Operations
Management" ,"Quarterly Journal of Economics" ,"Research
Policy" ,"Review of Accounting Studies" ,"Review of
Economic Studies" ,"Review of Finance" ,"Review of
Financial Studies" ,"Sloan Management Review" ,"Strategic
Entrepreneurship Journal" ,"Strategic Management
Journal" ,"The Accounting Review" } ;

40 }

42 $instances num_files
43 @l i s t f i l e s
44 operation BibTeXFile create ()
45 {
46 }

48 $instances num_art
49 operation Art ic l e create ()
50 {
51 s e l f . id = id . asString ( ) ;
52 id += 1;
53 s e l f . t i t l e = nextCamelCaseString (20 , 5) ;
54 s e l f . year = nextInteger (1950 , 2016) . asString ( ) ;
55 s e l f . journal = nextFromCollection ( journals ) ;
56 }

58 $instances num_tech
59 operation TechReport create ()
60 {
61 s e l f . id = id . asString ( ) ;
62 id += 1;
63 s e l f . t i t l e = nextCamelCaseString (20 , 5) ;
64 s e l f . year = nextInteger (1950 , 2016) . asString ( ) ;
65 }

67 $instances num_unpub
68 operation Unpublished create () {
69 s e l f . id = id . asString ( ) ;
70 id += 1;
71 s e l f . t i t l e = nextCamelCaseString (20 , 5) ;
72 s e l f . note = nextString ("LETTER_LOWER" , 20) ;
73 }

75 $instances num_man
76 operation Manual create () {
77 s e l f . id = id . asString ( ) ;
78 id += 1;
79 s e l f . t i t l e = nextCamelCaseString (20 , 5) ;
80 }

82 $instances num_proc
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83 operation Proceedings create ()
84 {
85 s e l f . id = id . asString ( ) ;
86 id += 1;
87 s e l f . t i t l e = nextCamelCaseString (20 , 5) ;
88 s e l f . year = nextInteger (1950 , 2016) . asString ( ) ;
89 }

91 $instances num_inproc
92 operation InProceedings create ()
93 {
94 s e l f . id = id . asString ( ) ;
95 id += 1;
96 s e l f . t i t l e = nextCamelCaseString (20 , 5) ;
97 s e l f . year = nextInteger (1950 , 2016) . asString ( ) ;
98 s e l f . bookt i t l e = nextCamelCaseString (20 , 5) ;
99 }

101 $instances num_booklet
102 operation Booklet create ()
103 {
104 s e l f . id = id . asString ( ) ;
105 id += 1;
106 s e l f . year = nextInteger (1950 , 2016) . asString ( ) ;
107 }

109 $instances num_book
110 operation Book create ()
111 {
112 s e l f . id = id . asString ( ) ;
113 id += 1;
114 s e l f . t i t l e = nextCamelCaseString (20 , 5) ;
115 s e l f . year = nextInteger (1950 , 2016) . asString ( ) ;
116 s e l f . publ isher = nextCamelCaseString (20 , 5) ;
117 }

119 $instances num_coll
120 operation InCol lect ion create ()
121 {
122 s e l f . id = id . asString ( ) ;
123 id += 1;
124 s e l f . t i t l e = nextCamelCaseString (20 , 5) ;
125 s e l f . year = nextInteger (1950 , 2016) . asString ( ) ;
126 s e l f . publ isher = nextCamelCaseString (20 , 5) ;
127 s e l f . bookt i t l e = nextCamelCaseString (20 , 5) ;
128 }

130 $instances num_inbook
131 operation InBook create ()
132 {
133 s e l f . id = id . asString ( ) ;
134 id += 1;
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135 s e l f . t i t l e = nextCamelCaseString (20 , 5) ;
136 s e l f . year = nextInteger (1950 , 2016) . asString ( ) ;
137 s e l f . publ isher = nextCamelCaseString (20 , 5) ;
138 s e l f . chapter = nextInteger (10) ;
139 }

142 $instances num_misc
143 operation Misc create ()
144 {
145 s e l f . id = id . asString ( ) ;
146 id += 1;
147 }

149 $instances num_pthesis
150 operation PhDThesis create ()
151 {
152 s e l f . id = id . asString ( ) ;
153 id += 1;
154 s e l f . t i t l e = nextCamelCaseString (20 , 5) ;
155 s e l f . year = nextInteger (1950 , 2016) . asString ( ) ;
156 s e l f . school = nextCamelCaseString (20 , 5) ;
157 }

159 $instances num_mthesis
160 operation MasterThesis create ()
161 {
162 s e l f . id = id . asString ( ) ;
163 id += 1;
164 s e l f . t i t l e = nextCamelCaseString (20 , 5) ;
165 s e l f . year = nextInteger (1950 , 2016) . asString ( ) ;
166 s e l f . school = nextCamelCaseString (20 , 5) ;
167 }

169 $instances AuthoredEntry . a l l ( ) . s ize ( ) ∗ 2
170 @l i s t authors
171 operation Author create ()
172 {
173 s e l f . author = nextCapital i sedStr ing ("LETTER_LOWER" , 8) +
174 ", " + nextCapital i sedStr ing ("LETTER_LOWER" ,

8) ;
175 }

177 pattern BibFileItems
178 e : BibTeXEntry
179 {
180 onmatch {
181 nextFromList ("files" ) . en t r i e s . add( e ) ;
182 }
183 }

185 pattern AuthoredEntryFirst
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186 ae : AuthoredEntry
187 {
188 onmatch {
189 // At l e a s t one author
190 ae . authors . add( nextFromListAsSample ("authors" ) ) ;
191 }
192 }

194 pattern AuthoredEntryMore
195 ae : AuthoredEntry
196 {
197 onmatch {
198 var more = nextInteger (2) ;
199 for ( i in 1 . to (more) ) {
200 var other =

nextFromListAsSample ("authors" ) ;
201 i f ( other <> nul l )
202 ae . authors . add( other ) ;
203 }
204 }
205 }

208 post {
209 "GenDone" . println ( ) ;
210 }

9.3 DNF
The example describes a transformation of a simplified UMLmodel
to another simplified UML model. The aim of this transformation
is to generate, from a source UML model, another UML model
that flattens the inherited operations of a class. That is, a Class
in the target model will collect all the operations inherited from
the closure of it’s super classes that are abstract.

Listing 9.3: Model generator code for the DNF example.
1 pre {
2 var id = 1;
3 var exps = nextAddTo(2 , ( to ta l ∗0.6) . round ( ) ) ;
4 var ands = exps . at (0) ;
5 var ors = exps . at (1) ;
6 }

8 operation Expr assignID () {
9 s e l f . ID = id . asString ( ) ;
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10 id += 1;
11 }

13 operation c r ea t eL i t e ra l ( ) : L i t e ra l {
14 var l i t = new Li t e ra l ( ) ;
15 l i t . assignID () ;
16 l i t .name = encode ( id ) ;
17 return l i t ;
18 }

20 $instances 1
21 operation BooleanExprs create () { }

24 $instances ands
25 operation And create () {
26 s e l f . assignID () ;
27 var l i t s = nextInteger (0 , 2) ;
28 i f ( l i t s > 0) {
29 for ( l in 1 . to ( l i t s ) ) {
30 var l i t = crea teL i t e ra l ( ) ;
31 l i t . parent = s e l f ;
32 }
33 }
34 }

36 $instances ors
37 operation Or create () {
38 s e l f . assignID () ;
39 }

41 $probabi l i ty 0.3
42 pattern RootExps
43 be : BooleanExprs ,
44 exp : Expr
45 from : Expr . a l l ( )
46 . select ( e | e . isTypeOf(And) or e . isTypeOf(Or) )
47 . select ( ex | not be . hasExpr . includes ( ex ) )
48 {
49 onmatch {
50 be . hasExpr . add( exp) ;
51 }
52 }

54 operation Expr isRoot () : Boolean {
55 return BooleanExprs . a l l ( ) . f i r s t ( ) . hasExpr . includes ( s e l f ) ;
56 }

58 operation Expr addChild ( ch i ld : Expr) {
59 ch i ld . parent = s e l f ;
60 }
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62 // Ands and Ors at l e a s t 2 ch i l d s
63 pattern MinExps
64 parent : Expr
65 // Al l expresions at t h i s point are empty
66 from : Expr . a l l ( )
67 . select ( e | e . isTypeOf(And) or e . isTypeOf(Or) )
68 . select ( ex | ex . expr . s ize ( ) < 2)
69 {
70 onmatch {
71 var ch i ld s = Expr . a l l ( )
72 . select ( e | e . isTypeOf(And) or e . isTypeOf(Or) )
73 . excluding ( parent )
74 . excludingAll ( parent . closure ( e | e . parent ) )
75 . select ( ex | ex . parent . isUndefined ( ) and
76 not ex . isRoot () ) ;
77 //parent . ID. pr int ln (”Parent ID: ”) ;
78 //parent . expr . s i z e . pr in t ln (” I n i t i a l ch i l d : ”) ;
79 i f ( ch i ld s . isEmpty ( ) ) {
80 −− No more And/Ors to nest
81 //”Have to add l i t s ”. pr in t ln () ;
82 var l i t s = 2 − parent . expr . s ize ( ) ;
83 for ( l in 1 . to ( l i t s ) ) {
84 var l i t = crea teL i t e ra l ( ) ;
85 // l i t . ID. pr int ln (” Child id : ”) ;
86 l i t . parent = parent ;
87 }
88 var prob = nextDouble () ;
89 i f ( prob > 0.8) {
90 //”Not ”. pr in t ln () ;
91 var neg = new Not() ;
92 neg . assignID () ;
93 i f ( parent . parent . isDefined ( ) ) {
94 neg . parent = parent . parent ;
95 parent . parent = neg ;
96 }
97 e l s e {
98 BooleanExprs . a l l ( ) . f i r s t ( ) . hasExpr . add( neg ) ;
99 parent . parent = neg ;

100 }

102 }
103 return ;
104 }
105 e l s e {
106 // No nested Dis tr ibut ions
107 var ch i ld = nextFromCollection ( ch i ld s ) ;
108 i f ( ( ch i ld . isTypeOf(Or) and
109 parent . isTypeOf(And) and
110 ( ch i ld . orDistInSuccessor () or
111 parent . orDistInAncestor () ) )

or
112 ( ch i ld . orDistInSuccessor () and
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113 ( parent . orDistInAncestor () or
114 parent . orDistInSuccessor () ) ) ) {
115 var l i t = crea teL i t e ra l ( ) ;
116 l i t . parent = parent ;
117 }
118 e l s e {
119 ch i ld s . remove( ch i ld ) ;
120 parent . addChild ( ch i ld ) ;
121 }
122 i f ( parent . expr . s ize ( ) == 2) {
123 i f ( parent . expr . forAll ( e | e . isTypeOf( L i t e ra l ) ) ) {
124 var prob = nextDouble () ;
125 i f ( prob > 0.8) {
126 var neg = new Not() ;
127 neg . assignID () ;
128 i f ( parent . parent . isDefined ( ) ) {
129 neg . parent = parent . parent ;
130 parent . parent = neg ;
131 }
132 e l s e {
133 BooleanExprs . a l l ( ) . f i r s t ( ) . hasExpr . add( neg ) ;
134 parent . parent = neg ;
135 }
136 }
137 }
138 //”Done”. pr in t ln () ;
139 return ;
140 }
141 i f (not ch i ld s . isEmpty ( ) ) {
142 var ch i ld = nextFromCollection ( ch i ld s ) ;
143 // No nested Dis tr ibut ions
144 i f ( ( ch i ld . isTypeOf(Or) and
145 parent . isTypeOf(And) and
146 ( parent . orDistInSuccessor () or
147 parent . orDistInAncestor () ) )

or
148 ( ch i ld . orDistInSuccessor () and
149 ( parent . orDistInAncestor () or
150 parent . orDistInSuccessor () ) ) ) {
151 var l i t = crea teL i t e ra l ( ) ;
152 l i t . parent = parent ;
153 i f ( parent . expr . forAll ( e | e . isTypeOf( L i t e ra l ) ) ) {
154 var prob = nextDouble () ;
155 i f ( prob > 0.8) {
156 var neg = new Not() ;
157 neg . assignID () ;
158 i f ( parent . parent . isDefined ( ) ) {
159 neg . parent = parent . parent ;
160 parent . parent = neg ;
161 }
162 e l s e {
163 BooleanExprs . a l l ( ) . f i r s t ( ) . hasExpr . add( neg ) ;

333



Chapter 9. EMG Model Generation Scripts

164 parent . parent = neg ;
165 }
166 }
167 }
168 return ;
169 }
170 parent . addChild ( ch i ld ) ;
171 }
172 e l s e {
173 // No more chi ldren , f i l l with l i t s
174 var l i t = crea teL i t e ra l ( ) ;
175 l i t . parent = parent ;
176 i f ( parent . expr . forAll ( e | e . isTypeOf( L i t e ra l ) ) ) {
177 var prob = nextDouble () ;
178 i f ( prob > 0.8) {
179 //”Not ”. pr in t ln () ;
180 var neg = new Not() ;
181 neg . assignID () ;
182 i f ( parent . parent . isDefined ( ) ) {
183 neg . parent = parent . parent ;
184 parent . parent = neg ;
185 }
186 e l s e {
187 BooleanExprs . a l l ( ) . f i r s t ( ) . hasExpr . add( neg ) ;
188 parent . parent = neg ;
189 }
190 }
191 }
192 }
193 }
194 }
195 }

197 pattern OrphanExpr
198 orphan : Expr
199 from : Expr . a l l ( )
200 . select ( e | e . parent . isUndefined ( ) )
201 {
202 onmatch {
203 BooleanExprs . a l l . f i r s t ( ) . hasExpr . add( orphan ) ;
204 }
205 }

207 /∗∗
208 Find the f i r s t And in the hirarchy , i f any ,
209 that i s an OrDistribution
210 ∗/
211 operation Expr orDistInAncestor () : Boolean {
212 i f ( s e l f . parent . isUndefined ( ) ) {
213 return f a l s e ;
214 }
215 e l s e {
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216 var parentTest = s e l f . parent . isTypeOf(And) and
217 s e l f . parent . expr . exists ( e | e . isTypeOf(Or) ) ;
218 i f ( parentTest ) {
219 return true ;
220 }
221 e l s e {
222 return s e l f . parent . orDistInAncestor () ;
223 }
224 }
225 }

227 operation Expr orDistInSuccessor () : Boolean {
228 i f ( s e l f . expr . isEmpty ( ) ) {
229 return f a l s e ;
230 }
231 e l s e {
232 var chi ldTest = s e l f . isTypeOf(And) and
233 s e l f . expr . exists ( e | e . isTypeOf(Or) ) ;
234 i f ( chi ldTest ) {
235 return true ;
236 }
237 e l s e {
238 return s e l f . expr . exists ( e | e . orDistInSuccessor () ) ;
239 }
240 }
241 }

244 operation Expr isRoot () : Boolean {
245 return BooleanExprs . a l l ( ) . f i r s t ( ) . hasExpr . includes ( s e l f ) ;
246 }

248 post {
249 "GenDone" . println ( ) ;
250 }

9.4 Mi to Si
The example addresses the issue of transforming an UML Class
hierarchy with multiple inheritance to a Java Class hierarchy with
single inheritance. The aim of this transformation is to generate,
from an UML (simplified) class hierarchy, a Java (simplified) class
hierarchy by defining a multiple-inheritance (MI) interface hierar-
chy corresponding to the MI UML class hierarchy and to establish
implementation links between the class hierarchy and the imple-
mentation hierarchy.
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Listing 9.4: Model generator code for the Mi2Si example.
13 import umlmmmi : 'umlMM.ecore' : : umlmmmi;
14 import javammsi : 'javaMM.ecore' : : javammsi ;
15 import uml2java : 'uml2java.ecore' : : umlmi2javasi ;

17 transformation Mi2Si {
18 uml imports umlmmmi;
19 java imports javammsi ;
20 imports uml2java ;
21 }

23 map PackageToPackage in Mi2Si {
24 uml( pIn : Package ) {}
25 enforce java () {
26 realize pOut : Package
27 }
28 where ( ) {
29 realize p2p : Package2Package |
30 p2p . umlPackage := pIn ;
31 p2p . javaPackage := pOut ;
32 }
33 }

35 map ClassInPackage in Mi2Si {
36 check uml(p1 : Package , c1 : Class |
37 p1 . containsClass−>includes ( c1 ) ; ) {
38 }
39 enforce java (p2 : Package ) {
40 realize c2 : Class , realize i : In te r face |
41 c2 . implements := Sequence{ i } ;
42 p2 . containsClass := p2 . containsClass−>including ( c2 ) ;
43 p2 . conta ins I t e r face := p2 . conta ins I ter face−>including ( i ) ;
44 }
45 where (p2p : Package2Package |
46 p2p . umlPackage = p1 ;
47 p2p . javaPackage = p2 ; ) {
48 realize c2c : RClass2Class , realize c2 i : Class2Inter face |
49 c2 i . umlClass := c1 ;
50 c2 i . javaInter face := i ;
51 c2c . umlClass := c1 ;
52 c2c . javaClass := c2 ;
53 }
54 map {
55 where ( ) {
56 c2c .name := c1 .name ;
57 c2 .name := c2c .name ;
58 c2 i .name := 'I' + c1 .name ;
59 i .name := c2 i .name ;
60 }
61 }
62 }
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64 map ClassSuperToImplements in Mi2Si {
65 check uml(umlc1 : Class , umlc2 : Class |
66 umlc1 . supers−>includes (umlc2) ;
67 ) { }
68 enforce java ( javac1 : Class , javai2 : Inte r face ) {
69 javac1 . implements := javac1 . implements−>including ( javai2 ) ;
70 }
71 where ( c2to i : Class2Inter face , c12c : Class2Class |
72 c12c . umlClass = umlc1 ;
73 c12c . javaClass = javac1 ;
74 c2to i . umlClass = umlc2 ;
75 c2to i . javaInter face = javai2 ;
76 ) { }
77 }

9.5 Text Path Expression to Path
Expression

The Text Path Expression to Path Expression is the first step of
the PathExp to PetriNet transformation. It is a concrete syntax to
abstract syntax transformation for Path Expressions. This trans-
formation addresses the problem of going from a text represen-
tation of a Path Expression to an abstract syntax representation
that is amenable to graphical representation.

Listing 9.5: Model generator code for the TextualPathExp to PathExp
example.

1 package PathExp2PetriNet ;

3 import java . io . IOException ;
4 import java . u t i l . ArrayDeque ;
5 import java . u t i l . ArrayList ;
6 import java . u t i l . Co l l ect ions ;
7 import java . u t i l . Deque ;
8 import java . u t i l .HashMap;
9 import java . u t i l . L i st ;

10 import java . u t i l . L i s t I t e r a t o r ;
11 import java . u t i l .Map;
12 import java . u t i l .Map. Entry ;
13 import java . u t i l . stream . Col l ectors ;

15 import org . apache . commons . math3 . random . RandomDataGenerator ;
16 import org . e c l i p s e . emf .common. u t i l . EList ;
17 import org . e c l i p s e . emf .common. u t i l .URI;
18 import org . e c l i p s e . emf . ecore . EClass ;
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19 import org . e c l i p s e . emf . ecore . EFactory ;
20 import org . e c l i p s e . emf . ecore . EObject ;
21 import org . e c l i p s e . emf . ecore . EPackage ;
22 import org . e c l i p s e . emf . ecore . EStructuralFeature ;
23 import org . e c l i p s e . emf . ecore . EcorePackage ;
24 import org . e c l i p s e . emf . ecore . resource . Resource ;
25 import org . e c l i p s e . emf . ecore . resource . impl . ResourceSetImpl ;
26 import org . e c l i p s e . emf . ecore . xmi . XMLResource ;
27 import org . e c l i p s e . emf . ecore . xmi . impl . EcoreResourceFactoryImpl ;
28 import org . e c l i p s e . emf . ecore . xmi . impl . XMIResourceFactoryImpl ;

31 public class TextPathGen {

33 private static final String IN_METAMODEL_PATH =
34 "examples\\uk.ac.york.qvtd.examples.qvtcore\\qvtcsrc" +
35 "\\PathExp2PetriNet\\TextualPathExp.ecore" ;

37 private static EFactory factory ;

39 private static ResourceSetImpl resourceSet ;

41 private static EObject ep ;

43 /∗∗ The generator . ∗/
44 private final RandomDataGenerator generator =
45 new RandomDataGenerator () ;

47 private char [ ] chars =
48 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
49 . toCharArray () ;

51 private final Integer MAX_ALT_PATHS = 3;

53 private EClass ptEClass ;

55 private EClass atEClass ;

58 private EClass pEClass ;

60 private EClass tpeEClass ;

62 private int s i z e ;

65 /∗∗
66 ∗ Use a s p e c i f i c seed
67 ∗/
68 public TextPathGen( long seed ) {
69 generator . reSeed ( seed ) ;
70 }

338



9.5. TextualPathExp2PathExp

73 private EObject createAlternat iveTrans it ion ( int to ta l ) {
74 s i z e++;
75 i f ( atEClass == null ) {
76 atEClass = getEClass ("AlternativeTransition" ) ;
77 }
78 EObject t = factory . create ( atEClass ) ;
79 // Can have 2−3 paths
80 EStructuralFeature atlPathsSF =
81 atEClass . getEStructuralFeature ("altPaths" ) ;
82 int maxPaths = tota l > MAX_ALT_PATHS ? MAX_ALT_PATHS : to ta l ;
83 int numPaths = generator . nextInt (2 , maxPaths) ;
84 for ( int i =0; i<numPaths ; i++) {
85 Object paths = t . eGet ( atlPathsSF ) ;
86 i f ( paths instanceof EList ) {
87 (( EList ) paths ) . add( createPath () ) ;
88 }
89 }
90 return t ;
91 }

94 private EObject createPath () {
95 i f ( pEClass == null ) {
96 pEClass = getEClass ("Path" ) ;
97 }
98 s i z e++;
99 EObject p = factory . create ( pEClass ) ;

100 return p ;
101 }

104 private void createPaths ( EObject rootPath , int to ta l ) {
105 atEClass = getEClass ("AlternativeTrans" ) ;
106 pEClass = getEClass ("Path" ) ;
107 ptEClass = getEClass ("PrimitiveTrans" ) ;
108 tpeEClass = getEClass ("TextualPathExp" ) ;
109 EStructuralFeature pathSF =
110 tpeEClass . getEStructuralFeature ("path" ) ;
111 EStructuralFeature transSF =
112 pEClass . getEStructuralFeature ("transitions" ) ;
113 EStructuralFeature atlPathsSF =
114 atEClass . getEStructuralFeature ("altPaths" ) ;

116 Deque<EObject> paths = new ArrayDeque<EObject>() ;
117 paths . push (( EObject ) rootPath . eGet (pathSF) ) ;
118 EObject currentPath ;
119 while ( ! paths . isEmpty () ) {
120 currentPath = ( EObject ) paths . pop () ;
121 // Paths always end in a PrimitiveTransition
122 EList trans = ( EList ) currentPath . eGet ( transSF ) ;
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123 i f ( trans . isEmpty () ) {
124 trans . add( createPrimit iveTransit ion ( nextString (20) ) ) ;
125 tota l −−;
126 }
127 i f ( to ta l <= 0) {
128 continue ;
129 }
130 // The next t rans i t ion i s e i ther Prim or Alternative
131 // For an a l t e rna t i ve we would l i k e at l e a s t 2 paths ,
132 // which means we need at l e a s t 2 instances l e f t
133 i f ( to ta l >= 3) {
134 i f ( generator . getRandomGenerator () . nextBoolean () ) {
135 EObject at = createAlternat iveTrans it ion ( to ta l ) ;
136 EList atPaths = ( EList ) at . eGet ( atlPathsSF ) ;
137 tota l −= atPaths . s i z e () + 1;
138 trans . add(0 , at ) ;
139 trans . add(0 , createPrimit iveTransit ion ( nextString (20) ) ) ;
140 for ( Object p : atPaths ) {
141 paths . push (( EObject ) p) ;
142 }
143 continue ;
144 }
145 }
146 // e l s e {
147 // We can only create Primitives
148 trans . add(0 , createPrimit iveTransit ion ( nextString (20) ,
149 total >1)) ;
150 total −−;
151 paths . push( currentPath ) ;
152 }

154 }

156 private EObject createPrimit iveTransit ion ( String name) {
157 return createPrimit iveTransit ion (name, false ) ;
158 }

160 private EObject createPrimit iveTransit ion ( String name,
161 boolean multiple ) {
162 i f ( ptEClass == null ) {
163 ptEClass = getEClass ("PrimitiveTransition" ) ;
164 }
165 EObject t = factory . create ( ptEClass ) ;
166 s i z e++;
167 EStructuralFeature nameSF =
168 ptEClass . getEStructuralFeature ("name" ) ;
169 t . eSet (nameSF, name) ;
170 i f ( multiple ) {
171 EStructuralFeature multSF =
172 ptEClass . getEStructuralFeature ("isMultiple" ) ;
173 t . eSet (multSF , generator . getRandomGenerator () . nextBoolean () ) ;
174 }
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175 return t ;
176 }

179 private EObject createTextualPathExp ( String name) {
180 i f ( tpeEClass == null ) {
181 tpeEClass = getEClass ("TextualPathExp" ) ;
182 }
183 EObject exp = factory . create ( tpeEClass ) ;
184 s i z e++;
185 EStructuralFeature nameSF =
186 tpeEClass . getEStructuralFeature ("name" ) ;
187 exp . eSet (nameSF, name) ;
188 EObject p = createPath () ;
189 EStructuralFeature pathSF =
190 tpeEClass . getEStructuralFeature ("path" ) ;
191 exp . eSet (pathSF , p) ;
192 return exp ;
193 }

196 public void generate ( int total , Str ing path ) {
197 s i z e = 0;
198 // Load the TextualPathExpPackage , so schema locat ion points to
199 //the Ecore
200 resourceSet = new ResourceSetImpl () ;
201 // Register input metamodel
202 String mallard_root = System . getenv ("MALLARD" ) ;
203 URI mmUri =
204 URI. createFileURI ( mallard_root + IN_METAMODEL_PATH) ;
205 Resource mm = resourceSet . getResource (mmUri, true ) ;
206 ep = mm. getContents () . get (0) ;
207 i f ( ep instanceof EPackage) {
208 factory = (( EPackage) ep) . getEFactoryInstance () ;
209 }

211 // Register factory
212 resourceSet . getResourceFactoryRegistry ()
213 . getExtensionToFactoryMap ()
214 . put ("xmi" , new XMIResourceFactoryImpl () ) ;
215 URI ur i = URI. createURI ("file:/" + path ) ;
216 Resource model = resourceSet . createResource ( ur i ) ;

218 // 1. Create the TextualPathExp and randomly assign the s i z e
219 int n = tota l /10;
220 Map<EObject , Integer> textPathExps ;
221 i f (n > 1) {
222 textPathExps = nextAddTo(n , to ta l ) . stream ()
223 . c o l l e c t ( Col l ectors
224 . toMap( i −> createTextualPathExp ( nextString (20) ) ,
225 i −> i ) ) ;
226 }
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227 else {
228 textPathExps = new HashMap<>(1) ;
229 textPathExps . put ( createTextualPathExp ( nextString (20) ) , to ta l ) ;
230 }
231 // 2. Create the structure of each TextualPathExp
232 for (Entry<EObject , Integer> entry : textPathExps . entrySet () ) {
233 model . getContents () . add( entry . getKey () ) ;
234 createPaths ( entry . getKey () , entry . getValue () ) ;
235 }

237 // 3. Save
238 HashMap<Object , Object> savingOptions =
239 new HashMap<Object , Object >() ;
240 savingOptions . put (XMLResource .OPTION_ENCODING, "UTF-8" ) ;
241 savingOptions . put (XMLResource .OPTION_LINE_DELIMITER, "\n" ) ;
242 savingOptions
243 . put (XMLResource .OPTION_SCHEMA_LOCATION, Boolean .TRUE) ;
244 savingOptions
245 . put (XMLResource .OPTION_SCHEMA_LOCATION_IMPLEMENTATION,
246 Boolean .TRUE) ;
247 savingOptions
248 . put (XMLResource .OPTION_LINE_WIDTH, Integer . valueOf (132) ) ;
249 try {
250 model . save ( savingOptions ) ;
251 } catch ( IOException e ) {
252 // TODO Auto−generated catch block
253 e . printStackTrace () ;
254 }
255 System . out . pr int ln ("Final size: " + s i z e ) ;
256 resourceSet . getResources () . c l ea r () ;
257 resourceSet = null ;
258 }

261 private EClass getEClass ( String name) {
262 for (EObject eo : ep . eContents () ) {
263 i f ( eo instanceof EClass ) {
264 EClass ec = ( EClass ) eo ;
265 i f ( ec . getName() . equals (name) ) {
266 return ec ;
267 }
268 }
269 }
270 return null ;
271 }

274 private List<Integer> nextAddTo( int n , int m) {
275 asse r t n > 1;
276 int len = n−1;
277 int [ ] index = generator . nextPermutation (m, len ) ;
278 List<Integer> values = new ArrayList <>() ;
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279 for ( int i = 0; i < len ; i++) {
280 values . add( index [ i ] ) ;
281 }
282 values . add(0 , 0) ;
283 values . add(m) ;
284 Col l ect ions . sort ( values ) ;
285 List<Integer> r e s u l t = new ArrayList <>() ;
286 Li s t I te rator <Integer> i t = values . l i s t I t e r a t o r (1) ;
287 while ( i t . hasNext () ) {
288 int low = i t . previous () ;
289 i t . next () ;
290 int high = i t . next () ;
291 r e s u l t . add( high−low ) ;
292 }
293 return r e s u l t ;
294 }

299 private String nextString ( int length ) {
300 Str ingBuilder sb = new StringBuilder () ;

302 for ( int i = 0; i < length ; i++) {
303 sb . append( chars [ generator . nextInt (0 , chars . length −1) ] ) ;
304 }
305 return sb . toStr ing () ;
306 }

308 /∗∗
309 ∗
310 ∗/
311 public static void registerEPackages () {
312 // Register Ecore
313 EcorePackage ecore = EcorePackage .eINSTANCE;
314 Resource . Factory . Registry .INSTANCE. getExtensionToFactoryMap ()
315 . put ("ecore" , new EcoreResourceFactoryImpl () ) ;
316 Resource . Factory . Registry .INSTANCE. getExtensionToFactoryMap ()
317 . put ("xmi" , new XMIResourceFactoryImpl () ) ;
318 }

320 }

9.6 Path Expression to Petri Net

The Path Expression to Petri Net example describes a transfor-
mation from a path expression to a Petri net. This Annex provides
the complete transformation code of the whole transformation se-
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quence that enables to produce an XML Petri net representation
(in the PNML format) from a textual definition of a path expres-
sion.

Listing 9.6: Complete PathExpression to PetriNet example.
1 pre {
2 var id = 0;
3 var num_exp = tota l /10;
4 // Two random numbers 0 . . t o t a l
5 var quant = nextAddTo(2 , to ta l ) . sortBy (q | q) ;
6 var num_s = 1 + quant . at (0) ; // Min 2 States
7 var num_t = quant . at (1) ;
8 }

11 $instances num_exp
12 @l i s t paths
13 operation PathExp create () {
14 s e l f .name = nextCamelCaseString (15 , 10) ;
15 }

17 $instances num_s
18 @l i s t s ta te s
19 operation State create () {
20 //nextFromList (” paths ”) . s ta t e s . add( s e l f ) ;
21 }

23 $instances num_t
24 operation Transit ion create () {
25 s e l f .name = id . asString ( ) ;
26 id += 1;
27 nextFromList ("paths" ) . t r an s i t i on s . add( s e l f ) ;
28 }

31 pattern Transit ion
32 exp : PathExp ,
33 tra : Transit ion
34 from : exp . t r a n s i t i o n s
35 {
36 onmatch {
37 var s ize = 0;
38 var f reeSources = State . a l l ( ) . select ( s |

s . incoming . s ize ( ) == s ize ) ;
39 while ( f reeSources . isEmpty ( ) ) {
40 s ize += 1;
41 freeSources = State . a l l ( ) . select ( s |

s . incoming . s ize ( ) == s ize ) ;
42 }
43 s ize = 0;
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44 var freeTarget = State . a l l ( ) . select ( s |
s . outgoing . s ize ( ) == s ize ) ;

45 while ( freeTarget . isEmpty ( ) ) {
46 s ize += 1;
47 freeTarget = State . a l l ( ) . select ( s |

s . outgoing . s ize ( ) == s ize ) ;
48 }
49 var source = nextFromCollection ( freeSources ) ;
50 var target = nextFromCollection ( freeTarget ) ;
51 tra . source = source ;
52 tra . target = target ;
53 exp . s tate s . add( source ) ;
54 exp . s tate s . add( target ) ;
55 }
56 }

59 post {
60 "GenDone" . println ( ) ;
61 }

9.7 Petri Net to PNML(XML)
The Petri Net to PNML(XML) example describes a transforma-
tion from the PetriNet domain to the XML domain. The XML mo-
del will provide an XML representation of the PetriNet in PNML
format1. The transition is, as with the PathExp to PetriNet (Sect.
8.12), straight forward, with one mapping to transform elements
of each of the PetriNet classes into it’s XML representation. Note
that the used XML metamodel is a simplified version of the XML
specification.

Listing 9.7: Model generator code for the Petri Net to PNML(XML)
example.

1 pre {
2 var id = 0;
3 var num_nets = 1;
4 // Two random numbers 0 . . t o t a l
5 var quant = nextAddTo(2 , to ta l ) . sortBy (q | q) ;
6 var num_p = 1 + quant . at (0) ; // Min 2 Places
7 // For each trans i t ion we need two arcs
8 var num_t = ( quant . at (1) /3) . cei l ing ( ) ;
9 }

1http://www.pnml.org. last accessed 10/05/2017
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11 $instances num_nets
12 @l i s t net
13 operation PetriNet create () {
14 s e l f .name = nextCamelCaseString (15 , 10) ;
15 }

17 $instances num_p
18 @l i s t places
19 operation Place create () {
20 s e l f .name = "P_" + nextString ("lower" , 15) ;
21 //nextFromList (” net ”) . p laces . add( s e l f ) ;
22 }

24 $instances num_t
25 operation Transit ion create () {
26 s e l f .name = "T_" + nextString ("lower" , 15) ;
27 //nextFromCollection ( PetriNet . a l l () . s e l e c t (pn |

pn . places . s i z e () >= 2) ) . t rans i t ions . add( s e l f ) ;
28 nextFromList ("net" ) . t r a n s i t i on s . add( s e l f ) ;
29 }

32 pattern Transit ion
33 net : PetriNet ,
34 tra : Transit ion
35 from : net . t r a n s i t i o n s
36 {
37 onmatch {
38 var s ize = 0;
39 var f reeSources = Place . a l l ( ) . select ( s |

s . incoming . s ize ( ) == s ize ) ;
40 while ( f reeSources . isEmpty ( ) ) {
41 s ize += 1;
42 freeSources = Place . a l l ( ) . select ( s |

s . incoming . s ize ( ) == s ize ) ;
43 }
44 s ize = 0;
45 var freeTarget = Place . a l l ( ) . select ( s |

s . outgoing . s ize ( ) == s ize ) ;
46 while ( freeTarget . isEmpty ( ) ) {
47 s ize += 1;
48 freeTarget = Place . a l l ( ) . select ( s |

s . outgoing . s ize ( ) == s ize ) ;
49 }
50 var source = nextFromCollection ( freeSources ) ;
51 var target = nextFromCollection ( freeTarget ) ;
52 var a1 : Arc = new PlaceToTransArc () ;
53 a1 . weight = nextInteger (10) ;
54 a1 . source = source ;
55 net . p laces . add( source ) ;
56 a1 . target = tra ;
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57 net . arcs . add(a1 ) ;
58 var a2 : Arc = new TransToPlaceArc () ;
59 a1 . weight = nextInteger (10) ;
60 a2 . source = tra ;
61 a2 . target = target ;
62 net . p laces . add( target ) ;
63 net . arcs . add(a2 ) ;
64 }
65 }

68 post {
69 "GenDone" . println ( ) ;
70 }

9.8 Railway to Control
The example is based on the train benchmark metamodel [102],
which the authors claim contains the most typical class diagram
constructs. The transformation considers that the train domain
can be used model a toy model train, and we are interested in
automate the signals (semaphores) and switches that control the
toy model train behaviour. The transformation is used to create a
model of a control system that can be used to monitor the state
of the toy model train and, for example, automate the toy railway
to allow multiple trains to run on it.

Listing 9.8: Model generator code for the Railway to Control example.
1 pre {

3 var cont : Integer = tota l /10;
4 var seg = 0;
5 var sw = 0;
6 var r = 0;
7 var sem = 0;
8 var pos = 0;
9 var sen = 0; // At l e a s t 2

10 var reg = 0;

12 while ( to ta l > 0) {
13 reg += 1;
14 tota l −= 1;
15 r += 1;
16 tota l −= 1;
17 sw += 1;
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18 tota l −= 1;
19 seg += 2;
20 tota l −= 2;
21 pos += 1;
22 tota l −= 1;
23 sen += 2;
24 tota l −= 2;
25 sem += 2;
26 tota l −= 2;
27 }
28 var id = 0;
29 }

32 $instances sem
33 @l i s t semaphores
34 operation Semaphore create ()
35 {
36 s e l f . id = id ;
37 id += 1;
38 }

40 $instances r
41 @l i s t routes
42 operation Route create ()
43 {
44 s e l f . id = id ;
45 id += 1;
46 s e l f . entry = nextFromListAsSample ('semaphores') ;
47 s e l f . ex i t = nextFromListAsSample ('semaphores') ;
48 }

50 $instances sw
51 @l i s t switches
52 operation Switch create ()
53 {
54 s e l f . id = id ;
55 id += 1;

57 }

59 $instances pos
60 operation SwitchPosition create ()
61 {
62 s e l f . id = id ;
63 id += 1;
64 s e l f . target = nextFromListAsSample ('switches') ;
65 s e l f . route = nextFromList ('routes') ;

67 switch( nextInteger (2) ) {
68 case 0 : s e l f . pos i t ion = Posit ion#FAILURE;
69 case 1 : s e l f . pos i t ion = Posit ion#STRAIGHT;
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70 case 2 : s e l f . pos i t ion = Posit ion#DIVERGING;
71 }
72 }

75 $instances seg
76 operation Segment create ()
77 {
78 s e l f . id = id ;
79 id += 1;
80 s e l f . length = nextInteger (20)+1;
81 var items : Real = Semaphore . a l l ( ) . s ize ( ) . asReal ( ) ;
82 var elems = items . log10 ( nul l ) ;
83 elems = 5.pow( elems ) .min( items ) . round ( ) ;
84 elems = nextInteger ( elems−1)+1;
85 s e l f . semaphores . addAll ( nextSample (Semaphore . a l l ( ) , elems ) ) ;
86 items = TrackElement . a l l ( ) . s ize ( ) . asReal ( ) ;
87 elems = items . log10 ( nul l ) ;
88 elems = 5.pow( elems ) .min( items ) . round ( ) ;
89 elems = nextInteger ( elems−1)+1;
90 i f ( elems < 2) {
91 elems = 2;
92 }
93 s e l f . neighbors . addAll ( nextSample (TrackElement . a l l ( ) , elems ) ) ;
94 var l e f t = nextFromList ('switches') ;
95 i f ( nextBoolean () ) {
96 l e f t . l e f t = s e l f ;
97 }
98 e l s e {
99 i f ( l e f t . l e f t . isDefined ( ) ) {

100 s e l f . connectsTo . add( l e f t . l e f t ) ;
101 }
102 }
103 var r ight = nextFromList ('switches') ;
104 i f ( nextBoolean () ) {

106 r ight . r ight = s e l f ;
107 }
108 e l s e {
109 i f ( r ight . r ight . isDefined ( ) ) {
110 s e l f . connectsTo . add( r ight . r ight ) ;
111 }
112 }
113 var f r = nextFromList ('switches') ;
114 i f ( nextBoolean () ) {

116 f r . ‘ from ‘ = s e l f ;
117 }
118 e l s e {
119 i f ( f r . ‘ from ‘ . isDefined ( ) ) {
120 s e l f . connectsTo . add( f r . ‘ from ‘ ) ;
121 }
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122 }
123 }

126 $instances reg
127 @l i s t reg ions
128 operation Region create ()
129 {
130 s e l f . id = id ;
131 id += 1;
132 var items = TrackElement . a l l ( ) . s ize ( ) . asReal ( ) ;
133 var elems = items . log10 ( nul l ) ;
134 elems = 5.pow( elems ) .min( items ) . round ( ) ;
135 elems = nextInteger ( elems−1)+1;
136 s e l f . elements . addAll ( nextSample (TrackElement . a l l ( ) , elems ) ) ;
137 }

140 $instances sen
141 operation Sensor create ()
142 {
143 s e l f . id = id ;
144 id += 1;
145 var region = nextFromList ('regions') ;
146 region . sensors . add( s e l f ) ;
147 i f ( region . elements . s ize ( ) > 0) {
148 var items = region . elements . s ize ( ) . asReal ( ) ;
149 var elems = items . log10 ( nul l ) ;
150 elems = 5.pow( elems ) .min( items ) . round ( ) ;
151 elems = nextInteger ( elems−1)+1;
152 var monitors = nextSample ( region . elements , elems ) ;
153 s e l f . monitors . addAll ( monitors ) ;
154 var routes = monitors . select (m | m. isTypeOf( Switch ) )
155 . col lect (sw |

sw . pos i t i ons . col lect (swp |
swp . route ) )

156 . f latten ( ) ;
157 for ( r in routes ) {
158 r . gathers . add( s e l f ) ;
159 }

161 }
162 }

165 operation RailwayContainer create ()
166 {
167 s e l f . routes . addAll (Route . a l l ( ) ) ;
168 s e l f . reg ions . addAll ( Region . a l l ( ) ) ;
169 }
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172 post {
173 "GenDone" . println ( ) ;
174 }
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