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Abstract 

Discrete Element Method (DEM) and Smoothed Particles Hydrodynamics 

(SPH) are integrated to investigate the macroscopic dynamics of fluid-solid 

interaction (FSI) problems. This coupled model is originated from two 

different meshless methods without mesh generation, which can handle 

fluid-particle-structure interactions with structural deformation/failure. With 

SPH the fluid phase is represented by a set of SPH particle elements 

moving in accordance with the Navier-Stokes equations. The solid phase 

consists of single or multiple solid particle(s) phase and deformable 

structure(s) phase which are represented by DEM particle elements using a 

linear contact model and a linear parallel contact model to account for the 

interaction between particle elements, respectively. To couple the fluid 

phase and solid particle phase, a local volume fraction and a weighted 

average algorithm are proposed to reformulate the governing equations and 

the interaction forces. The structure phase is coupled with the fluid phase by 

incorporating the structure’s DEM particle elements in SPH algorithm. The 

interaction forces between the solid particles and the structure phases are 

computed using the linear contact model in DEM. The proposed model is 

capable of simulating simultaneously fluid-structure interaction, particle-

particle interaction and fluid-particle interaction, with good agreement 

between complicated hybrid numerical methods and experimental results 

being achieved. Finally, two engineering problems in injection moulding and 

3D printing process are carried out to demonstrate the capability of the 



- vii - 

integrated particle model for simulating fluid-solid interaction problems with 

the occurrence of structural failure. 



- viii - 

Table of Contents 

Acknowledgements ..................................................................................... iv	
Abstract ........................................................................................................ vi	
Table of Contents ...................................................................................... viii	
List of Tables ............................................................................................... xi	
List of Figures ............................................................................................. xii	
1 Introduction ................................................................................................ 1	

1.1 Background ...................................................................................... 1	
1.1.1 Numerical simulation of Fluid-Solid Interaction ..................... 1	
1.1.2 Mesh-based methods ............................................................ 4	
1.1.3 Meshfree methods ................................................................ 8	

1.2 Smoothed Particle Hydrodynamics .................................................. 9	
1.2.1 Development of SPH ............................................................. 9	
1.2.2 Recent applications of SPH ................................................ 11	
1.2.3 Advantages and limitations of SPH ..................................... 12	

1.3 Discrete Element Method ............................................................... 14	
1.3.1 Development of DEM .......................................................... 14	
1.3.2 Recent applications of DEM ................................................ 16	
1.3.3 Advantages and limitations of DEM .................................... 17	
1.3.4 PFC2D 5.0 .......................................................................... 19	

1.4 Numerical coupled modelling ......................................................... 21	
1.5 Motivations and objectives ............................................................. 27	
1.6 Thesis outline ................................................................................. 29	

2 SPH for fluid dynamics ........................................................................... 30	
2.1 Navier-Stokes equations in SPH form ............................................ 30	

2.1.1 Interpolation of a function and interpolation of the 
derivative of a function ......................................................... 31	

2.2 Numerical implementation of SPH ................................................. 34	
2.2.1 Kernel selections ................................................................. 34	
2.2.2 Physical Viscosity ................................................................ 35	
2.2.3 Tensile instability ................................................................. 36	
2.2.4 Boundary Treatment ........................................................... 39	
2.2.7 Time Integration .................................................................. 41	



- ix - 

3 DEM for granular flow and structure mechanism ................................ 42	
3.1 Principles of DEM ........................................................................... 42	

3.1.1 Force-displacement law ...................................................... 42	
3.1.2 Law of motion ...................................................................... 45	

3.2 Contact models .............................................................................. 46	
3.2.1 Linear contact model ........................................................... 46	
3.2.2 Linear parallel bond model .................................................. 47	

3.3 Fracture criteria of structure ........................................................... 49	
3.3.1 Particle distribution .............................................................. 49	
3.3.2 Bond stiffness determination ............................................... 50	
3.3.3 Bond ultimate strength determination ................................. 51	

4 Coupling schemes for fluid-solid interaction ....................................... 54	
4.1 Interaction forces for fluid particle in SPH ...................................... 57	

4.1.1 Local averaging technique .................................................. 57	
4.1 Interaction forces for solid particle in DEM ..................................... 59	

4.2 Interaction forces for fluid in SPH ........................................... 63	
4.3 Interaction forces for structure in DEM ................................... 65	

4.4 Flowchart of computational algorithms in SPH-DEM ..................... 66	
5 Validations of SPH................................................................................... 68	

5.1 Static tank test ................................................................................ 68	
5.2 Dam break test ............................................................................... 72	

5.2.1 Introduction ......................................................................... 72	
5.2.2 Effect of different smoothing lengths ................................... 75	
5.2.4 Effect of different particle resolutions .................................. 79	

6 Validations of DEM .................................................................................. 82	
6.1 Dry dam break test ......................................................................... 82	
6.2 Tip-loaded cantilever beam test ..................................................... 84	

7 Validations of SPH-DEM ......................................................................... 90	
7.1 Single particle sedimentation test ................................................... 90	
7.2 Two phase dam-break test ............................................................. 94	
7.3 Dam break with top-fixed elastic gate .......................................... 100	
7.4 Dam break with bottom-fixed elastic gate .................................... 106	
7.5 Two phase dam-break test with bottom-fixed elastic gate ........... 111	



- x - 

8 3D Printing of Fibre Reinforced Polymer Composites ....................... 115	
9 2D simulation of injection moulding process of short fibre 

composites ....................................................................................... 127	
10 Conclusions and future works ........................................................... 144	

10.1 Conclusions ................................................................................ 144	
10.2 Future works ............................................................................... 147	

List of References .................................................................................... 148	
Appendix 1: Publication list .................................................................... 169	
Appendix 2: The main structure of SPH code in C++ ........................... 170	
 



- xi - 

List of Tables 

Table 1 SPH parameters used for the static tank test .................................. 70	
Table 2 SPH parameters for the dam-break test .......................................... 75	
Table 3 Particle resolutions in the dam-break test ....................................... 79	
Table 4 The list of material and particle properties ...................................... 84	
Table 5 Deflections for the tip-loaded cantilever beam test ......................... 86	
Table 6 Maximum applied load for the tip-loaded cantilever beam test ....... 89	
Table 7 Parameters for SPH-DEM modelling of the elastic gate test ......... 103	
Table 8 Numerical parameters in SPH-DEM modelling of injection 

moulding process ............................................................................ 132	
 



- xii - 

List of Figures 

Fig. 1 Particle approximations for particle i within the support 
domain kh of the kernel function W. r_ij is the distance 
between particle i and j, s is the surface of integration 
domain, Ω is the circular integration domain, k is the 
constant related to kernel function and h is the smooth 
length of kernel function. .................................................................. 32	

Fig. 2 Truncation of particle support domain by a boundary ................. 40	
Fig. 3 Boundary particles and their interaction with SPH particles ...... 40	
Fig. 4 Two particles in direct contact ....................................................... 43	
Fig. 5 2D representation of a contact between two particle 

elements in DEM ................................................................................ 47	
Fig. 6 DEM particle elements with a parallel bond .................................. 48	
Fig. 7 Hexagonal packing of discrete particles with parallel bonds ...... 50	
Fig. 8 Schematic diagram of interaction forces in the integrated 

particle model ..................................................................................... 56	
Fig. 9 Computational flow chart of the integrated particle model ......... 67	
Fig. 10 Initial configuration of the static tank test ................................... 69	
Fig. 11 Particle distribution during a period time of 1.0s using two 

different kernel functions. ................................................................. 72	
Fig. 12 2D SPH representation of the dam-break test ............................. 73	
Fig. 13 Initial density of SPH particles with an assumption of 

artificial compressibility .................................................................... 74	
Fig. 14 Results from experiment [51], MPS [53] and SPH with 

h=1.25×∆p for a time period of t=1.0s. .............................................. 77	
Fig. 15 SPH simulations with three different smoothing length for 

a time period of t=1.0s. ...................................................................... 78	
Fig. 16 SPH simulations with three different particle resolutions 

for a time period of t=1.0s. ................................................................ 80	
Fig. 17 Dry dam break test for a time period 0.5 s. ................................. 83	
Fig. 18 Configuration of cantilever under single point load in DEM ...... 85	
Fig. 19 Distribution of stress σ11 in cantilever beam at load 5000N ..... 87	
Fig. 20 Configuration of single particle sedimentation test ................... 91	
Fig. 21 Longitudinal coordinate (a) and velocity (b) against time ......... 93	
Fig. 22 2D representation of the two phase dam-break test .................. 96	
Fig. 23 Two phase dam-break test for a time period of t=0.2s ............... 98	



- xiii - 

Fig. 24 The normalised front position against the characteristic 
time .................................................................................................... 100	

Fig. 25 Configuration of 2D elastic gate test in a coupled SPH-
DEM model ........................................................................................ 101	

Fig. 26 Comparisons between experimental, SPH-SPH and SPH-
DEM results of elastic gate test with a time period of 0.40s. ....... 104	

Fig. 27 Water levels at different time ...................................................... 105	
Fig. 28 2D representation of FSI with fracture ....................................... 108	
Fig. 29 SPH-DEM modelling of FSI with fracture ................................... 111	
Fig. 30 Configuration of the dam-break test with Fluid-Solid 

particle-Structure interaction .......................................................... 113	
Fig. 31 SPH-DEM modelling of FSI with fracture ................................... 114	
Fig. 32 Initial configurations of the 3D printing processes of 

composites. (a) Short glass fibre reinforced acrylonitrile–
butadiene–styrene (ABS) composite; (b) Continuous carbon 
fibre reinforced Nylon composite. .................................................. 120	

Fig. 33 Velocities of resin at printing time of t = 0.05 s and t = 0.1s. ... 123	
Fig. 34 Density distribution in resin at printing time of t = 0.05 s 

and t = 0.1 s. ...................................................................................... 125	
Fig. 35 Tensile stress in continuous carbon fibre/Nylon: (a) t = 

0.05 s and (b) t = 0.1 s. ..................................................................... 126	
Fig. 36 Configuration of 2D SPH-DEM simulation of the injection 

moulding process ............................................................................ 131	
Fig. 37 Snapshots of the injection moulding process at different 

time .................................................................................................... 133	
Fig. 38 Velocity contour of resin flow before split flow at a 0.005s 

time interval ...................................................................................... 134	
Fig. 39 Velocity contour of resin flow after split flow at 0.01s time 

interval .............................................................................................. 135	
Fig. 40 Front flow observed at time 0.025s ............................................ 137	
Fig. 41 Distribution of tensile stresses in short fibers at time 0.2s ..... 138	
Fig. 42 Injection moulding processes with fibre volume fractions 

of 3.8% and 8.3%. ............................................................................. 141	
Fig. 43 Qualitative comparison between (a) numerical prediction 

and (b) post-processed X-ray CT image of fibre orientation 
upon the completion of filling process .......................................... 141	



- 1 - 

1 Introduction 

1.1 Background 

1.1.1 Numerical simulation of Fluid-Solid Interaction 

Fluid-solid interaction is a branch that combines fluid mechanics and solid 

mechanics together to investigate the dynamic behaviour of solid under the 

action of fluid field or the effect of dynamic behaviour of solid to the fluid 

field. The most important characteristic of fluid-solid interaction is the 

interaction between two different phases, non-rigid solid (e.g. structure 

phase) can deform or rigid solid (e.g. single or multiple solid particle phase) 

move under the forces from fluid field and in return its deformation for 

structure phase and movement for structure and solid particle phases 

influence fluid field. Consequently fluid-solid interaction under different 

conditions can produce various phenomenon [1]. 

As fluid-solid interaction intersects various disciplines like fluid mechanics, 

solid mechanics, dynamics and computational mechanics, it technically has 

a close relation to the field of engineering such as civil, aerospace, marine, 

ocean, mechanical, nuclear, geology and biology [1]. For example, FSI 

applications include, but are not limited to, sedimentation [2-4], particle 

assembly [5], aerodynamics [6, 7], turbulence [8, 9], complex flows in 

irregular domains [10-12], electro-hydrodynamics [13], magneto-

hydrodynamic flows [14], biofluid and bio-mechanics [15, 16]  

Due to the complication of fluid-solid interaction, the research and 

development of fluid-solid interaction advances slowly in recent decades and 
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it is only limited to analytical solutions and laboratory experiments. For most 

FSI problems, analytical solutions are impossible to solve model equations 

and laboratory experiments are also limited in scope, dependent on the 

scale of experiment and the massive financial investment; thus to investigate 

the fundamental physics involved in the complex interaction between fluid 

and solid, numerical simulations as an alternative solution may be employed 

[17]. Fluid-solid interaction gradually draws worldwide attention until the 

presence of numerical methods (e.g. boundary element and finite element 

methods) in the 1960 [18]. Later on, the fast development in computer 

technology and numerical methods boosts the research in fluid-solid 

interaction. 

FSI problems usually involve flow nonlinearity and multiphysics which are 

too complex to be solved by analytical methods, and a small number of 

numerical models have been developed in recent years. Although there are 

various numerical methods being developed and applied to simulate the 

separate behaviour of fluid and solid, combined methods for FSI are still 

limited. The challenge of coupling two methods for FSI largely depends on 

the nature of their discretisation. Conventional mesh-based methods such as 

the finite difference method (FDM), the finite element method (FEM) and the 

finite volume method (FVM) discretise the domain into individual meshes. 

The reliance on mesh makes the treatment of discontinuities (e.g., wave 

breaking, cracking and contact/separation) difficult because the path of 

discontinuities may not coincide with the mesh lines. Remeshing techniques 

can ensure the discontinuities evolve along the mesh lines but at the 

expense of reduced computational efficiency and degradation of numerical 

accuracy. In comparison to conventional mesh-based methods, meshfree (or 
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meshless) methods are intended to approximate mathematic equations in 

the domain only by nodes without being connected by meshes. If the nodes 

are particles that carry physical properties (e.g., mass) and the system is 

simulated by the evolution of the particles’ trajectory and the particles’ 

properties, then this type of method is usually called a particle method. 

Typical particle methods are molecular dynamics (MD), Discrete Element 

Method (DEM), Smoothed Particle Hydrodynamics (SPH), Immersed 

Particle Method and Lattice Boltzmann Method (LBM). It should be noted 

that in LBM the particles are only allowed to move along the predefined 

lattices, so it is in some ways a mesh-based particle method. In the 

meshfree particle methods of MD, SPH and DEM a contact detection 

algorithm as well as an interaction law is required to define the particle 

interaction. The contact detection algorithm is used to determine whether 

two particles are interactive, and once they interact, then the interaction law 

must be used to calculate the interaction forces. In previous research, LBM 

and SPH are mainly used for simulating fluid flow [19, 20] whilst DEM is 

mainly used for simulating granular flow [21] and solid fracture [22]. Coupled 

models like SPH-SPH [23], SPH-DEM [24], Immersed Particle Method [25, 

26] and LBM-DEM [27] have been developed for fluid-structure or fluid-

particle interactions.  
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1.1.2 Mesh-based methods  

The description of  the physical governing equations can be divided into two 

fundamental frames: the Eulerian description and the Lagrangian 

description. The Eulerian description based on spatial distribution is a way of 

looking at fluid motion that focuses on specific locations in the space through 

which the fluid flows as time passes, and is typically represented by the 

Finite Difference Method (FDM) and Finite Volume Method (FVM) [16, 28]. 

The Lagrangian description is in a material description that looking at fluid 

motion where the observer follows an individual fluid parcel as it moves 

through space and time, and is typically represented by the finite element 

method (FEM) [29, 30]. Accordingly, the Eulerian and Lagrangian 

descriptions correspond to two different grids of domain discretization: the 

Eulerian grid and the Lagrangian grid.  

In the Lagrangian grid-based methods (e.g. FEM), the grid is linked to be 

part of the material in the entire computation process, and therefore it moves 

as long as the material moves. Since the grid point in the material connects 

the intersected grid nodes, the relative movement of the connecting nodes 

may be expanded, compressed or deformed to change the shape of mesh 

cell. Consequently mass, momentum and energy are transported with the 

movement of the mesh cells.  

The Lagrangian grid-based methods have several advantages. 

1. No matter how the material moves, the grid is not detached on the 

moving material, all the field variables at a material point can be 

easily tracked and achieved in the entire physical time domain. 
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2. As some grid nodes can be placed along boundaries and material 

interfaces with fixed position or pre-defined velocity, the boundary 

conditions at free surfaces, no-slip/moving boundaries, and material 

interfaces can be easily implemented. 

3. Depending on the geometry of material, regular or irregular mesh can 

be conveniently applied.  

4. Since the problem domain is the only interest of area that requires the 

creation of grid, no additional grids beyond the problem domain are 

needed, as a result, the Lagrangian grid-based methods are efficient 

in computational cost. 

Due to these advantages listed above, Lagrangian methods are widely 

applied to solve computational solid mechanics (CSM) problems, where the 

deformation is not significant as that in the fluid flows. However, when 

considering large distortion of mesh, Lagrangian grid-based methods are 

practically very difficult to guarantee an acceptable accuracy, the accuracy 

of solution is heavily affected by the formulation stored in the mesh. A 

feasible remedy to optimize the Lagrangian computation is to rezone the 

mesh or re-mesh the problem domain. The mesh rezoning normally can be 

an overlaying of a new and undistorted mesh to replace the old, distorted 

one, so that the computation in the next step can be carried out with the 

application of new and undistorted mesh. As a result, mesh rezoning is a 

common solution for numerical modelling of metal forming processes [31], 

singular problems [32] and FSI problems [33]. However, the procedure for 

mesh rezoning in Lagrangian computations is much less efficient as it 

spends the majority of time in mesh rezoning.  
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In comparison to the Lagrangian grid, the Eulerian grid doesn’t spatially 

move and physically deform with time in the problem domain. In the same 

time, the material (e.g. fluid) flows across the fixed mesh cells from one end 

to another end. As the Eulerian grid and the material are treated separately, 

no matter how large the material deforms, there is no influence to the 

Eulerian grid, hence the numerical problems appeared in the Lagrangian 

grid is not existed in the Eulerian grid. Due to this apparent benefit, Eulerian 

methods are increasingly recognised and widely applied in the field of 

Computational Fluid Dynamics (CFD). Some early researchers has used 

Eulerian methods to investigate explosion and high velocity impacts 

problems with large deformation of materials [34, 35]. Contrary to the 

advantages in Eulerian methods, the following are disadvantages in  

Eulerian methods. 

1. Due to the nature of Eulerian methods, the movement of material can 

not be tracked in the Eulerian grid. It’s only able to capture the time 

history of field variables instead. 

2. Mesh regeneration is normally required for irregular and complicated 

geometries. It is expensive in the entire process of numerical 

simulation.  

3. It’s difficult to accurately deal with free surface, moving boundary and 

the interface between the moving materials as the grid point in 

Eulerian methods  is fixed. 

In order to take the advantages as well as avoid the disadvantages in both 

Lagrangian and Eulerian descriptions, the development of coupling these 

two methods has been made by proposing the Coupled Eulerian Lagrangian 
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(CEL) [34] and the Arbitrary Lagrange Eulerian (ALE) [36]. The CEL 

approach is to define the different regions of the computational domain in 

both the Eulerian and Lagrangian methods separately. For example, the 

solid phase is represented by Lagrangian methods and Eulerian method 

accounts for the fluid phase and then these two regions continuously interact 

with each other by exchanging computational information through an 

appropriate coupling technique. When using ALE method, the mesh inside 

the domains can move arbitrarily to optimize the shapes of elements, while 

the mesh on the boundaries and interfaces of the domains can move along 

with materials to precisely track the boundaries and interfaces of a multi-

regional system. The combination of these two approaches has drawn 

massive research interest and advanced with reliable solutions for FSI 

problems [37-39]. However, some researchers still pointed out that both the 

CEL and ALE are still not stable in the numerical simulations [35, 36]. An 

alternative approach is highly desired. 
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1.1.3 Meshfree methods 

Meshless methods were initially proposed to overcome the difficulties 

associated with mesh-based methods. The main difference between 

meshfree and mesh-based methods is the way of approximation, in which 

meshless methods are dependent on nodes only. The first and typical 

meshless method is the Smooth Particle Hydrodynamics (SPH) [40, 41] 

which is initially proposed to investigate problems in astrophysics and, later 

on, in fluid dynamics [20, 42, 43] and even in solid mechanics [44]. In 

addition, many improvements have been made to minimize tensile instability 

[45, 46] and inconsistency [47]. The moving particle semi-implicit (MPS) 

method [48, 49] is similar to SPH, but the MPS method applies simplified 

differential operator models solely based on a local weighted averaging 

process without taking the gradient of a kernel function. Even though it is 

also applicable to fluid dynamics [50], non-conservation of momentum and 

spurious pressure fluctuation are the main shortcomings in MPS [51]. In the 

field of solid mechanics, the Discrete Element Method (DEM) [52] was 

initially designed to compute the motion and effect of a large number of 

small particles flow, later on, it was extended to study structure phase by 

connecting discrete particle through a bond to represent the inherent part of 

structure phase [22, 53]. Hence there are some major advantages of 

meshless methods that are more flexible than meth-based methods: 

1. It’s straightforward to deal with surface problems with moving 

discontinuities. 

2. Large deformation in fluid and solid phases can be easily handled. 

3. No mesh generation and sensitivity required.  
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1.2 Smoothed Particle Hydrodynamics 

1.2.1 Development of SPH 

Smoothed Particle Hydrodynamics (SPH) is a completely meshfree particle 

method originally invented to solve astrophysical problems in universe [40, 

54], Gradually it moves to the study of fluid flow (e.g. liquid and gas) since it 

can be simulated by approximating the governing equations of the classical 

Newtonian hydrodynamics.  

In the early stage of SPH, its algorithms were based on the probability 

theory. Even though the conservation of linear and angular momentum was 

not obtained under those algorithms, such acceptably promising results can 

be given for many astrophysical phenomena. When dealing with fluid 

dynamics and solid mechanics problems, the partial differential equations 

contributed to govern fluid dynamics and solid dynamics are difficult to 

devotedly  reproduce [42]. Later on, SPH was rapidly developed by digging 

out more attractive features and identifying some inherent drawbacks. Many 

researchers have been devoted to improving the accuracy of SPH by 

proposing different remedies. For example, Gingold and Monaghan showed 

that a simple form of estimation leads to a particle method which does not 

require a grid and satisfies the conservation laws very accurately [55]. Hu 

and Adams showed that a simple angular-momentum conservative 

formulation of the viscous force can be derived theoretically under the 

condition of incompressible flow to conserve angular momentum [56]. What 

is more, Swegle et al. carried out a von Neumann stability analysis of the 

SPH algorithm to identify the criterion for stability or instability in terms of the 

stress state and the second derivative of the kernel [57]. Morris found out 
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that the inconsistency is the main reason to give rise to inappropriate 

accuracy of  SPH [46]. With the identification of inherent drawbacks, some 

remedies have been proposed to remain the consistency and to optimize the 

accuracy of the SPH method. Monaghan used a symmetrized form in 

pressure gradient to construct symmetric forms of the SPH momentum 

equations, which was tested to have better accuracy [41]. Johnson 

considers the effects of artificial viscosity and verified that it can have a 

significant effect on the results[58]. Randles and Libersky extended the 

conservative smoothing into multi-dimensional SPH and implemented 

generalized boundary conditions in SPH to improve results considerably 

[59]. Chen et al. proposed a corrective smoothed particle method (CSPM) by 

solving Burgers’ equations over a wide range of the viscosity parameters in 

one and two space dimensions to improve the simulation accuracy [60]. 

Batra et al. developed modified SPH (MSPH) to analyze shear strain 

localization in elasto-thermo-viscoplastic materials that exhibit strain- and 

strain-rate hardening and thermal softening [61]. The stress-point approach 

was developed to address tension instability and improve accuracy in 

Smoothed Particle Hydrodynamics (SPH) methods [62]. It has been shown 

that the consistency of the SPH method can be improved to acceptable 

levels by substituting moving least-squares (MLS) and MLS severely retards 

tension instability growth [63]. The kernel function can be corrected to 

enforce the consistency conditions and improve the accuracy [64], Chen et 

al. proposed a reproducing kernel particle method (RKPM) by introducing  a 

material kernel function and an RKPM material shape function for large 

deformation analysis of non-linear structures [65]. 
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1.2.2 Recent applications of SPH 

SPH as a meshfree method has advantages in dealing with moving 

boundary problems, especially extensive deformation and free surface flow. 

Despite of the initial applications of the SPH method in astrophysical 

phenomena，the applications of SPH now have been extensively expanded 

to many engineering applications include: 

1. In the multi-phase flows [66, 67] where fluid and gas coexisted, SPH 

has successfully applied into incompressible/compressible flow by 

solving equation of state. Incompressible flow can also be solved by 

using Bernoulli equation to achieve pressure and velocity fields.  

2. In the aspect of coastal engineering [68, 69], SPH can be used to 

model the slip of solid block into water. Many interesting phenomenon 

can be captured like the splash of water, the appearance of vortex, 

the spread of wave and the pressure distribution of water. 

3. For blood flow [70], it is computationally costly to compute the 

viscosity term in Navier-Stokes equations. In SPH, the entire blood 

system can be a discrete space with multi particles, then the fluid 

speed is acquired through solving bllod flow control equations with 

deployment of the SPH model. On the basis of SPH simulation of fluid, 

the shape constraining method can help control the movement blood 

particles so as to obtain the solid speed. It finally avoids the complex 

computation process of the traditional methods and achieves fast 

blood flow simulations results and meets the real-time experiments. 

4. For Heat and mass flow [71, 72], the second order derivative in SPH 

is constructed though Taylor series expansion and 1D, 2D and 3D 
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heat conduction problems are computed and compared with 

analytical solutions. 

5. In the research of Ice dynamics [73, 74], it is mainly focused on 

floating ice and two-phase flow. When applying finite difference 

method and finite volume method to sea-ice interaction, the moving 

ice can result in the deformation of generated mesh and consequently 

numerical diffusion is significant to influence numerical accuracy. 

Under the application of particle methods, these difficulties can be 

easily avoided. It can model not only the movement of floating ice, but 

also the phase transfer between sea and ice by considering 

thermodynamics. 

6. In the process of metal forming [64, 75], the simulation of free surface 

based on SPH can improve numerical accuracy.  

 

1.2.3 Advantages and limitations of SPH 

For fluid dynamics problems, SPH is a very powerful method for CFD 

problems governed by the Navier-Stokes equations. To model such complex 

free surface flows is a tough and challenging task for most computational 

fluid dynamics (CFD) solvers which work in the Eulerian framework. As a 

Lagrangian and meshless method, SPH offers a convenient tracking for 

different complex boundaries and a straightforward satisfaction for different 

boundary conditions. Therefore SPH is robust in modelling complex 

hydrodynamic problems characterized by free surface boundaries, 

multiphase interfaces or material discontinuities. Along with the rapid 

development of the SPH theory, related numerical techniques and high-
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performance computing technologies, SPH has not only attracted much 

attention in the academic community, but also gradually gained wide 

applications in industrial circles. All in all, SPH has some special advantages 

over the traditional grid based numerical methods when dealing with fluid 

dynamics:  

1. SPH is a particle method based on Lagrangian scheme, therefore the 

time history of the material particles can be achieved.  

2. SPH can be easily implemented for modelling free surface and 

interfacial flow problems. 

3. SPH does not require mesh generation. Hence a straightforward 

handling of large deformations is allowed, unlike mesh remedies 

applied to mesh-based methods when considering large deformations.  

4. SPH can more naturally and physically develop a problem domain 

than mesh-based methods, especially in free surface flow. 

For the limitations in SPH，small time steps required due to the use of the 

weakly compressible Tait equation of state, so large scale simulations using 

SPH have so far been rare and only performed on very expensive CPU-

based supercomputers. 
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1.3 Discrete Element Method 

1.3.1 Development of DEM 

In the recent decades, the Discrete Element Method (DEM) has played a 

vital role in numerically modelling the dynamic behaviour of granular flow. 

Principally the granular flow is made up of a cluster of discrete particles, 

each particle is governed by two fundamental laws: law of motion and force-

displacement law. Law of motion is applied to each particle and force-

displacement law is applied to each contact between particle pairs. In 

comparison with mesh-based methods (e.g. FEM), DEM is more suitable to 

model large deformation and crack propagation as discrete particles in DEM 

are not limited to deformation and displacement.  

DEM was first proposed by Cundall [76] who adopted this method to 

investigate large scale movement in blocky rock systems. With the 

development of DEM, it has been one of the dominant numerical tools in the 

solid mechanics and geotechnical engineering. In the process of evolving 

DEM, circular or spherical particles in 2D and 3D are initially assumed for 

easy implementation and computational simplicity. As the obtained contact 

forces among those regular shaped particles are only transferred though the 

particle centroid, there is no contribution to moment, which is totally different 

to irregular shaped particles. Therefore, the real dynamic behaviour of 

material can not be physically and accurately obtained when the real particle 

shape is not regular. even when the particle shape is having little 

differentiation from being circular or spherical [77]. Up to now, many 

researchers has developed many solutions to account for the irregularity of 

particle shape. Boon presented a two-stage contact detection algorithm for 
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polygonal (2-D) or polyhedral (3-D) convex particles, firstly the contact point 

is identified and then the contact normal is calculated from the gradient 

vector of an inner potential particle whose corners are rounded [78]. John F. 

Peters defined the surface of poly-ellipsoid particle by joining octants of eight 

ellipsoids, so that the particle mass, centroid and moment of inertia tensor 

can all be sorted out in closed form in despite of the complexity of the 

particle shapes [79]. More researches relevant to elliptic problems can be 

referred to [80, 81]. 

For large-scale simulation of discrete particle flow, the application of contact 

searching algorithm is highly sensitive to the computational efficiency, which 

towards to the cost of computation. Feng introduced the augmented spatial 

digital tree (ASDT) algorithm which is based on the understanding existing 

spatial digital tree-based contact detection approaches and the alternating 

digital tree (ADT) algorithm, it is proved to be at least over 3.9 times faster 

than the ADT [82]. Mio found out an optimum cell condition, which is related 

between cell size and particle radius, therefore it is possible to model large-

scale DEM simulation [83]. For similar particle size ratio, a contact detection 

algorithm with no binary search was proved not to be influenced in terms of 

performance and additionally it technically requires less computing 

memories [84]. Williams presented a new spatial reasoning algorithm that 

can be used in multi-body contact detection. The partitioning of N bodies of 

arbitrary shape and size into N lists in order O(N) operations were achieved 

under this algorithm scheme, where each list consists of bodies spatially 

near to the target object. What is more, the algorithm has been tested for 

objects of arbitrary shape and size, in two and three dimensions [85]. 
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The determination of timestep in the DEM simulations is a key factor for the 

numerical accuracy and stability. If a timestep size that is too small, it results 

in an unnecessarily long simulation time. On the contrary, a large timestep 

size that is too large can give rise to incorrect simulation results in terms of 

numerical accuracy and stability. Initially Cundall [52] applied an 

computationally efficient, explicit, central difference time integration scheme, 

but this scheme is limited to a small enough timestep in order to be 

conditionally stable. In purpose of avoiding the stability issue, many 

researchers applied implicit time integration scheme [72, 86, 87], but these 

schemes are computationally costly and a large amount of iterations is 

necessary. In addition, Farhat combined explicit and implicit schemes 

together in the FSI problems to proceed them separately [88]. O'Sullivan 

introduced a new, simple approach for calculating the critical time increment 

in explicit discrete element simulations. Using this approach can be 

conservative and eliminate the overestimation of the actual critical time step 

[89]. 

 

1.3.2 Recent applications of DEM 

DEM can not only apply to particulate flow, but also the deformation/fracture 

of material. The applications of DEM now have been extensively expanded 

to many engineering applications include but not limited to: 

1. In the pharmaceutical industries [90, 91], The pharmaceutical powder 

and tableting process is simulated using a combined finite discrete 

element method and contact dynamics for irregular-shaped particles. 

The particle-scale formulation and two-stage contact detection 
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algorithm which has been developed for the proposed method 

enhances the overall calculation efficiency for particle interaction 

characteristics. 

2. In the field of Mining [92, 93], the deformation and failure mechanism 

of footwall slope was simulated with the Discrete Element Method 

taking the effect of the water in fissures into account. 

3. For powder metallurgy [94, 95], the Discrete Element Method was 

carried out to analyse the densification process of iron powders with 

conventional cold pressing, warm compaction and die wall lubrication. 

The powder metallurgy compaction process can be simulated exactly 

with the the Discrete Element Method. 

4. The discrete element method has been used to model railway ballast  

[96, 97], Particles have been modelled using both spheres and 

clumps of spheres. A simple procedure has been developed to 

generate clumps which resemble real ballast particles much more so 

than spheres. The influence of clump shape on the heterogeneous 

stresses within an aggregate has been investigated, and it has been 

found that more angular clumps lead to a greater degree of 

homogeneity. 

 

1.3.3 Advantages and limitations of DEM 

Due to the nature of DEM, it is capable of analysing multiple interacting 

continuous (e.g. material), discontinuous (e.g. granular flow) or deformable 

interacting bodies undergoing large displacements and rotations. As a robust 
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and promising numerical tool, the advantages of DEM are summarised as 

follow: 

1. Straightforward implementation in discontinuous material 

modelling, 

2. The contact force between particles can be in any type (e.g. direct 

contact force or long-range interaction force), 

3. Particle is not limited to a regular shape, any shape of particle can 

be considered to mimic any real engineering problem, 

4. DEM can be easily coupled with mesh-based methods (e.g. CFD-

DEM) and meshfree methods (e.g. SPH-DEM) for the existence of 

both continuous and discontinuous properties.  

For the limitations of DEM,  

1. The maximum number of particles, and duration of a virtual 

simulation is limited by computational power. Typical flows contain 

billions of particles, but contemporary DEM simulations on large 

cluster computing resources have only recently been able to 

approach this scale for sufficiently long time (simulated time, not 

actual program execution time). 

2. DEM is computationally demanding, which is the reason why it 

has not been so readily and widely adopted as continuum 

approaches in computational engineering sciences and industry. 

However, the actual program execution times can be reduced 

significantly when graphical processing units (GPUs) are utilized 

to conduct DEM simulations, due to the large number of 

computing cores on typical GPUs. In addition GPUs tend to be 
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significantly more energy efficient than conventional computing 

clusters when conducting DEM simulations i.e. a DEM simulation 

solved on GPUs requires less energy than when it is solved on a 

conventional computing cluster. 

 

1.3.4 PFC2D 5.0 

As represented by Cundall and Strack [98], the commercial software PFC2D 

5.0 code made use of the features of the distinct element method (DEM) to 

simulate the movement and interaction among circular particles in 2D 

simulation. There are few assumptions embedded in the PFC2D 5.0 

computational algorithms: 

1. The particles possess a rigid body feature, even when two particles 

have a minor overlap, 

2. Under the direct contact condition, the contact is active only when a 

small overlap between two particles is detected. For long-range 

interaction, the contact model is activated as long as the distance 

between two particle is smaller than the pre-defined threshold value. 

3. The contact force is determined by the magnitude of the overlap 

between two particles and the force-displacement law. 

4. Bonds are introduced to connect particles as an assembly to 

represent the inherent material property. 

5. Complex shape of particle can be created by clumping multiple 

circular particles as a rigid body. 

In addition to dynamic behaviour of circular particles, PFC2D 5.0 has been 

extended to cover thermal dynamics that the simulation of transient heat 
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conduction and storage in materials is allowed. In a similar way, thermal 

contact is associated with mechanical contact when mechanical contact is 

active by default. Furthermore, Computational Fluid Dynamics (CFD) has 

been successfully embedded in PFC2D 5.0 to carry out multi-physical 

problems. The most exciting feature in PFC2D 5.0 is the introduction of C++ 

Plug-ins to enable users flexibly create any FISH intrinsics and contact 

models in C++. Plug-ins are compiled as Dynamic Link Library (DLL) files by 

using Microsoft Visual Studio 2010 SP1. In addition to flexibility, C++ Plug-

ins have several advantages over FISH code: 

1. C++ functions can be generally directly executed without transferring 

C++ functions to FISH functions. Therefore, the computational 

efficiency is massively improved and it is proved to be 10 to 100 times 

faster than FISH functions.  

2. The computational efficiency can be further improved by using 

concurrent programming, in which several computations are executed 

during overlapping time periods.  

3. Direct access is provided to internal data structures and methods that 

are not available via predefined FISH intrinsics or contact models.  

4. C++ plug-in is accessible to any C++ library or DLL, but not only 

limited to FISH libraries. 

Due to this feature, the author wrote an unique SPH code in C++ and then it 

is embedded into PFC2D 5.0 to couple with DEM as an integrated SPH-

DEM model. The main structure of SPH code in C++ is displayed in the 

section of Appendix 2. 
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In PFC2D 5.0,  the contact force is computed via force-displacement law first 

and then movement of particles and walls is updated accordingly through the 

law of motion in every calculation cycle. In the next calculation cycle, the 

contacts between particle and particle or particle and wall are updated in 

accordance with the current position of particle and wall and then the rest of 

the work in the new cycle is repeated by making use of the force-

displacement law and the law of motion. 

 

1.4 Numerical coupled modelling 

Numerical coupled modelling has been a common method to deal with multi-

physical problems. In this way, the different subsystems which form a 

coupled problem are modelled and simulated in a distributed manner. 

Furthermore, the coupled simulation is carried out by running the 

subsystems separately and the subsystems will exchange data accordingly 

during the entire process of the simulation.  

As FSI involves two phases, i.e., fluid and solid particle/structure, the 

numerical methods for each can be the same or different. As the interface 

between the fluid and solid phases is evolving in space and time, the 

numerical models of FSI can be classified as Eulerian-Eulerian, Eulerian-

Lagrangian and Lagrangian-Lagrangian. In general, an Eulerian method 

discretises the space into a mesh and defines the unknown values at the fix 

points, while a Lagrangian method tracks the pathway of each moving mass 

point. Communications between the mathematical frameworks for fluid and 

structure are realised through a fluid-structure interface. 
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The Eulerian-Eulerian models tend to use an Eulerian FDM to treat both fluid 

and structure boundaries on fixed meshes to avoid mesh reconstruction. 

This is able to handle large deformation and free movement of the structure 

in the fluid as well as the contact between structures. However, this comes 

at the price of high computational costs and additional discretisation errors 

since the interface is only tracked implicitly by the solution itself. Special 

techniques have to be used to link the material points between the reference 

framework and the current framework [99, 100]. 

The Eulerian-Lagrangian models solve the Eulerian form of the Navier-

Stokes equations for fluid on a fixed grid using a finite volume method, e.g., 

computational fluid dynamics (CFD), and track the moving body (structure) 

in a Lagrangian fashion. A typical example is the CFD-FEM model [101-

104]. An alternative, the Arbitrary Lagrangian-Eulerian method (ALE), was 

developed to allow arbitrary motion of grid/mesh points with respect to their 

frame of reference by taking the convection of these points into account. 

However, for large translations and rotations of the solid or inhomogeneous 

movements of the mesh points the fluid elements tend to become ill-shaped, 

which reflects on the accuracy of the solution. Remeshing, in which the 

whole domain or part of the domain is spatially rediscretised, is then a 

common strategy. The process of generating mesh multiple times during a 

computation can, however, be a very troublesome and time consuming task. 

In particular the contact of the elastic structure with the boundary is not 

possible within a monolithic formulation using simple ALE coordinates 

without remeshing techniques [105]. 
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Even though some remedies have been used to minimise those limitations 

[106, 107], the features such as large deformation, free surfaces and 

deformable boundaries are still great challenges in coupled CFD-FEM 

models and conventional Eulerian-Eulerian methods and Euler-Lagrangian 

methods can only solve FSI problems where the structure immersed in the 

fluid field deforms without any fracture. On the other hand in the meshfree 

methods, the identification of free surfaces, moving interfaces and 

deformable boundaries can be handled straightforwardly [108]. Due to those 

evident advantages in meshfree methods, some research efforts have been 

focused on coupling meshfree methods with CFD [24] or FEM [109, 110], 

and even developing coupled meshfree models such as SPH-SPH [23], 

SPH-DEM [24, 111, 112]  and LBM-DEM [109].  

The presence of free surface flow in the concerned FSI problems makes 

SPH preferred to remain in the coupled model to be developed. Among the 

above models the coupled SPH-FEM model [113], the coupled SPH-SPH 

model [23, 114] and the coupled SPH-DEM [24, 111, 112] are Lagrangian-

Lagrangian schemes. As both fluid and structure components are 

represented in the same framework, the coupling at the interface can be 

easily achieved. In addition, as both SPH and DEM are lagrangian particle 

methods, they can be computationally accelerated for large scale 

simulations by using GPU technique which has been already in individual 

SPH and DEM models. In DEM, the strength of the bond and the fracture 

criteria are derived through Young’s modulus and Poisson’s ratio which are 

the physical properties of real material. What is more, coupled SPH-DEM 

model can do not only FSI problems but also Fluid-Particle-Structure 

Interaction (FPSI) problems. In addition, as both SPH and DEM are 
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lagrangian particle methods, they can be computationally accelerated for 

large scale simulations by using GPU technique which has been already in 

individual SPH and DEM models.  The coupled model applied in FSI 

problems is the first step before advancing to FPSI problems .These models 

are capable of simulating the free-surface flow and dynamic boundary 

problems involved in FSI problems, but the kernel functions used in SPH for 

solid structure lack a physical representation of fracture, not to mention 

further complications such as the permeation of fluid in the porous or 

fractured zones of solid structure and the large deformation in FEM is still 

under numerical challenges. In the coupled SPH-DEM models developed in 

[24, 111] the structures are treated as rigid bodies thus the interaction 

between structure and fluid is not fully studied and the deformation and 

fracture of structure has not been achieved. Even if the structures in FSI 

problems with free surface flow is represented by SPH or FEM, to the 

authors’ best knowledge, none of those models is capable of dealing with 

fracture or crack initiation in the structure part during the FSI process.  

The FEM as a traditional mesh-based method and its extended versions 

play an important role in dealing with solid fracture or structural failure 

problems [115, 116]. Phantom-Node method [117] was also incorporated 

into FEM through integration of overlapped elements in order to handle 

crack kinematics, but the crack-tip enrichment is still challenging and its 

flexibility is comprised when crack growth is the only focus. Therefore 

coupling FEM with SPH for modelling fluid induced structural failure during 

the FSI process would become even more challenging. 
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Another method referred as continuous/discontinuous deformation analysis 

(CDDA) [118] was developed to account for fracture by employing a link 

element to connect two adjacent elements as a virtual crack extension. 

Alternatively, meshfree methods [119, 120] as a promising technique in 

recent years have been applied in modelling of fracture. The development of 

test and trial function with a sign function can model cracks with arbitrary 

movement [26]. Rabczuk [25] used immersed particle method treated in fluid 

and structure, in which a Kirchhoff–Love shell theory is adopted,  to model 

FSI with crack propagation. A cubic/quartic polynomial basis [121] was used 

in meshfree particle methods, but without taking the gradient of a kernel 

function to model cracks the polynomial functions used for solid structure 

lack a physical representation of fracture unlike the traditional constitutive 

laws described in solid mechanics. Even though these methods are 

promising in dealing with crack failure, their applicability is limited by 

extending to more complex Fluid-Particle-Structure Interaction (FPSI) 

system. 

As another type of meshfree methods, DEM, has recently been successfully 

applied to model the fracture of solids such as ceramics [22], concrete [122] 

and even composite materials [123]. The particles in DEM are bonded 

together and the crack initiation and propagation is treated as the 

progressive breakings of bonds. The crack pattern is automatically 

determined without any need of re-meshing and can be dynamically 

visualized during the simulation process. DEM model does not require the 

formulation of complex constitutive laws that are essential in FEM model, 

while it requires calibration with measured macro-scale results to determine 

the micro-scale particle and contact parameters that will predict the macro-
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scale response. Therefore, DEM is practical for studying general features of 

the statics and dynamics of fracturing, like the crack shape, global structural 

failure due to the collective behaviour of many interacting cracks as well as 

the dynamic instability of cracks during their propagation. 
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1.5 Motivations and objectives 

Up to now, mesh-based methods have been extensively applied in the 

engineering problems, but due to its limitation in moving boundary problems 

like large deformation and free surface flow, its computational efficiency and 

numerical accuracy is largely affected, even though some remedies have 

been proposed for optimisation. Therefore, there is a demand in developing 

a completely new method to overcome these limitations. Upon the proposal 

of meshfree methods, they can be easily implemented to deal with moving 

boundary problems. When dealing with fluid-structure interaction, coupled 

meshfree methods have been developed with a huge progress in 

comparison with mesh-based methods. However, the structure is initially 

assumed to be rigid bodies in the most of current studies, even there is no 

research to deal with the failure of the structure. Besides fluid-structure 

interaction, fluid-particle interaction has been widely studied, but there is rare 

research in investigating fluid-particle-structure interaction. 

Therefore, this thesis aims to present a new approach based on fully 

meshfree particle methods of SPH and DEM to handle the FSI problems 

with free surface flow and/or structural failure. One of the objectives of this 

research is to develop an advanced FSI model for investigating multi-physics 

problems. To address this kind of problem, interdisciplinary knowledge of 

geotechnical, hydraulic and structural engineering are required, and it also 

raises a demand on a robust and reliable computer model to predict the 

interaction among different phases. Thus a numerical model for fluid-solid 

(FSI) interaction would be extremely helpful for assessing the risk of bridge 
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collapse and also assisting the development of dedicated strengthening 

technique to prevent the failure of the bridge at risk. 

According to the originalities in this study as follow: 

1. A pure coupled meshfree methods, 

2. Structure phase can be a non-rigid body to allow the structural 

deformation and failure, 

3. Combination of fluid-structure interaction and fluid-particle 

interaction into fluid-particle-structure interaction. 

The SPH-DEM model presented in this paper is the first step of developing a 

unified particle model for general FSI problems in engineering. The coupled 

SPH-DEM model will be able to capture either the deformation or the 

fracture events in the solid structure induced by the free surface flow of the 

fluid. In this approach, the SPH based on the Navier-Stokes equations is 

used to model the fluid domain. The DEM is used to represent the solid 

structure through a dense packing of bonded particles which allows 

deformation and/or fracture. Similar approaches have already been adopted 

for modelling ceramics [22] and concrete [124]. As the interaction between 

discrete particles can be naturally taken into account by DEM, the coupled 

SPH-DEM presented in this study for FSI has the potential of being easily 

extended to model the interaction between fluid phase, solid particle phase 

and structure phase separately or simultaneously, and applied to address 

the FSI problems in engineering.  
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1.6 Thesis outline 

Chapter One presents a brief introduction to the background of fluid-solid 

interaction followed by the introduction of mesh-based methods and 

meshfree methods. And then two meshfree methods: Smoothed Particle 

Hydrodynamics (SPH) and Discrete Element Method (DEM) are reviewed in 

details. And then the modelling software PFC2D 5.0 is presented with the 

definition of the aims and objectives of the research studies proposed. 

Chapter Two and Three detail a full presentation of the theory behind the 

Smooth Particle Hydrodynamics (SPH) for fluid phase and the Discrete 

Element Method (DEM) models for solid phase including, a definition of the 

calculation principles and a description of the relevant constitutive models 

employed from the PFC2D 5.0 used in the execution of this project. And 

chapter Four presents the techniques and physical model used in the fluid-

solid interaction. 

Chapter Five to Seven reports the validation results of SPH, DEM and SPH-

DEM respectively. A series of validation cases have been tested to prove the 

proposed integrated particle model.  

Chapter Eight and Nine applied the validated model to investigate two 

engineering problems: 3D Printing of Fibre Reinforced Polymer Composites  

and 2D simulation of injection moulding process of short fibre. 

Chapter Ten presents a review of the major conclusions and research 

contributions made by this study and a discussion of the potential future 

extensions that may be pursued. 
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2 SPH for fluid dynamics 

2.1 Navier-Stokes equations in SPH form 

The governing equations of Navier-Stokes equations are based on the 

following three fundamental physical laws of conservation. 

1. Conservation of mass 

2. Conservation of momentum 

3. Conservation of energy 

Different forms of equations can be employed to describe the fluid flows, 

depending on the specific circumstances. As discussed, there are two 

approaches for describing the physical governing equations, the Eulerian 

description and Lagrangian description. The Eulerian description is a spatial 

description, whereas the Lagrangian description is a material description. 

The fundamental difference of these two descriptions is that the Lagrangian 

description employs the total time derivative as the combination of local 

derivative and convective derivative. The SPH equations of motion will be 

derived based on these governing equations in Lagrangian form. In order to 

transform partial derivative form into ordinary differential equations (ODEs) 

under SPH scheme, the following steps are presented in detail. 
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2.1.1 Interpolation of a function and interpolation of the derivative of a 

function 

The formulation of SPH is made up of two key steps, kernel approximation 

and particle approximation. In the first step, the typical integral forms of a 

function is given by the multiplication of an arbitrary function and a 

smoothing kernel function, and its derivative are described by simply 

substituting 𝑓 𝑥  with 𝛻 ∙ 𝑓 𝑥  and finally formatted as: 

	 𝑓 𝑥 = 𝑓 𝑥, 𝑊(𝑥 −
+

𝑥,, ℎ)𝑑𝑥,	 (1)	

	 𝛻 ∙ 𝑓 𝑥 = 𝑓 𝑥, 𝑊(𝑥 −
/

𝑥,, ℎ) ∙ 𝑛 𝑑𝑥, − 𝑓 𝑥, ∙ 𝛻𝑊(𝑥 −
+

𝑥,, ℎ)𝑑𝑥,	 (2)	

In the second step for the particle approximation, which is another key 

operation in the SPH methods, as the entire SPH system is represented by a 

finite number of particles that carry individual mass and occupy individual 

space, the integral representation of the function and its derivative is 

approximated by summing up the values of influential surrounding particles 

and this step is usually called particle approximation, as shown in Fig.1. Only 

the particles located in the support domain of kernel function with a radius of 

𝑘ℎ are taken to account in particle approximation. As a result, the final forms 

of Eqs.(1) and (2) are approximated as: 

	 𝑓 𝑥2 =
𝑚4

𝜌4

6

478

𝑓 𝑥4 𝑊24 	 (3)	

	 𝛻 ∙ 𝑓 𝑥 =
𝑚4

𝜌4

6

478

𝑓 𝑥4 ∙ 𝛻2𝑊24 	 (4)	
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where 𝑖  and 𝑗  in subscript denote particle 𝑖  and 𝑗 , 𝑁  is the number of 

particles within the support domain of the kernel function, 𝑚 is the mass of 

the particle and 𝜌 is the density of the particle. 

 

Fig. 1 Particle approximations for particle i within the support domain kh of 
the kernel function W. r_ij is the distance between particle i and j, s is 

the surface of integration domain, Ω is the circular integration domain, k 
is the constant related to kernel function and h is the smooth length of 

kernel function. 
For continuity equation, the rate of change of density and momentum 

equation, the conservation of momentum, in Navier-Stokes form are given 

by: 

	
𝐷𝜌
𝐷𝑡

= −𝜌𝛻 ∙ 𝑣	 (5)	

	 𝐷𝑣
𝐷𝑡

= −
1
𝜌
𝜕𝜎
𝜕𝑥

	 (6)	

where 𝜌 and 𝛻 ∙ 𝑣  are mass and velocity divergence respectively, 𝜎  is the 

total stress tensor. It is made up of two parts, one part of isotropic pressure 

𝑃 and the other part of viscous stress 𝜏. 

As energy equation is not considered in the current research, it is not 

presented here, but it can be referred to [108] 

In SPH form, the continuity equation Eq. (5) becomes: 
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𝐷𝜌2
𝐷𝑡

= 𝑚4𝑣24

6

478

𝜕𝑊24

𝜕𝑥2
D 	 (7)	

In addition, the density of particle can be directly calculated by summing up 

all the particles’ mass together since the integration of density over the entire 

problem domain is exactly the total mass of all the particles: 

	 𝜌2 = 𝑚4

6

478

𝑊24 	 (8)	

However, the summation density approach is influenced by the boundaries 

where the domain of the kernel function is partly truncated, and the non-zero 

surface integral is directly the result of truncation. One of the accuracy 

improvements has been proposed to normalise Eq. (8) by summing up the 

kernel function over the surrounding particles [125]: 

	 𝜌2 =
𝑚4

6
478 𝑊24

(
𝑚4
𝜌4
)6

478 𝑊24

	 (9)	

In concern with the discontinuity at boundary or interface, the density 

integrated by EFG
EH

 can assure the preservation of discontinuity all the time with 

much less computational cost. Therefore, continuity density approach is the 

default one to calculate particle density. 

The derivation of SPH formulations for particle approximation of momentum 

equation is similar to the continuity density approach, and usually involves 

some transformations. In SPH form, the momentum equation Eq. (6) 

becomes: 

 
𝑑𝑣2
𝑑𝑡

= 𝑚4(
𝑃2
𝜌2I
+
𝑃4
𝜌4I
)𝛻𝑊24

K

478

 (10)	
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It should be noted that neglecting the viscous term in the Navier-Stokes 

equation yields the Euler equation. Therefore, Eq. (6) neglects the viscosity 

approximation and only retaining the pressure approximations. The viscosity 

approximation will be discussed in the later section.  

 

2.2 Numerical implementation of SPH 

In this study, the SPH theory above is implemented in PFC2D v5.0 using 

C++. The indirect contact feature is adopted to enable the particle interaction 

in SPH. PFC2D 5.0 as a DEM software package which has many features 

that can be directly utilised for SPH simulations such as a particle search 

scheme and a time integration scheme.  A particle search scheme is based 

on a Linked-list algorithm to sub-divide the particles within different cells and 

particles are identified through a linked list. PFC2D 5.0 uses a leapfrog 

technique for numerical integration to update field variables at each particle. 

As the codes are written in C++, they are portable for other open source 

DEM codes for SPH-DEM simulations without much modification. 

 

2.2.1 Kernel selections 

Up to now, various kernel functions have been developed and used in the 

SPH method [108], among which the most widely used are the cubic spline 

kernel function [126] and the Wendland kernel function [127]. 

Cubic	spline	 -𝑊 𝑟, ℎ = 𝐶N
(2 − 𝑞)Q − 4 1 − 𝑞 Q	

(2 − 𝑞)Q	
0	

	
for	0 ≤ q ≤ 1
for	1 < q ≤ 2
for	q > 2

	 (11)	
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where 𝑞 = 𝑟 /ℎ. 𝑟  is the distance between two particles, ℎ is the smoothing 

kernel length associated with a particle and the normalisation is ensured by 

setting up the constant 𝐶N to be 15/(14𝜋ℎI) in two dimensions. 

Wendland	 𝑊 𝑟, ℎ = 𝐶N
(2 − 𝑞)_(1 + 2𝑞)

0
	

for	0 ≤ q ≤ 2
for	q > 2 	 (12)	

where 𝐶N in two dimensions is normalised to be 7/(64𝜋ℎI) 

Static tank tests are carried out using SPH with both kernel functions. 

According to the results shown in later section, the simulation using 

Wendland kernel show more orderly distribution of particle than cubic spline 

kernel, as a result, the Wendland kernel is chosen for all simulations in this 

study. 

 

2.2.2 Physical Viscosity 

There is a wide variety of derivation of the viscosity term [128], and the first 

one derived as an artificial viscosity is based on the consideration of strong 

shocks [129]: 

	 𝛱24 =
−𝛼𝑐µ24 + 𝛽µ24I

𝜌24
	

0
	

𝑖𝑓	𝑣24 ∙ 𝑟24 < 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	 (13)	

where 𝛼 and 𝛽 denotes the artificial viscosity coefficient respectively, µ24 =

1/2 µ2 + µ4 and 𝜌24 = 1/2(𝜌2 + 𝜌4). As it has been a common practice to use 

an artificial viscosity in compressible SPH formulations for better accuracy in 

the simulation of shock wave, this viscosity form will not be taken into 

consideration here. Instead, another viscosity form including physical 

viscosity of particle derived in [130] is adopted in this study:  
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	 𝛱24 = 𝑚4
(µ2 + µ4)𝑟24 ∙ 𝛻𝑊24

𝜌2𝜌4(𝑟24I + 0.01ℎI)
𝑣24 	 (14)	

where 0.01ℎI in the denominator is meant to avoid singularity. 

Therefore the momentum in SPH form is updated to: 

 
𝑑𝑣2
𝑑𝑡

= 𝑚4(
𝑃2
𝜌2I
+
𝑃4
𝜌4I
+ 𝛱24)𝛻𝑊24

K

478

 (15)	

Apparently Eq.(14) can approximate the viscosity term physically and it is 

also useful for dealing with multiphase problems where densities at interface 

are not identical. This will become more important when discrete particles 

are incorporated in the present SPH-DEM model in the future to enable the 

FSI simulations. 

 

2.2.3 Tensile instability 

Even though SPH is an increasingly promising numerical method, several 

difficulties have been encountered in recent decades. The first difficulty is 

the completeness of SPH which is the ability of the approximation to 

reproduce specified functions and another ones are the rank deficiency and 

the tensile instability that manifests itself as a bunching of nodes. This 

unphysical phenomenon, which is normally due to tensile instability, could 

reduce resolution and even cause numerical errors during the simulation. To 

extend applications of SPH into a wide range of fluid dynamics problems, 

scholars have conducted a series of modifications and corrections to 

improve the approximation accuracy.  

In terms of completeness, there are two approaches to approximate 

continuity equation: one is density summation approach and another one is 
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continuity density approach. The density summation approach conserves the 

mass since the integration of density over the entire support domain is equal 

to the total mass of all the particles. However, this approach suffered edge 

effect, namely boundary particle deficiency where the support domain is not 

fully filled with particle at the edge of fluid domain, as a result, the density is 

smoothed out to cause some spurious results. Randles and Libersky [59] 

proposed the normalisation of  the summation density approach with the 

SPH summation of the smoothing function itself over the surrounding 

particles to improve the accuracy of approximation. In this study, the 

continuity density approach was applied instead of the density summation 

approach to introduce velocity difference into the discrete particle 

approximation as the usage of the relative velocities in anti-symmetrized 

form serves to reduce errors arising from the particle inconsistency problem 

[108].  

The rank-deficiency was defined as that the number of integration points is 

less enough so that the solution to the underlying equilibrium equation 

becomes non-unique. Even though scholars [62, 131] proposed to eliminate 

the rank-deficiency by introducing additional integration points (e.g. stress 

points) at other locations than the SPH centroids, the increased 

computational effort associated with the additional integration points renders 

this approach less efficient, and a precise guideline as to how many 

additional stress points are needed is missing. In this study, several smooth 

lengths were tested to find out the optimal value of smooth length in order to 

keep the rank deficiency as minimum as possible. 
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The original updated Lagrangian formulation of SPH, which is also termed 

Eulerian SPH, suffers from the so-called tensile instability, in which leads to 

the clumping of particles. A Lagrangian formulation where the kernel 

approximation is performed in the initial, undeformed reference coordinates 

of the material [26]. In the application of Lagrangian kernel, the tensile 

instability is absent, however, rank deficiency is still existed. In this study, the 

instability can be removed by using an artificial stress which, in the case of 

fluids, is an artificial pressure. An anti-clump term was introduced to be 

added into the momentum equations to prevent particles from forming into 

small clumps due to unwanted attraction [45]:  

	 𝑑𝑣2
𝑑𝑡

= 𝑚4(
𝑃2
𝜌2I
+
𝑃4
𝜌4I
+ 𝛱24 + 𝑅24)𝛻𝑊24

K

478

	
(16)	

	 𝑅24 =
𝑣mnoI

𝑐/I
𝑃2
𝜌2I
+
𝑃4
𝜌4I

(
𝑊24

𝑊(pq)
)_	 (17)	

where 𝑣mno =
8
8r
𝑐/, and  𝛥𝑃 is the initial particle spacing. 

Another remedy also applied in this model is to correct the rate of the 

change of particle position in order to keep particles move orderly in the high 

speed flow: 

	
𝑑𝑟2
𝑑𝑡

= 𝑣2 + 𝜀
𝑚4(𝑣4 − 𝑣2)

𝜌244

𝑊24 	 (18)	

where the second term on the right hand side of Eq. (18) is the correction 

factor, the value of 𝜀 is problem-dependent as large 𝜀 can slow down the 

particle velocity unphysically 
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2.2.4 Boundary Treatment 

When a SPH particle is approaching a boundary (see Fig.2), its support 

domain overlaps with the problem domain, consequently its kernel function 

is truncated partially by the boundary and the surface integral is no longer 

zero. Theoretically only particles located inside the support domain are 

accounted for in the summation of the particle interaction, but there are no 

particles existing in the truncated area beyond the solid boundary. Different 

remedies have been proposed recently to rectify boundary truncation. The 

normalisation formulation of density approximation was derived to satisfy the 

normalisation condition and ensures the integral of kernel function over the 

support domain is unity [125]. In comparison with kernel re-normalisation, 

the application of virtual or ghost particles is widely used to replace the solid 

boundary and to produce a repulsive force in order to avoid wall penetration 

[132]. The interaction force between a boundary particle and an SPH particle 

could be in Lennard-Jones form [132], in which the SPH particles are 

repelled within a cut-off distance, but Lennard-Jones form is highly 

dependent on the problem being simulated. In order to have a simple, robust 

as well as reliable, interaction between boundary and SPH particles, in this 

study two-layers of fixed boundary particles are placed as solid boundaries, 

which are initialised with a reference density of SPH particles, but their 

density and other parameters such as position and velocity are all fixed and 

not evolved with the parameter variance of SPH particles. In order to 

produce sufficient repulsive forces, the distribution of boundary particles is 

denser than the distribution of SPH particles as shown in Fig.3. 
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Fig. 2 Truncation of particle support domain by a boundary 
    

 

 

 

 

 

Fig. 3 Boundary particles and their interaction with SPH particles 
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2.2.7 Time Integration 

The leapfrog time integration scheme is frequently used in particle simulation 

algorithms because 

1. It is under explicit condition, which makes it easy to implement. 

2. Second-order accuracy is guaranteed. 

The leapfrog time integration algorithm is named because the velocities are 

updated on half steps and the positions on integer steps; hence, the two 

leap over each other. After computing accelerations, one step takes the form 

	 𝑣2u8/I = 𝑣2v8/I + 𝑎2Δ𝑡	 (19)	

	 𝑟2u8 = 𝑟2 + 𝑣2u8/IΔ𝑡	 (20)	

This is straightforward enough, but it should be noted that in order to 

compute the acceleration at time 𝑡, the velocity at time 𝑡 is needed. The 

leapfrog time integration only computes velocities at half steps. 
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3 DEM for granular flow and structure mechanism 

3.1 Principles of DEM 

3.1.1 Force-displacement law 

The force-displacement law for a contact between two particles without the 

presence of a bond is usually based on contact mechanics theory such as 

Hertz linear contact theory [133]. When a bond is assigned to the contact, 

the overall force-displacement of the bonded particles is a combination of 

particle and bond properties. As fracture of bonds, which could induce pure 

particle-particle contact on the cracked surfaces, will be allowed in some of 

the simulations presented in this paper, the force-displacement law for pure 

particle-particle contact is briefly described first, followed by the constitutive 

law of the bond. More details are available in the literature [134, 135]. 

At the contact between two unbonded particles, the contact force vector is 

further resolved into normal and shear components with respect to the 

contact plane (see Fig.4) as follows: 

	 𝐹 = 𝐹K + 𝐹/	 (21)	

where 𝐹K	and	𝐹/  denote the normal and shear components, respectively. 
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Fig. 4 Two particles in direct contact 
 

The magnitude of the normal force is the product of the normal stiffness at 

the contact and the overlap between the two particles, i.e., 

	 𝐹K = 	𝐾K𝑈K	 (22)	

where 𝐾K is the normal stiffness and 𝑈K is the overlap. 

The shear force is calculated in an incremental fashion. Initially the total 

shear force is set to zero upon the formation of contact and then in each 

timestep the relative incremental shear-displacement is added to the 

previous value in last timestep: 

	 𝐹/ = 	𝐹/ + 𝛥𝐹/	 (23)	

	 𝛥𝐹/ = 	−𝐾/𝛥𝑈/	 (24)	
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	 𝛥𝑈/ = 	𝑉/𝛥𝑡	 (25)	

where  𝐾/ is the shear stiffness at the contact, 𝛥𝑈/ is the shear component 

of the contact displacement, 𝑉/  is the shear component of the contact 

velocity and 𝛥𝑡 is the timestep. 

In addition, the maximum allowable shear contact force is limited by the slip 

condition: 

	 𝐹mno/ = µ 𝐹K 	 (26)	

where µ is the friction coefficient at the contact. 

In cases where a steady-state solution is required in a reasonable number of 

cycles, the dashpot force acting as viscous damping is grouped into the 

force-displacement law to account for the compensation of insufficient 

frictional sliding or no frictional sliding. In line with spring forces, the dashpot 

force is also resolved into normal and shear components at the contact: 

	 𝐹K� = 2𝛽K 𝑚𝐾K𝛿K	 (27)	

	 𝐹/� = 2𝛽/ 𝑚𝐾/𝛿/	 (28)	

	 𝑚 =
𝑚�𝑚�

𝑚� +𝑚�
	 (29)	

where d in superscript denotes dashpot, A and B in subscript denote the two 

particles in the contact pair, 𝛽  is the critical damping ratio and 𝛿  is the 

relative velocity difference between two particles in contact. 

When a bond is created between two particles, the normal and shear 

components of the bond force are included in the force-displacement law. It 

is noted that normal bond force is first examined to see if the tensile-strength 

limit is exceeded. If a bond is still present in the tension state, the shear-
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strength limit is enforced for second iteration. When the bond is broken the 

bond force is diminished in the force-displacement law. Details of the 

fracture of bonds in DEM will be discussed in later section. 

 

3.1.2 Law of motion 

The motion of each particle in each timestep is governed by Newton’s 

Second Law in terms of translational and rotational motions as follow 

Translational	

motion:	
𝐹2 = 𝑚(𝑥� − 𝑔2)	 (30)	

Rotational	motion:	 𝑀2 = 𝐼𝜔�	 (31)	

where  𝑖  in subscript is the indicial notation with respect to coordinate 

system, 𝐹2 is the resultant force, 𝑚 is the total mass of particle, 𝑔2 is the body 

force acceleration vector, 𝑥� is the acceleration vector of a particle, 𝑀2 is the 

resultant moment acting on a particle, 𝐼 is the principal moment of inertia of 

the particle, and 𝜔� is the angular acceleration about the principal axes. 

The leapfrog method is used to update the position of the particle. First the 

relationship between the acceleration and velocity is defined by 

	 𝑥�(H) =
1
𝛥𝑡
(𝑥�

HupHI − 𝑥�
HvpHI )	 (32)	

	 𝜔�(H) =
1
𝛥𝑡
(𝜔2

HupHI − 𝜔2
HvpHI )	 (33)	

Then Eqs. (32) and (33) are substituted into Eqs. (30) and (31) respectively 

and the velocity at time (𝑡 + pH
I
) is resolved as: 
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	 𝑥�
HupHI = 𝑥�

HvpHI ) + (
𝐹2 H

𝑚
+ 𝑔2)𝛥𝑡	 (34)	

	 𝜔2
HupHI = 𝜔2

HvpHI + (
𝑀2

(H)

𝐼
)𝛥𝑡	 (35)	

Finally the position of the particle is updated accordingly: 

	 𝑥2 HupH = 𝑥2 H + 𝑥�
HupHI 𝛥𝑡	 (36)	

 

3.2 Contact models 

3.2.1 Linear contact model 

Linear contact model is widely used throughout the DEM field and was first 

published in [98]. The linear model shown in Fig.5 provides linear and 

dashpot components that act in parallel with one another. The linear 

component provides linear elastic (no-tension), frictional behaviour, while the 

dashpot component provides viscous behaviour. The linear force is 

produced by linear springs with constant normal stiffness 𝐾K  and shear 

stiffness 𝐾/. The dashpot force is produced by dashpots with viscosity given 

in terms of the normal and shear critical-damping ratios. The linear springs 

act in parallel with the dashpots. A surface gap is defined as the difference 

between the contact gap and the reference gap so that when the reference 

gap is zero. The contact is active if the surface gap is less than or equal to 

zero; the force-displacement law is skipped for inactive contacts. Both 

components act over a vanishingly small area, and thus transmit only a 

force. Normal force is linear function of normal displacement (=overlap); 
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shear force increases linearly with relative shear displacement, but is limited 

by Coulomb linear friction. 

 

 

Fig. 5 2D representation of a contact between two particle elements in DEM
 

3.2.2 Linear parallel bond model 

The linear parallel bond model with inactive dashpots and a reference gap of 

zero corresponds with the parallel-bond model of [135]. Fig.6 shows that a 

parallel bond is a finite-sized piece of cement-like material deposited 

between the two contacting pieces. The parallel-bond component acts in 

parallel with the linear component and establishes an elastic interaction 

between the pieces. The existence of a parallel bond does not preclude the 

possibility of slip. Parallel bonds can transmit both force and moment 

between the pieces. 
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Fig. 6 DEM particle elements with a parallel bond 
 
The linear parallel bond model provides the behaviour of two interfaces: an 

infinitesimal, linear elastic (no-tension) and frictional interface that carries a 

force and a finite-size, linear elastic and bonded interface that carries a force 

and moment. The first interface is equivalent to the linear model: it does not 

resist relative rotation, and slip is accommodated by imposing a Coulomb 

limit on the shear force. The second interface is called a parallel bond, 

because when bonded, it acts in parallel with the first interface. When the 

second interface is bonded, it resists relative rotation, and its behaviour is 

linear elastic until the strength limit is exceeded and the bond breaks making 

it unbonded. When the second interface is unbonded, it carries no load. The 

unbonded linear parallel bond model is equivalent to the linear model 

 

 

 



- 49 - 

3.3 Fracture criteria of structure 

3.3.1 Particle distribution 

Particles can be packed in a regular (e.g. hexagonal or cubic in 2D) or 

random form. When they are packed in a hexagonal form in plane stress 

condition, as shown in Fig.7, the relationship between the elasticity of the 

constructed structure and the stiffness of the contacts can be derived as 

[136]: 

𝐾K =
𝐸𝛿

3(1 − 𝜈)
	 (36)	

𝐾/ =
𝐸𝛿(1 − 3𝜈)
3(1 − 𝜈I)

	
(37)	

where 𝐾K  and 𝐾/  are the contact stiffness in normal and shear directions 

respectively,  E is the Young’s modulus, δ is the element thickness and ν is 

the Poisson’s ratio. 

As illustrated in Eq. (37), there is a constraint of (1-3ν) term on the right-

hand side of equation in which the value of Poisson’s ratio needs to be 

smaller than or equal to 0.33 so as to guarantee a positive value of 𝐾/. 
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Fig. 7 Hexagonal packing of discrete particles with parallel bonds 
 

3.3.2 Bond stiffness determination 

A bond in DEM can be regarded as a glue to stick two particles together, 

and linear parallel bond is special bond (see rectangular box indicated in 

Fig.7) that can be decomposed into linear model and parallel bond model 

which are acting in parallel. The bond is broken when the strength limit of 

bond is exceeded [123, 134] and after that only the linear model is active. 

Upon the use of a linear parallel bond model, the contact stiffness 𝐾2 is the 

result of combination of both particles’ stiffness and bond stiffness according 

to the following formulation [134]: 

	 𝐾2 = 𝐴𝑘� + 𝑘2 	 (38)	

	 𝐴 = 2𝑅𝛿	 (39)	

	
𝑘2 =

𝑘2
[�]𝑘2

[�]

𝑘2
[�] + 𝑘2

[�]	 (40)	

Where 𝑅  and 𝐴  are the radius and cross-sectional area of the bond, 

respectively, 𝑘� is the parallel bond stiffness and 𝑘2 is the equivalent stiffness 
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of two contacting particles. In this study the radius of the bond is the same 

as the particle radius. If two particles have the same normal and shear 

stiffness,  𝑘2 is simplified as: 

	
𝑘2 =

𝑘2
[�]

2
=
𝑘2
[�]

2
	 (41)	

It can be assumed that the parallel bond stiffness is much larger than the 

particles’ stiffness, thus the forces are predominantly passed through parallel 

bonds, i.e.	𝑘2 = 0.01𝐴𝑘�,  

	 𝐾2 ≈ 𝐴𝑘�	 (42)	

Thus the parallel bond stiffness is determined by combining Eqs. (38) and 

(39) with Eq.(42). 

 

3.3.3 Bond ultimate strength determination 

According to the nature of parallel bond model, bond strength is the only 

criterion to determine the fracture of a structure. When the structure is under 

pure tension, the bond strength can be derived in terms of ultimate tensile 

strength and Poisson’s ratio [124]: 

	
𝑓K��2H =

𝑅𝛿𝜎��H
2 1 − 𝜈

( 3 −
𝜈
3
)	

(43)	

	
𝑓/��2H =

𝑅𝛿𝜎��H
2 1 − 𝜈

(1 − 3𝜈)	
(44)	

	
𝜎K��2H =

𝑓K��2H

2𝑅𝛿
	

(45)	

	
𝜎/��2H =

𝑓H��2H

2𝑅𝛿
	

(46)	
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where 𝑓K��2H and 𝑓/��2H are maximum normal and shear forces acting on the 

parallel bond, 𝜎K��2H and 𝜎/��2H are critical tensile and shear stresses. It should 

be noted that the above derivation is only valid for 2D simulations in plane 

stress condition. 

During the simulation, the parallel bond forces in normal and shear 

directions are updated at each timestep through the force-displacement law: 

𝑓K = 𝐴𝑘K𝛥𝛿K	 (47)	

𝑓/ = −𝐴𝑘/𝛥𝛿/	 (48)	

𝜎K =
𝑓K
𝐴
+ 𝛽

𝑀�𝑅
𝐼

= 𝑘K𝛥𝛿K + +𝛽
𝑀�𝑅
𝐼

	
(49)	

𝜎/ =
𝑓/
𝐴
+

0, (2𝐷)

𝛽
𝑀H𝑅
𝐼
, (3𝐷)

= 𝑘/𝛥𝛿/ +
0, (2𝐷)

𝛽
𝑀H𝑅
𝐼
, (3𝐷)

	
(50)	

where 𝛥𝛿K and 𝛥𝛿/ are the relative normal-displacement increment and the 

relative shear-displacement increment respectively, 𝑀�  is the bending 

moment,  𝑀H is the twisting moment and 𝛽 is the moment-contribution factor. 

It should be noted that 𝛽 in Eqs. (49) and (50) is set to be zero in order to 

match those derived formulations in Eqs. (45) and (46). 

Then the strength limit is enforced to examine if the gained stresses exceed 

the threshold value of critical stresses. If the tensile-strength limit is 

exceeded (i.e. 𝜎K ≥ 𝜎K��2H ), then the bond is broken in tension, otherwise, 

shear-strength limit is enforced subsequently and the bond is broken in 

shear if 𝜎/ ≥ 𝜎/��2H. Once two particles are in unbonded state, parallel bond 

model is not active any more, but the linear particle-particle contact model, is 



- 53 - 

then activated to account for the collision of particles. More details about 

parallel bond can be found in [134, 135].  

As seen from Eqs. (49) and (50), parallel bond is behaved linearly and the 

plastic deformation is not taken into consideration here. As for plastic or 

adhesive materials, several alternative models may be used by considering 

more complicated constitutive behaviour. One of them is the contact 

softening model [136] which is a bilinear elastic model and is similar to 

cohesive zone model (CZM) in continuum mechanics. In this study the 

structure is considered as elastic. 
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4 Coupling schemes for fluid-solid interaction 

The model proposed in this paper is essentially dependent on the definition 

of interaction forces existing among the solid particles, fluid and structure(s). 

When considering interaction forces amongst two identical phases (e.g. 

fluid-fluid, solid particle-solid particle, structure-structure), it is straightforward 

to handle them in either SPH or DEM scheme. To avoid confusion, ‘solid 

particle’ and ‘particle element’ are used thereafter to distinguish a real 

particle (which although is represented by a particle element in DEM) and a 

particle element in DEM or SPH. For interaction between a solid particle and 

fluid, hydrodynamic force is the only force transferred to the surrounding fluid 

which is represented by SPH particle elements. When a pair of solid 

particles are in contact, the overlap and friction determine the amount of 

contact force. The interaction between particle elements in a structure is 

dominated by the addition of a bond as a glue to stick the particle elements 

together and represent the material properties of a structure. However, more 

forces should be taken into consideration for interactions between two 

different phases. When solid particles are fully or partially immersed within a 

fluid, drag force and buoyancy force from fluid particle elements physically 

act on the solid particles and the interaction forces between the solid 

particles include direct contact force as well as lubrication force due to the 

wet surfaces around the solid particles. By following Newton’s Third law, the 

drag and buoyancy forces will be returned to fluid particles in equal amount 

but in opposite directions. As the structure is inherently built with bonded 

particle elements, the interaction between a particle element of the structure 
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and a solid particle (which is actually represented by single particle element 

in this study) is naturally the same as the interaction between two solid 

particles. The interaction between particle elements of the fluid and structure 

are simplified by introducing particle elements of the structure into the SPH 

computation algorithm to hydrodynamically interact with the particle 

elements of the fluid. An illustration of the integrated particle model is shown 

as below in Fig.8. Formulation and implementation of these interaction 

forces will be explained in detail in the next section along with a brief 

introduction of SPH and DEM theories.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 56 - 

 

 

 

 

         

Fig. 8 Schematic diagram of interaction forces in the integrated particle 
model 
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4.1 Interaction forces for fluid particle in SPH 

4.1.1 Local averaging technique 

When dealing with a large amount of closely packed particles suspended 

within the fluid, it is too complicated to obtain direct solutions of the Navier-

Stokes equations and the Newtonian equations of motion. Therefore, 

Anderson and Jackson [137] established a local averaging technique to 

replace mechanical variables (e.g. fluid density, fluid velocity or velocity of 

solid matters) by defining local mean variables over fluid regions or solid 

regions, which are smoothed out by a radial smoothing function.  

The local average of any field 𝑎 over a fluid domain can be derived by the 

convolution with the smoothing function as follow: 

	 𝜖(𝑥8)𝑎(𝑥8) = 𝑎
��

(𝑥I)𝑔(𝑥8 − 𝑥I)𝑑𝑉	 (51)	

	 𝜖(𝑥8) = 1 − 𝑔(𝑥8 − 𝑥I)𝑑𝑉
��

	 (52)	

Where 𝑥8 and 𝑥I are coordinates of position and one dimension is assumed 

here for simplicity, ϵ is the local mean voidage, 𝑔 is the smoothing function 

and 𝑣�  and 𝑣�  are volumes of fluid and solid particle, respectively. The 

integral is taken over the volumes of fluid or solid particle.  

In a similar fashion, the local average of any field 𝑎 over solid domain can be 

derived by integrating over the volume of solid particles: 

	 (1 − 𝜖(𝑥8))𝑎(𝑥8) = 𝑎(𝑥I)
��

𝑔(𝑥8 − 𝑥I)𝑑𝑉	 (53)	

where the integral is taken over the volume of solid particle. 
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As the local volume fraction of fluid phase is mathematically important to 

define the spatial distribution of phase density, the locally averaged fluid 

density 𝜌�  is then the product of the actual fluid density 𝜌�  and the local 

mean voidage of fluid 𝜖: 

	 𝜌� = 𝜖×𝜌�	 (54)	

The derived locally averaged fluid density is subsequently applied in the 

Navier-Stokes equations without considering the energy equation of the fluid 

phase and it is written as: 

	
𝐷𝜌�
𝐷𝑡

+ 𝜌�∇ ∙ 𝑣� = 0	 (55)	

	 𝜌�
𝐷𝑣�
𝐷𝑡

= −𝜖∇p − 𝐹�� − 𝐹�
�/ + ∇ ∙ 𝜏 + 𝜌�𝑔	

(56)	

where 𝑣�  is the fluid velocity, pis the fluid pressure, 𝐹��  is the fluid-particle 

interaction force per unit volume acting on fluid ‘particles’ due to drag force 

acting on solid particles, 𝐹�
�/ is the fluid-structure interaction force per unit 

volume, and 𝜏 and 𝑔 stand for the stress deviator tensor and gravitational 

acceleration, respectively. 

The motion of each solid particle is governed by various forces (e.g. drag 

force, lubrication force due to wet surfaces between particle pair and 

buoyancy force) which can be taken into consideration as follows: 

	 𝑚�
𝑑𝑣�
𝑑𝑡

= 𝐹�� + 𝐹�� + 𝑚�𝑔 + 𝐹�� + 𝐹�� + 𝐹�
�/	

(57)	

where subscript 𝑝 in this study is used to define the solid particle, 𝑣� is the 

velocity of solid particle, 𝐹�� is the sum of direct contact forces between the 

solid particles. 𝐹�� is the sum of lubrication forces arising between particles 
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immersed in the fluid phase, 𝑚 is the mass of solid particle and it vanishes in 

x direction, 𝐹�� is the drag force acting on solid particle from surrounding fluid 

‘particles’, 𝐹��  is the buoyancy force and 𝐹�
�/  is the particle-structure 

interaction force. 

The structure is constructed through densely packed particle elements 

connected by bonds which represent the material property of the structure. 

More details of the bonds will be given in a later section. The forces acting 

on the structure are primarily the internal forces arising from interparticle 

bonds and the external forces from fluid and solid particles: 

	 𝑚/
𝑑𝑣/
𝑑𝑡

= 𝐹/� + 𝑚/𝑔 + (𝐹/
�/ + 𝐹/

�/),	 (58)	

where subscript 𝑠  stands for structure, 𝐹/�  is the sum of force transferred 

among bonds, 𝑚/ is the mass of a single particle element in the structure 

and it vanishes in x direction, and 𝐹/
�/ and 𝐹/

�/ are fluid-structure interaction 

force and particle-structure interaction force, respectively. 

 

4.1 Interaction forces for solid particle in DEM 

The contact force acting on a solid particle is due to its contact with other 

solid particles and/or the particle elements of a structure. It is computed 

using force-displacement law and law of motion in DEM theory.  

The contact force vector at the contact is further resolved into normal and 

shear components with respect to the contact plane [134]:  

	 𝐹 = 𝐹K¢�mn� + 𝐹/N£n� 	 (59)	
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where 𝐹K¢�mn�	and	𝐹/N£n�  denote the normal and shear components, 

respectively. 

The magnitude of the normal force is the product of the normal stiffness at 

the contact and the overlap between the two particle elements, i.e., 

	 𝐹K¢�mn� = 	𝐾K¢�mn�𝑈/N£n� 	 (60)	

where 𝐾K¢�mn� is the normal stiffness and 𝑈K¢�mn� is the overlap. 

The shear force is calculated in an incremental fashion. Initially, the total 

shear force is set to zero upon the formation of contact and then in each 

timestep, the relative incremental shear-displacement is added to the 

previous value in the last time step: 

	 𝐹/N£n� = 	𝐹/N£n� + 𝛥𝐹/N£n� 	 (61)	

	 𝛥𝐹/N£n� = 	−𝐾/N£n�𝛥𝑈/N£n� 	 (62)	

	 𝛥𝑈/N£n� = 	𝑉/N£n�𝛥𝑡	 (63)	

where  𝐾/N£n�  is the shear stiffness at the contact, 𝛥𝑈/N£n�  is the shear 

component of the contact displacement, 𝑉/N£n�  is the shear component of 

the contact velocity and 𝛥𝑡 is the timestep. 

In addition, the maximum allowable shear contact force is limited by the slip 

condition: 

	 𝐹mno/N£n� = µ 𝐹K¢�mn� 	 (64)	

where µ is the friction coefficient at the contact. 

In cases where a steady-state solution is required in a reasonable number of 

cycles, the dashpot force acting as viscous damping is grouped into the 

force-displacement law to account for the compensation of insufficient 
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frictional sliding or no frictional sliding. In line with spring forces, the dashpot 

force is also resolved into normal and shear components at the contact: 

	 𝐹K¢�mn�,�n/N = 2𝛽K¢�mn� 𝑚𝐾K¢�mn�𝛿K¢�mn� 	 (65)	

	 𝐹/N£n�,�n/N = 2𝛽K¢�mn� 𝑚𝐾/N£n�𝛿K¢�mn� 	 (66)	

	 𝑚 =
𝑚2𝑚4

𝑚2 + 𝑚4
	 (67)	

where dash in superscript denotes dashpot, i and j in subscript denote the 

two particle elements in the contact pair, 𝛽 is the critical damping ratio and 𝛿 

is the relative velocity difference between two particle elements in contact. 

The drag force acting on solid particles arises due to the resistance provided 

by the surrounding fluid which is represented by SPH particle elements. It 

mainly depends on both the relative fluid flow velocity and the local density 

of neighbour solid particles. The local density is derived through the local 

mean voidage of fluid SPH particle element, 𝜖 , which smooths out the 

nearby values of fluid SPH particle elements [138]:  

	 𝜖� =
𝜖�𝑉�𝑊��

𝑉�𝑊��
,	 (68)	

where 𝑉�  is the volume associated to the fluid particles, 𝑊��  is the kernel 

function used in SPH approximation, which is denoted by 𝑊�� = 𝑊(𝑟� −

𝑟�, ℎ), where 𝑟 is the position vector and h is the smoothing length. 

The drag force is formulated as follows [138]: 

	 𝐹�� =
𝛽�

1 − 𝜖�
(𝑣� − 𝑣�)𝑉�	 (69)	



- 62 - 

where 𝛽� is the interphase momentum transfer coefficient, 𝑣� is the average 

fluid flow velocity around solid particle 𝑝. 

In accordance with the threshold value of 𝜖�, the value of 𝛽� is divided into 

two regimes by combining equations of Ergun [139] and Wen and Yu [140]:  

	 𝛽� =
150

(1 − 𝜖�)I

𝜖�
𝜇�
𝑑�I
+ 1.75 1 − 𝜖�

𝜌�
𝑑�

𝑣� − 𝑣� 				𝜖� ≤ 0.8

7.5𝐶�
𝜖�(1 − 𝜖�)

𝑑�
𝜌� 𝑣� − 𝑣� 𝜖�vI.¦§					𝜖� > 0.8

	 (70)	

where 𝜇� is the viscosity of fluid, 𝜌� is the reference density of fluid, 𝐶� is the 

drag coefficient of a single solid particle and 𝑑�  is the diameter of solid 

particle. 

The velocity of surrounding fluid flow is approximated using Shepard filter: 

	 𝑣� =
𝑣�𝑉�𝑊��

𝑉�𝑊��
	 (71)	

where 𝑣� is the velocity of fluid particle.  

The drag coefficient 𝐶� is relevant to Reynolds number and given by: 

	 𝐶� =
24
𝑅𝑒�

(1 + 0.15𝑅𝑒�r.¦¨©)				𝑅𝑒� ≤ 1000

0.44					𝑅𝑒� > 1000
	 (72)	

The Reynolds number of a fluid ‘particle’ is formulated as follow: 

	 𝑅𝑒� =
𝑣� − 𝑣� 𝜖�𝜌�𝑑�

𝜇�
	 (73)	

The buoyancy force generated by density differences is given by the 

following formula: 
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	 𝐹�� = 𝜖�𝜌�𝑉� ∙ 𝑘	 (75)	

where 𝑘 is the unit vector parallel to the direction of the gravitational force 

acting on the solid particle. 

When solid particles are immersed within the fluid, the surfaces of particles 

become wet and the friction between wet surfaces are reduced in 

comparison to dry surfaces. The formula of lubrication force between two 

wet solid particles is derived from [141] as follows:  

	 𝐹�� =
−

3𝜋𝜇�𝑑24I

8 𝑥24 − 𝑑24

𝑣24 ∙ 𝑥24
𝑥24I

𝑥24					𝑥24 ≤ 2𝑑24

0					𝑥24 > 2𝑑24
	 (76)	

where 𝑖	and	𝑗 stand for solid particle i and solid particle j,  2𝑑24 = (𝑑2 + 𝑑4)/2 

is the cut-off distance and 𝑑2/𝑑4 is the diameter of solid particles, 𝑣24 = 𝑣2 −

𝑣4 and 𝑥24 = 𝑥2 − 𝑥4. 

 

4.2 Interaction forces for fluid in SPH 

Using local averaging technique and SPH approximations, the continuity and 

momentum equations in Eqs (7) and (16) can be expressed as follow: 

 
𝐷𝜖2𝜌2
𝐷𝑡

= 𝑚4𝑣24

6

478

𝜕𝑊24

𝜕𝑥2
D  (77) 

 𝑑𝑣2
𝑑𝑡

= − 𝑚4(
𝑃2

(𝜖2𝜌2)I
+

𝑃4
(𝜖4𝜌4)I

+ 𝛱24 + 𝑅24)𝛻𝑊24

K

478

+ 𝐹£oH/𝑚2 
(78) 

 
𝛱24 = 𝑚4

(µ2 + µ4)𝑟24
𝜌2𝜌4(𝑟24I + 0.01ℎI)

𝑣24 
(79) 
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𝑅24 =

𝑣mnoI

𝑐/I
𝑃2

(𝜖2𝜌2)I
+

𝑃4
(𝜖4𝜌4)I

(
𝑊24

𝑊(pq)
)_ 

(79) 

where 𝐹£oH = (𝐹�
�/ + 𝐹�

��) is the external forces including fluid-solid particle 

interaction force and fluid-structure interaction force, 𝛱24 is the non-artificial 

viscosity term with separate physical viscosity of each particle element 

derived in [130], 0.01ℎI in the denominator is meant to avoid singularity, 𝑅24 

is the anti-clump term introduced into the momentum equation to prevent 

particle elements from forming into small clumps due to unwanted attraction 

[45], the maximum velocity of the fluid medium is given as 𝑣mno =
8
8r
𝑐/, and  

𝛥𝑃 is the initial particle spacing. 

The fluid pressure is calculated under the assumption of weakly 

compressible flow [132]: 

 𝑃 = 𝐵(
𝜌2
𝜌r

«
− 1) (80) 

where 𝛾  is a constant taken to be 7 in most circumstances, 𝜌r  is the 

reference density and B is the pressure constant. The subtraction of 1 on the 

right-hand side of Eq.(80) is to remove the boundary effect for free surface 

flow [108]. 

For the fluid-solid particle interaction, the drag force acting on a solid particle 

(i.e., a single DEM particle element) returned to a fluid particle element in 

SPH is determined as a partition of the drag force in proportion to the weight 

of each fluid particle element: 

 𝐹�
�� = −

𝑚�

𝜌�
1
𝑆2
𝐹��𝑊�� (81) 
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 𝑆2 =
𝑚4

𝜌4
𝑊24 (82) 

where superscript fp represents the interaction between fluid and particle 

and b is the buoyancy force. 

For fluid-fluid interaction, the hydrodynamic force is directly computed 

through pure SPH algorithm. In this study, fluid-structure interaction is 

governed by Newton’s Third Law in which the forces on the structure from 

the fluid and the forces on the fluid from the structure are equal in magnitude 

but opposite in direction. The interaction forces between fluid SPH particle 

elements and structure DEM particle elements evolve with the SPH 

algorithm. The density and the pressure for structure DEM particle elements 

remain unchanged at all times, and only their velocity and position evolve 

with time.  

 

4.3 Interaction forces for structure in DEM 

As the structure is made up of bonded solid particles to represent the 

inherent property of material, the bond forces between particles are 

dominant to be transferred in the structure phase. When the bond stress 

exceeds the threshold value of bond strength, the bond breaks and then the 

unbonded solid particle is not governed by linear parallel bond model any 

more.  For structure-solid particle interaction, the contact force is the same 

as the one in solid particle-solid particle interaction, which is due to the same 

nature of DEM particles. In a similar way, the DEM particle elements in 

structure phase is evolved with SPH particle elements in fluid phase to 
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compute the interaction forces between fluid SPH particle elements and 

structure DEM particle elements 

 

4.4 Flowchart of computational algorithms in SPH-DEM 

The overall algorithm process is depicted in Fig.9. First of all, particle 

elements and boundaries are generated under initial conditions. Once the 

simulation begins, each particle element searches its surrounding particle 

elements through the linked-list scheme and interaction forces are 

computed. For structure particle elements, they are subjected to 

hydrodynamic forces from fluid particle elements, direct contact forces from 

solid particle elements and inherent bond forces from themselves. The bond 

forces determine the breakage of the bond if the excess of tensile strength is 

reached. The fluid particle elements are not only subjected to hydrodynamic 

forces but also under the reaction forces (e.g. drag forces and buoyancy 

forces) from solid particle elements using the technique of Shepard filter. In 

addition, to drag forces and buoyancy forces from fluid particle elements, 

direct contact forces also exist among solid particle elements. In terms of 

boundary treatment, boundary particle elements are specific for SPH particle 

elements through SPH algorithm. On the other hand, boundary lines work for 

DEM particle elements according to the linear contact model when DEM 

particle elements approaching to boundaries. After the calculations of 

interaction forces acting on each particle elements, its position, velocity and 

density are updated at each time step until the end of calculation.  
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Fig. 9 Computational flow chart of the integrated particle model 
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5 Validations of SPH 

5.1 Static tank test 

A simple static stank test with an initial cubic packing of particles is set up in 

a	30mm×30mm tank, as shown in Fig.10. Two different kernel functions are 

investigated, i.e. cubic spline kernel and Wendland kernel.  Under only 

gravity the particle distribution was observed for a time period of 1.0 second.  

Each SPH particle is initialised with a hydrostatic pressure in accordance 

with the particle’s position and its reference density. The density of each 

particle is then updated through equation of state in Eq.(44). The particle 

spacing ∆𝑝 is 0.005m and the mass of particle in 2D simulation is described 

as: 

	 𝑚2 = 𝜌2(∆𝑝)I	 (83) 

where 𝑚2 is the mass of fluid particle. 

The smoothing length is initially set as ℎ = 1.0×∆𝑝  for all cases and the 

maximum velocity of particle is assumed to be 𝑣mno = 2𝑔𝐷, where 𝐷 is the 

depth of the fluid and 𝑔 is the gravitational acceleration, 9.81𝑚/𝑠I. All the 

material and numerical properties are listed in Table.1 



- 69 - 

 

Fig. 10 Initial configuration of the static tank test 
(SPH particles in black colour and boundary particles in white colour) 
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Table 1 SPH parameters used for the static tank test 
Parameters Values 

Boundary particle spacing (m) 0.0025 

SPH particle spacing (m) 0.005 

Particle number 1278 

Kernel function Cubic spline/Wendland 

Kernel smooth length (m) 0.005 

Fluid density (kg/m3) 1000 

Fluid viscosity (Pa ∙ s) 8.9×10v_ 

Time step (s) 0.000004 

Physical time (s) 1.0 

 

Fig.11 shows the particle distribution at 0.2s time interval for cubic spline 

kernel and Wendland kernel, respectively. It can be seen that the particle 

distribution for the test using Wendland kernel nearly remains the same as 

the original particle distribution and only a small disorder is found at the 

corners of fluid, which is due to the boundary/interface deficiency. For the 

test using cubic spline kernel, the particles are packed orderly as well, but 

the particle distribution is not cubic any more, it and more likely becomes 

hexagonal after 0.2s. Even though the reason for this difference is not clear, 

both tests show good particle distribution without any particle cluster. 

Considering the Wendland kernel seems to produce better form of particle 

distribution, it will be used for all the simulations later. 
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Time	 Cubic	spline	kernel	 Wendland	kernel	

(a)	

t=0.2s	

	 	

(b)	

t=0.4s	

	 	

(c)	t=0.6s	

	 	

(d)	

t=0.8s	
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(e)	

t=1.0s	

	 	

Fig. 11 Particle distribution during a period time of 1.0s using two different 
kernel functions. 

 

5.2 Dam break test 

5.2.1 Introduction 

The case of a collapsing water column has been used in SPH studies [48, 

142], therefore it is utilised here to validate the implemented SPH model. 

Besides the validation of SPH model, the effect of different smoothing 

length, ℎ = 1.0×∆𝑝 , ℎ = 1.25×∆𝑝  and ℎ = 1.5×∆𝑝 , is also examined. The 

geometry of the case is depicted in Fig.12 and the simulation parameters are 

listed in Table 2. The water column is initially adjacent to the left wall and is 

supported by a wall that is instantaneously removed when the experimental 

test starts. The water is thereby released into a dry channel. The SPH 

particles are initialised with hydrostatic pressure in accordance with the 

position and the density of each SPH particle derived by reversing Eq. (80). 

The distribution of density for the SPH particles is displayed in Fig. 13. 
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Fig. 12 2D SPH representation of the dam-break test 
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Fig. 13 Initial density of SPH particles with an assumption of artificial 
compressibility 
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Table 2 SPH parameters for the dam-break test 
Parameters Values 

Boundary particle spacing (m) 0.0025 

SPH particle spacing (m) 0.005 

Particle number 2743 

Kernel function Wendland 

Kernel smooth length (m) 0.005/0.00625/0.0075 

Fluid density (kg/m3) 1000 

Fluid viscosity (Pa ∙ s) 8.9×10v_ 

Time step (s) 0.000004 

Physical time (s) 1.0 

 

5.2.2 Effect of different smoothing lengths 

In Fig. 14, the SPH simulation results with a smoothing length of ℎ =

1.25×∆𝑝 are compared with experimental images as well as the numerical 

simulations using the moving particle semi-implicit method (MPS) for a time 

period of 1.0s with a time interval of 0.2s [48]. The collapsing water runs 

along with bottom wall with an increasing velocity at the leading edge at 0.2s 

(see Fig. 13a), and the accelerated water is then blocked by the right vertical 

wall thereby moving upwards at 0.4s (see Fig. 13b). At 0.6s, the SPH 

particles tend to reach the highest position with losing momentum energy 

which is offset by gravitation acceleration and then these SPH particles fall 

down to hit other SPH particles which still move along with bottom wall. At 
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1.0s, the movement of reflected SPH particles is gradually restricted by the 

left vertical wall. In general all the simulated flow patterns of water in SPH 

agree well with experiment and MPS.  

Fig.15 shows the numerical results with different smoothing length. The flow 

patterns are almost identical before 0.6s. After 0.6s, those fluid particles 

repelled back by right vertical wall are gradually mixing with incoming fluid 

particles that are approaching right vertical wall. Due to this expected 

phenomenon, the simulations with longer smoothing length can search more 

surrounding particles to more accurately represent the fluid profile. It is 

apparent that results with ℎ = 1.25×∆𝑝  and ℎ = 1.5×∆𝑝  showed a good 

match in fluid profile from the beginning to 1.0s. In addition to the fluid flow 

profile, computational cost is another determining factor. More computational 

cost is required for the simulation withℎ = 1.5×∆𝑝, and it produces better 

results than ℎ = 1.0×∆𝑝 (particularly at time 1.0s, see Fig.15e) but similar 

with ℎ = 1.25×∆𝑝 . Therefore, smoothing length ℎ = 1.25×∆𝑝  is a better 

choice for numerical accuracy and computational efficiency and it is chosen 

for the rest of numerical simulations. 
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Time Experiment [143] MPS [48] SPH, h=1.25×∆p 

(a) 

t=0.2s 

  

 

(b) 

t=0.4s 

  

 

(c) 

t=0.6s 

  

 

(d) 

t=0.8s 

  

 

(e) 

t=1.0s 

  

 

Fig. 14 Results from experiment [51], MPS [53] and SPH with h=1.25×∆p for 
a time period of t=1.0s. 
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Time  h=1.0×∆p h=1.25×∆p h=1.5×∆p 

(a) 

t=0.2s 

   

 

(b) 

t=0.4s 

  

  

(c) 

t=0.6s 

  

  

(d) 

t=0.8s 

  

  

(e) 

t=1.0s 

  

  

Fig. 15 SPH simulations with three different smoothing length for a time 
period of t=1.0s. 

 

 

 

V 

V (m/s) 

V (m/s) 

V (m/s) 

V (m/s) 



- 79 - 

5.2.4 Effect of different particle resolutions 

In this section the dam break test is simulated again using the same kernel 

function (Wendland kernel) and smoothing length (ℎ = 1.25×∆𝑝) but three 

different particle resolutions, i.e. particle spacing ∆𝑝. The particle spacing of 

0.005m used before is chosen as a sample data, and two more different 

particle spacing, one is finer whilst the other one is coarser, are investigated 

for comparisons. The data for three particle resolutions are presented in 

Table.3, and the simulation results for physical time 1.0s are shown in 

Fig.16. 

 

Table 3 Particle resolutions in the dam-break test 
Parameters Coarse Medium Fine 

Boundary particle 

spacing (m) 
0.003 0.0025 0.002 

SPH particle 

spacing (m) 
0.006 0.005 0.004 

Particle number 2087 2743 4098 
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Time  Coarse Medium Fine 

(a) 

t=0.2s 

 

   

(b) 

t=0.4s 

 

   

(c) 

t=0.6s 

 

   

(d) 

t=0.8s 

 

   

(e) 

t=1.0s 

 

   

Fig. 16 SPH simulations with three different particle resolutions for a time 
period of t=1.0s. 
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It is evident in Fig.16 that the results for particle spacing of ∆𝑝 = 0.004 show 

the best fluid flow profile and even capture the void at time 𝑡 = 0.8𝑠 and the 

curved wave at time 𝑡 = 1.0𝑠. Usually finer particle resolutions would give 

better results with more fluid flow profile details but at a cost of 

computational time. Therefore it is essential to balance the numerical 

accuracy and the computational cost, which highly depends on the kind of 

results that are expected to achieve. In this study, Wendland kernel and 

smoothing length in ℎ = 1.25×∆𝑝  are determined to be applied in the 

following simulation of fluid-structure interaction, and the particle resolution 

will be adjusted in accordance with the testing problem at a reasonable 

computational cost. 
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6 Validations of DEM 

6.1 Dry dam break test  

Solid particle-solid particle interaction in particulate flow is fully accounted for 

by DEM in this integrated particle model. Validation is carried out using the 

dry dam break test and the  results are compared with previous modelling 

[111, 144] and experiments [144]. In the experiment from [144], solid 

cylinders with a diameter of 1 cm and a length of 9.9 cm are initially stacked 

in 6 layers with a hexagonal distribution. The cylinders are made of 

aluminium with a density of 2700 kg/mQ, a Poisson’s ratio 0.3 and a Young’s 

Modulus of 69 GPa. The dimension of the tank is 26 cm in length, 10 cm in 

width and 26 cm in height.  A plate is placed on the right-hand side of the 

stacked cylindrical columns and is quickly moved upward to trigger the 

movement of the cylinders under gravitational acceleration. A high-speed 

camera is used to record the transient behaviour of solid cylinders. A 

numerical model is constructed according to the initial configuration of dry 

dam break with a stack of solid cylinders, as shown in Fig.17. The friction 

coefficient of aluminium is set as 0.45, time step is 0.000001 and total 

simulated time is 0.5 s. 

Fig.17 shows the obtained numerical results which are compared with 

previous experimental and DEM results available in the literature. The 

present numerical results seem to accurately capture the positions of the 

cylinders throughout the collapse process. It can be concluded that the 
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present unified particle model is capable of simulating the particle-particle 

interaction with a high accuracy 

 

Time Experiment [144] DEM [111] DEM (Present) 

t=0.0s 

   

t=0.1s 

   

t=0.3s 

   

t=0.5s 

   

Fig. 17 Dry dam break test for a time period 0.5 s. 
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6.2 Tip-loaded cantilever beam test 

To verify the capability of DEM in modelling the structure part in later FSI 

simulations, a tip-loaded cantilever beam test is studied in this section. 

Comparisons of deflections, stress distributions and final failure load are 

made to carefully evaluate the accuracy of the DEM approach in modelling 

structural deformation and fracture. 

The material properties of cantilever beam are shown in Table 5 and the 

configuration of the beam is shown in Fig.18. The left end of cantilever is 

clamped and the other side of cantilever is under an increasing upward force 

F to give rise to a deflection.  

Table 4 The list of material and particle properties 

Material	properties	 Values	

Density,	𝜌	(kg/mQ)	 2800		

Ultimate	tensile	strength,	𝜎��H	(MPa)		 310×10¦	

Young’s	modulus,	E	(N/mI)	 70×10·	

Poisson’s	ratio,	𝜈	 0.33	

Particle	radius,	R	(m)	 0.0005	

Bond	radius,	𝑅	(m)	 0.0005	

Cantilever	length,	𝐿	(m)	 0.201	

Cantilever	height,	ℎ	(m)	 0.006196	
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Fig. 18 Configuration of cantilever under single point load in DEM 
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The deformations of cantilever under three sets of upward forces, 50 N, 500 

N and 5000 N, applied on the right bottom tip of cantilever are compared 

with analytical solutions [145] in Table 6. The deflection is measured when 

the model reaches an equilibrium state that the ratio of the unbalanced force 

(i.e. the sum of contact force, body force and applied force) to the sum of 

body force and applied force is extremely small, e.g. 1×10v©. The results 

from DEM model and analytical solution are almost fully matched with 

acceptable small errors which may be due to the fact the load is applied at 

the centre of the particle not the exact edge of the real beam.  

 

Table 5 Deflections for the tip-loaded cantilever beam test 

Load (N) deflection in DEM 

model (m) 

deflection in analytical 

solution (m) 

Error 

50 9.7533E-05 1.002417E-05 2.78% 

500 9.7533E-04 1.00247E-04 2.78% 

5000 9.7533E-03 1.002286E-03 2.76% 

 

In addition, the same test of cantilever beam at load 5000N is carried using 

FEM software ABAQUS in order to compare the stress distribution. The 

element size in FEM is the same as the particle radius in DEM. It can be 

seen from Fig.19 that the distribution of stress component σ11 in FEM is 

nearly identical to the one in DEM. The maximum stresses in both methods 

are also very close with an error of 0.24%. This further confirms that the 

DEM model can accurately predict the structural deformation.  
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              (a) FEM model                                (b) DEM model 

Fig. 19 Distribution of stress σ11 in cantilever beam at load 5000N 
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To test the failure of the beam, the incremental loading approach used 

above is replaced by assigning a constant and very small upward velocity 

𝑣 = 0.02𝑚/𝑠 to the particle at the right bottom end of the beam. This small 

loading velocity is chosen to ensure the structure under quasi-static loading 

condition till the final failure [134]. The simulation is stopped immediately 

once a bond breaking occurs. The obtained force at right bottom end of the 

beam is compared with analytical solution according to: 

	 𝜎��H =
𝑃𝐿
𝑍
	 (84)	

	 𝑍 =
𝑏ℎI

6
	 (85)	

where Z is section modulus, b is the thickness of beam which is unit in 2D 

simulations. In this test, the cantilever beam is assumed to fail when 

maximum stress is equal to ultimate tensile strength. In Table. 6 the 

maximum applied load obtained from the DEM model shows good 

agreement with the applied load computed from Eqs. (84) and (85). It should 

be note that the DEM prediction is slightly higher the theoretical one which is 

calculated under the assumption that the beam is still perfectly straight at 

failure. 
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Table 6 Maximum applied load for the tip-loaded cantilever beam test 

	 Analytical	 DEM	 Error	

Maximum	 applied	

load	P	(N)	
9868.66	 10322.1	 4.595%	
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7 Validations of SPH-DEM 

7.1 Single particle sedimentation test 

Particle sedimentation has been extensively studied and verified [146, 147], 

and will be used to validate current integrated particle model for fluid-particle 

interaction. In this section, a case with a single particle settling in the fluid is 

simulated first and then the interaction between multiple particles and fluid is 

further investigated later. In this simulation, a particle with a density of 1250 

kg/m3 and a radius of 0.00125 m is initially placed in a box with a width of 

0.02 m and height of 0.06 m as shown in Fig.20. The centroid of particle has 

a vertical distance of 0.04 m to the bottom of the box. The box is filled with 

fluid with a density of 1000 kg/m3 and viscosity of 0.01 Pa·s. The particle 

falls down due to the gravitational acceleration of 9.81 m/s2 until it hits the 

bottom of the box. A total physical time of 1 second is simulated. For 

numerical parameters, the boundary particle spacing and fluid particle 

spacing are 0.00125m and 0.0015m, respectively. The boundary particle has 

smaller spacing in order to numerically avoid particle penetration. The 

Wendland kernel is applied with a smoothing length 0.003m and the time 

step is set to be 0.000002s. 

 



- 91 - 

 

 

Fig. 20 Configuration of single particle sedimentation test 
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In Fig.21, longitudinal coordinate and longitudinal velocity of the particle are 

compared with numerical results from other researchers using immersed 

particle method (IBM) and Lattice-Boltzmann method (LBM) [147]. In 

general, the results obtained from the present SPH-DEM model almost 

match with those of IBM-LBM, and a minor difference is found at 𝑡 = 0.8𝑠 

when the particle settles down to the bottom. This may be caused by the 

assumption of compressible flow used in current SPH method, and SPH 

particle elements can interact with each other with minor compression and 

expansion at different time, which can cause the fluctuation of particle 

element’s velocity to affect the calculation of drag force. In addition, the 

restriction in the ratio of the resolution of fluid particle element to the 

diameter of solid particle element has been reported in [112] in terms of the 

fluid resolution length scale, which is one of the main assumptions in locally 

averaged Navier-Stokes (AVNS) equations. When a smoothing length is 

large enough, a smoother porosity field will be produced. On the other hand, 

a much finer fluid resolution with shorter smoothing length can result in less 

smoothness of porosity field. This confirms that the calculated porosity field 

is relatively larger, so that the solid particle element with faster terminal 

velocity drops downward.    
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(a) 

 

(b) 

Fig. 21 Longitudinal coordinate (a) and velocity (b) against time 
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7.2 Two phase dam-break test 

A 2D simulation of two-phase dam-break test is carried out to further validate 

the proposed model. The initial configuration of the test is depicted in Fig.22. 

In this simulation, solid particles with a density of 2500kg/m3 and an identical 

diameter of 0.0024m are randomly packed and aligned with the left and 

bottom boundaries of the reservoir and the moving boundary. The volume of 

the assembly of solid particle elements is estimated to be equivalent to 200 

g in total mass, same as in the experiment and 3D simulations in [138]. It 

should be noted that the mass of solid particle elements in 2D simulations is 

different from that in 3D simulations or experiments in [138]. In 2D simulation, 

the volume of solid particle is equivalent to the product of the area of solid 

particle and the unit thickness. Fluid particle elements with a density of 

1000kg/m3 and viscosity of  8.9×10v_P ∙ s  are orderly distributed with a 

height of 0.1 m and a width of 0.05 m. The solid particles, each of which is 

represented by a DEM particle element, are completely immersed within the 

fluid. It should be noted that the overlap between solid DEM particle 

elements and fluid particle elements is due to the visualisation of SPH 

particle elements and has no effect on the simulation. When the solid DEM 

particle elements reach equilibrium after few cycles (e.g. no more energy 

dissipation), the simulation begins and the moving boundary moves upward 

at a constant velocity of 0.68 m/s in the Y direction to initiate the movement 

of the mixture of solid particles and fluid in the X direction. The total physical 

time is 0.2s and the numerical timestep is set to be 2.0×10v¦ s. The 

boundary particle spacing and fluid particle spacing are 0.0015m and 

0.0024m, respectively, and the Wendland kernel is applied with a smoothing 
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length 0.003m.The behaviour of wave fronts is captured after quick removal 

of the dam and numerical results are compared with other experimental and 

numerical data from [138].  
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Fig. 22 2D representation of the two phase dam-break test 
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In this test, the dynamic behaviour of solid particles and fluid at the early 

stage of dam-break flow is observed and snapshotted at a time interval of 

0.5 s. Fig.23 shows the numerical results in comparison with experimental 

and other researcher’s numerical results. As the moving boundary starts 

moving upward, there is no restriction to inhibit the movement of fluid and 

solid particles. Subsequently fluid drags solid particles to move in the flow 

direction. Compared to sample experimental and numerical results, the flow 

pattern of either solid particles or fluid seem to match well at t=0.05 s, 0.10 s 

and 0.15 s. However, at time t=0.2 s, the solid particles and fluid move faster 

and the wavefront in the current study hits the boundary wall earlier. The 

present study is in 2D, so the forces acting on a solid particle from other 

solid particles as well as the fluid in the 3rd direction (i.e. thickness direction) 

is not counted, which subsequently should have caused differences in the 

movement of solid particles. In addition, in the experimental study [138], the 

diameters of solid particles are not constant, though the mean diameter of 

solid particles is 0.0027 m, which is slightly greater than the constant 

diameter used in the current study. Even though the constant diameter of 

solid particles can bring benefit in producing a smooth and stable porosity 

field, they may affect the overall interactions between solid particles. 
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Time Experiment [138] SPH-DEM [138] SPH-DEM (Present) 

t=0.05

s 

   

t=0.10

s 

   

t=0.15

s 

   

t=0.20

s 

   

Fig. 23 Two phase dam-break test for a time period of t=0.2s 
 

Next, two dimensionless numbers are introduced to make a quantified 

comparison for the propagation of wavefront: 

	 𝑧∗ =
𝑧
𝑎
	 (86)	

where 𝑧 is the position of wave front in x-direction, 𝑎 is the width of dam, 

which is 0.05m 
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	 𝑡∗ = 𝑡 2𝑔/𝑎	 (87)	

where t is the physical time and g is the absolute value of gravitational 

acceleration. Fig.24 shows the normalised front wave position before 

touching the left end wall against the characteristic time. It is noted that the 

fluid in authors’ simulation moves slightly quicker than that in experiment 

after the release of moving boundary, hence for better comparisons, the last 

data point in the author’s results is taken at the time when the wavefront hits 

the left end wall. In the author’s results, it’s a difficult to judge an accurate 

position of the front wave as fluid particle elements in the area of front wave 

do not completely move in order after interacting with solid particles. 

Especially for time at 0.1s, a clearly visible void at front wave area can be 

seen. As a result, the accuracy of front wave position cannot be guaranteed, 

as it is sacrificed by assigning the most front fluid particle as the front wave 

position. In spite of this, the overall trend of the front wave positions is 

acceptably close to those from experiment and other numerical results. 
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Fig. 24 The normalised front position against the characteristic time 
 

7.3 Dam break with top-fixed elastic gate 

The validation test for the coupled SPH-DEM model is to simulate the water 

flow in the elastic gate problem for comparison with experimental data and 

numerical results using a coupled SPH-SPH method [23]. The initial 

configuration is illustrated in Fig.25 and the simulation parameters for this 

validation case are listed in Table 7. The top end of elastic gate in purple is 

fixed and the other end is free to move. The bonded DEM particles 

representing the elastic gate are distributed in a hexagonal pattern and 

particle and bond stiffness is determined according to Eqs. (38-40) and (42). 

The SPH particles for water are initialised with hydrostatic pressure, and 

there is no pre-existing stress and deformation for bonded DEM particles. 
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Fig. 25 Configuration of 2D elastic gate test in a coupled SPH-DEM model 
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A comparison of numerical results from the present SPH-DEM model 

against experimental data and numerical results from the coupled SPH-SPH 

model is shown in Fig.26. In the coupled SPH-SPH model, the solid 

dynamics is simulated through an incremental hypo-elastic relation. 

Compared to the experiment snapshots, the deformation of the elastic plate 

and the vertical displacement of free surface of water are generally well 

predicted by the coupled SPH-DEM model. The maximum deformation of 

the plate is at top end and behaves almost as a rigid body without 

deformation at bottom end of the plate. It should be noted that after 

removing the hammer, which fixes the elastic plate against water pressure 

immediately in the experiment, water leakage besides the elastic plate is 

observed. Owing to this leakage, the water pressure acting on elastic plate is 

lower than that in the SPH-DEM simulation and consequently the vertical 

displacement of the free surface in the SPH-DEM simulation is larger than 

the experimental results. In comparison with both experimental and SPH-

SPH results, both larger deformation and higher vertical displacement of the 

free surface in SPH-SPH and SPH-DEM results make sense without water 

leakage. Due to the decreasing hydrodynamic pressure of water, the 

deformation of the plate tends to be smaller after 0.16s in the SPH-DEM 

model, and as a result the vertical displacement of free surface changes 

more slowly. 
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Table 7 Parameters for SPH-DEM modelling of the elastic gate test 
Parameters Values 

Boundary particle spacing (m) 0.00125 

SPH particle spacing (m) 0.00175 

DEM particle size (m) 0.00125 

Particle number 6648 

Kernel function type Wendland 

Kernel smooth length (m) 0.0021875 

Fluid density (kg/m3) 1000 

Fluid viscosity (Pa ∙ s) 8.9×10v_ 

Gate density (kg/m3) 1100 

Gate elastic modulus (MPa) 12.0 

Gate Possoin’s ratio 0.33 

Time step (s) 0.000004 

Physical time (s) 0.4 
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Time Experiment [23] SPH-SPH [23] SPH-DEM 

(a) 

t=0.0s 
   

(b) 

t=0.08s 

   

(c) 

t=0.16s 

   

(d) 

t=0.24s 

   

(e) 

t=0.32s 

   

(f) 

t=0.40s 

   

Fig. 26 Comparisons between experimental, SPH-SPH and SPH-DEM 
results of elastic gate test with a time period of 0.40s. 
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(a) Water level behind the gate 

(b) Water level 5cm far from the gate 

Fig. 27 Water levels at different time 
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In Fig.27 the water levels behind the gate and the water level 5cm far from 

the gate are quantitatively recorded to represent the evolution of free surface 

with time. Due to the water leakage in the experiment, the flow rates 

calculated from both SPH-SPH and SPH-DEM models are slightly higher 

than the experimental data, which results in a faster decrease of water level. 

The SPH-SPH model and SPH-DEM model show good agreement 

throughout the entire test process in terms of plate deformation and vertical 

displacement of free surface. 

 

7.4 Dam break with bottom-fixed elastic gate 

In order to demonstrate the versatility of the coupled SPH-DEM model in 

simulating fluid-structure interaction in this section, an FSI problem with 

fracture is presented. The same configuration in the validation test of 

coupled SPH-DEM model is used, as shown in Fig.28, but the elastic plate is 

clamped at the bottom end and free to move at the top end. In addition, the 

fixed plate in pink is removed in this case, and the material strength limit is 

lowered in order to allow for a fracture to occur due to the pressure of the 

water. Simulation parameters in Table 7 are used here. In this case, the 

boundary particles not only produce repulsive forces to SPH particles but 

also need to respond to the fractured bonded DEM particles when they 

contact. As the momentum energy of fractured bonded DEM particles is 

much greater than an individual SPH particle, the two-layer boundary 

particles cannot produce large enough force to impede the penetration of 

fractured bonded DEM particles. To solve this issue, two different kinds of 

repulsive forces are created from every single boundary particle to act on the 



- 107 - 

SPH particles and DEM particles, i.e., the smaller repulsive forces are only 

designated for SPH particles while fractured bonded DEM particles receive 

other greater repulsive forces.   

In Fig.29 (a) and (b), the largest stress (stress component σ22) is found near 

to the bottom end of elastic plate before the occurrence of fracture due to the 

maximum bending moment induced by the water pressure. At time around 

0.12s, the strength limit of elastic plate is exceeded and consequently the 

elastic plate breaks into two parts and then the fractured part moves towards 

the left boundary wall under the forces produced by the SPH particles of 

water. With the modification of the boundary particles in handling the 

approaching bonded DEM particles, wall penetration is fully avoided. Due to 

the vibration of the elastic plate, the flow pattern of water is highly affected to 

cause flow fluctuation which leads to some irregular movements of certain 

individual particles or small clusters of particles. After 0.16s, the fractured 

structure is pushed away to approach the left solid boundary. When the plate 

moves along with bottom solid wall, the stresses acting on bond are 

negligible as no significant deformation is observed. This coupled SPH-DEM 

model used in FSI with fracture is not experimentally validated yet, but these 

results demonstrate its capabilities. 
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Fig. 28 2D representation of FSI with fracture 
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Time Particles velocity (m/s) σ22 in the structure (Pa) 
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(e) 

t = 0.20s 

 

 

(f) 

t = 0.24s 

 

 

(g) 

t = 0.28s 

 

 

(h) 

t = 0.32s 

 

 

(i) 

t = 0.36s 
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(j) 

t = 0.40s 

 

 

Fig. 29 SPH-DEM modelling of FSI with fracture 
 

7.5 Two phase dam-break test with bottom-fixed elastic gate 

In this section, a test including the interaction between fluid, particles and 

structure is simulated to demonstrate the capability of the integrated particle 

model to tackle the simultaneous interaction between fluid, particles and 

structure. Due to the direct contact between solid particles and structure 

particle elements, same linear contact model in DEM used in particle-particle 

interaction is adopted for calculating particle/structure interaction forces. The 

configuration of the test is shown in Fig.30, which is similar to the previous 

two-phase dam break test, but the moving boundary is replaced by a 

deformable structure with a density of 1100 kg/m3, which bottom is fixed. 

The material properties and numerical parameters for fluid and solid 

particles used are the same as those in multiple particles sedimentation. 

Two scenarios are considered by assigning different failure strengths for the 

structure to better illustrate the initiation of failure as well as post-failure 

behaviour. The tensile strength of parallel bonds is set as 4.0×10_ Pa and 

2.0×10_ Pa in Case I and II, respectively. The contact stiffness in normal and 

shear directions derived through [136] are set as 1.021×10·	and	1.024×10© 

V (m/s) 
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in both cases. Relatively low strength values are deliberately chosen in order 

to allow the fluid induced fracture to occur. 
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Fig. 30 Configuration of the dam-break test with Fluid-Solid particle-
Structure interaction 

In Fig.31, at t = 0.05 s, in both cases, the structure deforms due to resultant 

forces from the fluid and the solid particles. For visualisation purpose, the 

SPH particles are not plotted out and velocity vector is presented to show 

the fluid flow. In case II the structure has larger deformation before it fails 

around 0.1 s. For the structure with a lower strength, it breaks into more 

small pieces after hitting the bottom wall, which moves like debris and 

consequently makes the fluid flow more complex. It can also be clearly seen 

the fluid flow through the gaps between the debris. On the contrary, the 

structure with a higher strength has more cracks near the bottom end at t = 

0.1 s, and the fluid tends to overpass the failed structure resulting less 

displacement along the bottom wall. This integrated particle model used in 

FSI with structural failure is not experimentally validated yet, but these 

results have demonstrated its capabilities. 
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Fig. 31 SPH-DEM modelling of FSI with fracture 
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8 3D Printing of Fibre Reinforced Polymer Composites 

Fibre-reinforced polymer (FRP) composites are extensively used in 

lightweight constructions in the aerospace, automotive, infrastructure, 

energy and sports sectors. Commercially used FRPs are mainly based on 

the use of thermosetting polymer matrices, but the increasing demand for 

rapid processes and improved impact performance has led to an increased 

interest in the use of thermoplastic polymer matrices [148]. Additionally, the 

pursuit of higher performance composites with more complex shapes and 

even lighter weight continues. The ever new applications of FRPs pose a 

significant challenge to the traditional composites manufacturing 

technologies which have limited control of the internal structures. Very often 

the traditional manufacturing of composites still requires 

machining/trimming/drilling and joining processes in order to meet the final 

geometric requirements, which further increases the risk of introducing 

random manufacturing defects/voids which are difficult to predict and could 

cause catastrophic failure. 

In contrast, additive manufacturing (AM) builds a part layer by layer based 

on CAD models. AM’s fast progress in recent times has enabled material 

usage from initially single polymers to latterly polymer composites. This 

move towards the use of polymer composites for AM was driven by the fact 

that printed polymer (mainly thermoplastic) products show lack of strength 

and are limited in functionality whilst fully functional and load-bearing parts 

are required by industries. Incorporation of fibre reinforcement in the printing 

polymer leads to improved mechanical performance and additional 
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functionality [149]. Existing AM technologies for FRP composites are mainly 

based on thermal extrusion methods, such as Fused Deposition Modelling 

(FDM) [150] and Direct Writing (DW) [151]. In FDM, short fibres and polymer 

pellets are mixed and fabricated into extruded filaments for printing. Whilst in 

DW processes, short fibres and polymer paste are mixed and extruded 

directly from the printer. The Mark One and Mark Two printers recently 

developed by Markforged is capable of printing continuous carbon fibres 

using FDM [152]. Other different AM technologies for FRP composites are 

Selective Lamination Composite Object Manufacturing (SLCOM) which cuts 

and bonds woven composite sheets [153], and Laser Powder Bed Fusion 

(LPBF) which uses laser to melt a fibre-filled polymer powder [154]. In this 

study, we will focus on the extrusion based FDM technology. It should be 

noted that together with control on the printing path, FDM 3D printing 

provides the flexibility to incorporate multi-functionality, such as ultrasound 

[155] and magnetic field [156], to print composites with desired architectures.  

However, one of the main limitations of FDM printing is that the printed 

composites have lower mechanical performance compared to traditionally 

manufactured composites, due to fibre misalignment and porosity (or voids) 

introduced during the manufacturing process [149]. Most of the current 

research is focused mostly on investigating the effects of process and 

material parameters on the mechanical performance of printed part [157-

159]. However, the inter-relationship between the materials, process and 

product is still not fully studied and incorporated. Therefore, 3D printing of 

composites is still a trial and error process which lacks systematic studies, 

i.e., combination of analytic, computational and experimental approaches. 

There is lack of an integrated modelling and optimisation tools for the design 
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and implementation of 3D printing of composites. To maximize the 

advantages of 3D printing for composites, there is a need for the 

development of a computer tool to model and optimise the printing process. 

The FDM printing process of short fibre reinforced composites is a fluid-solid 

flow problem, where fibres are the solid and the melted plastic is the fluid. 

The FDM printing process of continuous fibre reinforced composites is a 

typical fluid-structure interaction (FSI) problem, where fibres deform and 

deposit in the melted plastic which is extruded as a fluid. In our previous 

work we have developed particle models for both fluid-solid flow [160] and 

fluid-structure interaction [161] which allows free surface flow of melted 

plastic, fibre-resin interaction and fibre collision/failure. It should be noted 

that several particle methods have been proposed and adopted to model the 

3D printing of single phase materials, such as polymer [162] and metal 

powder [163], but to the authors’ best knowledge there has not been 

reported process modelling of 3D printing of composites. 

Thus in this study, two cases of 3D printing of composites are investigated 

using the coupled SPH-DEM model to demonstrate its capability and 

potential for simulating the printing process of short and continuous fibre 

reinforced polymer composites. The geometry of the print head and the 

printing process parameters are shown in Figure 32. The configurations for 

the two cases are slightly different that the height of print head chamber 

where initially holds resin and fibres in the case of short glass fibre is 3 mm, 

but 5 mm in the case of continuous carbon fibre to ensure a reasonable 

length of fibre are printed out, as shown in Figure 32. The widths of the print 

head and shower nozzle are 3 mm and 0.6 mm, respectively. All of the 

dimensions are the same except for the length of the print head chamber in 
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both cases. The short glass fiber and continuous carbon are soaked in the 

resin in both cases. The short glass fibers are created randomly and 

distributed parallel to the moving wall, while the continuous carbon fiber is 

located at the center of the print head, perpendicular to the moving wall. In 

the both cases, the moving wall, print head, fixed print bed, and resins are 

made of the SPH elements while the fibers are made of DEM elements. 

Specifically, the material of resin in the first case is ABS while Nylon for the 

second case. In the second case, the continuous carbon fiber is three layers 

wide of the DEM particles and as long as the printing head chamber. There 

are very limited data published for the extrusion nozzle and various feed 

rates and translational printing speeds are used in other research, therefore, 

in this study we adopt a print nozzle similar to, but ten times smaller than, 

those used in short fibre injection moulding. The feed rate of V1 and printing 

speed of V2 are set up in 30 mm/s and 40 mm/s respectively. In the current 

study, the 3D printing is assumed to be processed in a constant high 

temperature without any solidification. As a result, there is no energy 

transformation and the movement of fibre is only due to the resin flow. 
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(b) 

Fig. 32 Initial configurations of the 3D printing processes of composites. (a) 
Short glass fibre reinforced acrylonitrile–butadiene–styrene (ABS) 

composite; (b) Continuous carbon fibre reinforced Nylon composite. 
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The first case is concerned with the FDM printing of short glass fibre 

reinforced acrylonitrile–butadiene–styrene (ABS) composites. Each short 

glass fibre is represented by four DEM particles, which are bonded together 

using a linear parallel bond model. The collision between fibres is accounted 

using a linear contact model which is composed of a spring and a dashpot in 

both normal and tangential directions, as well as a frictional element. The 

density of ABS is 1050 km/m3 and its dynamic viscosity is 0.1 Pa∙s. The 

density of short glass fibre is 2540 kg/m3, each has a dimension of 100 × 25 

µm, and the total fibre volume fraction is 8.3% (equivalent to a weight 

content of 18%). The ultimate tensile strength of fibres is set as 2000 MPa. 

When printing the continuous carbon fibre reinforced thermoplastic 

composites in FDM, usually a fabricated filament is first melted and then 

extruded through the printer head. The specific carbon filament for Mark Two 

(Markforge) consists of 1000 carbon fibres (T300, with a density of 1600 

kg/m3) and the matrix is most likely Nylon 6 (with a density of 1150 kg/m3 

and dynamic viscosity of 0.1 Pa∙s). In our current 2D simulations, it is not 

reasonable to model the individual fibres as they are randomly distributed in 

the filament, instead a nominal fibre is created to occupy the same 

volumetric space in the printing head, i.e., 34.5%. In this study, three layers 

of particles are vertically bonded together to form the nominal fibre bundle 

and the parallel bond stiffness is defined as follow: 

𝑘K =
𝐸

𝑅n + 𝑅�
 (88) 

𝑘/ =
𝑘K
𝑘

 (89) 
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where E is the Young’s modulus, Ra and Rb are radius of particles a and b, 

respectively, k is the normal-to-shear stiffness ratio. In Equations (88) and 

(89), the Young’s modulus E is 75 GPa and the stiffness ratio k is set up to 

0.25. As each individual particle size in the continuous fibre is identical all 

the time, Ra and Rb are equal to 0.025 mm. 

In Figure 33, the predicted transient flow patterns at different time intervals 

are shown for both cases. For short glass fibre/ABS at time t = 0.05 s, it can 

be seen that the orientation of fibres becomes more random as they are 

driven by the resin flow. In the regions where the fibres are close to the 

boundary walls, a velocity gradient of resin flow is noticeable due to the 

effect of the wall, therefore the orientation of fibres in these regions changes 

significantly, and eventually the fibres tend to move in parallel with boundary 

walls with a lower velocity. On the contrary, the orientation of fibres in the 

middle of the printing head changes slightly, despite the direct contact 

between fibres and becomes aligned with the velocity profile of resin flow. At 

time t = 0.1 s resins and short glass fibres move out from printing head and 

they are in contact with the printing bed. However, the orientation of some 

fibres is less aligned with the resin flow direction, which is due to the direct 

contact with boundary wall (printing bed) or other fibres. In addition, the flow 

split occurs outside of the printing head results in a much more complex 

velocity contour of resin flow, which may have an effect over the orientation 

of fibres. 
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Fig. 33 Velocities of resin at printing time of t = 0.05 s and t = 0.1s. 
 

For continuous carbon fibre/Nylon at time t = 0.05 s, the fibres firmly stay in 

the middle of the printing head due to geometric symmetry, at least no 

significant vibration and deformation observed, indicating the instability effect 

of moving the printing head gradually reduced from the commencement of 

process. At time t = 0.1 s, the fibres show a large bending deformation and 

there is a continuously direct contact between fibre and left edge of the 

printing head, which indicates the potential wear of the printing head. 
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Furthermore, there are two common observations in both cases. Firstly, 

when resin moves out from the printing head, there are always two split 

streams in the fixed bed in two opposite directions. It is mainly caused by the 

squeezing pressure within the print nozzle. The maximum velocity of resin 

flow is found in the print nozzle, where the resin starts to split and drives the 

fibres to move closer to the inner wall of the nozzle, which indicates the 

potential abrasive wear as reported in experiments [28]. In the meantime, as 

the moving velocity of printing head is constant all of the time, consequently, 

the velocity of resin just outside of the print nozzle will move faster than it, 

but confined by the fixed printing bed due to wall effect. Secondly, the 

velocity profile of resin in the print head is not evenly distributed, and it is 

evident that the velocity of resin on the right hand side of print head is 

relatively lower than that it is on the left hand side. As the print head moves 

from left to right, the left wall of the print head passively gives a force to drive 

the resin, but the force is firstly transferred to the resin close to the left wall 

of print head, therefore, there is a delay in force transition to the resin close 

to the right wall of print head. In Figure 34, which shows the distribution of 

resin density, the density of the printed resin is lower than that under the 

squeezed process in the print head and print nozzle. This is due to the 

assumption in SPH that the incompressible flow has a compressibility 

feature in order to reflect the pressure distribution indirectly. In Figure 35, the 

deformation of continuous fibres is not visibly noticeable, and the stress is 

evenly distributed and not in a high order of magnitude at time t = 0.05 s. 

This is due to the fact that the fully immersed continuous fibres are still within 

the print head at t = 0.05 s, and the velocity contour in either side of the 

continuous fibre is almost identical, the interaction forces acting on 
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continuous fibre are ignorable, and as a result, no significant deformation is 

observed. At time t = 0.1 s, the tensile stress is significant due to the 

bending. The fibres are in contact with the lower end of left hand side of print 

nozzle, which could cause severe abrasive wear. 
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Fig. 34 Density distribution in resin at printing time of t = 0.05 s and t = 0.1 s. 
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Fig. 35 Tensile stress in continuous carbon fibre/Nylon: (a) t = 0.05 s and (b) 
t = 0.1 s. 
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9 2D simulation of injection moulding process of short fibre 

composites 

Injection-moulded short-fibre composites have various kinds of advantages, 

such as excellent flexibility of moulding, a short time of moulding circle and 

low cost of moulding  as well as a certain level of stiffness and strength [164, 

165]. These advantages make it very popular in automobiles and lightweight 

structures. The mechanical properties of these composites significantly 

depend on the microstructure of the fibres in the composite, such as their 

length, orientation and distribution. The microstructure of the injection-

moulded short fibre composite is dependent on the moulding process, 

governed by the moulding speed, temperature and mould geometry. The 

orientation of reinforcing fibre has been studied since the 1980s. It was firstly 

investigated by Advani and Tucker [166] with an introduction of an 

orientation tensor to represent the orientation of fibres. They developed 

equations for the change of orientation tensors by combining the equation 

for the fibre movement with the continuity equation for all the fibres in the 

material. Since then, the orientation tensors are widely utilized for predicting 

the microstructure of the injected moulding product [167-169]. Meanwhile, 

based on the orientation tensor and fluid dynamics, numerical approaches 

have been developed to analyse the fibre motion. However, these fibre 

orientation-based approaches are not capable of presenting the 

microstructure of the composite in details as the tensors cannot predict the 

motion of an individual fibre. Sun et al. [170] and Oumer et al. [171] 

simulated the injection moulding process using a Computational Fluid 
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Dynamics (CFD) code, MoldFlow. Numerical results were validated against 

experimental observations showing that the density of fibres aligned to the 

flow direction in the vicinity of the mould cavity walls is large within the thin 

plate and very few in the thickness direction. Modhaffar et al. [172] 

developed a CFD model to simulate and characterize the fibre suspension in 

the flow within rectangular cavities. The model was solved with finite volume 

method (FVM) and it was capable of describing the temperature profile and 

predicting the fibre orientation during the filling stage of injection moulding 

process.  Thi et al. [173] predicted the fibre orientation in the short-glass 

fibre composites with different fibre weight concentration during the injection 

moulding process using a numerical approach based on Folgar and Tucker 

equation [174], which is well known for modelling the fibre orientation, and 

the Jeffrey’s equation, which aims for the fibre-fibre interaction. The 

numerical results were validated by the experimental observations 

conducted with a high resolution 3D X-ray computed tomography, 

quantitatively.  

Better understanding of motion behaviour of fibres in resin flow can provide 

insights for explaining some complicated phenomenon including the 

accumulation of fibres within resin flow. Yamamoto and Matsuoka [175, 176] 

proposed a particle method named particle simulation method (PSM)  to 

simulate the motion of fibres, in which all the fibers were modelled as an 

assembly of particles, and the equations of motion for each particle were 

solved separately. Although this approach could represent the accumulation 

and deformation of fibers, the resin flow and fiber motion were analyzed 

separately, thus the influences of fibre orientation and motion on the flow 
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field could not be represented. Yashiro et al. [164, 165] utilized the moving 

particle semi-implicit (MPS) method [49, 177] to simulate the mould-filling 

process of short-fibre composites. This method has an ability to track the 

free surface flow such as flow-fronts and the motion of each fibre which is 

represented by an assembly of particles. However, the fibres in their studies 

are assumed to be rigid, unlike the experimental observations that fibres 

could deform and even break up during the filling process [178]. In addition, 

both the interaction between the fibres and interaction between fibres and 

resin are mathematically incorporated in the MPS algorithm, without a 

physical interpretation. For example, the interaction between fibres due to 

collision is handled by indirect contact due to the nature of MPS. What is 

more, as both resin and fibres are represented by two types of particles in 

MPS scheme without any overlap, when the volume fraction of fibres is very 

large there would be insufficient amount of particles to accurately capture 

the flow of resin.   

Therefore, in this study the coupled SPH-DEM approach for simulating the 

injection process of short fiber composites was carried out. The fibres are 

represented by bonded DEM particles and the resin is represented by 

discrete SPH particles. This coupled SPH-DEM is a meshless method in a 

Lagrangian scheme, thus mesh generation and re-meshing is not required. 

The approach has been comprehensively validated in [160, 179] for 

modelling general interactions between fluids, solid particles and structures. 

For simplicity and straightforward implementation, the injection moulding 

process of short fibre composites is carried out in a 2D numerical simulation 

with proposed SPH-DEM model, where gravitational acceleration is not 

included. The injection moulding process is often the key step to determine 
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the quality and material property of moulding materials. For comparison the 

same injection process  simulated by MPS in [165] is adopted. The 

configuration of the mould is depicted in Fig.36. The resin is considered as 

an incompressible viscous fluid and represented by discrete SPH particles, 

and the short fibres are made of four bonded DEM particles. These short 

fibres initially are randomly distributed in a 30mm	×	30mm square resin bath 

in the direction vertical to the injection direction with a volume fraction of 

3.8%, hence the total quantity of short fibres is 175, same as number of the 

fibres used in [165]. A rigid wall at the top of the resin bath moves 

downwards with an initial velocity of 1 m/s to push resin and short fibre 

composites into a nozzle area. The velocity of the moving rigid wall is 

gradually decreased to ensure a stable injection moulding process. Through 

a stable injection, the resin and short fibres pass a narrow gate in width of 

6mm and length of 5mm to completely fill up a slim plate mould with 80 mm 

in width and 4 mm in length. The density of resin is 900 kg/m3 and its 

dynamic viscosity is 0.1Pa ∙ s. The density of short fibres is 2540 kg/m3
 and 

every individual has a dimension of 1mm	×	0.25mm. The critical ultimate 

tensile strength of fibres is 2000 MPa. As the aspect ratio of fiber is only 4 

and the majority of materials moves along with resin flow, the interaction 

between resin and short fibres is insignificant and consequently the 

phenomenon of visible deformation of short fibres is hardly observed. 

However, the stress of bond in each short fibres can be extracted for 

quantitative analysis where necessary. The numerical parameters are listed 

in Table 8.  
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Fig. 36 Configuration of 2D SPH-DEM simulation of the injection moulding 
process 
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Table 8 Numerical parameters in SPH-DEM modelling of injection moulding 

process 

Parameters Values 

Resin particle spacing (m) 0.0003 

Kernel function Wendland 

Kernel smooth length (m) 0.00036 

Time step (s) 0.0000002 

Physical time (s) 0.12 
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Fig. 37 Snapshots of the injection moulding process at different time 
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t = 0.0025s t = 0.0075s 

  

t = 0.0125s t = 0.0175s 

  

Fig. 38 Velocity contour of resin flow before split flow at a 0.005s time 
interval 

 

In Fig.37, the snapshots of transient injection flow pattern at different time 

intervals are predicted by SPH-DEM model and compared with MPS results. 

The resin passes the narrow gate and starts to fill the plate mold around 

0.02s. It can be seen that the orientation of fibres becomes more random as 

they are driven by the resin flow. In general SPH-DEM predicts similar flow 

profile as the MPS method. In the regions where the fibres are close to the 

boundary walls, a velocity gradient of resin flow is noticeable due to wall 

effect (see Fig.38), therefore the orientation of fibres in these regions 

changes significantly and eventually the fibres tend to move in parallel with 

boundary walls with a lower velocity. On the contrary, the orientation of 

fibres in the middle of the mould initially changes slightly despite of the direct 
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contact between fibres and gradually becomes aligned with resin flow. At 

time 0.0175s, two small regions in the middle of the mold are found with low 

velocity, this is the result of the appearances of vortex produced by the 

moving wall when it squeezes the resin flow in the nozzle area. After passing 

the narrow gate from 0.02s to 0.025s, the resin flow and fibres start to split 

into two streams to fill the slim plate. Similarly, the orientation of majority of 

fibres from 0.06s to 0.12s is still aligned with the resin flow direction, even 

though some of them have direct contact with boundary wall or other fibres.  

 

t = 0.03s t = 0.04s 

  

t = 0.05s t = 0.06s 

  

Fig. 39 Velocity contour of resin flow after split flow at 0.01s time interval 
 

In Fig.39, it can be clearly seen that the velocity gradient of resin flow 

caused by wall effect is much steeper, and some fibres collide with the mold 
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walls resulting in random orientation. Besides, a stagnation region, where 

the resin flow is almost at rest, is observed in the middle of the bottom plate 

mould due to flow split. Finally the injection process is completed at time 

0.12s, but filling process still continues until 0.165s in the MPS simulation 

[165]. The difference is partly caused by the velocity of moving wall, which is 

controllable by resin pressure at every timestep in the MPS simulation. As 

the threshold value of resin pressure was not given in the reference, the 

velocity of moving wall in the current SPH-DEM simulation is estimated to 

linearly decrease with an deceleration of 25 m/s2 over the first 0.02s and 

then become a constant velocity of 0.15 m/s afterwards in accordance with 

the displacement of moving wall in each snapshots from [165] as shown in 

Fig.37. In addition, a slightly irregular parabolic profile of fountain flow in 

SPH particles is depicted in Fig.38, where an unrealistic free surface and 

voids in the resin flow appears in both directions at the flow front after flow 

split. This may be due to tensile instability and free surface tension. Although 

the flow front is satisfactorily in parabolic shape, it occupies more spaces in 

the plate mold leading to a faster filling process. This issue could be 

mitigated by considering the surface tension as an external force in the 

momentum equation of SPH, which is not investigated in this study.  
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Fig. 40 Front flow observed at time 0.025s 
 

 

 

 

 

 



- 138 - 

Fig.41 plots the tensile stress of parallel bond in each fibres at time 0.2s. It 

can be seen that the maximum tensile stress 936.51MPa is far below the 

critical tensile strength of fiber (2000 MPa). This is due to the fact that the 

short fibres are mainly driven by shear flow to move with the resin, the 

interaction force acting on the short fibres are insignificant and not enough to 

break the bonds. Furthermore, as the aspect ratio of fiber is only 4, the 

deformation of fiber cannot be noticeably observed and the tensile stress 

caused by tension and bending in each fibre is almost evenly distributed. It 

should be noted the shear stresses in each fibre are also not noticeable and 

there is little deformation perpendicular to the fibre axis. 

 

 

Fig. 41 Distribution of tensile stresses in short fibers at time 0.2s 
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Another simulation with a high fibre volume fraction of 8.3%, shown in 

Fig.42, is conducted in order to compare with experimental results in [164] 

and investigate the influence of fibre contents on fibre orientation and 

distribution. The total quantity of short fibres is 375. The dynamic behaviour 

of resin flow and short fibers is similar to the previous case, where the fibres 

close to the skin layer of mould are almost aligned with the resin flow 

direction and the fibres in the core of mould are in random orientation. 

However, more accumulation of fibres is found as shown in Fig.42. Since the 

resin flow velocity is larger at a distance far from the boundary wall due to 

the viscosity of the resin, more frequent collision between fibers occurs in 

comparison to the case with volume fraction of 3.8% and this partly leads to 

a more random orientation of short fibres in despite of resin flow, even 

though the fibre orientation is mainly governed by the shear rate [166]. For 

these fibres close to boundary wall, their velocity is relatively lower due to 

the boundary effect which results in more accumulation. Consequently 

composite with higher fibre content is more likely to have more disrupted 

orientation and irregular distributions of fibres after injection. What is more, 

for simulation with a high fibre volume fraction of 8.3%, the content of fibres 

in the right path (+y) and left path (-y) after flow split is almost the same, but 

slightly more fibres are observed in the right path (+y) for simulation with a 

low fibre volume fraction of 3.8%. There are many factors can influence the 

content of fibres in either paths of mold. It can be controlled by adjusting the 

distribution and volume fraction of short fibre at initial stage and the velocity 

of moving wall (e.g. constant or variable velocity) to have an impact over the 

entire movement of short fibres during the injection process. 
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Fig. 42 Injection moulding processes with fibre volume fractions of 3.8% and 
8.3%. 

 

 

Fig. 43 Qualitative comparison between (a) numerical prediction and (b) 
post-processed X-ray CT image of fibre orientation upon the completion 

of filling process 
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In Fig.43, due to the limited number of fibres and relatively dense fibres in 

the narrow gate in the current simulation, only the upper part of the area 

marked by red square is extracted to compare the experimental results with 

areas A, B and C when the filling process is completed at 0.12s. In the 

author’s simulation, the aspect ratio of short fiber composite is 4, 

nevertheless the aspect ratio in the experiment was in a range between 50 

and 100. In despite of the difference in aspect ratio, Jeffery [180] 

demonstrated that the influence of the small aspect ratio on the orientation 

distribution would be limited as the change in orientation for an aspect ratio 

of 4 is almost the same as that for a larger aspect ratio larger than 20.  

Therefore, the aspect ratio of 4 can be used to similarly represent the 

movement of long fiber composites. In the experiment, most short fiber 

composites in the narrow gate area (areas A and C) moved aligning with 

resin flow direction, but those in the middle part of narrow gate (area B) 

moved randomly in any orientation and the degree of disorder is increasingly 

noticeable from area E to area K. As few number of short fiber composites in 

the narrow gate in 2D simulation, the predicted orientation of short fibers can 

only be qualitatively in comparison with experimental results obtained from 

X-ray CT. In the zoom-in view of the red square region, two short fibers 

marked in a red circle are mostly in disorder with maximum orientation angle 

compared with neighboring short fibers marked in black squares. The 

maximum orientation angle can be caused by either collision between 

particles or least velocity gradient in the middle part. It can be seen that 

these predictions qualitatively agree with experimental results. To more 

quantitatively compare with experiments, a series of 2D simulations with 

different  initial conditions of resin bath could be carried out as in [164], and 
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this would take in account the unpredictable influence of  short fibres 

distributions over the fibre orientation and movement (e.g. short fibres are 

not evenly distributed at the start of injection process). On the other hand, 

3D simulations of the injection process would more accurately capture the 

details of fibre flow and orientation, but at a much higher computational 

expense. 
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10 Conclusions and future works 

10.1 Conclusions 

A 2D coupled SPH-DEM model for fluid-solid interaction problems has been 

proposed and developed. In this model, SPH based on Navier-Stokes 

equations is used to model the fluid phase while DEM with/without a bond 

feature is used for the structure and solid particle phase. In dealing with the 

fluid-structure interface, Newton’s Third Law is applied with the same 

magnitude in both phases, but in opposite directions. When dealing with the 

interaction between the fluid and solid particles, the local averaging 

technique is used to account for the volume of solid particles in the fluid. As 

both SPH and DEM are Lagrangian particle methods, no special treatment is 

required to define the fluid-structure interface, even in the presence of large 

deformation and/or fracture of structure. The contact between SPH and DEM 

particles is automatically detected in accordance with a particle search 

radius that is twice the smooth kernel length. When a smoothed particle is 

approaching a fixed boundary and its support domain is intersected with the 

boundary, two-layer boundary particles are placed in the position of solid 

boundary to produce repulsive forces to handle the kernel truncation. 

The individual DEM model and SPH model has been validated by 

comparison with analytical, experimental and other numerical results. A tip-

loaded cantilever beam has been chosen to validate the DEM model with 

bonded particles for predicting structural deformation and fracture, whilst 

solid particle phase has been studied and validated in this research using a 

dry dam-break test with a stack of solid cylinders in two-dimensions.. A 
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typical dam-break test with dry bed was considered to validate the SPH 

model for predicting free surface flow. After the validations of both DEM and 

SPH models, the coupled SPH-DEM model was then validated against a 

typical fluid-structure/solid particle interaction problems, such as a thin and 

long elastic plate interacts with free surface flowing fluid, the occurrence of 

structural fracture by allowing the bonds in the DEM model to break and the 

broken structure to move under fluid pressure, a sedimentation test of a 

single particle and two-phase flow dam-break test. For single particle 

sedimentation, the fluctuation of settling velocity of a solid particle is due to 

the assumption that fluid is compressible in SPH theory so that the 

surrounding fluid particles can be compressed or expanded at any timestep, 

which gives rise to the fluctuation of surrounding fluid velocity and the 

terminal velocity of the solid particle is affected by the ratio of the resolution 

of the fluid particle to the diameter of the solid particle. According to authors’ 

experience, even though the results in single particle sedimentation are 

satisfactory, some improvements are still needed in order achieve more 

accurate results as produced by other methods such as LBM. In the two-

phase dam-break test, the results for the dynamic behaviour of front wave 

are promising, but the lack of a third dimension neglects the effect of the 

thickness of solid particles. The last step in the validation is to combine all 

phases together and a special case is presented to illustrate the fluid-solid 

particle-structure interaction with/without structural failure. In comparison 

with other results, the results obtained here are found to be satisfactory and 

encouraging for future work. 

And then the research chose two engineering problems to show the 

capability of the proposed coupled SPH-DEM model. First of all, this study 
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coupled SPH-DEM model is applied to simulate the 3D printing process of 

short or continuous fibre reinforced polymer composites by fused deposition 

modelling (FDM). Fibres are represented by discrete DEM particles bonded 

together to capture the deformation and even fracture when it necessarily 

occurs, therefore, this model can track the motion and deformation of fibres 

and analyse their interaction with resin during the 3D printing process. Resin 

as a fluid phase is represented by discrete SPH particles. Fibre orientation 

and deformation are predicted to shed a light on the 3D printing of short or 

continuous fibre reinforced polymer composites (e.g., void formation, fibre 

distribution, etc.). Secondly, the simulation of injection moulding process of 

short fiber composites was implemented. Two cases with different volume 

fractions of short fibres are conducted and numerical results of the resin flow 

velocity and fibre orientation and accumulation are analyzed and compared 

to other numerical and experimental results. It’s confident that the proposed 

SPH-DEM model can reproduce the realistic movement of fibres in the resin 

flow for moulding injection, which are very difficult to achieve by the 

conventional methods.  

Finally, the original findings and contributions in the present investigation 

can be generally described as follow: 

1. The coupled SPH-DEM model is implemented into PFC5.0 with the 

addition of developed SPH code, the quality of which is proved by the 

solution of standard tests. This model only open for fluid dynamics 

may be considered as the first step in the development of an 

advanced simulation tool for multi-physical modelling and is intended 

for modelling more complex engineering problems.	
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2. The cantilever beam test conducted with linear parallel bond model 

have proved that the performance of DEM in dealing with structural 

deformation and failure can acceptably match numerical and 

analytical results.	

3. The developed integrated model is applied to simulate 3D printing of 

fibre reinforced composites and injection moulding of short fibre 

composites to investigate the special distribution of composites. The 

simulation results successfully showed the moving tendency of 

composites. 	

10.2 Future works 

The current model is not the ultimate version as it still has some deficiencies 

such as: 

1. 2D simulation is not able to completely simplify complex engineering 

problems,	

2. Large-scale modelling is limited by the number of particle and 

calculation algorithm, 	

3. Only fluid dynamics is incorporated into current model, which is far 

behind the ultimate goal in solving real engineering problems. 	

Therefore, some potential improvements can be made in the future. The 

coupled model will be expanded from 2D to 3D simulation with GPU 

acceleration in order to become a practical tool for predicting and optimizing 

engineering problems. The simulation of fluid-structure interaction with 

fracture will be validated through laboratory experiment and further 

improvement will be made by considering heat transfer, consolidation, and 

crystallisation, together with comprehensive validations against experiments. 
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Appendix 2: The main structure of SPH code in C++ 

The following is the main structure of SPH code written in C++. Basically this 

code is based on the loop of searching each particle followed by a series of 

SPH implementation for fluid-solid interaction problems: 

case FPSIFunction:           { 
                          double dp = 0.003; 
        double eps = 0.2*dp; 
//corfficient for position correction 
                          double h = 1.25*dp; 
        double xmax = 0.201; 
        double xmin = -0.0015; 
        double ymax = 1.78; 
        double viscous = 8.9e-
4; 
        double height = 0.1; 
        double rho0 = 1000.0; 
 
        //contact model for 
dem/dem and dem/wall 
        double kn = 5.3e5; 
        double ks = 0.25*kn; 
        double fric = 0.2; 
        double dp_nratio = 
0.1; 
 
           double dist; 
        double kc = 
7.0/(64.0*M_PI*pow(h,2)); 
        double w; 
        double dwx; 
        double dwy;  
  
        double mass = 
rho0*pow(dp,2); 
        double vmax = 
sqrt(2.0*9.81*height); 
        double cs = 10.0*vmax; 
        double k = 
pow(cs,2)*rho0/7.0; 
        double rho; 
        double initialw = 
kc*(pow(2.0-dp/h,4)*(1.0+2.0*dp/h)); 
 
                          IModuleBall *m = prog-
>findInterface<IModuleBall>(); 
                                if (!m) throw Exception("The clump module was 
not found."); 
 
        IGlobals *g = prog-
>findInterface<IGlobals>(); 
        if (!m) throw 
Exception("The clump module was not found."); 
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        double dt = g-
>getTimestep(); 
         
        double dens; 
   
        for (IIterator<IBall> 
it(m->getIContainerBall());!it.atEnd();++it) { 
 
                                    IBall *ball = it; 
 
         double vfraction 
= 1.0; 
         double 
demradius; 
         double pressure; 
 
         if (ball-
>getIThing()->getGroupName()!="sph" && ball->getIThing()-
>getGroupName()!="particle") 
         { 
          dens = 
ball->getIBodyMechanical()->getDensity(); 
 
          pressure 
= 0.0; 
           
         
 IFishParam *ex1setptr =  ball->getIThing()->setExtra(1);    
       
             double ex1 = 
dens; 
                                        *ex1setptr = ex1;  
 
             IFishParam 
*ex2setptr =  ball->getIThing()->setExtra(2);    
             double ex2 = 
pressure; 
                                        *ex2setptr = ex2; 
         } 
         else if (ball-
>getIThing()->getGroupName()=="sph") 
         { 
         
 FArray<IContact *> list;       
   
                                        ball->getIPiece()-
>getContactList(&list); 
 
          for 
(quintptr i=0; i<list.size(); ++i) 
          { 
                IContact 
*c = list.at(i); 
           if 
(c->getEnd2()->getIThing()->getTypeName() != "ball" || c->getEnd1()-
>getIThing()->getTypeName() != "ball") continue;  
           if 
(c->getEnd2()->getIThing()->getGroupName() == "particle" || c->getEnd1()-
>getIThing()->getGroupName() == "particle") 
           { 
           
 DVect pos1(0.0); 
                        DVect 
pos2(0.0); 
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quintptr ID1 = c->getEnd1()->getIThing()->getID(); 
                  
quintptr ID2 = c->getEnd2()->getIThing()->getID(); 
                  
quintptr ID3 = ball->getIPiece()->getIThing()->getID(); 
 
           
 if (ID3==ID1) 
           
 { 
           
    IBall *ball2 = m->findBallWithID(ID2);  
 
           
    demradius = ball2->getRadius(); 
 
                     
pos1 = ball->getIPieceMechanical()->getPosition(); 
                     
pos2 = ball2->getIPieceMechanical()->getPosition(); 
 
                        
dist = sqrt(pow((pos1.x()-pos2.x()),2)+pow((pos1.y()-pos2.y()),2));  
 
                  
double q = dist / h; 
                      
                     
if (q<=2.0) 
                     
{ 
           
    w = kc*(pow(2.0-q,4)*(1.0+2.0*q)); 
                     
} 
                     
else 
                     
{ 
           
    w =0.0; 
                     
} 
                      } 
           
  else if (ID3==ID2) 
                   
{                      
                      
IBall *ball2 = m->findBallWithID(ID1); 
 
           
  demradius = ball2->getRadius(); 
 
                      
pos1 = ball->getIPieceMechanical()->getPosition(); 
 
                      
pos2 = ball2->getIPieceMechanical()->getPosition(); 
 
                         
dist = sqrt(pow((pos1.x()-pos2.x()),2)+pow((pos1.y()-pos2.y()),2)); 
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double q = dist / h; 
 
                      
if (q<=2.0) 
                      
{ 
           
     w = kc*(pow(2.0-q,4)*(1.0+2.0*q)); 
                      
} 
                      
else 
                      
{ 
           
     w =0.0; 
                      
} 
           
 }   
           
 vfraction -= w*pow(demradius,2); 
           } 
          } 
           
          dens = 
ball->getIBodyMechanical()->getDensity(); 
          pressure 
= k*(pow(dens/rho0,7)-1.0); 
 
         
 IFishParam *ex1setptr =  ball->getIThing()->setExtra(1);    
       
             double ex1 = 
dens*vfraction; 
                                        *ex1setptr = ex1;  
 
             IFishParam 
*ex2setptr =  ball->getIThing()->setExtra(2);    
             double ex2 = 
pressure; 
                                        *ex2setptr = ex2; 
 
         
 IFishParam *ex3setptr =  ball->getIThing()->setExtra(3);    
             double ex3 = 
vfraction; 
                                        *ex3setptr = ex3; 
         } 
        } 
 
        for (IIterator<IBall> 
it(m->getIContainerBall());!it.atEnd();++it) { 
 
         IBall *ball = 
it; 
         double 
getvfraction; 
         double 
numetvfraction = 0.0; 
         double numetrho 
= 0.0; 



- 174 - 

         double numetvelx 
= 0.0; 
         double numetvely 
= 0.0; 
         double denomt = 
0.0; 
         double 
fluidavelx; 
         double 
fluidavely; 
         double 
fluidarho; 
         double 
demvfraction; 
         double 
lubrixindi; 
         double 
lubriyindi; 
         double 
lubritotalx = 0.0; 
         double 
lubritotaly = 0.0; 
 
         DVect sphvel; 
         double sphdens; 
 
         if (ball-
>getIThing()->getGroupName()!="particle") continue; 
 
         FArray<IContact 
*> list;          
                                    ball->getIPiece()->getContactList(&list); 
 
         for (quintptr 
i=0; i<list.size(); ++i) 
         { 
               IContact 
*c = list.at(i); 
           if 
(c->getEnd2()->getIThing()->getTypeName() != "ball" || c->getEnd1()-
>getIThing()->getTypeName() != "ball") 
           { 
           
 c->setModelName("linear"); 
                                                c->setProperty(kn,"kn"); 
               
c->setProperty(ks,"ks"); 
               
c->setProperty(fric,"fric"); 
           
 c->setProperty(dp_nratio, "dp_nratio"); 
           } 
          
 else if (c->getEnd2()->getIThing()->getGroupName() == "structure" || c-
>getEnd1()->getIThing()->getGroupName() == "structure") 
           { 
           
 c->setModelName("linear"); 
                                                c->setProperty(kn,"kn"); 
               
c->setProperty(ks,"ks"); 
               
c->setProperty(fric,"fric"); 
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 c->setProperty(dp_nratio, "dp_nratio"); 
           } 
          
 else if (c->getEnd2()->getIThing()->getGroupName() == "particle" && c-
>getEnd1()->getIThing()->getGroupName() == "particle") 
           { 
               
c->setModelName("linear"); 
                                                c->setProperty(kn,"kn"); 
               
c->setProperty(ks,"ks"); 
               
c->setProperty(fric,"fric"); 
           
 c->setProperty(dp_nratio, "dp_nratio"); 
 
           
 DVect pos1(0.0); 
                        DVect 
pos2(0.0); 
 
           
 quintptr ID1 = c->getEnd1()->getIThing()->getID(); 
                  
quintptr ID2 = c->getEnd2()->getIThing()->getID(); 
           
 quintptr ID3 = ball->getIPiece()->getIThing()->getID(); 
 
           
 if (ID3==ID1) 
           
 { 
           
     IBall *ball2 = m->findBallWithID(ID2);  
 
                      
pos1 = ball->getIPieceMechanical()->getPosition(); 
                      
pos2 = ball2->getIPieceMechanical()->getPosition(); 
 
           
  DVect vel1 = ball->getVelocity(); 
           
     DVect vel2 = ball2->getVelocity(); 
 
                         
dist = sqrt(pow((pos1.x()-pos2.x()),2)+pow((pos1.y()-pos2.y()),2));  
 
           
  double demradius = ball->getRadius(); 
           
  double cutoff = 2.0*demradius; 
 
           
  if (dist >= cutoff) continue; 
           
  lubrixindi = -3.0*M_PI*viscous*pow(cutoff,2)/8.0/(dist-
cutoff)*((vel1.x()-vel2.x())*(pos1.x()-pos2.x())+(vel1.y()-
vel2.y())*(pos1.y()-pos2.y()))/((pos1.x()-pos2.x())*(pos1.x()-
pos2.x())+(pos1.y()-pos2.y())*(pos1.y()-pos2.y()))*(pos1.x()-pos2.x()); 
           
  lubriyindi = -3.0*M_PI*viscous*pow(cutoff,2)/8.0/(dist-
cutoff)*((vel1.x()-vel2.x())*(pos1.x()-pos2.x())+(vel1.y()-
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vel2.y())*(pos1.y()-pos2.y()))/((pos1.x()-pos2.x())*(pos1.x()-
pos2.x())+(pos1.y()-pos2.y())*(pos1.y()-pos2.y()))*(pos1.y()-pos2.y()); 
           
  //stream<<"lubrixindi is "<<lubrixindi<<endl; 
           
  //stream<<"lubriyindi is "<<lubriyindi<<endl; 
           
  } 
           
  else if (ID3==ID2) 
           
  { 
           
  IBall *ball2 = m->findBallWithID(ID1);  
 
           
     pos1 = ball->getIPieceMechanical()->getPosition(); 
                      
pos2 = ball2->getIPieceMechanical()->getPosition(); 
 
                         
DVect vel1 = ball->getVelocity(); 
           
     DVect vel2 = ball2->getVelocity(); 
 
                         
dist = sqrt(pow((pos1.x()-pos2.x()),2)+pow((pos1.y()-pos2.y()),2));  
 
           
  double demradius = ball->getRadius(); 
           
  double cutoff = 2.0*demradius; 
 
           
  if (dist >= cutoff) continue; 
           
  lubrixindi = -3.0*M_PI*viscous*pow(cutoff,2)/8.0/(dist-
cutoff)*((vel1.x()-vel2.x())*(pos1.x()-pos2.x())+(vel1.y()-
vel2.y())*(pos1.y()-pos2.y()))/((pos1.x()-pos2.x())*(pos1.x()-
pos2.x())+(pos1.y()-pos2.y())*(pos1.y()-pos2.y()))*(pos1.x()-pos2.x()); 
           
  lubriyindi = -3.0*M_PI*viscous*pow(cutoff,2)/8.0/(dist-
cutoff)*((vel1.x()-vel2.x())*(pos1.x()-pos2.x())+(vel1.y()-
vel2.y())*(pos1.y()-pos2.y()))/((pos1.x()-pos2.x())*(pos1.x()-
pos2.x())+(pos1.y()-pos2.y())*(pos1.y()-pos2.y()))*(pos1.y()-pos2.y()); 
           
  //stream<<"lubrixindi is "<<lubrixindi<<endl; 
           
  //stream<<"lubriyindi is "<<lubriyindi<<endl; 
           
  } 
           
 lubritotalx += lubrixindi; 
           
 lubritotaly += lubriyindi; 
           } 
          
 else if (c->getEnd2()->getIThing()->getGroupName() == "sph" || c-
>getEnd1()->getIThing()->getGroupName() == "sph") 
           { 
           
 DVect pos1(0.0); 
                        DVect 
pos2(0.0); 
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 quintptr ID1 = c->getEnd1()->getIThing()->getID(); 
                  
quintptr ID2 = c->getEnd2()->getIThing()->getID(); 
           
 quintptr ID3 = ball->getIPiece()->getIThing()->getID(); 
 
           
 if (ID3==ID1) 
           
 { 
           
     IBall *ball2 = m->findBallWithID(ID2);  
 
                      
pos1 = ball->getIPieceMechanical()->getPosition(); 
                      
pos2 = ball2->getIPieceMechanical()->getPosition(); 
 
                         
dist = sqrt(pow((pos1.x()-pos2.x()),2)+pow((pos1.y()-pos2.y()),2));  
 
                   
double q = dist / h; 
                      
                      
if (q<=2.0) 
                      
{ 
           
     w = kc*(pow(2.0-q,4)*(1.0+2.0*q)); 
                      
} 
                      
else 
                      
{ 
           
     w =0.0; 
                      
} 
 
           
  const IFishParam *getvfractionsetptr =  ball2->getIThing()-
>getExtra(3);  
                         
getvfraction = getvfractionsetptr->toDouble(); 
 
           
  sphvel = ball2->getVelocity(); 
           
  sphdens = ball2->getDensity(); 
           
  } 
           
  else if (ID3==ID2) 
           
  { 
           
  IBall *ball2 = m->findBallWithID(ID1);  
 
           
     pos1 = ball->getIPieceMechanical()->getPosition(); 



- 178 - 

                      
pos2 = ball2->getIPieceMechanical()->getPosition(); 
 
                         
dist = sqrt(pow((pos1.x()-pos2.x()),2)+pow((pos1.y()-pos2.y()),2));  
 
                   
double q = dist / h; 
                      
                      
if (q<=2.0) 
                      
{ 
           
     w = kc*(pow(2.0-q,4)*(1.0+2.0*q)); 
                      
} 
                      
else 
                      
{ 
           
     w =0.0; 
                      
} 
           
  const IFishParam *getvfractionsetptr =  ball2->getIThing()-
>getExtra(3);  
                         
getvfraction = getvfractionsetptr->toDouble(); 
 
           
  sphvel = ball2->getVelocity(); 
           
  sphdens = ball2->getDensity(); 
           
  } 
           
 numetvfraction += getvfraction*pow(dp,2)*w; 
               
numetrho += sphdens*pow(dp,2)*w; 
           
 numetvelx += sphvel.x()*pow(dp,2)*w; 
           
 numetvely += sphvel.y()*pow(dp,2)*w; 
           
 denomt += pow(dp,2)*w; 
          } 
            } 
          
         if (denomt == 
0.0) 
         { 
         DVect force; 
 
         double demmass = 
ball->getMass(); 
 
         force.x_ = 0.0; 
         force.y_ = 
demmass*(-9.81); 
 
         ball-
>getIBodyMechanical()->setAppliedForce(force); 
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         } 
         else 
         { 
 
         IFishParam 
*ex4setptr =  ball->getIThing()->setExtra(4);    
         double ex4 = 
denomt; 
                                    *ex4setptr = ex4; 
 
         demvfraction = 
numetvfraction/denomt; 
         fluidarho = 
numetrho/denomt; 
         fluidavelx = 
numetvelx/denomt; 
         fluidavely = 
numetvely/denomt; 
 
         double demradius 
= ball->getRadius(); 
         DVect demvel = 
ball->getVelocity(); 
 
         double vabx = 
demvel.x()-fluidavelx; 
         double vaby = 
demvel.y()-fluidavely; 
 
         double re = 
fluidarho*demvfraction*sqrt(pow(vabx,2)+pow(vabx,2))*demradius*2.0/viscous; 
          
         double cd; 
 
         if (re <= 
1000.0) 
         { 
          if (re == 
0.0) 
          { 
           cd 
= 0.0; 
          } 
          else 
          { 
           cd 
= 24.0/re*(1.0+0.15*pow(re,0.687)); 
          } 
         } 
         else 
         { 
           cd = 
0.44; 
         } 
 
         double coe; 
 
         if (demvfraction 
<= 0.8) 
         { 
             coe = 
150.0*pow(1-
demvfraction,2)/demvfraction*viscous/pow(demradius*2.0,2)+1.75*(1.0-
demvfraction)*fluidarho/demradius/2.0*sqrt(pow(vabx,2)+pow(vabx,2)); 
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         } 
         else 
         { 
          coe = 
0.75*cd*demvfraction*(1.0-
demvfraction)/demradius/2.0*fluidarho*sqrt(pow(vabx,2)+pow(vabx,2))*pow(demvfr
action,-2.65); 
         } 
 
         double dragx = 
coe/(1.0-demvfraction)*(-vabx)*M_PI*pow(demradius,2); 
         double dragy = 
coe/(1.0-demvfraction)*(-vaby)*M_PI*pow(demradius,2); 
 
         double demrho = 
ball->getDensity(); 
          
         double buoyy = 
fluidarho*M_PI*pow(demradius,2)*9.81; 
             
         DVect force; 
 
         force.x_ = 
dragx; 
         force.y_ = 
dragy+buoyy; 
 
         double demmass = 
ball->getMass(); 
 
         force.x_ += 
0.0+lubritotalx; 
         force.y_ += 
demmass*(-9.81)+lubritotaly; 
 
         //stream<<"force 
is "<<force<<endl; 
 
         ball-
>getIBodyMechanical()->setAppliedForce(force); 
         } 
        } 
 
        for (IIterator<IBall> 
it(m->getIContainerBall());!it.atEnd();++it) { 
 
                                    IBall *ball = it; 
 
         if (ball-
>getIThing()->getGroupName()!="sph") continue; 
 
         double 
xvelindix; 
                     double xvelindiy; 
         double 
xveltotalx = 0.0; 
                     double xveltotaly = 0.0; 
 
         double 
indidrhodt; 
         double drhodt = 
0.0; 
 



- 181 - 

         double 
acceindix; 
            double acceindiy; 
         double 
accetotalx = 0.0; 
         double 
accetotaly = 0.0; 
 
         DVect pos1(0.0); 
            DVect pos2(0.0); 
 
         double 
extforcexindi; 
         double 
extforceyindi; 
         double 
extforcext = 0.0; 
         double 
extforceyt = 0.0; 
         double denomt = 
0.0; 
         double 
demradius; 
 
         double ex44; 
 
                                    FArray<IContact *> list;   
       
                                    ball->getIPiece()->getContactList(&list);
  
         for (quintptr 
i=0; i<list.size(); ++i) 
         { 
          IContact 
*c = list.at(i); 
              if 
(c->getEnd2()->getIThing()->getTypeName() != "ball" || c->getEnd1()-
>getIThing()->getTypeName() != "ball") continue;  
               
              if 
(c->getEnd2()->getIThing()->getGroupName() != "particle" && c->getEnd1()-
>getIThing()->getGroupName() != "particle") 
           { 
           
            
           
 quintptr ID1 = c->getEnd1()->getIThing()->getID(); 
                  
quintptr ID2 = c->getEnd2()->getIThing()->getID(); 
           
 quintptr ID3 = ball->getIPiece()->getIThing()->getID(); 
 
           
 if (ID3==ID1) 
           
 { 
           
    IBall *ball2 = m->findBallWithID(ID2);     
               
    
      
                     
pos1 = ball->getIPieceMechanical()->getPosition(); 
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pos2 = ball2->getIPieceMechanical()->getPosition(); 
 
                        
dist = sqrt(pow((pos1.x()-pos2.x()),2)+pow((pos1.y()-pos2.y()),2));  
 
                  
double q = dist / h; 
 
                     
if (q<=2.0) 
                     
{ 
           
    w = kc*(pow(2.0-q,4)*(1.0+2.0*q)); 
           
    dwx = kc*(pos1.x()-pos2.x())/dist/h*(-4.0*pow(2.0-
q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0); 
           
    dwy = kc*(pos1.y()-pos2.y())/dist/h*(-4.0*pow(2.0-
q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0); 
                     
} 
                     
else 
                     
{ 
           
    w = 0.0; 
                     
   dwx = 0.0; 
                     
dwy = 0.0; 
                     
} 
           
     
           
    const IFishParam *ex222setptr =  ball->getIThing()->getExtra(1);   
           
    const IFishParam *ex2222setptr =  ball2->getIThing()->getExtra(1);  
                        
double ex222 = ex222setptr->toDouble(); 
           
    double ex2222 = ex2222setptr->toDouble(); 
           
     
           
    const IFishParam *ex333setptr =  ball->getIThing()->getExtra(2);  
           
    const IFishParam *ex3333setptr =  ball2->getIThing()->getExtra(2);  
                        
double ex333 = ex333setptr->toDouble(); 
           
    double ex3333 = ex3333setptr->toDouble(); 
 
           
    DVect vball1 = ball->getIPieceMechanical()->getVelocity(); 
           
    DVect vball2 = ball2->getIPieceMechanical()->getVelocity(); 
 
           
    double vabx = vball1.x()-vball2.x(); 
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    double vaby = vball1.y()-vball2.y(); 
 
           
    double xabx = pos1.x()-pos2.x(); 
           
    double xaby = pos1.y()-pos2.y(); 
 
           
    double dens1 = ball->getIBodyMechanical()->getDensity(); 
           
    double dens2 = ball2->getIBodyMechanical()->getDensity(); 
 
           
    double visx = mass*(viscous+viscous)/dens1/dens2/dist/h*(-
4.0*pow(2.0-q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0)*vabx; 
           
    double visy = mass*(viscous+viscous)/dens1/dens2/dist/h*(-
4.0*pow(2.0-q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0)*vaby; 
           
     
           
    double anticlump = 
pow(vmax/cs,2)*abs(ex333/pow(ex222,2)+ex3333/pow(ex2222,2))*pow(w/initialw,4); 
 
           
    if (ball2->getIThing()->getGroupName()=="sph") 
           
    { 
           
     acceindix = -
mass*(ex333/pow(ex222,2)+ex3333/pow(ex2222,2)+visx)*dwx;   
             
                         
acceindiy = -mass*(ex333/pow(ex222,2)+ex3333/pow(ex2222,2)+visy)*dwy; 
           
        xvelindix = eps*mass/((dens1+dens2)/2.0)*(-1.0)*vabx*w; 
           
        xvelindiy = eps*mass/((dens1+dens2)/2.0)*(-1.0)*vaby*w; 
           
     indidrhodt = mass*(vabx*dwx+vaby*dwy); 
           
    } 
           
    else 
           
    { 
           
     acceindix = -
mass*(ex333/pow(ex222,2)+ex3333/pow(ex2222,2)+0.2*visx)*dwx;   
             
                         
acceindiy = -mass*(ex333/pow(ex222,2)+ex3333/pow(ex2222,2)+0.2*visy)*dwy; 
           
        xvelindix = 0.0; 
           
        xvelindiy = 0.0; 
           
     indidrhodt = mass*(vabx*dwx+vaby*dwy); 
           
    } 
           
 } 
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 else if (ID3==ID2) 
                  {                      
                     
IBall *ball2 = m->findBallWithID(ID1);  
           
                     
pos1 = ball->getIPieceMechanical()->getPosition(); 
 
                     
pos2 = ball2->getIPieceMechanical()->getPosition(); 
 
                        
dist = sqrt(pow((pos1.x()-pos2.x()),2)+pow((pos1.y()-pos2.y()),2)); 
 
                  
double q = dist / h; 
    
                     
if (q<=2.0) 
                     
{ 
           
    w = kc*(pow(2.0-q,4)*(1.0+2.0*q)); 
           
    dwx = kc*(pos1.x()-pos2.x())/dist/h*(-4.0*pow(2.0-
q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0); 
           
    dwy = kc*(pos1.y()-pos2.y())/dist/h*(-4.0*pow(2.0-
q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0); 
                     
} 
                     
else 
                     
{ 
           
    w = 0.0; 
                     
   dwx = 0.0; 
                     
dwy = 0.0; 
                     
} 
           
    
           
    const IFishParam *ex222setptr =  ball->getIThing()->getExtra(1);   
           
    const IFishParam *ex2222setptr =  ball2->getIThing()->getExtra(1);  
                        
double ex222 = ex222setptr->toDouble(); 
           
    double ex2222 = ex2222setptr->toDouble(); 
                         
           
    const IFishParam *ex333setptr =  ball->getIThing()->getExtra(2);  
           
    const IFishParam *ex3333setptr =  ball2->getIThing()->getExtra(2);  
                        
double ex333 = ex333setptr->toDouble(); 
           
    double ex3333 = ex3333setptr->toDouble(); 
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    DVect vball1 = ball->getIPieceMechanical()->getVelocity(); 
           
    DVect vball2 = ball2->getIPieceMechanical()->getVelocity(); 
 
           
    double vabx = vball1.x()-vball2.x(); 
           
    double vaby = vball1.y()-vball2.y(); 
 
           
    double xabx = pos1.x()-pos2.x(); 
           
    double xaby = pos1.y()-pos2.y(); 
 
           
    double dens1 = ball->getIBodyMechanical()->getDensity(); 
           
    double dens2 = ball2->getIBodyMechanical()->getDensity(); 
 
           
    double visx = mass*(viscous+viscous)/dens1/dens2/dist/h*(-
4.0*pow(2.0-q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0)*vabx; 
           
    double visy = mass*(viscous+viscous)/dens1/dens2/dist/h*(-
4.0*pow(2.0-q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0)*vaby; 
           
     
           
    double anticlump = 
pow(vmax/cs,2)*abs(ex333/pow(ex222,2)+ex3333/pow(ex2222,2))*pow(w/initialw,4); 
 
           
    if (ball2->getIThing()->getGroupName()=="sph") 
           
    { 
           
     acceindix = -
mass*(ex333/pow(ex222,2)+ex3333/pow(ex2222,2)+visx)*dwx;   
             
                         
acceindiy = -mass*(ex333/pow(ex222,2)+ex3333/pow(ex2222,2)+visy)*dwy; 
           
        xvelindix = eps*mass/((dens1+dens2)/2.0)*(-1.0)*vabx*w; 
           
        xvelindiy = eps*mass/((dens1+dens2)/2.0)*(-1.0)*vaby*w; 
           
     indidrhodt = mass*(vabx*dwx+vaby*dwy); 
           
    } 
           
    else 
           
    { 
           
     acceindix = -
mass*(ex333/pow(ex222,2)+ex3333/pow(ex2222,2)+0.2*visx)*dwx;   
             
                         
acceindiy = -mass*(ex333/pow(ex222,2)+ex3333/pow(ex2222,2)+0.2*visy)*dwy; 
           
        xvelindix = 0.0; 
           
        xvelindiy = 0.0; 
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     indidrhodt = mass*(vabx*dwx+vaby*dwy); 
           
    } 
           
 } 
           
 accetotalx += acceindix; 
                  
accetotaly += acceindiy; 
           
 drhodt += indidrhodt; 
           
 xveltotalx += xvelindix; 
           
 xveltotaly += xvelindiy; 
                    } 
             
else if (c->getEnd2()->getIThing()->getGroupName() == "particle" || c-
>getEnd1()->getIThing()->getGroupName() == "particle") 
             
{ 
           
 quintptr ID1 = c->getEnd1()->getIThing()->getID(); 
                  
quintptr ID2 = c->getEnd2()->getIThing()->getID(); 
           
 quintptr ID3 = ball->getIPiece()->getIThing()->getID(); 
 
           
 if (ID3==ID1) 
           
 { 
           
    IBall *ball2 = m->findBallWithID(ID2); 
 
           
    demradius = ball2->getRadius(); 
      
                     
pos1 = ball->getIPieceMechanical()->getPosition(); 
 
                     
pos2 = ball2->getIPieceMechanical()->getPosition(); 
 
                        
dist = sqrt(pow((pos1.x()-pos2.x()),2)+pow((pos1.y()-pos2.y()),2));  
 
                  
double q = dist / h; 
                      
                     
if (q<=2.0) 
                        
{ 
                     
w = kc*(pow(2.0-q,4)*(1.0+2.0*q)); 
                        
} 
                     
else 
                        
{ 
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    w =0.0; 
                        
} 
           
    extforcexindi = ball2->getAppliedForce().x(); 
           
    extforceyindi = ball2->getAppliedForce().y(); 
 
           
    const IFishParam *ex44setptr =  ball2->getIThing()->getExtra(4);   
           
    ex44 = ex44setptr->toDouble(); 
           
 } 
           
 else if (ID3==ID2) 
                  {                      
                     
IBall *ball2 = m->findBallWithID(ID1);  
 
           
    demradius = ball2->getRadius(); 
           
                     
pos1 = ball->getIPieceMechanical()->getPosition(); 
 
                     
pos2 = ball2->getIPieceMechanical()->getPosition(); 
 
                        
dist = sqrt(pow((pos1.x()-pos2.x()),2)+pow((pos1.y()-pos2.y()),2)); 
 
                  
double q = dist / h; 
 
                     
if (q<=2.0) 
                        
{ 
                     
w = kc*(pow(2.0-q,4)*(1.0+2.0*q)); 
                        
} 
                     
else 
                        
{ 
           
    w =0.0; 
                        
} 
           
    extforcexindi = ball2->getAppliedForce().x(); 
           
    extforceyindi = ball2->getAppliedForce().y(); 
 
           
    const IFishParam *ex44setptr =  ball2->getIThing()->getExtra(4);   
           
    ex44 = ex44setptr->toDouble(); 
           
 } 
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 extforcext -= pow(dp,2)*w*extforcexindi; 
           
 extforceyt -= pow(dp,2)*w*extforceyindi; 
           
 denomt += ex44; 
                                              } 
          } 
 
          if (denomt == 
0.0) 
          { 
               accetotaly 
-= 9.81; 
 
            const 
IFishParam *ex222setptr =  ball->getIThing()->getExtra(1);   
               double 
ex222 = ex222setptr->toDouble(); 
 
            const 
IFishParam *getvfractionsetptr =  ball->getIThing()->getExtra(3);  
               double 
getvfraction = getvfractionsetptr->toDouble();     
       
 
            rho = 
(drhodt*dt+ex222)/getvfraction; 
 
            ball-
>getIBodyMechanical()->setDensity(rho); 
 
            DVect 
velnext; 
 
            DVect 
velnow = ball->getVelocity(); 
 
            
velnext.x_ = velnow.x()+accetotalx*dt; 
            
velnext.y_ = velnow.y()+accetotaly*dt; 
 
            
velnext.x_ += xveltotalx; 
            
velnext.y_ += xveltotaly; 
 
            DVect 
posnow = ball->getIPieceMechanical()->getPosition(); 
 
            if 
(posnow.x_ >= xmax || posnow.x_ <= xmin) 
            { 
             
velnext.x_ = 0.0; 
            } 
 
            if 
(posnow.y_ >= ymax) 
            { 
             
velnext.y_ = 0.0; 
            } 
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//stream<<"velnext is "<<velnext<<endl; 
             
            ball-
>setVelocity(velnext); 
           } 
           else 
           { 
            
accetotalx += extforcext/denomt/mass; 
            
accetotaly += extforceyt/denomt/mass; 
            
accetotaly -= 9.81; 
 
            const 
IFishParam *ex222setptr =  ball->getIThing()->getExtra(1);   
               double 
ex222 = ex222setptr->toDouble(); 
 
            const 
IFishParam *getvfractionsetptr =  ball->getIThing()->getExtra(3);  
               double 
getvfraction = getvfractionsetptr->toDouble(); 
 
               double rho 
= (drhodt*dt+ex222)/getvfraction; 
 
            ball-
>getIBodyMechanical()->setDensity(rho); 
 
            DVect 
velnext; 
 
            DVect 
velnow = ball->getVelocity(); 
 
            
velnext.x_ = velnow.x()+accetotalx*dt; 
            
velnext.y_ = velnow.y()+accetotaly*dt; 
 
            
velnext.x_ += xveltotalx; 
            
velnext.y_ += xveltotaly; 
 
            DVect 
posnow = ball->getIPieceMechanical()->getPosition(); 
 
            if 
(posnow.x_ >= xmax || posnow.x_ <= xmin) 
            { 
             
velnext.x_ = 0.0; 
            } 
 
            if 
(posnow.y_ >= ymax) 
            { 
             
velnext.y_ = 0.0; 
            } 



- 190 - 

             
            
//stream<<"velnext is "<<velnext<<endl; 
 
            ball-
>setVelocity(velnext); 
           }             
          } 
 
          for 
(IIterator<IBall> it(m->getIContainerBall());!it.atEnd();++it) { 
 
                                    IBall *ball = it; 
 
         if (ball-
>getIThing()->getGroupName()!="structure") continue; 
 
         double 
acceindix; 
            double acceindiy; 
         double 
accetotalx = 0.0; 
         double 
accetotaly = 0.0; 
 
         DVect pos1(0.0); 
            DVect pos2(0.0); 
 
                                    FArray<IContact *> list;   
       
                                    ball->getIPiece()->getContactList(&list);
  
         for (quintptr 
i=0; i<list.size(); ++i) 
         { 
          IContact 
*c = list.at(i); 
              if 
(c->getEnd2()->getIThing()->getTypeName() != "ball" || c->getEnd1()-
>getIThing()->getTypeName() != "ball") 
           { 
           
 c->setModelName("linear"); 
                                                c->setProperty(kn,"kn"); 
               
c->setProperty(ks,"ks"); 
               
c->setProperty(fric,"fric"); 
           
 c->setProperty(dp_nratio, "dp_nratio"); 
           } 
          
 else if (c->getEnd2()->getIThing()->getTypeName() == "particle" || c-
>getEnd1()->getIThing()->getTypeName() == "particle") 
           { 
           
 c->setModelName("linear"); 
                                                c->setProperty(kn,"kn"); 
               
c->setProperty(ks,"ks"); 
               
c->setProperty(fric,"fric"); 
           
 c->setProperty(dp_nratio, "dp_nratio"); 
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           } 
          
 else if (c->getEnd2()->getIThing()->getTypeName() == "sph" || c-
>getEnd1()->getIThing()->getTypeName() == "sph") 
           { 
           
            
           
 quintptr ID1 = c->getEnd1()->getIThing()->getID(); 
                  
quintptr ID2 = c->getEnd2()->getIThing()->getID(); 
           
 quintptr ID3 = ball->getIPiece()->getIThing()->getID(); 
 
           
 if (ID3==ID1) 
           
 { 
           
    IBall *ball2 = m->findBallWithID(ID2);     
               
    
      
                     
pos1 = ball->getIPieceMechanical()->getPosition(); 
 
                     
pos2 = ball2->getIPieceMechanical()->getPosition(); 
 
                        
dist = sqrt(pow((pos1.x()-pos2.x()),2)+pow((pos1.y()-pos2.y()),2));  
 
                  
double q = dist / h; 
 
                     
if (q<=2.0) 
                     
{ 
           
    w = kc*(pow(2.0-q,4)*(1.0+2.0*q)); 
           
    dwx = kc*(pos1.x()-pos2.x())/dist/h*(-4.0*pow(2.0-
q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0); 
           
    dwy = kc*(pos1.y()-pos2.y())/dist/h*(-4.0*pow(2.0-
q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0); 
                     
} 
                     
else 
                     
{ 
           
    w = 0.0; 
                     
   dwx = 0.0; 
                     
dwy = 0.0; 
                     
} 
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    const IFishParam *ex222setptr =  ball->getIThing()->getExtra(1);   
           
    const IFishParam *ex2222setptr =  ball2->getIThing()->getExtra(1);  
                        
double ex222 = ex222setptr->toDouble(); 
           
    double ex2222 = ex2222setptr->toDouble(); 
           
     
           
    const IFishParam *ex333setptr =  ball->getIThing()->getExtra(2);  
           
    const IFishParam *ex3333setptr =  ball2->getIThing()->getExtra(2);  
                        
double ex333 = ex333setptr->toDouble(); 
           
    double ex3333 = ex3333setptr->toDouble(); 
 
           
    DVect vball1 = ball->getIPieceMechanical()->getVelocity(); 
           
    DVect vball2 = ball2->getIPieceMechanical()->getVelocity(); 
 
           
    double vabx = vball1.x()-vball2.x(); 
           
    double vaby = vball1.y()-vball2.y(); 
 
           
    double xabx = pos1.x()-pos2.x(); 
           
    double xaby = pos1.y()-pos2.y(); 
 
           
    double dens1 = ball->getIBodyMechanical()->getDensity(); 
           
    double dens2 = ball2->getIBodyMechanical()->getDensity(); 
 
           
    double visx = mass*(viscous+viscous)/dens1/dens2/dist/h*(-
4.0*pow(2.0-q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0)*vabx; 
           
    double visy = mass*(viscous+viscous)/dens1/dens2/dist/h*(-
4.0*pow(2.0-q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0)*vaby; 
 
           
    double anticlump = 
pow(vmax/cs,2)*abs(ex333/pow(ex222,2)+ex3333/pow(ex2222,2))*pow(w/initialw,4); 
 
           
    acceindix = -
mass*(ex333/pow(ex222,2)+ex3333/pow(ex2222,2)+0.2*visx)*dwx;   
             
                     
acceindiy = -mass*(ex333/pow(ex222,2)+ex3333/pow(ex2222,2)+0.2*visy)*dwy; 
           
 } 
           
 else if (ID3==ID2) 
                  {                      
                     
IBall *ball2 = m->findBallWithID(ID1);  
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pos1 = ball->getIPieceMechanical()->getPosition(); 
 
                     
pos2 = ball2->getIPieceMechanical()->getPosition(); 
 
                        
dist = sqrt(pow((pos1.x()-pos2.x()),2)+pow((pos1.y()-pos2.y()),2)); 
 
                  
double q = dist / h; 
    
                     
if (q<=2.0) 
                     
{ 
           
    w = kc*(pow(2.0-q,4)*(1.0+2.0*q)); 
           
    dwx = kc*(pos1.x()-pos2.x())/dist/h*(-4.0*pow(2.0-
q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0); 
           
    dwy = kc*(pos1.y()-pos2.y())/dist/h*(-4.0*pow(2.0-
q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0); 
                     
} 
                     
else 
                     
{ 
           
    w = 0.0; 
                     
   dwx = 0.0; 
                     
dwy = 0.0; 
                     
} 
           
    
           
    const IFishParam *ex222setptr =  ball->getIThing()->getExtra(1);   
           
    const IFishParam *ex2222setptr =  ball2->getIThing()->getExtra(1);  
                        
double ex222 = ex222setptr->toDouble(); 
           
    double ex2222 = ex2222setptr->toDouble(); 
                         
           
    const IFishParam *ex333setptr =  ball->getIThing()->getExtra(2);  
           
    const IFishParam *ex3333setptr =  ball2->getIThing()->getExtra(2);  
                        
double ex333 = ex333setptr->toDouble(); 
           
    double ex3333 = ex3333setptr->toDouble(); 
 
           
    DVect vball1 = ball->getIPieceMechanical()->getVelocity(); 
           
    DVect vball2 = ball2->getIPieceMechanical()->getVelocity(); 
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    double vabx = vball1.x()-vball2.x(); 
           
    double vaby = vball1.y()-vball2.y(); 
 
           
    double xabx = pos1.x()-pos2.x(); 
           
    double xaby = pos1.y()-pos2.y(); 
 
           
    double dens1 = ball->getIBodyMechanical()->getDensity(); 
           
    double dens2 = ball2->getIBodyMechanical()->getDensity(); 
 
           
    double visx = mass*(viscous+viscous)/dens1/dens2/dist/h*(-
4.0*pow(2.0-q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0)*vabx; 
           
    double visy = mass*(viscous+viscous)/dens1/dens2/dist/h*(-
4.0*pow(2.0-q,3)*(1.0+2.0*q)+pow(2.0-q,4)*2.0)*vaby; 
           
     
           
    double anticlump = 
pow(vmax/cs,2)*abs(ex333/pow(ex222,2)+ex3333/pow(ex2222,2))*pow(w/initialw,4); 
 
           
    acceindix = -
mass*(ex333/pow(ex222,2)+ex3333/pow(ex2222,2)+0.2*visx)*dwx;   
             
                     
acceindiy = -mass*(ex333/pow(ex222,2)+ex3333/pow(ex2222,2)+0.2*visy)*dwy; 
           
 } 
           
 accetotalx += acceindix; 
                  
accetotaly += acceindiy; 
                    } 
            
accetotaly -= 9.81; 
            double 
fmass = ball->getIBodyMechanical()->getMass(); 
 
            DVect 
force; 
            
force.x_ = fmass*(accetotalx); 
            
force.y_ = fmass*(accetotaly); 
 
            ball-
>getIBodyMechanical()->setAppliedForce(force); 
           }             
           } 
         } 
        break; 
    default:                    throw std::runtime_error("Illegal ID in 
FishSPH::get()."); 
    } 
  } 


