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12
13 ABSTRACT
14
15 Renewable energies are a key element of the modern sustainable development. They play a key 
16 role in contributing to the reduction of the impact of fossil sources and to the energy supply in remote 
17 areas where the electrical grid cannot be reached.
18 Due to the intermittent nature of the primary renewable resource, the feasibility assessment, the 
19 performance evaluation and the lifecycle management of a renewable power plant are very complex 
20 activities. In order to achieve a more accurate system modelling, improve the productivity prediction 
21 and better plan the lifecycle management activities, the modelling of a renewable plant may consider 
22 not only the physical process of energy transformation, but also the stochastic variability of the 
23 primary resource and the degradation mechanisms that affect the aging of the plant components 
24 resulting, eventually, in the failure of the system.
25 This paper presents a modelling approach which integrates both the deterministic and the 
26 stochastic nature of renewable power plants using a novel methodology inspired from reliability 
27 engineering: the Stochastic Hybrid Fault Tree Automaton. The main steps for the design of a 
28 renewable power plant are discussed and implemented to estimate the energy production of a real 
29 photovoltaic power plant by means of a Monte Carlo simulation process. The proposed approach, 
30 modelling the failure behavior of the system, helps also with the evaluation of other key performance 
31 indicators like the power plant and the service availability.
32
33 Keywords: Renewable Energy, Stochastic Hybrid Automaton, Availability, Photovoltaic Power Plant, Service 

34 Availability

35
Nomenclature

Generic Acronyms

GHI Global horizontal irradiation

IPER Italian Producer Electrical Regulation

DFT Dynamic Fault Tree

KPI Key Performance Indicator

RDFT Repairable Dynamic Fault Tree

SHyFTA Stochastic Hybrid Fault Tree 

Automaton

Photovoltaic Power Plant
ACB Alternate current circuit breaker

ACD Alternate current disconnector

ACS Alternate current section

BAT Battery

DCB Differential circuit breaker

DCD Direct current disconnector

DCS Direct current section

GCC Grid connect coupling section

GPR Grid protection

INV Inverter

PVM Photovoltaic module section

PVG Photovoltaic generator

PVS Photovoltaic string

SDP Surge protection (AC section) 

SPD Surge protection (DC section)

SPR String protection

STB String box

TRA Transformer

TRK Tracker

SHyFTA Parameters
β Shape factor (Weibull function)

γ Scale parameter (Weibull function)

λ Failure rate

µ Repair rate
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BE Basic event

HBE Hybrid basic event

Ssk
i ithstochastic state of kth basic event:

Sk
1: kth basic event working (good)

Sk
2: kth basic event broken (bad)

Xi ith real time variable:

XAGING_INVi Aging ith inverter

XACGi AC Power ith generator

XACS Total AC Power generated

XCONS Power consumed by utilities

XDCGi DC Power ith generator

XTA Ambient temperature

XGRID Power output to the grid

XIRR Solar irradiance

XPVSi Power ith photovoltaic string

Physical Process

α Elevation angle

β Tilt angle

η Efficiency

ηm Solar panel efficiency 

ηfirst Efficiency (first year)

ηinverter Inverter efficiency

ηn Efficiency (nth year)

ηstd Efficiency (standard condition)

ρ Power coefficient

A Photovoltaic panel area

Dr Degradation rate

E Energy

G Global solar irradiance

Irr Incident solar irradiance

L Aging

Pk Power (kth section of power plant)

PAC Alternate current power

PDC Direct current power

Ploss Power loss

Ta Ambient temperature

Tc Solar module temperature

Tc,std Solar module temperature (standard 

condition)

Stochastic Process
A Availability

Aser Service availability

SSA Steady state availability

U Unavailability

pdf Probability density function

P(E) Probability ith event

1

2
3
4 1 INTRODUCTION

5 In the last decades, the renewable energy industry has grown unceasingly and is expected to 
6 increase up to 2.7 times between 2010 and 2035 [1]. Renewable energies play a key role in the 
7 sustainable development of distributed generation because they contribute substantially to the 
8 reduction of the impact of fossil sources, and they are the major alternative for the provision of energy 
9 in remote locations where the electrical grid cannot be reached [2], or in agricultural cultivation where 

10 their utilization is preferred [3, 4] to diesel generation for irrigation. 
11 Renewable technologies are usually considered to be less efficient than traditional energy 
12 conversion systems owing to their intermittency and energy storage difficulties. These properties limit 
13 the ability of renewable power plants to fully supply peak-load and base-load [5]. For these reasons, 
14 the installation of a renewable power plant can require a complex feasibility study [6] including the 
15 following activities: (i) a preliminary evaluation of the installation site so as to determine the 
16 availability of the primary resource, (ii) the design and the availability assessment of the power plant, 
17 (iii) the estimation of productivity and the policies for the dispatch/storage and (iv) the optimization 
18 strategies, including the maintenance plans. While the measurement of the primary resource 
19 availability can be performed experimentally with the use of meteorological stations, satellites or 
20 other types of instrumentation, the other activities for the design and management (ii)-(iv) are mainly 
21 realized using engineering tools based on mathematical models. 
22 An exhaustive feasibility assessment and performance evaluation of a renewable power plant 
23 should model the physical process of the energy conversion, account for the variability of the primary 
24 resource and its effects on the system availability, model the performance deterioration caused by the 



ACCEPTED MANUSCRIPT

3

1 fault of the system components, and allow flexible re-design and application of the model so as to 
2 estimate the plant performance within a recognized tolerance. Traditional mathematical models for 
3 the performance evaluation and feasibility assessment of a renewable power plant do not satisfy all 
4 these properties. In fact, they do not consider the performance deterioration occurring during the 
5 system lifetime and they do not account for the variability of the primary resource and its effects on 
6 the power plant availability. These properties affect the quality of the system from the design stage 
7 [7] and influence costs and performance predictions during the life cycle [8-10]. In renewable power 
8 plants, this is even more critical because the operating conditions are continuously influenced by the 
9 randomness of the renewable resource therefore the production plans and the maintenance strategies 

10 must be optimized in order to increase the continuity of service [11]. 
11 In this context, there is room to improve the accuracy of the state-of-the-art models. This paper 
12 proposes the adoption of dynamic reliability concepts [12] to overcome the limitations of traditional 
13 deterministic models and achieve a more realistic description of the process of energy conversions 
14 realized by renewable power plants. Dynamic reliability is a well-known modelling paradigm of 
15 reliability engineering and it is mainly used to perform the evaluation of the dependability attributes 
16 of an engineering system [13] that operates in non-static working conditions. 
17 Dynamic reliability based approaches study the behaviour of complex systems by adopting a 
18 model-based approach. This implies dealing with the thermodynamic equations to specify physical 
19 processes that affect the health of system components. This methodology requires the definition of 
20 the stochastic differential equations of the process and it enables forecasting performances and 
21 failures while boundary conditions and independent variables can vary. The main hypothesis of 
22 dynamic reliability models is that non-static working conditions affect the operation modes of the 
23 system under study and its failure behaviour, e.g. the failure rates may increase or decrease under 
24 certain conditions. Traditional mathematical models are not able to capture this dynamic behaviour, 
25 therefore the application of dynamic reliability for the feasibility assessment and the performance 
26 evaluation of a renewable power plant can provide a valuable benefit.
27 Among the possible modelling techniques of dynamic reliability, Stochastic Hybrid Fault Tree 
28 Automaton (SHyFTA) [14] is well-suited for renewable power plants as it allows an extensible 
29 modelling, and a simple definition of reward functions [15] for the performance evaluation and 
30 feasibility assessment of a system, spreading from the dependability attributes like reliability or 
31 availability to the most important design-related key performance indexes such as the service 
32 availability and the productivity of a system. Moreover, a SHyFTA model can be coded and simulated 
33 with a general-purpose programming language (like Python, Java, C, etc.) or implemented with a 
34 high-level programming language like Matlab.
35 In this paper a structured approach to design a SHyFTA model for a renewable power plant is 
36 presented. The proposed approach is discussed with the aid of a case of study of a real photovoltaic 
37 power plant. The model of the power plant is built upon a previous work [16], valid only for non-
38 repairable components and limited to the system reliability evaluation. This works extends [16] by 
39 modelling and analyzing repairable components. Additional key performance indexes of repairable 
40 systems are computed such as the power plant availability and other design-related metrics like the 
41 energy production and the service availability. In order to test the accuracy of the proposed 
42 methodology, the results of the SHyFTA and of the deterministic model have been compared with 
43 the real data of energy production, collected by the SCADA system of the photovoltaic plant
44 The rest of this paper is organized as follows. Section 2 gives a brief overview of the state-of-
45 the-art approaches. Section 3 introduces the theoretical background of the SHyFTA modelling 
46 approach. Section 4 describes a real case study of a photovoltaic power plant and Section 5 shows 
47 and discusses the results of the application of SHyFTA to model other renewable power plants. 
48 Finally, Section 6 summarizes conclusions and discusses future work.
49
50 2 RELATED WORKS

51 To the best of the authors� knowledge, previous literature has not yet proposed any modeling 
52 formalism which is able to combine in a unified model the deterministic and the stochastic processes 
53 that affect the performance of a power plant. However, it is possible to find several works that address 
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1 the modelling of deterministic and stochastic processes independently. For instance, the design and 
2 the study of renewable power plants with deterministic approaches are object of several academic 
3 courses and handbooks [17, 18].
4 The analysis of the effect of the stochastic behavior of the primary resource (e.g., wind, solar, 
5 hydro) onto a power plant has been recently addressed [19]. Principle component analysis has been 
6 used in [20] to evaluate the wind power generation with respect to the geographic properties of the 
7 installation site. In [21] it is stated that the optimization procedures of hydroelectric power plants 
8 require the use of techniques able to account for the non-linear behavior of these systems, such as 
9 statistical inference methods [22], evolutionary computing algorithms [23] or machine learning 

10 techniques [24]. All these approaches are based on data-driven statistical learning methods and they 
11 do not model the underlying physical process, i.e. they are purely statistical methods. Moreover, all 
12 these works are mainly focused on the randomness of the primary resource and they overlook that the 
13 performance of a system will be affected by operational conditions, components failures and, more 
14 generally by the system availability that can vary continuously. In fact, availability is an important 
15 characteristic of a system because it determines whether or not a system is available and if it is able 
16 to perform its tasks. For this reason, this property should not be excluded when evaluating the system 
17 performance.
18 The availability of a system is defined as the probability of a system to operate satisfactorily at a 
19 given point in time under stated operation conditions [25]. Availability can be computed for any type 
20 of industrial system comprised of different components through quantitative stochastic modelling 
21 methods. In [26], Borges reviewed the most important renewable energies (wind, photovoltaic, 
22 hydroelectric and biomass) proposing simplified versions of availability models made up of a small 
23 set of operational states. In this work, the analysis is limited to the evaluation of the dependability 
24 attributes only [25], such as reliability, availability, safety and maintainability. Moreover, it is 
25 assumed a constant failure behavior and operation conditions of the system components. This last 
26 assumption is common in other works [16], [27-29] in which the mean time to failure of the power 
27 plant components are a fixed and independent from the rest of the system parameters.
28 There have been proposed several modelling methods which can be divided into three groups as 
29 shown in Table 1, static, dynamic and hybrid-dynamic models [14, 30].
30
31
32 Table 1: Main characteristics of the models used for dependability assessment.

33
34 Static or Boolean models are the simplest models as they are based on combinatorial logic. These 
35 models are not computationally demanding because the system structure function can be obtained 
36 applying direct Boolean algebra that is not time-dependent [31]. Most of the reliability and risk 
37 assessment reports, including many examples of renewable power plants [16], [27-29], [32-35], are 
38 still based on static models. 
39 Dynamic models have been introduced to handle temporal dependencies among the system 
40 components. In these models, the working conditions are static but the temporal dimension affects 
41 the way how the stochastic process evolves. For this reason, the resolution of dynamic models is more 
42 computationally demanding than static models and is generally achieved exploiting through 
43 analytical and simulation approaches [36]. The application of an analytical method depends on the 
44 complexity of the model. In fact, when the system interactions can be described using only the 
45 exponential distribution function, the model can be transformed into Continuous Time Markov 
46 Chains and solved analytically. Unfortunately, the computational cost in terms of memory usage and 
47 time of computation can increase exponentially with the number of components (i.e., state space 
48 explosion). In this context simulation-based methods are used so as to model large systems with a 
49 variety of probability distribution functions. Simulation-based models avoid the state-space explosion 
50 at the cost of increased simulation time. 
51 As displayed in Table 1, both static and dynamic reliability modes are based on the hypothesis 
52 that working conditions are fixed so that components can operate into their nominal state of operation 
53 (single-state) and can be characterized with a fixed function of failure probability. This is an ideal 
54 assumption because environmental factors and operation conditions may change, affecting the 
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1 performance of the system. In renewable power plants this is even more critical because the operating 
2 conditions (and thus the failure characteristics) are continuously influenced by the randomness of the 
3 renewable resource.

4 Hybrid-dynamic models implemented through Dynamic Reliability concepts [12], have been 

5 conceived to address the previous limitations and allow the modelling of non-constant failure rates 

6 and dynamic operation conditions. In fact, dynamic reliability enables the link between the system 

7 operation conditions and the components� failure specification by combining the system�s physics-

8 of-operation with the stochastic failure behavior of its components. These models are characterized 

9 by two concurrent processes evolving and interacting in time. Therefore simulation is the most 

10 suitable approach of resolution for dynamic reliability model. In these models, the computational cost 

11 for the specification and analysis of two processes evolving parallel in time can be very high and time 

12 consuming.

13 The main advantage of dynamic reliability is the possibility to address the evaluation of a system 

14 both in terms of dependability attributes (reliability, availability and maintenance) and performance 

15 (production and other relevant key performance indicators, like the service availability). Several 

16 contributions in industrial [37] and nuclear applications have already shown the improved accuracy 

17 of this modelling paradigm [14, 38], supported also by other works [39-43] addressing the evaluation 

18 of the failure rates with respect to the system working conditions. Unfortunately, the failure behavior 

19 of a system component with respect to the system operating conditions is not always known [44, 45] 

20 and this represents the most important limitation for the use of dynamic reliability approaches. 
21 To the best of authors� knowledge, dynamic reliability has not been used to model renewable 
22 power plant systems. With the application of the SHyFTA, this paper covers this gap and shows the 
23 potentiality of dynamic reliability applications.
24
25 3 HYBRID-PAIR MODELLING OF RENEWABLE POWER PLANTS: CONCEPT AND 
26 IMPLEMENTATION OF A STOCHASTIC HYBRID FAULT TREE AUTOMATON

27 This section presents the theoretical concepts of hybrid-pair modelling [46] and Stochastic 
28 Hybrid Fault Tree Automaton (SHyFTA) [14], with the aim to provide the knowledge-base for 
29 designing a dynamic reliability model of a renewable power plant. 
30 Dynamic reliability defines a mathematical framework which is able to combine deterministic 
31 (e.g., process of energy transformation) and stochastic (e.g., process of failure of a system) models 
32 [12]. Dynamic reliability makes use of non-linear functions to adapt the system failure probability 
33 according to the system operation conditions. This leads to more accurate reliability modelling able 
34 to account for environmental and operational changes of the working conditions. Moreover, recent 
35 works have shown its potential as a tool for the dimensioning of a system [46] and the understanding 
36 of other aspects of the life cycle of a system that characterizes the regime operations, like availability 
37 and maintenance.
38 The hybrid-pair approach was conceived to simplify the modelling effort of complex systems 
39 and solve dynamic reliability problems. The main assumption of this paradigm is to break the system 
40 down into two interdependent processes (deterministic and stochastic), which can interact by means 
41 of shared variables. In this way, a change of the deterministic model triggers the stochastic model and 
42 vice versa. One of the strengths of the hybrid-pair modelling approach is the ability to combine a 
43 dependability assessment of a system with its performance evaluation. 
44 When implementing the hybrid-pair model for renewable power plants, the process of energy 
45 transformation operated by the power plant must be broken into two parts as shown in Figure 1: the 
46 deterministic block defines the physical equations of the energy transformation whereas the stochastic 
47 block models the system failure logic. 

48 A hybrid-pair model can be designed with different software tools like PyCATSHOO [47], 

49 DyRelA [48] or coded with high-level software languages (e.g., C, Python or Java). In this paper, the 

50 Stochastic Hybrid Fault Tree Automaton formalism is adopted and coded using the Matlab-Simulink 

51 environment. The main reason for the adoption of the SHyFTA is that the stochastic model can be 
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1 described with a repairable dynamic fault tree (RDFT) [49] for an easy implementation and evaluation 

2 of the failure model of the system [50].
3 In the evaluation of renewable power plants, the SHyFTA can improve the accuracy with respect 
4 to traditional deterministic approaches because it integrates a stochastic model of the system that 
5 accounts for the dynamic evolution of the system, its variables (including the randomness of the 
6 primary resource) and the fault and performance degradation states. The benefits of this technique 
7 are twofold: system health state tracking and a more realistic estimation of the power plant activities. 
8 In the next sections, the SHyFTA formalism is recalled and the steps for the design of a renewable 
9 power plant system are pointed out.

10
11 Figure 1: Mutual dependency between the deterministic and the stochastic model.

12

13 3.1 Stochastic hybrid fault tree automaton (SHyFTA)

14 The formal mathematical formulation of SHyFTA is presented in [14]. In this subsection minimal 
15 necessary concepts will be introduced. Interested readers can refer to [14] for more details.
16 The SHyFTA is a 13-uplet , where:(�, Ɛ, X, �,δ, �,�, �, �, ��, ��,�, �)
17   is a finite set of discrete states { D, S}. Dis the subset of deterministic states and S is the � � � � �
18 subset of stochastic states.
19   is a finite set of events { D, S}, where Dis the subset of deterministic events and Sis the Ɛ Ɛ Ɛ Ɛ Ɛ
20 subset of stochastic events.
21   is a finite set of real variables evolving in time { 1, �, n}.Χ x  x
22   is a finite set of arcs of the form ( , ɛj, Gk, �) where  and � are, respectively, the origin and Υ � � � �
23 the destination states of the arc k, ɛj is the event associated with this arc, Gk is the guard condition 
24 on the real variable in state .X �
25  δ:  is a function of activities, describing the evolution of real variables in each � ×  X→(ℝ� + →ℝ)
26 discrete state.
27  is a finite set of clocks on  that identify the firing of a deterministic or a stochastic event.� ℝ
28  F:  is a set of applications that associate a distribution function to the � ×  � ×  X→(ℝ� + →[0,  1])
29 stochastic events , according to the clock H, the system evolution  and the discrete state .ƐS Χ �
30  P is the instantaneous probability to be in i S; � ∈ �
31  GA is the finite set of gates of the fault tree model.
32  BE is the finite set of basic events of the fault tree model. The set BE contains a subset called 
33 Hybrid Basic Events (HBE) whose failure distribution depends on the evolution of the system 
34 and varies continuously in time. This type of basic event accounts for the multi-state nature of a 
35 component, namely those systems whose failure characteristics are not static in time but vary 
36 dynamically according to the operational conditions that, in turn, affect reliability and 
37 performance. These events are characterized by a non-static pdf through a set of functions�� ∈ �, 
38 .��:� ×  � ×  X→(ℝ� + →[0,  1])
39  TE is the top event of the fault tree and corresponds with the output of the main gate.
40  C is the set of connections between gates and basic events. 

41 To design a fault tree model the designer needs to identify a top-event T, representing an undesired 

42 operational condition of the system and its elementary causes. These causes are combined through 

43 temporal and logic gates (AND, OR, VOTING k/N, PAND, SPARE, FDEP, SEQ) [49] to define the 

44 occurrence of the top-event.
45 Aging [51] is an important feature of dynamic reliability models and characterizes the wearing-
46 out of complex electro-mechanical equipment, whose performance degrades in time during the 
47 lifetime. Traditional reliability models assume an exponential decay [52] that results in a non-realistic 
48 description of the degradation process (i.e. components wear out as they are always in operation 
49 without any interruption but faults). In order to account for the operation times, aging can be modelled 
50 with a Weibull probability density function (pdf), using a shape factor > 1 (i.e., the failure rate is �
51 increasing with respect to time) [53] and the scale parameter γ that definesthe non-constant failure 
52 rate, :λ(t)
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1 (Eq. 1)λ(t) =  β/γ ∙ (t/γ)β ‒ 1

2 Moreover, the non-linear relationship with the mission time can be described by a piecewise 
3 deterministic Markov process, using the following ordinary differential equation:

4 (Eq. 2)
dL

dt
= i

on 
i
on

=  {1, if the component is switched on       
0, if the component is switched off      =

5 Integrating Eq. (2) and substituting L(t) into Eq. (1) it is possible to rewrite the Weibull distribution 

6 with the non-linear aging L(t):
7

8 (Eq. 3)λ(L) =  β/γ ∙ (L/γ)β ‒ 1

9

10 The Weibull probability density function in Eq. (3) can be generalized when the scaling factor γ
11  is a function of the evolution X={ 1, �, n}and state S={ D, S}of the system. In other words, (L,X,S) x x � �
12 the scaling factor changes with respect to the status and working conditions of the component. 

13 Current hesitancy in the use of dynamic reliability models is mainly caused by the unavailability 

14 of exact models of  which account for all the possible variations of the working conditions γ(L,X,S)
15 [44, 45]. Recently, with the advance of condition-based monitoring techniques, reliability estimations 

16 are being improved with up-to-date degradation and operation information [39-43]. In the definition 

17 of a fault tree, the SHyFTA model supports both traditional and hybrid basic events. Therefore the 

18 application of a variable probability failure distribution function can be limited only to those 

19 components for which this information is available. In all the other cases, it is still suggested to use 

20 the failure rate provided by the component manufacturer.

21 3.2 Design of a SHyFTA model for a renewable power plant

22 The main steps for the design of a SHyFTA model are shown in Figure 2. The first activity consists 
23 in the study of the power plant and the identification of the discrete components that, with their 
24 interaction, realize the process of energy conversion. The complexity of the deterministic process can 
25 vary and depends on the amount of detail and interactions modelled. The mathematical equations 
26 should describe the contribution of each component at different working regimes. Generally, this 
27 representation assumes the form of a balance equation expressed in terms of a set of algebraic, 
28 ordinary or partial differential equations.
29
30 Figure 2: Steps for the construction of a SHyFTA model.

31
32 The main input of the deterministic process is the time-series of the primary renewable resource 
33 and of the variables that can affect the process of energy transformation. Table 2 displays the main 
34 physical inputs for different renewable technologies.
35
36 Table 2: Main physical inputs for different renewable technologies

37
38 For the fault tree model, it is important to identify a top-event, representing an undesired 
39 operational condition of the system and its elementary causes, the so-called basic events. Basic events 
40 must be combined together by the use of temporal and logic gates (AND, OR, VOTING k/N, PAND, 
41 SPARE, FDEP, SEQ) and they can be repeated (i.e., they appear two or more times in the fault tree 
42 as inputs of two or more different gates) although they represent a unique event within the real system. 
43 The discrete components identified in the renewable power plant take place in the stochastic fault tree 
44 model. In fact, the failure behaviour of a system component is used to define the probability density 
45 functions (pdf) of the time to fail of the basic event in the fault tree. Therefore, the main stochastic 
46 inputs of a SHyFTA model are the pdf of the basic events. When the relationships between the system 
47 working conditions and the failure behaviour of the corresponding basic event are known, it is 
48 possible to characterize the basic event with a dynamic probability density function and, in this case, 
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1 the basic event is referred as hybrid. Otherwise, the basic event must be characterized with the pdf 
2 provided by the component manufacturer that is generally static. 
3 The formulation of the SHyFTA is completed when the stochastic and the deterministic models 
4 are coupled through shared variables. Namely, the physical variables that affect the operating 
5 conditions of a component (modifying the pdf of a hybrid basic event) are synchronized in the fault 
6 tree model. On the other hand, the events occurring in the stochastic model, like the failure of a 
7 component are transferred to the deterministic model. In this way the contribution of the failed 
8 component is nullified in the physical process of the deterministic model (e.g., an inverter that fails 
9 will no longer output AC power). 

10 Although the complete shutdown of a renewable power plant constituted by several generating 
11 units is very unlikely, the modelling of this scenario as the Top Event of the fault tree allows the 
12 evaluation of several performance indicators. Among them, the instantaneous active and reactive 
13 power, the energy production within a time-period and the service availability, Aser that corresponds 
14 with the probability of the renewable power plant to produce a base power and guarantee the 
15 continuity of service [11, 54] for a well-defined demand curve. These key performance indicators 
16 (KPI) can provide important indications for suitable dimensioning of the power plant and the life 
17 cycle activities like production plans and the maintenance schedule. 
18
19 4 CASE STUDY: A PHOTOVOLTAIC POWER PLANT

20 There have been proposed different fault tree models of renewable power plants that can be used 
21 as reference models to build up a SHyFTA [16, 32-35]. In this paper, the case study of a photovoltaic 
22 power plant is presented. The analyzed power plant is a grid-connected photovoltaic power plant with 
23 no trackers implemented by a private company in 2011, located in Sicily close to Syracuse (see Figure 
24 3 and Table 3).
25
26 Table 3:  PV system characteristics.

27
28
29 The power plant is characterized by a peak power, Ppeak = 419,5 kW and by two identical DC/AC 
30 inverters of 220 kWp. There are 4 string boxes for each inverter: 3 accommodate 17 strings and 1 
31 accommodates 18 strings. The strings are connected in parallel while the modules are in series 
32 (Figures 4 and 5). Tables 4-5 summarize the main characteristics of the system.
33
34 Table 4:  PV module main characteristics.

35
36 Table 5:  Inverter main characteristics.37
38
39
40 To be compliant with the Italian Producer Electrical Regulation (IPER) of 2011 (Terzo Conto 
41 Energia [55]), the power plant is connected to the national grid. The IPER states that the power plant 
42 must stop in case of disconnection from the national grid and forbids the use of energy storage 
43 systems. There is a strong economic advantage for adhering to the IPER of 2011. In fact, for the first 
44 20 years of life of the power plant, there is a fixed economic subsidy for all the energy produced. 
45 Moreover, the energy not instantaneously consumed by the producer is tracked and sold with a price 
46 dictated by the energy market. Therefore, the power plant contributes to the company activities by 
47 supplying the internal consumption and providing a profit due to the economic incentive (subsidy) 
48 and the sale of the energy not consumed. Table 6 shows the value of the Subsidy (it is fixed by the 
49 IPER [53]) and the corresponding price of buy/sell per one kWh of energy. This latter is a rough value 
50 of the energy price in the energy market (2011). The column Total is the sum of the previous 
51 contributes and it is used to estimate the payback generated by the energy produced by the power 
52 plant. 
53
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1 Table 6: IPER 2011 Subsidy. Price* is based on an average value of the energy price in the energy market 

2 (2011) [43].

3
4 Figure 4 shows the Global Horizontal Irradiation (GHI) in Italy. It suggests the average annual 
5 productivity expressed in kWh that one meter square of photovoltaic panels can generate. It is 
6 possible to notice that in the area of Syracuse, the GHI is higher than in the rest of the country.  In 
7 this context, the application of a model that includes possible downtimes and performance 
8 degradation can help to better estimate the payback generated throughout the life time of the power 
9 plant. 

10
11 Figure 4: Global horizontal irradiation in Italy.

12
13 With reference to Figures5, 6 and 7, it is possible to identify the main components of the 
14 photovoltaic power plant.
15
16 Figure 5: Map of the power plant and its sections.

17

18 Figure 6: Power Inverter configuration.

19
20 The components of the photovoltaic power plant can be grouped into the following functional 
21 blocks (Figure 7):
22
23 1) PV Module (PVM),constitutes the PV module strings of the power plants (PVS);
24 2) Direct Current Section (DCS), made up of string protection diodes (SPR), DC disconnectors 
25 (DCD) and surge protection devices (SPD);
26 3) Alternating Current Section (ACS),made up of inverters (INV), surge protection devices 
27 (SDP) and AC circuit breakers (ACB);
28 4) Grid Connector Coupling (GCC), made up of grid protection (GPR), an AC disconnector 
29 (ACD), a differential circuit breaker (DCB) and a transformer (TRA).
30
31 Figure 7: Schematic decomposition of the PV system

32
33 Next, we apply the steps discussed in Section 2 to build up the SHyFTA model under the following 
34 assumptions:
35 1- The physical variables, input of the model, are the ambient temperature and sun irradiance;
36 2- The hourly aggregated samples of the physical variables are extracted by the SCADA of the 
37 PV power plant;
38 3- The randomness of the physical variables is achieved by applying a random seasonal variation 
39 component at each iteration of the simulation;
40 4- It is assumed that the inverter switches on when the output power at the PVM stage is greater 
41 than zero (during the daily time). This affects the aging of the inverter.
42 5- In the deterministic model, performance degradations occur only for the photovoltaic panels 
43 and for the inverters.
44 6- In the stochastic model, the components of the photovoltaic power plant can be only in two 
45 possible states (S1: good or working, S2: bad or failed).
46 7- Failure rates of all the components except inverters are constant [16];
47 8- The inverter failure rate is not constant and is subjected only to an aging process;
48 9- Repair rates of all the components are constant;
49 10- Restoration of a component brings the component back to as-good-as-new state.

50
51 4.1 Definition of the Deterministic Process

52 The photovoltaic conversion starts in the PVM stage where PV modules capture the solar 
53 irradiance that is converted into a DC power. They are organized in electrical strings connected in 
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1 series and parallel to constitute a panel. In the same manner, several panels are connected to form 
2 arrays of generators and sum up to a higher direct current (DC) power.
3 As a first approximation, the electrical power generated with a simple configuration of a 
4 photovoltaic string of panels can be defined as follows:
5

6   (Eq. 4)P =  ηIrrsin (α + β)A
7
8 As shown in Figure, Irr is the incident solar irradiance [W/m2]; α is the elevation angle and β is the 
9 tilt angle of the module/string measured from the horizontal. Finally,A is the area of the module [m2] 

10 and ƞ is the system efficiency that is always less than 1.

11
12 Figure 8: Solar Irradiation, elevation angle α and tilt angle β 

13
14 The total efficiency can be expressed as:
15

16       (Eq. 5)η =  ∏n

i = 0
η

i

17
18 where ηis the number of loss effects considered at each ith stage of the power plant.
19 At the PVM stage, meteorological factors (e.g., wind speed, cloud transients in PV units, incident 
20 irradiance or ambient temperature) or yearly deterioration can reduce the efficiency of the 
21 photovoltaic modules. Using Eq. (6) we can compute the efficiency of the module, ƞm, by considering 
22 the variation of the temperature [54]:
23

24 (Eq. 6){
η� =  η

std
 {1 ‒ ρ(T

c
‒ T

c,std
)}

T
c

‒ T
a

G
= constant                    =

25 Where ƞstd and Tc,std are respectively the efficiency and the module temperature at standard conditions, 
26 ρ is the power coefficient (percentage variation of power for 1°C ), Tc and Ta are the module and 
27 ambient temperatures and G is the global irradiance on the module.
28 To account for the degradation rate, Dr, corresponding with the percentage of efficiency lost 
29 every year [57, 58], it is possible to use a linear equation model [56]:
30

31 (Eq. 7)η
n

=  η
first

(1 ‒ n × D
r
)

32
33 where ƞfirst is the nominal efficiency at the first year, while ƞn is the efficiency calculated at the nth 
34 year.
35 The performance degradation occurring in the PVM stage reduces the DC power, but does not 
36 stop the power production unless the DC breakers and disconnectors of the DCS stage interrupt the 
37 circuit or the cables fail. In fact, with reference to Figure 7, a single PV generator can contribute to 
38 the power generation of the system if the circuit path from the PVM stage to the GCC is closed. 
39 Before connecting to the grid, the DC current is converted into alternating current. The DC/AC 
40 inverter of the AC section performs this transformation with an efficiency that depends on the input 
41 load. At this stage, inverters can also affect the performance of the system and the algebraic model 
42 presented in [59] illustrates this effect:
43

44 (Eq. 8)η
inverter

=  
P(t)

AC

P(t)
DC

= 1 ‒ P
loss

P(t)
DC

45
46 The total power produced by the plant is the sum of the AC powers output of the two inverters:

47
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1           (Eq. 9)����(�) =  ����1(�) + ����2(�)
2
3 For this reason, it is possible to understand that the photovoltaic plant is able to produce energy 
4 if at least one of the two PV generators is in operation. To compute the energy produced and measured 
5 by the generation meter (GM) before the GCC stage it is possible to integrate the PPROD in the time 
6 interval [t2, t1]:

7

8     (Eq. 10)�����(�) = ∫�2�1����(�)��
9

10 The power transferred to the grid is the power not instantaneously consumed by the utilities 
11 connected to the power plant. Therefore it is possible to write the equation:
12

13   (Eq. 11)�����(�) =  ����(�) ‒ �����(�)
14
15 When PGRID is negative, it means that the power plant is not able to satisfy the demand of power for 
16 the utilities connected, resulting in a lack of service availability.
17 The other components involved in a photovoltaic system are protection, cables, breakers, 
18 disconnectors and transformers. All these components play an important role in the energy production 
19 because if one of them interrupts the circuit path to the GCC, the PV generator in the open path cannot 
20 contribute to the power generation. This is a very critical aspect of the production process, in 
21 particular when considering the elements of the GCC stage. In fact, if one of the components of the 
22 GCC stage interrupts the circuit path, all the power plant stops the production because it gets 
23 disconnected from the national grid, causing the complete system unavailability. To determine the 
24 impact of these circumstances to all the production process the stochastic fault tree model has to be 
25 designed and linked to the deterministic model.

26 4.1 Definition of the Stochastic Process

27 The fault tree model in Figure 9 describes the failure behavior of the plant. This model is 
28 constituted by an OR gate (TE) that takes as input an OR gate (GCC = OR (GPR, ACD, DCB, TRA)) 
29 and an AND gate (PV GEN = AND (PV GEN 1, PV GEN 2)), modelling the failure behavior of the 
30 PV generators. The plant production unavailability occurs if both PV generators fail or if one of the 
31 components of the GCC fails. 
32 Figure 10 shows the failure behavior of a single PV generator.The failure/repair rates of the 
33 components are shown in Table 7. Failure rates have been taken from [1]. Note that only the inverter 
34 has been modeled as a hybrid basic event whose Weibull probability distribution of failure depends 
35 on the aging variable. This latter is bounded to the solar radiation input because the inverter switches 
36 on when the solar irradiation is high enough to put the PV strings in operation, with a DC voltage 
37 greater than the switch on threshold of the inverter. Otherwise, the inverter stays in stand-by mode, 
38 waiting for the sun irradiance to increase (e.g. during the night time).
39 As for repair rates, it was assumed that electrical components like breakers, disconnectors, string 
40 box and protection can be restored to as-good-as-new within two working days after a fault. 
41 According to the agreements with the inverter manufacturer, the repair of the inverter takes between 
42 three and four weeks, considering the whole process of inspection, ordering, delivery and 
43 replacement. For PV strings it was assumed a periodic inspection would take place every six months.
44
45 Table 7: Failure/repair rates and steady state availability of the components of the PV plant.

46  
47 Figure 9: Fault tree of the PV power plant. PV GEN 1 and PV GEN 2 are represented with the transfer gate 

48 symbol (triangle) because these sub-systems are developed into another fault tree model.

49
50 Figure 10: Fault tree of a PV generator. The basic event INV is represented with a dashed circle to indicate 

51 that it belongs to the subset of the hybrid basic events.
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1
2 5 COUPLING AND SIMULATION OF THE SHYFTA MODEL

3 Figure 11 depicts the hybrid-pair model of the case study with the corresponding mapping into a 
4 SHyFTA where it is possible to identify the main discrete components of the PV system, the 
5 corresponding real time variables Xi of the deterministic process and the vector ƐS encoding the status 
6 of the basic events of the stochastic process.
7
8 Figure 11: Hybrid-Pair architecture of the case study and corresponding SHyFTA mapping.

9
10 XIRR and XTA represent respectively the sun irradiance Irr and the ambient temperature Ta. These 
11 two variables are inputs of the model and, according to Eqs. (4-7), affect the power generation and 
12 the conversion efficiency of the PVM components. The ACS conversion depends on Eq. (8) and the 
13 actual energy produced by the power plant is described by Eqs. (9) and (10). To account for the effects 
14 of the stochastic model, the SHyFTA provides a mechanism of synchronization between the variables 
15 of the deterministic model and the stochastic events (the basic events) that determine the status of 
16 each component. In the stochastic process, the basic events are characterized by two operational 
17 states, S= {Good, Bad}. The health status of each basic event is an element of the vector ƐS that, as �
18 input to the deterministic process, realizes the coupling between the basic events of the stochastic 
19 process with the corresponding discrete components modelled in the deterministic process. Since it 
20 was assumed that components can be only in two possible states, the binary representation can be set 
21 as follows: 

22

23 S
BEi

=  {1, i
th

 component is working 

0, i
th

 component is failed       =
24

25 According to this notation, it is now possible to evaluate and rewrite the real variables 

26 XPVS1/138,XDCG1/2, XACS1/2, XPROD and XGCC of the SHyFTA model that correspond with the powers 

27 levels generated at the different stages of a PV plant generator.

28 XPVSi , with i=1,�,138, is the DC power generated by the ith photovoltaic string (each string is 

29 comprised of 16 modules, see Table 4) that depends on the status of the ith string SPVSi:

30

31           (Eq. 12)X
PVSi

= [ηIsin (α + β
PVSi

)A
PVSi

] × S
PVSi

32
33 XDCS1/2 are the total DC power of each photovoltaic generator (a DC generator is comprised of 
34 69 strings of the corresponding PVM section)and it includes the loss of DC wiring connections and 
35 possible faults of DC protection or fuses:
36

37  )              (Eq. 13)X
DCS1

= ∑69
i = 1X

PVSi
× (S

SPR1
× S

DCD1
× S

SPD1

38

39  )              (Eq. 14)X
DCS2

= ∑138
i = 70X

PVSi
× (S

SPR2
× S

DCD2
× S

SPD2

40
41 XACS1/2 are the total AC power output of each AC sections and including the efficiency loss of 
42 the inverters and possible faults of the AC protections and breakers.

43

44    (Eq. 15)X
ACS1

= η
ACS1

× X
DCS1

× S
INV1

× S
ACB1

× (S
GPR

× S
ACD

× S
DCB

× S
TRA

)

45

46     (Eq. 16)X
ACS2

= η
ACS2

× X
DCS2

× S
INV2

× S
ACB2

× (S
GPR

× S
ACD

× S
DCB

× S
TRA

)

47
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1 It is possible to notice that the components of the stage GCC can break the circuit path towards 
2 the grid. When this happens, the inverter stops the DC/AC conversion and the production of the power 
3 plant is nullified. In this case, during this outage, XACS1(t) =XACS2(t) = 0.
4 XACS is the total AC power generated by the photovoltaic power plant. It is measured at the 
5 exchange meter of production in order to quantify the amount of energy produced that is rewarded 
6 with the subsidy tariff of the IPER 2013:
7

8                (Eq. 17)X
ACS

= X
ACS1

+ X
ACS2

9
10 XGRID is the power exchanged with the grid and is computed as difference between the produced 
11 power XACS and the amount of instantaneous power XCONS requested by the utilities connected to the 
12 power plant:

13

14                (Eq. 18)X
GRID

= X
ACS

‒  X
CONS

15
16 Among the variables computed in the deterministic process, Eq. 19 models the counter of the 
17 inverter aging of an inverter, Xaging = L, measuring the amount of time in which an inverter is on. 

18

19 , i =1, 2        (Eq. 19)X
Aging_INVi

= ∫t
0i

ON_INV
i

(t)dt

20

21 i =1, 2i
ON_INVi

(t) = {
1, X

DCSi
> 0

0,X
DCSi

= 0 =
22

23 This value is an input of the Weibull pdf characterizing the failure behavior of the inverter in the 

24 stochastic process [see Eq. (2-3)].

25 The SHyFTA model has been coded in Matlab® to implement a software resolution based on a 

26 discrete event Monte Carlo simulation [60]. Several trials must be performed in order to achieve the 

27 desired accuracy (or confidence interval) of the measure to compute. For the photovoltaic power 

28 plant, the focus is on the power production measured at the generation meter, XACS. Therefore, at 

29 each trial k of the Monte Carlo simulation, the output of the SHyFTA model is the time-series 

30 Xk
ACS(t). When the desired confidence interval is met the simulation is stopped and the mean active 

31 power for each sample of the time series is computed as follows:

32 (Eq. 20)�[(X
ACS

)] =
1�[∑�� = 1� �

ACS
(�)]

33 where N is the number of Monte Carlo trials.

34 The estimator error associated to the desired confidence interval can be computed as follows 

35 [61]:

36     (Eq. 21)��� = �� 2
×

��
37

38 where Za/2 is the confidence coefficient, a is the confidence level, σ is the standard deviation of the 

39 Monte Carlo simulation and N is the number of Monte Carlo trials. 

40 The use of the active power as an estimator of the Monte Carlo simulation has an advantage. In 

41 fact, it can be noted that the cumulative error, made up by the instantaneous samples of the time series 

42 XACS(t), corresponds to an energy. In this way, it is possible to provide an appropriate estimation of 

43 the active energy aside a confidence interval using the cumulative error of the estimator. 

44 The inputs of the models are the solar irradiance and the ambient temperature acquired by the 

45 logging system of the real power plant during 2011-2015. Figure 12 shows the ambient temperature 

46 data. In this way, using the same historical time series, it is possible to compare the results of the 

47 SHyFTA, the pure deterministic model and the real production data.
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1
2 Figure 12: Historical time series of the ambient temperature (2011-2015), Syracuse (Italy).

3 5.1 Energy production estimation

4 In order to test the accuracy of the proposed methodology, the results of the SHyFTA and the 
5 deterministic models have been compared with real energy production data, collected by the SCADA 
6 system of the photovoltaic plant. The collected data includes the hourly aggregated power, energy, 
7 solar irradiance and external temperature for the first four years and half of life, corresponding to 
8 40.173 hours.
9 For the SHyFTA simulation, a confidence level of 0,99 was set for each data point XACS(t). There 

10 was not set a stopping condition for the simulation and with 10.000 iterations, the cumulative absolute 
11 error of the time series sums up to the 0,16%, that corresponds to ±4.681 kWh. 
12 To compute the energy production from the time-series of the estimated active power XACS(t)Eq. 
13 (20) must be used. Table 9 displays a comparison among the real data, the deterministic and the 
14 SHyFTA models in terms of energy produced and payback generated under the regime of IPER 2011. 
15 It is possible to notice that the results of the SHyFTA at the end of the observation period (see last 
16 row of Table 8) matches with the real data aside the absolute error of the Monte Carlo simulation 
17 (±4.681 kWh). It can be observed that at the beginning of the simulation, the deterministic and the 
18 SHyFTA model are very close to the real data and the reason is that at the beginning of the power 
19 plant life there are no faults and performance degradation which affect the system. However, after a 
20 few months, the gap between the real data and the deterministic model starts to increase, whereas the 
21 difference with respect to the SHyFTA remains bounded to a maximum relative error of 2%, as shown 
22 in Figure 14 that plot the absolute relative error with respect to real data.
23
24 Table 8: Comparison among the real data, the deterministic and the SHyFTA model in terms of energy 

25 produced and positive payback generated under the regime of IPER 2011. 

26
27
28 Figure 13: Comparison between the energy produced by the deterministic model, the SHyFTA and the real 

29 system.

30
31 Figure 14: Comparison between the relative error of the deterministic model and the SHyFTA.

32

33 At this point, having tested the accuracy of the proposed method, it is possible to forecast the 

34 production of energy over 20 years of life in order to provide the owner of the plant with a more 

35 accurate estimation of production and economical revenues. To achieve this result, the simulation 

36 with the SHyFTA is extended to 20 years assuming that the physical input of the solar radiation and 

37 ambient temperature follow the same evolution described by the historical time series of the last 5 

38 years. The Monte Carlo simulation has been set such to respect the same confidence level of the 

39 previous simulation. Under this setting, the absolute cumulative error of the time series sums up to 

40 0,18%, that corresponds to ±20.480kWh.

41 Figure 15 shows the results obtained and Table 9 allows a further comparison between the 

42 deterministic and the SHyFTA. In this case, it is possible to recognize at the end of the 20th year, a 

43 difference of about 545.000 kWh (±20.480 kWh)of loss of energy productivity. Under the regime of 

44 IPER 2011, at the end of the economic investment established at the 20th year from the start of the 

45 power plant, this lack of energy production corresponds to a cash short of about 250.000 � (±9.421 

46 �).

47
48 Figure 15: Energy production estimation throughout the life time of the power plant (20 years).

49
50
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1 Table 9: Comparison between the deterministic and the SHyFTA model throughout the remaining years of the 

2 plant life in terms of energy produced and positive payback generated under the regime of IPER 2011.

3 5.2 Plant and service availability 

4 To compute the plant availability, it is possible to use the main principles of the probability theory 

5 for union and intersection of independent events, as shown in Eqs. (22) and (23), where P(BEi) is the 

6 probability of the basic event BEi. 
7
8

9 (Eq. 22)P(BE
1

∩ BE
2

∩ BE
3
� ∩ BE

n
) =

10 P(BE
1

) × P(BE
2

) × P(BE
3

) × � × P(BE
n

) =  

n∏
i = 1

P(BE
i
)

11

12

13

14  = (Eq. 23)P(BE
1

∪ BE
2

∪ BE
3
� ∪ BE

n
) = P(∑n

i = 1BE
i
)

15

n∑
k = 1

( ‒ 1)
k + 1

n∑
i
1
,i

2
,..,i

k

1 ≤ i
1

< i
2

< � < �
k

≤ n

P(BE
i1

∩ BE
i2�

∩ BE
ik

) 

16
17 In the following relationships, P(Ei) corresponds with the unavailability Ux of each component 
18 that can be obtained as Ux=1-SSAx. Table 10 reports the steady state availability for each component 
19 of the Fault Tree, with the exception of the inverter that cannot be computed with the same formula, 
20 valid for the exponential distributions, .�/(� + �)
21 The failure behavior of the inverter has been modelled with a piecewise deterministic Markov 
22 Process and it has a non-linear relationship with the aging of the inverter.To compute the inverter 
23 availability, a dedicated simulation was performed assuming to extend the mission time and the solar 
24 radiation to 20 years, by replicating the time-series of the solar radiation and ambient temperature. 

25 Figure 16 shows that the steady state availability (SSA) oscillates around the values 0,98±0,001. 

26
27 Figure 16: Inverter Availability simulated.

28

29 Substituting the values of the steady-state availabilities in Table 9, it is now possible to compute 

30 the unavailability of each gate and, from bottom up, retrieve the system availability. 

31

32   = 0,9999A  = 1 ‒ U
TE

33

34  = 1e-5 U
TE

= U
PVGEN

+ U
GCC

�[U
PVGEN

× U
GCC

]

35
36 U

GCC
=  U

GPR
+ U

ACD
+ U

DCB
+ U

TRA
�[U

GPR
× U

ACD
]�[U

GPR
× U

DCB
]�[U

GPR
× U

TRA
] ‒ [U

ACD
×

37 U
DCB

] ‒ [U
ACD

× U
TRA

] ‒ [U
DCB

× U
TRA

] + [U
GPR

× U
ACD

× U
DCB

] + [U
GPR

× U
ACD

× U
TRA

] + [

38  = U
GPR

× U
DCB

× U
TRA

] + [U
ACD

× U
DCB

× U
TRA

] ‒ [U
GPR

× U
ACD

× U
DCB

× U
TRA

]

39 0.1e-4.
40

41  = 5,6e-9U
PVGEN

 =  U
PVGEN1

× U
PVGEN2

42
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1 For each ith section of the photovoltaic power plant, with i = 1, 2, it is possible to compute the 
2 following:
3

4  =7,5e-5 U
PVGENi

 =  U
ACSi

+ U
DCSi

�[U
ACSi

× U
DCSi

]

5
6 U

ACSi
 =  U

INVi
+ U

SDPi
+ U

ACBi
�[U

INVi
× U

SDPi
]�[U

INVi
× U

ACBi
 ] �[U

SDPi
× U

ACBi
] + [U

INVi
×

7  = 4,5e-5U
SDPi

× U
ACBi

]

8
9 U

DCSi
 = U

SPRi
+ U

DCDi
+ U

SPDi
+ U

PVMi
 �[U

SPRi
× U

DCDi
] �[U

SPRi
×  U

SPDi
]�[U

SPRi
×  U

PVMi
] ‒ [

10 U
DCDi

× U
SPDi

] � [U
DCDi

× U
PVMi

] ‒ [U
SPDi

× U
PVMi

] + [U
SPRi

× U
DCDi

× U
SPDi

] +  [

11 U
SPRi

×  U
DCDi

× U
PVMi

] + [U
SPRi

× U
SPDi

× U
PVMi

] +  [U
DCDi

× U
SPDi

× U
PVMi

] ‒ [

12  = 3e-5U
SPRi

× U
DCDi

× U
SPDi

× U
PVMi

]

13

14  = 1e-13, with U
PVMi

=  ∏
j
U

PVSj
j = { 1,j = 1,�, 69      

2, j = 70,�, 138 =
15
16 According to these results, is possible to conclude that the SSA of the power plant is very high. 
17 An important difference with respect to the work in [16] is that in the presented model the components 
18 can be repaired after a fault. Moreover, the power plant is composed of two redundant generating 
19 sections (PVGen1 and PVGen2) and both must fail before the system fails. This configuration results 
20 in an increased system availability. 
21 For this type of system, a more valuable KPI than reliability or availability of the system is the 
22 service availability [54] that measures the probability of the system to satisfy the instantaneous power 
23 demand of the connected load. In fact, reliability does not consider restoration and, in these types of 
24 applications, this is not realistic. On the other hand, the classic definition of availability, intended as 
25 the probability that at the observed time the system will be in production, is not very significant 
26 because, as already explained, the complete shut-down of the power plant is very unlikely, as it is 
27 constituted by several independent groups of generators with a high availability. 

28 Service availability can be computed as the ratio between the total time in which the photovoltaic 

29 power plant is not able to meet the power demand of the company and the total duration of the mission 

30 time. To evaluate this KPI, three types of power unavailability must be considered:

31 i. Unavailability of generated power due to conventional outages of plant and apparatus;

32 ii. Unavailability of generated power due to source variability (power plant equipment remaining 

33 perfectly healthy and operational);

34 iii. Unavailability of generated power due to outages of plant that arise due to source variability 

35 (such as PV panel outages due to differential overheating that arise out of cloud transients).

36

37 The SHyFTA model here presented takes into account all the previous effects, although its 

38 accuracy (and complexity) can be certainly increased. In fact, the stochastic fault tree model of failure 

39 (Figure 8, Figure 9 and Table 7) accounts for the unavailability of type (i); the unavailability of types 

40 (ii) and (iii) depend on the real variable XIRR and XTA, input of the deterministic model. Moreover, 

41 some of the most dramatic causes of power unavailability of type (iii) are embedded in the 

42 deterministic model since the panels and inverter performance, as shown in Eqs. (6)-(9),depend on 

43 the variation of the ambient temperature XTA. Certainly, the deterministic model could include many 

44 other physical effects that influence the performance of the energy conversion but, the modelling of 

45 such mechanisms, is not the main subject of this research paper. To compute the service availability, 

46 the SHyFTA model requires as input the daily power demand, as shown in Figure 17a. It is possible 

47 to see that it grows during the initial hours of the working day, reaches a peak between 10:00-15:00 

48 and decreases when the production activities are about to finish, at the end of the working day. Figure 

49 17.b shows the schema of the power supply: if the demanded power exceeds the power generated by 

50 the power plant, the electrical grid supplies to the difference.
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1

2

3 Figure 17.a: daily power demand.                      Figure 17.b: schema of the power supply.

4
5 The results of the SHyFTA match exactly the real scenario (Table 10). It is possible to notice that 
6 the service availability is much lower than the system availability and, in the case of renewable power 
7 plants, this represents one of the most important disadvantages because energy cannot be easily 
8 stored, unless the power plant is provided with a sophisticated system of batteries that, only in recent 
9 applications, are becoming popular (e.g. [62, 63]).

10
11 Table 10: Comparison between the results of service availability in respect to the demand of Figure 17.

12 5.3 Discussion about the reusability of the SHyFTA model and the applicability to other 

13 renewable power plants

14 The photovoltaic power plant hereby discussed was characterized by fixed panels. Sometimes 
15 panels are installed over mechanical systems (called trackers) that are able to follow the direction of 
16 the sun irradiation throughout the day. When trackers work correctly it is expected an improvement 
17 of the energy production of the power plant. Conversely, a fault of a tracker blocks the solar panel at 
18 the position in which the fault has occurred and the high operating time of the system, which has 
19 negative influence on the reliability [64]. The conversion process described in Eqs. (4)-(10) is still 
20 valid, therefore to include trackers in the SHyFTA model of a photovoltaic power plant, it is possible 
21 to add a basic event for each tracker associated with a panel of the PVM stage (Figure 18) and link 
22 them with the generic equation of power conversion [cf. Eq. (4)] in the deterministic model. 

23
24 Figure 18: Fault tree of the PVM section that includes a tracker for each panel of the power plant.

25
26 It was observed that, despite very high plant availability, the service availability of such systems 
27 is very low. To verify the opportunity of other technical solutions, the SHyFTA could be extended to 
28 integrate a system of batteries in the power plant model. The deterministic model should include an 
29 additional equation that depends on the charge of the battery that contribute to the power supplying 
30 of the internal consumption when the peak power demanded exceeds the instantaneous power 
31 generated by the power plant. Accordingly, the fault tree model should include a hybrid basic event 
32 associated with the battery (Figure 19a) and the power supply schema should follow the scheme of 
33 Figure 19b. 
34 In systems such as concentrated photovoltaic systems the architecture of a module is usually 
35 more complex as it includes lenses, a biaxial tracking system, pyrheliometers, heatsinks, etc. In fact, 
36 even if the stated efficiency is usually higher than a standard system, the real performance can end 
37 up being lower because of random faults occurring in its sophisticated parts [65]. To this aim, the 
38 possibility to model such systems with a SHyFTA model linking the fault behavior to the physical 
39 equation of the power production can be useful for future studies. Also in this case, the SHyFTA 
40 could be implemented to include a number of basic events that accounts for these other components 
41 and link their health status to the physical equation of energy conversion such to evaluate the benefit 
42 among several combinations of level of service and the related costs of installation and maintenance 
43 [39, 66].
44
45 Figure 19.a: Fault tree of the power plant that includes a system of battery

46
47 Figure 19.b: schema of the power supply with a system of battery.

48
49
50 More generally, the SHyFTA modelling can be applied to other renewable technologies because 
51 the model of energy conversion (i.e., the physical laws of the deterministic process) can always be 
52 linked with a stochastic fault tree model. In fact, the basic events of a fault tree describe the failure 
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1 and working interactions of the physical components that participate to the process of energy 
2 conversion of the power plant. There have been presented different mathematical models of other 
3 renewable technologies (e.g. hydroelectric power plants [67-70], wind farms [71, 72]) that can be 
4 used to characterize the model of power conversion and the efficiency of its main components. Other 
5 works have investigated the failure behavior of these systems highlighting the dynamic dependencies 
6 and aging effects of the main components (e.g. hydro [35, 51, 73] and wind [34, 74] technologies). 
7 All these elements can be integrated in a SHyFTA model with algorithms that are able to grasp the 
8 uncertainty of the renewable resource (e.g., wind forecasting based on neural networks [75], 
9 autoregressive models [76, 77] or Markov chains [78, 79]).

10
11 6 CONCLUSIONS

12 The performance evaluation of a renewable power plant is a complex task because the randomness 
13 of the primary resource and its influence on the plant availability can limit the accuracy of traditional 
14 deterministic models.For this reason, the need for valuable techniques able to support engineers and 
15 risk practitioners with this activity is of increasing interest and it is becoming crucial with the 
16 widespread adoption of renewable technologies.
17 In this paper, a thorough analysis of the up-to-date state-of-the-art has been presented so as to 
18 highlight the limitations of traditional models. Namely, existing works are unable to combine in one 
19 single model the deterministic process of energy conversion with the stochastic behavior 
20 characterizing the plant availability and the intermittency of the primary resource. This limits the 
21 capability of such models to account for the variation of the status of a system and its deterioration 
22 that are strictly connected with the environmental and the nominal working conditions in which the 
23 system operates. To overcome this limitation, a dynamic reliability based methodology is proposed 
24 as valuable paradigm. The application of dynamic reliability to model and evaluate the performance 
25 of a renewable power plant represents an important novelty of this paper.
26 Among the several techniques of dynamic reliability, Hybrid Fault Tree Automaton (SHyFTA) 
27 has been presented. SHyFTA is a simulation approach that exploits the paradigm of the hybrid-pair 
28 modelling [46] offering a structured approach for the resolution of a dynamic reliability problem. 
29 This allows modelling the deterministic and stochastic processes independently and coupling them in 
30 latter stage with the use of shared variables. In particular, the deterministic process of energy 
31 conversion, based on a set of complex mathematical relationships, can be linked with the stochastic 
32 behavior of the system using the well-known Dynamic Fault Tree formalism. The main advantage of 
33 such technique is the possibility to address the evaluation of a system both in terms of dependability 
34 attributes (reliability, availability and maintenance) and performance (production and other relevant 
35 KPI, like the service availability). Moreover, a SHyFTA model can be easily redesigned and 
36 simulated so as to assess the effect of alternative engineering design decisions on system performance 
37 and including design optimization and sensitivity analysis [80]. The case study of a photovoltaic 
38 power plant has been discussed and the main steps for the construction of a SHyFTA model have 
39 been defined. To demonstrate the accuracy of the results achieved with a SHyFTA simulation over a 
40 traditional deterministic model, a comparative analysis has been presented using as benchmark the 
41 real data of a photovoltaic power plant. After the initial transient period, the mean error of the 
42 SHyFTA model decreases below 2%, while the error of the deterministic model keeps around 6%. 
43 Further comparisons between the SHyFTA and the deterministic model have been discussed also in 
44 terms of cash short, when estimating the expected productivity throughout the entire lifetime of the 
45 power plant (20 years). In this case, it has been shown that the use of the deterministic model is not 
46 suggested as it generates an important error in terms of cash short of about 250k�.
47 Due to the rigorous modelling process that includes components� repair processes, the results 
48 obtained in this paper improve the one presented in [16] limited to the reliability evaluation with non-
49 repairable components that, for a renewable power plant, is not the most significant key performance 
50 index to consider. With the SHyFTA model, it was possible to compute both the availability of the 
51 plant and the related service availability and it was shown that, despite a large plant availability 
52 (99,9%), the photovoltaic power plant is not able to offer the same level of service availability (58%) 
53 due to the unpredictability of the primary resource and the impossibility to store the unused energy. 
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1 The SHyFTA analysis is based on Monte Carlo simulations. Therefore, the accuracy of the results 
2 and simulation times can require long computation times before to retrieve results with an acceptable 
3 precision. This disadvantage, together with the unavailability of exact models to describe the failure 
4 behaviour, represents today the price for a more precise feasibility assessment and performance 
5 evaluation of renewable power plant model. However, it can be ascertained that the increase of 
6 computing power on the one hand and of big-data analyses on the other will alleviate the impact of 
7 the aforementioned limitations.
8 Future researches will address the opportunity to adopt the methodology for other types of 
9 renewable power plants. Among them, wind applications look very promising because the integration 

10 of high-frequency sensors for condition-monitoring can provide important data for the modelling of 
11 dynamic failure rates of wind turbine components. Additionally, it may be interesting to integrate 
12 other uncertainty modelling mechanisms in the proposed approach so as to model uncertain 
13 operational states.
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Figure 1: Mutual dependency between the deterministic and the stochastic model.

Figure 2: Steps for the construction of a SHyFTA model.

Figure 3: Location of the power plant.
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Figure 4: Global horizontal irradiation in Italy.

Figure 5: Map of the power plant and its sections.



ACCEPTED MANUSCRIPT

Figure 6: Power Inverter configuration.

Figure 7: Schematic decomposition of the PV system

Figure 8: Solar Irradiation, elevation angle α and tilt angle β 
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Figure 9: Fault tree of the PV power plant. PV GEN 1 and PV GEN 2 are represented with the transfer gate 

symbol (triangle) because these sub-systems are developed into another fault tree model.

Figure 10: Fault tree of a PV generator. The basic event INV is represented with a dashed circle to indicate 

that it belongs to the subset of the hybrid basic events.

Figure 11: Hybrid-Pair architecture of the case study and corresponding SHyFTA mapping.
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Figure 12: Historical time series of the ambient temperature (2011-2015), Syracuse (Italy).

Figure 13:Comparison between the energy produced by the deterministic model, the SHyFTA and the real

Figure 14: Comparison between the relative error of the deterministic model and the SHyFTA.
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Figure 15: Energy production estimation throughout the life time of the power plant (20 years).

Figure 16: Inverter Availability simulated.

Figure 17.a: daily power demand.                      Figure 17.b: schema of the power supply.
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Figure 18: Fault tree of the PVM section that includes a tracker for each panel of the power plant.

Figure 19.a: Fault tree of the power plant that includes a system of battery

Figure 19b: schema of the power supply with a system of battery.
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Research Highlights:

 Review of the state of the art of renewable power plant and reliability modeling

 Modeling steps to design a hybrid dynamic (SHyFTA) model of a renewable power plant

 A real photovoltaic power plant is modelled and results are compared with real data

 The SHyFTA model results more accurate than the deterministic model

 The production throughout the lifetime, service and plant availability are computed
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Table 1: Main characteristics of the models used for dependability assessment.

Table 2: Main physical inputs for different renewable technologies

Renewable Technology Physical Input

Photovoltaic Sun Irradiance, Temperature

Wind Wind Speed, Air Density, Temperature

Hydro Intake Water Flow, Water Level

Table 3:  PV system characteristics.________________________________________
Location                               37,1751N   16,1596E
Ppeak 419,52 kWp

N° inverters              2
N° strings boxes  4 (per inverter)
N° strings  138
N° modules                         2208 (16 for each string)
Azimuth Angle              180°
Tilt Angle (β)                   30°________________________________________

Table 4:  PV module main characteristics. Table 5:  Inverter main characteristics.____________________________________________             _____________________________________________
Ppeak 190 W (Monocrystalline)  Pacmax 220 kW
Panel efficiency (ŋ)            15%                                                 Volt��� ����� ���� �	
���MPPT�<

�

Vmp                                     37 V                                          N° independent MPPT                     4
Imp                                       5,04 A ηmax 98%
Voc                                      45,1 V Vacr 320 V
Isc                                        5,35 A Iacmax 450 A
NOCT                                 45 ± 2° C Idcmax  492 A______________________________________________         _____________________________________________

RELIABILITY ASSESSMENT DYNAMIC RELIABILITY

Static Models Dynamic Models Hybrid-dynamic Models

PhysicalProcess

Stochastic 

Process

Static working conditions

Single-state operating components

Boolean components

Fixed probability of failure

Independence of components

Static working conditions

Single-state operating components

Multi-state degradation components

Fixed probability of failure

Time-event sequence dependencies

Dynamic working conditions

Multi-state operating components

Multi-state degradation components

Dynamic probability of failure

Time-event sequence dependencies

Modelling 

Techniques

Reliability Block Diagrams

Fault Tree

Dynamic Reliability Block 

Diagrams

Dynamic Fault Tree

Markov Processes

Stochastic Automaton Models

Regime Switching Models*

Piecewise Markov Processes*

Satisfied Criteria

(Table 1)

c*, d

*Performance evaluations limited 

to reliability/availability in static 

working scenario

c*, e

*Performance evaluations limited 

to reliability/availability in static 

working scenario

a, b, c*, d, e

*Not intended to evaluate the 

performance of a system in terms of 

process output  

Computational 

Costs

Overall

Time-Dependency

Physical Process:              No

Stochastic Process:           No

Low

Time-Dependency

Physical Process:              No

Stochastic Process:           Yes

MediumtoHigh  

Time-Dependency

Physical Process:              Yes

Stochastic Process:           Yes

HightoVery High
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Table 6: IPER 2011 Subsidy. Price* is based on an average value of the energy price in the energy market 

(2011) [43].

Table 7: Failure/repair rates and steady state availability of the components of the PV plant.________________________________________________________________________________________________

Component                                :Failure Rate [h-1]    : Repair Rate [h-1]        Steady State  Availability(SSA)� � �� + �
A�� AC Circuit Breaker 5.71×10-6        2.08×10-2      99.9%
ACD AC Disconnector 0.034×10-6        2.08×10-2                               99.9%
D�� Diff. Circuit Breaker 5.71×10-6        2.08×10-2                               99.9%
DCD DC Disconnector 0.2×10-6        2.08×10-2                              99.9%
G�� Grid Protection 5.71×10-6        2.08×10-2 99.9%
PVS PV Strings 2.43×10-5        2.30×10-4 99.8%
S�� String Protection 0.313×10-6        2.08×10-2 99.9%
SPD Surge Protection 0.313×10-6        2.08×10-2 99.9%
SDP Surge Protection 0.313×10-6        2.08×10-2 99.9%
S�� String box 0.015×10-3        2.08×10-2                               99.8%
��A Transformer 1.4×10-6        2.28×10-4                               99.3%
I�� Inverter            Aging Weibull        1.7×10-3                                98% (Simulated)*

* Steady state availability is simulated and shown in Figure 16____________________________________________________________________________________________

Table 8: Comparison among the real data, the deterministic and the SHyFTA model in terms of energy 

produced and positive payback generated under the regime of IPER 2011.

Power (kW) Subsidy Price* Total ( ∑ )

1 � � ≤ 3 0,362 0,25 0,612

3 � � ≤ 20 0,339 0,21 0,549

2� � � ≤ 200 0,321 0,18 0,501

2�� � � ≤ 1.000 0,314 0,15 0,464

Year Real Prod.

(kWh)

Payback

(�)

Deterministic 

(kWh)

Payback

(�)

SHyFTA

(kWh)

Payback

(�)

1 534.844 248.168 552.606 256.409 532.777

(±829)

247.208

(±378)

2 1.164.600 540.374 1.213.319 562.980 1.163.503

(±1.909)

539.865

(±879)

3 1.765.200 819.053 1.873.664 869.380 1.791.692

(±3.030)

831.345

(±1.394)

4 2.375.546 1.102.253 2.487.950 1.154.409 2.375.685

(±4.115)

1.102.318

(±1.893)

4.6* 2.806.253 1.302.101 2.929.946 1.359.495 2.809.286

(±4.681)

1.303.509

(±2.153)
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Table 9: Comparison between the deterministic and the SHyFTA model throughout the remaining years of 

the plant life in terms of energy produced and positive payback generated under the regime of IPER 2011.

Table 10: Comparison between the results of service availability in respect to the demand of Figure 17.

Service Availability

Real Data 58.82%

Deterministic Model 59.63%

SHyFTA Model 58.82%

Y��� Deterministic 

(kWh)

Payback

(�)

SHyFTA

(kWh)

Payback

(�)

5 3.151.996 1.462.526 3.005.940

(±5.166)

1.394.756

(±2.375)

10 6.111.600 2.835.782 5.817.056

(±10.270)

2.699.114

(±4.724)

15 8.955.165 4.155.197 8.516.286

    (±15.352)

3.951.557

(±7.062)

20 11.682.162 5.420.523 11.137.157

(±20.480)

5.167.641

(±9.421)


