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Abstract  

Over the past decade in Australia, there has been a general trend towards the introduction of 

electrical motors to operate irrigation pumps. While electrical motors provide many advantages 

over the alternatives, electrical loads can aggregate in some areas to become large peaks, which 

challenge the existing electrical distribution networks. This is especially true during extreme hot 

or dry periods, when irrigators collectively demand significant electrical resources at the same 

time. While there is an inherent link between weather conditions and the amount of electricity 

used for irrigation, this relationship is poorly understood. Previous studies have either focused on 

localised data related to concurrent temperature, rainfall and soil moisture, or they have 

annualised summaries over large areas. In this study, we compare intensive irrigation periods 

with the Drought Factor at a case study irrigation scheme in Tasmania, Australia, finding a 

strong relationship between electrical load and periods when the Drought Factor is > 6. This 

relatively simple relationship may be useful for managers of electricity supply and distribution, 

managers of water resources, and irrigators, as it may be used to minimise the risk of exceeding 

the capacity of the electricity network, improve water availability and optimise irrigation 

scheduling.  
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Introduction 

Irrigation has become essential for global food production in a warming and more uncertain 

climate (Evans et al. 1996; Döll 2002; AgInnovators 2013). All aspects of irrigation, including 

water resources, energy demands and consequential impacts, must be understood in the context 

of climate change for future food security (Schiermeier 2015; FAO 2017). While 20 % of the 

world’s cultivated lands are irrigated, this fraction disproportionately produces 40 % of the 

world’s total food product (Bos et al. 2009) The increasing demand and price for energy affects 

all economic sectors, including irrigated agriculture (Fernández García et al. 2016), therefore 

understanding how water resources are used now and how water demand can be met efficiently 

and inexpensively in a changing climate will be essential for long-term sustainable water usage 

around the world (Gleick 2003; Garcia-Tejero et al. 2011; Peck et al. 2013). The complex 

interaction between energy production, water demand for irrigation and the weather conditions 

that determine water and energy usage is, therefore, of increasing interest, given existing climate 

uncertainty and the prediction of more extreme weather events, such as heatwaves and drought 

(Döll 2002; Alfaro et al. 2005; Stocker et al. 2013; Doulgeris 2015; Bartos and Chester 2015).  

 

Across the energy sector consumption fluctuates markedly according to prevailing weather 

conditions, irrigation is no exception and suppliers of energy are highly dependent upon weather 

and climate forecasts (Dubus 2010). Water distribution, via pumping, for irrigated agriculture is 

a primary user of energy and is often associated with high electrical load through the extensive 

use of electrical motors on irrigation pumps (Evans et al. 1996; AgInnovators 2013). This 

‘irrigation-induced load’, hereafter referred to as irrigation load, is the electrical load that arises 

in locations or regions dominated by irrigated agriculture. Irrigation schedules are typically 
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dictated by environmental factors, economic constraints, social norms, infrastructure, workforce 

availability and other factors. Of these, the environmental factors (weather) and economic 

constraints (power tariffs) can be relatively constant across large areas despite the different 

cropping patterns and plant phenology factors, resulting in most farmers irrigating at more or less 

the same time (Gellings 2009). The concentration of irrigation scheduling and coincident use of 

electrical irrigation pumps causes large sustained load increases on the electrical distribution 

network (Evans et al. 1996). Since at least the 1970s, researchers in the USA have been 

investigating the effect of irrigation on peak loading (Stetson and Addink 1977). Stark and 

Stetson (1985) found that between 1970 and 1985, the irrigated area in central Nebraska had 

expanded four-fold, and that electrical motors for pumps increased loading by as much as seven 

times the average. In Tasmania, the added strain of irrigation load at peak times can occasionally 

exceed the capacity of the electricity network (Chong Ong, pers. comm., April 2016).  

 

As weather determines not only when to irrigate, but also water availability, there is an inherent 

– but often unquantified – relationship between irrigation and antecedent weather conditions, 

including extreme events. Leenhardt et al. (2004a), for example, note that current water 

management procedures often fail in years with extreme weather and hydrological conditions. 

Improving the understanding of how irrigation and weather events are related would, therefore, 

enable electricity networks to be tailored to cope with peak irrigation demands and support 

improved decision-making ahead of forecasted weather events, both now and in future climates. 

Several studies have developed irrigation scheduling models based on climatic data or correlated 

weather-to-water use (e.g. Guerra et al. 2005; Georgiou 2008; Doulgeris et al. 2015), however 

only a few studies have directly investigated the effect of weather on irrigation loading. Stark 
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and Stetson (1985) analysed the relationships between irrigation load, rainfall and temperature 

using data collected directly from metered irrigation pumps and a residential feeder. They found 

irrigation load was only vaguely related to maximum temperature, but it was significantly related 

to the length of time since the last watering (from rainfall or irrigation). Alfaro et al. (2005) used 

soil moisture for encapsulating ‘weather’ into an irrigation-tailored variable. They did not have 

access to data from isolated pumps as Stark and Stetson (1985) did. Instead, they used data from 

areas where the electrical load was primarily influenced by irrigation, finding a strong annual 

correlation (although this conclusion was limited by the restriction of the analysis to annual 

summaries of irrigation load and weather). More recently, Leenhardt et al. (2004a) presented a 

simulation platform aimed at improving decision-making in water management, which 

Leenhardt et al. (2004b) validated using water consumption and electricity usage data during the 

irrigation season in south-western France. Although the study used only two years of data, 

Leenhardt et al. (2004b) noted that improved weather-influenced rules for starting and/or 

delaying irrigation (i.e. following rainfall) could improve decision-making, highlighting the 

potential benefits of understanding the fundamental relationship between irrigation and weather. 

 

Irrigation has been part of the Australian farmer’s ‘toolkit’ for more than 100 years (Irrigation 

Australia 2017). Initially, simple technology such as flood irrigation was used, which was 

followed by direct application systems utilising diesel-driven pumps. At present, there is a 

transition away from using diesel pumps to electrical pumps (Shorten et al. 2014). Despite this 

trend, there have been no studies in Australia investigating the relationship between irrigation 

loads and antecedent weather (Shorten et al. 2014). Australia is the driest inhabited continent in 

the world, with irrigation in many areas so critical to farming that agriculture consumes 50-70 % 
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of Australia’s water resources (Roth 2012; NPSI 2012). In Australia’s south-eastern island state 

of Tasmania, a state-wide irrigation network — mostly driven by pumps with electrical motors 

— has been under development since 2007 with significant uptake from farmers. Tasmania 

constitutes only 1 % of Australia’s land mass, yet receives 13 % of Australia’s total rainfall 

(Tasmanian Institute of Agriculture 2017). While rainfall is relatively abundant in some parts of 

the state, other regions have experienced reduced rainfall  over the last decade, and future 

projections suggest that this trend could continue (Grose et al. 2010). The redistribution of water 

from wet to dry areas has become a political imperative as well as a practical one. In 2009, the 

CSIRO established that a state-wide irrigation network would improve agricultural production 

and ensure food (and economic) security for the state (CSIRO 2009). Since the publication of 

this report, Tasmania’s irrigation network has grown rapidly, with increasing load being placed 

on the state’s electrical distribution network during the irrigation season (October through to 

March). In the worst cases this increased load can cause local supply interruptions. Energy 

security is a major priority of the state’s electricity-distribution utility, TasNetworks (Chong 

Ong, pers. comm., April 2016). A deeper understanding of the relationship between irrigation 

load and antecedent weather conditions would, therefore, benefit the managers of electricity 

distribution, giving them the ability to maximise network capability during peak irrigation 

periods. Strategies include avoiding planned maintenance activities that impact the capacity of 

the network, additional investment to strengthen the network, and tariff incentives for farmers to 

avoid irrigation at times coincident with electricity usage during the irrigation season 

(TasNetworks 2015). It would also help irrigation managers decide when and where water 

should be stored, and assist irrigators in optimising the efficiency of the water they buy (Mike 

O’Shea, pers. comm., 12 April 2016).  
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In this study, we explore the relationship between irrigation loading and weather conditions in 

Tasmania. Following the findings of previous studies (Stetson and Addink 1977; Stark and 

Stetson 1985; Alfaro et al. 2005), the focus of this study was on antecedent weather conditions, 

although concurrent conditions were also considered. Through consultation with experts and 

industry, we focus on a representative pilot study involving a single irrigation scheme and the 

load it places on a single power feeder, before discussing the applicability of our methods across 

the entire state.  

Methods and data 

The Greater Meander Irrigation Scheme (GMIS) is centred on the township of Deloraine in the 

central north of the state (Figure 1). It experiences a cool, temperate climate and is one of the 

largest irrigation schemes in Tasmania, providing 36 GL of water to a 190-km2 region, primarily 

for dairy cows, beef, vegetables, hay and potatoes. The GMIS was selected as the case study 

because of four highly favourable features: it is a large agricultural region representative of other 

irrigation schemes; the irrigation load is high relative to residential and/or commercial loads; the 

power supply to 80 km2 (a significant proportion of the region) can be isolated to a single feeder; 

and historical weather? records are greater than 10 years, providing enough inter-annual 

variability to include wet and dry years. Large-scale irrigation in the GMIS has been undertaken 

since 2007 when the Meander Dam was completed. Since then, irrigation expansion has resulted 

in a 76 % rise in financially-stable irrigation of high-quality land (Meander Valley Council 

2013). The period from 2010 to 2013 saw agricultural production in the region increase by $40 

million (~60 %) to $102 million, representing 10.4 % of Tasmania’s gross agricultural product 
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that year (Meander Valley Council 2013). The increase in agricultural production, and the 

subsequent economic success, of the region can be directly attributed to the success of the 

expanded GMIS (Meander Valley Council 2013). 

TasNetworks electrical load data analysis 

In Tasmania, high-voltage transmission lines split into 22-kV lines, called feeders, that provide 

power to a sub-region of the network. The feeder out of the Railton substation is the single 

source of electrical power for a significant portion of the GMIS. At the time of our study it had 

13 years of uninterrupted data at half-hour temporal resolution, from which the irrigation load 

could be isolated. Initially, underlying trends in the data were assessed on an inter-annual, 

monthly, and daily basis. Data were split by day-of-week and grouped by month, before means 

and quantiles (5th and 95th) were calculated. Splitting the data in this manner retained a constant 

frame of reference from year-to-year and allowed the easy distinction between weekly patterns 

compared to the longer seasonal cycle. No significant day-of-week trends were observed, so all 

weekdays could be considered equal.  

 

Consultation with irrigators and industry experts found that it is common practice for farmers to 

schedule irrigation during low tariff periods (primarily 10 pm to 6 am) to reduce costs. This 

practice is generally adhered to despite the complications of plant phenology, equipment and 

workforce limitations. Similar behaviour has been noted around the world (Addink and Addink 

2003). This provided a convenient daily window within which to identify ‘irrigation days’ versus 

‘non-irrigation days’ in the load data. The mean electrical load was calculated within the low 

tariff period to construct a daily time series of irrigation load (4487 days of data). This not only 
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reduced noise in the signal, but also transformed the raw electrical load data into a useful form 

that could be aligned with the Bureau of Meteorology (BoM) observational datasets.  

Weather data 

The daily maximum temperature and total rainfall data used in this study were extracted from the 

BoM’s online climate data portal (BoM 2017). These time series of observations are generated 

by a network of recording stations across Australia and are freely accessible. Daily regional 

mean values for maximum temperature were calculated for the five stations nearest the 

TasNetworks distribution area that had complete data: Liawenee (station number 096033), 

Launceston Rifle Range (091050), Launceston Airport (091311), Sheffield School Farm 

(091291) and Launceston Ti Tree Bend (091237). Rainfall data were obtained from the Meander 

station (091061). The regional mean data and the rainfall data provided a daily time series which 

could be compared to the irrigation load data.  

 

In addition to maximum temperature and total rainfall, the Soil Dryness Index (SDI) and the 

Drought Factor (DF) indices were used. The SDI is a soil moisture balance, describing the 

amount of rainfall required to bring the soil moisture to field capacity (Mount 1972) and is a 

simplified version of the soil moisture balance described by Allen (1998). This SDI is calculated 

from rainfall, evapotranspiration (ET), runoff and a number of stationary inputs, including 

ground cover (Finkele et al. 2005). The DF, by way of comparison, is an index primarily 

designed for use in calculating the risk of bushfire (Finkele et al. 2005). The DF design is based 

on the concept of wetting from above and wetting from below, accounting for both rainfall and 

stored soil moisture. It uses the SDI in conjunction with a rainfall algorithm to estimate wetness 
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from above (rain) and below (soil). While many revisions of the DF index exist, the BoM uses 

the method outlined by Griffiths (1999) with a retrospectively-added limiting function described 

by Finkele et al. (2005 rev 2006). The DF has been designed such that a value of five represents 

conditions where 50 % of fuels are available for burning, a value of two represents 20 % and so 

on. Although the intended purpose is different to the SDI, the DF index captures the overall 

influence of various weather variables suited to this study on antecedent conditions, and this 

index is available at several locations near the study region, as well as on an interpolated grid 

covering southern Australia (Finkele et.al. 2006). Daily SDI and DF data for the Meander station 

were provided directly by the BoM. 

Analyses 

The irrigation load was compared to each of the daily values for temperature, rainfall and SDI. 

To determine if there was a temporal offset or function to these relationships, both offsets and 

running means were investigated. Offsets of 1 and 2 days backward (i.e. irrigators responding to 

weather forecasts) and forward (i.e. responding to conditions experienced) were investigated. 

Running means were also considered using windows of 3, 5 and 10 days, centred on the day in 

question (i.e. considering reactions to forecast weather) and left aligned (i.e. only considering 

antecedent conditions). As the DF index is already a significant transformation of climatic and 

biological influences, no further irrigation specific adjustments were made before conducting the 

analysis against irrigation load 

 

These comparisons, assessed using linear regression, were separated into month-of-year groups? 

to determine if seasonal factors could be influential to the relationship. It was also decided that 
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instead of considering calendar years it would be more practical to consider a year as running 

from July to June, referred to hereafter as a growing year. In doing this, each irrigation season 

(October through March) was contained in a single twelve-month period. From the linear 

regressions conducted, no relationships were found with either temperature or rainfall. However, 

the daily SDI and DF both presented notable relationships. Closer inspection of the SDI and DF 

regressions revealed that while irrigation load was related to SDI on an annual scale, it was more 

closely related to DF on a daily scale. It was, therefore, decided that the variable best suited to 

further analysis was the DF, and the remaining analysis used techniques based on the DF. 

 

From the regression analysis a relationship between irrigation load and the DF is observable 

when DF > 6. To confirm this threshold, at DF 6 a Generalized Additive Model (GAM) was 

fitted to the regression (Wood 2011). GAMs use smooth functions as predictors in the same 

manner that ordinary linear regressions use variables (Wood 2006). Smooth function predictors 

can take a great many forms and as a result can fit a wide range of curves to data. The threshold 

at DF 6 was truly independent of year, or month-of-year. T-tests further supported this threshold, 

so linear regressions were conducted to either side of this point. 

Analytical tools 

Data was analysed using the R programming language (R Team 2017), using base packages and 

the following tools: RStudio (RStudio Team 2015), readxl (Wickham 2016), caTools (Tuszynski 

2014), miscTools (Tuszynski 2014; Henningsen and Toomet 2013), dplyr (Wickham and 

Francois 2016), mgcv (Wood 2011) and lubridate (Grolemund and Wickham 2011). All 

statistical methods used the default parameter values.  
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Results 

Figure 2 shows the time series used in the analysis. Maximum temperature (Figure 2f) follows an 

approximately sinusoidal pattern, ranging from 5 to 38 degrees Celsius (in the Austral winter and 

summer, respectively), whereas rainfall (Fig. 2e) is less cyclical, with high inter-annual climate 

variability. Typical annual rainfall for the region is between 600 and 1100 mm/year (BoM 2017). 

This is relatively evenly spread across all months, although on average there is slightly higher 

rainfall during the winter months and less during the summer. The SDI (Fig. 2d) follows a 

seasonal pattern, ranging from 0 to 150. During most winters, the SDI is consistently low, and 

rises gradually, increasing to a peak during summer before decreasing rapidly during autumn 

towards ‘winter-like’ conditions. Winter SDI values are ~10 (+/-10), with limited inter-annual 

variability. Summer values are generally ~50 (+/-30), with significant inter-annual variability 

where in the driest years values remain >100 for weeks. Aside from the rapid post-summer 

drops, the SDI changes gradually, with high maximum temperatures and low rainfall 

corresponding to high SDI values, and vice versa. As the DF is a function of the SDI, it follows a 

similar seasonal cycle, ranging from 0 to 6 in winter and 0 to 10 in summer. Values of 10 are 

rare, only achieved during the most prolonged periods of low rainfall. The DF algorithm results 

in an increasing exponential decay curve (i.e. the DF increases rapidly post rainfall, and the daily 

increase decays to an asymptote with each subsequent day of no rain). This is followed by abrupt 

decreases towards zero following rainfall days. Figures 4 and 2 shows there to be evidence of 

some congestion when DF approaches 6; the reasons for this are investigated and discussed 

below.  
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The ‘total electrical load’ profile and irrigation load profile (Figures 2a and 2b respectively) both 

follow seasonal patterns — low in winter, high in summer — again with significant inter-annual 

variability in summer. Prior to 2007, the cyclic summer maxima are much less pronounced, 

corresponding to less irrigation load prior to large-scale irrigation. After the completion of the 

Meander Dam in 2007, the summer maxima become more pronounced but vary in shape and 

magnitude between irrigation seasons.  

 

Importantly, high maximum temperatures and low rainfalls correspond to high SDI and DF 

values which, in turn, correspond to high irrigation load. A comparison of two very different 

years, 2011 and 2013 (shaded grey in Figure 2), illustrates the relationship. Conditions within 

2011 were cooler and wetter, corresponding to lower than average SDI, DF and irrigation load 

values. Conversely, the 2013 growing season was much hotter and much drier, corresponding to 

very high SDI, DF and irrigation values. Therefore, on a seasonal scale a relationship between 

weather and electrical load clearly exists and was strengthened following the introduction of 

large-scale irrigation to the Meander Valley in 2007.  

 

Regression analysis with the SDI reveals strong relationships during the irrigation season (e.g. a 

maximum R-squared of 0.78 in November, Figure 3). Despite the evident relationships during 

the irrigation season (October to March), there is a tendency for each year-month pair to be 

grouped as they rely solely on the previous day’s SDI, temperature maximum and rainfall. This 

limits the predictive capacity of the SDI within any one growing year. Collectively, however, the 

SDI shows a strong relationship to irrigation load but provides limited use in a daily predictive 

capacity. Regression analysis with DF values reveal weaker overall relationships (e.g. a 
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maximum of 0.61 in January) but with values expressed over a broad range within any year-

month pair (Figure 4). The broad spread of the values taken by the DF in each year-month pair 

provides far more predictive capacity than the SDI (Figure 3) which tends to cluster. The 

relationship is still quite weak, but there is an apparent change in the nature of the relationship 

when DF > 6. The DF 6 threshold exists independently of year or month and separates the data 

distinctly.  

 

A monthly inter-annual comparison of the data in the DF provides more practical information 

than the SDI, inferring that the additional antecedent information captures more of the 

contributing factors that influence irrigation scheduling. Figure 4 shows a distinct change in the 

relationship between irrigation load and the DF either side of DF 6, especially in October, 

November and December. This change in behaviour at DF 6 is apparent through to March, 

although it becomes less defined. Interestingly, the change in relationship occurs at, or close to, a 

DF value of 6, the point where the DF behaviour is seen to change. Thus, for DF < 6, the DF 

changes rapidly day-to-day; for DF > 6, the DF values increase gradually, whilst decaying 

exponentially (Figure 2c). This was further tested with GAM fits, which yielded a remarkably 

consistent threshold at (or near) DF 6, even within the non-irrigation season months (Figure 5). 

The GAM fits take into account inter-annual variability and identifies if there is a standard 

response across all seasons. The relationship is clearest in the period from August to November 

(the pre-irrigation and early irrigation season), but is observed in all months except March and 

April. To ensure this was not an artefact of the DF index, we investigated further. While 

developing the DF algorithm, BoM observed that during prolonged dry periods the DF increased 

too quickly post rainfall, requiring a limiting function as an amelioration. The side-effect of this 
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function is that where 0 < SDI < 20, DF values are limited to a maximum of ~6.1 (Finkele et al. 

2005 rev 2006). This results in a tendency for DF values of 6.1 to be over-represented, occurring 

twice as often as any other value, but it is inconsequential to this study. This is most obvious in 

the June, July and August panels of Figure 4, but can also be seen in Figure 6. Therefore, DF < 5 

indicates moist soil conditions, 5 < DF < 7 indicates neutral conditions, and DF > 7 indicates dry 

soil conditions, supporting the potential use of the DF > 6 threshold as an indicator of the need to 

irrigate.  

 

Splitting the data into two groups of DF < 6 and DF > 6 highlights two sub-clusters of data: pre-

GMIS (2003 to 2006, browns and oranges in Figure 6) and post-GMIS (2008 to 2015, greens and 

blues in Figure 6). Where DF < 6, irrigation load values are assumed to generally represent 

electrical base load, and there is a distinct clustering where pre-GMIS base loads are generally 

higher with more inter-annual variability than post-GMIS base loads. While interesting, this is 

not of relevance to this study. Where DF > 6, the pre-GMIS irrigation loads are far lower (more 

similar to DF < 6 values) with a weaker relationship to the DF. In 2007 (coloured red in Figure 

6), the GMIS was implemented and this is reflected in the data, with 2007 exhibiting properties 

midway between pre-GMIS and post-GMIS clusters and representing a transition point between 

the two regimes. Post-GMIS irrigation loads where DF > 6 are significantly greater than those 

where DF < 6, with a strong relationship to the DF in all post-GMIS growing years (reflected in 

the steeper slope of the linear regression), even during wet growing years (e.g. 2010). Post-

GMIS, the average relationship is robust with limited inter-annual variability: for each DF unit 

there is about 650 kW (+/-130 kW) of additional irrigation load. This linear model yields an R-

squared value of 0.49 for the entire irrigation season, and a value of 0.71 if only the months of 
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October to January are considered. This early-season strength is expected due to the decoupling 

of the DF and irrigation load with the progression of the season.  

Discussion 

The analysis of the electrical-load profile and the low-tariff irrigation window highlights the 

existence of trends in the GMIS case study of higher overall power usage throughout summer 

(because of irrigation and air conditioning) and lower average loads throughout the remainder of 

the year. In the irrigation window of 10pm to 6am, there is evidence of large fluctuating loads. 

Although there are minor weekday/weekend differences, weekend median loads are generally 

lower and slightly later in the day, but they are primarily outside of the intensive irrigation 

period. Accordingly, all days of the week are considered equal. Both median load (based on day-

of-week-of-month) and load range in the intensive irrigation hours are significantly larger in the 

irrigation season, particularly in January and February. These observations confirm the 

preference to irrigate between 10 pm and 6 am and the tendency for increased irrigation in the 

height of the irrigation season. Undoubtedly this method of isolating irrigation load is simplistic; 

a more rigorous processing of the signal — to identify irrigation usage outside of this irrigation 

window — may alter the results slightly, but for the purposes of this case study the method used 

is deemed sufficient.  

 

Alfaro et al. (2005) and Stark and Stetson (1985) found relationships between irrigation load and 

rainfall and temperature, but on annual timescales as opposed to daily timescales. The same 

relationship was found in this study, with irrigation load being higher in dry, hot years, and lower 

in cool, wet years. However, daily-scale relationships with rainfall and temperature in isolation 
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were absent, with all R-squared values below 0.1. This is perhaps not surprising as the amount of 

water available to a crop is not directly related to any single component of weather, but is a 

function of antecedent conditions and local factors. As such, the climate indices — which 

incorporate the effects of many climatic and other factors — proved more suitable. The SDI is a 

simplistic soil moisture balance between rainfall, runoff and evapotranspiration. The SDI 

includes broad, static ground-cover factors (7 types) and a linear evapotranspiration model based 

on average monthly maximum temperature and pan evaporation for Australian capital cities 

(Finkele et al. 2005 rev 2006). Understandably, this approach to evapotranspiration and the 

limited range of ground covers make it more suited for larger-scale applications rather than the 

crop-by-crop approach adopted by Allen (1998). In comparison, the DF was designed to predict 

bushfire and estimates fuel availability rather than soil moisture. Thus, it weighs antecedent 

conditions and incorporates all the climatic and bioclimatic inputs through the SDI. Although the 

DF is not related to irrigation, Stark and Stetson (1985) suggest that the time since last rainfall is 

fundamental to understanding the irrigation/weather relationship. Such antecedent conditions are 

accounted for in the DF index, which supports its consideration in this study.  

 

Figure 7 demonstrates the load variability around DF 6, and the possible influence of weather 

forecasts influencing irrigation decision-making. In 2011, the DF was consistently reaching 6; 

however, regular (presumably forecasted) rainfall meant that irrigation was not used (irrigation 

load was consistently low). On the other hand, in 2015 the DF reached 6 in early October and 

remained generally above 6 until the end of January. Very few rainfall events were observed 

during this period, resulting in a sustained and high irrigation load. Across all seasons, there are a 

number of coincident dips in irrigation load and the DF, most of which occur at times of 
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significant rainfall. Figure 7 therefore highlights two key points: each year the maximum 

irrigation load is associated with the max DF, and larger observed rainfalls of 9+ mm per day 

(which regularly coincide with abrupt decreases in irrigation load) are required to dramatically 

drop the DF. 

 

From October through to January, both the SDI and DF are quite strongly related to irrigation 

load in the GMIS. The strength of this relationship decreases later in the irrigation season 

(February and March). A fundamental limitation of using the SDI and DF data is that water in 

the models is purely climatic (i.e. there is no account of the water added from irrigation); 

therefore as soon as farmers begin to irrigate, the model breaks down. As the season progresses, 

this effect is amplified. Weather conditions may also give way to a multitude of other factors in 

terms of importance, including infrastructure limitations, crop requirements, prematurely 

exhausted irrigation rights, irrigation without regard of weather, or the fact that some crops are 

already harvested by this time. As such, irrigation usage reduces and the subsequent irrigation 

load becomes decoupled from the antecedent weather conditions.  

 

Regardless of the late-season behaviour, the established threshold at DF 6 and the strength of the 

relationship up to and including January in the GMIS, provides valuable information to irrigation 

service providers who can conclude that if the DF is below 6, the likelihood of irrigation is low. 

If the DF is consistently close to 6 however, they can expect some irrigation, and if DF is well 

above 6, they can expect intense irrigation. Using this ‘rule-of-thumb’, electricity-distribution 

utilities may improve their capacity to predict and potentially avoid system overloads on short 

timescales, and better schedule unavoidable system maintenance and upgrades during the 



!

19 
!

irrigation season on longer timescales. Similarly, irrigation service providers will have a better 

idea of when, where and for how long water resources will be needed, which may assist with the 

logistics of water resource distribution.  

 

There is the potential to tailor the DF index into an irrigation-specific index by incorporating a 

more complex ET model into the SDI, using an approach similar to that set out by Allen (1998), 

or by incorporating the BoM’s more sophisticated ET evapotranspiration dataset. In this way, 

nuances of soil and crop types could be accounted for, along with extra climatic variables such as 

solar radiation and wind. The incorporation of human influences such as irrigation volumes 

would also be a major step forward, however this would have to be undertaken on a paddock 

scale.  

 

This study has shown that there is a measurable and predictable relationship between irrigation 

load and antecedent weather conditions within the GMIS. Given the relative stability of the DF 

index (i.e. primarily that a DF of 6 represents ‘neutral’ soil moisture, one neither particularly wet 

or dry), it is reasonable to assume that the threshold of 6 will remain constant across Tasmania, 

although this is yet to be tested and validated. Further work is needed to expand the scope of this 

study to include all irrigated regions of Tasmania, followed by the inclusion of other national 

irrigation schemes. The methods described in this article show great promise, but there is room 

for further work, such as identifying irrigation events in electrical load data, or incorporating 

smaller scale or crop-specific components into the antecedent weather index. Similarly, to 

understand what drives the scheduling of irrigation, it would be useful to investigate the 

behavioural responses of irrigators to antecedent conditions and weather forecasts. Establishing 
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the amount of rainfall required to prevent irrigation, and subsequently how long the effect will 

last, would be a valuable tool for irrigators, and for water and electricity providers.  

Conclusions  

In this study, the Greater Meander Irrigation Scheme case study provided several significant 

findings with regard to the relationship between irrigation load and antecedent weather 

conditions in Tasmania. Irrigation load was identified in the load profile from 10 pm to 6 pm, the 

period with the lowest electrical power tariff, with relationships identified between irrigation 

load and both the SDI and DF. The relationship with the DF was found to be the most significant 

as the index accounts for cumulative antecedent conditions, and it is these conditions that 

irrigators respond to with most certainty (i.e. forecasts are a factor, but cannot wholly be relied 

upon). A threshold of DF > 6 typically separates days of irrigation from days of no irrigation. 

This threshold was supported by the regression analysis and the fitted GAM, as well as the 

behaviour of the DF index itself. A DF of 6 represents a roughly ‘neutral’ DF, where it is neither 

particularly dry nor wet. We conclude that a threshold of DF > 6 offers a potentially useful ‘rule-

of-thumb’ for managers of electricity supply and distribution, managers of water resources, and 

irrigators. It may be used to minimise the risk of electrical supply issues, improve water 

availability and optimise irrigation scheduling. The findings of the study support the expansion 

of the methodologies to the rest of Tasmania, and potentially Australia, along with the 

replacement of the DF with a new irrigation index. 

!  
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Figure captions 

Fig. 1 Location of the Greater Meander Irrigation Scheme (GMIS) in northern Tasmania, 

Australia. 

 

Fig. 2 Comparison of time series from the Meander region of Tasmania (2004-2016): a) 

Electrical Load, b) Irrigation Load, c) Drought Factor, d) Soil Dryness Index, e) Daily Rainfall, 

and f) Daily Maximum Temperature. The 2010/11 and 2012/13 irrigation seasons are highlighted 

(grey shading), representing a cool/wet season and a hot/dry season respectively. 

 

Fig. 3 Comparison of Soil Dryness Index (SDI) and Irrigation Load. Each colour represents a 

growing year (July to June).  

 

Fig. 4 Comparison of Drought Factor (DF) and Irrigation Load. Each colour represents a 

growing year (July to June).  

 

Fig. 5 GAM fits of Irrigation Load vs. Drought Factor (DF), shown as a difference from the 

mean load. Grey shading represents the 95% confidence interval.  

 

Fig. 6 Irrigation load compared to Drought Factor (DF) for all data, separated by ‘growing year’. 

The black line is the mean of all irrigation seasons post 2007.   

 

Fig. 7 Irrigation load compared to Drought Factor (DF) and rainfall for each of the irrigation 

seasons 2004-2015. The irrigation load (green line) is normalised to the maximum load of that 

growing year. The DF (brown line) is normalised to 10. Rainfall (blue points) are binned and 

normalised to the max-bin (bins: 0, 0-2, 2-3.5, 3.5-5.5, 5.5-9, 9-15.5 and 15.5+ mm, representing 

0-75, 75-80, 80-85, 90-95, 95-100 percentiles).  
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Fig. 1 Location of the Greater Meander Irrigation Scheme (GMIS) in northern Tasmania, Australia.  
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Fig. 2 Comparison of time series from the Meander region of Tasmania (2004-2016): a) Electrical Load, b) 
Irrigation Load, c) Drought Factor, d) Soil Dryness Index, e) Daily Rainfall, and f) Daily Maximum 

Temperature. The 2010/11 and 2012/13 irrigation seasons are highlighted (grey shading), representing a 

cool/wet season and a hot/dry season respectively.  
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Fig. 3 Comparison of Soil Dryness Index (SDI) and Irrigation Load. Each colour represents a growing year 
(July to June).  
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Fig. 4 Comparison of Drought Factor (DF) and Irrigation Load. Each colour represents a growing year (July 
to June).  
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Fig. 5 GAM fits of Irrigation Load vs. Drought Factor (DF), shown as a difference from the mean load. Grey 
shading represents the 95% confidence interval.  
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Fig. 6 Irrigation load compared to Drought Factor (DF) for all data, separated by 'growing year'. The black 
line is the mean of all irrigation seasons post 2007.  
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Fig. 7 Irrigation load compared to Drought Factor (DF) and rainfall for each of the irrigation seasons 2004-
2015. The irrigation load (green line) is normalised to the maximum load of that growing year. The DF 

(brown line) is normalised to 10. Rainfall (blue points) are binned and normalised to the max-bin (bins: 0, 
0-2, 2-3.5, 3.5-5.5, 5.5-9, 9-15.5 and 15.5+ mm, representing 0-75, 75-80, 80-85, 90-95, 95-100 

percentiles).  
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