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Shape-based methods have been proven to be computationally efficient techniques to quickly estimate the cost of

low-thrust interplanetary trajectories. However, in some cases the solution is far from optimal, like in the case of

the exponential sinusoid,1 or requires a special treatment when the motion is not completely planar. More recent

developments2, 3 allows for a full three-dimensional representation of the trajectory but either constraints need to be

imposed on the thrust direction or approximations need to be introduced on the trajectory time-evolution, causing the

domain of representable trajectories to shrink. As a consequence, trajectories transferring to highly inclined or highly

eccentric orbits can lead to infeasible control laws. This paper presents a new analytical framework for the quick

estimation of the ∆v and peak thrust of two-point boundary value low-thrust transfers. The novelty of this method is

that it solves an inverse optimal control problem in Hill’s canonical variables. The parameterisation in Hill’s variables

was selected so that the shaping of the in-plane and out-of-plane motions can be treated separately and the boundary

conditions can be analytically satisfied. This choice leads to a computationally efficient extraction of the control

profile and allows for the integration of known analytical solutions for the in-plane motion. The computation of the

value of the objective function (usually the total ∆v or the spacecraft final mass) and path constraints is reduced to

computationally inexpensive quadratures. The shaping proposed in this paper is piecewise continuous and allows for

a flexible full three-dimensional representation of the trajectory. In particular, the out-of-plane motion is represented

by piecewise continuous functions so that one can independently maximise both the change of inclination and the

variation of the longitude of the ascending node. The method is applied to some well-known test cases, a rendezvous

with Mars, asteroid 1989ML and comet Tempel-1, and the results compared to the solutions obtained with exponential

sinusoid, pseudoequinoctial elements and spherical shaping.

I. INTRODUCTION

The trajectory design for a low-thrust driven

spacecraft has been historically tackled as an op-

timization problem, formulating the mathematical

model as a boundary value problem with associated

a performance index J to optimize, usually the total

∆V , final mass or minimum time of flight. This ap-

proach utilizes optimal control theory principles to

numerically compute the optimal solution able to re-

spect the equation of motion, the boundary condi-

tions and to optimize the performance index. How-

ever, practical methods based on this formulation are

computationally expensive for complex cases such as

low-thrust trajectory optimisation. Therefore, they

are not suitable for the preliminary assessment of a

new mission, a stage when a huge amount of pos-

sible scenarios shall be evaluated. In addition, the

majority of modern high-fidelity methods require an

accurate initial guess to start with.

Shaping methods are a class of techniques which

have proven to be computationally efficient for pre-

liminary mission analysis and able to generate a quite

accurate solution, very close to the optimal one for

some test cases in literature.3 A detailed optimality

analysis has been performed on solutions computed

by a shaping method,4 which further justifies the em-

ployment of this approach.

The purpose of the paper is to present the devel-

opment of a novel shaping framework in Hill vari-

ables (Section II), suitable to overcome some of the

method’s common limitations. Within the set frame-

work, a shaping parameterization which separates

the in-plane dynamics from the out-of-plane one is

proposed in Section III. The developed method will

be tested in Section IV against a variety of ren-

IAC–17–C1,6,1,x41322 Page 1 of 11



68th International Astronautical Congress, Adelaide, Australia. Copyright c© 2017 by the authors. Published by the International Astronautical Federation with permission.

dezvous test cases and compared with the available

results in literature, whereas the conclusions are pre-

sented in Section V.

II. SHAPING FRAMEWORK

The intuitive idea that the perturbations of the in-

plane dynamics are of a different nature than those

affecting the orbital plane is well depicted by the dy-

namical equations written in Hill’s variables.5 This

set of canonical variables is constituted by a mix of

rapidly varying variables r, vr and u, respectively the

radius vector, the radial velocity and the argument of

latitude, and by three Delaunay integrals of motion

h, G and H , respectively the right ascension of the

ascending node, the angular momentum magnitude

and its z−component.

However, by definition, the parameter

H = G cos i provides redundant information

and its dynamical evolution is influenced by two

perturbance components. In this paper, the govern-

ing equations are written in Hill’s variables, with

the inclination I substituting the parameter H , as

follows:

ṙ = vr

v̇r = G2/r3 − µ/r2 + Fr

Ġ = rFu

ḣ = r sinuFn/(G sin I)

İ = r cosuFn/G

u̇ = G/r2 − r cos i sinuFn/(G sin I)

[1]

where Fr, Fu and Fn are respectively the radial,

transversal and normal components of the thrust ac-

celeration. This parameter replacement results in a

system of equations simpler to invert as any of them

depends on one control component only.

Instead of the time variable, the fast angular quan-

tity u can be used as independent variable, being

more suitable to parameterize the state evolution for

multi-revolution trajectories. This variable trans-

formation holds because there is a smooth one-to-

one mapping between time and the angular vari-

able, meaning that u(t) is strictly monotonous, a

condition always satisfied for low-thrust trajectories.

The equations of motion are re-written in terms of

u by dividing all the relations in Equation (1) by

du/dt = G/r2 − r cos i sinuFn/(G sin I). Hence,

the new system of equations, gathered in matrix

form, takes the form:

α
′ = A(α)F+ b(α) [2]

where α = [ r, vr, G, h, I ], the prime symbol

indicates the derivative with respect to u, F contains

the thrust acceleration components, and the quanti-

ties A(α) and b(α) are defined as:

A =
1

du/dt













0 0 0
1 0 0
0 r 0

0 0 r sinu
G sin I

0 0 r cosu
G













b
T =

1

du/dt

[

vr

(

G2

r3
− µ

r2

)

0 0 0
]

By studying the rearranged system in Equation (2), it

is clear how the parameters describing the plane ori-

entation, i.e. h and I , depend only on Fn. On the

contrary, as a consequence of the independent vari-

able transformation, the variables vr and G depend

on two thrust components, one in-plane, Fr or Fu,

and the normal Fn, because of the term du/dt.

A Out-of-plane component inversion

Given the former premises, it follows that the first

step in the inversion process is the extraction of the

normal component by inversion of h′ and I ′, explic-

itly as:

Fn =
G2 sin I
R3 sinu

H′

1 +H′ cos I

Fn =
G2

R3

I ′

I ′ cot I sinu+ cosu

[3]

where R, G, H and I are the selected functional

forms of r, G, h and I respectively (see Section III).

Because the system of equations is overdetermined

in Fn, the selection of the shapes H and I is not

arbitrary, but they shall define the normal compo-

nent uniquely and respect the boundary conditions at

same time. One approach could result from equaling

the right-hand sides as:
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H′I ′ cos I(1− sinu) + I ′ sinu = H′ sin I cosu
[4]

and computing H(u) and I(u) from this differen-

tial equation. However, no function able to satisfy

the aforementioned condition has been found. Fur-

thermore, even if some functional forms were found

to respect Equation (4), it is very likely that those

shaped functions could result in non-optimal, or even

non-feasible, trajectories.

A different approach has been employed to de-

fine uniquely Fn(t), by exploiting the physics of the

problem to generate near-optimal maneuvers at the

same time. The out-of-plane equations can be writ-

ten in a more compact but significant form as:

h′ =
1

du/dt

rFn

G sin I
sinu

I ′ =
1

du/dt

rFn

G
cosu

[5]

The first expression shows that the right ascension h
shall be changed preferably when sinu is maximum

or minimum, i.e. for u = k π
2 with k = 1, 2, . . . ,

to reduce the requested Fn quantity for a prescribed

change of h. On the other hand, the inclination i
shall be changed when the spacecraft is near the line

of nodes, i.e. when cosu is maximum or minimum

for u = kπ with k = 0, 1, 2, . . . , in order to make

the maneuver for changing i more convenient from

a propellant consumption point of view. Hence, the

arcs where it is more advisable to change h and i
are not overlapping. In addition, in those zones the

other parameter is only marginally affected, repro-

ducing a well-known result in orbital mechanics for

impulsive maneuvers.6 This convenient decoupling

has resulted in the definition of a novel shaping ap-

proach for the right ascension of the ascending node

and the inclination, named piecewise shaping.

The procedure can be schematized as follows:

• When u ∈ [k π
2 − α, k π

2 + α] for k = 1, 2, . . . :

– Define the shaping function h = H(u)
and compute its derivative H′;

– Plug them in Equation (3-1) to obtain

Fn(u) able to actually generate the pre-

scribed h-evolution

– Plug the extracted control profile Fn(u)
in Equation (5-2) to compute by iterative

quadrature the inclination evolution i(u);

• When u ∈ [kπ−α, kπ+α] for k = 0, 1, 2, . . . :

– Define the shaping function i = I(u) and

compute its derivative I ′;

– Plug them in Equation (3-2) to obtain

Fn(u) able to actually generate the pre-

scribed i-evolution;

– Plug the extracted control profile Fn(u) in

Equation (5-1) to compute by quadrature

the right ascension evolution h(u);

• When u /∈ [k π
2 − α, k π

2 + α] and u /∈ [kπ −
α, kπ + α]:

– h and i are kept constant and therefore the

out-of-plane component is zero Fn = 0.

Following this procedure, the control component Fn

is uniquely defined on each sub-interval. The inter-

vals [k π
2 − α, k π

2 + α] and [kπ − α, kπ + α] have

been defined symmetrically around a center point to

reduce the other element overall variation. Indeed,

in the intervals where h is changing by the prescribed

quantity H(u), the resulting inclination change is de-

fined as:

∆I =

∫ k π
2
+α

k π
2
−α

1

du/dt

RFn

G cosu du [6]

The final inclination is usually approaching its ini-

tial value, i.e. ∆I ≈ 0, because the cosine is an

odd-function on the symmetrical integration interval

and because, if small values of α are selected, the

other quantities are varying marginally as attenuated

by small values of cosu near u = k π
2 . A corre-

spondent situation happens in the intervals where the

inclination i is changing by the prescribed quantity

I(u), leading to small changes of the right ascension

of the ascending node ∆h ≈ 0. This is a valuable

characteristic because it ensures that the undesired

changes of one variable in the intervals where the

other is changing are limited, resulting in an accu-

rate satisfaction of the boundary conditions on both

the variables.

IAC–17–C1,6,1,x41322 Page 3 of 11



68th International Astronautical Congress, Adelaide, Australia. Copyright c© 2017 by the authors. Published by the International Astronautical Federation with permission.

B In-plane components inversion

Two of the three Hill parameters describing the

in-plane motion, i.e. the radius and the radial

velocity, are connected by the derivative relation

vr = r′ · du/dt (or the equivalent integral form). For

this reason, they shall not be shaped independently,

but one shall be computed from the other parameter-

ization. In the current framework development, the

radius is shaped as r = R(u), leading the radial ve-

locity to be parameterize as:

vr =
dR
dt

= R′du

dt
= R′

(

G

R2
− R cot i sinu

G
Fn

)

[7]

This alternative allows to compute the coefficients

able satisfy the boundary conditions on both the ra-

dius and velocity analytically. On the contrary, the

choice of shaping directly vr = Vr(u) has been dis-

carded because r cannot be integrated in an analyt-

ical closed-form, and the boundary conditions can-

not be quickly satisfied. When a suitable R is se-

lected, the radial component is extracted analytically

extracted by inversion of Equation (2-2) as:

Fr =
µ

R2
−

G
2

R3
+

+R
′′

[

G

R2
−

R cot I sinu

G
Fn

][

G

R2
−

R cot I sinu

G
Fn

]

′

[8]

where Fn has been computed as in Section II.A. The

derivative of the square bracket in Equation (8) intro-

duces limitations on the selection of the parameteric

functions, which shall be at least piecewise continu-

ously differentiable.

The last in-plane element is shaped separately as

G = G(u), and the transversal force component form

obtained as:

Fu =
G′

R

[ G
R2

− R cot I sinu

G Fn

]

[9]

C ∆V and Time-of-flight computation

The total cost of the transfer can be estimated in

terms of ∆V as:

∆V =

∫ uf

ui

|u| 1

du/dt
du [10]

where ui and uf are the initial and final values of the

argument of latitude. In addition, the time-of-flight

is computed as:

TOF =

∫ uf

ui

1

du/dt
du [11]

Since only the final value is of interest for both these

quantities, a fast quadrature approximation can be

used, e.g. a Gauss-Legendre scheme as in this pa-

per. All the quantities in Equations (10)-(11) are

known algebraically, resulting in inexpensive func-

tion evaluations for the quadratures or possible path

constraints, such as the maximum thrust value.

III. HILL SHAPING

The in-plane elements r and G can be defined by

any arbitrary family of parametric functions, with the

only condition of being positive definite and contin-

uously differentiable. Thanks to the above-defined

piecewise shaping for the out-of-plane parameters,

the functional forms of h and I within the respective

intervals can be shaped freely as well. A convenient

choice is to select functions whose coefficients can

be computed linearly with respect to the boundary

conditions. Since the developed framework in Hill’s

variables allows separating the planar motion from

the orbital plane’s dynamics, they can be shaped and

treated separately.

A Out-of-plane shaping

The boundary conditions are trivially formulated

as:







I(u0) = I0, I(uf ) = If

H(u0) = h0, H(uf ) = hf

[12]

However, because low-thrust trajectories usually in-

volve a continuous thrust over a large number of

revolutions, there could be many intervals such that

u ∈ [k π
2 −α, k π

2 +α] and u ∈ [kπ−α, kπ+α]. It is

therefore convenient to spread the total ∆I and ∆h
variations over those intervals through intermediate

increments, leading to smaller peaks of the out-of-

plane control component. On the other hand, two

issues arise from this piecewise shaping:

IAC–17–C1,6,1,x41322 Page 4 of 11
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• The strategy for dividing the total ∆h and ∆I
changes into smaller increments ∆hj and ∆Ij ;

• The definition of multiple Hj and Ij shaping

functions over the different intervals.

For the former, two strategies have been imple-

mented in the Hill shaping method. The first strat-

egy implies a uniform division of the total change.

Therefore, if the number of trajectory’s intervals sat-

isfying the relation u ∈ [k π
2 − α, k π

2 + α] is labeled

as nh, the increments within each interval are defined

as:

∆hj =
∆h

nh
for j = 1, . . . , nh [13]

The same procedure is applied for the ni intervals

where the relation u ∈ [kπ − α, kπ + α] is satisfied.

The second strategy exploits the functional form of

Equations (3). In those expressions it is highlighted

that, for a fixed h or I change, the Fn control compo-

nent is proportional to G2/R3. Since these quantities

are already known at this stage, being the first to be

guessed, the evolution of that ratio is known along

the trajectory. Therefore, the increments ∆hj and

∆Ij can be defined as proportional to an averaged

value of the inverse ratio R3/G2 within each inter-

val. This procedure exploits the known part of the

trajectory evolution for optimizing further the out-

of-plane control, which now results approximately

equal within each interval. On the contrary, for the

first strategy, the Fn magnitude is dissimilar in differ-

ent intervals, resulting proportional to G2/R3. These

characteristics can be seen in Figure 1, where the two

strategies have been run for the same test case, using

a quite big α-value to better depict this difference.

As a general characteristic for the run simulations,

the thrust peak and the total ∆Vn for normal maneu-

vers are lower for the second strategy.

The problem of shape selection for h and I evo-

lution can be addressed now that the parameters’ in-

crements have been defined for every interval, and

consequently the intermediate boundary conditions

for the shaping functions Hj and Ij within each in-

terval have been determined. Because the number

of intervals is usually high in multi-revolution low-

thrust trajectories, these functions will not involve

free parameters but will be defined completely by the

Fig. 1: Approach comparison for dividing total ∆h
and ∆I; red-line where h changes, black-line where

I varies.

boundary conditions. Any of them shall have at least

two parameters to satisfy the initial and final values,

hence the linear evolution is a logic choice. How-

ever, a linear evolution does not exploit the informa-

tion that the central zone of the defined intervals, i.e.

where |sinu| and |cosu| assume the maximum val-

ues, is the most convenient for varying the param-

eters. Another disadvantage is that a linear shape

generates a discontinuous out-of-plane control pro-

file, which make less precise the validation of the

computed trajectory by control propagation. To over-

come both these issues, a 3rd-order polynomial func-

tion was selected. In order to eliminate the free pa-

rameters from the selected shape and to make the re-

sulting out-of-plane control profile Fn(u) a contin-

uous function, two extra boundary conditions have

been added on the initial and final first-derivative val-

ues to be zero.

Hi =

3
∑

k=0

Hik(u− ui0)
k for i = 1, . . . , nh

Ij =
3

∑

k=0

Ijk(u− uj0)
k for j = 1, . . . , ni

[14]

where ui0 and uj0 are the initial argument of latitute

values of the correspondent thrusting interval, while

Hik and Ijk are the coefficients analytically deter-

mined to satisfy the 4 boundary conditions. This

functional form with the imposed conditions also en-

sures that the parameters derivatives h′ and I ′ are
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greater at the center of the interval and smaller near

its extrema, leading to an optimal evolution of the

parameters from the propellant consumption point of

view. Furthermore, it imposes the normal control Fn

to be zero at the departure and arrival conditions, re-

sulting in the independent variable time-derivative to

be equal to its unperturbed value as

du

dt

∣

∣

∣

u0

=
G(u0)
R(u0)2

du

dt

∣

∣

∣

uf

=
G(uf )
R(uf )2

[15]

automatically satisfying the boundary constraints on

the angular velocity when the in-plane boundary con-

ditions for R and G are met.

The overall defined shaping and procedure allow

to define a continuous Fn control profile able to sat-

isfy, when propagated, the boundary conditions on

both the right ascension of the ascending node and

on the inclination up to a very low threshold, by ex-

ploiting optimally the functional relations within the

equations of the out-of-plane motion.

B In-plane shaping

The radius parametrization shall satisfy four

boundary conditions, two on initial and final distance

and two on initial and final radial velocity, while the

angular momentum have two conditions on its ex-

trema. These conditions can be summarized as fol-

lows:















R(ui) = Ri R(uf ) = Rf

R′(u0) =
vri

du/dt|ui
R′(uf ) =

vrf
du/dt|uf

G(ui) = Gi G(uf ) = Gf

[16]

Physically, R and G shall be selected as positive

functions because they define respectively the radius

and the angular momentum magnitude, two non-

negative quantities. Again, another valuable char-

acteristics would be to have expressions for which

the boundary conditions can be satisfied analytically,

avoiding an expensive iterative procedure.

In the two-body problem, the radius evolution as

function of the argument of latitude u is given by:6

1

r
=

1

a(1− e2)
+ e cosω cosu+ e sinω sinu [17]

where the quantities a, e and ω are the orbital semi-

major axis, eccentricity and argument of periapsis,

constants of motion for the unperturbed problem.

When the perturbed two-body motion is considered,

following the logic of the variation of parameters

method, we can suppose that the functional form of

the solution remains unaltered. However, the param-

eters, which were constant in the reference motion,

are now evolving as function of the independent vari-

able. Following this reasoning, the radius evolution

is shaped as:

1

R = R0+R1u+(R2+R3u) cosu+(R4+R5u) sinu

[18]

A similar radius shaping resulted in feasible and con-

venient trajectories from the propellant consumption

point of view in the spherical shaping.3 In the novel

Hill shaping, this radius shape provides flexibility as

two free parameters can be used to optimize the tra-

jectory and reduce the constraints’ violation. The co-

efficients R0, R1, R2 and R4 are used to satisfy ana-

lytically the boundary conditions as above discussed.

De Pascale and Vasile in 20062 explained how

the numerical integration of a tangential thrust with

constant magnitude profile leads to an exponential

evolution of the parameter p = a(1 − e2), while

trigonometric terms are negligible for its secular evo-

lution. Because the angular momentum is directly

connected to the semilatus rectum as G =
√
µp, the

latter is shaped and then G defined accordingly as:

G =

√

µ
(

P0 + P1eP2(u−u0)
)

[19]

The parameters P0 and P1 are employed to respect

analytically the boundary conditions, while P2 is a

free parameter.

IV. TEST CASES

Three test cases, already studied in literature,3 have

been analyzed to test the performance of the devel-

oped Hill piecewise shaping, specifically rendezvous

departing from Earth and approaching Mars, the as-

teroid 1989ML, and the comet Tempel-1. The orbital

elements used for the test cases are summarized in

Table 1. The initial mass of the spacecraft is set to

IAC–17–C1,6,1,x41322 Page 6 of 11
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1000 kg with a low-thrust engine of specific impulse

of 3000 s.

Mars 1989ML Tempel-1

a [AU] 1.524 1.272 3.124

e [-] 0.093 0.137 0.517

I [deg] 1.850 4.378 10.527

h [deh] 49.557 104.411 68.933

ω [deg] 286.502 183.267 178.926

Table 1: Reference Keplerian elements of Mars,

1989ML and Tempel-1.

The shaping approach described in the previous

sections has been implemented in MATLAB and

coupled with the local NLP solver fmincon to prop-

erly tune the free parameters to optimize the trajec-

tory ∆V and respect the imposed constraints. The

computations have been performed with a processor

Intel Core i5-2410M on a laptop running Windows

7.

A Earth-Mars rendezvous

This mission scenario involves a 3D trajectory from

Earth to Mars which has been already investigated

with both the pseudo-equinoctial and the spherical

shaping methods. Therefore, it represents a reliable

basis for methods comparison. The search-space of

the global variables in this test-case was discretized

with a uniform grid as:3

Range Step

Tdep 01/01/2020-31/12/2027 15-day

TOF 500-2000 20-day

Nrev 0-4 1-rev

Table 2: Earth-Mars discretization grid for global

search.

On top of the time of flight constraint, a maximum

value of 0.2 N has been imposed on the peak thrust

for the sake of comparison. Indeed, this value has

been chosen as the best trajectory computed by the

spherical shaping, which imposes no constraint on

the thrust, has a peak value of 0.22 N (see Ta-

ble 3). Figure 2 illustrates the ∆V required for

the rendezvous when computed by the Hill shap-

ing, the spherical shaping and the pseudoequinoctial

(a) Hill shaping.

(b) Spherical Shaping.3

(c) Pseudoequinoctial Shaping.3

Fig. 2: Comparison of ∆V estimation as function of

departure date and time of flight when computed

by different shaping methods for Earth-Mars ren-

dezvous.

one, while Table 3 resumes the percentage of TOF

feasible trajectories as well as the best-found ren-
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dezvous solution. The Hill shaping allows a wider

Pseudo-Eq.3 Spherical3 Hill

∆v [km/s] 5.83 5.74 5.67

Max Thrust [N] 0.16 0.22 0.14

Feasible traj. 89.1% 100% 99.7%

Table 3: Earth-Mars rendezvous mission results

comparison.

set of low-cost mission when compared to the pseu-

doequinoctial approach. While the spherical shap-

ing computes the highest number of trajectories be-

low 6 km/s, also because of the lack of thrust peak

constraints, the Hill approach opens new inexpensive

departure-duration combinations or it shapes differ-

ently the already cheap ones, still computing almost

only feasible solutions. In terms of the single best

trajectory, among all the shaping approaches, the Hill

method finds the cheapest transfer with the lowest

peak thrust, departing the June 28th of 2026 (9674.5

MJD2000) with a time of flight of 640 days. If the

thrust peak constraint is removed as for the other two

methods, the best trajectory found has a ∆V of 5.61
km/s with maximum thrust of 0.32 N.

B Earth-1989ML rendezvous

The systematic search has been performed on a grid

defined as:

Range Step

Tdep 01/01/2020-31/12/2027 15-day

TOF 100-1000 20-day

Nrev 0-2 1-rev

Table 4: Earth-1989ML discretization grid for global

search.

Within this discretization, the comparison of the

global investigation with different methods are

shown in Figure 3. All the three shapings catch the

same areas where the transfer is more propellant con-

venient. Indeed, because the synodic period of the

Earth-1989ML system is approximately 3.3 years,

two quasi-periodic zones can be noticed. On a gen-

eral basis the Hill shaping performs slightly worse

than the spherical approach, probably because of the

simpler radius shaping selected for this work. On the

(a) Hill shaping.

(b) Spherical Shaping.3

(c) Pseudoequinoctial Shaping.3

Fig. 3: Comparison of ∆V estimation as function of

departure date and time of flight when computed by

different shaping methods for Earth-1989ML ren-

dezvous.

contrary, the improvements with respect to the pseu-

doequinoctial approach are widely distributed for all
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the range of time-of-flight.

The best solutions computed by each shaping

method are reported in Table 5.

Pseudo-Eq.3 Spherical3 Hill

∆v [km/s] 4.82 4.47 4.55

Max Thrust [N] 0.33 0.31 0.52

Feasible traj. 75.5% 83.7% 74.33%

Table 5: Earth-1989ML rendezvous mission results

comparison.

The Hill solution for this test case requires a high

peak thrust and higher ∆V with respect to the spher-

ical shaping. In addition, the percentage of feasible

solutions decreases, in particular when short trans-

fers are considered, probably due to the inability of

the selected shaping for p to represent shorter oscil-

lations.

C Earth-Tempel 1 rendezvous

Tempel-1 is a Jupiter-family comet with a very ec-

centric and quite inclined orbit. This test case has

been studied by McConaghy et Al.7 with the ex-

ponential sinusoid, and by Novak and Vasile3 with

both the pseudoequinoctial and the spherical shaping

methods. To run the Hill shaping and compare the

performances, the search-space of the global vari-

ables is defined as:

Range Step

Tdep 01/01/2000-03/01/2016 15-day

TOF 400-1500 20-day

Nrev 0-2 1-rev

Table 6: Earth-Tempel 1 discretization grid for

global search.

The information on the day-step for grid discretiza-

tion was not available from previous literature, there-

fore the combinations investigated in this research

could be slightly different from those studied with

different shapings.

The best results’ comparison is reported in Ta-

ble 7, also resuming the percentage of TOF feasi-

ble trajectories. The Hill shaping provides a worse

solution when compared to the spherical shaping in

terms of ∆V , but better in terms of peak thrust. This

result is probably caused by the secular shape chosen

for The opposite happens when the Hill and pseudo-

equinoctial methods are compared, while the expo-

nential sinusoid solution requires the highest propel-

lant ratio among all the approaches.

Expsin7 Ps.-Eq.3 Spherical3 Hill

∆v [km/s] - 13.44 11.13 13.06

Prop. ratio 50% 36.7% 31.5% 35.8%

Max Thr. [N] - 1.13 1.40 1.30

Feasible traj. - 43.2% 68.1% 90.3%

Table 7: Earth-Tempel rendezvous mission results

comparison.

The Hill’s best trajectory, for which the spacecraft

leaves the Earth the 14th April 2006 (2295 MJD2000)

to reach Tempel-1 in 1500 days, is showed in Fig-

ure 4 as well as the corresponding Fr (blue), Fu

(black) and Fn (red) profiles.

(a) x-y trajectory view. (b) Thrust profiles.

Fig. 4: Trajectory and thrust profile of Earth-Tempel

rendezvous.

It is worth noting how, near the departure date, the

spacecraft thrusts mainly in transversal and radial

direction to raise the semi-major axis and increase

the orbital eccentricity. Once the latter value is high

enough, the radial component is reduced and mainly

the orbit scale is changed by Fu. There are only two

main out-of-plane thrust arcs because the whole tra-

jectory takes less than one revolution.

Figure 5 depicts the ∆V associated to each ren-

dezvous on the discretized grid for different shaping

methods. The three plots show that there is a periodic

pattern following the synodic period of the departure

and arrival orbits, and that trajectories with higher

time-of-flight are favourable. The Hill method leads
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(a) Hill shaping.

(b) Spherical Shaping.3

(c) Pseudoequinoctial Shaping.3

Fig. 5: Comparison of ∆V estimation as function of

departure date and time of flight when computed

by different shaping methods for Earth-Tempel ren-

dezvous.

to a widening of the launch and time-of-flight win-

dows where the trajectory is achievable with a con-

venient consumption of propellant. Therefore, even

if the Hill’s best solution is worse than the spherical

shaping one, on average the method performs bet-

ter on the majority of global variables’ combinations,

leading to 90% of time-of-flight feasible solutions.

V. CONCLUSIONS

The paper presents the development of a novel

shaping framework in Hill variables to quickly es-

timate the ∆V and control profile of an orbital trans-

fer. It has been shown how this formulation has the

major novel advantage of separating the treatment of

the in-plane and out-of-plane dynamics. Within this

framework, it has been designed a specific piecewise

shaping able to describe complete 3D trajectories

thanks to the out-of-plane parameterization, and to

respect constraints on time-of-flight and peak thrust

thanks to the free parameters of the in-plane shap-

ing. This method has been tested against three ren-

dezvous cases and its strengths and weaknesses high-

lighted in comparison to other shaping approaches.

The Hill shaping resulted in ∆V optimal transfers

on wider departure and time-of-flight windows, and

it showed high flexibility in respecting the time-of-

flight constraints.

As a future research idea, different shapes shall

be tested for the in-plane trajectory as the selected

parameterization did not perform optimally for some

short transfers, while the out-of-plane motion can re-

main unaltered as it behaved properly on all the test

cases. Again, it is possible to change only the in-

plane shaping because of the dynamics separation

presented in the framework development, the main

advantage of the Hill formulation.
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