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 25 

ABSTRACT 26 

There is increasing interest recently in developing intranasal vaccines against respiratory tract 27 

infections. Antibody response is critical in vaccine-induced protection and TFH is considered 28 

important in mediating antibody response. Most data supporting the role for TFH in antibody response 29 

are from animal studies, and direct evidence from humans is limited, apart from TFH-like cells in 30 

blood. We studied activation and induction of TFH and its role on anti-influenza antibody response by 31 

live-attenuated influenza vaccine(LAIV) in human nasopharynx-associated lymphoid tissue(NALT). 32 

TFH activation in adenotonsillar tissues were analysed by flow-cytometry, and anti-33 

hemagglutinin(HA) antibodies examined following LAIV stimulation of tonsillar mononuclear 34 

cells(MNC). Induction of antigen-specific TFH by LAIV was studied by flow-cytometry for induced 35 

TFH and CD154 expression. LAIV induced TFH proliferation which correlated with anti-HA antibody 36 

production, and TFH was shown critical for antibody response. Induction of TFH from naïve T cells by 37 

LAIV was shown in newly induced TFH expressing BCL6 and CD21, which was followed by the 38 

detection of anti-HA antibodies. Antigen specificity of LAIV-induced TFH was demonstrated by the 39 

expression of antigen-specific T cell activation marker CD154 upon challenge by H1N1 virus antigen 40 

or HA. LAIV-induced TFH differentiation was inhibited by BCL6, IL21, ICOS and CD40 signalling 41 

blocking respectively, and that diminished anti-HA antibody production. Conclusion: We 42 

demonstrate for the first time the induction of antigen-specific TFH by LAIV in human NALT that 43 

provide critical support for anti-influenza antibody response. Promoting antigen-specific TFH in 44 

NALT by intranasal vaccines may provide an effective vaccination strategy against respiratory 45 

infections in humans.  46 

 47 
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IMPORTANCE. Airway infection such as influenza is common in humans. Intranasal vaccination has 48 

been considered a more biologically relevant and effective way of immunization against airway 49 

infection.  Vaccine-induced antibody response is crucial for protection against infection. Recent data 50 

from animal studies suggest one type of T cells, named TFH is important for the antibody response. 51 

However, data on whether this TFH-mediated help for antibody production operates in humans is 52 

limited, due to the lack of access to human immune tissue containing the TFH. In this study, we 53 

demonstrated the induction of TFH cells by an intranasal influenza vaccine in human immune tissue 54 

that provide critical support for anti-influenza antibody response. Our findings provide direct 55 

evidence that TFH cells play a critical role in vaccine-induced immunity in humans, and suggest a 56 

novel strategy to promote such cells by intranasal vaccines against respiratory infections.  57 

Keywords: T follicular helper cell (TFH), LAIV, influenza vaccine, mucosal immunity, antibody 58 

response, nasopharynx-associated lymphoid tissue (NALT) 59 
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INTRODUCTION 70 

Vaccination is one of the most effective preventative measures against pathogenic infection. Despite 71 

its success, there are still many infectious diseases in humans that lack effective vaccines. New 72 

strategies to improve vaccine immunogenicity are constantly being explored. Recent studies suggest 73 

a critical role for T follicular helper cells (TFH) in vaccine-induced immunity (1, 2) and promoting 74 

TFH has been considered a promising vaccination strategy. However, most of the current evidence 75 

supporting the importance of TFH in vaccination comes from animal studies, and direct evidence from 76 

humans is limited, apart from the detection of TFH-like cells from human peripheral blood samples 77 

which are thought as TFH equivalent (3, 4). Whether this TFH–mediated critical help for vaccine-78 

induced B cell antibody response operates in humans remain largely unsubstantiated. Several recent 79 

studies have reported that the presence of “TFH -like” cells in peripheral blood following parenteral 80 

influenza vaccination appeared to correlate with an anti-hemagglutinin (HA) antibody response (5, 81 

6). 82 

TFH are a subset of CD4+ T cells in secondary lymphoid tissue that provide help to cognate B cells 83 

for high affinity antibody production in germinal centers (GC) and for long-term humoral 84 

immunity(7). TFH express chemokine receptor CXCR5 and inducible costimulator-ICOS, IL21 and 85 

the transcription factor B-cell lymphoma 6 (BCL6) (8). Considering the importance of TFH for B cell 86 

antibody response, novel vaccines to induce/activate TFH cells may be an effective vaccination 87 

strategy for better vaccine efficacy in humans. 88 

Influenza virus infects nasopharyngeal mucosa by binding its surface HA to sialic acid receptors on 89 

the host cell (9). Intranasal vaccination has been proposed as an effective way of immunising against 90 

influenza through induction of anti-HA antibody, which relies on the local mucosal immune tissue, 91 

i.e. nasopharynx-associated lymphoid tissue (NALT) as the induction site for immunity. Human 92 

adenoids and tonsils are major components of NALT and are known to be major induction sites for 93 
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both mucosal and systemic immunity against upper respiratory tract pathogens including influenza 94 

virus (10-13).  95 

Live Attenuated Influenza Vaccines (LAIV) are administered as intranasal sprays and comprise of 96 

live-attenuated influenza type A (H1N1 and H3N2), and type B viruses. LAIV has been used in a 97 

number of countries including USA and Canada (FluMist®) (14), and in Europe (Fluenz™), and been 98 

shown to induce both mucosal and serum antibodies, as well as cellular immune responses (15-17).  99 

Although LAIV has been shown to be effective against influenza (18), limited data are available on 100 

the induction of LAIV-induced immunity in humans and on how the anti-HA antibody response is 101 

regulated by T cells. We have studied the activation and induction of TFH by LAIV and its role on the 102 

anti-HA antibody response in human NALT tissue, and shown the induction of antigen-specific TFH 103 

in NALT is critical in LAIV-induced anti-influenza HA antibody response.  104 

 105 

RESULTS 106 

LAIV activates a proliferative TFH response in NALT that provides critical help for anti-HA 107 

antibody production  108 

Activation of TFH in NALT was examined by LAIV stimulation of adenotonsillar MNC for 3 days 109 

followed by enumerating TFH numbers using flow cytometry. As shown in Figure 1a+b, LAIV 110 

stimulation elicited a significant increase in TFH number (CD4+CXCR5hiICOShi) compared to 111 

unstimulated control (p<0.01). The TFH response was further assessed by analysis of T cell 112 

proliferation using CFSE cell tracing. As can be seen in Figure 1c+d, stimulation of tonsillar MNC 113 

by LAIV elicited a marked TFH proliferative response detected at day 5 of cell culture (p<0.001). 114 

Further analysis also demonstrated a marked increase in the number of germinal center B cells 115 

(CD19+CD38+IgD-) following LAIV stimulation (Fig 1e+f, p<0.01). 116 
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Anti-influenza antibody production was measured in tonsillar MNC culture supernatant following 117 

LAIV stimulation for 8 days. As expected, LAIV elicited marked anti-HA antibody production (Fig 118 

1g), and T- B cell co-culture experiment demonstrated B cells co-cultured with purified TFH elicited 119 

anti-HA antibody production, whereas no antibody production was shown in B cells co-cultured with 120 

non-TFH (CXCR5-CD4+) cells (Fig 1h).  121 

Induction of antigen-specific TFH by LAIV that correlates with antibody production  122 

To determine whether LAIV induces TFH differentiation from naive CD4+ T cells in NALT, tonsillar 123 

MNC depleted of CD45RO+ T cells (resulting in CD45RO- MNC) were stimulated for 7 days with 124 

LAIV. The CD45RO- MNC contained naive T cells but without CD45RO+ cells including CXCR5+ 125 

TFH. As shown in Figure 2a+b, LAIV stimulation of CD45RO- MNC induced a marked increase in 126 

the number of CD4+ICOS+CXCR5+ (TFH) cells following 7 days of cell culture. The induced TFH 127 

were shown to express the transcription factor BCL6 and cytokine IL21 (Fig 2c+d). The induction of 128 

TFH by LAIV was shown in a dose-dependent fashion (Fig 2e, top), which was accompanied by a 129 

dose-dependent increase in anti-HA IgG antibody production in the cell culture supernatant detected 130 

at day 14 (2e, bottom). All the 3 major antibody isotypes including IgG, IgM and IgA anti-HA 131 

antibodies were detected in the culture supernatant at day 14 following LAIV stimulation (Fig 2f). 132 

Having shown the induction of TFH by LAIV, we next examined the specificity of these induced TFH 133 

for influenza antigens. As CD154 is considered a reliable functional marker for antigen-activated T 134 

cells, i.e. a marker for antigen-specific T cells (5, 19-21), CD154 expression in the CD4+ T cell 135 

subsets was analyzed following either an inactivated sH1N1 virus antigen or recombinant HA 136 

challenge. A representative dot plot demonstrating the activated TFH (ICOS+CXCR5+, top right 137 

quadrant) following the antigen challenge was shown in Fig 3a, and the frequencies of activated TFH 138 

(% of CD4+ T cell) following sH1N1 antigen or HA challenge were shown in Fig 3b. Both antigen 139 
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stimulations activated a marked increase in the TFH numbers compared to non-antigen control, and as 140 

expected, the sH1N1 virus antigen challenge elicited a higher increase in TFH frequency than HA 141 

(3b). Among the activated TFH cells following sH1N1 challenge, a large proportion (mean 62.2%) 142 

expressed CD154 (3c+d), demonstrating the high frequency of activated influenza antigen–specific 143 

T cells in these TFH,  substantially higher than the other non-TFH CD4+ cell populations:  0.45% in 144 

ICOS-CXCR5-, 3.05% in ICOS-CXCR5+, and 20.6% in ICOS+CXCR5- populations (p<0.001, 145 

p<0.001 and p<0.01 respectively) (Fig 3c+d). A similar proportions of CD154+ CD4+ T cell 146 

populations including CD154+ TFH were shown following the HA antigen challenge (data not shown). 147 

LAIV-activated induction of TFH in NALT involves IL21, ICOS, CD40 and BCL6 signalling,   148 

As LAIV induced TFH cells expressed a high level of IL21 and ICOS, we determined whether the TFH 149 

induction from naïve T cells involved IL21R and ICOS signalling. Co-incubation of naïve T cell-150 

containing CD45RO- MNC with either IL21R or ICOS-Ligand blocking antibody led to a marked 151 

reduction in TFH cell induction by LAIV respectively (Fig 3e, p<0.01). Further, co-incubation with 152 

CD40-ligand blocking antibody or a BCL6 inhibitor also led to a marked reduction in the TFH 153 

induction (3e). Finally, co-incubation with anti-IL21R, ICOS-L and CD40-L antibodies or the BCL6 154 

blocker respectively inhibited the LAIV-induced anti-HA antibody production in CD45RO- MNC 155 

(3f, p<0.01). 156 

IL-21 production by LAIV-activated TFH is critical for anti-HA antibody production  157 

We next examined the cellular source and production of IL21 in tonsillar MNC following LAIV 158 

stimulation, and its effect on TFH activation and antibody production. Among tonsillar lymphocytes, 159 

TFH were shown as a predominant source of IL21 (4a). Following LAIV stimulation there was an 160 

increase of IL21-producing TFH in tonsillar MNC (Fig 4b), together with a marked increase in IL21 161 

concentration in the MNC culture supernatant (4c). Further, the increase in IL21 concentration was 162 
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shown in the co-culture of TFH and B cells (4d), but not seen in the co-culture of non-TFH with B cells 163 

following LAIV stimulation (4e). 164 

IL21 receptor blocking using anti-IL21R antibody abrogated the increase of TFH number in tonsillar 165 

MNC elicited by LAIV stimulation (4f), followed by a significant reduction in anti-HA antibody 166 

production in tonsillar MNC (4g). 167 

Activation of TFH–like cells in PBMC by LAIV  168 

Recent studies suggest there are TFH-like cells in peripheral blood that express CXCR5 and ICOS and 169 

have similar B cell-help functions (5, 22-25). To determine whether LAIV activate TFH-like cells and 170 

antibody production in peripheral blood, freshly isolated PBMC were stimulated by LAIV for up to 171 

14 days followed by flow-cytometry and antibody detection. As shown in figure 5a+b, LAIV 172 

stimulation induced an increase of TFH–like (CXCR5+ICOS+) CD4+ T cells in PBMC (at day 7), 173 

followed by the detection of anti-HA IgG and IgM antibodies in the PBMC culture supernatants (Fig 174 

5c). The activation of influenza antigen-specific TFH–like cells by LAIV was demonstrated by the 175 

finding that a major proportion (mean 45.6%) of these cells expressed CD154 following the H1N1 176 

antigen challenge, markedly higher than the other non-TFH cell populations (Fig 5d).  177 

DISCUSSION 178 

LAIV is thought to replicate in upper respiratory tract to induce immunity through the local immune 179 

tissue NALT, and it was shown to replicate in nasal epithelial cells(26). As part of the mucosal 180 

immune system in human nasopharynx, adenotonsillar tissue has a surface reticular epithelial cell 181 

layer in which epithelial cells mixed with other cells including a large number of B cells. Many B 182 

cells infiltrating the epithelial layer exhibit memory B cell markers and have great antigen-presenting 183 

potential(27, 28). In our adenotonsillar MNC culture, the predominant cell populations are 184 

lymphocytes of which over 50% are B cells(29). We previously showed a Modified Vaccinia 185 
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Virus Ankara(MVA) vectored influenza vaccine predominantly infected tonsillar B cells which were 186 

also the major cells presenting vaccine antigens(30). It is likely tonsillar B cells are a major cell 187 

population involved in LAIV replication and antigen presentation to T cells, and this B and T cell 188 

interaction contributes to the vaccine-induced response in NALT. Our recent pilot data showed a 189 

time-dependent increase in HA expression in tonsillar B cells following LAIV stimulation, consistent 190 

with virus replication in tonsillar B cells. Fetal bovine serum(10%) was used in our cell culture, and 191 

we did not find any evidence suggesting blockade of LAIV replication(data not shown). 192 

In this study, we have demonstrated the activation and induction of antigen-specific TFH in human 193 

nasopharynx immune tissue by LAIV, and show TFH are critical for LAIV-induced B cell anti-HA 194 

antibody response in the immune induction tissue of children and adults.  195 

We showed a marked increase in TFH number in tonsillar MNC following stimulation by LAIV (Fig 196 

1a+b). With CFSE cell tracing, we also demonstrated TFH proliferation following the stimulation (Fig 197 

1c+d). The increase in TFH number was accompanied by the production of anti-HA antibodies in 198 

tonsillar MNC (Fig 1g). We further demonstrated in the cell co-culture experiment that purified TFH 199 

from tonsillar MNC helped B cell anti-HA antibody production, whereas non-TFH cells did not (Fig 200 

1h). These results support that TFH provide critical help for LAIV-induced B cell anti-HA antibody 201 

production in human NALT. 202 

Together with the increase in TFH and antibody production following LAIV stimulation, a marked 203 

increase in GC B cells was also seen in tonsillar MNC (Fig 1e+f). This is consistent with the 204 

assumption that LAIV activates TFH which support GC B cell proliferation and differentiation for 205 

antibody production. We reported previously that the number of TFH correlated with that of GC B 206 

cells in NALT (20). These are concordant with previous reports in mouse models that GC B cells 207 

correlated with the appearance of TFH after influenza virus infection (31) and the magnitude of TFH 208 

response was directly correlated with the GC B cell response (32, 33).  209 
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We next examined the induction of influenza antigen-specific TFH from naïve T cells by LAIV using 210 

TFH-depleted CD45RO- MNC. 7 days following LAIV stimulation, we have observed a dose-211 

dependent increase in the number of newly differentiated TFH (CXCR5+ICOS+) that co-expressed 212 

BCL6 and IL21, which was followed by the detection of anti-HA antibody at day 14 (Fig 2a-e). Both 213 

BCL6 and IL21 are known to be essential for TFH differentiation from naïve T cells in animal studies 214 

(8, 34, 35).  Our results here support TFH induction in human immune tissue also requires BCL6 and 215 

IL21.  Indeed, further experiment with BCL6 blocker and IL21 blocking antibody demonstrated 216 

marked reduction of TFH induction from naïve tonsillar T cells, confirming a critical role of BCL6 217 

and IL21 in TFH induction. We also showed ICOS signalling blocking inhibited ICOS activation and 218 

TFH induction, supporting that ICOS activation is required in TFH differentiation. It has been suggested 219 

that CD4+ T cells utilize ICOS:ICOSL interactions to upregulate IL21 production through which to 220 

contribute to TFH induction (35).  Our finding that CD40L blocking antibody abrogated TFH induction 221 

is in line with the hypothesis that B and T cell cognate interaction through CD40:CD40L signalling 222 

is critical in TFH induction.  223 

One finding we observed was that CD45RO+ cell depletion, which removes memory T cells from 224 

tonsillar MNC, markedly reduced anti-HA antibody production analysed at day 8 (for memory 225 

response).  The fact that anti-HA IgG level could be readily detected at a high level in whole tonsillar 226 

MNC following vaccine stimulation at day 8 (Fig 1g), whereas in memory T cell-depleted MNC the 227 

antibody production could only be detected at around day 14 at a lower level (Fig 2f) suggests the 228 

presence of influenza-specific memory T/B cells in tonsillar MNC.  In this study, although tonsillar 229 

tissues were from non-vaccinated donors, it is likely some of the donors had experienced an influenza 230 

infection previously, and had influenza-specific memory T/B cells. Therefore the presence of the 231 

memory T cells including Tfh in tonsillar MNC helped the memory B cell response following LAIV 232 

stimulation.  233 
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Further to the reduction of TFH induction following BCL6, IL21, ICOS and CD40L signalling 234 

blocking, we showed that the blockade of these signallings led to a diminished anti-HA antibody 235 

production, supporting the critical involvement of these pathways in TFH induction and TFH-mediated 236 

B cell antibody production. The induction of influenza antigen-specific TFH by LAIV was 237 

demonstrated by the detection of antigen-specific CD4+ T cell activation marker CD154, which was 238 

expressed in a large proportion of the induced TFH following influenza antigen challenge (Fig 3). This 239 

finding is consistent with the report by Bentebibel et al demonstrating the increase in influenza 240 

antigen-specific TFH-like cells in peripheral blood following an inactivated vaccine immunization in 241 

humans (5).  242 

Studies in animal model demonstrated a critical role of IL21 in TFH activation and TFH were also 243 

shown to be the predominant source of IL21(34, 36). We showed here that stimulation of tonsillar 244 

MNC with LAIV activated a marked increase in IL21-producing TFH and in IL21 concentration in 245 

the cell culture supernatant. These results are consistent with the assumption that TFH are a major 246 

cellular source of IL21 in human tonsillar lymphocytes, as we found no significant IL21 production 247 

in the absence of TFH in the T-B cell co-culture experiment (Fig 4). We also demonstrated that newly 248 

differentiated TFH following LAIV stimulation expressed a high level of IL21 (Fig 2). As tonsillar 249 

TFH were also known to express IL21R (35), this co-expression of IL21 and IL21R by tonsillar TFH 250 

supports the hypothesis that IL21 acts in an autocrine-loop fashion in the vaccine-induced TFH 251 

differentiation and function in human NALT. Indeed, we showed that blocking IL21 signalling by an 252 

IL-21R neutralizing antibody inhibited both activation and differentiation of TFH induced by LAIV, 253 

and that diminished the anti-HA antibody production. So our results provide direct supporting 254 

evidence that IL21 is crucial in vaccine-induced TFH differentiation, and in TFH-dependent B cell 255 

antibody production in human immune tissue.  256 
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Consistent with recent reports that there was an increase in TFH-like cells in human peripheral blood 257 

following parenteral influenza vaccination which correlated with the anti-HA antibody response (5, 258 

6), we showed LAIV stimulation of PBMC also induced an increase in CXC5+ TFH-like cells together 259 

with the production in anti-HA antibodies in the PBMC (Fig 5). The activation of influenza antigen-260 

specific TFH in PBMC by LAIV was demonstrated by the expression of antigen-specific T cell 261 

activation marker CD154 upon antigen challenge. These results support the concept that there are 262 

TFH-like cells in peripheral circulation which are functionally similar to TFH found in lymphoid tissue 263 

such as NALT,  and provide help to B cells for antibody production in an IL21- and ICOS-dependent 264 

manner (22).  265 

In conclusion, we demonstrate for the first time the induction of antigen-specific TFH in human 266 

immune tissue by an intranasal influenza vaccine, and show its critical role in the anti-influenza HA 267 

antibody response. Our results suggest promoting antigen-specific TFH in human NALT by intranasal 268 

vaccines may provide an effective vaccination strategy against respiratory infections in humans.  269 

 270 

 METHODS 271 

Patients and samples. Patients (age 2–30 years) undergoing adenoidectomy and/or tonsillectomy due 272 

to upper airway obstruction were recruited, and adenotonsillar tissues obtained following operation. 273 

A peripheral blood sample was also obtained before operation. The tonsillar tissues were transported 274 

in HBSS medium (Hank’s Balanced salt solution) to the laboratory. Tissue samples exhibiting any 275 

signs of gross inflammation were excluded. Patients with any known immunodeficiency were 276 

excluded from the study. Subjects who received influenza vaccination previously were also excluded 277 

from the study. The Liverpool Paediatric Research Ethics Committee approved the study 278 

[08/H1002/92] and written informed consent was obtained in each case. 279 
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LAIV vaccine and influenza antigens. An intranasal LAIV (FluMist, 2009-10) that included 280 

A/Brisbane/59/2007 (H1N1), A/Brisbane/10/2007 (H3N2) and B influenza strains was obtained from 281 

BEI resources (ATCC, Manassas,VA). 0.2ml of LAIV contains approximately 107 fluorescent focus 282 

units (FFU) of each strain, and we used 2µl/ml (105FFU/ml) in cell stimulation which was a 283 

predetermined optimal concentration for the activation of anti-HA antibody response following dose 284 

titration experiments. An inactivated seasonal A/Brisbane/59/2007 H1N1 influenza virus (sH1N1) 285 

antigen, which was inactivated by β-propiolactone and partially purified (37) was obtained from the 286 

National Institute for Biological Standards and Control (NIBSC, UK). This inactivated sH1N1 287 

antigen contained 83ug/ml of HA. A purified recombinant HA of sH1N1 (ATCC) was used for HA 288 

antigen stimulation as well as the coating antigen for anti-HA antibody measurement by ELISA. The 289 

recombinant HA contained a C-terminal histidine tag and were produced in High Five insect cells 290 

using a baculovirus expression vector system, purified from cell culture supernatant by immobilized-291 

metal affinity chromatography (IMAC) and contain a trimerizing (foldon) domain (38). 292 

Cell culture and stimulation. Mononuclear cells (MNC) from adenotonsillar tissues were isolated 293 

using Ficoll density centrifugation (39) (40). In some experiments, tonsillar MNC were depleted of 294 

effector and memory (CD45RO+) T cells using CD45RO microbeads and magnetic cell sorting 295 

(Miltenyi) by passing cells through the depletion column twice as described previously (41, 42). The 296 

depletion of CD45RO+ cells from tonsillar MNC removed TFH cells (>98%). Unfractionated whole 297 

MNC or CD45RO+cell-depleted MNC were cultured (4x106/ml) in RPMI-1640 medium 298 

supplemented with 10% fetal bovine serum (FBS), streptomycin (50μg/ml) and penicillin (50U/ml) 299 

(Sigma), in the presence the LAIV (2µl/ml unless otherwise stated) for up to 14 days. Cells were 300 

collected at pre-defined time points for analysis of TFH cells by flow-cytometry. Cell culture 301 

supernatants were collected for measurement of cytokine and antibody production respectively by 302 

ELISA.  303 
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Flow-cytometry analysis of TFH, cell proliferation and intracellular cytokine expression. For TFH 304 

identification, tonsillar MNC were stained with anti-human CD3, CD4, CXCR5 and ICOS antibodies 305 

followed by flow cytometry and CD4+ CXCR5hi ICOShi cells were identified as TFH (43, 44). The 306 

tonsillar lymphocytes gated for analysis based on typical FSC/SSC characteristics and singlet 307 

selection has a typical viability >98% viability when examined with propidium iodide staining. 308 

Expression of B-cell lymphoma 6 protein (BCL6), a master transcription factor for TFH differentiation 309 

(8), in newly induced TFH cells was analyzed by intracellular staining with anti-human BCL6 antibody 310 

after cell fixation/permeabilization following manufacturer’ instructions (eBioscience). Cell 311 

proliferation was examined by Carboxyfluorescein succinimidyl ester (CFSE) staining of tonsillar 312 

MNC (Molecular Probes), followed by cell stimulation for 5 days and by flow cytometry (41, 42). 313 

Briefly, tonsillar MNC were labelled with CFSE (at 37°C, for 8 min) and resuspended in RPMI before 314 

cell stimulation with LAIV (2μl /ml) for 5 days. TFH cell proliferation was then examined by analysis 315 

of CFSE dilution in TFH cells (CXCR5hi ICOShi cells) by flow cytometry. Intracellular cytokine 316 

expression e.g. IL21 was analysed following a standard intracellular staining procedure including cell 317 

permeabilization as described previously (40). Flow cytometry data analyzed using FlowJo software. 318 

Germinal center (GC) B cell subset was analyzed by flow-cytometry with a combination of CD19, 319 

CD38 and IgD fluorescence-labelled anti-human antibodies and identified as CD19+CD38hiIgD-.  320 

Analysis of antigen-specific TFH induction. TFH differentiation/induction from naïve tonsillar T cells 321 

by LAIV was examined using CD45RO+cell-depleted MNC (which resulted in CD45RO- MNC) as 322 

described earlier. The CD45RO- MNC (with TFH removed but retained naïve T cell) were stimulated 323 

with LAIV (2µl/ml, otherwise as stated) and cultured for 7 days before flow-cytometric analysis for 324 

TFH cells including CXCR5, ICOS and BCL6 expressions. For the detection of induced influenza 325 

antigen-specific TFH cells after LAIV stimulation, the cells (at day 7) were washed and incubated for 326 

24 hours in fresh culture medium only, followed by antigen challenge with sH1N1 virus antigen or 327 
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recombinant HA (1µg/ml) for 6 hours in the presence of brefeldin A. The cells were then stained for 328 

TFH including CD4, CXCR5, ICOS, and intracellular CD154 expression after cell 329 

fixation/permeabilization which detects antigen-specific T cells by flow cytometry (19-21).  330 

To determine if IL21, ICOS, CD40 and BCL6 signalling pathways are involved in the 331 

activation/induction of TFH, neutralizing/blocking antibodies to IL21 receptor, ICOS- and CD40-332 

ligand (L) or a BCL6 inhibitor were used to co-incubate with tonsillar MNC before LAIV stimulation. 333 

Briefly, recombinant human IL21R-Fc chimera, anti-ICOS-L (R&D systems) and anti-CD40-L 334 

antibodies (InvivoGen) or isotype controls (10µg/ml) or BCL6 inhibitor (79-6, Calbiochem)(50 µM) 335 

were co-incubated with tonsillar MNC or CD45RO- MNC for 1 hour prior to stimulation by LAIV. 336 

BCL6 inhibitor 79-6 is a cell-permeable compound that selectively inhibits the transcriptional 337 

repression activity of BCL6. The MNC were then cultured for up to 7-14 days before analysis for TFH 338 

and anti-HA antibody production. 339 

Measurement of HA-Specific antibodies. Production of anti-HA IgG, IgM and IgA antibodies to 340 

sH1N1 virus in cell culture supernatants was measured as previously described (45, 46). In brief, 341 

ELISA plates were coated with recombinant sH1N1 HA overnight. Following blocking, cell culture 342 

supernatants were added and incubated for 2 hours. Alkaline phosphatase-conjugated anti-human 343 

IgG, IgM or IgA antibody was then added and incubated. Following the addition of pNPP substrate, 344 

color development was read at OD405nm at 1 hour and data were analysed using DeltaSoft software. 345 

Intravenous immunoglobulin (IVIG, Intratect ) containing high titers of anti-sH1N1 HA IgG antibody 346 

was used as a reference standard for IgG antibody. Anti-HA IgM and IgA antibody titers were 347 

expressed as OD values (read at 30min) as no reference standard was available.  348 

Cell purification and TFH-B cell co-culture. Tonsillar TFH and B cells were purified using magnetic 349 

cell sorting as described previously (43). Briefly, B cells were purified by negative selection using B 350 
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cell purification kit (EasySep™, Stemcell) which yielded B cell purity >99%. For TFH purification, 351 

CD4+T cells were first isolated by negative selection, followed by positive selection of CXCR5high 352 

(TFH) using biotin anti-CXCR5 antibody. The amount of anti-CXCR5 antibody was optimised to 353 

ensure only CXCR5high-expressing cells were selected (purity>95%). CXCR5- CD4+T (non-TFH) cells 354 

were isolated by negative selection from CD4+T cells using an optimised amount of anti-CXCR5 355 

antibody (purity >99%). Purified B cells were co-cultured (1:1 ratio) with either purified TFH or non-356 

TFH cells at 5x105 cells/ml in the presence of LAIV. The cells were cultured for 10 days and cell 357 

culture supernatants were collected for anti-HA antibody analysis.  358 

Statistical Analysis. Means and standard errors are used unless indicated otherwise. Differences 359 

between two groups were analysed using Student’s t test, and paired T test was used for paired 360 

samples. Statistical analysis was performed using GraphPad Prism 5 software. P<0.05 was considered 361 

statistically significant.  362 
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 504 

Figure legends 505 

Figure 1. LAIV induces TFH proliferation that correlates with GC B cell response and antibody 506 

production in NALT. LAIV stimulation induced an increase in TFH number (a+b) and TFH 507 

proliferation (c+d) in tonsillar MNC (b & d, n=15, **p<0.01 vs unstimulated medium controls).  (a 508 

& c)  Representative plots or histogram of TFH subset (CXCR5hi/ICOShi) in CD4+ T cells following 509 

stimulation (a, day 3), and TFH proliferation analysed by CFSE (c, day 5, red line: LAIV, grey shaded: 510 

medium control). (e & f)  Increase in GC B cell number (CD19+ CD38hi IgD-) in tonsillar MNC after 511 

LAIV stimulation (n=13, **P < 0.01 vs control). LAIV-induced anti-HA IgG antibody production in 512 

tonsillar MNC (g, n=20, **p<0.01 vs control, day 8), and LAIV-induced anti-HA IgG production in 513 

B cells co-cultured with TFH (red bar) or with non-TFH cells (blank bar) (h, n=10, **p<0.01, #p>0.05 514 

vs control). Data in the bar figures are means and SE from a number of different experiments done 515 

with tonsils from different donors. 516 

 517 

Figure 2. Induction of TFH from naïve tonsillar T cells and antibody production by LAIV. 518 

Representative plots (a) and bar graph (b) show the induction of TFH (CD4+CXCR5+ICOS+) from 519 

CD45RO-ve MNC by LAIV compared with medium control (n=10, **p<0.01).  (c & d) FACS 520 

histograms of BCL6 (c) and IL21 expression (d) in LAIV-induced TFH as compared to unstimulated 521 

medium control) (isotype controls: shaded).  (e) Dose-dependent induction of TFH (day 7, top) and 522 

anti-HA IgG antibody production (day 14, bottom) from CD45RO-ve MNC following LAIV 523 

stimulation (n=6). (f) LAIV-induced anti-HA IgG, IgM and IgA production in CD45RO-ve MNC (day 524 

14,  n=10, **p<0.01). 525 

 526 

Figure 3.  Detection of LAIV-induced antigen-specific TFH and effect of IL21, ICOS, CD40 and 527 

BCL6 signallings on TFH and antibody induction. CD45RO-ve MNC were first stimulated by LAIV 528 

for 7 days followed by influenza antigen challenge with sH1N1 or HA antigen.  (a) A representative 529 

plot showing activated TFH (ICOS+CXCR5+) following sH1N1 antigen challenge, and (b) showing 530 

the frequencies of activated TFH (% of CD4+ T cell) after sH1N1 or HA challenge following prior 531 

LAIV stimulation (**p<0.01, ***p<0.001 vs LAIV stimulation alone. Medium alone negative 532 
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control is also shown). Representative plots (c) and summary frequency (d, n=5) of CD154+ 533 

expression in the CD4+ T cell subsets including TFH following sH1N1 antigen challenge. (e+f) 534 

Effect of neutralizing antibodies to IL21R, ICOS-and CD40-L or BCL6 blocker on TFH induction 535 

(e, day 7) and antibody production (f, day 14) in CD45RO-ve MNC following LAIV stimulation 536 

(**p<0.01 vs LAIV stimulation or isotype control antibodies). 537 

Figure 4. IL-21 expression in LAIV-activated TFH and its effect on anti-HA antibody production. 538 

(a) Representative plots showing TFH subset and IL21 expression in tonsillar CD4+ T cells following 539 

LAIV stimulation (shaded histogram: isotype control). (b)An increase in IL-21-producing TFH (% of 540 

CD4+ T cells) of tonsillar MNC following LAIV stimulation (n=10, **P < 0.01 vs control). (c-e) 541 

IL21 concentrations following stimulation in the culture supernatants of tonsillar MNC (c, n=22), of 542 

B cells co-cultured with TFH (d, n=10) or with non-TFH cells (e, n=10) (**P < 0.01 vs control, NS: 543 

not significant). (f+g) IL-21R blocking by adding anti-IL-21R antibody to tonsillar MNC led to a 544 

reduction in TFH number (f) and in anti-HA IgG, IgM and IgA antibody production (g) (n=8, 545 

**p<0.01). 546 

Figure 5. Activation of TFH–like cells in PBMC. (a) Representative plots shows the increase of TFH–547 

like cells (CD4+CXCR5+ICOS+) in PBMC following stimulation for 3 days by LAIV, as compared 548 

to medium control.  (b) LAIV-induced increase in TFH–like cells in PBMC compared with control 549 

(n=10, **P < 0.01). (c) Anti-HA IgG and IgM antibody production in PBMC culture supernatant 550 

following LAIV stimulation (n=10, **P < 0.01). (d) Frequency of antigen-specific CD154+ TFH–like 551 

cells (% of CD4+ T cells, red bar) in PBMC following LAIV stimulation and subsequent sH1N1 552 

antigen challenge, compared to other CD4+ T cell sub-populations as indicated (n=4,**p<0.01, 553 

***p<0.001). 554 

 555 
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