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Abstract The problem of pollution control has been mainly studied in the envi-
ronmental economics literature where the methodology of game theory is applied
for the pollution control. To the best of our knowledge this is the first time this
problem is studied from the computational point of view. We introduce a new net-
work model for pollution control and present two applications of this model. On a
high level, our model comprises a graph whose nodes represent the agents, which
can be thought of as the sources of pollution in the network. The edges between
agents represent the effect of spread of pollution. The government who is the regu-
lator, is responsible for the maximization of the social welfare and sets bounds on
the levels of emitted pollution in both local areas as well as globally in the whole
network. We first prove that the above optimization problem is NP-hard even on
some special cases of graphs such as trees. We then turn our attention on the classes
of trees and planar graphs which model realistic scenarios of the emitted pollution
in water and air, respectively. We derive approximation algorithms for these two
kinds of networks and provide deterministic truthful and truthful in expectation
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mechanisms. In some settings of the problem that we study, we achieve the best
possible approximation results under standard complexity theoretic assumptions.
Our approximation algorithm on planar graphs is obtained by a novel decomposi-
tion technique to deal with constraints on vertices. We note that no known planar
decomposition techniques can be used here and our technique can be of indepen-
dent interest. For trees we design a two level dynamic programming approach to
obtain an FPTAS. This approach is crucial to deal with the global pollution quota
constraint. It uses a special multiple choice, multi-dimensional knapsack problem
where coefficients of all constraints except one are bounded by a polynomial of the
input size. We furthermore derive truthful in expectation mechanisms on general
networks with bounded degree.

Keywords Algorithmic mechanism design · approximation algorithms · planar
graphs · pollution control

1 Introduction

The advance of technology and commercial freedom have fused and accelerated
the development process in an unprecedented scale. Environmental degradation
however has accompanied this progress, resulting in global water and air pollution.
In many developing countries, this has caused wide public concerns. As an example,
in 2012, China discharged 68.5 billion tons of industrial wastewater and the SO2

emissions reached 21.2 million tons (National Bureau of Statistics of China, 2013).
China has become one of the most polluted countries in the world with industrial
emissions as the main source of its pollution. The recent annual State of the Air
report of the American Lung Association finds that 47% of the Americans live in
counties with frequently unhealthy levels of either ozone or particulate pollution
[4]. The latest assessment of air quality, by the European Environment Agency,
finds that around 90% of city inhabitants in the European Union are exposed
to one of the most damaging air pollutants at harmful levels [1]. Environmental
research suggests that water pollution is one of the very significant factors affecting
water security worldwide [57].

It is the role of regulatory authorities to make efficient environmental policies
in balancing economic growth and environment protection. Pollution control reg-
ulations are inspired by the managerial approaches in environment policies, where
models based on game theory are proposed and analysed. Kwerel [38] proposed
a mechanism where firms, potential polluters, report their clean-up cost informa-
tion to the regulator. The regulator sells a fixed number of pollution licences at a
fixed price per licence and offers a subsidy for those licences which firms hold in
excess of emission, based on the cost information provided by firms. In Kwerel’s
mechanism truth-telling by all firms implies a Nash equilibrium. Kwerel’s scheme
maintains a mild level of pollution by optimizing the social welfare (sum of the
global clean-up cost and damage cost of emitted pollution).

From a different point of view, Dasgupta, Hammond and Maskin [15] focus
on minimizing the sum of pollution damages, abatement costs and individual ra-
tionality for consumers. Spulber [50] develops a market model of environmental
regulation with interdependent production, pollution abatement costs and hetero-
geneous firms who have private information about costs and pursue Bayes-Nash
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strategies in communication with the regulator. Their paper illustrates that the
full information optimum cannot be attained unless gains from trade in the prod-
uct market net of external damages exceed the information rents earned by firms
and aggregate output and externality levels are lower at the regulated equilibrium
than at the full information social optimum.

In a given geographic area, there are owners of pollution sources (e.g., factories,
cars). The owners of these sources are interested in buying licences, i.e., permits,
for the emission of pollution. The government, as a regulator, is responsible for
allocating the licences to the owners in such a way that the amount of emissions
does not exceed certain levels both globally and locally, i.e., the regions around the
pollution sources. This allocation aims at the maximization of owners’ satisfaction,
that is, the social welfare is maximized. See Section 3 for details.

Pollution has a diffusion nature: emitted from one source, it will have an effect
on its neighbours at some decreased level. We consider two applications using a
network model. In the first application, the vertices represent pollution sources
and edges are routes of pollution transition from one source to another, similar
to Belitskaya [11]. Our model measures the pollution diminishing transition by
arbitrary weights on the edges, which are also present in the model of Montgomery
[41]. The polluters’ privately known clean-up cost and damage of the emitted
pollution in our model are inspired by Kwerel [38]. In the second application,
the vertices represent mayors of cities and the edges represent the roads between
cities. The percentage of cars moving from one city to another is represented by
the weight of the corresponding edge. Note, that in this application, although
cars are physical sources of pollution, vertices, i.e., cities to which cars drive, are
factual pollution sources. Thus, also in this application, the vertices (cities) can
be regarded as pollution sources.

Our model covers both aforementioned applications with details given in Sec-
tion 3. The government, as the regulator, can decide to either shut down or keep
open a pollution source taking into account the diffusion nature of pollution. It
sets bounds on the global and local levels of pollution, while trying to optimize
the social welfare. The emissions that exceed the amount of pollution allowed by
the licences, if any, must be cleaned-up, incurring an additional cost to the agent,
called agent’s clean-up cost. Furthermore, in the second application of our model,
the regulator is allowed to auction pollution licences for cars to mayors. In this
case, the pollution level of an agent (mayor), i.e., the number of allocated licences,
is set by the regulator together with the prices that the agent pays to get them.

Furthermore we study water pollution in rivers modelled by tree networks. In
water pollution the government decides which pollution sources should be shut
down so that the effluent level in water is as low as possible. Water pollution cost
sharing was introduced in [42] where the network is a path (single river). This
model was extended to tree networks (a system of rivers) in [18]. We model a
system of rivers as a tree, but study a different pollution control model.

As a variant of the first application described above, we also consider the
case in which the government is allowed to sell licences to the pollution sources
instead of deciding to shut them down or keep them open. This is a widely used
approach to control pollution levels by auctioning a fixed number of licences or
pollution allowances. For instance, the European Emissions Trading System sells
EU Emission Allowances (EUAs), each one representing the right to emit one
ton of CO2. In such an auction, firm’s bid is a number of EUAs and per EUA a
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price. The auction ranks all the bids in descending order of per EUA price and
determines the per EUA clearing price. The clearing price is the first bid price
such that the total volume of EUAs in the bids (demand) in this descending order
meets the total volume of EUAs offered by the regulator (supply). All the bids
above this clearing price are awarded and they all pay the clearing price, see, e.g.,
[2]. This very simple auction does not take into account the diffusion relations
between polluters, etc.

Finding an optimal social welfare solution to our problem, which we call Pol-
lution Game (PG), is NP-hard, that is why we study polynomial time approxi-
mation algorithms which can lead to incentive compatible (truthful) mechanisms.
We study linear cost and damage functions and derive approximation algorithms
and truthful mechanisms focusing on planar network topologies. In contrast, Belit-
skaya [11] assumes quadratic cost functions and linear damage functions deriving
optimal social welfare and Nash equilibria solutions by explicit analytic formulas.
We focus our study on planar network topologies which model realistic scenarios.

Most of the cited economics papers derive equilibria by closed analytic for-
mulas. Some of these papers provide computational mechanisms without guar-
anteeing polynomial running time. Our approach is algorithmic and focuses on
efficiently computing these solutions. We also analyze the computational complex-
ity/hardness, of computing the social optimum in our model. To the best of our
knowledge, this work is the first attempt to algorithmically analyze pollution con-
trol from the perspective of regulators by a network game model with information
asymmetry between regulators and polluters.

We mainly study linear objective functions on trees and planar graphs. When
the network is a directed tree, a somehow non-standard two level dynamic pro-
gramming approach is designed to obtain an FPTAS for our pollution game (PG).
This approach is crucial to deal with the global pollution quota constraint. It uses
a special multiple choice, multi-dimensional knapsack problem where coefficients
of all constraints except one are bounded by a polynomial of the input size.

Baker’s shifting and tree-width decomposition techniques, see, e.g., [8,30], are
used for designing PTASs for various problems on planar graphs. It seems unlike
to design a PTAS for PG with binary variables on planar graphs by adapting
these techniques. That is because they deal with constraints on edges (e.g., for the
independent set problem), but PG’s constraints are imposed on vertices from its
neighbouring vertices. More precisely, in the independent set problem, the number
of nodes is bounded (at most one) per each edge, while in the PG problem the
number of selected neighbouring nodes is bounded, per each node. Furthermore,
given two optimal solutions on two subgraphs, with common boundary vertices, of
the planar graph, combining them together may not result in a feasible solution for
PG on the whole graph. This is due to the possible infeasibility of local constraints
of the boundary vertices of these two subgraphs. We overcome this major difficulty
by introducing a new decomposition technique of planar graphs, which we call
an (α, β)-decomposition, see Subsection 6.1 for details. This new technique is of
independent interest and it may have further applications for the problems with
constraints on vertices rather than on edges.

To obtain our PTAS for planar graphs on PG that may violate local quota
constraints, we first use known rounding techniques (e.g., [13, 35]) to make all
the coefficients polynomially bounded. Then, we design a dynamic programming
approach to solve PG on any graph with a bounded tree-width tree decomposition.
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General objective function Linear objective function

Bounded Degree ∆ Trees Planar

Lower bound Ω
(

∆
log∆2

)
NP-hard strongly NP-hard (δ violation)

PG(poly) O(∆)a FPTAS TiE O(1) DT PTAS (δ violation)

PG(general) O(∆) TiE b FPTAS TiE [6] c O(1) TiE [5]

a Monotone increasing obj. function. b Piece-wise linear obj. function with one shift
and an additional mild assumption. c Running time is polynomial in q.

Table 1: Our results. TiE/DT: truthful in expectation/deterministic truthful mech-
anism. PG(poly) is PG with poly-size integer variables, PG(general) without this
assumption.

Finally, we combine a special tree decomposition of k-outerplanar graphs, called
a nice tree decomposition, see [34], Baker’s shifting technique and our two-level
dynamic programming approach for dealing with the global constraint, obtaining
our PTAS.

Even when polluters’ cost functions are linear with a single parameter, simple
monotonicity is not sufficient to turn our algorithms into truthful mechanisms (see
e.g. Chapter 11 in [43]). This is because polluters’ utility functions have externali-
ties – they are affected by their neighbours. Thus, we need to use general techniques
to obtain truthful mechanisms: maximal in range mechanisms (for deterministic
truthfulness) and maximal in distributional range mechanisms (for truthfulness in
expectation). Our results are summarized in Table 1. As can be seen by this table
our approximations are near best possible under appropriate complexity assump-
tions.

2 Literature overview

An invaluable source of pollution control regulations comes from the managerial
approaches in environment policies. The majority of literature in this field deals
with symmetric information. This problem however shows a fundamental asymme-
try between the regulatory bodies and pollutants. That is because the regulator
(i.e. the government) and the rest of the players (i.e. the owners of pollution
sources) have different incentives and therefore expressed through different utility
functions, as explained in detail in Section 3. The research contributions consid-
ering environmental policy with asymmetric information and the diffusion nature
of pollution have been limited until recently.

In order to control pollution, an incentive mechanism that is environmentally
friendly and resource efficient needs to be designed and deployed by regulatory
authorities. However, it is not obvious how to design such a mechanism in the
presence of asymmetric information; just as Hurwicz [26] put it: the firms know
that information will be used by the regulator to design a policy which will affect
their profits. Hence, they have an incentive to manipulate reported information in
order to influence the content of the policy. In this context, Farell [21] discusses the
relevance of the Coase Theorem. This theorem basically asserts that bargaining
will lead to an efficient outcome regardless of the initial allocation of property if
negotiation and trade in presence of externality are possible and the transaction
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costs are sufficiently low. Considering the problems of incomplete information, that
paper shows that voluntary negotiation does not lead to the first-best outcome that
maximizes joint surplus in the presence of two-sided private information. That is to
say, centralised economic institutions such as government control and intervention,
and decentralised institutions such as bargaining and ownership rights, should
be viewed as complementary to each other. Therefore, a necessary condition for
the government when designing an optimal pollution control plan is the truthful
information about firms.

Kwerel [38], Dasgupta et al. [15] and Spulber [50] have proposed mechanisms
that implement truth telling by firms to maintain a mild level of pollution. Under
this assumption the firms can communicate with the regulator but not with each
other. In Kwerel’s scheme [38] firms are informed in advance that their messages
will be translated into pollution taxes. The regulator issues a fixed number of
transferable pollution licences and offers a subsidy for those licences which firms
hold in excess of emission. Both the number of licences to be issued and the subsidy
rate offered are calculated on the basis of the cost information provided by firms.

Kim and Chang [33] constructed an optimal incentive tax/subsidy scheme in
an oligopoly market with pollution and suggested a differential damages mech-
anism, which leads to an optimal emission level. McKitrick [40] proposes that a
Cournot Mechanism for pollution control under asymmetric information, in which
a Nash Equilibrium exists, is stable and can be reached by iterative computations.
Because firms may attempt to manipulate the pollution level allocation to their
own advantage, the adjustment rule is exogenous and depends on the actions of the
firms. The approach by Karp and Livernois [28] is related to that in Conrad and
Wang [14]. The authors examined the steady-state properties of a tax adjustment
mechanism in situations where the government has no information about firms’
abatement costs.

These prior studies provide an overall framework in the administrative ap-
proach to control pollution. However, those models are only a first level of approx-
imation in characterizing the reality. Although, there is some literature studying
an economics environment consisting of firms or countries with geographical dis-
tinction, few of them take the diffusion nature of air and water pollution into
consideration. For instance, Petrosjan and Zaccour [44] study the problem of allo-
cation over time of total cost incurred by countries in a cooperative game of pol-
lution reduction. Segerson [48] develops a general incentive scheme for controlling
nonpoint source pollution1 that considers the diffusion nature, in which rewards
for environmental quality above a given standard are combined with penalties for
substandard quality. Based on the work of Petrosjan and Zaccour [44], Belitskaya
[11] develops an n-person network game model of emission reduction. Dorner et
al. [19] create a multi-objective modeling system using Bayesian probability net-
works to study nonpoint source pollution. Both the work of Belitskaya [11] and
Dorner et al. [19] are different from the setting of ours, in either model assumption
or function settings. In addition to these works built on the network framework,
Dong et al. [18] models the water pollution problem as a cost sharing problem

1 Nonpoint source (NPS) pollution refers to both water and air pollution from diffuse sources,
that is sources without a specified fixed location. For instance, nonpoint source water pollution
affects a water body from sources such as polluted runoff from agricultural areas draining into
a river, or wind-borne debris blowing out to sea. This work deals mainly with point source
pollution.
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on a tree network. However, none of the literature mentioned above takes into
account the role of governments in pollution abatement, more specifically how to
make policies assuming information asymmetry. A model that adequately takes
both factors into account is what we need to tackle such problems in reality.

Few other papers have studied air pollution in relation to network models.
Singh and Datta [49] use artificial neural network method to identify unknown
pollution sources in the groundwater. Gianessi et al. [24] analyze the national
water pollution control policies. And, finally, Trujillo and Hugh [54] study multi-
objective air pollution monitoring network design. These papers use networks in
a very different context from ours.

Turning into current practice, emission trading is a market-based approach
used to control pollution by providing economic incentives for achieving reduc-
tions in the emissions of pollutants. Various countries have adopted emission trad-
ing systems as one of the strategies for mitigating climate-change by addressing
international greenhouse-gas emission [52]. Usually a governmental body sets a
limit or cap on the amount of a pollutant that may be emitted. The limit or cap
is allocated and/or sold by the central authority to firms in the form of emis-
sion permits which represent the right to emit or discharge a specific volume of
the specified pollutant [51]. Permits (and possibly also derivatives of permits) can
then be traded on secondary markets. For example, the European Union Emis-
sions Trading Scheme (EU ETS) trades primarily in European Union Allowances
(EUAs), the Californian scheme in California Carbon Allowances, the New Zealand
scheme in New Zealand Units and the Australian scheme in Australian Units [53].
Firms are required to hold a number of permits (or allowances or carbon credits)
equivalent to their emissions. The total number of permits cannot exceed the cap,
limiting total emissions to that level. Firms that need to increase their volume of
emissions must buy permits from those who require fewer permits [51, 52]. Cur-
rently a simple auction mechanism for selling EUAs is adopted in Europe, see,
e.g., [3]. Furthermore in order to limit the automobile pollution, governments use
policies of car taxation [22, 27]. A radical transport policy introduced in the UK
and first applied in Central London resulting in 19% reduction of CO2 emissions
(see Table 2 in [9]).

3 Model and applications

We first describe the general model of a Pollution Game (PG) and then explain
how our two suggested applications fit into it. We are given an area of pollution
sources (e.g., factories, cars) each owned by an agent. The government acts as a
regulator restricting the levels of emitted pollution, while aiming to maximize the
social welfare.

More formally, we are given a weighted digraph G = (V,E), where V is the set
of n pollution sources, also called players or agents, and E represents the set of
neighbouring nodes, i.e., (u, v) ∈ E if and only if an amount of pollution can be
transferred by u to v. In this model no geometric assumptions are made. For each
(u, v) ∈ E, the weight w(u,v) = wuv denotes the pollution transfer factor from node
u to v. Without loss of generality we may suppose that wuv ∈ (0, 1], ∀(u, v) ∈ E.
Intuitively, wuv is percentage of the pollution emitted at u that reaches v.
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The government needs to decide the number of licences xv ∈ {0, . . . , qv} that
can be sold to each source v ∈ V , where qv ∈ N is the total number of licences
that can be issued per region of the given area. Furthermore, the government sets
a bound on the total pollution quota discharged to the environment to be equal
to p, which corresponds to the total number of licences. This is called the global
constraint : ∑

v∈V
xv ≤ p (1)

Each agent v has a non-decreasing benefit function bv : {0, . . . , qu} −→ R≥0,
where bv(xv) is a concave increasing function (economic diminishing marginal
utility phenomenon)2 with bv(0) = 0, representing the benefit incurred by v. Each
agent v also has a non-decreasing damage function dv : R≥0 −→ R≥0, representing
that the damaging effect of more emitted pollution is accelerating. Player v’s total
welfare rv is v’s benefit minus his damage cost:

rv = bv(xv)− dv(xv +
∑

u∈δ−G(v)

wuvxu) (2)

where, δ−G(v) = {u ∈ V : (u, v) ∈ E}, δ+G(v) = {u ∈ V : (v, u) ∈ E}. We assume
that the government decides on the allowable local level of pollution pv, for every
v ∈ V . This imposes the following local constraints called the local level of pollution
of v ∈ V :

xv +
∑

u∈δ−G(v)

wuvxu ≤ pv (3)

xv ≤ qv (4)

The optimization problem of social welfare maximization can be formulated in
the general form by the following integer program:

max R(x) =
∑
v∈V

(
bv(xv)− dv

(
xv +

∑
u∈δ−G(v)

wuvxu

))
(5)

s.t.
∑
v∈V

xv ≤ p (6)

xv +
∑

u∈δ−G(v)

wuvxu ≤ pv, ∀v ∈ V (7)

xv ∈ {0, 1, . . . , qv}, ∀v ∈ V (8)

We call this problem PG with integer variables, if xv ∈ Z, or with binary variables,
if xv ∈ {0, 1}. For an instance I of PG, |I| denotes the number of bits to encode
I, and if q ∈ poly(|I|), where q = maxv∈V {qv}+1, we call this problem PG with
polynomial size integer variables.

We note here, that the game theoretic ingredients of our PG model will be
defined in Subsection 3.3.

2 The author of [38] uses cost function rather than benefit function, which can be viewed as
Mv − bv(xv), with Mv a large constant for any v ∈ V . The author assumes that cost function
is convex decreasing and it is equivalent to bv(xv) being a concave increasing function. We use
benefit function rather than cost function for ease of analysis.
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3.1 Application 1: Regulation of pollution sources

In our first application the pollution sources are factories and the agents in this
case are their owners. In the weighted digraph G = (V,E), V is the set of n
factories and E is the set of neighbouring ones, i.e., (u, v) ∈ E if and only if the
pollution emitted by u affects v. The weight w(u,v) = wuv denotes a discount
factor of the pollution discharged by agent u affecting its neighbour v. This can be
intuitively understood as a percentage of pollution emitted at u that reaches, via
air, v. The government has to decide which factories must remain open and which
must be shut down in order for the local and global constraints to be fulfilled.
This fact is denoted by the value of xv. If the owner of factory v ∈ V is given a
licence then we set xv = 1, otherwise the factory must be shut down and we set
xv = 0. As a result, in this first application we assume that xv ∈ {0, 1} and qv = 1,
∀v ∈ V , and bv : {0, 1} −→ R≥0. In this case the global constraint corresponds to
the maximum number of awarded licences, or, equivalently, the maximum number
of factories that can remain open in the whole area.

Although the pollution sources might not emit the same amount of effluents,
they are treated as equal. That is because the imposed constraints by the gov-
ernment in every subarea take into account the total amount of effluents emitted
by the pollution sources and not by each one independently, i.e., the decision of
shutting down a factory depends also on the structure of the neighborhood graph.

3.2 Application 2: Allocation of pollution licences

In the second application formulated by the above convex program we consider
an area of n cities each one administered by its mayor, who is the agent in this
case. In every city statistical observations are used to measure the car traffic to the
neighboring cities. More precisely we consider a network represented by a weighted
digraph G = (V,E,w), where V is the set of n agents (mayors of the cities), E is
the set of roads connecting cities such that (u, v) ∈ E if and only if u and v are
neighboring cities. Then, w : E → R represents the percentage of cars entering a
city from a neighboring one, i.e., wuv denotes the percentage of cars driving from
u to v in some time interval measured by observations. The duty of the regulator is
to allocate a number of licences to the agents (mayors) such that the total welfare
is maximized while fulfilling a number of constraints. The agent with xu licences
gains a benefit of bu(xu) which is a monetary income coming from selling these
xu licences to car drivers, one licence per car. Our model does not model this
explicitly but just assumes for simplicity that all xu licences are sold.

Naturally a percentage of cars with licences from city u remains in u and the
rest is split and drives into the neighboring cities. We denote by wu the percentage
of cars remaining in u and w′vu the percentage of cars entering u from neighbouring
city v. The maximum number of cars (maximum number of licences) allowed at
any moment in city u is bounded by p′u also given in the input. This is represented
by the local constraint: wuxu+

∑
v∈δ(u) w

′
vuxv ≤ p′u. If wu 6= 0 the last inequality

can equivalently be written as xu +
∑
v∈δ(u) wvuxv ≤ pu, where wvu = w′vu/wu

and pu = p′u/wu.
Planar graphs are close to real applications, and it is natural to study our sec-

ond application on planar networks [56]. Imagine a collection of cities (each being a
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contiguous geographic area) and roads connecting them. This defines a planar map
where we only consider edges (roads) between neighbouring cities, which implies
a planar graph. We disregard other roads and we consider only frequent driving
patterns in a time interval measured by observations. They correspond to frequent
commuters, e.g., between house and work, which typically are neighbouring cities.

In the following sections we assume that bv and dv are both linear functions
with slopes s0v and s1v respectively, i.e. bv(x) = s0vx and dv(y) = s1vy, for any v ∈ V .
Let ωv = s0v − s1v −

∑
u∈δ+G(v) s

1
uwvu. The social welfare function is:

R(x) =
∑
v∈V

bv(xv)− dv(xv +
∑

u∈δ−G(v)

wuvxu)

=
∑
v∈V

s0vxv − s1v(xv +
∑

u∈δ−G(v)

wuvxu)

=
∑
v∈V

ωvxv

(9)

3.3 Basic definitions

Let I = (G,b,d,p,q) be an instance of PG, where b = (bv)v∈V , d = (dv)v∈V ,
p = (pv)v∈V and q = (qv)v∈V (bv is assumed private information of v and the
other parameters public). Let I be the set of all instances, and X the set of feasible
allocations. Given a digraph G = (V,E) the undirected graph Gun = (V,Eun) is
such that Eun = {(u, v) : (u, v) ∈ E or (v, u) ∈ E}.

A mechanism φ = (X,P ) consists of an allocation X : I → X and pay-

ment function P : I → R|V |≥0 (X(I) satisfies (6)–(8)). For any vector x, x−u
denotes vector x without its u-th component. We also denote by (y, x−u) vec-
tor x that has y at position u, in particular, (xu, x−u) = x. Note, rv(X(I)) =
bv(Xv(I))−dv(Xv(I)+

∑
u∈δ−G(v) wuvXu(I)) is the welfare of player v under X(I).

A mechanism φ = (X,P ) is truthful, if for any b−v, bv and b′v, rv(X(bv, b−v)) −
Pv(bv, b−v) ≥ rv(X(b′v, b−v)) − Pv(b′v, b−v). A randomized mechanism is truth-
ful in expectation if for any b−v, bv and b′v, E(rv(X(bv, b−v)) − Pv(bv, b−v))
≥ E(rv(X(b′v, b−v))−Pv(b′v, b−v)), where E(·) is over the algorithm’s random bits.
Note, that the utility of player v is defined as uv = rv(X(bv, b−v)) − Pv(bv, b−v)
and the expected utility as E(rv(X(bv, b−v))− Pv(bv, b−v)).

A mechanism is individually rational if each agent v has non-negative utility
when he declares bv, regardless of the other agents’ declarations.

In the following we will denote by OPT frG (PG) the value of the optimal frac-
tional solution of PG on G. Similarly OPT inG (PG) denotes the optimal integral

solution. The integrality gap of PG on G is defined as
OPT frG (PG)

OPT inG (PG)
. The approx-

imation ratio of an algorithm A with respect to OPT inG (PG) (OPT frG (PG) re-

spectively) is ρin(A) =
OPT inG (PG)

R(A) (ρfr(A) =
OPT frG (PG)

R(A) ), where R(A) is the
objective value of the A’s solution. Unless stated otherwise, the approximation ρ
will be with respect to OPT frG (PG). An FPTAS (PTAS, EPTAS, respectively) 3

3 Fully Polynomial Time Approximation Scheme, Polynomial Time Approximation Scheme
and Efficient Polynomial Time Approximation Scheme respectively
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for a problem P is an algorithm A that for any ε > 0 and any instance I of P,
outputs a solution with the objective value at least (1 − ε)OPT inI (P) and termi-

nates in time poly(1
ε , |I|) ((1

ε |I|)
g( 1
ε
) and g(1

ε )poly(|I|), respectively), where g is a
function independent from I. We also let [n] = {1, . . . , n}.

Algorithms for packing problems A linear constraint ax ≤ b with x ∈ Nn≥0

an integer vector, and a, b ∈ Rn≥0 are vectors, is called a packing constraint. A
linear (respectively convex submodular) maximization programming problem with
packing constraints is called a linear (respectively convex) packing programming
problem. Linear refers to a linear objective function and convex submodular to a
convex submodular objective function. A k-column-sparse packing integer program
is one in which each variable j participates in at most k constraints, where

γk = min{2k2 + 2, 8k,
k

(1− 1
k (1 + ( 2

k )
1
3 ))k
} = (e+ o(1))k = O(k).

For a given k we have the following propositions where the first holds for linear
and the second for convex functions:

Proposition 1 ([10],[45]) There is a polynomial time deterministic algorithm
for k-column-sparse linear packing programming problem with binary variables,
achieving the approximation ratio ρfr = γk.

Proposition 2 ([10]) There is a polynomial deterministic algorithm for k-column-
sparse convex submodular packing programming problem with binary variables,
achieving the approximation ratio ρfr = eγk

e−1 .

Proposition 3 ([39]) For any linear packing programming problem, if there is a
polynomial deterministic algorithm with the approximation ratio ρfr for this prob-
lem, then there is a polynomial, randomized, individually rational, ρfr-approximation
mechanism for the same problem that is truthful in expectation.

4 Hardness

Observe that PG is weakly NP-hard even on stars and even without the global
constraint with linear valuation functions. Consider the star where the central
node u is connected to nodes v1, v2, . . . , vn with valuations ωv1 , ωv2 , . . . , ωvn and
the edges that connect them have weights wuv1 , wuv2 , . . . , wuvn respectively. Then
PG on this instance (omitting the local constraints of all the nodes except u) can
be formulated by the following ILP:

max ωuxu +
n∑
i=1

ωvixvi

s.t. xu +
∑

vi∈δ−G(u)

wviuxvi ≤ pu

xvi ∈ {0, 1}, ∀vi ∈ δ
−
G(u)

The above ILP is the Knapsack problem [55]. In the Knapsack problem we
are given n items each having a weight wi and a value vi,∀i = 1, . . . , n. We are
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also given capacity W and we are asked to choose those items whose total value is
maximized under the constraint that the capacity is not exceeded. In the instance
described above the weights on the edges are the weights of the items and the
values of the nodes are the values of the items. Knapsack in known to be weakly
NP-hard, thus PG on stars is also weakly NP-hard.

v1

u

v2 vn. . .

wuv1 wuv2 wuvn

Fig. 1: An instance of PG on a star

We also note that inequality (6) can also be written as equality∑
u∈V

xu = p (10)

since the upper limit of the total amount of the pollution is controlled by the gov-
ernment. If

∑
v∈V xv < p in the final allocation, then the government can simply

set p equal to
∑
v∈V xv without any changes. However, for computational issues,

these two representations lead to different computational complexity of the prob-
lem. If inequality (6) is replaced by (10), then even finding a feasible solution of PG
is NP-complete. Therefore, unless stated otherwise, we always suppose inequality
(6) as a constraint of PG.

Theorem 1 Finding a feasible solution which satisfies constraints (10) and (7)
to PG when pv = 1 ∀v ∈ V and wuv > 0 for any (u, v) ∈ E is NP-complete.

Proof It is straightforward that the problem is in NP. Consider now a formula
of monotone 1-in-3 SAT where an instance of this problem consists of n Boolean
variables and m clauses. A YES instance is one in which an assignment to its
Boolean variables is such that exactly one literal from each clause is true. The
problem is known to be NP-Complete even when there are no negations [47]. The
following proof is inspired by the reduction of 3-SAT to Independent Set (p. 248
[16]).

Let us represent a clause, say (x∨ y ∨ z), by a triangle with vertices labeled x,
y, z. Repeat this construction for all clauses. Next consider one of the literals, say
x, which appears in k clauses Ci1 , . . . , Cik . Let Tri1 , . . . , T rik be the triangles of
the clauses Ci1 , . . . , Cik respectively. Then connect x of Tri1 with all the vertices
of Tri2 , . . . , T rik except those labeled with x. Repeat this construction for x in all
these triangles and for all literals. For example consider the formula Φ = (x1∨x2∨
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x3) ∧ (x1 ∨ x4 ∨ x5) (see Figure 2). First construct the triangles labeled x1, x2, x3
and x1, x4, x5 for the two clauses respectively. Then connect vertex x1 of the first
clause with the vertices x4 and x5 of the second clause. In the same way connect
vertex x1 of the second clause with the vertices x2 and x3 of the first clause.

x1

x2 x3

x1

x4 x5

Fig. 2: Illustration of the reduction

Consider now an instance of 1-in-3 SAT which is satisfiable and let G = (V,E)
be the corresponding graph constructed as above, letting pu = 1 and p = m for
every vertex u ∈ V . Suppose that we have a truth assignment which satisfies all
the clauses. Then this means we choose p vertices in G without violating any of the
constraints. Indeed if two vertices have the same label then they are not connected.
If they have different labels, say x from clause C1 and y from clause C2 and they
are connected, this is because their corresponding clauses have a common literal,
either x or y. Thus if one of them has value true, the other will have value false
for the formula to be satisfiable. Finally if two vertices belong to the same clause,
only one of them will have the value true.

Suppose now that there is a solution for graph G with m vertices when pv = 1,
∀v ∈ V (recall that p = m). Then setting the literal in the set {v : xv = 1} is a
solution of 1-in-3 SAT. The argument is as follows, in each triangle, there is exactly
one vertex such that its value is one since at most one vertex in each triangle can
be selected and there are m triangles and p = m. By the construction of G, these
vertices cannot be connected to each other (and thus, form a solution of 1-in-3
SAT), due to (7) and the fact that pv = 1,∀v ∈ V . ut

Theorem 2 It is strongly NP-hard to find an optimal solution to Pollution Game
(PG) when pv is any constant number ≥ 1 , bv(xv) is linear and dv(y) is piecewise
linear (with two pieces) ∀v ∈ V and wvu is positive constant for any (v, u) ∈ E.

Proof First we only consider undirected graphs, however, our reduction also ap-
plies to directed graphs. Let G = (V,E) be a graph with degree d(G) ≤ d. Next
construct a bipartite graph G′ = (V ′, U ′, E′) with |V ′| = |V | and |U ′| = |E|, where
each vertex of V ′ corresponds to a vertex of V and each vertex of U ′ corresponds
to an edge of E. Connect a vertex v ∈ V ′ with a vertex u ∈ U ′ if the correspond-
ing vertex of v is incident to the corresponding edge of u in G. It can easily be
seen that every v ∈ V ′ has degree at most d and every u ∈ U ′ has degree 2. Let
bv(xv) = xv and dv(xv) = 0,∀v ∈ V ′. Furthermore, for any u ∈ U ′, let bu(xu) = 0

and du(y) = |V |(y−max{wvu,wv′u})
min{1,wvu+wv′u}−max{wvu,wv′u}

if y > max{wvu, wv′u} and du(y) = 0



14 E. Anastasiadis, X. Deng, P. Krysta, M. Li, H. Qiao, J. Zhang

otherwise, where (v, u) ∈ E′ and (v′, u) ∈ E′. The intuition behind the definition
of this damage function is that it basically allows the second claim below to hold.

Let W be an independent set of G. Let |W | = k ≤ p. Then the welfare of W
for PG on G′ is k. Suppose now there is a better solution W ′ with larger welfare
for PG. We declare the following two claims:

Claim W ′ ∩ U ′ = ∅

If W ′∩U ′ 6= ∅, suppose a vertex u ∈ U ′ is included in W ′, then ru ≤ 0. Hence,
removing u from W ′ ∩ U ′ will not decrease the total welfare.

Claim Any two vertices u, v ∈W ′ are not connected to the same vertex in U ′.

If there exist two vertices u, v ∈ W ′ that are connected to the same vertex in U ′,
suppose they are connected to u′ ∈ U ′. Then we know ru = rv = 1. However,
since for the local level of pollution in u′ is y ≥ wvu +wv′u > max{wvu, wv′u}, we
have ru′ = −du′(y) ≤ −|V |. Hence, the total welfare achieved by W ′ is at most
|W ′ ∩ V ′| − |V | ≤ 0 < k . Removing either u or v from W ′ will increase welfare
by |V | − 1.

Therefore, W ′ corresponds to an independent set in G with size larger than
|W |. Thus, any independent set W gives a welfare of |W | in G′. As a consequence,
if we can find a solution of PG in G′ with welfare at least k, then we can easily
find an independent set in G of size at least k. And, in the other direction, an
independent set in G of size k corresponds directly to a PG solution in G′ with
welfare k. ut

From [23] it is strongly NP-hard to find the maximum independent set on a
planar graph with degree at most 3.

Corollary 1 For a planar graph G = (V,E) with degree at most 3, the problem
of finding an optimal solution in PG setting as in Theorem 2 is strongly NP-hard.

Proof For any planar graph G = (V,E), the constructed graph G′ = (V ′, U ′, E′)
in the proof of Theorem 2 is planar. To see this, just add one vertex to the center
of each edge in G representing the edge vertex in U ′. The resulting graph is planar
and the same as G′. The corollary follows from the reduction in the proof of
Theorem 2. ut

In the next theorem we use a by now commonly used complexity theoretic
Unique Games conjecture, see [31].

Theorem 3 PG is Unique Games-hard to approximate within n1−ε and within
∆

log2∆
for graph G with degree ∆ when pv is any constant number ≥ 1 , bv(xv) is

linear and dv(y) is piecewise linear (with two pieces) ∀v ∈ V and wvu is positive
constant for any (v, u) ∈ E.

Proof According to [32], maximum independent set is Unique Games-hard to ap-
proximate within n1−ε in general graphs and within ∆

log2∆
for graph G with degree

∆. The theorem follows from the reduction in the proof of Theorem 2. ut

Theorem 4 There is no EPTAS for PG with binary variables on the directed
planar graph G = (V,E) when bv and dv are both linear functions, for any v ∈ V .
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Proof Consider PG on the following simple planar graph. There are n+ 2 vertices
labeled as {o1, o2, 1, 2, ..., n} and the edge set E = {(i, oj), i ∈ [n], j ∈ {1, 2}}
with weights wioj , i ∈ [n], j ∈ {1, 2}. For any two dimensional knapsack problem,
there exists an instance of PG with binary variables without the global constraint
on such a simple graph exactly corresponding to this two dimensional knapsack
problem. According to [37], there is no EPTAS for two dimensional knapsack.
Hence, there is no EPTAS for PG on this simple planar graph. ut

v1

u

v2 vn. . .

x

wuv1 wuv2 wuvn

wxv1 wxv2 wxvn

Fig. 3: The two dimensional knapsack on an instance of a planar graph

5 Directed trees

We present a truthful in expectation FPTAS for PG on directed trees by a two
level dynamic programming approach and a 3-approximation deterministic truth-
ful mechanism.

5.1 Truthful in expectation mechanisms

A digraph G is called a directed tree if the undirected graph Gun is a tree. We
consider rooted trees where arcs are directed towards the leaves. We obtain our
truthful in expectation FPTAS for PG with binary variables on any directed trees
by a two-level dynamic programming (DP) approach. The first bottom-up level
is based on a careful application of the standard single-dimensional knapsack FP-
TAS. The second level is by an interesting generalization of an FPTAS of [12]
for a special multiple choice multi-dimensional knapsack problem with a constant
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number of constraints most of which have poly(|I|) size of coefficients. This FP-
TAS generalizes the results in [12], where the authors consider the one dimensional
knapsack problem with cardinality constraint.

Consider the following instance I of a Special multiple choice and multi dimen-
sional Knapsack Problem (denoted as SKP):

max C(x) =
∑
j∈[J]

∑
k∈[K]

Cjkxjk (SKP )

s.t.
∑
j∈[J]

∑
k∈[K]

Aijkxjk ≤ Bi, ∀i ∈ [N ]

∑
k∈[K]

xjk ≤ 1 ∀j ∈ [J ]

∑
j∈[J]

∑
k∈[K]

A′jkxjk ≤ B′

xjk ∈ {0, 1}, ∀j ∈ [J ], k ∈ [K]

where:

J is the number of items available for selection,

K denotes the number of different classes of items where at most one item can

be chosen from each class,

N = O(1) is the number of dimensions of the constraints or items,

Cjk denotes the profit of item j from class k,

Bi = poly(|I|), ∀ i ∈ [N ] is the capacity (size) of the i-th dimension,

Aijk is the size of j-th item in dimension i from class k and

A′jk is the size of the j-th item from class k of dimension N + 1.

Without loss of generality suppose all the parameters in the above knapsack
problem are integers and Aijk ≤ Bi = poly(|I|), ∀ i ∈ [N ], j ∈ [J ], k ∈ [K]. Let
C = OPT (I) and B = maxi∈[N ]Bi.

Lemma 1 There is a pseudo polynomial optimal algorithm for SKP, terminating
in O(CJKBN ) time.

Proof We use a similar technique used to derive an FPTAS for the Knapsack
problem (Chapter 8 in [55]). In order to solve the above LP we convert it into
a minimization LP. To do so we take the last constraint of the original LP and
make it the objective of the new one and we also take the original objective, we
make it as constraint of the new LP setting it equal to M . Each of of the other
constraints i ∈ [N ] (i.e. every other dimension) is set to be equal to `i. Let now
` = (`1, `2, · · · , `N ). We now have the following linear program:
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min hs(M, `) =
∑
j∈[s]

∑
k∈[K]

A′jkxjk

s.t.
∑
j∈[s]

∑
k∈[K]

Cjkxjk = M

∑
j∈[s]

∑
k∈[K]

Aijkxjk = `i ∀i ∈ [N ]

∑
k∈[K]

xjk ≤ 1,∀j ∈ [s]

Initially, h0(M, `) = +∞, for all M , `. Then set h0(0, 0) = 0. As a result, the
recursion can be calculated as follows:

hs(M, `) = min{hs−1(M, `), min
k∈[K]

{hs−1(M − Csk, (`i −Aisk)i∈[N ])}}.

Then the optimal solution of SKP is

max
M≤C,`i≤Bi,i∈[N ]

{M : hJ(M, `) ≤ B′}

Note that the running time of this dynamic programming approach is O(CJKBN ).
ut

Let C(z) = maxj∈[J],k∈[K] Cjk. Note that

OPT in(I)

J
≤ C(z) ≤ OPT in(I)

We now scale all the coefficients in the objective function C(x). Let

C̃jk = d CjkJ
C(z)ε

e ≤ CjkJ

C(z)ε
+ 1, ∀j ∈ [J ], k ∈ [K]

The optimal value C̃ of scaled SKP is then upper bounded by

CJ

C(z)ε
+ J ≤ J2

ε
+ J

Consider the dynamic programming approach running on the scaled SKP asAscaled.
Then we have

Theorem 5 Ascaled is an FPTAS for SKP, terminating in O(J
3KBN

ε ) time.

Proof We only need to show the approximation part i.e. that the optimal solu-
tion returned is within 1− ε of the optimal value of SKP, since the running time
straightforwardly follows from the running time of the dynamic programming ap-
proach

O(C̃JKBN ) = O((
J

ε
+ 1)J2KBN ) = O(

J3KBN

ε
)
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Let S̃ and S denote the optimal solution of the scaled and the original SKP
respectively. Note that S̃ is a feasible solution to the original SKP. By scaling,

(C̃jk − 1)C(z)ε

J
≤ Cjk ≤

C̃jkC(z)ε

J
(11)

Then

C(S)− C(S̃) ≤ C(z)ε

J
(C̃(S)− C̃(S̃) + |S|)

≤ C(z)ε|S|
J

≤ C(z)ε ≤ C(S)ε

where the last inequality comes from |S| ≤ J . ut

We will also need the following tool from mechanism design for packing prob-
lems. An integer linear packing problem with binary variables is a problem of
maximising a linear objective function over a set of linear packing constraints, i.e.,
constraints of form a · x ≤ b where x ∈ {0, 1}n is a vector of binary variables, and
a, b ∈ Rn≥0.

Proposition 4 ([20]) Given an FPTAS for an integer linear packing problem
with binary variables, there is a truthful in expectation mechanism that is an FP-
TAS.

We first present an FPTAS on directed trees without global constraint which
captures our main technical ingredients.

5.1.1 FPTAS without global constraint

The algorithm uses a dynamic programming approach and the FPTAS for knap-
sack problem as a subroutine. Note that on a star, any instance of knapsack can
be reduced to a PG instance without global constraints. Thus, an FPTAS is the
best we can hope for such PG unless P = NP .

We keep four values for each v ∈ V . Suppose that the father of v is v′. Let
Mv′in
vin denote the optimal value of PG on the subtree rooted at v when both v′

and v are selected in the solution. Similarly, we also have Mv′in
vout, M

v′out
vin and

Mv′out
vout . Let ui, i = 1, 2, ..., nv denote the children of v. Suppose Mvin

uiin, Mvin
uiout,

Mvout
uiin and Mvout

uiout have been calculated, for any i = 1, ..., nv. Some of them

may be undefined due to infeasibility. We will calculate now Mv′in
vin . Recall that

ωv = s0v − s1v −
∑
u∈δ+G(v) s

1
uwvu. Observe that Mv′in

vin is equal to the optimal

value of the following knapsack (IP1), where Mvin
uiin and Mvin

uiout have finite values
(otherwise we remove them):

max
∑
i∈[nv]

(Mvin
uiinxui +Mvin

uiout(1− xui)) + ωv (IP1)

s.t. 1 + wv′v +
∑
i∈[nv]

wuivxui ≤ pv

xui ∈ {0, 1} ∀i ∈ [nv]
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If this knapsack problem has a feasible solution, we get the value Mv′in
vin , oth-

erwise we set Mv′in
vin to be undefined. Similarly we calculate Mv′in

vout, M
v′out
vin and

Mv′out
vout . Thus, if we can calculate an optimal solution at each step, this solu-

tion will be obtained by the above DP approach. For knapsack with nv vari-
ables, there is an FPTAS. Hence, at each step we get an approximate value
M̄v′in
vin ≥ (1 − ε)Mv′in

vin in time polynomial in nv and 1
ε by knapsack’s FPTAS.

In a similar way we compute approximately the other three values. Thus, in the
final solution, M̄root ≥ (1− ε)kMroot, where k is the number of levels of the tree
and Mroot is the optimal value of PG without global constraints, terminating in
poly(|I|, 1ε ) time where |I| is the input size. If we let 1− ε′ = (1− ε)k, we have that

ε = Θ( ε
′

k ). The running time is poly(|I|, kε′ ) = poly(|I|, 1
ε′ ) due to k ≤ |I|, giving

an FPTAS for PG without global constraint. ut

5.1.2 FPTAS with global constraint

Suppose without loss of generality that p ≤ n, otherwise let p = n. For each
vertex v, we will keep 4p values. Suppose that the father of v is v′. Let Mv′in

vin (s)
denote the optimal value of PG on the subtree rooted at v when both v′ and v
are selected in the solution, and the total pollution level allocated to the subtree
rooted at v is no more than s, s = 0, 1, . . . , p. Similarly, we also have Mv′in

vout(s),

Mv′out
vin (s) and Mv′out

vout (s). Let ui, i ∈ [nv] denote the children of v. Suppose that
Mvin
uiin(s), Mvin

uiout(s), M
vout
uiin (s) and Mvout

uiout(s) have been calculated, for any i ∈ [nv]
and s = 0, 1, . . . , p. Some of them may be undefined due to infeasibility. Note
that Mvin

uiin(0), Mvout
uiin (0) are undefined and Mvout

uiout(0) = Mvin
uiout(0) = 0. Now we

calculate Mv′in
vin (`). Observe that Mv′in

vin (`) is equal to the optimal value of the
following knapsack problem (IP2) (denoted Knapsackv(`)) plus ωv:

max
∑
i∈[nv]

∑
s∈[p]

(Mvin
uiin(s)xis +Mvin

uiout(s)yis) (IP2)

s.t.
∑
i∈[nv]

∑
s∈[p]

s(xis + yis) ≤ `− 1

p∑
s=0

(xis + yis) = 1, ∀i ∈ [nv]

1 + wv′v +
∑
i∈[nv]

[wuiv(

p∑
s=0

xis)] ≤ pv

xis, yis ∈ {0, 1}, ∀i ∈ [nv], s = 0, 1, . . . , p.

If Mvout
uiin (s) and Mvout

uiout(s) do not have finite values then they are removed from
Knapsackv(`). Note that xi0 ≡ 0, for any i ∈ [nv]. If Knapsackv(`) has a feasible

solution, then we get the value Mv′in
vin (`), otherwise we set Mv′in

vin (`) to be undefined.

Similarly we calculate Mv′in
vout(`), M

v′out
vin (`) and Mv′out

vout (`), ` = 0, 1, . . . , p. From
the analysis of the dynamic programming approach without global constraints,
we know that if there is an FPTAS for Knapsackv(`), then there is FPTAS for
Knapsackroot(p) giving an FPTAS for PG with binary variables on directed trees.
Note that the constraint

∑p
s=0(xis+yis) = 1 can be replaced by

∑p
s=1(xis+yis) ≤

1, ∀i ∈ [nv]. By Proposition 4 we have the following:
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Theorem 6 There is a truthful in expectation mechanism for PG with binary
variables on directed trees, which is an FPTAS.

For general xv ∈ Z, we can replace each xv by qv duplicated variables xvj ,
j = 1, · · · , qv, i.e., {xv ∈ {0, 1, . . . , qv}} = {

∑
j∈[qv] jxvj |

∑
j∈[qv] xvj ≤ 1, xvj ∈

{0, 1}}. Note that this transforms a polynomial size integer constraint into a multi-
ple choice, one dimensional knapsack constraint. Hence, for directed trees, by a DP
approach, we can construct a pseudo polynomial time algorithm to compute the
exact optimal value of PG with integer variables, in time poly(|V |, q, OPT in(PG)).
In addition, we can remove OPT in(PG) from the running time by a loss of ε of the
optimal value using scaling techniques. Thus, there is a (1−ε)-approximation algo-
rithm for PG with integer variables with running time in poly(|V |, q, 1/ε). Finally,
by Proposition 4, we obtain the following:

Theorem 7 There is a truthful in expectation mechanism for PG with polynomial
size integer variables on directed trees, which is an FPTAS.

5.2 Deterministic truthful mechanisms on directed trees

We will use a maximal in range (MIR) mechanism, see, e.g., [17], to obtain a (3+ε)
approximate deterministic truthful mechanism for PG with polynomial size integer
variables on directed trees. As we know, by transformation from integer constraint
into multiple choice and one dimensional knapsack constraint, we only need to show
such an approximation algorithm for binary variables. Our mechanism is based on a
recent deterministic truthful PTAS for 2 dimensional knapsack problem4[13,17,35].
We will first need the following:

Definition 1 A vertex in a rooted directed tree is called at level i if the distance
between the vertex and the root is i in the undirected version of the tree.

Let Li denote the set of vertices of level 3k+i, k = 0, 1, 2, ..., for any i ∈ {1, 2, 3}.
For each vertex v, suppose that the number of children of v is nv, and that the
children are u1, u2, · · · , unv . Recall that ∆ = maxv∈V {nv} + 1. Let Gv denote
the subtree constructed by v and its children. Then restricting PG on Gv with
capacity (global constraint) constraint cv and xv = 0 is equivalent to solving the
following linear programming problem (denoted as PGv):

max
∑
i∈[nv]

ωuixui (PGv)

s.t.
∑
i∈[nv]

wuivxui ≤ pv∑
i∈[nv]

cuivxui ≤ cv

xui ∈ {0, 1} ∀i ∈ [nv]

where cuiv = 1, for i ∈ [nv]. For any solution sv of PGv, we use ω(sv) to de-
note the objective value of this solution given the input Iv = (c, w, pv, cv, ω) and
OPT (PGv(cv)) to denote the optimal value of PGv(cv) given input Iv.

4 This PTAS also works for multiple choice and constant dimensional knapsack problem,
which will be used for PG with polynomial size integer variables.
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Lemma 2 ([13,35]) There exists a range Sv(cv) of solutions of PGv(cv), which
does not depend on the declarations of Iv and only depends on cv such that

max
sv∈Sv(cv)

{ω(sv)} ≥ (1− ε)OPT (PGv(cv))

Besides, there exists an O(∆4+ 1
ε ) algorithm Av(cv) that finds the optimal solution

of the range Sv(cv), for any ε > 0.

Denote now by PGi the restriction of PG on Li and let

Si =
⋃

v∈Li,cv∈[nv],
∑
v∈Li

cv≤p

Sv(cv)

Then Si is a range of PGi, i ∈ {1, 2, 3}.

Lemma 3

(1) maxsi∈Si{ω(si)} ≥ (1− ε)OPT (PGi).

(2) There exists an O(|Li|∆6+ 1
ε ) algorithm Ai that finds the optimal solution of

the range Si of PGi, for any ε > 0.

Proof Suppose that in the optimal solution of PGi, each vertex PGv is allocated
c∗v amount of global pollution level. As we know

∑
v∈Li c

∗
v ≤ p. Then

max
si∈Si

{ω(si)} ≥
∑
v∈Li

max
sv∈Sv(c∗v)

(ω(sv)) ≥ (1−ε)
∑
v∈Li

OPT (PGv(c∗v)) = (1−ε)OPT (PGi)

where the first inequality comes from
∑
v∈Li c

∗
v ≤ pv, the second one is due to

Lemma 2, and the third one is from the definition. Suppose the fathers of vertices
in Li are labeled as v1, v2, · · · , v`i . Let gi(C) denote the optimal value of PG
restricted to vertices with fathers v1, v2, · · · , vi on the range Si when the capacity
allocated to this subproblem is no more than C. We have the following recursive
function:

gi+1(C) = max
cvi+1

≤C
{gi(C − cvi+1) +OPT (PGvi+1(cvi+1))}

where OPT (PGi) = maxi∈[`i],C≤p gi(C). The total running time of this dynamic

programming approach is O(|Li|∆2∆4+ 1
ε ) = O(|Li|∆6+ 1

ε ). ut

Theorem 8 There is a deterministic ρin-approximate truthful mechanism for PG
with polynomial size integer variables on directed trees, where ρin = 3 + ε. For

binary variables the mechanism terminates in O(|V |2∆6+ 1
ε ) time.

Proof We only need to prove this theorem for PG with binary variables. Note that
maxi∈{1,2,3}{OPT (PGi)} ≥ 1

3OPT (PG), then by Lemma 3 we have

max
i∈{1,2,3}

{max
si∈Si

{ω(si)}} ≥
1− ε

3
OPT (PG)

Using the VCG payment rule within VCG mechanisms, see [17], on the range S =⋃
i∈{1,2,3} Si, we can get a deterministic truthful mechanism for PG on directed

trees, achieving 1−ε
3 OPT (PG) social welfare. The running time O(|V |2∆6+ 1

ε ) fol-
lows directly by Lemma 3 and the payment rule of VCG. ut
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6 Planar graphs

We present two algorithms for PG on planar graphs. The first has a constant
approximation ratio, obtained by decomposing the plane and not violating any
constraint. The second algorithm is a PTAS, obtained by a rounding of variables
and a dynamic programming approach on a tree decomposition and violating the
local constraints by a small value δ > 0.

6.1 Constant approximation without violations

Given a digraph G = (V,E) and a subset U ⊂ V , we call significant neighbours
of U , SNG(U), all the vertices in V \U with at least two neighbours in U (see
Figure 4). Consider a partition {V i}αi=1 of V . Now let SNGun(V i) = {u /∈ V i | ∃v ∈
V i, s.t.u is a significant neighbour of vw.r.t.V i} denote the significant neighbours
of V i in Gun. Let Gi be the induced subgraph of V i ∪ SNGun(V i) in Gun. A
partition {V i}αi=1 of V is called an (α, β)-partition (or (α, β)-decomposition) of
G if for any i ∈ [α] and v ∈ V i, |δGi(v)| ≤ β, where α, β are two given positive
integers.

v1

v2
v3

v4

v5

v6

v7 v8

SN(V 1)

V 1

Fig. 4: Significant neighbours SN(V 1) = {v2, v4, v6} of V 1 = {v3, v5, v7, v8} in the
graph of solid black lines.

According to the following Lemma 4, we can obtain a constant-factor approx-
imation for PG with integer variables for any graph with (α, β)-decomposition.
Such a decomposition of planar graphs will be presented later.

Lemma 4 If a directed graph G has an (α, β)-decomposition, then there is a deter-
ministic (ρfr = αγβ+2+1)-approximation algorithm for PG with integer variables,
and, a truthful in expectation mechanism for the same problem with the same ap-
proximation.

Proof If there is an ρfr-approximation algorithm for a linear packing problem
with binary variables, then there is an (ρfr + 1)-approximation algorithm for the
same problem with integer variables [10]. Hence, it is sufficient to show that there
is an (ρfr = αγβ+2)-approximation algorithm for PG with binary variables. So,
consider a PG with binary variables. Let {V i}αi=1 be an (α, β)-decomposition of
graph G. Let x∗ be the optimal fractional solution of PG with binary variables.
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Then R(x∗) ≤ αmaxi∈[α]{R(x∗V i)}, where x∗V i is a fractional solution such that

its value is equal to x∗v, for any v ∈ V i and 0 otherwise. Let PGi denote the PG
on G by setting xv = 0, for any v /∈ V i. Note that x∗V i is a feasible solution for
PGi, which gives R(x∗V i) ≤ OPT

fr(PGi). Without loss of generality, we suppose
wuv ≤ pv, for any (u, v) ∈ E and v ∈ V (otherwise xv ≡ 0 for PG). Observe that
in PGi, only xv, v ∈ V i are variables. Now for any v ∈ V i, let us see how many
constraints in PGi contain xv. Suppose u ∈ V \V i is a neighbour of v in Gun. If u
is not a significant neighbour of v, since wvu ≤ pu, we can remove the constraint
wvuxv ≤ pv in PGi. Hence, only the local constraints of the significant neighbours
of v remain containing variable xv. As {V i}αi=1 is an (α, β)-decomposition of graph
G, there are at most β+ 1 local constraints containing variable xv (which includes
the local constraint of vertex v itself). Together with the global constraint, we
know xv appears in at most β+2 constraints in PGi, for any v ∈ V i, which means
PGi is β + 2 column sparse. Therefore, by Proposition 1, there is a polynomial
deterministic algorithm for PGi with binary variables, finding an integer solution
yi for PGi such that γβ+2R(yi) ≥ OPT fr(PGi), for any i ∈ [α]. Then

αγβ+2 max
i∈[α]
{R(yi)} ≥ αmax

i∈[α]
{OPT fr(PGi)} ≥ αmax

i∈[α]
{R(x∗V i)} ≥ R(x∗) = OPT fr(PG)

A truthful in expectation mechanism with the same approximation ratio is guar-
anteed by Proposition 3. ut

Planar graphs. In the following, we will show that the integrality gap of PG on
planar graphs is at least 4 as shown by a complete graph with four vertices. For
a small ε > 0, let wuv = ε, for any (u, v) ∈ E, and pv = ωv = 1, for any v ∈ V .
There is no global constraint. The optimal integer solution of PG on this graph is
xv = 1 for some v ∈ V and xu = 0 for all u 6= v, implying the optimal objective
value 1. However, setting xv = 1− 4ε, for any v ∈ V provides a feasible fractional
solution, which gives the objective value 4 − 16ε. Therefore, the integrality gap
is at least 4, meaning that our LP relaxation cannot lead to better than 4 (e.g.,
PTAS) approximations.

We provide an (α, β)-decomposition of any planar graph, with α = 18, β = 6.
We did not attempt to optimize these two parameters.

Theorem 9 There is an (α, β)-decomposition of a directed planar graph G =
(V,E), where (α, β) = (18, 6).

Proof Let G′ = Gun = (V,E′). Suppose G′ is connected, otherwise we can run the
algorithm on each connected component separately. Define a sequence of vertex
sets {Ni}i of G′ as follows in a BFS manner. Fix an arbitrary vertex v0 ∈ V , and
let N1 = {v0}, and Ni is defined recursively as

Ni+1 = {v ∈ V \
i⋃

j=1

Nj | (v, u) ∈ G′, for someu ∈ Ni},

for i = 1, 2, . . . , |V |. By this definition, for any v ∈ Ni and u ∈ Nj , if |i − j| ≥ 2,
then (u, v) /∈ E′. We also observe that Ni is the set of vertices with distance i− 1
to v0 in G′ (i.e., the shortest path distance with respect to the number of edges).
Suppose the length of the sequence {Ni}i is K. Let Si = {j ≡ i (mod 3) | j ∈ [K]},
i ∈ {1, 2, 3}. Let S0 = S3, and V i =

⋃
j∈Si Nj , i ∈ {1, 2, 3}. We will need the

following Lemmas 5, 6 and 7.
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Lemma 5 For each v ∈ Nj, the number of significant neighbours of v in Nj−1

with respect to Nj is at most two.

Proof Suppose towards a contradiction that v has three significant neighbours
with respect to Nj . That is, suppose there exists v1 6= v2 6= v3 ∈ Nj−1 ∩ δG′(v)
and v 6= u1, u2, u3 ∈ Nj such that (ui, vi) ∈ G′, i ∈ {1, 2, 3} (see Figure 5). By the
definition of Nj , there is a path from v0 to vi, i ∈ {1, 2, 3}, and (v, vi) ∈ G′, i ∈
{1, 2, 3}. Suppose without loss of generality that v2 is inside the circle constructed
from the path of v0 to v1, v3 and edges (v, v1) and (v, v3) in the planar embedding.
Then (u2, v2) will intersect this circle, which contradicts that G′ is planar. ut

v1 v2 v3

v0

u1 v u2 u3

. . . layer Nj−1

layer Nj

Fig. 5: An illustration of relations between Nj and Nj−1

Next, we partition Nj into two sets N1
j and N2

j such that each vertex in N i
j

has at most two significant neighbours in Nj+1 with respect to N i
j , i ∈ {1, 2}. We

say two vertices v, u ∈ Nj are connected by a zigzag path if there exists a path
(v, v1, v2, v3, . . . , vs, u) in G′ such that vi and vi+1 alternatively belong to Nj+1

and Nj , i.e., v1 ∈ Nj+1 and v2 ∈ Nj . Note that s must be odd. We define the
zigzag length of this zigzag path as s+1

2 . The zigzag distance between v and u,
denoted dzuv, is defined as the zigzag length of the shortest zigzag path between
v and u if there exists one and ∞ otherwise. Note that the zigzag distance of v
to itself is zero. The partition algorithm PA1 (see Algorithm 1) partitions the set
of vertices in layer Nj into sets N1

j and N2
j . The algorithm proceeds in iterations.

In each iteration a vertex v ∈ Nj is chosen arbitrarily and all vertices with odd
zigzag distance from v are assigned to N1

j . Similarly all vertices with even zigzag

distance are assigned to N2
j . Let N1

j = A1 and N2
j = A2, where A1, A2 is the

output of PA1. (Note that PA1 runs for each j ∈ [K].)
Intuitions behind A1, A2 are quite simple. We want to avoid more than two

significant neighbours for a vertex v ∈ Nj that reside in Nj+1. The only way to
have a significant neighbour of v in Nj+1 is to have a single zigzag from v to a
vertex in Nj+1 and back to a vertex in Nj . Thus it is enough to put two consecutive
vertices from Nj joined by two such consecutive zigzags, into the same set of the
partition. And A1 and A2 are precisely those vertices from Nj which lie on odd
(A1) and even (A2) zigzags, respectively, and thus such a partition does the job.

Lemma 6 For each v ∈ N i
j , v has at most two significant neighbours in Nj+1

with respect to N i
j , i ∈ {1, 2}.
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Algorithm 1: (PA1)

Input: A1, A2 ← ∅, B ← Nj
Output: A1, A2

while B 6= ∅ do
Select a vertex v ∈ B;
Find B1, B2 below by BFS.
B1 ← {u ∈ Nj | dzuv is odd};
B2 ← {u ∈ Nj | dzuv is even};
A1 ← A1 ∪B1; A2 ← A2 ∪B2;
B ← B\(B1 ∪B2);

v v′′ u

v′ v1 v2 v3
. . .

layer Nj

layer Nj+1

Fig. 6: Relations between Nj and Nj+1

Proof First, note that if v and u are selected in different iterations of the while
loop in Algorithm 1, there is no zigzag path between them. Therefore, for a single
iteration of the while loop, suppose v ∈ B is selected. We only need to show that
for any u ∈ Bi, u has at most two significant neighbours in Nj+1 with respect to
Bi, i ∈ {1, 2}. First, note that v ∈ B2 (its zigzag distance to itself is 0). Since all
the other vertices in B2 have zigzag distance to v at least two, v has no significant
neighbours with respect to B2 in Nj+1. Now fix i ∈ {1, 2}. Consider any two
vertices u, u′ ∈ Bi, where u and u′ connect to the same vertex in Nj+1 only if
they have the same zigzag distance to v. Suppose there exist three different vertices
v1, v2, v3 ∈ Nj+1, such that they are significant neighbours of u with respect to
Bi (see Fig. 6). By similar arguments as above, there exists zigzag paths from v
to vi, i ∈ {1, 2, 3}. Also note that edges (u, vi) ∈ G′, i ∈ {1, 2, 3}. Without loss of
generality, suppose v2 is in the circle constructed from the zigzag paths v to v1,
v3 and edges (u, v1) and (u, v3). Since G′ is planar, there exists no edge between
v2 and another vertex in Bi with the same zigzag distance to u. Therefore, u has
at most two significant neighbours with respect to Bi in Nj+1. ut

Next we will partition each set N i
j , i ∈ {1, 2}, j ∈ [K] into a constant number

of sets {N ik
j }k such that each vertex in N ik

j has at most a constant number

of significant neighbours with respect to N ik
j in Nj . We provide two partition

algorithms namely PA2 and PA3. Both algorithms are similar in spirit to Algorithm
1. For any two vertices v, u ∈ N i

j , we say that they are connected by an Nj-path
if there exists a path (v, v1, v2, · · · , vs, u) in G′ such that v` ∈ Nj , ∀` ∈ [s]. Nj-

distance of two vertices v, u ∈ N i
j , denoted d

Nj
uv , is defined as the number of edges

of the shortest Nj-path between v and u if there exists one and ∞ otherwise. PA2
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(Algorithm 2) partitions the vertices of each N i
j into three sets N ik

j , k ∈ {1, 2, 3}
in such way that N ik

j contains the vertices with Nj-distance from an arbitrarily

chosen vertex v ∈ N i
j , in every iteration of the algorithm. Note that v ∈ B3,

because the Nj-distance from v to itself is zero. Let N ik
j = Ak, k ∈ {1, 2, 3}, where

A1, A2, A3 are a partition of N i
j output by PA2.

Algorithm 2: (PA2)

Input: A1, A2, A3 ← ∅, B ← N i
j

Output: A1, A2, A3

while B 6= ∅ do
Select a vertex v ∈ B;
Find Bk’s below by BFS.
for k ← 1 to 3 do

Bk ← {u ∈ N i
j | d

Nj
uv ≡ k(mod 3)}

Ak ← Ak ∪Bk;

B ← B\(B1 ∪B2 ∪B3);

Lemma 7 For any k ∈ {1, 2, 3}, and each v ∈ N ik
j , v has at most 2 neighbours

in Nj, or has no neighbours in N ik
j nor significant neighbours with respect to N ik

j

in Nj\N ik
j .

Proof First, note that if v and u are selected in different iterations of while loop in
Algorithm 2, there is no Nj-path between them. Therefore, for a single iteration
of the while loop, suppose v ∈ B is selected. Since v ∈ B3 (Nj distance to itself
is 0), v has no neighbours in B3 nor significant neighbours with respect to B3 in
Nj\B3 by PA2. Now fix k ∈ {1, 2, 3}. Consider any two vertices u1, u2 ∈ Bk, u1
and u2 connect to the same vertex in Nj only if they have the same Nj-distance
to v. Next we will show for any u1 6= v and u1 ∈ Bk, for any k, u1 has at most
two neighbours in Nj . Suppose there exist three different vertices u1, u2, u3 ∈ Nj ,
such that (u1, u2) ∈ G′ and (u1, u3) ∈ G′. By similar arguments as above, there
exists Nj-paths from v to ui, k ∈ {1, 2, 3}. Since ui ∈ Nj , i ∈ {1, 2, 3}, there exist
paths in G′ from v0 to ui, i ∈ {1, 2, 3}. We observe that it is only possible that u1
is in the circle constructed from the Nj paths v to u2, u3 and paths from v0 to
u2 and u3 (the case where u2 or u3 is in the circle constructed by the other two
vertices with v and v0 will violate the planarity of G′) (see Fig. 7). Since graph
G′ is planar, there exists no edge between u1 and another vertex in Nj (due to
that such a vertex will have a path to v and v0 respectively). Therefore, u1 has at
most two neighbours in Nj . ut

Combining Lemmas 5, 6 and 7, {N ik
j }ijk is an (α, β)-decomposition of G with

(α, β) = (18, 6), which finishes the proof of Theorem 9.
ut

By Theorem 9 and Lemma 4, we have

Theorem 10 There is a randomized, individually rational and truthful in expec-
tation (18γ8 + 1)-approximation mechanism for PG on planar graphs with integer
variables.
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v u2 u1 u3

v0

layer Nj

Fig. 7: Relations between Nj and Nj

6.2 Better approximation under some mild condition

We will use the 4-color theorem for planar graphs to present an improved (6 + ε)-
approximate truthful in expectation mechanism for PG under the following natural
(and mild) assumption: ∑

u∈δ−G(v)

wuv ≤ pv (12)

This constraint means that if each of v’s neighbours emits only one unit amount of
pollution, the level of pollution in v will not exceed v’s local level of pollution. Let
x1 be the optimal fractional solution of PG with binary variables without global
constraint on planar graph G.

Theorem 11 Suppose condition (12) holds and R(x1) ≥ 1. There is a random-
ized, individually rational, (ρfr = 6 + ε)-approximation mechanism that is truthful
in expectation for PG on planar graphs with integer variables, terminating in time
poly(|I|, log(1

ε )).

Proof Note that if condition (12) holds, then every independent set is a feasible
solution for PG with binary variables without global constraint. By 4-color theorem
[7, 46] for planar graphs, there is an independent set S ⊂ V such that 4R(zS) ≥
R(x1) where zS is defined by zv = 1 if v ∈ S and zv = 0 otherwise. Further
there is an O(|V |2) algorithm finding zS [46]. By Theorem 3 of [36] and R(x1) ≥
1, there is a deterministic (ρfr = 5 + ε)-approximation algorithm for PG with
binary variables, running in poly(|I|, log(1

ε )) time. Then there is a deterministic

(ρfr = 6 + ε)-approximation algorithm for PG with integer variables, running in
time poly(|I|, log(1

ε )) [10]. By Proposition 3, this (ρfr = 6 + ε)-approximation
mechanism is truthful in expectation for PG with integer variables. ut

6.3 A PTAS with δ violation of constraints

A PTAS with δ-violation: Our approach to obtain a PTAS has three main
steps:

1. Round PG to an equivalent problem P̄G2 with polynomial size integer vari-
ables.

2. Using the nice tree decomposition [34], we present a dynamic programming
approach to solve P̄G2 optimally on a k-outerplanar graph.

3. By a shifting technique similar to [8], we obtain a PTAS with 1 + δ violation
of local constraints for PG.



28 E. Anastasiadis, X. Deng, P. Krysta, M. Li, H. Qiao, J. Zhang

Step 1: Rounding Procedure. Recall that PG is equivalent to the following
integer linear program:

max
∑
v∈V

ωvxv (PG)

s.t.
∑
v∈V

xv ≤ p

wvvxv +
∑

u∈δ−G(v)

wuvxu ≤ pv, ∀v ∈ V

xv ∈ {0, . . . , qv}, ∀v ∈ V

where ωv = max{0, s0v − s1v −
∑
u∈δ+G(v) s

1
uwvu} and wv,v = 1 ∀v ∈ V , and bv

and dv are both linear with slopes s0v and s1v. For each v ∈ V , suppose qv ∈
[2ov−1−1, 2ov−1). Let ov = blog2(qv)c+1 if qv 6= 2ov−1−1 and ov = blog2(qv)c+2
otherwise; civ = 2i−1, i ∈ [ov−1] and covv = qv−2ov−1 +1. By simple calculations,
we know

{xv |xv ∈ Z, 0 ≤ xv ≤ qv} = {
ov∑
i=1

civy
i
v | yiv ∈ {0, 1}, i ∈ [ov]}

for any v ∈ V . Therefore, PG is equivalent to the following integer linear program-
ming problem (denoted as PG′):

max
∑
v∈V

ov∑
i=1

ωvc
i
vy
i
v (PG′)

s.t.
∑
v∈V

ov∑
i=1

civy
i
v ≤ p

ov∑
i=1

wvvc
i
vy
i
v +

∑
u∈δ−G(v)

ov∑
i=1

wuvc
i
uy
i
u ≤ pv, ∀v ∈ V

yiv ∈ {0, 1}, ∀v ∈ V, i ∈ [ov]

Let o∗ = maxv∈V ov and ρ = o∗|V |. Recall that q = maxv∈V {qv} + 1. For any
δ > 0, let

w̄iuv = b2wuvc
i
vρ

pvδ
c and p̄v = d2pvρ

pvδ
e = d2ρ

δ
e

for any u, v ∈ V . Then we have the following modified PG′ denoted as P̄G1:
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max
∑
v∈V

ov∑
i=1

ωvc
i
vy
i
v (PG1)

s.t.
∑
v∈V

ov∑
i=1

civy
i
v ≤ p

ov∑
i=1

w̄ivvy
i
v +

∑
u∈δ−G(v)

ov∑
i=1

w̄iuvy
i
v ≤ p̄v, ∀v ∈ V

yiv ∈ {0, 1}, ∀v ∈ V, i ∈ [ov]

Lemma 8 Any feasible solution of PG′ is feasible in P̄G1, and any feasible solu-
tion of P̄G1 is feasible for PG except violating each local constraint by a factor of
1 + δ.

Proof We only prove local constraints for each direction since the proof of the
global constraint is similar. Let {yiv}v∈V, i∈[ov] be a feasible solution of PG′. We
know that

ov∑
i=1

wvvc
i
vy
i
v +

∑
u∈δ−G(v)

ov∑
i=1

wuvc
i
uy
i
v ≤ pv,∀v ∈ V

Then

ov∑
i=1

w̄ivvy
i
v+

∑
u∈δ−G(v)

ov∑
i=1

w̄iuvy
i
v ≤

2ρ

pvδ

(
ov∑
i=1

wvvc
i
vy
i
v+

∑
u∈δ−G(v)

ov∑
i=1

wuvc
i
uy
i
v

)
≤ 2ρ

pvδ
pv ≤ p̄v

as desired. On the other hand, suppose {yiv}v∈V, i∈[ov] is a feasible solution of P̄G1.
We know that

ov∑
i=1

w̄ivvy
i
v +

∑
u∈δ−G(v)

ov∑
i=1

w̄iuvy
i
v ≤ p̄v,∀v ∈ V

Then

ov∑
i=1

wvvc
i
vy
i
v +

∑
u∈δ−G(v)

ov∑
i=1

wuvc
i
uy
i
v ≤

pvδ

2ρ

(
ov∑
i=1

(w̄ivv + 1)yiv +
∑

u∈δ−G(v)

ov∑
i=1

(w̄iuv + 1)yiv

)

≤pvδ
2ρ

ov∑
i=1

w̄ivvy
i
v +

∑
u∈δ−G(v)

ov∑
i=1

w̄iuvy
i
v +

pvδρ

2ρ
≤ pvδp̄v

2ρ
+
pvδ

2
≤ pvδ

2ρ

(
2ρ

δ
+ 1

)
+
pvδ

2

≤pv(1 + δ),∀v ∈ V

ut

Note that for each ` ∈ [qv], there is a solution {yiv}i∈[ov] such that
∑ov
i=1 c

i
vy
i
v =

`. If ` ≤ 2ov−1− 1, set yovv = 0 and if 2ov−1− 1 < ` ≤ qv, set yovv = qv − 2ov−1 + 1.
In both cases there is a unique solution such that

∑ov
i=1 c

i
vy
i
v = `. Hence, there is a

one-to-one correspondence from xv to {yiv}i∈[ov]. It is not difficult to see that for a

given xv, the solution {yiv}i∈[ov] defined above is the one such that
∑ov
i=1 w̄

i
vvy

i
v +
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∑
u∈δ−G(v)

∑ov
i=1 w̄

i
uvy

i
v is minimized. Now let w̄vu(xv) =

∑ov
i=1 w̄

i
vuy

i
v, for any

v, u ∈ V , where {yiv}i∈[ov] corresponds to the solution of xv. Let Λv = [qv] ∪ {0}.
Using these notations, we know that P̄G1 (also PG) is equivalent to the following
integer linear programming problem (denoted as P̄G2):

max
∑
v∈V

ωvxv ( ¯PG2)

s.t.
∑
v∈V

xv ≤ p

w̄vv(xv) +
∑

u∈δ−G(v)

w̄uv(xu) ≤ p̄v, ∀v ∈ V

xv ∈ Λv, ∀v ∈ V

Step 2: Preliminaries of tree decompositions on k-outerplanar graphs

Definition 2 A tree decomposition of an undirected graph G = (V,E) is a pair
({Xi|i ∈ I}, T = (I, F )), with {Xi|i ∈ I} a family of subsets of V , one for each
node of T , and T a tree such that:

1.
⋃
i∈I Xi = V ,

2. for all edges (v, w) ∈ E, there exists an i ∈ I with v ∈ Xi and w ∈ Xi,
3. for all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The width of a tree decomposition ({Xi|i ∈ I}, T = (I, F )) is maxi∈I |Xi| − 1.
The minimum width of all tree decompositions of G is called treewidth.

Definition 3 A tree decomposition ({Xi|i ∈ I}, T = (I, F )) of G = (V,E) is
called a nice tree decomposition if T is a rooted binary tree and

1. if a node i ∈ I has two children j and k, then Xi = Xj = Xk (joint node),
2. if a node i ∈ I has one child j, then either Xi ⊂ Xj , and |Xi| = |Xj |−1 (forget

node), or Xj ⊂ Xi and |Xj | = |Xi| − 1 (introduce node),
3. if node i ∈ I is a leaf of T , then |Xi| = 1 (leaf node).

Lemma 9 ([29]) For any k-outerplanar graph G = (V,E), there is an algorithm
to compute a tree decomposition ({Xi|i ∈ I}, T = (I, F )) of G with treewidth at
most 3k − 1 = O(k), and I = O(|V |) in O(k|V |) time.

Given a tree decomposition ({Xi|i ∈ I}, T = (I, F )) for G = (V,E) with treewidth
k and I = O(|V |), we can obtain a nice tree decomposition with the same treewidth
k and the same number of nodes O(k|V |) in O(k2|V |) time [34]. Thus, for any k-
outerplanar graph G = (V,E), we can compute a nice tree decomposition ({Xi|i ∈
I}, T = (I, F )) of G with treewidth at most 3k − 1 = O(k), and I = O(k|V |) in
O(k2|V |) time. In the following, we will assume there is a nice tree decomposition
for any k-outerplanar graph.
Dynamic Programming (DP). We present a DP approach to solve P̄G2 on
a directed k-outerplanar graph using a nice tree decomposition of its undirected
version. Note that a nice tree decomposition of an undirected version of a directed
graph is also a nice tree decomposition of itself. Suppose we have a nice tree
decomposition ({Xi|i ∈ I}, T = (I, F )) of a directed k-outerplanar graph G =
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(V,E). We will use a bottom-up DP approach for P̄G2. In the following we will
present our DP approach to the more general application of the allocation of
pollution licences (application 2).

For any node i ∈ I, suppose Xi = {vi1, vi2, · · · , vit}, where t ≤ 3k. We say
that vertex vi1 belongs to node Xi. Similarly we say that a vertex belongs to
a subtree of T , meaning that this vertex belongs to some node of this subtree.
Recall that given any allocation of licences {xv}v∈V , the maximum number of
cars (and so the maximum number of licences) allowed at any moment in city v
is w̄vv(xv) +

∑
u∈δ−G(v) w̄uv(xu) (the local constraint). Let ai = (ai1, a

i
2, · · · , ait)

denote the number of licences allocated to vertices in Xi, i.e., ais denotes the
number of licences allocated to vertex vis, s ∈ [t]. Similarly `i denotes the locally
maximum number of cars allowed at any moment in vertices of Xi. Let Gi denote
the subgraph generated by all the vertices belonging to the subtree (node Xi)
rooted at Xi. We use Qi to denote the total number of licences allocated to Gi. Let
Ψi(ai, `i, Qi) denote the optimal objective value of P̄G2 restricted to the subgraph
Gi, when the number of licences on vis and the number of allowed cars at any
moment on i are respectively ais and `is, s ∈ [t], and the total number of licences
onGi is exactlyQi. If there is no feasible solution to Ψi(ai, `i, Qi), our DP approach
will automatically set Ψi(ai, `i, Qi) to −∞. Let w̄uv(xv) ≡ 0 if (u, v) is not an edge
in G. Note that the range of ais we need to compute is in Λv, `is ranges from 0 to
p̄vis , s ∈ [t] and Qi from 0 to p. The DP approach is as follows:

– Xi is a leaf node or a start node, where t = 1. Ψi(a
i
1, `

i
1, Q

i) = ωvi1a
i
1 if the

triple (ai, `i, Qi) is feasible, which can be verified easily e.g. Qi = ai1 and
`i1 = w̄vi1vi1(ai1). Let Ψi(a

i
1, `

i
1, Q

i) = −∞ if the triple (ai, `i, Qi) is not feasible.

– Xi is a forget node and suppose its child is Xj = Xi ∪ {vjt+1}.
Ψi(ai, `i, Qi) = maxajt+1,`

j
t+1

Ψj(ai, ajt+1, `
i, `jt+1, Q

i)

– Xi is an introduce node and suppose its child is Xj = Xi\{vit}. Let ajs = ais
and `js = `is − w̄vitvis(a

i
t), ∀s ∈ [t− 1]. Ψi(ai, `i, Qi) = Ψj(aj, `j, Qi − ait) +ωvita

i
t

if
∑
s∈[t] w̄visvit(a

i
s) = `it, and Ψi(ai, `i, Qi) = −∞ otherwise.

– Xi is a joint node and suppose its two children j and k are such that Xj =
Xk = Xi. Ψi(ai, `i, Qi) = maxA{Ψj(aj, `j, Qj) + Ψk(ak, `k, Qk)}, where the
condition
A = {(aj, `j, Qj), (ak, `k, Qk) |aj + ak = ai, `j + `k = `i, Qj +Qk = Qi}.

– Xi is the root of T , OPT (Qi) = maxai,`i{Ψi(ai, `i, Qi)} is the optimal value

(social welfare) of P̄G2 when the total scaled number of licences is exactly Qi,
i.e., the global constraint satisfies

∑
v∈V xv = Qi.

Analysis of running time of DP. We next prove by induction that the above
DP approach gives the optimal solution of P̄G2 on k-outerplanar graphs. Having
a nice tree decomposition we first start from the leaf nodes computing the optimal
solutions of all the nodes until we reach the root (bottom-up approach). For every
node i ∈ I we compute its optimal solution (i.e. on the subtree rooted at i)
according to the relative case (i.e. introduce node, forget node, joint node). More
formally we have the following:

Claim The DP approach on the nice tree decomposition of a k-outerplanar graph
gives the optimal solution to P̄G2.
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Proof We prove the claim by induction on the height h of the tree T .
Induction base: In the case where h = 0 the root node is the leaf hence we can
easily verify whether the triple Ψ is feasible and set its value according to step 1
of the DP approach.
Induction step: Suppose the tree has height h > 0 rooted at node v. We now
consider the following cases:

– v is an introduce node and its child is u1. We assume that we have computed
the optimal solution for the subtree rooted at u1 (with height h − 1). In this
case the optimal value of v is given by the formula of the third step of the DP
approach.

– v is a forget node and its child is u1. The case is similar to the one given in the
introduce node step with the difference that the optimal value of v is given by
the formula of the second step of the DP approach.

– v is a joint node and its children are u1 and u2. We assume again that we have
computed the optimal solutions for the subtrees rooted at u1 and u2 (where at
least one has height h−1). Then the optimal value of v is given by the formula
of the fourth step of the DP approach.

ut

We note that the tree is rooted at an empty forget node. Furthermore, each
vertex can be introduced multiple times but can only be forgotten once. Hence, the
optimal solution of the root is also the optimal solution of P̄G2 when the global
constrained,

∑
v∈V xv = Qi, is satisfied.

For each node Xi, we need to keep O(pq3kd2ρδ e
3k) = O(|V |q3k+1d2ρδ e

3k) num-

ber of Ψi values. Each Ψi can be computed in O(|V |q3k+1d2ρδ e
3k) time (this is the

worst case running time when Xi is a joint node). There are O(k|V |) nodes in T .
Therefore, the total running time of the DP approach (by multiplying the above
three numbers) is O(k|V |3q6k+2d2ρδ e

6k).
Based on the above DP approach, we can solve P̄G2 on any k-outerplanar

graph optimally for any fixed k (which includes any directed tree whose treewidth
is 2). Therefore, for any δ > 0 and fixed k, we can use VCG to get an optimal
deterministic truthful mechanism for PG on any directed k-outerplanar graph that
violates each local constraint by a factor of δ and runs in O(k|V |3q6k+2d2ρδ e

6k)
time (note that Theorem 12 also works for bounded treewidth graphs).

Theorem 12 For any δ > 0 and fixed k, there is an optimal deterministic truthful
mechanism for PG on any directed k-outerplanar graph G = (V,E) that violates
each local constraint by a factor of 1 + δ and runs in O(k|V |3q6k+2d2ρδ e

6k) time,
where ρ = |V |(blog2(q)c+ 2).

Step 3: PTAS for planar graphs Observe that when there are some bound-
ary conditions on a k-outerplanar graph, the above DP approach still works. For
example, if the number of licences of any vertex in any first and last face (level 1
and level k face) of the k-outerplanar graph is zero, we just modify the dynamic
programming approach in a bottom-up manner to set Ψi = −∞ if any vertex v in
any first and last face is a parameter of Ψi and its number of licences aiv > 0. Then
the modified DP approach is the desired algorithm for P̄G2 on the k-outerplanar
graph under this boundary condition.
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Proposition 5 PG is strongly NP-hard on planar graphs when we allow a δ vio-
lation of local constraints.

Proof Suppose we restrict PG instances to fulfill that∑
u∈δ−G(v)

wuv ≤ pv,∀v ∈ V (13)

Then the maximum independent set problem can be solved as such PG problem
with each pv = 1. Further, observe that if δ = minu,v{wuv}, then even if we allow
for (1 + δ′)-violation of the local constraints, where 0 < δ′ < δ, the maximum
independent set problem can still be solved as such PG problem. Maximum inde-
pendent set on a planar graph with degree at most 3 is strongly NP-hard [23]. ut

Theorem 14 provides a PTAS for PG with q = poly(|V |) (in particular qv = 1
and 13) and (1 + δ′)-violation, giving a tight approximation in this sense.

Theorem 13 For any fixed k and δ > 0, there is an O(k2|V |3q6k+2d2ρδ e
6k) al-

gorithm for PG with integer variables on directed planar graph G = (V,E) that
achieves ρin-approximation and violates each local constraint by a factor of 1 + δ,
where ρ = |V |(blog2(q)c+ 2) and ρin = k

k−2 .

Proof We use OPT (P̄G2) to denote OPT inG (P̄G2) omitting the superscript and
subscript. By Lemma 8, we know OPT = OPT (PG) ≤ OPT (P̄G2). Let P̄G2(i)
denote the P̄G2 restricted on G when setting xv = 0 for each v that belongs to
any face f ≡ i or i + 1 (modk). Let {x∗v}v∈V be an optimal solution for P̄G2.
Then we know ∑

i∈[k]

∑
v∈f :f≡i or i+1(mod k)

x∗v = 2OPT (P̄G2)

As a consequence, there exists i ∈ [k] such that∑
v∈f :f≡i or i+1(mod k)

x∗v ≤
2OPT (P̄G2)

k

Observe that {xv}v∈V is a feasible solution for P̄G2(i), where xv = 0 if v belongs
to any face f ≡ i or i+ 1 (modk) and xv = x∗v otherwise. Thus,

OPT (P̄G2(i)) ≥ (1− 2

k
)OPT (P̄G2) ≥ (1− 2

k
)OPT

Solving each P̄G2(i), i ∈ [k], then choosing maxi∈[k]{OPT (P̄G2(i))} (which is at

least (1 − 2
k )OPT ) gives the desired result. Now let us see how to solve P̄G2(i).

Note that for P̄G2(i), xv = 0 for any v who belongs to any face f ≡ i or i + 1
(modk). P̄G2(i) consists of independent k′−outerplanar graphs, each of which
has some boundary condition i.e. the emission amount of any vertex in any first
and last face is zero and k′ ≤ k. Suppose the number of these independent k′-
outerplanar graphs is Li. Without loss of generality, suppose these k′-outerplanar
graphs are ordered from exterior to interior as Gs = (Vs, Es), s ∈ [Li] (e.g. Gs is
the subgraph of G constructed by all the vertices of levels from (s− 2)k+ i+ 1 to
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Level 1 2 i

G1

boundary of G1

i+1 i+2 i+k

G2

boundaries of G2

i+k+1 i+k+2

boundary of G3

GLi

Fig. 8: An illustration of how to select k-outerplanar graphs

(s− 1)k+ i, s = 2, · · · , Li− 1, with boundary xv = 0 if v is of level (s− 2)k+ i+ 1
or (s− 1)k + i, see Figure 8).

Let Ψs(Q
s) denote the optimal value if there is a solution such that the total

allocated scaled emission amount to Gs is exactly Qs with boundary condition
and Ψs(Q

s) = 0 otherwise, which can be solved by the above DP approach on
k′-outerplanar graphs with boundary conditions. Then, it is not difficult to see
the optimal solution for P̄G2(i) is the optimal solution of the following integer
linear program (denoted by SUB):

max
∑
s∈[Li]

p∑
Qs=0

Ψs(Q
s)ysQs (SUB)

s.t.
∑
s∈[Li]

p∑
Qs=0

QsysQs ≤ p

p∑
Qs=0

ysQs = 1

ysQs ∈ {0, 1}, ∀s ∈ [Li], Qs = 0, 1, . . . , p.

Let gt(Q) denote the optimal integer value of SUB when only Gs, s ∈ [t] is
considered and the total emission amount allocated to these graphs is exactly Q.
Then we have the following recursion function (which is essentially the same as
that in Lemma 1):

gt(Q) = max
Qt=0,1,··· ,Q

{gt−1(Q−Qt) + Ψt(Q
t)}

The optimal value of SUB is maxQ=0,1,··· ,p{gLi(Q)}, which gives the optimal
solution of P̄G2(i) by tracking the optimal value of this dynamic programming
approach. The running time of this approach is O(|Li|p2). Hence, the total running
time for obtaining and solving P̄G2(i) is

O(|Li|p2) +
∑
s∈[Li]

O(k|Vs|3q6k+2d2ρ
δ
e6k) = O(k|V |3q6k+2d2ρ

δ
e6k)
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We need to solve P̄G2(i), for each i ∈ [k] and then get maxi∈[k]{OPT (P̄G2(i))}.
Therefore, the overall running time is O(k2|V |3q6k+2d2ρδ e

6k) as desired. ut

Let 2
k = ε in Theorem 13. Also note that ρ = |V |(blog2(q)c+ 2). We have:

Theorem 14 For fixed δ, ε > 0 there is an

O

(
1

ε2
|V |12/ε+3q2d2(blog2 qc+ 2)q

δ
e12/ε+1

)
=

(
|V |q(log2 q + 2)

δ

)O( 1
ε
)

(14)

time algorithm for PG on directed planar graph G = (V,E) that achieves social
welfare (1− ε)OPT in(PG) and violates each local constraint by a factor of 1 + δ.
This is a PTAS for PG with polynomial size integer variables.

7 General objective function for bounded degree graphs

7.1 Approximation algorithms

If R(x) is monotone, we present an algorithm with an approximation ratio of O(∆)
for PG on a graph with maximum degree ∆.

Theorem 15 If R(x) with binary variables is monotone increasing, then there is
an (ρfr =

eγ∆+2

e−1 + 1)-approximation algorithm for PG with integer variables.

Proof If xv ∈ {0, 1}, ∀v ∈ V , for any A ⊆ V , we define g(A) = R(x) where xv = 1,
∀v ∈ A and xv = 0, for any v /∈ A. It is not difficult to see that R with binary
variables is submodular if and only if g satisfies g(A∪B)+g(A∩B) ≤ g(A)+g(B),
for any A,B ⊂ V . For any A ⊆ V , and v ∈ V , denote by A+v the set A∪{v}. Let
gv(A) = g(A+v)−g(A). Then it is not difficult to see that g(A∪B) +g(A∩B) ≤
g(A) + g(B), for any A,B ⊂ V if and only if for any A ⊆ B ⊆ V and v ∈ V \B,
gv(A) ≥ gv(B). Next we will prove that gv(A) ≥ gv(B), which implies that R(x)
is submodular.

Let A ⊆ B ⊆ V and v ∈ V \B. Denote by ∆rA+v
u the total welfare change of

player u by adding v to set A. Observe that

gv(A) = ∆rA+v
v +

∑
u∈δ−G(v)∩A

∆rA+v
u .

By simple calculations,

∆rA+v
v = bv(1)− bv(0)− dv(1 +

∑
u∈δ−G(v)∩A

wuvxu) + dv(
∑

u∈δ−G(v)∩A

wuvxu),

∆rA+v
u = −du(

∑
u′∈δ−G(u)∩A

(wu′uxu′ + wvu)) + du(
∑

u′∈δ−G(u)∩A

wu′uxu′).

By convexity of du, we know that

∆rA+v
v ≥ ∆rB+v

v ,∀u ∈ δG(v) ∩A

∆rA+v
u ≥ ∆rB+v

u ,∀u ∈ δG(v) ∩A

∆rB+v
u ≥ 0, ∀u ∈ δ−G(v) ∩B

(15)
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Hence, gv(A) ≥ gv(B) and R(x) with binary variables is submodular.
For the graph with degree ∆, note that PG is ∆+ 2 column sparse. By Propo-

sition 2, there is a randomized ρfr =
eγ∆+2

e−1 -approximate algorithm for PG with
binary variables if R(x) is monotone increasing, because such R(x) is also sub-
modular. This algorithm can be derandomized to be deterministic with the same
approximation ratio. Now observe that for a concave function G(x) from R≥0 to
R≥0, we have G(x+y) ≤ G(x)+G(y), for any x, y ∈ R≥0 (without loss of general-

ity let x ≥ y > 0, by concavity of G, it holds that G(x+y)−G(x)
x+y−x ≤ G′(x) ≤ G′(y) ≤

G(y)−G(0)
y−0 ). By this property, since bv(x) and −dv(x) are concave from R≥0 to

R≥0, for any v ∈ V , for any feasible solution x = {xv}v and y = {yv}v, we have
R(x+ y) ≤ R(x) +R(y). By ellipsoid algorithm for convex programming problem
in [25], we can get an optimal fractional solution of PG denoted as x∗ = {x∗v}v.
Let z∗ = {z∗v}v where z∗v = bx∗vc, for any v ∈ V and x∗ = z∗ + y∗. Let y′ be
an

eγ∆+2

e−1 -approximate solution for PG with binary variables when R(x) is mono-
tone increasing. Note that y∗ is a feasible fractional solution for PG with binary

variables. We know R(y∗) ≤ eγ∆+2R(y′)
e−1 . Let x′ be an solution of PG with integer

variables such that x′ = y′ if R(y′) ≥ R(z∗) and x′ = z∗ otherwise. Therefore, we

have R(x∗) ≤ R(z∗) +R(y∗) ≤ R(z∗) +
eγ∆+2R(y′)

e−1 ≤ (
eγ∆+2

e−1 + 1)R(x′). ut

7.2 Truthful in expectation mechanisms

In this section, we will prove that there is an O(∆ + 2) truthful in expectation
mechanism for PG on any graph with degree ∆ when bv is linear and dv is piece-
wise linear with one shift point, and a little further natural assumption. For each
player v ∈ V , let bv(xv) = s0vxv, a linear function starting from the origin with
slope s0v. dv is a piece-wise linear convex function with one shift point where the
first part is a linear function starting from the origin with slope s1v, the shift point
is (yv, s

1
vyv) and the second part is a linear function starting from the shift point

with slope s2v ≥ s1v (see Figure 9).
As we know if the emitted pollution from player v is large enough, the welfare

of player v should be negative. The damage function is piece-wise linear with one
shift point, which means player v’s welfare (valuation minus damage) will decrease
after the total pollution in v reaches yv. Precisely, when xv+

∑
u∈δ−G(v) wuvxu ≥ yv,

we should have s0v ≤ s2v. However, we can relax this condition to

s0v − s2v −
∑

u∈δ+G(v)

s1uwvu ≤ 0. (16)

The second condition on the slope s0v is somehow more subtle. Intuitively, player
v’s emitted pollution should not affect his neighbour’s total pollution too much.
This means that if his neighbour u’s pollution reaches yu, then the total social
welfare R(x) should decrease. That is, for any v ∈ V , and any u ∈ δ+G(v), if∑
u′∈δ−G(u) wu′uxu′ ≥ yu, then

s0v − s1v −
∑

u′∈δ+G(v)\{u}

s1u′wvu′ ≤ s2uwvu. (17)
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0 yv

Slope:s0v

Slope:s1v

Slope:s2v

bv(xv)

dv(xv)

Fig. 9: An illustration of function bv and dv.

Lemma 10 Let x∗ be an optimal fractional solution of PG under the condition
that functions bv and dv satisfy constraints (16) and (17), then x∗ can have the
following property: for each v ∈ V , the local level of pollution in v satisfies that
x∗v +

∑
u∈δ−G(v) wuvx

∗
u ≤ yv.

Proof We prove this lemma by contradiction. Suppose there exists v ∈ V , such
that x∗v +

∑
u∈δ−G(v) wuvx

∗
u > yv. If x∗v > 0, by constraints (16), we can decrease

the value of x∗v by an amount of α such that x∗v − α +
∑
u∈δ−G(v) wuvx

∗
u > yv.

By simple calculation, the total social welfare increases by an amount of −(s0v −
s2v −

∑
u∈δ+G(v) s

1
uwvu)α ≥ 0. Thus, we can do this until either x∗v = 0 or x∗v −

α +
∑
u∈δ−G(v) wuvx

∗
u ≤ yv. If the first case holds and the second case does not

hold, then there exists u ∈ δ−G(v) with x∗u > 0. Note that v ∈ δ+G(u). Since∑
u∈δ−G(v) wuvx

∗
u > yv, if we decrease the value x∗u by α, by simple calculation,

the total social welfare increases by at least −(s0u − siu −
∑
u′∈δ+G(u)\{v} s

i
u′wuu′ −

s2vwuv)α ≥ −(s0u − s1u −
∑
u′∈δ+G(u)\{v} s

1
u′wuu′ − s2vwuv)α, which is non-negative

by constraints (17). Here, the value i is defined as follows, if total pollution in v
is below yu then siu = s1u, otherwise siu = s2u, with the same argument for siu′ . By
this operation, we can decrease the value of v without loss of total social welfare
until the total level of pollution in v does not reach yv. ut

Lemma 11 If PG functions bv and dv satisfy constraints (16) and (17) then there
is a deterministic polynomial time algorithm with approximation ratio ρfr = γ∆+2.

Proof By Lemma 10, we know the optimal fractional solution x∗ can satisfy that
x∗v +

∑
u∈δ−G(v) wuvx

∗
u ≤ yv, for any v ∈ V . Hence, we can modify the constraint

(7) in PG to

xv +
∑

u∈δ−G(v)

wuvxu ≤ min{yv, pv}. (3′)
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This modified PG has the same optimal fractional solution as PG. In the modified
PG, R(x) =

∑
v∈V ωvxv, where ωv = s0v − s1v −

∑
u∈δ−G(v) s

1
uwvu. By Proposition

1, there is a deterministic polynomial time algorithm for the modified PG with
approximation ratio ρfr = γ∆+2. This algorithm is also an algorithm for PG with
the same approximation ratio. ut

With Lemma 11, we now present a truthful in expectation mechanism for PG with
approximation ratio γ∆+2 = (e+ o(1))(∆+ 2).

Theorem 16 Suppose the bidding strategy s0v of each player v ∈ V satisfies con-
straints (16) and (17). There is a randomized, individually rational, (ρfr = γ∆+2)-
approximation mechanism that is truthful in expectation for PG on G with degree
at most ∆.

Proof Since the bidding strategy s0v of each player v satisfies constraints (16) and
(17), by Proposition 3 and Lemma 11, there is a randomized, individually rational,
γ∆+2-approximation mechanism that is truthful in expectation for the modified
PG, which is also a truthful in expectation mechanism for PG with the same
approximation ratio. ut

Corollary 2 If bv and dv are linear functions for any v and the bidding strategy
s0v of player v is arbitrary, then there is a randomized, individually rational, (ρfr =
γ∆+2)-approximation mechanism that is truthful in expectation for PG.

Proof Since dv is linear, it is equivalent to the above piece-wise linear function
with s2v = +∞ and yv = +∞, for any v ∈ V . By Theorem 16, there is a ran-
domized, individually rational, γ∆+2-approximation mechanism that is truthful in
expectation for PG. ut

Remark: We cannot anticipate an algorithm with constant approximation ratio
for PG on the graph with average degree ∆ (the average degree of a graph G

is
∑
v∈V |δGun (v)|
|V | ) even if ∆ = 1. Consider a graph G′ consisting of a complete

graph with n vertices and n2−n isolated vertices with valuation 0. Note that G′’s

average degree is n2

n2 = 1. PG on G cannot be approximated within n1−ε unless

Unique Game conjecture fails. Thus, PG cannot be approximated within (n2)
1−ε
2

on G′, where n2 is the number of vertices of G′.

8 Open problems

We presented a new network model for the pollution control problem and studied
planar and tree networks which model realistic scenarios. These networks can be
applied to model air and water pollution from diffuse sources. Our main technical
results include a constant approximation algorithm and a PTAS with a small
violation in the constraints for the case of planar graphs and an FPTAS which
is truthful in expectation and a 3-approximate deterministic truthful mechanism
for the case of trees. We obtained these results by introducing novel algorithmic
techniques for planar and tree graphs which could be of independent interest.

Many interesting open problems arise from this new model. Our main open
question is to determine whether PG with binary variables on planar graphs admits
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a PTAS or whether it is APX-hard, when no local constraint is volated. Another
direction would be to study lower bounds on truthful (deterministic, universal,
truthful in expectation) mechanisms for PG. Can externality be used to obtain
such lower bounds? Furthermore it would be interesting to generalize our results
to other graphs, e.g., Euclidean graphs.
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