
 

Open Peer Review

Discuss this article

 (0)Comments

RESEARCH ARTICLE

Rare variants of the 3’-5’ DNA exonuclease  in early onsetTREX1
 small vessel stroke [version 1; referees: 2 approved]

Sarah McGlasson ,       Kristiina Rannikmäe , Steven Bevan , Clare Logan ,
     Louise S. Bicknell , Alexa Jury , UK Young Lacunar Stroke Study,
     Andrew P. Jackson , Hugh S. Markus , Cathie Sudlow , David P.J. Hunt1,2*

Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
Stroke Research Group, Department of Clinical Neurosciences, Cambridge University, Cambridge, CB2 2PY , UK
Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, UK

 Equal contributors

Abstract
 Monoallelic and biallelic mutations in the exonuclease Background: TREX1

cause monogenic small vessel diseases (SVD). Given recent evidence for
genetic and pathophysiological overlap between monogenic and polygenic
forms of SVD, evaluation of   in small vessel stroke is warranted.TREX1

 We sequenced the   gene in an exploratory cohort of patientsMethods: TREX1
with lacunar stroke (Edinburgh Stroke Study, n=290 lacunar stroke cases). We
subsequently performed a fully blinded case-control study of early onset
MRI-confirmed small vessel stroke within the UK Young Lacunar Stroke
Resource (990 cases, 939 controls).

 No patients with canonical disease-causing mutations of   wereResults: TREX1
identified in cases or controls. Analysis of an exploratory cohort identified a
potential association between rare variants of   and patients with lacunarTREX1
stroke. However, subsequent controlled and blinded evaluation of   in aTREX1
larger and MRI-confirmed patient cohort, the UK Young Lacunar Stroke
Resource, identified heterozygous rare variants in 2.1% of cases and 2.3% of
controls. No association was observed with stroke risk (odds ratio = 0.90; 95%
confidence interval, 0.49-1.65 p=0.74). Similarly no association was seen with
rare   variants with predicted deleterious effects on enzyme functionTREX1
(odds ratio = 1.05; 95% confidence interval, 0.43-2.61 p=0.91).

 No patients with early-onset lacunar stroke had geneticConclusions:
evidence of a  -associated monogenic microangiopathy. These resultsTREX1
show no evidence of association between rare variants of   and earlyTREX1
onset lacunar stroke. This includes rare variants that significantly affect protein
and enzyme function. Routine sequencing of the   gene in patients withTREX1
early onset lacunar stroke is therefore unlikely to be of diagnostic utility, in the
absence of syndromic features or family history.
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Introduction
Cerebral small vessel disease (SVD) causes a quarter of all strokes 
and is the most common pathology underlying vascular cogni-
tive decline and dementia1. The pathophysiological and genetic 
basis of SVD is poorly understood, in particular small vessel 
lacunar stroke2,3. Rare variants may make a significant contribu-
tion to the genetic basis of SVD3,4 and increasing evidence sug-
gests that monogenic and polygenic forms of SVD share common  
pathophysiological mechanisms5. For example, dominant mis-
sense mutations in COL4A1 and COL4A2 cause rare familial forms 
of cerebral SVD6, and common variants in the same genes are  
associated with sporadic cerebral small vessel disease3. Such  
findings demonstrate that genes causing monogenic microangiopa-
thies may also contain variants conferring risk for common forms 
of cerebral SVD, such as lacunar stroke.

TREX1 is a human 3’-5’ exonuclease that can degrade single 
stranded DNA. Two monogenic small vessel diseases are caused 
by mutations in TREX1 (Figure 1A). Heterozygous frameshift 
mutations in the C-terminus of TREX1, resulting in enzyme mislo-
calisation, cause retinal vasculopathy with cerebral leukodystrophy 
(RVCL), an adult-onset systemic microangiopathy with pronounced 
brain involvement7. Biallelic mutations with loss of enzymatic 

function can cause Aicardi-Goutières’ Syndrome (AGS), a neo-
natal onset brain disorder with prominent microangiopathy8,9 and  
features of activated innate immunity10. Both genetic cerebral  
microangiopathies are associated with aberrant innate immune 
pathways, in particular dysregulation of the type I interferon  
pathway10,11. Given the potential for therapeutic modulation of 
these pathways, evaluation of TREX1 in SVD phenotypes, such as 
lacunar stroke, warrants examination. The identification of patients 
with early-onset cerebral SVD and heterozygous rare TREX1  
variants has led to the hypothesis that such variants might be  
causally related to early-onset SVD12.

Here we evaluate TREX1 in patients with small vessel stroke. We 
perform an initial exploratory analysis in a relatively small cohort 
of patients with lacunar stroke, and subsequently perform a case-
control study in a larger cohort of patients with early-onset lacunar 
stroke, where small vessel infarction has been confirmed by MRI.

Methods
Sanger sequencing
The entire coding sequence of TREX1 and part of the 5’UTR  
(-228bp) and 3’ UTR (+57 bp) were amplified by three overlapping 
amplicons using the following primers:

Figure 1. Evaluation of TREX1 in lacunar stroke. (A) Schematic representation of TREX1 protein, showing known associations with genetic 
microangiopathic diseases. Shown are monoallelic mutations associated with Retinal Vasculopathy with Cerebral Leukodystrophy (RVCL) and 
biallelic mutations associated with Aicardi-Goutieres’ Syndrome (AGS). ExoI = exonuclease domain I, ExoII = exonuclease domain II, ExoIII = 
exonuclease domain III, PII = polyproline domain. (B) Overview of present study. An initial analysis was performed in an exploratory cohort, 
followed by a case-control study.
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TREX1 AF: ACAGTCGAATGTGCTGGTCC, TREX1 AR:  
TCAGACCTGTGATCTCGCTG, TREX1 BF: ACCTCCC 
ACAGTTCCTCCAC, TREX1 BR: TGGTCTCCACTGACAGA 
TGC, TREX1 CF: CTCAGAACACGGCCCAAG, TREX1 CR: 
ACCACTCAGTGCTATGGGG.

Amplicons were amplified from genomic DNA isolated from 
peripheral lymphocytes by PCR and checked by agarose gel elec-
trophoresis. Purified PCR products were sequenced in both direc-
tions using fluorescent dye terminator chemistry (ABI 3730 DNA 
analyzer). Sequence reads were analysed by Mutation Surveyor, 
Sequencher and 4 peaks, and compared to a reference sequence 
NM_033629 (RefSeq, NCBI).

Rare variants were defined as those with minor allele frequency 
(MAF) <0.05 (5%) in the Exome Aggregation Consortium (ExAC) 
and those absent from ExAC. The presence of all identified variants 
was confirmed by resequencing.

Exploratory cohort: Edinburgh Stroke Study
The Edinburgh Stroke Study (Ethics Committee Approval, Lothian 
Research Ethics Committee LREC/2001/4/46) prospectively 
recruited consenting ≥18 years old patients with stroke, transient 
cerebral or monocular ischaemic attack or retinal artery occlusion, 
admitted to, or seen in outpatient clinics at the Western General 
Hospital, Edinburgh, between April 2002 and May 200513. Stroke 
was defined as the sudden onset of clinical signs of focal distur-
bance of cerebral function lasting more than 24 hours with no 
apparent cause other than that of vascular origin. All patients were 
of self-reported Caucasian ancestry. Lacunar ischaemic stroke was 
defined using the Oxfordshire Community Stroke Project (OCSP) 
lacunar stroke syndrome definition revised in light of site and size 
of any relevant infarct seen on CT or MRI scan14.

Case-control cohort: UK Young Lacunar Stroke DNA 
Resource
The UK Young Lacunar Stroke Study recruited Caucasian patients 
with lacunar stroke, aged ≤70 years, from 72 specialist stroke serv-
ices in the UK, between 2002 and 201215. The study was approved 
by the Multi-Centre Research Ethics Committee for Scotland  
(04/MRE00/36) and written informed consent was obtained from 
all participants. Lacunar stroke was defined as a clinical lacunar 
syndrome, with an anatomically compatible lesion on MRI (sub-
cortical infarct ≤15 mm in diameter). All patients underwent full 
stroke investigation, including brain MRI, imaging of the carotid 
arteries and ECG. Echocardiography was performed when appro-
priate. All MRIs and clinical histories were reviewed centrally by 
one physician (HM). Exclusion criteria were: Any other defined 
cause, including the following: Stenosis > 50% in the extra- or 
intracranial cerebral vessels, or previous carotid endarterectomy; 
cardioembolic source of stroke, defined according to the TOAST 

(Trial of Org 10172 in Acute Stroke Treatment) criteria16 as high or 
moderate probability; cortical infarct on MRI; subcortical infarct 
> 15 mm in diameter, as these can be caused by embolic mecha-
nisms (striatocapsular infarcts); any other specific cause of stroke 
(e.g. lupus anticoagulant, cerebral vasculitis, dissection, monogenic 
cause of stroke).

Unrelated Caucasian controls, free of clinical cerebrovascular dis-
ease, were obtained by random sampling from general practice 
lists from the same geographical location as the patients. Sampling 
was stratified for age and sex. All patients and controls underwent 
a standardized clinical assessment and completed a standardized 
study questionnaire. MRI was not performed in controls.

Variant annotation
Variants were compared with the ExAC database17 to determine 
a MAF and/or previously identified disease association (ClinVar, 
NCBI). Variants were sorted by Combined Annotation Depend-
ent Depletion (CADD). CADD provides a scaled C-score with a  
C-score of 10 meaning this variant is predicted to be in the top 1% 
of most deleterious changes in the genome, a score of 20 meaning 
it is in the top 0.1%18.

Structural and functional analyses
3D rendering of the variants in a TREX1 dimer19 (Protein DataBase 
ID: 2OA8, amino acids 5-234) was performed using PyMOL (The 
PyMOL Molecular Graphics System, Version 1.8 Schrödinger, 
LLC).

TREX1-EGFP vector construction
Gateway cloning was used to construct mammalian expression vec-
tors. Briefly, the coding sequence of human TREX1 was amplified by 
PCR to include attB sites and cloned into pDONR221 (Invitrogen) 
via BP reaction (BP clonase II kit; Invitrogen). pEGFP-TREX1 was 
constructed by cloning the TREX1 coding sequence into a Gateway 
converted pEGFP-C2 destination vector (Clontech) via LR reac-
tion (LR clonase II kit; Invitrogen). Minipreparations of plasmid 
DNA (Qiagen) were performed for verification. Midipreparations 
of plasmid DNA (ZymoResearch) were performed for mammalian 
cell transfection.

Site directed mutagenesis
Mutations were introduced into the mammalian expression con-
struct by site-directed mutagenesis, as per manufacturer’s instruc-
tions (Q5 Site-Directed Mutagenesis Kit, NEB). Mutations were 
confirmed by Sanger sequencing.

TREX1 nuclease activity assay
TREX1 nuclease activity was assayed by transfecting Trex1-/- mouse 
embryonic fibroblasts (MEFs; a kind gift from Martin Reijns) with 
pEGFP-TREX1 WT and mutant constructs using Lipofectamine 
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3000 (Invitrogen). Whole cell protein was extracted with lysis 
buffer (50 mM Tris, 280 mM NaCl, 0.5% Igepal, 0.2 mM EDTA, 
0.2 mM EGTA, 10% glycerol) and protein concentration of the 
whole cell lysate was determined by Bradford assay (5 X Bradford 
Reagent, Serva).

Whole cell lysates (final concentration 100 ng/µl) were incubated 
with nucleic acid substrate (21-mer single stranded oligo with 3’ 
fluorescein and an internal DABCYL, 3’fl-intDABCYL-TREX1-
21mer, sequence TAGACATTGCCCTCG5AGGTAC (Dabcyl dT 
at position marked 5, 3’ fluorescein); final concentration 200 nM) 
in reaction buffer (20 mM Tris-HCl, 5 mM MgCl

2
, 2 mM DTT,  

100 μg/ml BSA) at room temperature in an opaque 96 well  
plate. Fluorescent measurements (490

ex
/525

em
) were taken with a 

SpectraMax i3 (Molecular Devices) plate reader over a 90 minute 
time course with measurements taken every 2 minutes. 

Statistical analyses
Sequencing, analysis and functional work was performed blind 
to case-control status. Fisher’s exact test was used to compare 
proportions of individuals with rare variants in cases versus con-
trols, unless otherwise stated. Odds ratios were calculated using 
Cochrane RevMan 5. Mann-Whitney U test was used to compare 
CADD scores between groups. Statistical tests were performed in 
GraphPad Prism 7.

Results
Exploratory cohort: Rare TREX1 variants in the Edinburgh 
Stroke Study
We first performed an exploratory analysis of patients with lacunar 
stroke within the Edinburgh Stroke Study (Figure 1B). This study 
of >2000 stroke patients includes a subset of 290 patients with a 
clinical diagnosis of a lacunar stroke. Sanger sequencing of TREX1 
in these 290 patients identified no individuals with genetic results 
consistent with a diagnosis of RVCL (monoallelic C-terminal 
frameshift mutations) or AGS (biallelic hypomorphic mutations).

However, four patients with rare heterozygous TREX1 variants 
were identified (MAF<0.05, Table 1). The Edinburgh Stroke Study 

does not include population-matched controls, placing limitation 
on interpretation of these data. However, compared to published 
TREX1 sequencing control data from patients of European ances-
try, this is significantly more than would be expected (p = 0.005 
Fisher’s exact test)20. Notably, 3 of these patients developed lacu-
nar stroke under the age of 70 years. Recognising that to confirm 
any potential association between rare TREX1 variants and lacunar 
stroke would require more stringent testing, we analysed DNA from 
a larger independent lacunar stroke cohort with early onset disease 
(<70 years) together with a population-matched control cohort.

Case-control study: Rare TREX1 variants in the UK Young 
Lacunar Stroke Resource
The UK Young Lacunar Stroke Resource (UKYLSR) is a study of 
approximately 1,000 patients with MRI-confirmed lacunar stroke 
in patients under the age of 70, with matched population controls. 
As such this study allows more stringent evaluation of the hypoth-
esis that rare TREX1 variants confer risk for lacunar stroke. We  
performed TREX1 sequencing in cases and controls, including 
functional annotation and enzymatic assays. We remained blind to 
case-control status throughout the study.

No individuals in either case or control group had genetic results 
consistent with a diagnosis of RVCL or AGS.

We next evaluated rare TREX1 variants (MAF<0.05). We identi-
fied 21 rare heterozygous variants in 990 cases (2.1%) and 22 in 
939 controls (2.3%). There was no significant association between 
such variants and lacunar stroke (odds ratio = 0.90; 95% confidence 
interval, 0.49-1.65 p=0.74; Figure 2A, Table 2). This also held true 
when only considering non-synonymous variants (16/990 or 1.6% 
for cases versus 17/939 or 1.8% for controls).

Variants differ in their capacity to reduce enzymatic function of 
TREX1. For example some mutations such as D18N can cause 
complete loss of function of exonuclease activity7. We therefore 
next considered annotations of these variants which evaluated 
the potential pathogenicity of a given variant. CADD is a method 
for integrating diverse functional annotations into a single meas-
ure (CADD score, or C-score), which can predict the potential 
pathogenicity of a variant in silico18. When rare variants with low  
CADD scores (<10) were excluded, functional rare variants 
were identified at a frequency of 10/990 in cases (1.0%) and  
9/939 (0.96%) in controls (OR 1.05; 95% confidence interval,  
0.43-2.61 p=0.91, Figure 2B). The CADD scores for rare variants 
did not differ significantly between groups (Figure 2B, p=0.72  
Mann-Whitney U test). The location of variants within TREX1 
influences clinical phenotype in monogenic microangiopathic  
disease (Figure 1A). The variants we identified were distributed 
throughout the TREX1 gene, and there was no apparent spatial 
clustering when variants were mapped onto a 3D protein model  
(Figure 2C, Figure 3A).

Rare TREX1 variants can decrease exonuclease activity
To confirm that rare variants with high CADD scores exert a del-
eterious effect on protein function, we evaluated the effect of rare 

Table 1. Rare TREX1 variants identified in the Edinburgh 
Stroke Study. Positions of amino acid and nucleotide 
changes refer to RefSeq assession number NM_033629, 
the 314 amino acid isoform of TREX1. Combined Annotation 
Dependent Depletion (CADD) score is a scaled score of 
predicted pathogenicity. p = 0.005, Fishers Exact Test 
compared to published control cohort20.

Amino acid 
alteration

Nucleotide alteration 
major>minor allele

Total CADD 
score

Age

5’ UTR -113 A>G 1 0.13 58

C208S 623 G>C 1 24 66

R217R 651 G>A 1 11.3 85

E266G 797 A>G 1 0.05 59
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Figure 2. Rare TREX1 variants in UK Young Lacunar Stroke case and control cohorts. (A) Rare variants in UK Young Lacunar Stroke case 
and control cohorts. 21 rare heterozygous variants in 990 cases (2.1%) and 22 in 939 controls (2.3%). No association with lacunar stroke 
was observed, for either rare variants (OR = 0.90; 95% confidence interval, 0.49-1.65 p=0.74) or rare variants with C-scores >10 (OR = 1.05; 
95% confidence interval, 0.43-2.6 p>0.99). (B) Distribution of Combined Annotation Dependent Depletion (CADD) scores assigned to rare 
variants: no significant difference was observed between cases and controls (p=0.72 Mann-Whitney U-test). (C) Schematic representation of 
TREX1 protein domains showing non-synonymous variants identified in this study in cases or controls (coloured by CADD score).

variants on TREX1 exonuclease activity with a high C-score from 
each group. We identified a variant from each group with a CADD 
score >20 and thus predicted to confer significant pathogenic effect 
on the protein. To examine such amino acid changes on TREX1 
function, we reconstituted mouse Trex1-/- MEFs with the mutated 
allele, generated by site-directed mutagenesis and assessed cellular  
nuclease activity against a ssDNA substrate (Figure 3B). 
While wildtype TREX1 reconstituted nuclease activity against  

ssDNA, rare variants from both groups (Case: A139Vfs*21,  
C-score 34. Control: R114H, C-score 28) lead to significant loss  
of 3’-5’ exonuclease activity (Figure 3C).

Together these results show no evidence for an association  
between rare variants of TREX1 and early onset lacunar  
stroke, including variants that exert deleterious effects on protein 
function.
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Table 2. Rare TREX1 variants identified in the UK Young Lacunar Stroke 
Resource. Rare variants in TREX1 were identified in both cases and controls by 
Sanger sequencing. Minor allele frequency (MAF; %) of variants that are also present 
in Exome Aggregation Consortium (ExAC) are shown for comparison. 12/24 variants 
are novel (not in ExAC). One (P290_A295del) has been reported as a homozygous 
mutation in AGS1 but is not present in ExAC. The homozygous or compound 
heterozygous R114H mutation is a common AGS1 mutation (in 14/18 AGS1 
families)10. Positions of amino acid and nucleotide changes refer to RefSeq assession 
number NM_033629, the 314 amino acid isoform of TREX1. CADD, Combined 
Annotation Dependent Depletion.

Amino acid 
alteration

Nucleotide alteration 
major>minor allele

Total CADD 
score

ExAC 
MAF (%)

Cases n=990

G2G 6 C>T 1 15.7 -

P61P 183 G>A 1 0.96 0.07

P73P 219 G>A 1 4.17 0.002

A139T 415 G>A 1 19.3 -

A139Vfs*21 416 GC>G 1 34 0.004

G142A 425 G>C 1 24.8 -

R174G 520 A>G 1 24 0.0008

K175N 525 G>T 1 24.3 -

R217R 651 G>A 1 11.3 0.008

T250T 750 C>A 1 11.3 -

A252V 755 C>A 1 2.15 -

L254P 761 T>C 1 12.1 -

E266G 797 A>G 8 0.05 0.1691

P290_A295del 867 CCCACTGGGTCTGCTGGCC>C 1 15 -

Total 21

Controls n=939

P61L 182 C>T 1 26 0.0008

P61P 183 G>A 1 0.96 0.07

R114H 341 G>A 1 28.1 0.015

P116A 346 C>G 1 23.3 0.0016

H124H 372 C>T 1 12 -

F131I 391 T>A 1 29.6 -

A158V 473 C>T 1 24.3 0.002

S190S 570 C>T 1 13.8 -

E266G 797 A>G 10 0.05 0.1691

G286E 857 G>A 1 11 -

P290_A295del 867 CCCACTGGGTCTGCTGGCC>C 1 15 -

3’ UTR +17 T>C 1 6.78 -

3’ UTR +37 T>C 1 1.33 1.23

Total 22
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Figure 3. Rare variants can affect TREX1 nuclease activity. (A) Location of rare variants (CADD>10) mapped onto TREX1 dimer structure 
(highlighted in red), with coordinates taken for mouse TREX1 in complex with ssDNA (blue). Variants in the case cohort are highlighted in blue. 
(B) TREX1 nuclease assay measures nuclease activity as release of 3’fluorescein from an oligonucleotide containing a DABCYL quencher.  
(C) Relative nuclease activity of predicted most severe variants identified from case (A139Vfs*21) and control groups (R114H) of the UK Young 
Lacunar Stroke Study. Nuclease activity was assayed in total protein supernatants from Trex1-/- MEFs transfected with TREX1 expression 
constructs containing variants generated by site directed mutagenesis. Rare variants identified in the Young Lacunar stroke cohorts were 
compared with a known nuclease-dead variant (D18N). Data shown is average of two or more independent experiments performed in 
triplicate ± standard deviation of the independent experiments relative to WT ** p<0.01.
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Discussion
There is a need to identify aetiological factors in small vessel 
stroke, in particular molecular pathways that might be amenable 
to therapeutic intervention1. Recent meta-analyses of GWAS stud-
ies have suggested that the “missing heritability” of small vessel 
stroke may be in part attributed to rare variants2,21. One possibility is 
that mutations in genes that cause monogenic small vessel diseases, 
such as NOTCH3, HTRA1, COL4A1 and TREX1, might confer risk 
for sporadic lacunar stroke. This hypothesis is strengthened by the 
identification of an association between sporadic SVD phenotypes 
and common variants in COL4A1/2, since mutations in these genes 
can cause monogenic SVD3.

TREX1 is therefore an important candidate gene to evaluate in 
lacunar stroke. Biallelic and monoallelic mutations in TREX1 can 
cause two clinically distinct monogenic syndromes character-
ized by prominent microangiopathy, AGS and RVCL. While the 
molecular events by which altered TREX1 function causes SVD is  
unknown, increasing lines of evidence suggest an association with 
activated innate immunity, including pathways that are potentially 
amenable to therapeutic intervention11,22. As such detailed evalua-
tion of this gene in sporadic small vessel stroke phenotypes is a 
priority. 

Here we test the hypothesis that rare variants of TREX1 are associ-
ated with lacunar stroke, in particular early onset disease. We first 
examine DNA from an exploratory cohort, recognizing important 
limitations in the interpretation of genetic data from small uncon-
trolled studies. Consistent with other screening studies of this gene 
in other early-onset SVD phenotypes12, we identified rare variants 
of TREX1 in about 1.3% of cases, and observed that 3 out of 4 of 
these cases were under 70 years of age. Comparison of this propor-
tion to published control data suggested a potential association of 
early onset lacunar stroke with rare variants of TREX1. However, 
such analyses present serious methodological limitations, since 
published control cohorts are not matched for geographical region 
and age. Therefore, although this type of comparison might be use-
ful in generating preliminary data on which to focus and power 
more detailed studies, the statistical analysis of this preliminary 
cohort is prone to bias, confounding and chance23.

Therefore to assess whether our observations in this preliminary 
cohort represented a real association, we performed a more meth-
odologically rigorous evaluation of TREX1 in the UKYLSR. This 
differs from the exploratory study in a number of ways, which 
allow more robust genetic conclusions to be drawn. Firstly, the 
UKYLSR is a dedicated study of early onset lacunar stroke. Sec-
ondly, inclusion in the study requires confirmation of a small vessel 
stroke by MRI. This is important since a clinical diagnosis of a 
lacunar syndrome may not necessarily be caused by a small ves-
sel stroke1. Thirdly, the study was controlled with an age, sex and 
geographically matched control population. We remained blinded 
to case-control status throughout the study, including analyses of 
the functional consequences of rare variants.

The results of this case-control study showed no evidence that rare 
variants in TREX1 are associated with small vessel stroke. In the 
UKYLSR, rare variants in TREX1 occur in about 2% of both cases 

and controls. As such rare variants occur more frequently than previ-
ously detected in different control populations, highlighting poten-
tial population variation and reinforcing the need for dedicated age 
and population-matched control cohorts20. Our findings emphasize 
the importance of confirmation cohorts in genetic association stud-
ies, however persuasive the prior biological rationale24.

These rare variants included those that can directly alter protein 
structure and function. The distribution of CADD scores, which 
reflect an in silico evaluation of the potential pathogenicity of vari-
ants, was not different between groups. We show that rare vari-
ants with high CADD scores, which can affect enzymatic function  
in vitro, are observed at similar frequencies in both cases and  
control populations.

Our results are consistent with a recently published next- 
generation sequencing study comparing approximately  
600 lacunar stroke patients with control individuals from the 
INTERSTROKE cohort25. This study showed that rare variants 
in monogenic stroke genes, including TREX1, were not associ-
ated with lacunar stroke phenotypes. A potential limitation of  
both studies is lack of statistical power, although unbiased pub-
lication of such sequencing studies will allow meta-analyses  
with higher degrees of power to be performed.

These results have implications relevant for clinical practice. 
Firstly, none of the 1,280 lacunar stroke patients sequenced here 
had genetic results consistent with monogenic TREX1-associ-
ated genetic microangiopathies. Secondly, the identification of 
rare heterozygous variants of TREX1 in early onset small vessel 
stroke, even those that confer substantial functional effects, may 
not be of clinical relevance, although our analysis does not exclude 
a weak effect. Taken together, these findings do not support rou-
tine testing of TREX1 variants in early onset small vessel stroke, in 
the absence of syndromic features or a supportive family history.  
Furthermore, the interpretation of rare TREX1 variants in early 
onset SVD phenotypes obtained through screening12 or next  
generation sequencing approaches25, should be interpreted with 
caution given that they are observed in control populations at a  
frequency of approximately 2%.
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