
 

Investigation of the role of bone marrow stromal cells 
in the microenvironment of acute myeloid leukaemia 

 

by 

 

Amina Abdul-Aziz 
 

M.Sc., University of Nottingham, 2011 
 

 

A thesis submitted in partial fulfilment of the requirements for the 
degree of  

Doctor of Philosophy 

 

Faculty of Medicine and Health Sciences 
Norwich Medical School 

Department of Molecular Haematology 
 

UNIVERSITY OF EAST ANGLIA 

October 2017 

 

 

This copy of my thesis has been supplied on condition that anyone who consults it is 
understood to recognise that its copyright rests with the author and that use of any 
information derived there from must be in accordance with current UK Copyright Law. 
In addition, any quotation must include full attribution. 

 

Amina Abdul-Aziz, 2017 



2 
 
 

Declaration 

I declare that the content of this thesis entitled “Investigation of the role of bone 

marrow stromal cells in the microenvironment of acute myeloid leukaemia” 

was undertaken and completed by myself, unless otherwise acknowledged 

and has not been submitted in support of an application for another degree or 

qualification in this or any other university or institution.  

 

------------------------------------------------- 

Amina Abdul-Aziz 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 
 

Acknowledgement 

All praise and thanks are to Allah (the lord of all worlds), who is the most 

gracious and the most merciful. His continuous grace and mercy was with me 

throughout my life and ever more during the pursuit of my PhD. 

It has been a long journey and I am in the debt of many… 

My sincere thanks go to my enthusiastic supervisors. Prof. Kristian Bowles and 

Dr Stuart Rushworth. They have gone above and beyond to provide me with 

advice and support, both professionally and scientifically. Thank you for the 

constant faith in my work and for the many opportunities that helped make me 

the scientist I am today. Special mention goes to my colleagues Manar, 

Christopher, Rachel and Yu, who have been an amazing team to work with. 

Thank you for the laughs, happy surprises and words of encouragement when 

they are most needed. 

I am greatly indebted to my friends around the globe. In particular, my friends 

in Norwich, who have been my family away from home and I cannot imagine 

this journey without them. Thank you for your kindness and never-ending 

support through good times and bad.  

I am also hugely appreciative to my funder, The Ministry of Higher Education 

of The State of Libya, who have continued to support me despite the recent 

instability in the country. Without their generous grant this valuable research 

and my PhD could not have been achieved. 

Finally, but by no means least, endless thanks go to my family. Especially, to 

my parents. None of this would have been possible without their unconditional 

love, support and constant reminders that I can, with the help of God, achieve 

more than I can imagine. Thank you for being understanding and for 

everything else that you have done for me, for which I am unable to express 

my gratitude in words. 

 



4 
 
 

Abstract 

Acute myeloid leukaemia (AML) is an aggressive malignancy of the 

haematopoietic system. With a median age of approximately 70 years at 

diagnosis, survival rates for AML patients lag behind other haematological 

malignancies. This is in part, due to existing comorbidities and patient inability 

to tolerate intensive chemotherapy. Moreover, chemotherapy mainly targets 

AML cells in the peripheral blood (PB) but not those harboured in the bone 

marrow (BM). While studies focusing on the malignant blasts helped achieve 

advances in understanding AML biology and chemoresistance, less is 

understood about the role of the bone marrow microenvironment (BMM) in the 

progression of AML. It is predicted that improved patient outcomes will come 

from novel treatment strategies resulting from an improved understanding of 

the biology of the microenvironment in AML.  

Bone marrow stromal cells (BMSCs) are an instrumental component of the 

AML microenvironment and have been shown to play a role in its survival and 

evasion from apoptosis. The aims of my PhD research were to investigate 

novel interactions between AML cells and BMSCs which benefit AML survival 

in vitro and in vivo. Here, I identified an AML-BMSC feedback loop where AML-

derived macrophage migration inhibitory factor (MIF) stimulated BMSCs, 

through the activation of stromal protein kinase C, to secrete the pro-survival 

cytokine interleukin-8 (IL-8). Moreover, I found that MIF expression in the AML 

compartment is regulated by hypoxia through stabilisation of HIF1α. Inhibition 

of HIF1α or MIF significantly enhanced survival and reduced tumour burden in 

vivo. Finally, I showed that AML cells induce senescence in BSMCs through 

upregulation of the cyclin-dependent kinase inhibitor, p16. Deletion of p16 in 

BMSCs reduced AML survival in co-culture models.  

In summary, the data presented in this thesis provide important insights into 

the AML-BMSC interactions and could facilitate the development of future 

therapeutic approaches in the treatment of AML. 

 



5 
 
 

List of publications and conference papers  

These publications have been realised during the pursuit of this PhD thesis:  

Lead publications: 

A. Abdul-Aziz*, M.S. Shafat*, C.R. Marlein, R.E. Piddock, S.D. Robinson, 
D.R. Edwards, Z. Zhou, A. Collins, K.M. Bowles, S.A. Rushworth, Hypoxia 
drives chemokine factor pro-tumoral signaling pathways in acute myeloid 
leukaemia, under review in Oncogene (2017). 

A. Abdul-Aziz, M. Shafat, T. Mehta, F. Di Palma, M. Lawes, S. Rushworth, 
K.M. Bowles, MIF-Induced Stromal PKCβ/IL8 Is Essential in Human Acute 
Myeloid Leukaemia, Cancer Research (2017). DOI: 10.1158/0008-5472.CAN-
16-1095. 

A. Abdul-Aziz, D.J. MacEwan, K.M. Bowles, S.A. Rushworth, Oxidative 
Stress Responses and NRF2 in Human Leukaemia, Oxidative Medicine and 
Cellular Longevity (2015). DOI: 10.1155/2015/454659. 

Co-authored publications: 

Y. Sun, A. Abdul-Aziz, K.M. Bowles, S.A. Rushworth, NRF2 controls 
endoplasmic reticulum stress induced apoptosis via the negative regulation of 
CHOP in multiple myeloma, Cancer letters (2017). DOI: 
10.1016/j.canlet.2017.10.005 

S. Chandran, J. Watkins J, A. Abdul‐Aziz, M. Shafat, PA. Calvert, KM. 
Bowles, MD. Flather, SA. Rushworth, AD. Ryding. Inflammatory Differences 
in Plaque Erosion and Rupture in Patients With ST‐Segment Elevation 
Myocardial Infarction. Journal of the American Heart Association (2017). DOI: 
10.1161/JAHA.117.005868. 

M.S. Shafat, T. Oellerich, S. Mohr, S.D. Robinson, D.R. Edwards, C.R. 
Marlein, R.E. Piddock, M. Fenech, L. Zaitseva, A. Abdul-Aziz, J. Turner, J.A. 
Watkins, M. Lawes, K.M. Bowles, S.A. Rushworth, Leukaemic blasts program 
bone marrow adipocytes to generate a pro-tumoral microenvironment, Blood 
(2017). DOI: 10.1182/blood-2016-08-734798. 

G. Pillinger, N.V. Loughran, R.E. Piddock, M.S. Shafat, L. Zaitseva, A. Abdul-
Aziz, M.J. Lawes, K.M. Bowles, S.A. Rushworth, Targeting PI3Kdelta and 
PI3Kgamma signalling disrupts human AML survival and bone marrow stromal 
cell mediated protection, Oncotarget (2016). DOI: 10.18632/oncotarget.9289. 

G. Pillinger, A. Abdul-Aziz, L. Zaitseva, M. Lawes, D.J. MacEwan, K.M. 
Bowles, S.A. Rushworth, Targeting BTK for the treatment of FLT3-ITD 
mutated acute myeloid leukaemia, Scientific Reports (2015). DOI: 
10.1038/srep12949. 

S.A. Rushworth, G. Pillinger, A. Abdul-Aziz, R. Piddock, M.S. Shafat, M.Y. 
Murray, L. Zaitseva, M.J. Lawes, D.J. MacEwan, K.M. Bowles, Activity of 



6 
 
 

Bruton's tyrosine-kinase inhibitor ibrutinib in patients with CD117-positive 
acute myeloid leukaemia: a mechanistic study using patient-derived blast 
cells, The Lancet Haematology (2015). DOI: 10.1016/S2352-3026(15)00046-
0. 

Conference papers:  

A. Abdul-Aziz, MS. Shafat, R. Piddock, C. Marlein, J Campisi, K. Bowles, S. 
Rushworth. Acute Myeloid Leukaemia Induces p16 Driven Senescence in the 
Bone Marrow Microenvironment to Support Their Proliferation and Survival 
59th ASH meeting, Atlanta. December 2017. 

A. Abdul-Aziz, MS. Shafat, C. Marlein, R. Piddock, S. Robinson, D. Edwards, 
Z. Zhou, A. Collins, K. Bowles, S. Rushworth. Hypoxia drives AML proliferation 
in the tumor microenvironment through HIF1α/MIF signalling. 22nd EHA 
Congress, Madrid. June 2017. 

E. Forde*, A. Abdul-Aziz*, T. Mehta, F. Di Palma, C. Ingham, M. Lawes, K. 
Bowles, S. Rushworth. AML blasts induce a senescent phenotype in the BM-
MSC through the upregulation of p21. 22nd EHA Congress, Madrid. June 
2017. 

A. Abdul-Aziz, MS. Shafat, L. Zaitseva, MJ. Lawes, SA. Rushworth, KM. 
Bowles. Hypoxia Drives AML Proliferation in the Bone Marrow 
Microenvironment Via Macrophage Inhibitory Factor. 58th ASH meeting, San 
Diego. December 2016. 

A. Abdul-Aziz, MS. Shafat, M. Lawes, K. Bowles, S. Rushworth. Protein 
Kinase C-ß Dependent IL-8 Release Promotes Acute Myeloid Leukaemia 
Blast Cell Survival in Co-Cultures with Bone Marrow Stromal Cells. 57th ASH 
meeting, Orlando. December 2015. 

A. Abdul-Aziz, MS. Shafat, S. Rushworth, K. Bowles. Acute Myeloid 
Leukaemia Derived Macrophage Migration Inhibitory Factor Drives Interleukin-
8 Pro-Survival Signals In The Tumor Microenvironment. 20th EHA Congress, 
Vienna. June 2015.  

 

 

 

 

 

 

 



7 
 
 

Table of contents  

Declaration .............................................................................................................. 2 

Acknowledgement ................................................................................................... 3 

Abstract ................................................................................................................... 4 

List of publications and conference papers .............................................................. 5 

Table of contents ..................................................................................................... 7 

List of figures ......................................................................................................... 12 

List of tables .......................................................................................................... 15 

List of abbreviations ............................................................................................... 16 

1. Chapter 1: Introduction ................................................................................... 22 

1.1. Haematopoiesis .......................................................................................... 22 

1.2. Leukaemogenesis ....................................................................................... 23 

1.3. Acute Myeloid Leukaemia ........................................................................... 24 

1.3.1. Genetic defects in AML ............................................................................ 24 

1.3.2. Classification of AML ............................................................................... 26 

1.3.3. Current treatment of AML ........................................................................ 29 

1.4. The bone marrow microenvironment (BMM) ............................................... 29 

1.4.1. Cellular components of the BMM ............................................................. 30 

1.4.2. Bone marrow mesenchymal stem cells (BMSCs) .................................... 31 

1.4.3. BMSCs and normal haematopoiesis ........................................................ 32 

1.4.4. The role of BMSCs in the malignant BM .................................................. 33 

1.4.5. Leukaemic cell remodelling of the BMM................................................... 36 

1.4.6. Niche-induced oncogenesis ..................................................................... 37 

1.4.7. Chemokine and cytokine profiles in the malignant BM ............................. 38 

1.4.7.1. Interleukin-8 (IL-8) ................................................................................ 40 

1.4.7.2. Interleukin-6 (IL-6) ................................................................................ 41 

1.4.7.3. Macrophage migration inhibitory factor (MIF) ....................................... 42 

1.4.8. Cell signalling in the AML microenvironment ........................................... 44 

1.4.8.1. Phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR signalling ................. 44 

1.4.8.2. Mitogen-activated protein kinase (MAPK) signalling ............................. 45 

1.4.8.3. Protein kinase C (PKC) signalling ........................................................ 45 

1.5. Hypoxia in Cancer ....................................................................................... 46 

1.5.1. Hypoxia inducible factors (HIFs) .............................................................. 47 

1.5.2. Hypoxia as a component of the BMM ...................................................... 49 

1.5.3. The role of hypoxia in HSC versus leukaemic cells .................................. 50 

1.5.4. HIF1α and HIF2α in AML leukaemogenesis ............................................ 52 



8 
 
 

1.6. Senescence in health and disease .............................................................. 53 

1.7. Effector pathways of senescence and the senescent phenotype ................. 54 

1.8. Role of senescence and SASP in tumourigenesis ....................................... 56 

1.9. Therapy-induced senescence ..................................................................... 57 

1.10. Research rationale, aims and objectives.................................................. 59 

1.10.1. Rationale .............................................................................................. 59 

1.10.2. Aims ..................................................................................................... 59 

1.10.3. Objectives ............................................................................................ 59 

2. Chapter 2: materials and methods .................................................................. 61 

2.1. Reagents and chemicals ............................................................................. 61 

2.2. Blocking antibodies and recombinant cytokines .......................................... 61 

2.3. Cell culture .................................................................................................. 63 

2.3.1. Cell lines .................................................................................................. 63 

2.3.2. Primary cell isolation and culture ............................................................. 64 

2.3.3. CD34+ magnetic purification .................................................................... 66 

2.3.4. Cryopreservation and defrosting of primary cells ..................................... 67 

2.3.5. Cell viability assays:................................................................................. 67 

2.3.5.1. Trypan blue exclusion test using a haemocytometer ............................ 67 

2.3.5.2. CellTiter-Glo viability assay .................................................................. 68 

2.3.5.3. Annexin V – PI detection of apoptosis .................................................. 68 

2.3.6. Hypoxic assays ........................................................................................ 69 

2.3.7. Methylcellulose Human Colony Forming Cell (CFC) Assay...................... 69 

2.4. Molecular biology techniques ...................................................................... 70 

2.4.1. RNA extraction ........................................................................................ 70 

2.4.2. Nucleic acid quantification using a Nanodrop .......................................... 71 

2.4.3. Reverse transcription and cDNA synthesis .............................................. 71 

2.4.4. Relative quantitative real-time PCR (qRT-PCR) ....................................... 71 

2.4.5. Analysis of qRT-PCR data ....................................................................... 73 

2.4.6. Protein expression analysis ..................................................................... 73 

2.4.6.1. Western immunoblotting ....................................................................... 73 

2.4.6.1.1. Whole cell lysate preparation ............................................................ 73 

2.4.6.1.2. SDS-PAGE and immunoblotting ....................................................... 74 

2.4.6.1.3. Chemiluminescent detection ............................................................. 74 

2.4.6.2. ELISA ................................................................................................... 75 

2.4.6.3. Proteome Profiler Human XL Cytokine Array ....................................... 76 

2.4.6.4. Flow cytometry ..................................................................................... 77 

2.4.7. shRNA-mediated gene silencing .............................................................. 78 



9 
 
 

2.4.7.1. Amplification of bacterial cultures ......................................................... 80 

2.4.7.2. Plasmid DNA isolation and precipitation ............................................... 81 

2.4.7.3. 293T packaging cell transfection .......................................................... 82 

2.4.7.4. Viral RNA isolation ............................................................................... 82 

2.4.7.5. Determination of viral titres ................................................................... 83 

2.4.7.6. Lentiviral infection of target cells .......................................................... 84 

2.4.8. Senescence associated β- galactosidase staining ................................... 85 

2.5. In vivo animal models .................................................................................. 85 

2.5.1. Non- diabetic (NOD) severe combined immunodeficiency (SCID) and 
gamma model (NSG) mice for human xenograft models ........................................ 86 

2.5.2. Patient derived xenografts ....................................................................... 86 

2.5.3. OCI-AML3 human xenograft model ......................................................... 87 

2.5.4. In vivo bioluminescent (BL) imaging ........................................................ 87 

2.5.5. Sacrificing animals and harvesting of the bone marrow and spleen cells . 88 

2.6. Bioinformatics analysis ................................................................................ 89 

2.7. Statistical analyses ...................................................................................... 90 

3. Chapter 3: AML influences the secretory profile of BMSCs ............................. 91 

3.1. In vitro expansion of primary AML-derived BMSCs ..................................... 91 

3.2. BMSCs support AML survival in vitro .......................................................... 93 

3.3. AML cells induce changes in the BMSC cytokine secretion profile .............. 95 

3.4. AML but not BMSCs express high levels of MIF mRNA under normal basal 
conditions ............................................................................................................ 101 

3.5. IL-8 specific ELISAs confirm IL-8 upregulation in AML/BMSC co-cultures . 102 

3.6. IL-6 is not upregulated in BMSCs in AML/BMSCs to co-cultures ............... 103 

3.7. AML induced IL-8 expression in BMSCs is contact independent ............... 104 

3.8. Recombinant human MIF (rhMIF) induces IL-8 expression in AML derived 
BMSCs but not normal cell line BMSCs ............................................................... 104 

3.9. Inhibition of AML-derived MIF downregulates IL-8 expression ................... 106 

3.10. Inhibition of MIF significantly reduces AML survival on BMSCs ............. 107 

3.11. Summary of the results presented in chapter 3 ...................................... 108 

4. Chapter 4: MIF induction of BMSC-derived IL-8 is mediated through CD74 and 
PKCβ signalling ................................................................................................... 109 

4.1. Identifying the receptor/s to which MIF binds and induces IL-8 in BMSCs . 109 

4.2. The primary MIF receptor involved in mediating IL-8 expression is CD74 . 110 

4.3. Pharmacological inhibition of MIF signalling pathways .............................. 113 

4.4. MAPK and AKT do not play a role in MIF-induced IL-8 in BMSCs ............. 114 

4.5. PKCβ is activated in response to MIF in BMSCs ....................................... 116 

4.6. MIF-induced IL-8 in BMSCs is signalled through PKCβ ............................. 116 



10 
 
 

4.7. Knockdown of PKCβ inhibits MIF-induced IL-8 expression in BMSCs ....... 117 

4.8. Targeting the MIF-PKCβ-IL-8 axis disrupts BMSC induced protection of 
primary human AML cells .................................................................................... 119 

4.9. Summary of results chapter 4 .................................................................... 120 

5. Chapter 5: Hypoxia regulates AML-derived MIF ........................................... 122 

5.1. AML cells derived from the bone marrow express higher levels of MIF 
compared to cells in the systemic circulation and spleen ..................................... 123 

5.2. MIF is part of a hypoxic gene signature in AML cells isolated from the BM, 
but not those isolated from the PB ....................................................................... 126 

5.3. Hypoxia induces MIF in primary AML cells ................................................ 127 

5.4. HIF1α is a candidate regulator of MIF expression in Primary AML cells .... 128 

5.5. HIF1α, but not HIF2α is stabilised and induces MIF in primary AML cells in 
response to hypoxia ............................................................................................. 128 

5.6. MIF is not induced in normal non-leukaemic CD34+ cells ......................... 129 

5.7. Silencing of HIF1α, but not of HIF2α, significantly reduces MIF expression in 
primary AML cells ................................................................................................ 131 

5.8. MIF functions to promote AML tumour survival in vitro .............................. 133 

5.9. The leukaemic cell HIF1α-MIF axis functions to promote tumour proliferation 
in vivo 135 

5.10. Pharmacological inhibition of MIF in vivo increases survival of AML 
xenograft models. ................................................................................................ 137 

5.11. Summary of results chapter 5 ................................................................ 139 

6. Chapter 6: AML cells induce senescence in BMSCs through the upregulation of 
p16 141 

6.1. Proteome profile arrays from AML-BMSC co-cultures show an upregulation 
of SASP related factors........................................................................................ 141 

6.2. BMSCs from late passages become senescent in culture ......................... 142 

6.3. AML cells increase senescence associated β-Galactosidase staining in 
patient derived BMSCs ........................................................................................ 143 

6.4. AML cells induce p21 and p16 mRNA in BMSCs. ..................................... 145 

6.5. Knockdown of p16 in BMSCs inhibits AML induced p16 expression in 
BMSCs. ............................................................................................................... 146 

6.6. p16 deficient BMSCs have reduced ability to support AML survival in vitro 146 

6.7. In vivo modelling of the senescent BM phenotype using the p16-3MR mouse 
model 147 

6.8. Isolation and culturing of p16-3MR BMSCs ............................................... 148 

6.9. MN1 AML cells induce p16 expression in p16-3MR derived BMSCs ......... 149 

6.10. Summary of chapter 6 ........................................................................... 150 

7. Chapter 7: discussion and conclusions ......................................................... 151 



11 
 
 

7.1. AML-derived MIF stimulates BMSC IL-8 expression through PKCβ and is 
essential for AML survival .................................................................................... 151 

7.1.1. Modelling the AML microenvironment using primary AML BMSCs ......... 151 

7.1.2. AML-induced alternations in BMSC secretory profiles ........................... 152 

7.1.3. Characteristic primary AML cytokines, an emerging role for MIF ........... 153 

7.1.4. Clinical investigations of MIF inhibitors .................................................. 155 

7.1.5. PKCβ targeting in leukaemic cells ......................................................... 156 

7.1.6. IL-8 as a key cytokine for AML survival .................................................. 156 

7.1.7. In vivo modelling of IL-8 may be challenging ......................................... 157 

7.2. Hypoxia regulates MIF expression through HIF1a ..................................... 157 

7.2.1. AML emerges as a hypoxia driven malignancy ...................................... 158 

7.2.2. The role of HIFs in AML remains to be delineated ................................. 159 

7.2.3. In vivo modelling of the role of MIF in AML BMM ................................... 161 

7.3. AML induces senescence in BMSC through upregulation of p16 .............. 162 

7.3.1. An ageing-induced malignant environment ............................................ 162 

7.3.2. Senescence in AML cells ....................................................................... 163 

7.3.3. In vitro markers and inducers of senescence ......................................... 163 

7.3.4. In vivo modelling of the senescent BMM in AML .................................... 164 

7.4. Conclusions and future directions ............................................................. 165 

References .......................................................................................................... 167 

Appendix ............................................................................................................. 191 

Table 1: Cytogenetic profiles of primary BMSCs .................................................. 191 

Table 2: AML, BMSC and AML/BMSC cytokine array data sets ........................... 196 

Copies of publications arising from this thesis ...................................................... 200 

 

 

 

 

 

 

 

 



12 
 
 

List of figures 

Chapter 1 

Figure 1. 1 Normal haematopoiesis and Leukaemia stem cell model. .................... 23 
Figure 1. 2 A model of the haematopoietic stem cell (HSC) niche. ......................... 31 
Figure 1. 3 Hypoxia gradient across the bone marrow. .......................................... 48 
Figure 1. 4 The Hypoxia gradient across the bone marrow. ................................... 50 
Figure 1. 5 Effectors of the senescence pathway. .................................................. 56 
 

Chapter 2 

Figure 2. 1 A schematic of the Histopaque density gradient centrifugation step in 
isolating AML cells from BM aspirates. .................................................................. 64 
Figure 2. 2 A schematic of the additional centrifugation of large volumes of 
peripheral blood prior to Histopaque density gradient centrifugation and isolation of 
CD34+ cells. .......................................................................................................... 66 
Figure 2. 3 A schematic showing the work flow followed in the production of lentiviral 
particles from bacterial glycerol stocks. .................................................................. 79 
Figure 2. 4 Bones and spleens harvested from NSG mice. .................................... 89 
 

Chapter 3 

Figure 3. 1 In vitro expansion and characterization of bone marrow stromal cells 
(BMSCs). ............................................................................................................... 92 
Figure 3. 2 Morphology of primary cultured BMSC over time. ................................ 93 
Figure 3. 3 Primary AML survival in mono-cultures versus on primary BMSCs. ..... 94 
Figure 3. 4 A representative image of the developed cytokine array from AML, 
BMSC and AML/BMSC culture media. ................................................................... 95 
Figure 3. 5 Bar graphs comparing the fold increase in cytokines between 
BMSC/AML co-cultures and BMSC monocultures. ................................................ 99 
Figure 3. 6 Bar graph depicting the results of a cytokine array optical density 
quantification of AML only arrays. ........................................................................ 100 
Figure 3. 7 Bar graph comparing MIF mRNA expression levels in AML and BMSC 
cultures. ............................................................................................................... 102 
Figure 3. 8 Bar graph representing IL-8 protein expression (pg/ml) in monocultures 
and AML/BMSC co-cultures over 24 hours. ......................................................... 102 
Figure 3. 9 Bar graph representing MIF expression (pg/ml) in monocultures and 
AML/BMSC co-cultures over 24 hours. ................................................................ 103 
Figure 3. 10 Bar graph depicting IL-6 expression (pg/ml) in monocultures and 
AML/BMSC co-cultures over a period of 24 hours. .............................................. 103 
Figure 3. 11 Bar graph comparing fold increase over control of IL-8 induction in 
AML/BMSC co-cultures in direct contact (DC) versus indirect contact (IC). .......... 104 
Figure 3. 12 Bar graph comparing fold increase over control of IL-8 expression in 
BMSCs in response to MIF stimulation, over 24 hours. ........................................ 105 
Figure 3. 13 Bar graph comparing fold change in IL-8 mRNA expression in HS-5 
treated with rhMIF or co-cultured with AML. ......................................................... 106 
Figure 3. 14 Bar graph comparing IL-8 RNA expression levels in the absence (MIF) 
and presence (MIF+ISO-1) of the MIF inhibiting ISO-1. ....................................... 107 



13 
 
 

Figure 3. 15 Scatter graph showing reduced AML survival in ISO-1 treated 
AML/BMSC co-cultures. ....................................................................................... 108 
 

Chapter 4 

Figure 4. 1 Representative flow cytometry analysis of cultured BMSCs stained with 
monoclonal antibodies against CD105, CD74, CXCR2 and CXCR4. ................... 109 
Figure 4. 2 Bar graph comparing MIF-induced IL-8 mRNA expression in BMSCs 
treated with the inhibitors of CD74, CXCR2 and CXCR4 receptors. ..................... 110 
Figure 4. 3 MIF-induced IL-8 upregulation is mediated through CD74, as seen in this 
bar graph which shows IL-8 mRNA expression levels for untreated, MIF-stimulated, 
PTX-treated, PTX-treated/MIF-stimulated BMSCs. .............................................. 111 
Figure 4. 4 CD74 protein levels in control versus knockdown BMSC samples, 
measured by qRT-PCR (A) and flow cytometry (B). ............................................. 112 
Figure 4. 5 Bar graph depicting IL-8 mRNA expression levels after CD74 
knockdown in BMSCs, which inhibited MIF induced IL-8 expression. .................. 112 
Figure 4. 6 Bar graphs showing that the pharmacological inhibition of PKC 
pathways, inhibit AML induced IL-8 expression levels in BMSCs. ........................ 113 
Figure 4. 7 Bar graph depicting IL-8 mRNA expression after pharmacological 
inhibition of MAPK and PKC signalling pathways, to examine its effects on MIF 
induced BMSC IL-8 mRNA expression. ............................................................... 114 
Figure 4. 8 A western-blot image showing that pMAPK and pAKT are not activated 
in response to MIF in BMSCs. ............................................................................. 115 
Figure 4. 9 A western-blot image showing MIF activates PKCα/βII and PKCβ in 
BMSCs. ............................................................................................................... 116 
Figure 4. 10 Bar graph comparing IL-8 mRNA expression levels in BMSCs treated 
with inhibitors to assess the effect of pPKCα/βII and pPKCβ on MIF-induced IL-8 
expression. .......................................................................................................... 117 
Figure 4. 11 Results depicting changes in PKCβ expression after knockdown in 
BMSCs. ............................................................................................................... 118 
Figure 4. 12 Bar graphs representing IL-8 mRNA expression levels in BMSCs, 
where PKCβ was knockdown. PKCβ knockdown inhibits MIF-induced IL-8 
expression in BMSCs. ......................................................................................... 118 
Figure 4. 13 Bar graphs showing IL-8 expression levels, following the knockdown of 
IL-8 in AML derived BMSCs. ................................................................................ 119 
Figure 4. 14 Results depicting that the IL-8 inhibition in BMSCs reverses AML 
survival in co-cultures. ......................................................................................... 120 
 

Chapter 5 

Figure 5. 1 Scatter graph showing that BM AML cells express significantly higher 
MIF levels than circulating AML cells. .................................................................. 124 
Figure 5. 2 Experimental plan of the patient-derived xenograft (PDX) model, and 
results that indicated successful engraftment. ...................................................... 125 
Figure 5. 3 Scatter graphs comparing MIF and GLUT1 RNA expression levels in the 
BM and spleen of the PDX animals...................................................................... 126 
Figure 5. 4 Bar graphs depicting MIF mRNA and protein expression levels in AML 
cells following culture under hypoxic conditions in vitro. ....................................... 128 



14 
 
 

Figure 5. 5 Western blot demonstrating the stabilisation of HIF1α but not HIF2α in 
AML cells under hypoxic culture conditions. ......................................................... 129 
Figure 5. 6 Bar graphs depicting differences in the expression of MIF, mRNA and 
protein, in CD34+ cells versus AML cells. ............................................................ 130 
Figure 5. 7 Bar graphs depicting the expression of MIF mRNA and protein in CD34+ 
cells under normoxic and hypoxic conditions. ...................................................... 130 
Figure 5. 8 HIF1α or HIF2α lentiviral knockdown (KD) in primary AML cells ........ 131 
Figure 5. 9 Bar graphs showing the differences in basal MIF expression in HIF1α or 
HIF2α lentiviral knockdown (KD) primary AML cells. ............................................ 133 
Figure 5. 10 Figure 5.12 Bar graphs showing that lentiviral Knockdown of MIF in 
AML cells reduces cell survival and colony formation. ......................................... 134 
Figure 5. 11 Scatter plots depicting the apoptosis of AML cells, driven by MIF 
knockdown. .......................................................................................................... 135 
Figure 5. 12 In vivo bioluminescence images depicting disease progression in 
HIF1α and MIF KD AML xenograft model. ........................................................... 136 
Figure 5. 13 Results summarizing that the inhibition of AML HIF1α and MIF 
significantly increases survival of AML derived xenograft models. ....................... 137 
Figure 5. 14 Summarised results of experiments showing that the pharmacological 
inhibition of MIF in an AML patient derived xenograft model (PDX) does not affect 
AML mobilisation, but significantly increases animal survival. .............................. 139 

 Chapter 6 

Figure 6. 1 Light micrographs of senescent patient-derived BMSCs. ................... 143 
Figure 6. 2 Light micrograph images showing that primary AML cells induce β-
Galactosidase staining in primary BMSCs. .......................................................... 144 
Figure 6. 3 Bar graphs showing that primary AML cells increase p21 and p16 mRNA 
expression in primary BMSCs. ............................................................................. 145 
Figure 6. 4 Results from experiments that reveal that the knockdown of p16 in 
BMSCs inhibits AML induced p16 expression. ..................................................... 146 
Figure 6. 5 Dot plot depicting the survival of AML cells co-cultured with p16 deficient 
BMSCs. ............................................................................................................... 147 
Figure 6. 6 Schematic of the p16-3MR transgene. ............................................... 148 
Figure 6. 7 Light microscopy images from the In vitro cultures of p16-3MR derived 
BMSCs. ............................................................................................................... 149 
Figure 6. 8 Western-blots showing that MN1 AML cells induce p16 expression in 
p16-3MR derived BMSCs in vitro. ........................................................................ 150 

 

 

 

 

 

 



15 
 
 

List of tables  

Chapter 1 

Table 1. 1 WHO classification of AML and related neoplasms. .............................. 28 
 

Chapter 2 

Table 2. 1 Antibodies used in flow cytometry analysis. .......................................... 61 
Table 2. 2 Primary and secondary antibodies used in western blotting. ................. 62 
Table 2. 3 KiCqStart® SYBR® Green Primers (Sigma). ........................................ 72 
Table 2. 4 QuantiTect Primers (Qiagen). ............................................................... 73 
Table 2. 5 Sigma mission shRNAs used for stable knockdown of target genes...... 80 
 

Chapter 3 

Table 3. 1 AML patient sample characteristics used in chapter 3 and 4. ................ 94 
Table 3. 2 Cytokine mean pixel densities data set for figure 3.4. ............................ 96 
 

Chapter 5 

Table 5. 1 AML patient sample characteristics used in chapter 5. ........................ 123 
 

Chapter 6 

Table 6. 1 AML patient sample characteristics used in chapter 6. ........................ 141 
 

 

 

 

 

 

 

 

 

 

 

 



16 
 
 

List of abbreviations 

aCD74 Ab  Anti-CD74 blocking antibody 

ALL Acute lymphoblastic leukaemia 

AML Acute myeloid leukaemia 

aPKC Atypical Protein Kinase C 

AV Annexin V 

BCL-2 B-cell leukaemia/lymphoma 2 

BLI Bioluminescence intensity 

BM Bone marrow 

BMM Bone marrow microenvironment 

BMSC Bone marrow (mesenchymal) stromal sells 

BSA Bovine serum albumin 

CAR cells CXCL12-abundant reticular cells 

CD Cluster of differentiation  

CDK Cyclin dependent kinases 

cDNA Complementary DNA 

CFC Colony forming cell 

CLL Chronic lymphocytic leukaemia 

CML Chronic myeloid leukemia 

CMP Committed progenitor cells 

CO2 Carbon dioxide 

COCL2 Cobalt chloride  

cPKC Conventional protein kinase c 

CSF-1 Colony stimulating factor-1 

Ct Cycle threshold 

CXCL12 C-X-C motif chemokine 12 

CXCR C-X-C chemokine receptor 

DC Direct contact 

dCT Delta Ct 

DDR DNA-damage response 



17 
 
 

D-DT D-dopachrome tautomerase 

DFO Desferrioxamine 

DMEM Dulbecco's Modified Eagle's medium  

DMSO Dimethyl sulfoxide  

DMU  Disease modelling unit 

DNA Deoxyribonucleic acid 

DNAse Deoxyribonuclease 

DNMT3A DNA (cytosine-5)-methyltransferase 3A 

DNR Daunorubicin 

EC Endothelial cells 

ECM Extracellular matrix 

EDTA Ethylenediamine tetra-acetic acid 

ELISA Enzyme-linked immunosorbent assay 

ER Endoplasmic reticulum 

ERK Extracellular signal-regulated kinase 

FAB French–american–british cooperative group 

FcR Fc receptor 

FCS Foetal calf serum 

FL Flt-3 ligand 

FLT3 Fms-like tyrosine kinase 3 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase  

GEO Gene expression omnibus 

GLUT1 Glucose transporter 1 

GM-CSF Granulocyte macrophage colony- stimulating factor  

GPCR G-protein Coupled Receptors 

GRO Growth related oncogene 

GVC Gancyclovir 

HGF Hepatocyte growth factor 

HIFα Hypoxia-Inducible Factor alpha 

HPC Haematopoietic progenitor cells 

HRE Hypoxia response element 



18 
 
 

HRP  Horseradish peroxidase 

HSC Haematopoietic stem cell 

HSCT Haematopoietic stem cell transplantation 

HSV-TK Herpes simplex virus thymidine kinase 

ICAM-1 Intracellular adhesion molecule-1 

IDH1/2 Isocitrate dehydrogenase 1/2 

IDO  Indoleamine 2,3-dioxygenase 

IFN-γ Interferon-γ 

IGF Insulin-like Growth Factor 

IGFBP2 Insulin growth factor binding protein 2 

IgG Immunoglobulin 

IL Interleukin 

JNK Jun NH2- terminal kinase 

kb kilobases 

KD  Knockdown  

LB Lysogeny broth 

LC Leukaemic cell 

LSC Leukaemic stem cell 

LDL Low-density lipoprotein  

LFA-1 Lymphocyte function-associated antigen-1 

LIC Leukaemia initiating cells 

LIF Leukaemia inhibitory factor 

LNC Lymph node cell 

MACS Magnetic-activated cell sorting 

MAPK Mitogen-activated protein kinase 

MCL-1 Myeloid cell leukaemia 1 

M-CSF Macrophage colony-stimulating factor 

MDS Myelodysplastic syndromes 

MDSC Myeloid-derived suppressor cells 

mg Milligrams 

MHC II Major histocompatibility complex class ii 



19 
 
 

MIF Macrophage migration inhibitory factor 

MIF-AS1 MIF-antisense1 

MIP-1a Macrophage inflammatory protein 1 alfa 

MM Multiple myeloma 

MMP Matrix metalloproteinase 

MPN Myeloproliferative neoplasm 

MPP Multipotent progenitors 

MRC Medical research council 

mRNA Messenger RNA 

mTOR  Mammalian Target Of Rapamycin 

NF-κB Nuclear factor kappa-light-chain enhancer of activated B cells 

ng Nanograms 

NGS Next generation sequencing  

NHS National health service  

NK-cell Natural Killer cell 

NMP1 Nucleophosmin 1  

NNUH Norwich and Norfolk university hospital 

NOD/SCID  Non-obese diabetes/severe combined immunodeficiency 

nPKC Novel protein kinase c 

O2 Oxygen  

OIS Oncogene-induced senescence 

oxMIF Oxidised MIF 

p16-3MR P16- three modal reporter 

PB Peripheral blood 

PBS Phosphate buffered saline 

PCR  Polymerase chain reaction 

PDX Patient-derived xenograft 

Pen-srep  Penicillin-streptomycin 

PGE2 Prostaglandin E 2 

PHD Prolyl-hydroxylase 

PI Propidium iodide  



20 
 
 

PI3K Phosphatidylinositol-3 kinase 

PKC Protein kinase c 

PS Phosphatidylserine 

PTX Pertussis toxin 

PVDF Polyvinyladine fluoride 

qRT-PCR Quantitative real-time polymerase chain reaction 

RB Retinoblastoma protein 

redMIF Reducedmif 

RenLuc Renilla luciferase 

RFP Red fluorescent protein 

RIPA Radioimmunoprecipitation assay 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

RPGE2 Receptor of prostaglandin E2 

RPMI Roswell Park Memorial Institute medium 

RS Replicative senescence 

RT Room temperature  

SASP Senescence-Associated Secretory Phenotype (or profile) 

SCF Stem cell factor 

SDF-1 Stromal derived factor-1 

SNP Single nucleotide polymorphism 

SSC Skeletal stem cells 

STAT3 Signal Transducer and Activator of Transcription 3 

TET2 Tet methylcytosine dioxygenase 2 

TGF-β1 Transforming Growth Factor-β1 

TIS Therapy-induced senescence 

TMB 3,3´,5,5´-tetramethylbenzidine  

TNF-α Tumour Necrosis Factor-α 

TPO Thrombopoietin 

TU/mL  Transducing units per ml 

TW Transwell  



21 
 
 

uPA/uPAR Urokinase-plasminogen-activator/uPAR receptor 

VCAM -1 Vascular cell adhesion molecule-1 

VEGF Vascular-endothelial growth factor 

VHL Von hippel-lindau 

VLA-4/5 Very late antigen 4/5 

WHO World health organisation 

β-gal  Β-galactosidase 

μg Microgram 

μl Microlitre 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 
 

1. Chapter 1: Introduction  

 

1.1. Haematopoiesis  

Haematopoiesis is the process by which blood cells are generated in the bone 

marrow. Haematopoietic stem cells (HSCs) give rise to haematopoietic 

progenitor cells (HPCs) which in turn proliferate and differentiate to 

reconstitute all lineages of functional blood cells (1). Early findings that lead to 

the discovery of HSCs were made by Till, McCulloch, and colleagues in 1960. 

They showed that animals that received lethal doses of irradiation could be 

rescued from death via transplantation with unfractionated bone marrow cells 

from normal non-irradiated mice (2). Three years later, they demonstrated that 

the colonies they observed to have formed in the spleens of the irradiated 

animals were formed by single cells that were capable of multilineage 

differentiation (3). These cells are now referred to as HSCs and they are 

regulated by complex cellular and molecular signals, on both genetic and 

epigenetic levels. Modifications in these regulatory signalling networks can 

lead to the dysfunction and transformation of haematopoietic cells into 

leukaemic stem cells (LCS) and the induction of leukaemogenesis (Figure 1.1) 

(4, 5). Hence understanding the regulation of haematopoiesis is essential to 

understanding how leukaemia evolves.  

Many models have been developed to describe the process of haematopoiesis 

and to elucidate its complexity (6, 7). At the root of haematopoiesis are HSCs, 

which are defined by their ability to self-renew to allow blood production over 

the lifetime of an organism, and to differentiate into functional blood cells. 

According to the classical hierarchical models of haematopoesis, HSCs 

initially give rise to common myeloid and lymphoid progenitors. The myeloid 

lineage includes erythroid cells that form red blood cells, granulocytes and 

monocytes that play a role in pathogen immunity and megakaryocytes that are 

involved in the production of platelets. The lymphoid lineage gives rise to T-

cells, NK cells, and dendritic and B-cells that are responsible for cell mediated 

immunity (8). Although this simplified model still holds true, as scientific 
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evidence accumulates, we now know that individual HSCs gradually acquire 

lineage biases along multiple directions and do not necessarily pass through 

discrete hierarchically organised progenitor populations (9). Genetic defects in 

the different progenitors give rise to the different types of haematological 

malignancies that we know of today.  

 

Figure 1. 1 Normal haematopoiesis and Leukaemia stem cell model.  

Functional studies in acute and chronic leukaemias have led to the identification and 
characterisation of the leukaemic stem cell (LSC), which shares features with the 
normal haematopoietic stem cell (HSC). Leukaemic cells (LCs), also referred to as 
blasts, derive either from HSCs, multipotent progenitors (MPP) or committed 
progenitor cells (CMPs). They are characterised by increased self-renewal and 
reduced differentiation, compared to HSCs. 

 

1.2. Leukaemogenesis 

Leukaemogenesis is the process of developing leukaemia, during which many 

of the features of normal haematopoiesis are retained. Although genetic 

mutations in HSCs may pave the way for the malignant clonal expansion of 

leukaemic cells, these dominant clonal populations retain the hierarchical 
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organization found in normal haematopoiesis. Leukemic cells in acute 

leukaemias may acquire a primitive dysfunctional phenotype (10). 

Transcriptional regulators and signalling pathways that regulate the production 

of healthy blood cells may also be present in haematopoietic malignancies 

(11). Leukaemic cells replace normal bone marrow cells and, consequently, 

decrease and suppress haematopoiesis. Therefore, patients often present 

with anaemia, thrombocytopenia and granulocytopenia, that manifest in the 

form of frequent bruising or bleeding and a higher susceptibility to infections 

(12), resulting in fatigue and poor health.  

Haematological malignancies originate from myeloid or lymphoid progenitors 

residing in the bone marrow or lymph tissues. Major myeloid malignancies 

include acute myeloid leukaemia (AML), which is characterised by immature 

and poorly differentiated cells, chronic myeloid leukaemia (CML), which is for 

most patients characterised by more mature cells, and myelodysplastic 

syndromes (MDS), which are generally disorders of bone marrow maturation 

where the blast count (< 20% myeloid blasts) is lower than a definite diagnosis 

of AML (>20% myeloid blasts). The molecular heterogeneity of these 

malignancies are increasingly recognised and revisions of their classification 

are constantly underway (13).  

1.3. Acute Myeloid Leukaemia 

AML is the most common adult form of leukaemia and represents 

approximately 33% of all leukaemia cases in the UK. Over the last decade, 

AML incidence rates have increased by 8%, though this includes an incidence 

rate rise of 10% in male patients and stable rates in female patients (Cancer 

Research UK, 2014).  

1.3.1.  Genetic defects in AML 

A large body of evidence indicates that AML arises through the accumulation 

of genomic alterations which affect the genes regulating cell proliferation, cell 

death and the tightly regulated pathways of haematopoietic differentiation. 

These key oncogenic events are often divided into two classes according to 

the two-hit model hypothesis of AML leukaemogenesis. In this model, class I 
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mutations impair normal haematopoitic differentiation, due to changes in the 

tyrosine kinase pathways, conferring a proliferation or survival advantage to 

blast cells (e.g. mutations in the fms-like tyrosine kinase-3 (FLT3), c-

KIT/CD117 and RAS genes). Class II mutations are those that block myeloid 

differentiation and maintain self-renewability (e.g. via mutations in the 

AML1/ETO and CEBPA genes), or mutations that affect genes implicated in 

cell cycle regulation or apoptosis (e.g. p53 and nucleophosmin 1 (NPM1)) (14).  

However approximately 50% of AML patients do not carry a class I mutation 

and recent research has shown the presence of numerous common mutations 

which cannot be identified as either class I or II (15). These mutations, 

generally termed class III, incorporate mutations in epigenetic modifiers such 

as DNA (cytosine-5)-methyltransferase 3A (DNMT3A), and mutations in the 

hydoxylmethylation pathway, such as tet methylcytosine dioxygenase 2 

(TET2) and isocitrate dehydrogenase 1/2 (IDH1/2) mutations (16). These 

findings demonstrate the limitations of the two-hit model. Furthermore, the 

identification of new groups of mutations would extend our understanding of 

the complex pathogenesis of AML.  

In addition to genetic mutations, cytogenetic abnormalities can be detected in 

approximately 50% to 60% of newly diagnosed AML patients. These are 

mainly non-random chromosomal translocations that often result in gene re-

arrangements (17, 18). Cytogenetic and molecular genetic aberrations 

associated with AML are not mutually exclusive and often co-exist in the 

leukaemic cells (19). These co-existing aberrations can influence patient 

prognosis and/or predict response to therapy. Thus, their detection at the time 

of diagnosis represents an important clinical need.  

An analysis of data collected from the Medical Research Council (MRC) AML 

10 trial, which included 1612 children and adults up to 55 years of age, has 

shown that pre-treatment cytogenetics is an independent prognostic factor for 

AML. In this study, three prognostic groups (favourable, intermediate and poor 

prognosis) were defined by cytogenetic abnormalities detected at presentation 

in comparison with outcomes of patients with a normal karyotype (20).  
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Recently, McKerrell and colleagues developed and validated “Karyogene”, a 

comprehensive one-stop next generation sequencing (NGS)-based diagnostic 

platform for the genomic analysis of myeloid malignancies. It simultaneously 

detects substitutions, insertions, deletions, chromosomal translocations, copy 

number and zygosity changes in a single assay. The platform was validated 

on 62 AML and 50 MDS diagnostic samples previously characterised using 

conventional diagnostic approaches (21). The authors conclude that 

Karyogene represents an important advance that can accelerate the 

introduction of genomics to clinical diagnosis, this certainly holds true in the 

light of the complexity of AML.  

1.3.2. Classification of AML 

A marrow or blood blast count of ≥20% with blasts expressing myeloid 

associated lineage and precursor cell markers is required for AML diagnosis. 

Additional specific lineage markers are helpful for identifying mixed-phenotype 

acute leukaemia, and so these may also be used (22).  

The first descriptions of leukaemia as an alternation of “white blood” were 

made in 1844 by French physician, Alfred Donne, and a year later by John 

Hughes Bennett. In 1995, the Leukaemia Research Fund commemorated 

Bennett's work as the first description of leukaemia (23). What he imagined to 

be a single disease is now classified into multiple subgroups. The first 

internationally accepted classification of acute leukaemia was proposed in 

1976 by the French–American–British (FAB) Cooperative Group (24). It relied 

primarily on morphologic and cytochemical characteristics of patient samples, 

and did not account for the diverse cytogenetic background of AML patients 

within a given group, which was, of course, unrecognised at the time of writing. 

Thus, this classification is presently thought to provide limited prognostic 

information for these groups (25) . 

The more recent classification schemes proposed by the World Health 

Organization (WHO) require the additional evaluation of leukaemic blasts by 

molecular analysis and flow cytometry. This was last updated in 2008. Since 

then, there have been important advances in identifying unique biomarkers 
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associated with selected myeloid neoplasms and acute leukaemias, which 

were mainly obtained via gene expression analysis and NGS analysis (13). 

Revisions to the categories of myeloid neoplasms and acute leukaemia were 

published in a monograph in 2016 and reflect a consensus of the opinions of 

haematopathologists, haematologists, oncologists, and geneticists (Table 

1.1). The major changes in the classification and their rationale are presented 

in a review article by Arber et al (13) and summarised in Table 1.1 below. 

Dr. Elli Papaemmanuil and colleagues (26) extended the WHO profile by 

combining clinical and cytogenetic information with targeted sequencing of 

111 candidate driver genes in 1,540 AML patients. They concluded that 11 

distinct subtypes of AML could be distinguished in their study. Most of patients 

in the study were younger, undergoing intensive therapy and enrolled in trials 

of the German-Austrian AML study groups. Interestingly, the existing WHO 

classification system could not sufficiently categorise 50% of the study 

patients. A key finding was the identification of three novel genetic subgroups 

that were not previously described in the WHO classification. These included 

mutations in genes encoding chromatin, RNA-splicing regulators, or both (18% 

of patients); p53 mutations, chromosomal aneuploidies, or both (13% of 

patients); and an uncommon subgroup of IDHR172 mutation (1% of patients) 

(26). In terms of prognosis, this study identifies that prognostic effects of some 

driver mutations were influenced by the presence or absence of mutations in 

other genes. For example, FLT3-ITD conferred a particularly poor prognosis 

when combined with NPM1 and DNMT3A mutations, supporting the notion 

that the clinical effect of some driver mutations may have depended on the 

existence of co-mutations in a broader genomic setting. 
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Table 1. 1 WHO classification of AML and related neoplasms.  

Table extracted from Arber et al. 2016. 

Acute myeloid leukaemia (AML) and related neoplasms 

 AML with recurrent genetic abnormalities 

  AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1 

  AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11 

  APL with PML-RARA 

  AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A 

  AML with t(6;9)(p23;q34.1);DEK-NUP214 

  AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM 

  AML (megakaryoblastic) with t(1;22)(p13.3;q13.3);RBM15-MKL1 

  Provisional entity: AML with BCR-ABL1 

  AML with mutated NPM1 

  AML with biallelic mutations of CEBPA 

  Provisional entity: AML with mutated RUNX1 

 AML with myelodysplasia-related changes 

 Therapy-related myeloid neoplasms 

 AML, NOS 

  AML with minimal differentiation 

  AML without maturation 

  AML with maturation 

  Acute myelomonocytic leukaemia 

  Acute monoblastic/monocytic leukaemia 

  Pure erythroid leukaemia 

  Acute megakaryoblastic leukaemia 

  Acute basophilic leukaemia 

  Acute panmyelosis with myelofibrosis 

 Myeloid sarcoma 

 Myeloid proliferations related to Down syndrome 

  Transient abnormal myelopoiesis (TAM) 

  Myeloid leukaemia associated with Down syndrome 



29 
 
 

1.3.3. Current treatment of AML 

AML is primarily a disease of the elderly with a meidian age at diagnosis of 72 

years (quartile value, 60-79 years; range, 16-97 years; mean, 68 years) (27). 

Over the last 50 years there has been improved survival in the minority group 

of younger fitter patients mainly under the age of 65. However, older frail 

patients have seen no similar improvement, because the capacity to safely 

deliver the necessary intensive cytotoxic treatment to achieve a cure is 

compromised by the patients general physical health (28). 

AML in younger fitter patients is mainly treated with chemotherapeutic drugs 

that inhibit cell proliferation. Induction therapy with cytarabine and an 

anthracycline remains the standard of care in AML Treatment happens in two 

phases – (i) intensive induction therapy to abolish the bulk of leukaemia cells, 

and (ii) a tailored consolidation therapy, aiming to maintain long term 

remission. The standard approach involves 7-10 days of cytarabine and 3 days 

of anthracycline administration (29).  

Although advances in the treatment of AML have led to significant 

improvements in outcomes for younger patients, prognosis in the elderly who 

account for the majority of new cases remains poor (30). Even with current 

treatments, as much as 70% of patients aged ≥65 would die of their disease 

within 1 year of diagnosis (31). Current AML management still mostly depends 

on intensive chemotherapy and +/- allogeneic haematopoietic stem cell 

transplantation (HSCT), at least in younger patients who can tolerate such 

intensive treatments better, for older patients however, the existence of co-

morbidities (non-AML related factors) complicates treatment decisions and 

calls for more personalised management plans and frequent palliative 

symptom based care (32).  

1.4. The bone marrow microenvironment (BMM) 

The bone marrow (BM) is the major site of haematopoiesis and bone 

formation. Thus, in addition to containing haematopoietic cells, the BM 

contains cells that contribute to bone homeostasis. Recently, researchers 

have focused on the bone marrow microenvironment (BMM) and its role in 
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haematopoietic malignancies. Multiple studies have demonstrated that 

interactions with the different non-haematopoietic cell types in the BM 

contributes to the survival of leukaemic cells both in vitro and in vivo. 

Additional studies have shown that leukaemic cells compete for BMM 

resources, thereby creating a medium that co-participates in the development 

and progression of the disease. This section will give an overview of these 

studies and highlight the role of BM cells in regulating normal HSC function. 

1.4.1. Cellular components of the BMM  

The BM is made of a combination of cells that interact to regulate 

haematopoiesis, including arteriolar and sinusoidal type endothelial cells 

(ECs), osteolineage cells (osteoclasts and osteoclasts), fat cells (adipocytes), 

sympathetic neurons, non-myelinating Schwann cells, bone marrow 

(mesenchymal) stromal cells (BMSCs), CXCL12-abundant reticular cells 

(CAR cells), macrophages, megakaryoctyes and the extracellular matrix 

(ECM) (33, 34). These cellular components work in harmony to regulate all the 

steps of the haematopoiesis cascade, and are thought to affect HSC and HPC 

number, location, proliferation, self-renewal, and differentiation. Therefore, 

they are also likely to affect the production parameters of leukaemic cells 

similarly (35). 

Histological and functional assays indicated that HSCs and HPCs 

preferentially occupy the endosteal and subendosteal regions (endosteal 

niche) , closer to the bone surface (36). On the other hand, committed 

progenitors and differentiated cells are distributed in the central and peri-

sinusoidal regions (vascular niche), respectively (Figure 1.2) (37-39). BM cells 

are organised into niches that support specific subsets of haematopoietic 

progenitors. A niche is defined as the anatomical location in which HSC reside 

(40). The existence of the niche was first proposed by Schofield in 1978 (41). 

Since then, considerable progress has been made in defining the structure 

and components of the niche (42, 43), which has helped to understand the 

contribution of each individual cell type within the BMM to the pathogenesis of 

AML.  
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Figure 1. 2 A model of the haematopoietic stem cell (HSC) niche.  

Regions within the BM are broadly divided into endosteal and vascular niches. HSCs 
transit between the endosteal and vascular niche, the endosteal niche facilitates HSC 
maintenance and quiescence (the state of cell dormancy) while the vascular niche 
facilitates HSC proliferation and differentiation.  

 

Central to the establishment of the HSC niche are BMSCs, sometimes called 

multipotent or mesenchymal stem/stromal cells, which can differentiate into 

the different types of cells that make up the stromal components of the BM, 

including adipocytes, chondrocytes, myocytes, osteoblasts and osteoclasts 

(44, 45). The role of each of these cell types is extensively reviewed by Shafat 

et al. (46). The following sections will, however, focus on defining the BMSC 

population and explaining their role in haematopoiesis and in the 

leukaemogenesis of AML.  

1.4.2. Bone marrow mesenchymal stem cells (BMSCs) 

The identification of mesenchymal stem/stromal cells represents one of the 

most controversial and puzzling areas in stem cell biology. Recently, efforts 

have been made in this field to clearly define what BMSCs are and a common 

understanding is that they are ubiquitous in connective tissue and are 

phenotypically similar to skeletal progenitor cells and pericytes (46). Bianco et 

al., pioneers in the field of bone and marrow cell biology and development, 

have recently identified a progenitor for these BMSCs and have redefined 

them more stringently, based on in vivo differentiation capability, as skeletal 
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stem cells (SSC) (47). These cells are found on the surface of the blood 

vessels of the bone marrow (sinusoids) and are capable of organizing the 

haematopoietic microenvironment and stem cell niche (48). Sacchetti et. al. 

contributed further by demonstrating that BMSCs are not ubiquitous but have 

a different transcriptome and varying differentiation capacities for every tissue 

of a certain origin. They were identified as CD34 negative, CD45 positive, and 

CD146 positive cells and in the BM they are referred to as pericytes or 

perivascular cells (49).  

Conventionally, BMSCs cultured in vitro are characterised by their adherence 

to plastic, their capacity for osteogenic, chondrogenic and adipogenic 

differentiation, their expression of a panel of fibroblast related surface markers, 

(namely CD105, CD106, CD90 and CD73) and their lack of expression of 

haematopoietic markers such as CD34 and CD45 (50). This characterization 

approach was applied to the cells used in the research presented in this thesis.  

1.4.3. BMSCs and normal haematopoiesis 

Nearly all factors that regulate HSC maintenance are expressed by multiple 

cell types in BM niches, including BMSCs. These factors interact with their 

counterparts that are expressed on HSCs. The crucial decision between self-

renewal or differentiation and quiescence or proliferation is tightly regulated by 

the integration of intrinsic and extrinsic signals provided by the 

microenvironment in which HSCs reside (51).  

BMSCs secrete a number of cytokines that are essential for HSC function and 

maintenance, including CXCL12 (also called stromal derived factor-1, SDF-1) 

and stem cell factor (SCF) which are involved in HSC maintenance (35). 

Depletion of SDF-1 expressing BMSCs leads to reduced retention of HSCs 

and to reduced homing of transplanted HSCs (52). HSC homing to and 

retention in the BM, or its mobilisation to the peripheral blood is to a large 

extent regulated through SDF-1 (53). SDF-1 is produced by more than one 

type of BM cell including osteoblasts (54), BMSCs and CAR cells (55, 56). 

SDF-1 binds and activates the CXCR4 receptor on HSCs (56). This is 

demonstrated by studies in which the administration of plerixafor (Mozobil, 
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AMD3100) – a bicyclam that inhibits SDF-1 binding to CXCR4 – resulted in 

the mobilisation of HSCs to the peripheral blood of healthy subjects (57, 58). 

Other studies have shown that SDF-1 and CXCR4 binding activated a number 

of integrins such as very late antigen 4/5 (VLA-4/5) and lymphocyte function-

associated antigen-1 (LFA-1) on HSCs, which in turn induced cell adhesion to 

BMSCs and other BM cells that bore the vascular cell adhesion molecule-1 

(VCAM-1) and the intracellular adhesion molecule-1 (ICAM-1) (59).  

SCF functions by binding to c-Kit, a tyrosine kinase receptor expressed on all 

HSCs. It was found that even small changes in c-Kit signalling profoundly 

affected HSC function (60). Therefore, almost all cytokine combinations used 

for culturing HSCs, to date, include SCF. Deletion of SCF in perivascular 

BMSCs led to a decrease in HSC frequency in the BM of mice (61). The 

membrane-bound form of SCF is also an adhesive molecule for HSCs to the 

BMM (62).  

In addition to SCF and SDF-1, BMSCs isolated from BM produce several other 

haematopoietic growth factors and chemokines, including Flt-3 ligand (FL), 

thrombopoietin (TPO), the interleukins (IL) IL-6, IL-7 and IL-11, macrophage 

colony-stimulating factor (M-CSF), tumour necrosis factor-α (TNF-α), 

transforming growth factor-β1 (TGF-β1) and leukaemia inhibitory factor (LIF) 

(63, 64). Each of these factors, either individually or collectively, are known to 

contribute to haematopoietic homeostasis.  

1.4.4. The role of BMSCs in the malignant BM  

Genetic aberrations in self-renewing HSCs are well established as main 

intrinsic drivers of leukaemogenesis. These cells gain a competitive advantage 

over normal HSCs and give rise to the disease-propagating leukaemic cells, 

also referred to as leukaemic stem cells (LSCs) (65).  

In the haematopoietic niche, leukaemic cells interact with BMSCs to create a 

microenvironment that is favourable for leukaemic cell survival. BMSCs play a 

fundamental role in the growth, proliferation and survival of leukaemic cells, by 

facilitating interactions between them both through paracrine and autocrine 

signalling molecules. Furthermore, cell–cell and cell–matrix adhesion 
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promotes leukaemia cell survival through activation of pro-survival and anti-

apoptotic pathways, chemotherapy resistance, and consequently, the 

persistence of (minimal) residual disease (66-68).  

For example, both direct stromal contact and stroma-derived soluble factors 

are involved in extracellular regulated kinase (ERK)-mediated resistance to 

FLT3 inhibitors in FLT3-mutated AML (69) and resistance to anti-CD44 

therapy. CD44 is an adhesion molecule that is highly expressed by AML cells, 

where its inhibition induces differentiation and apoptosis of the leukaemic 

blasts (70-72). Likewise in CML, which overexpress CD44, anti-CD44 

treatment reduces CML burden in CML xenografts (73). BMSCs can also 

activate survival pathways in leukaemic cells. Recently, AML-derived BMSCs 

have been shown to induce NOTCH signalling in AML cells, the inhibition of 

NOTCH in AML abrogated their chemo-resistance (74). Goh and colleagues 

found that the blockade of a stromal derived cytokine, named colony 

stimulating factor-1 (CSF-1), delayed AML progression in vivo (75). These 

studies, thus, highlight the role of BMSC-derived signals in the progression of 

myeloid malignancies and their resistance to chemotherapy.  

The interaction between VCAM-1 and VLA-4 on BMSCs and AML cells, 

respectively, plays an integral role in the activation of nuclear factor kappa B 

(NF-κB) survival pathways in the stromal and tumour cell compartments (76). 

AML cells have been shown to express high levels of CXCR4 which responds 

to SDF-1 produced by BMSCs. Homing of leukaemic cells to the BM 

contributes to their protection from chemotherapy, which is why inhibitors have 

been developed to interrupt this interaction and mobilise AML cells to the 

peripheral blood where they can be killed by chemotherapy (77). In fact, the 

inhibition of the CXCR4–SDF-1 interaction overcomes AML cell line resistance 

to kinase inhibitors (78, 79).  

AML cells have been found to remodel BMSCs and increase their expression 

of SDF-1 (80). However, in a recent study Agarwal and colleagues showed 

that in a mouse model of CML, the decreased expression of SDF-1 by ECs 

reduced the number of long term repopulating HSCs, whereas the decreased 
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expression of BMSC-derived SDF-1 lead to an increase in the number of the 

HSCs (81). These findings suggest that SDF-1 serves different functions 

depending on its cell of origin.  

Since SDF-1 is expressed in both ECs and BMSCs (82) it could be assumed 

that a similar mechanism would hold plausible. A recent study has shown an 

interesting mechanism by which myeloproliferative neoplasm (MPN) cells 

caused the mobilisation of HSCs to the peripheral blood, due to increased 

neuropathy and BMSC apoptosis. These studies found that MPN-derived 

Interleukin-1β (IL-1β damaged Schwann cells that protect the endings of 

sympathetic nerves, leading to neuropathy, increased BMSC apoptosis, and 

the decreased expression of HSC retention factors and adhesion molecules 

by BMSCs (VCAM1, SDF-1 and SCF). This eventually lead to the mobilisation 

of normal HSCs to the peripheral blood (83). Taken together, these studies 

demonstrate that a deregulated expression of SDF-1 by BMSCs appears to 

be a common feature in myeloid malignancies.  

Extracellular vesicles, such as exosomes, traffic protein and RNA between 

cells and are key players in cell-cell communications (84). In multiple myeloma 

(MM), which is a malignancy of plasma cells, exosomes isolated from BMSCs 

of patients with MM induced MM tumour growth and promote disease 

progression in an in vivo translational model (85). Similar findings have 

recently been demonstrated in MDS where MDS- patient derived 

macrovesicles were found to contain microRNAs that differed from those 

derived from healthy donors, which induced changes in CD34+ HSCs in vitro 

(86). Stromal exosome trafficking is also a candidate mechanism for extrinsic 

chemoresistance within the AML niche. Stromal exosomes have been shown 

to be enriched for a number of known pro-tumoural factors, including TGF-

β1, MIR155 and MIR375 as well as cytokines essential for AML survival such 

as interleukin-8 (IL-8) (87). To summarise all the points above, BMSCs play a 

central role in AML pathogenesis via a multitude of cell-cell interactions.  
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1.4.5. Leukaemic cell remodelling of the BMM 

Leukaemic cells have been shown to modify niche signalling and to remodel 

the niche in their favour, allowing them to evade therapy and to disrupt normal 

HSC development (88-90). The mechanisms underlying this have been the 

focus of numerous studies. For instance, a number of AML mutations, 

including the FLT3-ITD mutation, can increase AML reactive oxygen species 

(ROS) levels (91), This in turn increases the proliferative ability of AML cells 

and, possibly, decreases the proliferation of the surrounding normal progenitor 

cells (92).  

AML cells can also actively participate in boosting the BM vascular density, 

which is a recognised feature of the leukaemic BM (93). This happens partially 

due to the AML activating the endothelial cells (EC) and recruiting them to the 

site of vasculogenesis, and by inducing the ECs to produce vascular-

endothelial growth factor (VEGF), which amplifies angiogenesis in the BM (94, 

95).  

Another common feature of myeloid malignancies is increased bone fibrosis. 

A landmark study by the Passegué laboratory demonstrated that through a 

combination of direct cell-cell contact and soluble factors (thrombopoetin, TPO 

and macrophage inflammatory protein 1a, MIP-1a), mouse CML cells were 

able to stimulate the overproduction of osteoblasts by BMSCs, thereby leading 

to fibrosis (96). In a human primary MDS co-culture model, MDS cells were 

sufficient to induce an MDS-like phenotype in BMSCs from healthy donors. 

MDS-like features included increased expression of proangiogenic factors 

(VEGF and IGFBP2 – insulin growth factor binding protein 2) and of fibrosis 

mediators such as LIF (97). Interestingly, MDS patients with fibrotic bone 

marrow are more likely to progress to AML than MDS patients with non-fibrotic 

BM features (98).  

As mentioned earlier in Section 1.4.4, communication between BMSCs and 

MDS cells is partly mediated by extracellular vesicles. CML-derived exosomes 

stimulate BMSCs to produce IL-8, which in turn can modify the leukaemic 

malignant phenotype in vitro and in vivo (99). Similarly, primary AML cells and 
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AML cell lines release microvesicles containing RNAs that has been shown to 

alter the secretory profile of murine bone marrow stromal cells (100). More 

recently, Kumar et al elegantly demonstrated that AML-derived exosomes 

primed animals for accelerated AML growth, they found that treatment of 

BMSCs with AML-derived exosomes decreases the expression of genes 

supporting normal haematopoiesis and osteogenesis and increases 

expression of genes supporting AML growth (101). Therefore, exosomes 

appear to be part of the malignant phenotype across a spectrum of myeloid 

malignancies. 

Jacamo and colleagues very recently performed gene expression profiling of 

BMSCs isolated from normal C57BL/6 mice versus BMSCs isolated from mice 

inoculated with syngeneic murine leukaemia cells carrying different human 

AML genotypes (that were developed in mice with p53 wild-type or nullgenetic 

backgrounds). They revealed that all the tested AML genotypes modified a 

unique set of genes in the BMSCs. Also, that there were sets of differentially-

expressed genes in AML-exposed BMSCs that were unique to the particular 

AML genotype or p53 status (102). These findings support the hypothesis that 

AML cells alter the transcriptome of BMSCs, in both common and genotype-

specific ways, and might, in part, explain the variation in response to therapy 

that is observed in AML patients of different genetic profiles. 

Taken together these findings reinforce the notion that AML cells and BM niche 

cells are tightly interweaved dynamic structures that, together, drive the 

development and progression of disease in the BM microenvironment. 

1.4.6. Niche-induced oncogenesis 

Different niche cells can harbour genetic defects that may initiate and 

contribute to AML development. This is termed niche-induced oncogenesis. 

For instance, genetic modifications such as the deletion of Dicer1 (coding for 

a protein involved in microRNA biogenesis) and SBDS (the gene mutated in 

Schwachman–Bodian–Diamond syndrome, related to bone marrow failure 

and with a high risk of developing leukaemia) in osteoprogenitor cells led to 

MDS and secondary AML in murine models (103-105). Reduced expression 
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of Dicer1 and the SBDS gene has also been observed in BMSC from patients 

with MDS (106, 107). Geyh and colleagues reported that AML and MDS 

derived BMSCs had limited osteogenic differentiation, partially due to an 

overexpression of Jagged1, a NOTCH signalling ligand (108, 109).  

Cytogenetic abnormalities have been reported in 30-70% of BMSCs from MDS 

and AML patients, albeit in relatively small sample sizes (110, 111). Further 

studies have shown that BMSCs originating from MDS and AML patients have 

a distinct expression profile and harbour some genetic abnormalities that are 

believed to be pro-leukaemic (112-114), including transcriptional (97) and 

epigenetic modifications (115). Other studies, however, report that BMSCs 

from MDS, CML and AML patients exhibit normal differentiation, adhesion, 

expression, survivability and a capacity to normally support haematopoiesis in 

vitro (116, 117). Overall, these studies leave us with an open debate as to 

what the functional consequences of genetically deregulated BMSCs might 

mean for myeloid malignancies.  

1.4.7. Chemokine and cytokine profiles in the malignant BM 

Cytokines and chemokines are involved in the cross talk between AML cells 

and the microenvironment. Systemic (serum or plasma) chemokine levels are 

suggested to serve as biomarkers for disease development or activity, as well 

as treatment responses (118). The overexpression of cytokines in AML 

patients declines in complete remission, suggesting that these events are 

dependent on AML activity and, in part, due to autonomous blast cytokine 

secretion (119). High constitutive release is not necessarily associated with 

increased systemic chemokine levels however, this may, at least, partly be 

explained by the fact that the systemic levels are determined by a balance 

between release and binding/degradation. This observation also 

demonstrates that systemic cytokine levels do not necessarily reflect the local 

BM cytokine network (118).  

Deregulated cytokine, chemokine and growth factor expression, and abnormal 

responsiveness to the aforementioned in leukaemia are well documented 

(120). For example, levels of interleukin-3 (IL-3), interleukin-6 (IL-6), 
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interleukin-8 (IL-8), thrombopoietin, tissue necrosis factor alfa (TNF-α), 

macrophage colony-stimulating factor (M-CSF), interferon-γ (IFN-γ), and SCF 

have been shown to be elevated in leukaemia patients compared to healthy 

controls (121). AML patients with a lower serum concentration of hepatocyte 

growth factor (HGF) had improved leukaemia-free survival rates compared to 

patients with higher HGF levels (122). In AML and MDS patients, higher levels 

of TNF-α negatively affected overall survival (123), whereas increased VEGF-

A levels correlated with reduced survival in AML (124). These studies have 

mainly focused on cytokines, chemokines, and growth factors that are typically 

found in the serum of untreated or treated AML patients. Nevertheless, 

cytokine and chemokine profiles of BM samples from AML patients are 

relatively fewer, and are mainly derived from in vitro co-culture studies that aim 

to replicate the microenvironment.  

A recent study by Reikvam and colleagues looked at the cytokine network in 

co-cultures of cells derived from 18 unselected AML patients, as well as with 

BMSCs derived from three healthy donors. They report that BMSCs cultured 

on their own showed relatively high levels (comparable or higher than the 

corresponding median level for AML cells alone) of IL-8, IL-6, and a few matrix 

metalloproteinases (MMP) (such as MMP-1, MMP-2 and TIMP-1). The levels 

of these mediators in AML–BMSC co-cultures were also relatively high, and 

included IL-8 and IL-6. Interestingly, normal HSCs did not induce as much 

change when co-cultured with BM-MSCs. AML cells increased the BMSC 

expression of genes involved in TLR initiated and NFκB mediated intracellular 

signalling, which is vital to cytokine/chemokine signalling in these cells (68).  

A more recent study by Lope and colleagues employed a similar approach and 

methodology. However, this study used patient-derived BMSCs, and they 

reveal that de novo AML derived BMSCs expressed high levels of SDF-1, 

receptor of prostaglandin E2 (RPGE2), indoleamine 2,3-dioxygenase (IDO), 

interleukins IL-1β, IL-32, IL-6 and VEGF, which are secreted by the leukaemic 

cells to promote their survival and proliferation. Furthermore, the increased 

SDF-1, RPGE2 and IDO levels helped in remodelling the mesenchymal niche 

in the BM (125).  
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 The cytokine/chemokine release profile of the bone marrow is modified by a 

number of factors including hypoxia, differentiation status, pharmacological 

interventions, and T-cell cytokine responses (126). So far, the best 

investigated single chemokine in AML is SDF-1, which binds to CXCR4, and 

which has been discussed in previous sections of this introduction (sections 

1.4.3 and 1.4.4). Also of particular importance is IL-8, which is usually released 

at highest levels (126, 127). The research from this thesis will partially address 

the regulation of the AML pro-survival cytokine, IL-8, in the stromal 

compartment. 

The following sub-sections will review cytokines and chemokines that are of 

relevance to the work presented in this thesis.  

1.4.7.1. Interleukin-8 (IL-8) 

IL-8, also called CXCL8, is a pro-inflammatory chemokine, which was first 

discovered to be associated with the promotion of neutrophil chemotaxis and 

degranulation (128). This chemokine activates multiple intracellular signalling 

pathways downstream of two cell-surface G protein–coupled receptors 

(GPCRs), namely CXCR1 and CXCR2 (129). Increased expression of IL-8 

and/or its receptors has been observed and characterised in cancer cells, ECs, 

infiltrating neutrophils, and tumour-associated macrophages (130).  

Bruserud and colleagues attempted to classify a cohort of AML patients based 

on constitutive chemokine release from AML cells. They investigated the 

release of a wide range of chemokines from 68 primary human AML blasts, 

and learned that chemokine levels varied widely, even for those patients with 

detectable release. They found that the highest level of constitutive expression 

was detected for IL-8, a mediator angiogenesis in the BM via its receptor, 

CXCR2 (127, 131). This data sggests that IL-8 may function as a significant 

regulatory factor within the tumour microenvironment. In fact, the importance 

of IL-8 and CXCR2 in the pathogenesis of cancer comes from studies in solid 

tumour, and in particular preclinical studies in breast cancer, in which IL-8 

seemed to have an important microenvironmental role (132-134).  
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In AML, evidence of the importance of IL-8 to leukaemic cells dates back to 

1993 (135). IL-8 was found to be overexpressed (136), and moreover serum 

IL-8 levels were found to be increased in haematological malignancies 

compared to healthy controls (137). Interestingly, in normal haematopoiesis, 

IL-8 seems to play an inhibitory role in proliferation and differentiation (138, 

139), which suggests that IL-8 provides a survival advantage to leukaemic 

cells. 

Jacamo et al. reported high IL-8 mRNA levels in BMSCs derived from AML 

and acute lymphoblastic leukaemia (ALL) patients, compared to BMSCs 

derived from healthy donors. In addition, co-cultures of normal BMSCs with 

AML and ALL cell lines and primary samples induced the expression of IL-8 in 

an NF-κB-dependent manner (76). Finally, in an another study, inhibition of 

the IL-8 receptor, CXCR2, selectively inhibited proliferation of MDS/AML cell 

lines and patient samples (140). Together, these studies suggest a complex 

role for IL-8 in regulating the survival and proliferation of multiple tumours, 

including AML. 

1.4.7.2. Interleukin-6 (IL-6) 

IL-6 is a multifunctional cytokine, with pleiotropic inflammatory effects, and is 

important for immune responses, cell survival, apoptosis, and proliferation 

(141). IL-6 has been reported to be important for the development of CML 

(142). A monoclonal antibody directed against human IL-6 has been evaluated 

in haematological malignancies such as MM, MDS and non-Hodgkin 

lymphomas (143). AML cells have been shown to secrete IL-6, however, IL-6 

on its own is not known to be sufficient to stimulate in-vitro colony formation. 

Rather, it acts as a co-stimulator to enhance CSF-induced clonogenicity of 

AML blast cells (144).  

Sanchez-Correa and colleagues reported that in AML, patients with higher 

serum IL-6 and lower serum IL-10 levels had worse survival rates than those 

with low IL-6 serum levels. Contrary to IL-8 which is consistently reported to 

be pro-leukaemic, IL-6 demonstrated different effects (stimulatory, inhibitory 

or neutral) on the growth of leukaemic cells derived from AML and MDS 



42 
 
 

patients (123, 145). These studies suggest that the role of IL-6 in AML remains 

undefined.  

1.4.7.3. Macrophage migration inhibitory factor (MIF)  

Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that, 

under normal conditions, regulates cell mediated immunity and inflammation 

(146). MIF was originally discovered in 1966 by Bloom and Bennett as an 

activated T-cell and macrophage derived cytokine (147). In the early 1990s, 

MIF was rediscovered as a clinically relevant factor that potentiated lethal 

endotoxemia (defined as the presence of endotoxins in the blood) (148). In 

contrast to other pro-inflammatory cytokines that require de novo synthesis 

before being secreted MIF is pre-formed and stored within vesicles in the cell 

cytoplasm, allowing for rapid release upon cell stimulation (149).  

Recently, a study investigating metastasis of pancreatic ductal 

adenocarcinomas showed that MIF can also be transported in exosomes that 

affect surrounding niche cells (150). The MIF gene does not encode for a N-

terminal signal sequence and, therefore, the MIF protein cannot translocate to 

the endoplasmic reticulum (ER) for mediated secretion, following the classical 

ER pathway. MIF is released from cells via a non-classical pathway involving 

the ATP-binding cassette transporters (ABCA1), and exhibits autocrine as well 

as paracrine effects (151).  

In terms of biological function, MIF has been shown to override the anti-

inflammatory effects of glucocorticoids and its plasma levels have been shown 

to correlate to cortisol circadian levels. These observations led some to 

propose its principal role as that of an endogenous counter regulator of 

glucocorticoids (152, 153). In the context of human cancers, studies have 

shown that MIF can inhibit p53-mediated apoptosis of human lung 

adenocarcinoma cell lines and stimulate cell proliferation (154). Moreover, 

MIFs have also been shown to affect cell migration and chemotaxis in a 

pulmonary metastasis model, where it was identified as a key effector of 

human MSC tumour homing in vitro (155). These studies together suggest a 

wide spread activity of MIF in normal and malignant cells.  
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MIF has been shown to exert its effects by binding to CD74, CXCR2, CXCR4 

and CXCR7 chemokine receptors (156). CD74 is MIFs widespread and most 

extensively studied receptor. It is a cell surface protein expressed as the 

invariant chain (Ii) of the major histocompatibility complex class II (MHC II) and 

forms a complex with CD44, initiating an intracellular signalling cascade (157, 

158). Moreover, emerging evidence suggests the formation of heterodimers of 

CD74 with either CXCR2 or CXCR4 (159, 160) and MIF binding to CXCR7 

(161).  

In cancer, MIF has been shown to be overexpressed in various types of solid 

tumours including breast, prostate, and colon (162-164). In a model of lung 

cancer, a suicide substrate inhibition of MIF inhibited lung adenocarcinoma 

cell migration and anchorage-independent growth (165). In haematological 

malignancies, namely chronic lymphocytic leukaemia (CLL) and MM, MIF is 

believed to drive malignant development (166, 167). A number of mechanisms 

have been proposed as to how MIF may influence the development of cancer. 

Recently, MIF has been shown to induce NF-kB activity and increase the 

expression of antiapoptotic molecules (168). Early evidence for MIF 

involvement in haematological malignancies came from a mouse model of 

myc-driven B-cell lymphoma where loss of MIF expression was shown to delay 

the onset of B-cell lymphoma development (169). In CLL, it has been shown 

that MIF is expressed by the malignant cells and induces protective IL-8 

release in an autocrine dependent manner, and that blocking either MIF or IL-

8 reduces the survival of CLL cells (170).  

Taken together, these studies show that the heightened expression of MIF and 

the increased secretion of IL-8 has wider significance to the tumour 

microenvironment. This is of particular interest in AML, as evidenced by the 

role of IL-8 in its development. The role of MIF in AML remains to be addressed 

and the research in this thesis will in part define the role that MIF plays in the 

AML microenvironment.  
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1.4.8. Cell signalling in the AML microenvironment 

Cytokines, chemokines, and adhesion molecules activate pro-survival 

signalling pathways in their target cells. A number of signalling pathways have 

been identified in AML. These include, but are not limited to the 

phosphatidylinositol-3 kinase PI3K/Akt/mTOR, mitogen-activated protein 

kinase (MAPK), signal transducer and activator of transcription 3 (STAT3), and 

NF-κB pathways, that regulate downstream components by promoting 

autonomous and microenvironment dependent survival and proliferation of 

AML cells (171).  

Simultaneous activation of signalling pathways have been shown to confer 

adverse prognosis for AML patients (172). Several therapies have been 

developed to target these pathways in AML cells. However due to AML being 

a heterogeneous disease, and also due to the fact that these signalling 

pathways are important for stromal cells in the BM micro-environment, 

therapies undergoing developed will need to take these factors into 

consideration.  

The following sections will briefly review the signalling kinase pathways that 

are relevant to the research presented in this thesis.  

1.4.8.1. Phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR signalling  

The members of this pathway control the expression of proteins that regulate 

both apoptosis and cell cycle progression/proliferation (173, 174), and cell 

migration downstream of the SDF-1/CXCR4 axis (175). Studies have shown 

that 50%–80% of AML patients display Akt that is phosphorylated at T308, 

S473 or both. The causes for the activation of PI3K-Akt-mTOR signalling 

include activating mutations in FLT3, c-KIT/CD117 or RAS genes, as well as 

growth factor stimulation such as SDF-1. Taken together this has made 

inhibition of PI3K-Akt-mTOR a strong therapeutic strategy of interest in AML 

(176).  

It is however, important to remember that this pathway is also important for 

signalling in other cellular components of the BM, including BMSCs, where it 
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is involved in BMSC differentiation into the three mesenchymal lineages and, 

furthermore, trans-differentiation into myoblasts and neurons (177). Moreover, 

the pathway is important for BMSC adaptation to the hypoxic BM 

microenvironment (178), and for regulation of BMSC metabolism and the 

induction of autophagy (179). Finally, the pathway contributes to the regulation 

of BMSC communication with other BMM cells (180). As a result, one would 

expect PI3K-Akt-mTOR inhibition to alter the BMSC functional characteristics 

and thus also affect the AML BM microenvironment crosstalk.  

1.4.8.2. Mitogen-activated protein kinase (MAPK) signalling 

Three major groups of MAP kinases exist: the p38 MAP kinase family, the 

extracellular signal-regulated kinase (ERK) family, and the c-Jun NH2- 

terminal kinase (JNK) family. All three are important signalling molecules in 

normal hematemesis as well as in leukaemogenesis (181). The relevance of 

these pathways in AML has been shown in several reports describing a 

constitutively activated MAPK in AML (182, 183). Therapeutic targeting of 

MAPK activation using a pharmacological blocker, PD98059 decreases both 

growth and survival of AML cell lines as well as primary cells (184).  

The ERK pathway has been shown to cooperate with FLT-3 in regulation of 

cell survival (185). Moreover, BMSCs are known to activate PI3K/Akt and 

ERK/MAPK in FLT3 mutant AML cells, and to confer resistance to both 

chemotherapy and FLT3 inhibition (78). MAPK signalling in the stromal 

compartment is relatively less defined. Studies however, have exhibited the 

activation of this pathway in BMSCs. In a Chinese study, AML derived 

proteases have been shown to up-regulate VEGF production in AML BMSCs 

via the PAR-2, ERK1/2, and MAPK signalling pathways (186). Moreover, in a 

study on paediatric MDS, inhibition of MAPK disrupted proinflammatory factor 

production by MDS-derived BMSCs. Da Costa and colleagues observed 

MAPK to be constitutively expressed in MDS-AML derived BMSCs (187).  

1.4.8.3. Protein kinase C (PKC) signalling 

The PKC family comprises of 12 closely related serine/threonine kinase 

isoforms. Mammalian PKCs share common catalytic domains but differ in their 
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regulatory domains which dictate the co-factors required for required for the 

kinases’ activation (188). PKC isoforms are subdivided into three subfamilies 

according to their activation profiles: conventional PKCs (cPKC: α, βI, βII, γ), 

novel PKCs (nPKC: δ, ε, η, θ), atypical PKCs (aPKC: ζ, ι/λ), and additionally, 

the more distantly related PKCμ/PKD and PKCν (189). conventional PKCs 

require DAG, Ca2+, and phospholipid for activation. Novel PKCs do not require 

Ca2+ for activation, but are still dependent on phospholipids and DAG. Atypical 

PKC isoforms are activated independently of Ca2+ and DAG (190, 191). 

PKCs are ubiquitously expressed and are essential for the regulation of cell 

proliferation, apoptosis, differentiation and migration (190, 192). PKCs have 

been linked to oncogenes, including RAS and MYC, which places them at the 

core of cancer signalling pathways (193). Interestingly not all PKCs act as 

oncoproteins, for example, PKCδ is anti-apoptotic in CLL (194), but pro-

apoptotic in AML (195, 196). Also, PKCα shows proliferative functions in 

several malignancies but has antiproliferative functions in colon cancer cells 

(197). In AML, high levels of PKCα conferred an adverse prognosis for AML 

patients (198), while a PKCδ agonist, PEP005, induces apoptosis in AML cells 

(199). Interestingly, PEP005 can increase the release of several cytokines, 

both via AML cells and the neighbouring non-leukaemic immune cells (200). 

Activation of PKC in the stromal environment has first been shown in CLL 

where the co-culturing of CLL cells with BMSCs led to an up-regulation in 

PKCβII expression, and the consequent activation of NF-κB signalling in 

BMSCs, which was essential for CLL cell survival (201). Part of the research 

presented in this thesis investigates the role of PKCs in AML remodelling of 

BMSCs.  

1.5. Hypoxia in Cancer 

Hypoxia is defined as a sub-physiological level of oxygen; the physiological 

range varies due to diverse vascular density in different organs (202). Hypoxic 

conditions develop during cancer progression due to rapidly proliferating 

tumour cells that reduce O2 diffusion, as well as due to impaired perfusion of 

the abnormal blood vessels in the tumour. The oxygen level in hypoxic tumour 



47 
 
 

tissues is found to be less than 1.3% O2, far below the physiologic oxygenation 

level (5%–10% O2) (203).  

The presence of hypoxia in cancerous tissue was first reported in solid 

tumours. In 1955, Thomlinson and Gray observed in samples of human lung 

cancer tissue that hypoxic, yet viable, lung carcinoma rods were surrounded 

by a necrotic core caused by a tissue oxygen gradient (204). All types of solid 

tumours, in particular malignant solid tumours, are subject to hypoxia. Often 

displaying oxygenation levels significantly lower than their tissue of origin, 

hypoxia in solid tumours is widely involved in angiogenesis, metastasis, and 

tumour resistance (205). The overexpression of hypoxia-inducible factor alpha 

(HIFα) subunits in solid tumours is associated with aggressive cancer 

phenotype and is correlated with poor overall survival of patients (206). As 

haematological malignancies are not considered solid tumours, the role of 

hypoxia in these diseases was initially presumed to be insignificant (207). 

However, hypoxia is a hallmark of the haematopoietic niche (208, 209) and is 

now an actively researched topic in haematological malignancies.  

Next, the current understanding of the role of both, hypoxia and hypoxia-

inducible factors in the BMM, will be reviewed. 

1.5.1. Hypoxia inducible factors (HIFs)  

The hypoxic state is principally maintained by members of the hypoxia-

inducible factor (HIF) family. Both HIF1α and HIF2α respond to hypoxia; HIF1α 

responds to acute hypoxia and HIF2α to a chronic hypoxic state (210). HIF1α 

is expressed ubiquitously in all cells, whereas HIF2α is selectively expressed 

in specific tissues, including vascular ECs and cells of the myeloid lineage 

(211).  

Upon hypoxia, the HIFα subunits are stabilised and accumulate in the nucleus, 

where they dimerise with HIF1β, allowing them to bind to DNA and stimulate 

the transcription of their target genes. There are over 70 known direct HIF 

target genes that function in normal physiology and disease processes. One 

of the largest functional categories of HIF target genes include those 

responsible for a shift in cellular energy metabolism from oxidative 
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phosphorylation towards glycolysis (212). Gene expression profiling confirms 

significant overlap between HIF1α and HIF2α regulated genes with a degree 

of non-redundancy of function, and differential basal and cell-specific 

expression of the HIFα isoforms (213). Notably, HIF1α and HIF2α exhibit 

different degradation kinetics, which have been shown to be cell-specific 

(214). To be tagged for degradation, the α subunits are hydroxylated at 

conserved prolyl and asparaginyl residues by prolyl-hydroxylases (PHD), and 

are targeted for degradation by the von Hippel-Lindau (VHL) ubiquitin E3 

ligase complex. Inhibition of hydroxylation results in the stabilisation of HIF1α 

and HIF2α, and leads to the transcriptional activation of target genes (215). 

The process of HIF stabilsation is depicted in Figure 1.3 (216). HIFs can also 

be stabilised independent of hypoxia, for instance in response to infections 

(217) and, chromosomal mutations. For example, aberrant c-Myc activation in 

MM (218) and growth factor signalling pathways such as PI3K and AKT, which 

upregulate protein translation of HIF genes (219). Non-hypoxic 

HIF1α stabilsation can also be achieved through loss-of-function mutations 

in VHL, and lead to the full activation of HIF-mediated responses (220).  

 

 

Figure 1. 3 Hypoxia gradient across the bone marrow.  

The upper panel showing the oxygen-dependent degradation of HIF-α subunits, 
which when hydroxylated by prolyl hydroxylases (PHD) are ubiquitinated by the von 
Hippel-Lindau (VHL) complex and undergo proteasomal degradation. The lower 
panel shows the stabilisation of hypoxia-inducible factor α (HIF-α) subunits in low 
oxygen tension, and their heterodimerisation with the beta subunit, followed by 
translocation to the nucleus, and binding to the hypoxia response element along with 
other co-factors and transactivation of target genes. 



49 
 
 

1.5.2. Hypoxia as a component of the BMM 

Several studies have analysed aspects of the composition and function of the 

complex bone marrow microenvironment. Spencer and colleagues measured 

oxygen pressure in live animals and found that cells residing in perisinusoidal 

areas, further away from the bone surfaces, encounter the lowest oxygen 

concentrations (pO2 of ∼5-20 mmHg or 2%) compared with those in the 

proximity of arterioles (pO2 of ∼35 mmHg or 4%–5%) (221). Jensen et al. 

observed an increase in BM hypoxia during disease progression, using a rat 

AML model. The BM became increasingly hypoxic, as detected by 

nitroimidazol, and hypoxic conditions were observed in 80% of AML cells in 

the bone marrow of rats and in 40% of circulating cells (222). Using 

pimonidazole staining for measuring hypoxia levels, Konopleva et al. elegantly 

demonstrated the high levels of hypoxia in human leukaemic BM (223).  

In numerous other studies that aimed to define the haematopoietic niche, the 

BM has been shown to be hypoxic (224-227). Consequently, BM hypoxia is 

now a well-established key microenvironmental factor that influences the 

biology of the HSC as well as of leukaemic cells within the BM (209, 228, 229). 

A number of studies have shown that LSCs tend to localize in the more hypoxic 

regions of the BM (Figure 1.4) (208, 230, 231), However, in situ tissue analysis 

showed that HPCs exhibited a hypoxic profile regardless of cell-cycle status 

or localisation throughout the BM, suggesting that the distinctive hypoxic state 

of HPCs was a result of hypoxic niches as well as of cell-specific mechanisms 

(232). 
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Figure 1. 4 The Hypoxia gradient across the bone marrow.  

Diagram showing the distribution of leukaemic cells in the BM. More primitive, non-
cycling leukaemic stem cells (LSC) localise to the hypoxic endosteal niche, while 
actively cycling leukaemic cells localise to the vascular niche.  

 

1.5.3. The role of hypoxia in HSC versus leukaemic cells 

The link between CXCR4 and hypoxia has been suggested: (i) after the 

recognition that the CXCR4 and SDF-1 genes are targets of HIF1α, and (ii) 

after the observation that at 1% O2 CXCR4 is up-regulated on monocytes, 

monocyte-derived macrophages, tumour-associated macrophages, ECs, and 

cancer cell lines (233). In relation to homing and migration, hypoxia has been 

shown to regulate SDF-1 (234) and CXCR4 expression on HSCs (235). These 

observations suggest that hypoxia enhances retention of HSC and arguably 

leukaemic cell retention in the BM as well.  

Interestingly, HSCs seem to downregulate CXCR4 in response to 

pharmacological HIF1α induction, whereas HIF1α activation induces the 

opposite effect in leukaemic cells (236, 237). In fact, Azab and colleagues 

demonstrated that hypoxia regulates the trafficking of CML cells. Hypoxia was 

shown to decrease the CML expression of E-cadherin and increased CXCR4 

expression in vivo and in vitro, resulting in decreased adhesion to BMSCs and 

enhanced chemotaxis (238). Moreover, blockade of HIF1α impairs CLL cell 

homing into the BM and spleen in mouse models (239).  
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In AML, Fiegl and colleagues found that mild hypoxia (6% O2) increased 

CXCR4 surface expression on AML cells and its association to lipid rafts, 

conversely, re-oxygenation (20% O2) resulted in CXCR4 depletion (240). 

Hypoxia was shown to be important in maintaining leukaemia initiating cells 

(LIC) in vitro; Griessinger et. al. have shown that hypoxia is vital factor in 

creating an in vitro niche culture system, where AML LIC were cultured over a 

stromal cell feeder layer under hypoxia, incubated with recombinant IL-3, G-

CSF and thrombopoietin and maintained in a stem-like state for over three 

weeks (241). Consequently, inhibition of hypoxia eliminated these cells. 

Indeed, in a murine model, the HIF1α inhibitor echinomycin seemed to 

selectively spare the self-renewal and differentiation capacity of normal HSCs 

while targeting AML leukaemic stem cells (242). Interestingly, in a more recent 

study on normal HSCs, data showed that HIF1α was dispensable for self-

renewal and long-term haematopoiesis in normal, unstressed HSCs (243). 

Finally HIF1α was found to be highly expressed in the BM biopsy sections of 

normal karyotype AML patients and to be negatively correlated with survival 

(244). These observations suggest a fundamental difference in the role of 

hypoxia in HSCs versus leukaemic cells.  

Understanding the altered hypoxic profile of the malignant BM has led to 

investigating the efficacy of a number of pro-drugs that are showing promising 

results in preclinical and clinical studies in solid tumours. Currently there are 

two hypoxa-activated prodrugs that are being investigated in AML:  

(i) TH-302, which effectively inhibited onset and progression of AML, 

extended the overall survival, both in systemic AML xenograft 

models and in mice with advanced AML disease. In vitro, TH-302 

decreased HIF1α protein expression and reduced ROS 

production, which resulted in decreased proliferation and 

increased cell-cycle arrest (245, 246). 

(ii) PR-104, which was evaluated in patients with refractory/relapsed 

AML in phase I/II study. Although PR-104 reduced hypoxia 

markers in this study, the treatment responses were transient and 
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higher doses resulted in prolonged myelosuppression (223). 

Nevertheless, these biomarker studies provided further evidence 

that hypoxia is a prevalent feature of the leukaemic 

microenvironment (247). 

 

1.5.4. HIF1α and HIF2α in AML leukaemogenesis 

Using a murine AML model, Velasco-Hernández et al investigated the 

contribution of HIF1α to AML leukaemogenesis using models of oncogene-

driven AML. Either Meis1 or Mml (both known to activate HIF1α) were retro-

virally transduced into HSCs of HIF1α conditional knockout mice, and 

subsequently transplanted into wild-type recipients. The authors found that 

HIF1α loss-of-function did not affect AML initiation, progression or LSC self-

renewal in the Meis1/Mml1- driven models, whereas it shortened LSC latency 

and accelerated disease in a third HIF1α-independent Aml1-Eto9a-driven 

AML model (248, 249).  

Altogether, these results suggest that the oncogene-enforced expression of 

HIF1α does not play a role in leukaemia dormancy, and that HIF1α does not 

act as a classical oncogene or tumour suppressor in this particular molecular 

context. However, one can conclude from the third Aml1-Eto9a-driven AML 

model, in which HIF1α expression was independent of oncogene expression 

(and therefore was more subject to BM microenvironmental hypoxia) that 

hypoxic HIF1α stabilsation limits AML progression, but not initiation, making it 

a tumour suppressor in this context (249).  

In agreement with this study, pharmacological HIF1α inhibition with 

echinomycin decreased CD34+CD38– LSC self-renewal and engraftment 

after serial transplantations in a mouse model of human AML. This effect was 

lost by HIF1α silencing, suggesting that the inhibition of HIF1α-dependent 

transactivation is a reasonable approach to eradicate LSCs in AML, thus, in 

theory, reducing the risk of relapse (250). 

Fewer studies have investigated HIF2α function in HSC and leukaemic cells. 

Recent work by Rouault-Pierre and colleagues showed that HIF2α silencing 
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in patient-derived AML cells impaired engraftment in mouse transplantation 

experiments (251). In agreement with this, ectopic overexpression of 

HIF2α accelerated disease progression in mouse AML models (252). In an 

elegant study, Vukovic et al. further addressed the role of both HIF1α and 

HIF2α in AML initiation and progression where they used a mouse model in 

which leukaemia was induced through co-expression of the AML proto-

oncogenes Meis1 and Hoxa9. They showed that simultaneous deletion of 

HIF1α and HIF2α in pre-leukaemic HSCs resulted in a synergistic increase of 

AML proliferation and progression. Although HIF2α silencing on its own did 

not impair LSC clonogenicity, it did increase the percentage of cycling cells 

(253). Taken together, these data suggest that HIF1α and HIF -2α can 

cooperate to maintain LSC quiescence, thus promoting self-renewal of the 

stem cell compartment. 

HIFs have also been implicated in chemotherapy resistance of AML. AML 

chemoresistant LSCs were shown to favourably localize in the hypoxic 

endosteal regions of the mouse BM where they were protected from the 

proapoptotic effect of the chemotherapeutic agent Ara-Ca. Moreover, it has 

shown that hypoxic HIF1α stabilsation decreased the in vitro sensitivity of AML 

cell lines to cytosine arabinoside (Ara-C) (254). 

1.6. Senescence in health and disease 

Being a disease of the elderly, AML poses the question of whether age-related 

biological processes contribute to the pathology of the disease. One important 

process in aging is cell senescence. Cellular senescence was described over 

five decades ago by Hayflick (255) and it is defined as a state of irreversible 

arrest of cell proliferation in response to persistent DNA damage induced by a 

variety of potentially oncogenic signals. It is thought to function as a primary 

tumour-suppression mechanism (256).  

In addition to arrested growth, senescent cells are thought to be “in disguise”, 

concealing a highly active metabolic cell state with diverse functionality. 

Furthermore, senescent cells show widespread changes in chromatin 

organization and gene expression (257). These changes include the secretion 
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of several inflammatory cytokines, chemokines, growth factors and matrix-

remodelling factors, in a newly identified phenotype of cellular senescence, 

called senescence-associated secretory phenotype (or profile) (SASP). SASP 

incites not only tumour-suppressive, but also tumour-promoting responses, 

depending on the biological context (258, 259).  

There is growing evidence that senescent cells contribute to age-related 

phenotypes and age-related pathologies (260). Furthermore, in the context of 

cancer, several cellular functions and organs can undergo distinct pathologic 

pro-tumoural changes (261). However, although SASP can contribute to a pro-

carcinogenic microenvironment, recent findings show it can also promote 

tissue remodelling and wound healing (262). Therefore, depending on the 

context, it is now clear that cellular senescence and the SASP contribute to 

myriad physiological functions, both favourable and damaging.  

This next section will review the pathways activated in senescent cells and the 

consequences, thereof, in the context of cancer.  

1.7. Effector pathways of senescence and the senescent phenotype 

There are many inducers of the senescence phenotype: oncogene-induced 

senescence (OIS), telomere dysfunction (known as replicative senescence, 

(RS)), therapy-induced senescence (TIS), and chronic stress stimuli such as 

high levels of ROS, among others. All of these inducers converge upon the 

activation of a chronic DNA-damage response (DDR), the induction of the 

tumour suppressor p53, or the independent activation of the cell cycle inhibitor 

p16INK4A (shortly called p16) (263).  

Activation of p16 drives cells to exit from the cell cycle through inhibition of 

cyclin dependent kinases (CDK) and the mediated phosphorylation of the 

retinoblastoma protein (RB) (264). The p21 protein, one of the cell cycle 

inhibitors, is the downstream target gene of the p53 pathway and its activation 

causes cell cycle arrest until repair takes place. In the case of the cells failing 

to repair, this pathway then activates p16 (265). Interestingly, p53 plays a key 

role in suppressing the SASP; indeed, loss of p53 in the face of a chronic DDR 
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leads to increased expression of various SASP factors (261). The processes 

activated in the senescent response are depicted in Figure 1.5.  

It is important to note that cell cycle arrest in senescence is near permanent 

as compared to reversible cell cycle arrest that happens in quiescence. In a 

broader perspective, quiescence occurs due to a lack of nutrition and growth 

factors, while senescence takes place due to aging and serious DNA damages 

(266). Phenotypically, senescent cells have a large and flat cell morphology 

and acquire hyper-active cellular functions (267). Senescent cells often exhibit 

increased lysosomal b-galactosidase activity, which is responsible for the 

characteristic senescence-associated b-gal (SA-b-gal) staining at near neutral 

pH (268). While SASP cytokines may differ from one cell type to another, their 

production generally depends on stress-induced NF-kB and MAPK signalling, 

and their regulation is governed by the mTOR dependent protein translation 

(269). 

SASP factors relevant for pro-tumoural activity can be divided into the 

following groups (270):  

(i) Inflammatory cytokines: ones such as TNF-α and IL-6, that affect 

neighbouring cells by activating the NF-kB pathway and by inducing 

epithelial-mesenchymal transition, which marks pre-malignant 

development 

(ii) Members of the CXCL and CCL families: ones like IL-8, growth related  

oncogene (GRO) -α and -β, and SDF1 and its receptor CXCR4  

(iii)  MMPs that alter the extracellular matrix 

(iv)  The urokinase-plasminogen-activator/urokinase-plasminogen-activator 

receptor (uPA/uPAR) system 

(v) Almost all insulin-like growth factor (IGF)-binding proteins and their 

regulators 
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Figure 1. 5 Effectors of the senescence pathway.   

DNA damage and various stress factors activate the DNA damage response (DDR) 
in the affected cells. This in turn activates either the p53/p21 pathway or the p16 
pathway, or both. Activation of the former leads to a transient arrest of cell growth, 
which becomes irreversible in case the cell fails to repair. A persistent activation of 
the DDR then leads to prolonged arrest and, possibly, alterations in the SASP. P16 
activation leads to a Cyclin-dependent kinase–mediated activation of retinoblastoma 
protein (RB). Early senescent cells are SA-β-GAL positive and may not have a SASP. 
However, senescent cells may evolve further into a truly irreversible full senescence 
with SA-β-GAL positivity and a SASP that can eventually promote tumourogenesis. 
SASP is negatively regulated by p53.  

 

1.8. Role of senescence and SASP in tumourigenesis 

Early evidence associating senescence with cancers comes from an 

observation in patients with Li-Fraumeni syndrome, where cells with mutated 

p53 suffered accelerated senescence, often preceding cancer development 

(271, 272). The presence of senescent cells in tissues with hyperplastic 

pathological or premalignant alterations might indicate that senescence is a 
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step in the process of cancer development, or, that cancer development is 

age-dependant, and a mechanism that is tumour-suppressive in young age is 

tumour-promoting in old age (273).  

The SASP has been shown to create a pro-tumourigenic microenvironment in 

various ways. SASP factors promote cancer cell invasion and metastasis 

through tissue remodelling. Senescent cells secrete large amounts of 

proteases that degrade the ECM (extracellular matrix), making the tissue 

structure more relaxed and thus, facilitating the invasion of cancer cells (274). 

Recently, in a study on papillary thyroid carcinoma, Kim and colleagues 

showed that senescent tumour cells exhibited high invasion ability, compared 

to non-senescent tumour cells, through SASP expression. Interestingly, in this 

study senescent cells increased the survival of cancer cells via SDF-1/CXCR4 

signalling, with the expression of SDF-1 being significantly increased in tumour 

areas where p16INK4A-immunopositive senescent cells were present (275).  

Studies have also shown that the SASP promotes tumour growth by 

establishing an immunosuppressive microenvironment. Recently, in a study 

on metastatic bone lesions in breast cancer patients, Lou et al developed a 

model to induce reactive senescent osteoblasts and found that they increased 

breast cancer colonisation of the bone, which was also IL-6 mediated. 

Neutralisation of IL-6 was sufficient to limit senescence-induced osteoclast 

generation and tumour cell localisation to bone, thereby reducing tumour 

burden (276).  

In a similar study, Ruhland et al developed a mouse model that mimicked the 

aged skin microenvironment and showed that senescent stromal cells 

secreted IL-6, a main interleukin in the SASP. As a result, this caused localised 

increases in suppressive myeloid cells, and inhibited anti-tumour T-cell 

responses, hence, contributing to tumour promotion (277).  

1.9. Therapy-induced senescence 

Senescence can be induced in cancer cells upon treatment with a variety of 

drugs. In particular, chemotherapeutic agents that cause DNA damage. In this 

context, the induced senescence is expected to halt cancer progression (278). 
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However, a number of studies suggest that senescent cancer cells acquire 

resistance to cytotoxic chemotherapies (279) or give rise to stem-like cells 

accountable for post-therapy recurrence of cancer (280).  

Young adult women who had breast cancer and were treated with cytotoxic 

chemotherapy showed increased expression of markers of cellular 

senescence for decades after chemotherapy. Astonishingly, a few months of 

adjuvant chemotherapy for breast cancer, on average, increases T cell p16 

expression to an amount equivalent to 15 years of chronological aging (281). 

Campisi and colleagues studied the role of senescent cells in the toxicities of 

cytotoxic chemotherapy by inducing senescence in murine tissues using a 

variety of DNA damaging chemotherapy agents. In the breast model used in 

this study, senescent non-tumour cells were important for cancer relapse and 

spread to distal tissues after chemotherapy. When these senescent cells were 

cleared, several side effects of chemotherapy were improved. In particular, 

senescence free animals were less fatigued compared to untreated mice. 

Moreover, in a cohort of 80 breast cancer patients that were included in the 

study, p16 expression in peripheral T-cells predicted chemotherapy-induced 

fatigue in these patients (282).  

In another recent study, clearance of p16 positive senescent cell also delayed 

the onset of age related phenotypes and extended the murine lifespan (283). 

Thus, therapy-induced senescence may be relevant to AML as it is heavily 

treated with chemotherapeutic agents.  
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1.10. Research rationale, aims and objectives 

1.10.1. Rationale 

Acute myeloid leukaemia (AML) is a disease predominantly of older adults. 

However, the survival rate of AML patients has not been significantly 

favourably impacted, despite the development of currently available AML 

therapies and interventions targeting tumour cells. Extensive research has 

shown that leukaemic cells arise and thrive due to a leukaemia-permissive 

bone marrow microenvironment (BMM). Bone marrow stromal cells (BMSCs) 

are considered a major protective cell type that protect AML cells from 

spontaneous and chemotherapy-induced apoptosis.  

So far, only few microenvironmental factors favouring leukaemogenesis have 

been identified, as opposed to the widely explored genetic landscape of AML. 

Characterising the AML-driven biologic changes that occur in the BMSCs of 

the marrow niche would help identify new therapeutic targets, that could 

disrupt the pro-tumoural relationship between AML and its microenvironment. 

Consequently, this may ultimately lead to much needed novel therapeutic 

approaches in AML.  

1.10.2. Aims 

 To investigate the role of BMSCs in the microenvironment of AML.  

 To identify AML-driven signals that alter the profile of BMSCs towards 

tumour-promotion.  

 To identify possible new therapeutic targets that could disrupt the pro-

tumoural relationship between AML and BMSCs. 

1.10.3. Objectives 

The approach taken to achieve the above aims is as follows: 

1. To stablish an in vitro co-culture of patient derived AML cells and 

BMSCs, followed by determining the secretory profile thereof, and to 

identify potential AML-derived factors that regulate BMSC function 

(Chapter 3 and Chapter 6). 
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2. To develop investigations to determine the downstream effects of AML-

derived factor(s) in the BMSCs, including signalling transduction 

pathways and their ultimate effect on AML survival (Chapter 4 and 

chapter 6). 

3. To establish the regulatory mechanism of AML-derived factor(s), 

(identified in chapter 3) within the AML blast, and to identify the 

consequences of their inhibition in in vivo murine models of AML 

(Chapter 5 and chapter 6).  

The materials and methods used in this research are presented in Chapter 2. 

A general discussion and concluding remarks are presented in Chapter 7.  
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2. Chapter 2: materials and methods 

2.1. Reagents and chemicals 

All reagents were obtained from Sigma-Aldrich (Dorset, UK), unless otherwise 

indicated in the text. All inhibitors were purchased from Tocris Bioscience 

(Bristol, UK).  

2.2. Blocking antibodies and recombinant cytokines 

The CD74 blocking and IgG control blocking antibodies were purchased from 

BD Biosciences (Allschwil, Switzerland) and recombinant human MIF (rhMIF) 

was purchased from R&D Systems (Wiesbaden, Germany). Recombinant 

murine stem cell factor (SCF), murine Interleukin-6 (IL-6) and murine 

interleukin-3 (IL-3) were purchased from Peprotech (Neuilly-sur-Seine, 

France). Antibodies used in flow cytometry analysis are listed in table 2.1 and 

antibodies used in western blotting are listed in table 2.2 Assay kits were 

purchased from suppliers indicated in the text.  

 

Table 2. 1 Antibodies used in flow cytometry analysis. 

Antibody Clone Supplier  

Mouse IgG2a-FITC - Miltenyi Biotec 

(Paris, France) 

 

 

 

 

 

 

 

 

 

 

 

Mouse IgG2a-PE - 

Mouse IgG2a-APC - 

Mouse IgG2a-VioBright FITC - 

CD105-FITC 43A4E1 

CD73-PE AD2 

CD74-FITC 5-329 

CD184 (CXCR4)-PE 12G5 

CD182 (CXCR2)-VioBright FITC REA208 

CD33-APC AC104.3E3 

CD34-PE AC136 

CD45-FITC 5B1 
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Table 2. 2 Primary and secondary antibodies used in western blotting. 

Antibody Species 

and 

antibody 

clonality 

MW (kDa) Dilution Supplier 

 Primary antibodies  

Anti-GAPDH Rabbit 

mAb  

37 1:2000 CST 

(Massachusetts, 

USA) 

Anti- β- actin Mouse 

mAb 

 

45 1:2000 Sigma (Dorset, UK) 

Anti-Phospho-Akt (Ser473) Rabbit 

mAb 

60 1:1000 CST 

Anti-Akt (pan) (C67E7)  Rabbit 

mAb 

60 1:1000 CST 

Anti-Phospho-p44/42 MAPK (Erk1/2) 

(Thr202/Tyr204)  

Rabbit 

mAb 

42, 44 1:1000 CST 

p44/42 MAPK (Erk1/2)  Rabbit 

pAb 

42, 44 1:1000 CST 

Phospho-PKCa/b II (Thr638/641) Rabbit 

pAb 

80, 82 1:1000 CST 

Phospho-PKC (pan) (βII Ser660)  Rabbit  

pAb 

78, 80, 82, 85 1:1000 CST 

Phospho-PKD/PKCµ (Ser916)  Rabbit 

pAb 

115 1:1000 CST 

Phospho-PKCd (Thr505)  Rabbit 

pAb 

78 1:1000 CST 

Phospho-PKCδ/θ (Ser643/676)  Rabbit 

pAb 

78 1:1000 CST 

PKCBII (pan) 

pAb 

Mouse 78 1:500 R&D systems 

HIF1α Mouse 

mAb 

116-120 1:500 BD Biosciences 

HIF2α /EPAS1 Rabbit 

pAb 

118 1:500 Novus Bio 

p16INK4a (CDKN2A) Rabbit 

mAb 

17 1:500 Abcam 

 Secondary antibodies 

Goat anti-Mouse IgG HRP pAb  1:2000 Dako (Agilent) 

Goat anti-Rabbit IgG HRP pAb  1:2000 Dako (Agilent) 

Abbreviations: mAb, monoclonal antibody, pAb, polyclonal antibody.  

CST (Massachusetts, USA), Sigma (Dorset, UK), R&D Systems (Wiesbaden, Germany), BD 
Biosciences (Allschwil, Switzerland), Novus Bio (Colorado, USA), Abcam (Cambrisge, UK), 
Dako – Agilent (Cheadle, UK).  
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2.3. Cell culture 

2.3.1. Cell lines 

The human leukaemia OCI-AML3 cell line was obtained the German 

Collection of Microorganisms and Cell Cultures (Braunschweig, Germany) and 

was maintained in RPMI-1640 medium, supplemented with 10% foetal calf 

serum (FCS), 2mM L-glutamine, 100U/ml penicillin and 10μg/ml streptomycin 

(pen-strep). Cells were kept at a density of 0.3-0.6 x106 cells/ml and sub-

cultured accordingly.  

293T cells were kindly provided by Dr Ariberto Fassati (University College 

London, London, UK) and maintained at 60-90% confluence in antibiotic-free 

Dulbecco's Modified Eagle's medium (DMEM) with 10% FCS and 6mM L-

glutamine. 293T cells are a highly transfectable derivative of human embryonic 

kidney 293 cells. 293T cells were sub-cultured at a 1:4 ratio in fresh culture 

media; culture media was gently aspirated and the cells were washed once 

with phosphate buffered saline (PBS). Gentle pipetting was very critical as 

these cells easily detached. 0.25% Trypsin was diluted 1:1 with PBS and 5 ml 

of this mixture was added to each of the 10mm plates. The plates were then 

incubated at room temperature (RT) for 2 to 3 minutes and swirled from side 

to side to help detach the cells. Next, the cells were re-suspended in the 

appropriate volume to achieve the required sub-culturing ratio, and pipetted 

vigorously to obtain a single cell suspension. 10 ml of cell suspension was 

dispended in 10 mm dishes and incubated overnight in a humidified culture 

incubator. Culture media was replaced with fresh media each following day, 

and returned to the incubator.  

The murine MN1 leukaemia cells are lineage depleted murine mononuclear 

cells carrying the MN1 AML gene, these were kindly gifted by Professor Keith 

Humphries (Terry Fox Laboratory, Vancouver, Canada) (284), and cultured in 

DMEM supplemented with 20% FCS and murine recombinant cytokines – SCF 

at a final concentration of 100ng/ml final, and IL-6 and IL-3 at 10ng/ml. All cells 

were cultured in a humidified culture incubator at 5% CO2 and 37 °C. 
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HS-5 stromal cells are a human stromal cell line derived from the bone 

marrow of a healthy volunteer and immortalized by transduction with human 

papilloma virus E6/E7 constructs (285) and were obtained from the American 

Type Culture Collection (ATCC, USA). Cells were maintained in DMEM with 

10% FCS and subcultured when they were 80% confluent. Subculturing was 

performed in the same manner as BMSC subculturing described in section 

2.3.2. 

2.3.2. Primary cell isolation and culture 

Primary AML cells were obtained from patient bone marrow, following 

informed consent and approval by the Health Research Authority of the 

National Health Service (NHS), United Kingdom (LRECref07/H0310/146). For 

primary cell isolation, 10 to 20 ml bone marrow aspirates were obtained 

in heparinised blood tubes., and mononuclear cells were isolated by 

Histopaque-1077 density gradient centrifugation. 10 ml of blood was carefully 

and slowly layered on 10 ml of Histopaque-1077 in a 50 ml falcon tube; the 

slow layering prevented mixing of the two layers. The tubes were then 

centrifuged at 400g for 20 minutes with slow acceleration and slow 

deceleration in order to aid the gentle separation of the different blood 

components. Figure 2.1 illustrates the different layers that formed at the end 

of this step.  

 

Figure 2. 1 A schematic of the Histopaque density gradient centrifugation step 
in isolating AML cells from BM aspirates.   

Four layers resulted from the density gradient performed. The mononuclear cell layer 
was carefully aspirated and used for isolating AML cells.  
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The buffy coat layer containing mononuclear cells was diluted in 40 ml of FCS 

and centrifuged at 400g for 5 minutes at RT. Red cell lysis was performed by 

suspending the cell pellet in 1-3 ml Red Blood Cell Lysing Buffer Hybri-Max 

for 1 minute, and then diluting the buffer with 10-15 ml of sterile PBS. The 

suspension was centrifuged again at 400g for 5 minutes and the cell pellet was 

suspended in complete growth medium, containing DMEM supplemented with 

20% FCS, 1% L-glutamine and pen-strep.  

AML samples that contained less than 80% blasts were purified using the 

CD34 MicroBead Kit UltraPure (Miltenyi Biotec,), unless the sample was 

identified as CD34 negative by the pathology department at the Norwich and 

Norfolk University Hospital (NNUH). Next, the cells were cultured at a density 

of 2X106 cells/ml, and incubated for the expansion of BMSCs. A fraction of the 

cells were cryopreserved in FCS with 10% Dimethyl sulphoxide (DMSO) for 

future use.  

 
BMSCs were isolated by removing non-adherent cells after 2 days of AML 

culture. Fresh complete growth media containing 10% FCS was added and 

changed every 3 days. When the cells were 60%-80% confluent, adherent 

BMSCs were trypsinised by adding 2.5 ml of 0.25% trypsin, and incubated for 

no longer than 5 minutes at 5% CO2 and 37 °C. Once the cells were detached, 

fresh complete growth medium was added and the cultures were expanded 

for 3-5 weeks. The cells were sub-cultured when they are about 80% 

confluent.  

BMSCs were checked for positive expression of CD105, CD73, and CD90 and 

the lack of expression of the myeloid marker CD45 by flow cytometry. All cells 

were cultured in complete growth medium with 10% FCS at 5% CO2 and 37 °C 

in a humidified tissue culture incubator.  

Non-malignant normal CD34+ HSCs were obtained from the peripheral blood 

of patients with genetic haemachromatosis undergoing therapeutic 

venesection, but with non-raised ferritin levels. On average, 250 to 300 ml of 

heparanised peripheral blood were collected and aliquoted into 50 ml falcon 

tubes, followed by centrifugation at 400g for 30 minutes. This step separated 
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the blood into three layers as shown in Figure 2.2. The mononuclear cell layers 

were collected and pooled into a 50 ml falcon tube (an average of 25 ml would 

be recovered) and diluted 1:1 with PBS. 10 ml of diluted blood was carefully 

and slowly layered onto 10 ml of Histopaque-1077 in a 50 ml falcon tube, and 

centrifuged at 400g for 20 minutes. From this step onwards, the same isolation 

protocol that was used for AML cells was followed and the cells were purified 

using CD34+ magnetic cell purification.  

 

Figure 2. 2 A schematic of the additional centrifugation of large volumes of 
peripheral blood prior to Histopaque density gradient centrifugation and 
isolation of CD34+ cells.  

Three layers were obtained after centrifugation at 400g for 30 minutes, the central 
layer of mononuclear cells was carefully aspirated and used for isolating normal 
CD34+ cells. 

 

2.3.3. CD34+ magnetic purification  

CD34+ cells were isolated using positive selection of magnetically labelled 

CD34+ cells. The CD34 MicroBead Kit UltraPure, human (Miltenyi Biotec) was 

used to purify CD34+ AML and CD34+ HSCs. Cells were pelleted by 

centrifugation and re-suspended in 300 μl of MACS Buffer (a sterile solution 

of PBS containing 0.5% bovine serum albumin (BSA) and 2 mM EDTA, stored 

at 4oC). Next, 100 μl of human FcR Blocking Reagent (which helped eliminate 

non-specific binding) and 100 μl of the CD34 MicroBeads were added. The 

cell suspension was mixed well by pipetting, and incubated for 30 minutes at 

4ºC.  
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After incubation, the cells were washed in 5ml of MACS Buffer, and then 

pelleted and re-suspended in 500 μl of MACS buffer. The cell suspension was 

then applied to the MS MACS separation column fitted on the MiniMACS 

magnet. Only cells that were positively labelled with CD34 Microbeads were 

retained by the column. The column was then washed three times with 500 μl 

MACS Buffer and then removed from the separation magnet and placed in a 

15 ml collection tube. 1ml of MACS Buffer was applied onto the column and, 

using the supplied plunger, labelled cells were forced out by firmly pushing the 

plunger through the column. Isolated CD34+ cells were then cultured in 

complete DMEM with 10% FCS.  

2.3.4. Cryopreservation and defrosting of primary cells  

Cells were collected by centrifugation at 350g for 5 minutes and re-suspended 

in freezing medium (10% DMSO in FCS). 1 ml cell aliquots were transferred 

into labelled cryovials and stored overnight at -80°C in a CoolCell cell freezing 

container, before being transferred to the appropriate storage facilities. When 

needed, cells were defrosted quickly by briefly immersing the bottom part of 

the cryovial in a water bath at 37 °C. This was done to ensure maximum cell 

recovery. Next, the cell suspension was transferred to a 15 ml falcon tube 

containing 9 ml of complete growth medium, and centrifuged at 350g for 5 

minutes. The cell pellet was then suspended in complete growth medium with 

20% FCS, and incubated at 5% CO2 and 37 °C in a humidified tissue culture 

incubator. 

2.3.5. Cell viability assays: 

2.3.5.1. Trypan blue exclusion test using a haemocytometer 

The Trypan blue exclusion assay is an inexpensive and widely used cell 

viability assay. Trypan blue is taken up by dead cells and excluded by viable 

cells due to their intact cell membranes. In this assay, A 10 μl aliquot of cell 

suspension was mixed in a 1:1 ratio with trypan blue solution (0.4% w/v). Cells 

were then pipetted onto a Neubauer Haemocytometer Counting Chamber, and 

those that had excluded the dye were counted as viable cells. All four 

quadrants were counted and averaged. The total number of cells in the original 
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suspension was calculated by multiplying this value by 10,000 x dilution factor 

of two. Only cell cultures that were 85% viable were used in experiments.  

2.3.5.2. CellTiter-Glo viability assay 

AML cells were seeded into 96-well plates in quadruples and their viability was 

determined at the time points indicated in the results section. Cell viability was 

determined indirectly by measuring the intracellular levels of ATP using the 

Cell Titer-Glo Luminescent Cell Viability Assay kit (Promega, Wisconsin, 

USA), where a luminescent signal was produced due to a firefly luciferase 

reaction and was directly proportional to cell number and viability. The test was 

performed according to the manufacturer’s instructions: 50 μl of the cell 

suspension was transferred to a white 96 well plate. Cells were lysed by the 

addition of 50 μl of the CellTiter-Glo reagent and incubated for 10 minutes at 

RT with gentle shaking. Luminescence was measured at a peak emission 

wavelength of 560nm on a lumiStar Microplate Reader (BMG Labtech GmbH, 

Ortenberg, Germany). 

2.3.5.3. Annexin V – PI detection of apoptosis 

This assay is based on the fact that dead cells are able to take up the 

membrane impermeable fluorescent propidium iodide (PI) dye, which then 

binds to DNA and enhances its fluorescence properties, while Annexin V binds 

to the exposed phosphatidylserine (PS) molecules on the outer side of the 

plasma membrane, this being one of the early events of apoptosis (286) 

The percentage of early apoptotic, apoptotic or dead (necrotic) cells is 

calculated according to the cell PIV Annexin V staining parameters. The 

eBioscience Annexin V-FITC Apoptosis detection kit (Thermo Fisher 

Scientific, UK) was used to determine the percentage of apoptotic cells. Cells 

were harvested by centrifugation and washed twice in cold PBS (350g for 5 

min) and resuspended to 0.2 × 106 cells/ml. 5 μl of Annexin V-FITC was then 

added to 195 μl cell suspension, mixed and incubated for 10 minutes at RT. 

Next, the cells were washed with 200 μl binding buffer and resuspended in 

190 μl bidding buffer. Finally, 10 μl PI (20 μg/ml) was added to the sample and 
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incubated for 1-2 minutes at RT in the dark. Cells were immediately analysed 

by flow cytometry.  

2.3.6. Hypoxic assays 

To establish hypoxic cultures, cells were either incubated in a hypoxia 

chamber (Billups-Rothenberg Inc, Del Mar, USA) at 1% O2/ 5% CO2/ N2 200 

bar at 37 °C for the periods of time indicated in the text, or treated with cobalt 

chloride (CoCl2) and desferrioxamine (DFO) at 100uM or 150uM respectively 

at the time points indicated in the text. Control cell cultures, not deprived of 

oxygen, were incubated under normal culture conditions. 

2.3.7. Methylcellulose Human Colony Forming Cell (CFC) Assay 

The colony forming cell (CFC) assay, also called the methylcellulose assay, is 

one that aims to determine the progenitor capacity of the haematopoietic cells 

of interest. The assay is based on the ability of haematopoietic progenitors to 

proliferate and differentiate into colonies in a semi-solid media, in response to 

cytokine stimulation. The colonies formed can then be counted and 

characterised according to their unique morphologies (287).  

4x104 cells were washed in sterile PBS and re-suspended in 400 ul cell 

resuspension solution (R&D systems). The cells were added to 4 ml of human 

methylcellulose complete media HSC003 (R&D systems) in a 15 ml falcon 

tube, mixed by a brief vortex. A quick centrifuge on a short spin setting for 20 

seconds allowed any bubbles in the solution to rise to the surface and any 

media that was stuck on the inside walls of the tube to be recovered. It was 

vital that the spin was short, to prevent cells from pelleting or becoming 

concentrated towards the bottom of the semi-solid media.  

Next, 1.1 ml of the solution was aspirated using a 16 gauge 1½ inch blunt end 

needle, and dispensed into a 35mm culture dish. This step was repeated a 

total of three times to obtain triplicate samples. The three dishes, as well as 

an uncovered dish containing 3-4 ml sterile water, were placed in a Corning 

square bioassay dish and were loosely covered to allow for gas exchange. 

The sterile water dish served to maintain the humidity necessary for colony 
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development. Finally, the plates were incubated for 10-14 days at 37 °C and 

5% CO2. It was essential to avoid disturbing the cultures during the incubation 

period to prevent shifting of the colonies. Light microscopy was used to 

visualise and score colonies at days 10-14 using a scoring grid. 

2.4. Molecular biology techniques 

2.4.1. RNA extraction 

Total RNA was extracted from cells using the ReliaPrep RNA extraction kit 

from Promega, according to the manufacturer’s instructions. Suspension cells 

(OCI-AML3 cell line or primary AML cells) were collected by centrifugation at 

400g for 5 minutes. The supernatant was either discarded or stored at -20 for 

cytokine analysis. Culture media was collected from adherent BMSCs and 

either discarded or stored at -20 for cytokine analysis.  

Adherent or suspension cells were washed once with PBS. 250l BL+TG lysis 

buffer was then added and the solution was pipetted up and down 7 times to 

lyse the cells. The lysate was transferred to a ReliaPrep™ minicolumn and 

centrifuged at 14000g for 30 seconds at RT. Next, 500μl of RNA Wash solution 

were added to the minicolumn and centrifuged at 14000g for 30 seconds. 24μl 

of Yellow Core Buffer, 3μl 0.09M MgCl2 and 3μl of DNase I enzyme were 

mixed in order and added to each minicolumn membrane, followed by 

incubation for 15 minutes at RT. 200μl of column wash solution was added 

and centrifuged at 14000g for 15 seconds. 500μl of RNA wash solution were 

added and the minicolumn was centrifuged at 14000g for 30 seconds. The 

minicolumn was placed into a new collection tube, 300 μl of RNA wash solution 

added, and they were centrifuged at 14000g for 2 minutes. Finally, the 

minicolumn was transferred to an elution tube, and 20 l nuclease-free water 

was added directly onto the membrane and incubated at RT for 1min. The 

minicolumn was centrifuged at 14000g for 1min to elute RNA, which was 

stored at -20°C until further use. 



71 
 
 

2.4.2. Nucleic acid quantification using a Nanodrop 

RNA yield was quantified and its purity determined using a NanoDrop 2000 

Spectrophotometer (ThermoScientific, UK). Briefly, 1 l sample was measured 

and referenced to a blank sample of nuclease-free water, in which the RNA 

was eluted. An RNA sample with an A260/A280 ratio of 1.9-2.1 was 

considered pure and of accepted quality. For plasmid DNA, an A260/A280 

ratio of 1.7–2.0 was accepted as sufficiently pure. 

2.4.3. Reverse transcription and cDNA synthesis 

Reverse transcription was performed using the qPCRBIO cDNA synthesis kit 

(PCR Biosystems, London, UK). For a 10 μL reaction, 2 μL of 5x cDNA 

Synthesis Mix and 0.5 μL of 20x RTase were added to 7.5 μL nuclease free 

water, carrying up to 100ng RNA. The PCR tubes are Incubated in the 

Thermocycler (Bio-Rad, Watford, UK) at 42°C for 30 minutes and at 85°C for 

10 minutes to denature RTase, and then kept at 4°C for up to three hours or 

stored at -20°C. The samples were diluted 1:5 or 1:10 before performing gene 

expression using qRT-PCR.  

2.4.4. Relative quantitative real-time PCR (qRT-PCR) 

 qRT-PCR was performed using the qPCRBIO SyGreen Mix 

(PCR Biosystems, London, UK) on cDNA generated from the reverse 

transcription of purified RNA. For a 10 μL reaction, 5 μL of SyGreen Mix and 

1 μl of forward and reverse primer mix were added to 4 μL of diluted cDNA. 

Samples were run in triplicates on a 96-well white PCR plate. Larger qRT-PCR 

sample runs were performed in 384-well plates and a 5 μl reaction volume was 

used instead of 10 μl.  

After a pre-amplification incubation step (95°C for 2 minutes), the cDNAs were 

amplified over 45 cycles (95°C for 15 seconds, 60°C for 10 seconds and 72°C 

for 10 seconds), followed by a melting curve analysis (95°C for 5 seconds, 

65°C for 1 minute and 97°C continuous). The melting curve analysis was 

performed to confirm product specificity and to detect the formation of primer 
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dimers which could give false positives if unidentified. Finally, the reactions 

were cooled at 40°C for 30 seconds.  

The qRT-PCR reactions were run on a LightCycler 480 (Roche Life Science, 

Burgess Hill, UK). Predesigned qRT-PCR primers were purchased from 

Sigma (KiCqStart® SYBR® Green Primers, Cat. No. KSPQ12012) and are 

listed in table 2.3. qRT-PCR primers to detect PKCB, IL-8 and CD74 mRNA 

expression were purchased from Qiagen (Hilden, Germany) (QIAGEN 

QuantiTect Primer Assay) and are listen in table 2.4. The lyophilised primers 

were dissolved in the volumes of nuclease free water specified by the 

manufacturers, briefly vortexed and then stored at -20°C until further use. 

 

Table 2. 3 KiCqStart® SYBR® Green Primers (Sigma).  

Gene name, forward and reverse primer sequences are shown in the table.  

Gene Forward primer sequence 5' → 3' Revers primer sequence 5' → 3' 

GAPDH CTTTTGCGTCGCCAG TTGATGGCAACAATATCCAC 

β -actin GATCAAGATCATTGCTCCTC TTGTCAAGAAAGGGTGTAAC 

MIF AACTATTACGACATGAACGC AAACCGTTTATTTCTCCCC 

IL-6 GCAGAAAAAGGCAAAGAATC CTACATTTGCCGAAGAGC 

HIF1α GAAACTACTAGTGCCACATC GGAACTGTAGTTCTTTGACTC 

GLUT1 (SLC2A1) AGTTCTACAACCAGACATGG CAGGTTCATCATCAGCATTG 

HIF2α (EPAS1) CAGAATCACAGAACTGATTGG TGACTCTTGGTCATGTTCTC 

p16 (CDKN2A) AGGTCCCTCAGACATCC AATGAAAACTACGAAAGCGG 

p21 (CDKN1A) CAGCATGACAGATTTCTACC CAGGGTATGTACATGAGGAG 

 

Because MIF gene contains an antisense coding sequence on the minus 

strand (MIF-AS1, Entrez ID: 284889), it is possible that the MIF gene is 

expressed in both directions, generating (i) MIF mRNA from the sense strand 

and possibly a (ii) MIF antisense 1 from the minus strand. The RT-PCR 

reactions used in this study, utilised sense-directed primers and hence should 

only amplify transcripts from the sense strand. Moreover, using the BLAST 

tool to test primer specificity helped determine that the primers would only 

amply MIF transcripts and not non-specific or antisense transcripts.  
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Table 2. 4 QuantiTect Primers (Qiagen).  

Primer sequences were not disclosed by the manufacturer. 

Gene Assay name Catalogue number 

IL-8 (CXCL8) Hs_CXCL8_1_SG QT00000322 

PKCB (PRKBC) Hs_PRKCB_1_SG QT00073920 

CD74 Hs_CD74_1_SG QT00059402 

                                                                                                                                                                                                      

2.4.5. Analysis of qRT-PCR data 

 A cycle threshold (Ct) value was measured and generated at the end of the 

reaction described in 2.5.1.4. GAPDH or β-actin were used as housekeeping 

genes to calculate a fold change correction for each sample (Delta Ct = Ct 

target gene – Ct housekeeping gene), the house keeping genes were selected 

based on the fact that their expression does not change with treatment or 

genetic manipulation of the cells. Next, the Delta-Delta Ct method was used 

for analysis. The change in expression was expressed as a fold change 

relative to control samples (equivalent to 2-(Delta Ct treated-Delta Ct control)). 

2.4.6. Protein expression analysis 

2.4.6.1. Western immunoblotting 

2.4.6.1.1. Whole cell lysate preparation 

Whole cell lysate was extracted using radioimmunoprecipitation assay (RIPA) 

buffer supplemented with protease and phosphatase inhibitors (Roche Life 

Sciences) to inhibit protein dephosphyorylation and degradation. For adherent 

cells, media was removed and cells were washed with cold PBS. For 

suspension cells, the cells were pelleted at 400 g for 5 min and the supernatant 

was discarded.  

Next, 100 µL of RIPA buffer was added to the cells and a cell scraper was 

used to aid the lysis of the adherent cells, while pipetting was used to aid the 

lysis of the suspension cells. Cells were collected in a 1.5 ml eppendorf tube 

and incubated on ice for 20 minutes, followed by a spin at 15000 g and 4°C 

for 20 minutes. The supernatant was collected and the pellet was discarded. 
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Finally, 4x sample loading buffer, containing β-mercaptaethanol, glycine and 

bromophenol blue were added to the samples, mixed and then denatured at 

100 °C for 5 minutes. Thereafter, the samples were ready to be loaded onto 

the gels.  

2.4.6.1.2. SDS-PAGE and immunoblotting 

10% acrylamide gels (30% Acrylamide/Bis Solution, BioRad) were casted for 

resolving proteins of large molecular weight and 12-14% acrylamide gels, for 

proteins of lower molecular weight. The gel mix contained 10% SDS (to 

linearise and mask protein charge), 7.5 M of Tris-EDTA at pH 8, 10% 

Ammonium persulphate and TEMED, to aid polymerisation. Samples were 

loaded into the designated wells of the gels alongside Precision Plus Protein™ 

All Blue Prestained Protein Standards (Bio-rad). Gels were run at 200V for 55 

minutes in running buffer containing 10% SDS, 20µM Glycine and 157µM Tris-

Base. For lower molecular weight proteins, gels were run at 180V, to start off 

with, and then at 200V under careful observation, so that the proteins did not 

run off the gel.  

At the end of the run, proteins were transferred from the gel onto a 

polyvinyladine fluoride (PVDF) membrane pre-treated with methanol and pre-

wetted in transfer buffer containing 20 µM Glycine and 157 µM Tris-Base. The 

transfer took place at 100V for 50 minutes. An ice pack was placed in the 

transfer tank to lower the temperature from the heat generated due to the 

electric current. The membranes were then blocked for 1 to 2 hours at RT in 

5% BSA for total proteins and in 5% non-skimmed milk for phosphorylated 

proteins. Membranes were then incubated overnight at 4°C in primary 

antibodies at the dilutions indicated in table 2.1. Horseradish peroxidase 

(HRP) conjugated secondary antibodies were used for detection. The blots 

were incubated with respective secondary antibodies for an hour at RT, 

followed by five 5 minute washes in PBS + 0.01% Tween 20. 

2.4.6.1.3. Chemiluminescent detection 

Membranes were imaged using enhanced chemiluminescence (ECL) reagent 

(GE healthcare, Little Chalfont, UK). Solution A and solution B were mixed in 



75 
 
 

a 1:1 ratio. The membranes were then covered in the resulting solution and 

incubated for 1 minute, before excess solution was drained off. The 

membranes were imaged on a Chemdoc-It2 Imager (UVP, LLC, Upland, CA, 

USA), with the UVP set to filter 3.  

2.4.6.2. ELISA  

To examine MIF and IL-8 secretion into culture media, the Human MIF Douset 

ELISA Kit (R&D systems) and Human IL-8 ELISA Ready-SET-Go ELISA kit 

(eBioscience) were used.  

For the Human MIF Douset ELISA Kit, capture antibody was diluted in coating 

buffer and 100 µL of the solution was pipetted into each micro-well of a 96 

micro-well plate, using a multi-channel pipette. The plate was incubated 

overnight at RT. The next day, the micro-wells were washed four times with 

300 µl wash buffer. For blocking, 300 µl reagent diluent was added to each 

well and the plate was incubated for one hour at RT. The micro-wells were 

then washed three times with wash buffer. Thereafter, 100 µL aliquots of 

standard solutions, blanks and samples were added in duplicates to the micro-

wells, and were then diluted 1:2 in reagent diluent. The plate was incubated 

for 3 hours at RT. Next, the micro-wells were washed four times with wash 

buffer. 100 µL of the detection antibody diluted in reagent diluent was 

subsequently added, and the plate was incubated for 2 hours at RT. At the 

end of the incubation time, the micro-wells were washed to remove excess 

detection antibody and to minimize unspecific binding. 100 µl streptavidin-HRP 

was added to each well and incubated for 20 minutes in the dark. The micro-

wells were washed to remove excess streptavidin-HRP. Substrate A and 

substrate B were mixed in a 1:1 ratio, 100 µl of which was subsequently added 

to all wells. The plate was incubated in the dark for 20 min, at which point a 

blue colour started to develop. Following this colour change, 50 µL of stop 

solution was added to quench the reaction and the absorbance was 

immediately recorded at 450 nm and 570nm on a FLUQstar Omega plate 

reader (BMG Labtech, Offenburg, Germany). The colour remains stable for up 

to four hours after the stop solution is added.  



76 
 
 

For the IL-8 ELISA Ready-SET-Go ELISA kit, a 96 micro-well plate was 

incubated overnight at 4°C, with 100 µL of well coating-antibody solution . The 

micro-wells were then washed tree times with 300 µL wash buffer (PBS 

containing 0.05% Tween20) and were then blocked by adding 200 µL of 1X 

ELISA/ELISPOT diluent for 1-2 hours at RT. The micro-wells were washed 

three times with wash buffer, then 100 µL of standards, blanks and samples 

were added in duplicates to the micro-wells, each of which were diluted 1:2 in 

reagent diluent. The plate was incubated overnight at 4°C. Next, the micro-

wells were washed 5 times with wash buffer and 100 µl of diluted detection 

antibody was added to the wells and incubated for 2 hours. Excess detection 

antibody was later washed off, as previously described, and 100 µl 

streptavidin-HRP was added to each well and incubated for 30 minutes in the 

dark. The micro-wells were then washed 7 times to remove excess 

streptavidin-HRP, after which 100 µl of 1X TMB solution was added to all the 

wells and incubated for 15 minutes in the dark. Next, 50 µL stop solution (2N 

H2SO4, sulphuric acid) was added, and the absorbance was immediately read 

at 450 nm and 570nm on a FLUQstar Omega plate reader. 

To analyse the readouts, the readings at 570nm were subtracted from the 

readings at 450nm, to reduce disturbance from dust and air particulates that 

absorb light equally at both wavelengths. A four-parameter logistic regression 

fitting method was employed to analyse standard curves, using the 

ELISAanalysis online software (ELISAKIT, Australia). Standard curves with R 

values of 0.9-0.99 were used to calculate unknown cytokine concentrations. 

2.4.6.3. Proteome Profiler Human XL Cytokine Array  

The Proteome Profiler Human XL Cytokine Array  (R & D systems, # ARY022) 

was used to determine the levels of 102 secreted cytokines in AML only, 

BMSC only or AML/BMSC co-cultures. It employs capture and control human 

antibodies that have been pre-spotted in duplicates on a nitrocellulose 

membrane. Then, via a series of incubation steps gives a measure of cytokine 

protein expression in a sample of culture media, cell lysate, serum or plasma. 
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Each well contained a final volume of 1 ml culture supernatant. The 

supernatant culture media was collected, and particulate matter was 

disregarded after centrifugation at 400 g for 5 minutes, and the supernatant 

stored at -20°C. When the array was due to be performed, the samples were 

defrosted on ice. The array membranes were blocked by adding 2 ml of the 

provided block buffer and incubated for 1 hour at RT. Next, 0.5 ml block buffer 

was added to 1 ml of the cell culture supernatant, which was then and applied 

onto each of the respective membranes and left overnight at 4˚C with gentle 

rocking. The membranes were then washed three times for 10 minutes (while 

on a rocking platform for efficient washing), with the provided wash buffer. 

Thereafter, the supplied detection antibody cocktail was added and the 

membranes were incubated for 1 hour on a rocking platform. The detection 

cocktail was aspirated and the array washed three times for 10 minutes. 

Streptavidin-HRP was then added at 1:2000 (diluted with array buffer) and 

incubated for 30 minutes with gentle rocking. After the membranes were 

washed thrice for 10 minutes, the array ECL detection reagent was made by 

mixing Chemi reagent 1 and Chemi reagent 2 in a 1:1 ratio. Each of the 

membranes were then covered with 1 ml of the mixed chemi solution, after 

which the array membranes were wrapped in plastic wrap and imaged as 

described in section 2.5.2.1.3. 

The optical density of the resulting images were quantified and analysed using 

the HLimage++ software (Western Vision Software, Salt Lake City, UT, USA) 

which had pre-designed templates for all R and D protein arrays. The output 

files, contained average pixel densities of each of the duplicates representing 

each cytokine. They also contained reference spots that were used to confirm 

that the assay had worked, and to compare assay to assay variability.  

2.4.6.4. Flow cytometry 

Flow cytometry was used to measure surface and internal protein expression 

on target cells. For surface marker staining, cells were washed with cold 

MACS buffer (PBS + 0.5% BSA + 2 mM EDTA) and centrifuged at 300 g for 5 

min. Next, the cells were re-suspended in 90 µl MACS buffer and 10 µl FCR 



78 
 
 

blocking reagent. Thereafter, 2 µl of the respective control, or marker of 

interest fluorochrome-conjugated antibodies were added. Cells were 

incubated for 10-15 minutes at 4°C in the dark. At the end of incubation, cells 

were washed with MACS buffer, pelleted at 300 g for 5 minutes, and then re-

suspended in 1 ml cold filtered PBS. The cells were immediately analysed on 

the BD Accuri C6 (BD Biosciences, Allschwil, Switzerland) or on the CyFlow® 

Cube 6 (Sysmex-Partec, Görlitz, Germany) flow cytometers. A minimum of 

3000 events were collected and data was analysed on the respective software. 

Newly synthesised CD74 is expressed on the cell surface, followed by rapid 

internalisation to the endosomal pathway. The surface half-life of CD74 is very 

short (less than 10min) (288). Therefore, experiments that study cell surface 

CD74 expression are complicated by the fact that CD74 remains on the cell 

surface for a very short time. Accordingly, various flow cytometry protocols 

recommend cells to be fixed and permeablised when staining for CD74. The 

fix and perm kit (Invitrogen, Thermo Fisher Scientific, UK) was used to detect 

CD74 expression in BMSCs. First, BMSCs were trypsinised, pelleted and 

washed once in PBS with 5% FCS (wash buffer). Next, the cells were re-

suspended in 100 l Reagent A (fixation medium) and incubated for 15 

minutes at RT. The cells were then washed with 1.5 ml wash buffer, re-

suspended in 100 l of Medium B, followed by the addition of 2 l CD74-FITC 

antibody – this suspension was then vortexed and incubated for 20 minutes at 

RT in the dark. 3 ml wash buffer was then added to wash off excess antibody. 

Finally, the cells were re-suspended in 1 ml of filtered PBS for analysis on the 

CyFlow® Cube 6 flow cytometer. A minimum of 3000 events were collected. 

Data was subsequently analysed using the FCS express 5 software 

(FCS express version 5 software (De Novo Software, Thornhill, ON, Canada).  

2.4.7. shRNA-mediated gene silencing 

In this study, MISSION shRNA lentiviral knockdown was used to achieve long 

term silencing of gene expression in target cells. MISSION shRNA lentiviral 

clones are sequence-verified shRNA lentiviral plasmids for gene silencing in 

mammalian cells (Sigma). The MISSION® TRC shRNA plasmid was 
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transformed into E.coli strain DH5αT1R, expressing shRNA, which targeted 

either MIF, HIF1α or HIF2α genes (in pLKO.1-puro plasmid vectors).  

The plasmids expressing the shRNAs can either be directly transfected into 

target cells to attain transient gene knockdown, or they can be co-transfected 

with packaging plasmids into the 293T cell line, for long-term knockdown by 

integration into the host cell genome. The latter method was used in the 

research presented in this thesis.  

Bacterial cultures were amplified from glycerol stocks in order to extract 

sufficient amounts of shRNA plasmid DNA. Lentiviral stocks were prepared by 

co-transfecting 293T cells with the shRNA plasmid and two other plasmids: a 

packing plasmid, pCMVΔR8.91 (expressing gag-pol) and an envelope 

plasmid, pMD.G (expressing VSV-G). These were kindly provided by Dr 

Ariberto Fassati (University College London, London, UK).  

Lentiviral titres were determined using the Lenti-X™ qRT-PCR titration kit 

(ClonTech Laboratories, California, USA) and viral stocks were concentrated 

using Amicon® Ultra centrifugal filters (EMD Millipore, Massachusetts, USA). 

Figure 2.3 shows a schematic summarising the work-flow that was followed to 

obtain successful knockdown of target genes. 

 

 

Figure 2. 3 A schematic showing the work flow followed in the production of 
lentiviral particles from bacterial glycerol stocks.  
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For silencing of IL-8, CD74 and PKCβ PKCβ genes, pre-packaged 

MISSION® TRC shRNA Lentiviral Transduction Particles were used. In this 

case, step 1 to 6 of the workflow shown in Figure 2.3 was performed. The 

MISSION pLKO.1-puro Control Vector (SHC001, Sigma-Aldrich) was used as 

a control, which is an empty vector confirmed to not activate the RNAi 

pathway, as it does not contain an shRNA insert. All bacterial glycerol stocks 

were stored at -80oC. ShRNA sequences of mission shRNA lentiviral particles 

are provided in table 2.3. The following sections will cover the process of 

lentiviral knockdown in detail.  

 

Table 2. 5 Sigma mission shRNAs used for stable knockdown of target genes.  

Gene  Clone ID TRC number Sequence 5' → 3' 
IL-8 NM_000584.2-

178s1c1 
0000058030 CCGGCAAGGAGTGCTAAAGAACTTACTCG

AGTAAGTTCTTTAGCACTCCTTGTTTTTG 
PKCβ NM_002738.6-

292s21c1 
0000435447 CCGGATGAGGTCAAGAACCACAAATCTCG

AGATTTGTGGTTCTTGACCTCATTTTTTTG 
CD74 NM_004355.1-

742s1c1 
0000008635 CCGGCCACACAGCTACAGCTTTCTTCTCG

AGAAGAAAGCTGTAGCTGTGTGGTTTTT 
MIF NM_002415.1-

374s1c1 
0000056818 CCGGGACAGGGTCTACATCAACTATCTCG

AGATAGTTGATGTAGACCCTGTCTTTTTG 
HIF1α NM_001530.x-

1492s1c1 
0000010819 CCGGCCGCTGGAGACACAATCATATCTCG

AGATATGATTGTGTCTCCAGCGGTTTTT 
p16 NM_058197.3-

971s21c1 
0000255849 CCGGGCTCTGAGAAACCTCGGGAAACTC

GAGTTTCCCGAGGTTTCTCAGAGCTTTTTG 
HIF2α NM_001430.x-

2419s1c1 
0000003805 CCGGGCGCAAATGTACCCAATGATACTCG

AGTATCATTGGGTACATTTGCGCTTTTT 

 

2.4.7.1. Amplification of bacterial cultures 

For bacterial cultures, agar plates were made by combining Lysogeny Broth 

(LB) (containing 10 g/L Tryptone, 10 g/L NaCl and 5 g/L yeast) with agar at 10 

g/L. The LB-Agar media was sterilised and cooled to 50oC before 

supplementing with ampicillin at 100 µg/ml. 10 ml aliquots were pipetted into 

10 cm dishes and stored for usage at 4oC for up to a month. Frozen bacterial 

glycerol stocks were rapidly thawed at RT and streaked onto the agar plates 

using a sterile streaking loop, followed by incubation at 37oC overnight. 

Thereafter, single bacterial colonies were picked with a sterile pipette tip and 

inoculated in 5 ml of LB broth with shaking at 37oC for 16 hours. 
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The selection of Individual, isolated colonies ensured colony homogeneity and 

helped to avoid picking satellite colonies that tend to grow in antibiotic depleted 

areas of the plate. 4 to 5 colonies were cultured per plasmid to ensure high 

yield of plasmid DNA. 

2.4.7.2. Plasmid DNA isolation and precipitation 

kit (Macherey-Nagel, Germany). Firstly, the bacterial cultures were pelleted by 

centrifugation and re-suspended in 500 µl re-suspension buffer A1, followed 

by the addition of 500 µl of SDS/alkaline lysis buffer A2, and incubation at RT 

for 4 min. Next, 300 µl A3 buffer was added to neutralise the suspension and 

aid the binding of plasmid DNA onto the silica membrane of the spin columns. 

The contents were mixed by gentle inversion. Precipitated proteins, genomic 

DNA and cell debris were pelleted by centrifuging the tubes at 11000 g for 7 

minutes. The supernatant was then loaded onto the spin column. The column 

was washed twice at 11000 g for 1 minute using ethanolic wash buffer A4, 

followed by a final drying spin for 3 min. Finally, the DNA was eluted in 50ul 

nuclease-free water at 70oC.  

The optimal concentration of plasmid DNA required for transfection of 

packaging cells is <180ng/µl. To achieve this, plasmid DNA of the highest 

purity from different colonies was pooled together and ethanol-precipitated. 

Ethanol precipitation is a well-established method for the concentration and 

desalting of nucleic acids. In this method, 3M solution of sodium acetate (pH 

5.2) was added at 1/10th of the volume of pooled plasmid DNA. Next the 

volume was completed to 1 ml with ice-cold ethanol, which forced the plasmid 

DNA to precipitate out of solution. The resulting solution was then stored over-

night at -20°C, or for 4-5 hours at -80°C to precipitate. After precipitation, the 

DNA was pelleted by centrifugation at maximum speed (14000 g) for 15 

minutes. The pellet was washed in cold 70% ethanol and centrifuged again. 

Ethanol was aspirated without disturbing the pellet, which was then left to dry 

in a culture hood. As it dried, the translucent pellet became whiter and more 

opaque. Finally, the pellet was rehydrated in nuclease free water and stored 

at -20oC. 
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2.4.7.3. 293T packaging cell transfection 

24-48 h prior to transfection, 293T cells were cultured in 10 cm culture dishes 

and passaged so that the cells were ~ 80% confluent. On the day of 

transfection, packaging cell media was replaced with 7.5-8 ml of fresh, 

antibiotic free, complete culture media. DNA mix was prepared so that it 

contained 1 g of each of the packaging plasmids, 1.5 g of the specific 

shRNA plasmid and TE buffer up to 15 L. In a separate tube, a transfection 

vehicle was prepared by adding 18 L FuGENE® (Promega, Fitchburg, WI, 

USA), and 6 to 200 µl of Opti-MEM (Life Technologies, 

Gaithersburg, MD, USA.) reduced serum media. The DNA mix was then 

added onto the transfection vehicle mix, and the two were gently mixed by 

pipetting, before being incubated at RT for 15 minutes. The resulting solution 

was added drop wise onto the plate of packaging cells. The plates were 

incubated in normal culture conditions and the media was changed every 24 

hours, with 7.5 ml of fresh culture media. Culture media was collected in 15 ml 

falcon tubes at 48, 72 and 96 hours. 150 µl was also taken from each plate at 

specific time points to be used for extraction of viral RNA. All media was stored 

at -80 °C.  

2.4.7.4. Viral RNA isolation 

Viral RNA was isolated using the NucleoSpin® RNA Virus isolation kit 

(Macherey-Nagel). Aliquots of media that were frozen in the previous step 

were defrosted on ice. 70 µl from the media collected at each time point was 

pooled into one Eppendorf. From this, a 150 µl aliquot was taken out into a 

new Eppendorf tube. 600 µl of RAV1 was added to the tube, vortexed, and 

incubated at RT for 5 minutes. 600 µl of absolute ethanol was next added and 

the tube was vortexed for 30 seconds. 675 µl of this solution was transferred 

into a spin column and centrifuged at 8,000g for 1 minute. The spin step was 

repeated with the remaining 675 µl. Next, the column was washed once with 

500 µl of (full form) RAW buffer and then with 600ul of RAV3, followed by 

centrifugation at 8,000g for 1 minute. Waste was discarded after every wash 

step. To dry the columns, a final wash step was required, where 200 µl of 
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RAV3 was added to the tube and centrifuged at 11,000g for 5 minutes. Finally, 

viral RNA was eluted by adding 50 µl of nuclease-free water (at 70 °C, as hot 

water aids in RNA elution), and incubating at RT for 1 – 2 minutes at followed 

by a spin at 11,000 g for 1 minute. Viral RNA was then stored at -80 °C for 

long term use. 

2.4.7.5. Determination of viral titres 

(Thermo Fisher Scientific) to remove any contaminating plasmid DNA prior to 

qRT-PCR. DNase treatment is key, as contaminating plasmid DNA could lead 

to false high copy numbers. 25 µl reactions were incubated at 30oC for 30 

minutes and at 70oC for 5 minutes with a 4oC hold.  

Serial dilutions of the stock DNase-treated viral RNA and of an RNA control 

(known copy number of 109–102, provided with the kit) were prepared, and 2 

µl each were aliquoted per well, in a 96 multi-well PCR plate. Next, a master 

mix was made following the manufacture’s recommendation, using the Quant-

X™ One-Step qRT-PCR SYBR® kit (Clontech). 18 µl of the master mix was 

added to the samples to make a final reaction volume of 20 µl and the plate 

was sealed. The following program was used for the qRT-PCR run: RT 

Reaction (42C for 5 minutes and 95C for 10 seconds), qPCR x 40 cycles 

(95C for 5 seconds and 60C for 30 seconds) and melt Curve analysis (95C 

for 15 seconds, 60C for 30 seconds).  

The lentiviral copy number in the initial viral stocks was determined by 

comparing their Ct values to Ct values on a standard curve generated from 

serial dilutions of the calibrated Lenti-X RNA Control Template, and by 

accounting for the dilution factors. A copy number of at least X108 is required 

to achieve reasonable knockdown. The formula below was used for back-

calculating copy number/ml: 
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Next, copies per ml were converted into transducing units per ml (TU/mL):  

 

The division factor (100,000) was estimated from an experiment where the 

qRT-PCR titration method was normalised to a conventional fluorescent 

microscopy method for titrating lentiviral vectors expressing GFP. GFP 

positive cells/colonies were counted and a normalising factor was generated 

(performed by Dr Lyuba Z, Norwich Medical School, UEA, Norwich, UK).   

Next, using the determined values for TU/ml, the volume needed to achieve 

the desired number of viral particles was calculated for multiplicities of 

infections (MOI) ranging from 1-30 as follows:  

 

Viral stocks were concentrated using Amicon® Ultra centrifugal filters. During 

the concentration procedure, all plastic ware and samples were kept on ice to 

prevent degradation of viral particles at RT. The above calculated volume was 

divided by the concentration factor to obtain the right volume of concentrated 

stock required to achieve the desired infectious particles/cell. A range of MOIs 

were tried out to determine an MOI that achieves gene knockdown with 

minimal off target effect and without compromising cell viability.  

2.4.7.6. Lentiviral infection of target cells 

Viral stocks were stored in -80oC and when needed, thawed at 4oC on ice. The 

required number of cells to be infected was cultured in 0.5 ml of antibiotic free 

complete culture media, in 12 well culture plates. Polybrene was added at a 

final concentration of 1 µg/ml to the cell cultures, to increase the efficiency of 

infection. Polybrene works by countering electrostatic charges between the 

virus and the cell membrane, which both have a negative charge on their 

surfaces. Next, the required volume of virus for the desired MOI was added 

and the plate was gently swirled to ensure even distribution. At 24 hours, the 
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cultures are topped up with an additional 500 µl of antibiotic-free culture media 

and incubated for an additional 48 hours at RT. At 72 hours, RNA was 

extracted as described before (section 2.4.1) and the gene knockdown 

efficiency was determined by qRT-PCR. At 96 hours, protein was extracted as 

described before (2.4.6.1.1) and western blotting was performed (2.4.6.1) to 

determine protein knockdown.  

2.4.8. Senescence associated β- galactosidase staining 

The senescence β-galactosidase staining kit (Cell Signaling Technology 

(CST), Massachusetts, USA) was used to detect Senescence associated β-

galactosidase in BSMCs. Cells of interest were cultured and treated in 35 mm 

culture dishes. The culture media was removed and cells were washed once 

with PBS and fixed with 1 ml 1x fixative solution for 15 minutes at RT. Cells 

were next washed twice with PBS and incubated at 37oC overnight, in 1 ml of 

β-galactosidase staining solution. The pH of the staining solution was 

measured and, if needed, adjusted to a pH of 6. A low pH can result in false 

positives while a high pH can result in false negatives. The plates were sealed 

with parafilm to prevent changes in pH due to atmospheric carbon dioxide.  

The cells were checked for the development of a blue colour, which usually 

happens within 48 hours, and is indicative of SA-β galactosidase positive cells. 

The staining solution was removed and replaced with 1 ml of 70% glycerol. 

Stained plates were viewed under a light microscope and pictures were 

acquired using a camera and the 10x lens. The plates were resealed and 

stored at 4oC. The fixed plates are stable for over 12 months if stored properly.  

2.5. In vivo animal models  

All animal work was carried out in accordance with regulations set by the UK 

Home Office and the guidelines outlined in the Animal Scientific Procedures 

Act, 1986. Animals were housed in the Disease Modelling Unit (DMU) facility 

at the University at East Anglia, in individually ventilated cages, and 

maintained under specific pathogen-free conditions. The animals were 

regularly screened for common mouse pathogens. 8 – 10 week old mice were 

used for all the experiments. Non-obese diabetic/severe combined 
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immunodeficiency (NOD/SCID) mice were purchased from Jackson 

Laboratories (Bar Harbor, ME, USA). The p16-3MR senescence mouse model 

was kindly gifted to our lab by Dr Campisi (The Buck Institute for Research on 

Aging, Novato, USA). A full description of the procedure employed to generate 

the p16-3MR Mouse model is described by Demaria et. al., 2014 (262). 

2.5.1. Non- diabetic (NOD) severe combined immunodeficiency (SCID) 

and gamma model (NSG) mice for human xenograft models 

Cell line and primary patient derived xenografts require the recipient animal to 

be immunodeficient to avoid rejection of transplanted human cells. The most 

commonly used immunodeficient mouse strain is the NSG or NOD scid 

gamma mouse, also called the NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ mouse, 

developed by Dr. Leonard Shultz at The Jackson Laboratory. Genetically, this 

mouse model harbours a functionally null allele for the IL-2 receptor gamma 

chain (IL2Rgnull) and the severe combined immune deficiency mutation 

(Prkdcscid) on the nonobese diabetic NOD/ShiLtJ background (289). 

Phenotypically, these mutations translate into the lack of mature B and T, 

natural killer cells, and defective dendritic cells. Together, this makes it 

possible for cancer cell lines and human cells to be engrafted easily in this 

model (290). 

2.5.2. Patient derived xenografts 

Primary AML cells were infected with a pCDHluciferase-T2A-mCherry 

lentiviral construct, kindly gifted by Prof. Dr. Med. Irmela Jeremias, (Helmholtz 

Zentrum München, Munich, Germany) (291), and sorted by flow cytometry 

using the red channel on a BD FACSARIA III cell sorter (BD Biosciences), with 

the help of Zhigang Zhou (School of Biological Sciences, UEA, Norwich, UK). 

The luciferase moiety allowed monitoring of disease development via in vivo 

bioluminescent (BL) imaging. 2x106 viable AML cells were washed and re-

suspended in PBS.  

Injections of the AML cells into non-irradiated, 6-8 week-old, NSG was 

performed by Chris Marlein, R Piddock and S Rushworth (Norwich Medical 

School, UEA, Norwich, UK). Prior to being injected, the mice were warmed in 
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individual warming boxes at 37oC for 10 minutes (which helped to dilate the 

tail veins for easy and visible introduction of needles). 200 µl of AML cell 

suspension was injected into their tail veins using a sterile, 27-gauge needle, 

attached to a 1 ml syringe . Immediately following injections, mice were closely 

monitored for signs of bleeding from the injection site and returned to the cages. 

2.5.3. OCI-AML3 human xenograft model 

OCI-AML3 cells were infected with the pCDH-luciferase-T2A-mCherry 

lentiviral construct, followed by infection with control-ShE, MIF KD or HIF KD 

lentiviral particles. Next, the cells were sorted on a BD FACSARIA III 

(BD Biosciences, Allschwil, Switzerland) cell sorter.  1x106 cells were washed 

and re-suspended in PBS. The cells were then injected into the tail vein of 

NSG mice, as described in section 5.2.5. The MIF-KD and the HIF1α-KD in 

vivo experiments were carried out simultaneously, therefore, the same control-

KD (ShE-KD) mice were used for both, MIF-KD and HIF1α-KD mice.  

2.5.4. In vivo bioluminescent (BL) imaging 

Animals were imaged on on the Bruker In-Vivo Xtreme Imaging Systems 

(Bruker Corp., Massachusetts, USA) imager. In vivo imaging was performed 

with the help of Chris Marlein, R Piddock and S Rushworth (Norwich Medical 

School, UEA, Norwich, UK). Each animal was imaged at the days specified in 

the text (section 5.9) . D-luciferin (Thermo Fisher Scientific) was dissolved in 

sterile PBS (15 mg/ml) and aliquots were stored at −20°C. Each animal was 

injected with 200 µl of D-luciferin at RT by intraperitoneal injection (IP), and 

allowed to settle for 10 minutes before they were anesthetised with 2-3% 

isofluorane/oxygen in an induction chamber, and then carefully transferred to 

the Bruker specimen chamber.  

Anaesthesia was maintained during imaging using a nose cone isoflurane-

oxygen delivery device fitted in the chamber. Bioluminescent images were 

acquired within 20 minutes after IP of D-Luciferin. The camera took a light, an 

X-ray and a luminescent image of the animals. Finally, the animals were 

allowed to recover under close observation and returned to their cages. 

Luminescent signal intensity was quantified and final images were analysed 
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using the Bruker MI SE software. The output images represented matched-

scale luminescent images overlaid on light images showing the animal 

skeleton, thus allowing to determine where the tumour cells are (as seen in 

Figure 5.14A).  

2.5.5. Sacrificing animals and harvesting of the bone marrow and 

spleen cells 

Animals were monitored daily for the development of clinical signs of illness, 

and when these became apparent (such as weight loss, reduced motility, 

bilateral hind leg paraplegia due to tumour burden, over grooming and rough, 

patchy fur), mice were sacrificed by exposure to CO2 and dislocation of the 

neck. BM and spleen cells were harvested and analysed for human CD33 and 

CD45 expression. The tibia and femurs (Figure 2.4A) were isolated whole and 

de-fleshed (Figure 2.4B). Next the bones were cut from the thinner end and 

placed in a 0.5 ml Eppendorf tube in which a hole was made using an 18 gauge 

syringe. This tube was placed in an intact 1.5 ml Eppendorf tube and 

centrifuged at high speed for 10 seconds to collect total BM cells. The open 

end allowed BM cells to escape into the 1.5 ml collection tube.  

The spleen was immersed in PBS, minced in a 35 mm culture dish using a 1 

ml sterile tip and filtered through a 4 micron mesh to obtain a single cell 

suspension. Red cell lysis was performed with the Hybri-Max buffer. BM and 

spleen cells were then double stained for CD33/CD45 and assayed by flow 

cytometry. If more than 1% of human CD33/CD45 cells were detected in the 

BM or spleen, the AML sample was considered to have been successfully 

engrafted. 5 x106 cells were re-suspended in RNA BL+TG lysis buffer for 

mRNA expression. Excess cells were discarded.  
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A.                                                           B. 

       

Figure 2. 4 Bones and spleens harvested from NSG mice.   

(A) A schematic depicting the different parts of the hind limbs of a mouse (adapted 
from The Anatomy of the Laboratory Mouse, Margaret J. Cook (292)). (B) The top 
panel shows excised and de-fleshed tibias and femurs from 2 NSG mice; the bottom 
panel shows excised spleens from 2 NSG mice. 

 

2.6. Bioinformatics analysis 

Bioinformatics analysis was performed with the help and guidance of Manar 

Shafat (Norwich Medical School, UEA, Norwich, UK). Publicly available RNA 

sequencing data were downloaded for a panel of 43 AML patients, comprised 

of 22 AML samples obtained from peripheral blood and 21 AML samples 

obtained from BM aspirates (Gene Expression Omnibus Accession ID: 

GSE49642).  

Reads per kilobase per million (RPKM) data for MIF were extracted and 

processed further by first replacing zero-valued entries, with one followed by 

logarithmic transformation to the base 2. MIF RPKM values for blood and bone 

marrow samples were compared with a Wilcoxon rank-sum test. Data were 

extracted for genes that have been shown to be upregulated as a result of 

HIF1α overexpression, HIF2α overexpression and hypoxia (293) .These data 

were processed further by first replacing zero-valued entries with one, 

followed by logarithmic transformation to the base 2. 
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2.7. Statistical analyses 

All data were analysed using Prism software (Version 5.0, GraphPad 

Software, San Diego, CA, USA). The Mann-Whitney U test was used to 

compare test groups unless stated otherwise in the figure legend. Survival 

data were analysed by Kaplan-Meier log-rank test. Results where P<0.05 were 

considered statistically significant and are denoted by *. Results represent the 

mean ± standard deviation of 3 or more independent experiments. Standard 

error of the mean was used to present cytokine array data deviation (Figure 

3.5 and Figure 3.6).  
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3. Chapter 3: AML influences the secretory profile of BMSCs 

In this chapter, I first aimed to in vitro characterise BMSCs and subsequently 

establish an AML/BMSC co-culture. From the co-cultures, using a cytokine 

array assay, I determined potential AML pro-survival cytokines.  

3.1. In vitro expansion of primary AML-derived BMSCs 

Whole BM aspirates from AML patients, who consented at the NNUH 

haematology clinic, were processed in the tissue culture laboratory according 

to the protocol described in materials and methods (section 2.3.2). I used 

isolated mononuclear cells to expand BMSCs in vitro. Human BMSCs are 

initially isolated based on their selective adherence to plastic culture surfaces, 

followed by phenotypic characterisation to confirm the expression of a panel 

of cell surface molecules, including CD90, CD105 and CD73, and excluding 

of CD45 (294).  

I cultured the isolated bone marrow mononuclear cells at 1 million cells per mL 

in T-75 culture flasks overnight and observed the cells the next day for 

adherence. Contrarily to BMSCs, AML cells are non-adherent to plastic, and 

thus, can be selectively removed from culture after the initial medium change, 

24 - 48 hours post isolation. The chosen time point depended on when I was 

able to identify adherent BMSCs that were 80% confluent. Any contaminating 

AML cells were eliminated as the BMSC cultures were passaged and this 

process was usually complete at passage 2 or 3 (Figure 3.1A). Before using 

the BMSC cells for experiments, I would check for expression of BMSC 

markers (CD90, CD105 and CD73) and negative expression of the myeloid 

marker CD45 (Figure 3.1B) to further confirm the purity of the BMSC 

population. Purities of > 99.99% were routinely achieved with this method. 
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A.                 Day 5 (P=0)                                            Day 15 (P=4) 

        

 

B.   

 

Figure 3. 1 In vitro expansion and characterization of bone marrow stromal cells 
(BMSCs). 

(A) Growth of BMSCs over 15 days. P, passage number. (B) Surface marker 
expression on BMSCs at day 15 of culture, cultured cells were CD45 negative and 
CD73, CD90 and CD105 positive – which is characteristic of BMSCs. The red peak 
represents the marker of interest and the black peak represents the isotype control. 

 

Over time, I noticed that after 6-8 weeks of passaging (the average number of 

passages depended on the individual BMSC sample), cell proliferation began 

to slow down and their morphology changed from a fibroblastic spindly shape, 

to a flatter rounder shape with cell-free gaps (Figure 3.2). When the cells 

stared displaying this phenotype, I would deem them unsuitable for further use 

and the culture would be terminated. No primary BMSCs were cultured past 

passage 6. BMSCs could also be derived from cryopreserved AML cell 

samples with a similar prolife. 
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                 1                                          2                                         3  

   

Figure 3. 2 Morphology of primary cultured BMSC over time.  

(1) BMSCs after 7 passages; the arrows indicate cell-free gaps (2) BMSCs after 9 
passages (3) BMSCs after 10 passages; the arrows indicate cells with a different 
morphology.  

 
Cytogenetics of the six primary BMSCs used for the experiments described 

below were initially examined, following Huang et. al.’s previous observations 

of cytogenetic abnormalities in 75% of the BMSCs of patients with AML (295). 

My results found three of six to be normal, whereas genotyping failed for the 

other three (table 1 of the appendix).  

3.2. BMSCs support AML survival in vitro 

AML cells exhibit a high level of spontaneous apoptosis when cultured in vitro 

but have a prolonged survival time in vivo, indicating that the BMM plays a 

critical role in promoting AML cell survival and proliferation (296-298). For my 

research, I aimed to investigate how well BMSCs support the in vitro survival 

of primary human AML cells, and to do so I established a co-culture system 

with primary AML cells and BMSCs from AML patients who never had 

chemotherapy to treat the AML. 

For the co-culture I used two cell populations in transwell plates, with BMSCs 

cultured on the bottom of the plate and AML cells placed above. As a 

monoculture control, AML cells were placed in the transwell with no BMSCs. 

The survival of AML cells with BMSCs versus monoculture was assessed by 

viable cell counting, utilising trypan blue exclusion and a hemocytometer on 

day 6 (n=20) and day 14 (n=6). I found that AML survival was significantly 

improved when co-cultured with BMSCs, compared to the controls at both, 
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days 6 and 14 (Figure 3.3). The cytogenetics and WHO diagnosis of the AML 

patient samples used in chapter 3 and 4 are shown in table 3.1.  

A.                                                                B. 

                              

Figure 3. 3 Primary AML survival in mono-cultures versus on primary BMSCs.  

Scatter graph depicting the survival of AML cells cultured on BMSCs versus AML 
cells alone (A) for 6 days and (B) for 14 days. AML blasts (0.25x106) were co-cultured 
with primary BMSCs on a 12 well plate for 6 days (n=20) or 14 days (n=6), AML blast 
number was assessed using a trypan blue exclusion hemocytometer-based counts. 
* denotes p < 0.05. 

 

Table 3. 1 AML patient sample characteristics used in chapter 3 and 4.   

This table defines the nature of the AML patient samples used in the studies 
conducted in chapter 3 and 4.   
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3.3. AML cells induce changes in the BMSC cytokine secretion profile 

Both BMSCs and primary AML cells demonstrate constitutive release of 

several soluble mediators (295). Previous studies have shown that BMSCs 

can inhibit AML apoptosis, be it cell line or murine stromal cell derived BMSCs 

(66, 299). To study cell-cell communication between BMSCs and AML cells, 

and to understand the role of soluble factors in mediating the cross-talk 

between them, I analysed cytokines and chemokines from the supernatants of 

cultures of AML only, BMSC only and AML cells with BMSCs (AML/BMSC). I 

performed this assay on six different primary AML samples cultured on four 

different BMSCs. Figure 3.4 shows a representative cytokine array of one 

data-set. Table 3.2 contains the corresponding data set for figure 3.4. Full data 

sets of the co-cultures are provided in Table 2 of the appendix.  

A.                                                             B. 

         

Figure 3. 4 A representative image of the developed cytokine array from AML, 
BMSC and AML/BMSC culture media.  

(A) Representative cytokine antibody arrays of cell culture conditioned media, using 
the Human cytokine proteome profiler array is shown; from top to bottom: AML cells 
(0.25x106) only, BMSCs only, and BMSC/AML co-culture, after 24 h (n=6). (B) 
Corresponding cytokine array coordinates, cross-reference with table 3.2.  
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Table 3. 2 Cytokine mean pixel densities data set for figure 3.4.  

Coordinates correspond to the location of the cytokine duplicate on the 
nitrocellulose membrane.  

 

(coordinate)(Cytokine) 
AML only BMSC Only Co-culture
AML#6 BMSC#4   + AML#6

(A1-A2)(Reference Spots) 63192.82 48901.689 62755.2
(A3-A4)(Adiponectin) 884.41 547.75556 1088.22
(A5-A6)(Aggrecan) 1047.96 2305.5867 3694.74
(A7-A8)(Angiogenin) 605.73 2309.6489 3505.02
(A9-A10)(Angiopoietin-1) 1425.77 873.39556 1256.51
(A11-A12)(Angiopoietin-2) 2070.05 1115.5422 1615.3
(A13-A14)(BAFF) 936.83 592.82667 936.61
(A15-A16)(BDNF) 1009.02 1187.7467 1790.19
(A17-A18)(CC C5/C5a) 433.14 492.33333 357.21
(A19-A20)(CD14) 800.94 752.84444 909.27
(A21-A22)(CD30) 3027.78 1376.2489 1248.02
(A23-A24)(Reference Spots) 63176.06 49905.689 62734.33
(B3-B4)(CD40 ligand) 1574.01 621.29778 1278.62
(B5-B6)(Chitinase 3-like 1) 1062.98 12551.991 30837.3
(B7-B8)(Complement Factor D) 1823.75 2890.0756 4093.83
(B9-B10)(C-Reactive Protein) 1592.78 992.85778 1288.39
(B11-B12)(Cripto-1) 970.45 552.02667 910.9
(B13-B14)(Cystatin C) 1321.68 1550.1822 2361.83
(B15-B16)(Dkk-1) 1722.99 25905.956 41937.41
(B17-B18)(DPPIV) 273.54 277.12889 148.29
(B19-B20)(EGF) 2454.38 1698.12 1796.85
(B21-B22)(EMMPRIN) 4671.4 2785.5289 5266.98
(C3-C4)(ENA-78) 1428.45 868.36889 3777.9
(C5-C6)(Endoglin) 2662.32 2087.3022 5554.34
(C7-C8)(Fas Ligand) 1135.54 718.50667 989.58
(C9-C10)(FGF basic) 2283.03 1350.8933 1880.08
(C11-C12)(FGF-7) 880.67 930.12889 1619.2
(C13-C14)(FGF-19) 3639.62 2693.4311 6549.95
(C15-C16)(Flt-3 Ligand) 470.05 550.09778 792.47
(C17-C18)(G-CSF) 458.74 421.57778 445.61
(C19-C20)(GDF-15) 1231.6 2432.0089 7845.77
(C21-C22)(GM-CSF) 3148.77 2467.7022 4411.59
(D1-D2)(GRO-a) 895.58 498.23556 861.27
(D3-D4)(Growth Hormone) 716.54 319.39556 521.8
(D5-D6)(HGF) 5712.68 1626.0711 4255.5
(D7-D8)(ICAM-1) 1019.02 837.54667 1267.75
(D9-D10)(IFN-?) 1727.49 847.39556 983.44
(D11-D12)(IGFBP-2) 425.47 10678.218 21641.79
(D13-D14)(IGFBP-3) 1107.73 9329.8622 14991.33
(D15-D16)(IL-1a) 2176.53 950.63556 1667.69
(D17-D18)(IL-1ß) 893.32 747.32444 1466.6
(D19-D20)(IL-1ra) 245.31 292.50667 612.91
(D21-D22)(IL-2) 922.69 983.55556 1052.91
(D23-D24)(IL-3) 483.34 572.78667 500.68
(E1-E2)(IL-4) 729.22 506.43556 879.42
(E3-E4)(IL-5) 394.21 129.09778 81.62
(E5-E6)(IL-6) 3088.62 25541.88 45003.57
(E7-E8)(IL-8) 3785.28 27160.342 56680.79
(E9-E10)(IL-10) 740.96 681.05333 729.94
(E11-E12)(IL-11) 2816.3 9500.0933 12850.61
(E13-E14)(IL-12 p70) 1367.28 770.91111 1253.46
(E15-E16)(IL-13) 616.07 484.37333 616.05
(E17-E18)(IL-15) 517.27 451.75111 878.56

Culture condition 
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Table 3. 2 continued  
 

 

(coordinate)(Cytokine) 
AML only BMSC Only Co-culture
AML#6 BMSC#4   + AML#6

(E19-E20)(IL-16) 1496.52 252.32444 1250.05
(E21-E22)(IL-17A) 3719.76 4590.3511 7113.14
(E23-E24)(IL-18 BPa) 451.64 526.77778 492.61
(F1-F2)(IL-19) 1430.78 574.78667 1058.75
(F3-F4)(IL-22) 1869.53 986.90667 1694.07
(F5-F6)(IL-23) 568.16 619.91556 1372.52
(F7-F8)(IL-24) 1246.49 1063.1467 2039.13
(F9-F10)(IL-27) 1967 874.72 1232.97
(F11-F12)(IL-31) 1024.71 511.66667 533.34
(F13-F14)(IL-32a/ß/?) 1141.81 570.42222 912.98
(F15-F16)(IL-33) 887.65 381.99556 656.82
(F17-F18)(IL-34) 336.94 284.54222 535.43
(F19-F20)(IP-10) 278.34 315.70667 719.82
(F21-F22)(I-TAC) 532.48 780.64 652.21
(F23-F24)(Kallikrein 3) 1180.96 1353.6178 1556.86
(G1-G2)(Leptin) 862.54 311.87111 660.63
(G3-G4)(LIF) 698.36 5493.4889 8668.34
(G5-G6)(Lipocalin-2) 4285.76 873.42222 2245.12
(G7-G8)(MCP-1) 3099.85 17755.151 37175.71
(G9-G10)(MCP-3) 1057.68 714.72 1173.28
(G11-G12)(M-CSF) 1781.94 856.75556 998.53
(G13-G14)(MIF) 32650.14 2950.8044 16923.52
(G15-G16)(MIG) 1169.51 677.63111 1142.44
(G17-G18)(MIP-1a/MIP-1ß) 207.31 98.462222 603.61
(G19-G20)(MIP-3a) 246.06 750.36444 1959.89
(G21-G22)(MIP-3ß) 449.45 466.06222 567.42
(G23-G24)(MMP-9) 937.32 727.62667 1432.96
(H1-H2)(Myeloperoxidase) 1280.86 297.56444 1340.23
(H3-H4)(Osteopontin) 2653.11 1742.9378 3287.79
(H5-H6)(PDGF-AA) 7407.75 7417.8133 11701.57
(H7-H8)(PDGF-AB/BB) 686.42 356.8 536.45
(H9-H10)(Pentraxin-3) 3262.26 9850.3822 19073.93
(H11-H12)(PF4) 498.75 278.16 819.94
(H13-H14)(RAGE) 815.25 491.02667 769.31
(H15-H16)(RANTES) 1765.24 636.97778 1237.22
(H17-H18)(RBP4) 1744.64 1141.5956 1610.47
(H19-H20)(Relaxin-2) 1174.76 768.87556 933.84
(H21-H22)(Resistin) 2871.19 1802.7644 3246.27
(H23-H24)(SDF-1a) 712.46 7946.1289 10744.88
(I1-I2)(Serpin E1) 3989.99 27899.329 62439.02
(I3-I4)(SHBG) 1379.65 945.24 1716.52
(I5-I6)(ST2) 1231.26 1340.3289 1870.67
(I7-I8)(TARC) 1487.42 833.50667 1314.85
(I9-I10)(TFF3) 312.72 537.66222 1358.82
(I11-I12)(TfR) 1168.7 468.81778 1259.33
(I13-I14)(TGF-a) 556.73 483.05333 541.6
(I15-I16)(Thrombospondin-1) 2817.13 4882.6489 7540.79
(I17-I18)(TNF-alpha) 779.46 636.26222 801.67
(I19-I20)(uPAR) 1261.01 3206.6756 5474.14
(I21-I22)(VEGF) 213.56 10987.147 19452.53

(J1-J2)(Reference Spots) 63192.82 48901.689 62753.72
(J5-J6)(Vitamin D BP) 3962.03 1639.5867 2455.87
(J23-J24) negative control 0 0 0

Culture condition 
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I next analysed the cytokine array blots using HLImage++ software to quantify 

the duplicate dots for each cytokine. Ultimately the aim of this experiment was 

to determine what cytokines and chemokines were differentially expressed by 

BMSCs in response to co-culture with AML cells. Therefore, I performed the 

analysis of the array data in two ways: 

1. I subtracted the AML mono- culture profile from the AML/BMSC co-culture 

profile, and then used the latter for comparison with the BMSC mono-culture 

profile (Figure 3.5A). This enabled me to correct for any background readings 

from the AML only mono-culture data. There are associated caveats in this 

method of analysis which are mentioned in the discussion (section 7.1.2). 

2. Comparison of the AML/BMSC co-culture profile directly with that of the 

BMSC mono-culture (Figure 3.5B).  

The two methods showed a consistent number of cytokines and chemokines 

that were differentially expressed in the media of the AML/BMSC co-culture, 

versus the BMSC monoculture (Figure 3.5). Cytokines that were consistently 

upregulated in all co-cultures from both analyses were IL-6 and IL-8. 
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A. 

 
B. 

 

Figure 3. 5 Bar graphs comparing the fold increase in cytokines between 
BMSC/AML co-cultures and BMSC monocultures. 

 (A) Cytokines that were upregulated in co-cultures after subtraction of the AML 
monoculture profile. (B) Cytokines that are upregulated in the co-cultures, without 
subtraction of AML monocultures. Results from 7 different primary AML samples on 
four different BMSCs are shown, together with the mean and standard error of the 
mean (SEM). 

I also wanted to determine the cytokines and chemokines that were high in 

AML samples only. I did this because I wanted to verify if there was an AML 

derived factor that was responsible for activating BMSCs. For this analysis, I 

compared the optical density values obtained by the HLImage++ software in 

all three culture conditions (AML only, BMSC only, AML/BMSC). The results 

showed that a number of cytokines and chemokines were high in AML and 

AML/BMSC cultures, but low in BMSC media (Figure 3.6). Particularly, it was 

apparent that levels of macrophage migration inhibitory factor (MIF), were 

consistently high in all AML and AML/BMSC supernatants, but low in the 

BMSC supernatants. 
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Figure 3. 6 Bar graph depicting the results of a cytokine array optical density 
quantification of AML only arrays.  

The graph reports the expression levels of the top 7 cytokines found in the media of 
AML monocultures, in the form of mean pixel density. 8 individual AML samples were 
included in the analysis, 6 of which were used in the co-cultures. Bars, mean and 
SEM.  

 
In summary, from the cytokine and chemokine array experiments I identified 

MIF as being highly expressed in AML cells compared to BMSCs. On the other 

hand, I found IL-6 and IL-8 to be increasingly upregulated in the AML/BMSC 

co-cultures, compared to BMSC monocultures.  

Serum IL-8 is known to be higher in patients with AML, myelodysplasia (MDS) 

and non-Hodgkin Lymphoma than in normal controls. Also, levels of IL-8 in 

these patients are comparable to those found in patients with multiple organ 

failure of non-septic origin (118, 137). Furthermore, leukaemic cells from 

patients with AML have been shown to constitutively express IL-8 (136) and, 

inhibition of the IL-8 receptor, CXCR2 selectively inhibits proliferation of 

MDS/AML cell lines and patient samples (140).  

MIF overexpression has been observed in a cohort of AML patients and was 

found to be related to poor outcomes for these patients (300). Moreover, in 

CLL, MIF was observed to induce IL-8 production by primary CLL, and 

targeted deletion of the MIF gene delayed the development of CLL in vivo, 

thereby resulting in prolonged survival of the CLL mice models (166). Together 

these studies suggest a link between MIF and IL-8, which lead me to 
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hypothesise that MIF and IL-8 have a unique function in establishing 

AML/BMSC crosstalk which could drive AML survival. 

AML cells have been shown to spontaneously secrete IL-6 (301) and survival 

of patients with AML have been shown to be inversely correlated with IL-6 

expression (302). In 1988, Hoang and colleagues reported that IL-6 had little 

effect by itself. However, it synergised with granulocyte macrophage colony- 

stimulating factor (GM-CSF) and IL-3, thus stimulating AML blast colony 

formation  (303). Nevertheless, it seems that IL-6 may have a direct effect on 

the growth of leukaemic blasts: Saily et. al. demonstrated that only three of the 

16 AML samples in their study were influenced by IL-6, two of them being 

stimulated and, one inhibited by it (145).  

IL-6 has been shown to be regulated by MIF in lymph node cells (LNC) in MIF 

knockout mice (mif−/−), where they had severely impaired production of IL-6 

(304). Furthermore, MIF was shown to regulate Vibrio vulnificus-induced IL-6 

production in human peripheral blood cells (305). MIF was also shown to 

cause dose-dependent increase in IL-6, IL-8, and prostaglandin E2 (PGE2) 

release from chondrocytes (306) and to induce IL-6 and IL-12 production from 

macrophages (307). These data lead me to hypothesise that MIF may regulate 

IL-6 secretion in AML cells as well.  

Next, I examined the effect of AML on IL-8 and IL-6 expression in BMSCs. 

3.4. AML but not BMSCs express high levels of MIF mRNA under normal 

basal conditions 

To confirm which cell type (BMSCs or AML cells) are the main producers of 

MIF in the co-cultures, I examined mRNA expression levels of MIF 

monocultures of primary AML cells (n=5) and  BMSCs (n=5). This showed that 

AML but not BMSCs, express high levels of MIF mRNA under normal basal 

conditions (Figure 3.7). 
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Figure 3. 7 Bar graph comparing MIF mRNA expression levels in AML and 
BMSC cultures. 

BMSCs and primary AML cells were cultured alone for 48 hours and measured for 
MIF mRNA levels using qRT-PCR, mRNA expression was normalised to GAPDH 
mRNA levels, (n=5). 

 

3.5. IL-8 specific ELISAs confirm IL-8 upregulation in AML/BMSC co-

cultures  

To verify that MIF was highly expressed in AML and that IL-8 was up-regulated 

in AML/BMSC clutures, I used MIF and IL-8 specific ELISA. I found that IL-8 

concentrations peak at 8 and 24 hours in the AML/BMSCs co-culture 

supernatants (Figure 3.8), whereas MIF concentrations were high at similar 

levels in both AML only and in AML/BMSCs co-culture supernatants (Figure 

3.9). This data shows that MIF is constitutively secreted by the AML cells, and 

that IL-8 levels are maintained high in co-cultures over a 24-hour period.  

 

Figure 3. 8 Bar graph representing IL-8 protein expression (pg/ml) in 
monocultures and AML/BMSC co-cultures over 24 hours. 

AML cells or BMSCs were cultured alone or together for the indicated times. IL-8 
ELISA was used to determine IL-8 concentration in culture supernatants (n=3). 
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Figure 3. 9 Bar graph representing MIF expression (pg/ml) in monocultures and 
AML/BMSC co-cultures over 24 hours. 

MIF ELISA of each of the cell culture conditioned media from various time points are 
plotted, similar to Figure 3.8 above (n=3).  

 

3.6. IL-6 is not upregulated in BMSCs in AML/BMSCs to co-cultures 

To determine if IL-6 is up regulated in AML/BMSC co-cultures, I used target 

specific ELISA and found that IL-6 concentrations are high in BMSC 

monocultures but not upregulated in co-culture (Figure 3.10A). Moreover, I 

extracted total RNA from BMSC mono- and co-cultures and performed real-

time PCR for IL-6 mRNA expression. Figure 3.10B shows that IL-6 mRNA 

expression is not upregulated in BMSCs co-cultures with AML cells at any of 

the chosen time points. This result led me to focus my further experiments 

towards the role of BMSC-derived IL-8 in regulating AML survival. 

 
A.                                                                 B. 

    

Figure 3. 10 Bar graph depicting IL-6 expression (pg/ml) in monocultures and 
AML/BMSC co-cultures over a period of 24 hours. 

(A) IL-6 ELISA of each of the cell culture conditioned media from various time points. 
(B) IL-6 mRNA expression was determined using qRT-PCR, expression was 
normalised to GAPDH mRNA levels (n=3). 
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3.7. AML induced IL-8 expression in BMSCs is contact independent 

Interactions between AML cells and BMSCs can take many forms. Some 

interactions require cell-to-cell contact while others do not (78, 308). I wanted 

to determine if BMSCs needed direct contact with AML cells to increase IL-8 

in the co-cultures. I therefore, co-cultured BMSCs in direct contact with AML 

or with the AML held within transwell inserts. The transwell inserts prevent cell 

to cell contact but allow the transfer of soluble factors between the two 

compartments. Figure 3.11 shows that IL-8 mRNA from BMSCs incubated with 

AML increased 57-fold when in direct contact (DC), and 50-fold when in 

indirect contact (IC) using transwell inserts. This confirms that direct tumour 

cell to stromal cell contact is not necessary for AML to induce increased IL-8 

expression by human BMSCs. 

 

 

Figure 3. 11 Bar graph comparing fold increase over control of IL-8 induction in 
AML/BMSC co-cultures in direct contact (DC) versus indirect contact (IC). 

AML cells (0.25x106) were co-cultured with primary BMSC either in DC or with indirect 
contact (transwell insert) for 24 h (n=5). RNA was extracted and IL-8 mRNA in the 
BMSC was assessed by real-time PCR. mRNA expression was normalised to 
GAPDH mRNA levels (n=5). 

 

3.8. Recombinant human MIF (rhMIF) induces IL-8 expression in AML 

derived BMSCs but not normal cell line BMSCs 

Since MIF has been shown to be over expressed in AML patients and is 

associated with poor outcome (300), and that MIF can induce IL-8 production 

by primary CLL (170), I hypothesised that the MIF from AML cells could be 
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increasing IL-8 in the BMSCs. To test this hypothesis, I stimulated BMSCs with 

100ng/mL of recombinant human MIF (rhMIF) (309, 310) and assayed for IL-

8 mRNA and protein expression over a period of 24 hours. I found that IL-8 

mRNA and protein increased (Figure 3.12) in response to rhMIF, 

demonstrating that MIF causes an increase in IL-8 expression by BMSCs.  

 

A.                                                                    B.  

                   

Figure 3. 12 Bar graph comparing fold increase over control of IL-8 expression 
in BMSCs in response to MIF stimulation, over 24 hours. 

(A) BMSCs from 5 patients were treated with rhMIF (100 ng/mL) for indicated times, 
and then extracted RNA was assessed for IL8 mRNA by qRT-PCR. mRNA 
expression was normalised to GAPDH mRNA levels. (B) BMSCs from 5 patients were 
treated with rhMIF (100 ng/mL) for indicated times, and then, media were assessed 
for IL8 protein expression by ELISA.  

 
Due to the number of experiments I needed to perform with patient BMSCs 

and AML together, with only limited availability of primary tissue, I attempted 

to mimic the effect of AML on BMSC by using a cell line known to be derived 

from BMSCs. The HS-5 cell line has been shown to support AML survival, 

proliferation and to protect AML cells from drug-induced apoptosis (66, 311), I 

therefore treated HS-5 with rhMIF. Figure 3.13A shows that MIF does not 

stimulate IL-8 mRNA expression in HS-5 cells. Moreover, when I cultured AML 

cells with HS-5, I observed no increase of IL-8 mRNA in BMSCs. (Figure 

3.13B). This suggests that the HS-5 cell line is not an ideal model for studying 

AML/BMSC interactions and this therefore, confirmed my understanding that 
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using primary AML with primary BMSCs is the only way to study the true nature 

of the AML microenvironment. 

A.                                                                        B. 

                        

  

Figure 3. 13 Bar graph comparing fold change in IL-8 mRNA expression in HS-
5 treated with rhMIF or co-cultured with AML.  

(A) HS-5 were treated with rhMIF (100 ng/ml) for the indicated times and then RNA 
extracted and assessed for IL-8 mRNA by qRT-PCR or (B) HS-5 were cultured alone 
or co-cultured with three different primary AML cells for 4 h. HS-5 RNA was extracted 
and IL-8 mRNA expression was analysed by qRT-PCR. IL-8 mRNA was normalised 
to GAPDH mRNA levels (n=3).  

 

3.9. Inhibition of AML-derived MIF downregulates IL-8 expression  

To confirm that MIF secreted from AML cells regulates IL-8 expression in 

BMSCs, I used ISO-1, a nontoxic inhibitor of MIF which functions by binding 

to bioactive MIF at its N-terminal tautomerase site (312). To perform these 

experiments, I cultured AML with BMSCs in the presence and absence of ISO-

1. I then extracted RNA from the BMSCs and analysed for IL-8 mRNA levels 

using qRT-PCR. Figure 3.14 shows that ISO-1 inhibited AML induced BMSC 

IL-8 mRNA expression. Taken together, this indicates that MIF secreted by 

AML cells induces IL-8 expression in BMSCs.  
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Figure 3. 14 Bar graph comparing IL-8 RNA expression levels in the absence 
(MIF) and presence (MIF+ISO-1) of the MIF inhibiting ISO-1.  

BMSCs were treated with rhMIF (100 ng/ml) and the MIF inhibitor ISO-1 (10 µM) for 
4 h then assessed for IL-8 mRNA expression (n=4). * denotes p < 0.05. 

 

3.10. Inhibition of MIF significantly reduces AML survival on BMSCs 

To determine the effect of MIF inhibition by ISO-1 on AML survival when 

cultured on BMSCs, I co-cultured AML cells on BMSC cells in the presence 

and absence of ISO-1 for 48h. AML survival was significantly reduced when 

cultured with BMSC in the presence of ISO-1 compared to control AML-BMSC 

co-cultures (Figure 3.15). I also included an AML mono-culture as a control.  
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Figure 3. 15 Scatter graph showing reduced AML survival in ISO-1 treated 
AML/BMSC co-cultures.   

BMSCs were pretreated with ISO-1 (10 µM) for 5 mins before the addition of primary 
AML cells from 10 patient samples for 48 h. AML blast number was assessed using 
a trypan blue exclusion hemocytometer-based counts (n=10). * denotes p < 0.05. 

 

3.11. Summary of the results presented in chapter 3 

MIF-induced stromal IL-8 (but not IL-6) is essential to human AML survival in 

vitro. This process is cell-cell contact independent. Demonstrating this, 

required experiments to be performed using primary BMSCs and not the HS5 

cell line. This was deduced as MIF stimulated IL-8 expression in primary 

BMSC but not HS-5 cell line. 
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4. Chapter 4: MIF induction of BMSC-derived IL-8 is mediated 
through CD74 and PKCβ signalling 

In this chapter I describe the signalling which occurs in BMSCs in response to 

MIF. Here I aim to identify the receptor located on the BMSC surface to which 

MIF binds and then investigate the downstream signalling molecules. 

4.1.  Identifying the receptor/s to which MIF binds and induces IL-8 in 

BMSCs 

Depending on the cellular context and the disease involved, MIF signalling is 

mediated by its receptors CXCR2 (IL-8 receptor, ILR8) (313), CXCR4 (SDF-1 

receptor) (314), and/or CD74 (158). BMSCs have been reported to express all 

three receptors (315-317). I used flow cytometry to measure the expression of 

CXCR2, CXCR4 and CD74 and of CD105 (as a positive BMSC marker to 

confirm stromal cell phenotype). Figure 4.1 shows that BMSCs are positive for 

CD105, CD74 and CXCR4 but that CXCR2 is not expressed at a level 

detectable by flow cytometry. 

 

 

Figure 4. 1 Representative flow cytometry analysis of cultured BMSCs stained 
with monoclonal antibodies against CD105, CD74, CXCR2 and CXCR4. 

The black line indicates isotype control and the red line indicates cells stained with 
anti-CD105-FITC, anti-CD74-FITC, anti-CXCR2-viobright-FITC and anti-CXCR4-PE. 

 

To determine the role of each receptor in mediating MIF response in BMSCs, 

I used specific inhibitors of CXCR2, CXCR4 and CD74 and measured IL-8 

mRNA expression. Figure 4.2 shows that the inhibition of CXCR2 using 

SB225002, CXCR4 using AMD3100 and of CD74 using an anti-CD74 blocking 
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antibody (aCD74 Ab) were all able to decrease MIF-induced IL-8 mRNA 

expression in BMSCs. These results suggest that all three receptors (CXCR2, 

CXCR4 and CD74) are involved to some degree in regulating MIF-induced IL-

8 expression in BMSCs.  

 

 

Figure 4. 2 Bar graph comparing MIF-induced IL-8 mRNA expression in BMSCs 
treated with the inhibitors of CD74, CXCR2 and CXCR4 receptors. 

BMSCs were pretreated with vehicle control (DMSO) or inhibitors for CD74 (αCD74 
Ab at 10 µg/ml), CXCR2 (SB225002 at 100 nM) and CXCR4 (AMD3100 at 100 nM) 
for 30 minutes before being stimulated with 100 ng/ml MIF for 4 h. RNA was extracted 
and assessed for IL-8 mRNA by qRT-PCR. mRNA expression was normalised to 
GAPDH mRNA levels (n=4). * denotes p < 0.05. 

 

4.2. The primary MIF receptor involved in mediating IL-8 expression is 

CD74 

To determine the key receptor that mediates MIF-induced IL-8 in BMSCs, I 

attempted to inhibit CXCR2 and CXCR4, which are G-protein coupled 

receptors (GPCRs), using pertussis toxin (PTX), an inhibitor of GPCR 

signalling produced by the bacterium Bordetella pertussis (318). PTX would 

not inhibit CD74, as it is not a GPCR, but rather the cell surface form of the 

Class II invariant chain (158). MIF binding to CD74 results in the serine 

phosphorylation of its short intracytoplasmic domain, and in modulation of the 

phosphorylation of its signalling co-receptor, CD44 (159). I found that PTX 

mediated Inhibition of CXCR2 and CXCR4 did not reduce MIF-induced IL-8 in 
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BMSCs (Figure 4.3). These data suggest that the primary receptor involved in 

MIF signalling in human AML is CD74.  

 

Figure 4. 3 MIF-induced IL-8 upregulation is mediated through CD74, as seen in 
this bar graph which shows IL-8 mRNA expression levels for untreated, MIF-
stimulated, PTX-treated, PTX-treated/MIF-stimulated BMSCs.   

BMSCs were pre-treated for 45 min with pertussis toxin (PTX) (50 ng/mL) then 
stimulated with MIF (100 ng/mL) for 4 h. RNA was then extracted and assessed for 
IL-8 mRNA by qRT-PCR. mRNA expression was normalised to GAPDH mRNA levels 
(n=4). 

 

To determine if CD74 is the main receptor to which MIF binds on BMSCs to 

induce IL-8, I used lentiviral mediated knockdown (KD) of CD74 in AML patient 

BMSCs. BMSCs were infected with lentvirus containing an shRNA that 

targeted the 3’UTR of CD74. After 72 hours of incubation, BMSCs were 

analysed for CD74 knockdown. Figure 4.4 shows that both, mRNA and protein 

expression of CD74, after infection with control KD or CD74 KD lentivirus, are 

significantly reduced, thus confirming the successful knockdown of CD74. 
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A.                                                                   B. 

                        
 

Figure 4. 4 CD74 protein levels in control versus knockdown BMSC samples, 
measured by qRT-PCR (A) and flow cytometry (B).   

BMSCs from 4 patient samples were incubated with control shRNA or CD74 shRNA 
for 72 h and analysed for CD74 mRNA expression by qRT-PCR, as shown by the bar 
graph (A), and for protein expression, as measured by flow cytometry in (B). * denotes 
p < 0.05. 

 
 
Next, I wanted to examine if CD74 knockdown inhibited MIF induced IL-8 

expression. Indeed, the data in Figure 4.5 confirms that the aforementioned 

inhibits MIF induced IL-8 mRNA expression in AML patient BMSCs. Together, 

these results demonstrate that MIF induces IL-8 in BMSCs via CD74.  

 

 

Figure 4. 5 Bar graph depicting IL-8 mRNA expression levels after CD74 
knockdown in BMSCs, which inhibited MIF induced IL-8 expression.   

BMSCs from 4 patient samples were infected with control shRNA or CD74 shRNA for 
72 h then treated with recombinant MIF and analyzed for IL-8 mRNA expression by 
qRT-PCR. * denotes p < 0.05. 

 



113 
 
 

4.3. Pharmacological inhibition of MIF signalling pathways 

I next investigated the signalling cascade in BMSCs downstream of AML and 

MIF induced activation. It has been shown that MIF binding to CD74 activates 

downstream signalling through PI3K/AKT and MAPK signalling pathways and 

promotes cell proliferation and survival (170, 319). Both AKT and MAPK 

pathways have also been described to be downstream of CXCR2 and CXCR4 

in AML and bladder cancer cells, respectively (79, 320). Additionally, Lutzny 

et. al. recently described activation of a PKC pathway in murine stromal cells 

co-cultured with CLL cells (201).  

In my experiments, I pre-treated BMSCs with LY294002 – a PI3K/AKT 

inhibitor, with PD098059 – a MAPK kinase (MEK) 1 inhibitor, or with Ro-31-

8220 – a pan PKC inhibitor. This was done to determine which pathway(s) 

regulate AML induced BMSC IL-8 mRNA induction. I found that Ro-31-8220, 

the PKC inhibitor could significantly inhibit IL-8 expression (Figure 4.6A). 

Contrarily, LY294002 and PD098059 had little or no effect. As a control, I 

examined AML cells that had been incubated with the BMSCs, which also 

demonstrated that IL-8 in AML cells is not inhibited by Ro-31-8220, LY294002 

or PD098059 when cultured with BMSC (Figure 4.6B). 

A.                                                                      B. 

                           

Figure 4. 6 Bar graphs showing that the pharmacological inhibition of PKC 
pathways, inhibit AML induced IL-8 expression levels in BMSCs.   

BMSCs were pre-treated with vehicle control (DMSO), Ro-31-8220 (1µM), PD98059 
(10 μM) and LY294002 (10 μM) and then incubated with primary AML cell for 4 h. 
AML cells were removed and RNA extracted from both BMSC (A) and AML cells (B) 
and assessed for IL-8 mRNA by qRT-PCR. mRNA expression was normalised to 
GAPDH mRNA levels (n=4). * denotes p < 0.05. 
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Next, I wanted to determine the effect of Ro-31-8220, LY294002 or PD098059 

on MIF induced IL-8 in BMSCs. To do this I pre-treated BMSCs with the 

respective drugs for 30 minutes and stimulated them with 100ng/mL of rhMIF 

for 4 hours. I found that Ro-31-8220 and PD098059 both inhibited MIF induced 

IL-8, whilst LY294002 had no effect (Figure 4.7). These results suggested that 

both MAPK and PKC signalling may be integral to the process of MIF induction 

of IL-8 in BMSCs.  

 
 

Figure 4. 7 Bar graph depicting IL-8 mRNA expression after pharmacological 
inhibition of MAPK and PKC signalling pathways, to examine its effects on MIF 
induced BMSC IL-8 mRNA expression.   

BMSCs were pre-treated with vehicle control (DMSO), Ro-31-8220 (250 nM), 
PD98059 (10 μM) and LY294002 (10 μM) and then incubated with 100ng/mL MIF for 
4 h. RNA was extracted from BMSCs and assessed for IL-8 mRNA by qRT-PCR. 
mRNA expression was normalised to GAPDH mRNA levels (n=4). * denotes p < 0.05. 

 

4.4. MAPK and AKT do not play a role in MIF-induced IL-8 in BMSCs 

To clarify whether PKC or MAPK or both are activated in response to MIF, I 

performed Western blot analysis on one BMSC sample for specific 

phosphorylation of AKT (at s473) and MAPK in response to stimulation with 

MIF for specified time points. I found that, MAPK and AKT were 

phosphorylated in the MIF treated samples compared to the control sample 

(Figure 4.8A). I next wanted to confirm this in the same sample as well as 

another three BMSC samples. Contrary to what I initially observed, there was 

no activation of MAPK or AKT in any of the BMSC cells I used (Figure 4.8B). 

It was unclear as to why the above results were obtained. Therefore, since the 
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AKT and MAPK inhibitors had limited effect on MIF induced IL-8 mRNA 

expression, I concluded that MAPK or AKT may not play a key role in BMSC 

response to MIF.  

 

A. 

 

B. 

 

Figure 4. 8 A western-blot image showing that pMAPK and pAKT are not 
activated in response to MIF in BMSCs.  

(A) BMSC#1 was activated with rhMIF (100ng/ml) for 0, 2, 5, 10, 15 and 30 minutes. 
Protein was extracted and Western blotting was performed for pAKT, total AKT, 
pMAPK and total MAPK. Western blots were reprobed for B-actin to confirm equal 
sample loading, (B) Four different BMSCs were activated with rhMIF (100 ng/ml) for 
various times. Protein was extracted and Western blotting performed. Blots were 
probed for pAKT and pMAPK as well as total AKT and total MAPK. Blots were then 
re-probed for GAPDH to show equal sample loading. 
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4.5. PKCβ is activated in response to MIF in BMSCs 

Since Ro-31-8220 could inhibit MIF induced IL-8 mRNA expression in BMSCs, 

and PKC exists in multiple isoforms, I next wanted to determine which PKC 

isoform is activated in response to MIF in BMSCs. To do this I performed 

Western blot analysis on BMSCs for specific phosphorylation of PKC isoforms 

in response to MIF activation. I activated BMSCs with pre-conditioned AML 

cells for 15 minutes or MIF (100ng/ml) over various time points (0, 5 and 15 

minutes). Figure 4.9 shows that MIF and AML both induce phosphorylation of 

PKCα/βII and PKCβ in BMSCs.  

 

Figure 4. 9 A western-blot image showing MIF activates PKCα/βII and PKCβ in 
BMSCs.  

BMSCs were cultured with preconditioned AML for 15 minutes or rhMIF (100 ng/mL) 
for various times. Protein was extracted and Western blotting performed. Blots were 
probed for pPKCα/βII, pPKCβ, PKD/PKCμ, PKCδ and PKCδ/θ. Blots were then re-
probed for βactin to show equal sample loading. 

 

4.6. MIF-induced IL-8 in BMSCs is signalled through PKCβ 

As both pPKCα/βII and pPKCβ protein in BMSCs showed an increase in signal 

when treated with either AML or MIF, I wished to determine which isoform was 

responsible for MIF induced IL-8 expression. To do this I used isoform specific 
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inhibitors: Go6976 to inhibit PKCα/β and Enzastaurin to inhibit PKCβ, to block 

MIF-induced IL-8 expression in BMSCs. Both inhibitors showed similar levels 

of inhibition of MIF-induced IL-8 up-regulation (Figure 4.10). Together these 

results support the view that MIF-induced IL-8 expression in AML patient 

BMSCs requires PKCβ. 

 

 

Figure 4. 10 Bar graph comparing IL-8 mRNA expression levels in BMSCs 
treated with inhibitors to assess the effect of pPKCα/βII and pPKCβ on MIF-
induced IL-8 expression.   

BMSCs were treated with vehicle control (DMSO), Go6976 (1 μM) or enzastaurin (1 
μM) for 30 minutes before treatment with rhMIF (100 ng/ml) for 4 h. RNA was 
extracted and analysed for IL-8 mRNA expression by RT- PCR. * denotes p < 0.05. 

 

4.7. Knockdown of PKCβ inhibits MIF-induced IL-8 expression in 

BMSCs 

To confirm that PKCβ is required for MIF-induced IL-8 expression in BMSCs, 

I employed shRNA knockdown of the PKCβ mRNA and protein. To do this I 

infected BMSCs with control shRNA, or shRNA with a lentivirus targeting 

PKCβ RNA coding sequence. Figure 4.11 shows that shRNA inhibits PKCβ 

mRNA and protein expression. 
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A.                                                                               B. 

                       
 

Figure 4. 11 Results depicting changes in PKCβ expression after knockdown in 
BMSCs.   

BMSCs were infected with lentivirus containing control or PKCβ shRNA for 72 h and 
then analysed for (A) PKCβ mRNA using qRT-PCR and (B) protein expression, where 
the western blots were re-probed with β-actin to show equal sample loading, (n=2). * 
denotes p < 0.05. 

 

Next, I wanted to determine if the knockdown of PKCβ would inhibit MIF 

induced IL-8 expression. Figure 4.12 shows that PKCβ shRNA, indeed inhibits 

MIF-induced IL-8 mRNA and protein expression into culture supernatants of 

BMSCs, thus confirming that PKCβ influences MIF-induced IL-8 up-regulation 

in BMSCs of AML patients. 

A.                                                                           B. 

                     
 

Figure 4. 12 Bar graphs representing IL-8 mRNA expression levels in BMSCs, 
where PKCβ was knockdown. PKCβ knockdown inhibits MIF-induced IL-8 
expression in BMSCs.   

BMSCs were infected with lentivirus containing control shRNA, or PKCβ shRNA for 
72 h, followed by treatment with recombinant MIF. They were then analysed for IL-8 
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mRNA using qRT-PCR (A), and for IL-8 protein by ELISA (B) (n=3). * denotes p < 
0.05. 

4.8. Targeting the MIF-PKCβ-IL-8 axis disrupts BMSC induced 

protection of primary human AML cells 

To examine the effect of blocking IL-8 on BMSC-induced protection and 

survival of primary AML cells, I co-cultured primary AML cells with BMSCs 

(either control-KD or IL-8-KD). Firstly, I used lentivirus to deliver shRNA, 

targeted to knockdown IL-8. Figure 4.13A and 4.13B show that IL-8 mRNA 

and protein expression was inhibited in BMSCs after transduction of with the 

IL-8 knockdown virus. Next, I stimulated control-KD and IL-8-KD BMSCs with 

100 ng/ml rhMIF for four hours and found that the knockdown of IL-8 inhibits 

MIF induced IL-8 mRNA and protein expression in BMSC (Figure 4.13C).  

 

A.                                           B.                                    C. 

  
 

Figure 4. 13 Bar graphs showing IL-8 expression levels, following the 
knockdown of IL-8 in AML derived BMSCs.   

BMSCs were infected with lentivirus containing control shRNA or IL-8 shRNA for 72 
h. (A) RNA was extracted and analyzed for IL-8 mRNA expression by qRT-PCR. (B) 
Media was also taken and analysed for IL-8 protein expression by ELISA. (C) BMSCs 
were then treated with rhMIF (100ng/ml) for 4 hours. RNA was extracted and 
analysed for IL-8 mRNA expression by qRT-PCR, (n=6). * denotes p < 0.05. 

 

Next, I sought to determine the effect of IL-8 knockdown in BMSCs, on AML 

survival in co-cultures. To do this, I infected BMSCs with control KD and IL-8 

KD lentivirus and then cultured AML on these for 48 hours. Figure 4.14A 

shows that the knockdown of IL-8 in BMSCs significantly inhibits AML survival 

when in co-culture, compared to control KD BMSCs. I also used SB225002 to 
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inhibit IL-8 in culture. Figure 4.14B shows that AML survival is reduced in the 

cultures treated with SB225002.  

 

A.                                                           B. 

                    

Figure 4. 14 Results depicting that the IL-8 inhibition in BMSCs reverses AML 
survival in co-cultures.   

A) Bar graph showing AML blast numbers in co-cultures with control versus IL-8 KD 
BMSCs. BMSCs were infected with lentivirus containing control shRNA or IL-8 shRNA 
for 72 h. BMSCs were then co-cultured with AML cells from seven samples for 48 h. 
AML blast number was assessed using a trypan blue exclusion hemocytometer-
based counts (n=7). (B) Scatter graph depicting AML blast numbers. BMSCs were 
pre-treated with SB225002 (100 nM) for 30 minutes before the addition of primary 
AML cells from 10 samples for 48 hours. AML blast number was assessed using a 
trypan blue exclusion hemocytometer-based counts. * denotes p < 0.05. 

 

4.9. Summary of results chapter 4 

Altogether, these results identify a novel pro-tumoural regulatory pathway in 

the AML microenvironment, whereby AML derived MIF binds to receptors on 

BMSCs, and primarily through surface CD74 induced stromal cell production 

of IL-8 via a PKCβ dependent pathway. The schematic in Figure 4.15 

illustrates my proposed mechanism for the AML derived MIF stimulation of 

stromal IL-8.  
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Figure 4.15. Schematic of the proposed MIF/PKCB/IL-8 survival pathway in 
AML.  

In the AML BMM, AML-derived MIF stimulated BMSC expression of IL-8, through 
binding of cell surface CD74 and subsequent activation of PKCβ in the BMSC 
compartment.  
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5. Chapter 5: Hypoxia regulates AML-derived MIF 

 

In the previous chapter I showed that AML cells constitutively express high 

levels of macrophage migration inhibitory factor (MIF) which drives IL-8 

expression in BMSCs, which in turn supports AML cell survival and 

proliferation.  

The BMM is hypoxic and targeting hypoxia inducible genes has been shown 

to eliminate cancer stem cells in haematological malignancies (250). HIF1-

α expression in AML patient samples has been found to be associated with 

poor prognosis (244). Moreover, targeting HIF1α in AML cancer stem cells 

abrogated their colony forming activity (250). Recent data showed that 

HIF2α silencing impairs long term engraftment of HSC and inhibits 

proliferation of primary AML in vitro (251). Another study has shown that HIF2α 

is high in subsets of both human and mouse AML cells, and that 

overexpression of HIF2α accelerated disease progression in AML mouse 

models. However, it also highlights that patients with high HIF2α expression 

levels trend toward disease free survival (252). Together these data describe 

a complex interplay between hypoxia regulated transcription factors HIF1α 

and HIF2α and their regulatory role in normal HSCs and AML cells.  

Hypoxia has been identified as a potent inducer of the pro-inflammatory 

cytokine MIF in inflammatory diseases (321, 322). Hypoxia-induced MIF 

expression is dependent upon a hypoxia response element (HRE) in the 

5'UTR of the MIF gene (323). Specifically, a single nucleotide polymorphism 

(SNP) mapping to a functional HRE in the MIF locus, prevents induction of MIF 

by hypoxia (324). Consequently, these studies lead me to hypothesise a role 

for hypoxia in regulating MIF survival signals in AML.  

In the work presented in this chapter, I aim to determine if there is a connection 

between the hypoxic BMM and MIF in regulating AML survival. Then, I further 

examine the role of HIF1α and HIF2α in this response, and evaluate the 

functional consequences and potential therapeutic effect of inhibiting such a 
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pathway in vivo, in AML patient-derived xenograft models. AML patient 

samples used in this study are shown in table 5.1 below.  

Table 5. 1 AML patient sample characteristics used in chapter 5. 

 

 

5.1. AML cells derived from the bone marrow express higher levels of 

MIF compared to cells in the systemic circulation and spleen 

To determine whether high and constitutive expression of MIF in AML cells is 

a function of the BMM, I examined if the expression levels of MIF in AML cells 

from an AML BM sample would be lower compared to one from the peripheral 

blood (PB). This stage was threefold:  

(i) In silico: As a proof of concept, using a publicly available RNA 

sequencing data set (GEO accession number GSE49642) (325) for a 

panel of 43 AML patients (comprising of 22 unmatched AML samples 

from the PB and 21 AML samples obtained from BM aspirate), and with 

the help of my colleague Manar Shafat, a differential expression 

analysis of MIF in this data set was performed (described in section 

2.6). The analysis showed that MIF gene expression was significantly 

higher in AML samples from the BM compared to those from the PB 

(Figure 5.1A).  

 

(ii) In vitro: I obtained five patient matched primary AML samples (both BM 

and PB) from the haematology department at the NNUH and freshly 

extracted RNA from these samples. It was crucial that this step was 

performed as soon as the samples were obtained from the hospital, to 

avoid any changes in gene expression of these cells once they were 

AML# Age Sex WHO calssification Cytogenetics
AML#21 65 male AML with maturation Trisomy 13
AML#22 37 male AML without maturation Normal
AML#23 59 male AML with maturation 46,XY,t(8;21)(q22;q22)
AML#24 88 male AML with maturation Trisomy 8
AML#25 45 male AML with maturation Normal
AML#26 74 male AML with minimal differentiation 47 XY +13
AML#27 69 female AML with minimal differentiation failed
AML#28 59 male Acute monoblastic and monocytic leukaemia 46,XY, +21
AML#29 66 male AML with minimal differentiation  inv(16)(p13q22) and +8
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extracted from the BM/PB, and risk re-oxygenation. Samples were, 

therefore, transported to the research lab immediately after they were 

taken. I next performed cDNA synthesis and carried out qRT-PCR for 

MIF and GLUT1 expression. GLUT1 is a common target gene of HIF1α 

and HIF2α  (326, 327) and serves as a positive control for hypoxia in 

this model. I found that AML cells from the BM expressed significantly 

higher levels of MIF and GLUT1 than those taken from the PB (Figure 

5.1B).  

 
A.                 

   
B.    

     
 

Figure 5. 1 Scatter graph showing that BM AML cells express significantly 
higher MIF levels than circulating AML cells.   

(A) MIF gene expression (expressed in log2 RPKM values) was obtained from 
GSE49642 for 22 peripheral blood (PB) and 21 bone marrow (BM) AML patient 
samples. p-value was obtained by Wilcoxon rank-sum test. Line denotes the median 
value. (B) RNA was extracted from AML originating from the BM and PB of matched 
patients. MIF and GLUT1 mRNA expression was determined by qRT-PCR and 
normalised to B-actin. p-value was obtained by Wilcoxon rank-sum test. Line denotes 
the median value. 
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(iii) In vivo: To replicate the in silico and in vitro results in vivo, I used a 

patient-derived xenograft (PDX) model that has been set up by 

members of our research group. In this model, 9 primary AML patient 

BM samples were injected into female NSG mice and allowed to engraft 

in their BM and to infiltrate the spleen. Animals were then sacrificed 

once they met pre-defined severity end points. The experimental design 

of this in vivo model is depicted in Figure 5.2A. To determine if AML 

cells were engrafted in the BM and spleen of these animals, I isolated 

total cells from both organs and used a fraction of these cells to 

determine engraftment, by measuring human CD33 and CD45 levels in 

these samples. The second fraction was kept for RNA analysis. Figure 

5.2B confirms that the primary AML successfully engrafted the BM and 

spleen of NSG mice (engraftment presented as % of CD33-positive 

CD45-positive cells/total number of cells. Samples with values above 

1% were considered to have been successfully engrafted). 

A. 

 

B.  

 

Figure 5. 2 Experimental plan of the patient-derived xenograft (PDX) model, and 
results that indicated successful engraftment. 

(A) 2x106 primary AML cells (from the BM of 7 AML patients) were injected into the 
tail-vein of NSG mice. At the end of the experiment, AML cells were isolated from the 
BM and spleen for RNA analysis (B) Engraftment was measured using flow cytometry 
after double staining with human CD33 and CD45, the dot plot presents each AML 
engraftment into NSG mice and is shown for BM and spleen. 
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I next extracted RNA from the second fraction of cells and used specific qRT-

PCR primers to analyse human MIF and GLUT1 gene expression levels in 

AML cells engrafted in the BM, and in AML cells engrafted in the spleen. Figure 

5.3A shows that MIF had a lower deltaCT (dCT) value in AML cells from the 

BM, compared to those from the spleen (the lower the dCT value, the higher 

the gene expression level). Furthermore, GLUT1 expression was significantly 

higher in samples from the BM compared to those from the spleen (Figure 

5.3B). 

 

A.                                                               B.  

                     

Figure 5. 3 Scatter graphs comparing MIF and GLUT1 RNA expression levels in 
the BM and spleen of the PDX animals.   

RNA was extracted from AML cells isolated from the BM and spleen as explained in 
Figure 5.2. RNA was analysed for (A) MIF mRNA and (B) GLUT1 mRNA using human 
specific primers. mRNA differences are presented as delta cycle threshold (dCT), 
normalised to human B-actin.  

 

5.2. MIF is part of a hypoxic gene signature in AML cells isolated from 

the BM, but not those isolated from the PB  

As the BM has been shown to be hypoxic (224-227) and as hypoxia has been 

shown to regulate the expression of MIF in various cells (321, 326, 328), I 

hypothesised that hypoxia was responsible for the higher expression of MIF in 

AML cells located in the BM. In 2014, Wierenga and colleagues set up a study 

to identify the downstream molecular mechanisms of hypoxia in regulating 

HSC function. They were able to identify common and unique hypoxia, HIF1α 
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and HIF2α gene signatures through exposure of CD34+ cord blood cells to 

hypoxic conditions, and through the overexpression of HIF1α and HIF2α in 

CD34+ cord blood cells (293). Using the hypoxia specific gene list that they 

generated and with the help of my colleague Manar Shafat, I determined the 

differential expression of these genes in the data set used in Figure 5.1A. The 

aim here was to (i) confirm if AML cells from the BM would be enriched for 

hypoxia related genes compared to AML cells from the PB, and (ii) whether 

MIF is part of this hypoxic signature.  

The analysis generated three lists of genes that are differentially expressed in 

the BM compared to the data set used in Figure 5.1A. The analysis revealed 

that a set of hypoxia-related genes were preferentially expressed in AML cells 

in the BM, compared to the PB, with MIF being amongst a significantly 

enriched group of genes.  

5.3. Hypoxia induces MIF in primary AML cells 

Next, I wanted to determine whether hypoxic conditions could induce 

expression of MIF in AML cells, in vitro. I established hypoxic culture 

conditions in the OCI-AML3 cell line and AML cells, either via treatment 

with hypoxia-mimicking agents, cobalt chloride (CoCl2) and desferrioxamine 

(DFO) for 4 hours, or by culturing the cells in a hypoxic chamber (1% O2) for 

24h. I then assayed for MIF mRNA using qRT-PCR, and for protein secretion 

using an MIF specific ELISA. Figure 5.4 shows that CoCl2 treatment and 1% 

O2 significantly induced MIF mRNA expression, while only DFO and 1% O2 

significantly induced MIF protein secretion in the OCI-AML3 cell line and 

primary AML samples. 
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A.                                                               B. 

 
 

Figure 5. 4 Bar graphs depicting MIF mRNA and protein expression levels in 
AML cells following culture under hypoxic conditions in vitro.  

OCI-AML3 and primary AML cells (n=3) were either treated with CoCl2 (100uM) or 
DFO (150uM) for 4 hours, or cultured under hypoxic conditions for 24 hours, (A) RNA 
was extracted and MIF mRNA expression was determined with qRT-PCR. (B) Media 
was collected from the respective conditions described in (A) and MIF protein 
secretion was determined by target-specific ELISA, (n=4). * denotes p < 0.05. 

 

5.4. HIF1α is a candidate regulator of MIF expression in Primary AML 

cells 

Next, I wanted to determine the contribution of HIF1α or HIF2α in regulating 

the expression of MIF in the BM. The differential expression analysis described 

in section 5.2 for hypoxia, was also performed with HIF1α or HIF2α gene lists 

to determine the significantly upregulated HIF1α and HIF2α genes in AML BM 

samples compared to AML PB samples (GEO accession number GSE49642). 

The analysis showed that MIF expression is part of the HIF1α signature, but 

not of HIF2α. Based on these findings, I hypothesise that HIF1α plays a 

significant role in upregulating MIF in primary AML.  

5.5. HIF1α, but not HIF2α is stabilised and induces MIF in primary AML 

cells in response to hypoxia 

To further characterise the role of HIF1α and HIF2α in primary AML cells, I 

used western blotting to assay for HIF1α and HIF2α protein expression in AML 

cells cultured under normoxic and hypoxic conditions (1% O2), using a hypoxic 

chamber. It has been previously reported that under prolonged hypoxia, HIF1α 
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protein degrades, while HIF2α exhibits minimal change (329), Hence, I began 

with a short incubation time of 4 h, to detect changes in HIF1α and HIF2α 

levels. I found that HIF1α was stabilised after 4h under hypoxic conditions in 

the OCI-AML3 cell line and in three primary AML blast samples, but HIF2α 

was undetectable at 4 hours, and detectable but not stabilised upon 12 h of 

hypoxia (figure 5.5). Moreover, the Western blots showed that HIF2α was 

expressed under normoxia in all the samples tested, as revealed by the 

occurrence of multiple bands at 90 – 120 kD in the western blot showed. Other 

studies have observed detection of multiple bands of HIF2α protein (330, 331).  

 

 

Figure 5. 5 Western blot demonstrating the stabilisation of HIF1α but not 
HIF2α in AML cells under hypoxic culture conditions.  

OCI-AML3 and primary AML cells were cultured under hypoxic conditions for 4 hours 
to detect HIF1α, and for 12 hours to detect HIF2α. Protein was then extracted from 
the cells and Western blotting was performed. 

 

5.6. MIF is not induced in normal non-leukaemic CD34+ cells 

Leukaemic cells and normal HSCs have been shown to co-exist within one 

compartment in the BM of AML patients (332). Hence, it is important to 

determine the effect of hypoxia on MIF expression in normal CD34+ cells. I 

obtained normal CD34+ cells from peripheral blood venesections, from 

patients without AML (from patients with genetic haemachromatosis, 

undergoing therapeutic venesection, but with non-raised ferritin levels). Firstly, 

I determined the expression of MIF in CD34+ cells compared to AMLs. Figure 

5.6 shows that at the mRNA level CD34+ cells express significantly higher 
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levels of MIF mRNA compared to AML cells, however, on the protein level, 

CD34+ cells secrete less MIF protein than AML cells as confirmed by ELISA.  

 

A.                                                                 B.  

                                  

Figure 5. 6 Bar graphs depicting differences in the expression of MIF, mRNA 
and protein, in CD34+ cells versus AML cells.  

0.25x106 AML or non-malignant CD34+ cells were cultured under normal culture 
conditions for 24h. (A) RNA was extracted and MIF mRNA expression was 
determined with qRT-PCR. (B) Culture media was assayed for MIF cytokine 
secretion, (AML, n=4, CD34+, n=5). * denotes p < 0.05. 

 

Next, I cultured CD34+ cells under normoxic or hypoxic conditions using a 

hypoxia chamber for 24h. Figure 5.7 shows that MIF mRNA expression and 

protein secretion was not induced in non-malignant CD34+ cells under 

hypoxia. This finding demonstrates that hypoxic regulation of MIF is a tumour 

specific event.  

 

A.                                                                    B.  

    

Figure 5. 7 Bar graphs depicting the expression of MIF mRNA and protein in 
CD34+ cells under normoxic and hypoxic conditions. 
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Non-malignant CD34+ cells were cultured under normoxic and hypoxic conditions for 
24 hours. (A) RNA was extracted and MIF mRNA expression was determined with 
qRT-PCR (B) culture media was assayed for MIF cytokine secretion, (n= 5). Minor 
differences in the MIF expression levels denote that hypoxia does not induce MIF 
expression in normal CD34+ cells.  

 

5.7. Silencing of HIF1α, but not of HIF2α, significantly reduces MIF 

expression in primary AML cells 

To further characterise the role of HIF1α in regulating MIF, and to confirm the 

specificity of its response to HIF1α versus HIF2α, I used lentiviral-mediated 

knockdown (KD) of HIF1α or HIF2α in AML patient cells. Lentiviral vectors 

provide a tool to express short hairpin RNA (shRNA) to induce stable and long-

term gene silencing in both dividing and non-dividing cells (333). Figure 5.8A 

confirms the reduced mRNA expression of HIF1α and HIF2α after infection 

with HIF1α-KD and HIF2α-KD lentivirus. Furthermore, Figure 5.8B shows a 

representative western blot of reduced HIF1α or HIF2α stabilisation under 

hypoxic conditions in KD cells when compared to control-KD cells. These 

results confirm successful knockdown of HIF1α or HIF2α in AML cells.  

A.                                                    B.  

                      

Figure 5. 8 HIF1α or HIF2α lentiviral knockdown (KD) in primary AML cells 

AML cells were infected with lentivirus against HIF1α or HIF2α for 72h, (A) lentiviral 
knockdown (KD) in AML cells was determined by qRT-PCR for mRNA expression (B) 
HIF1α KD, HIF2α KD or control-KD AML cells were cultured under hypoxic conditions 
for 4 and 12 hours to detect HIF1α KD and HIF2α KD respectively, then western 
blotting performed for protein expression (n=4). 
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Next, I wanted to determine the effect of silencing HIF1α or HIF2α on MIF 

expression in AML cells. I cultured HIF1α KD, HIF2α KD or control ShE-KD 

cells under normoxic conditions and assayed for basal expression of MIF 

mRNA and protein. I found that basal MIF mRNA expression was reduced in 

both HIF1α KD and HIF2α KD AML cells (Figure 5.9A). However, MIF protein 

secretion was only significantly reduced in HIF1α KD AML cells, but not in 

HIF2α KD AML cells (Figure 5.9B). Moreover, when HIF1α KD cells were 

cultured under hypoxic conditions for 24h, the MIF induction under hypoxia 

was significantly inhibited (figure 5.9C). I could also visually observe this in 

culture, as control (ShE) and HIF2α KD cells continued to grow and survive, 

while HIF1α KD cell counts remained low over culture periods. Specifically, at 

5 days of culture, the HIF1α KD AML blast cells reduced leukaemic survival 

by 65% compared to control cells while HIF2α KD had no impact on cell 

survival (Figure 5.9D). Together, these results demonstrate that HIF1α 

regulates MIF secretion in AML cells under hypoxic conditions.  
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A.                                                              B.  

                      

C.                                                              D. 

              

Figure 5. 9 Bar graphs showing the differences in basal MIF expression in 
HIF1α or HIF2α lentiviral knockdown (KD) primary AML cells.  

(A) RNA was extracted from cultured AML HIF1α or HIF2α-KD, or control-KD cells, 
and MIF mRNA expression was determined with qRT-PCR. (B) Protein expression in 
culture media from the cells in A was determined by ELISA (C) HIF1α KD and control-
KD cells were cultured under normoxic or hypoxic conditions for 24 h, MIF protein 
secretion was then evaluated using ELISA (D) Control-KD, HIF1α or HIF2α KD AML 
cells were cultured for 5 days post-infection, and cell survival was measured with the 
CellTiter-Glo Luminescent Cell Viability Assay, (n=4). * denotes p < 0.05. 

 

5.8. MIF functions to promote AML tumour survival in vitro 

To understand the importance of MIF for the survival of AML cells in vitro, I 

carried out lentiviral-mediated knockdown of MIF in AML cells. I first confirmed 

the reduced mRNA and protein expression of MIF, prior to functional analysis 

of the cells (Figures 5.10A and 5.10B). Next, to determine the effect of MIF KD 

on cell survival, I cultured the cells under normal conditions for 5 days post 

infection and found that MIF-KD significantly reduced survival of OCI-AML3 

cells and of primary AML cells in vitro (figure 5.10C); it also compromised the 
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leukaemic colony-forming ability of primary AML cells in methylcellulose media 

assays (Figure 5.10D).  

 

A.                           B.                               C.                          D. 

    

Figure 5. 10 Figure 5.12 Bar graphs showing that lentiviral Knockdown of MIF 
in AML cells reduces cell survival and colony formation.  

OCI-AML3 cells and primary AML cells (n=3) were infected with Lentivirus against the 
MIF gene; the successful knockdown of MIF was confirmed by (A) mRNA expression 
analysis with qRT-PCR, and (B) secreted MIF protein analysis using ELISA. (C) ShE-
KD and MIF-KD cells were cultured in basal media for 5 days post-infection; cell 
survival was measured using the CellTiter-Glo Luminescent Cell Viability Assay. (D) 
Colony-forming assays of ShE-KD and MIF-KD cells were performed in 
methylcellulose media. * denotes p < 0.05. 

 

To determine if the reduced cell survival was due to an increase in apoptosis, 

I stained MIF KD AML cells with Annexin V and performed flow cytometry. 

Figure 5.11 shows that knocking down MIF in AML cells induced apoptosis, as 

evidenced by an increase in the positive expression of Annexin V, which can 

be seen in Figure 5.11 below (percentage of cells in the bottom right quadrant 

increased from circa 10% to 30% AV positive cells). 
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A.                                                                       B.  

  

Figure 5. 11 Scatter plots depicting the apoptosis of AML cells, driven by MIF 
knockdown.  

Apoptosis assays of ShE-KD and MIF-KD cells were performed using annexin V (AV) 
and propidium iodide (PI) (A) representative scatter plot of AV PI staining of control 
ShE-KD and MIF-KD AML cells (n=5) after 5 days post lentiviral infection. Bottom 
right quadrant represents apoptotic cells (B) Column scatter graph showing % PI/AV 
positive cells of control ShE-KD and MIF-KD AML cells. P value indicated on the 
figure.  

 

5.9. The leukaemic cell HIF1α-MIF axis functions to promote tumour 

proliferation in vivo 

Next, I wanted to determine the role of HIF1α-regulated MIF in AML 

progression in vivo. To track AML disease progression in vivo, I transduced 

OCI-AML3 cells with a luciferase construct that is detectible by 

bioluminescence (BLI), upon injecting the animals with luciferin. Successful 

infection of OCI-AML3 with the luciferase construct was determined by qRT-

PCR and flow cytometry. These cells will be referred to as OCI-AML3-luc. 

Next, I infected OCI-AML3-luc cells with control lentivirus (ShE-KD) or HIF1α-

KD or MIF-KD lentivirus. NSG mice (6-8 weeks) were injected with 0.5x106 

OCI-AML3-luc cells from ShE-KD, HIF1α-KD or MIF-KD cultures. Animals 

were imaged at day 21 and 28 post-injection. The time points were chosen 

based on experience gained from experimentation with previous AML models 

in our research group. I found that at both time points mice transplanted with 

HIF1α-KD and MIF-KD cells had lower BLI detection, and thus, lower tumour 
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burden compared to control ShE-KD transplant animals (Figures 5.12A and 

5.12B).  

 

A.                                                                                     B.  

 

 

Figure 5. 12 In vivo bioluminescence images depicting disease progression in 
HIF1α and MIF KD AML xenograft model.  

0.5x106 control-KD (ShE) OCI-AML3-luc and HIF1α-KD or MIF-KD OCI-AML3-luc 
cells were injected into NSG mice (n=4 in each group). NSG mice were monitored for 
disease progression using bioluminescence and sacrificed upon signs of disease. (A) 
Bioluminescence images of recipient mice, with control-KD (ShE) and HIF1α-KD (HF) 
OCI-AML3-luc cells on day 21 and day 28 respectively. (B) The mean 
bioluminescence intensity (BLI) at day 28 of each image was determined with Image 
J software. P value indicated on the figure.  

 

Animals were sacrificed at pre-defined severity end points. I then determined 

AML cell engraftment in the BM by using flow cytometry, by determining 

human CD33 and CD45 expression (Figure 5.13A). Finally, I found that NSG 

mice that were engrafted with HIF1α-KD or MIF-KD OCI-AML3-luc cells had 

significantly increased survival compared to control animals as evident from 

the Kaplan-Meier survival curves shown in Figure 5.13B. 
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A.                                                                       B. 

             

Figure 5. 13 Results summarizing that the inhibition of AML HIF1α and MIF 
significantly increases survival of AML derived xenograft models. 

(A) Column scatter graph showing engraftment of OCI-AML3-Luc cells, engraftment 
was measured using human CD33 and CD45 expression. In the dot plot each AML 
engraftment into NSG mice is shown for control-KD (ShE), HIF1α-KD and MIF-KD 
cells (B) Kaplan-Meier survival curves for NSG mice injected with OCL-AML3-luc 
HIF1α-KD cells or OCI-AML3-luc control-KD cells.  

  

5.10. Pharmacological inhibition of MIF in vivo increases survival of 

AML xenograft models.  

To evaluate the consequences of pharmacological inhibition of MIF in human 

AML cells on disease progression, I used an AML PDX model, hereby mice 

were injected with cells from one primary AML sample. The experiment mainly 

aimed to evaluate the effect of ISO-1 (a specific MIF inhibitor, utilised in 

experiments presented in chapter 3 and chapter 5) on animal survival. 

However, since MIF has been reported to be a ligand of CXCR4 (334), and its 

inhibition hinders the migration of lung and prostate cancer cells (165, 335), I 

hypothesised that the inhibition of MIF with ISO-1 might affect the retention 

and mobilisation of AML cells to the PB in a similar manner to the inhibition of 

the SDF-1/CXCR4 axis by AMD3100 (336).  

At day 17 post injection of AML cells, mice were imaged to confirm the 

establishment of AML tumour in the BM. Animals with established tumour were 

randomly assigned to be treated with ISO-1 for 7 days (10mg/kg/day, IP) or 

vehicle control (Figure 5.14A). On the first day of treatment, 50uL of PB were 
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collected from the tail-veins of the animals at 4, 8 and 24 hours. Total cells 

were isolated by centrifugation and double stained for human CD33 and CD45. 

I found that there was no significant difference in the percentage of PB cells 

positive for human CD33 and CD45, between treated and untreated animals 

at all three time points. This suggested that the ISO-1, at least at the chosen 

dose, did not affect AML mobilisation from the BM to the PB. Moreover, the 

percentage of human CD33 and CD45 positive cells declined in both, treated 

and untreated animals (figure 5.14B). However, the decline was not 

statistically significant, and could be attributed to more cells infiltrating the 

spleen, and less cells circulating in the PB, as evident from the spleen 

engraftment data in figure 5.14C. Figure 5.16C shows that AML cells were 

successfully engrafted, as confirmed by positive human CD33 and CD45 

expression. Finally, I found that treatment with ISO-1 for 7 days significantly 

improved the survival rate of the AML PDX animals, compared to the treatment 

control (Figure 5.14D). 
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A.                                                        B. 

  

C.                                                              D.  

   

Figure 5. 14 Summarised results of experiments showing that the 
pharmacological inhibition of MIF in an AML patient derived xenograft model 
(PDX) does not affect AML mobilisation, but significantly increases animal 
survival.  

(A) Representative diagram of the PDX model showing ISO-1 treatment timeline. (B) 
Percent human CD33 and CD45 positive cells in the PB of control and in ISO-1 
treated animals at 4, 8 and 24 hours post ISO-1 or vehicle treatment. (C) Column 
scatter graph showing engraftment of primary AML cells. Engraftment was measured 
using flow cytometry to detect human CD33 and CD45 expression. In the dot plot 
each AML engraftment into NSG mice is shown for the BM and spleen for either 
control or treated animals. (D) Kaplan-Meier survival curves for NSG mice treated 
with either vehicle control or ISO-1.  

 

5.11. Summary of results chapter 5  

In this chapter, I demonstrated that hypoxia, acting through HIF1α, is 

responsible for the up-regulation of MIF in primary AML cells, and their 

proliferation and survival in the tumour microenvironment. I found that AML 

cells from the BM have increased levels of MIF compared to AML cells from 

the PB or spleen. I found that MIF is up-regulated under hypoxic conditions at 

both, the transcriptional and protein levels in AML, but not in normal CD34+ 
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cells. Functionally, it can be deduced that the hypoxia/HIF1α/MIF axis plays 

an important role in tumour survival and in proliferation of AML within the BM 

microenvironment in vivo, as inhibition of this axis improved animal survival in 

AML-derived xenograft models. 
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6. Chapter 6: AML cells induce senescence in BMSCs 
through the upregulation of p16 

 

As reviewed in section 1.6, recent investigations into the role of senescence 

in tumorigenesis have shown that acute senescence contributes to the 

prevention of cancer. However, more chronic forms of senescence promote 

tumour development and progression through the senescence associated 

secretory profile (SASP). AML is primarily a disease of old age and is mainly 

managed through chemotherapy. Moreover, chemotherapy has been shown 

to induce senescence that persists after therapy is discontinued (282), and 

recently, BMSCs from MDS and AML patients have been shown to be 

senescent (337). These findings make a strong argument to hypothesise that 

a senescent BM microenvironment may be essential for the development of 

AML and its relapse after chemotherapy.  

In this chapter I present data investigating a novel aspect of AML remodelling 

of BMSCs, namely AML-induced senescence in BMSCs. Table 6.1 shows the 

characteristics of the AML samples used in this study.  

Table 6. 1 AML patient sample characteristics used in chapter 6.  

 

 

6.1. Proteome profile arrays from AML-BMSC co-cultures show an 

upregulation of SASP related factors 

From the cytokine array data of primary AML, primary BMSCs and AML/BMSC 

co-cultures that were described in chapter 3 (section 3.3), I found that six 

cytokines were significantly up-regulated in the AML/BMSC co-cultures 

(Figure 3.5). Further analysis showed that four of these (IL-6, IL-8, MIP-1a and 

MIP-3a) were shown to be associated with SASP in studies conducted on age-

AML# Age Sex WHO calssification Cytogenetics
AML#25 45 male AML with maturation Normal
AML#26 74 male AML with minimal differentiation 47 XY +13
AML#27 69 female AML with minimal differentiation failed
AML#28 59 male Acute monoblastic and monocytic leukaemia 46,XY, +21
AML#29 66 male AML with minimal differentiation  inv(16)(p13q22) and +8
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related diseases, including cancer (274, 338). In the analysis in Figure 3.5, I 

aimed to account for AML derived cytokines by subtracting the data from the 

AML cultures from the AML/BMSC co-cultures. Moreover, and as I have 

previously shown, BMSCs express high levels of IL-8 and IL-6 (Figure 3.8 and 

Figure 3.10). This led me to hypothesise that AML cells may be inducing 

BMSCs to become senescent, and to secrete SASP related factors that 

promote AML survival in the tumour microenvironment.  

6.2. BMSCs from late passages become senescent in culture 

In section 3.1, I reported that after 6-8 weeks of passaging BMSCs, cell 

proliferation started to slow down, and that their morphology changed from a 

fibroblastic, spindly shape to a flatter, rounder shape with cell-free gaps. This 

morphological phenotype has been reported to be an attribute of senescent 

cells (339, 340). Since the aim of the work reported in this chapter is to 

determine if primary AML cells induce senescence in BMSCs in vitro, I had to 

ensure that the BMSCs used were not senescent. Thus, before performing 

any co-cultures, in addition to observing morphology and taking note of growth 

rate, I checked for β-Galactosidase staining in the BMSCs. Figure 6.1 presents 

images of BMSCs that have undergone senescence in culture and are positive 

for β-Galactosidase staining. Therefore, I deemed theme unsuitable for use in 

my co-culture studies. The BMSCs that I used in the following experiment were 

passaged 2-4 times, and only BMSCs that did not stain for β-Galactosidase 

were employed.  
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Figure 6. 1 Light micrographs of senescent patient-derived BMSCs.  

Late passage BMCSs were plated in 35mm dishes close to confluence and β-
Galactosidase staining was performed. A blue stain indicated senescent BMSCs 
(n=3).  

 

6.3. AML cells increase senescence associated β-Galactosidase 

staining in patient derived BMSCs 

To determine if primary AML cells induce senescence in patient derived 

BMSCs in vitro, I cultured non-senescent BMSCs alone or in co-culture with 

primary AML cells for 6 days, and assayed for β-Galactosidase staining. As a 

positive control for senescence, I included a culture of BMSCs treated with 

0.05uM daunorubicin (DNR). I performed this experiment on 3 different 

BMSCs, using 3 different primary AML samples. Before staining, I aimed to 

remove the AML cells off the BMSCs, however, some AML samples were 

highly adhesive to the BMSCs and were not completely removed. I found that 

DNR and AML cells, both, induce a change in the general morphology of 

BMSCs, and increase β-Galactosidase staining; in particular, the blue stain is 

darker in the BMSCs in close proximity to the AML cells (Figure 6.2). These 

observations suggest that AML cells could be inducing senescence in BMSCs 

in vitro.  
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Figure 6. 2 Light micrograph images showing that primary AML cells induce 
β-Galactosidase staining in primary BMSCs. 

BMSCs were treated with 0.05uM daunorubicin (DNR) or co-cultured with 0.5x106 
primary AML cells for 6 days, AML cells were removed and β-Galactosidase staining 
performed. The blue staining indicates senescent BMSCs (n=3). 
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6.4. AML cells induce p21 and p16 mRNA in BMSCs.  

Studies have shown that the contributions of the p53–p21 and the p16Ink4a–

RB effector pathways, to the initial growth arrest in cells can vary depending 

on the type of stress (338). However, it is thought that the p53/p21 pathway 

establishes growth arrest. On the other hand, the pRB/p16 pathway reinforces 

the irreversibility of senescent cells by inhibiting cell cycle progression, and is 

important for the full senescence of stromal cells (341). To determine the 

contribution of each of the effector pathways to AML-induced senescence in 

BMSCs, I co-cultured primary BMSCs with primary AML cells in transwell 

inserts for 6 days. This allowed me to prevent AML adhesion to BMSCs, and 

AML contamination to the BMSC compartment. I found that primary AML cells 

induced p21 and p16 mRNA expression in BMSCs (Figure 6.3). At this point, 

I decided to focus on investigating the role of p16 in AML-induced senescence, 

as the p16 axis is permanently activated under persistent stress stimuli.  

 

Figure 6. 3 Bar graphs showing that primary AML cells increase p21 and p16 
mRNA expression in primary BMSCs.  

BMSCs were co-cultured with 0.5x106 primary AML cells for 6 days using a transwell 
insert. mRNA was extracted and qRT-PCR was performed using p21 and p16 
primers. mRNA expression is normalised to β-actin (n=3). * denotes p < 0.05. 
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6.5. Knockdown of p16 in BMSCs inhibits AML induced p16 expression 

in BMSCs. 

To decipher the contribution of BMSC p16 towards AML cell survival in co-

culture, I used lentiviral-mediated knockdown of p16 in primary BMSCs. Figure 

6.4A confirms reduced p16 mRNA in BMSCs 72-hours post infection. To 

confirm knockdown at a protein level, and to determine if this knockdown is 

consistent with the well-defined AML-induced p16 activation in BMSCs, I 

carried out a western blot on BMSCs with p16 knockdown (p16 KD) and 

control (ShE), that were co-cultured with AMLs. I found that p16 knockdown in 

BMSCs inhibited AML induced p16 expression in BMSCs (Figure 6.4B). This 

also confirmed successful knockdown of p16 in primary BMSCs. 

A.                                                     B.  

     

Figure 6. 4 Results from experiments that reveal that the knockdown of p16 in 
BMSCs inhibits AML induced p16 expression.  

Control (ShE) or p16 KD BMSCs were co-cultured with 0.5x106 primary AML cells for 
6 days using a traswell insert. (A) mRNA was extracted and qRT-PCR performed 
using p16 primers, mRNA expression is normalised to β-actin (n=3) and (B) protein 
was extracted from BMSCs and western blotting was performed for p16 expression 
(n =2). 

 

6.6.  p16 deficient BMSCs have reduced ability to support AML survival 

in vitro 

I co-cultured AML cells from 5 primary AML patients on five different BMSCs 

that had either been infected with ShE control lentivirus or with p16-KD 

lentivirus. I found that AML cells co-cultured with p16-KD BMSCs had 
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significantly reduced survival compared to AML cells co-cultured with ShE-

control BMSCs (Figure 6.5).  

 

Figure 6. 5 Dot plot depicting the survival of AML cells co-cultured with p16 
deficient BMSCs.  

AML cells (0.25x106) were co-cultured with control (ShE) or p16 KD primary BMSCs 
in 12 well plate for 6 days (n=5). AML blast number was assessed using trypan blue 
exclusion hemocytometer-based counts. * denotes p < 0.05. 

 

6.7.  In vivo modelling of the senescent BM phenotype using the p16-

3MR mouse model 

A number of murine models have been developed to study p16 driven 

senescence in vivo (265). Of importance to this work is the p16-3MR 

senescence reporter mouse, developed by our collaborator Dr J Campisi 

(262). Dr Campisi’s research team developed a transgenic mouse model to 

label and eliminate cells undergoing p16 driven senescence. In this model, the 

p16 senescence-sensitive promoter drives expression of 3MR, a fusion protein 

that is composed of renilla luciferase (renLuc) and monomeric red fluorescent 

protein (RFP) reporters, and of herpes simplex virus-1 thymidine kinase (HSV-

TK), which converts ganciclovir (GCV) into an apoptosis inducer in cells where 

the p16 promotor is activated.  

The luciferase reporter allows the visualisation of senescent cells from live 

p16-3MR, using bioluminescence; RFP permits the identification and isolation 

of senescent cells by flow cytometry; HSV-TK facilitates the depletion of 

senescent cells in vivo (Figure 6.6). Eventually, our group would use the p16-
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3MR mouse model, and engraft MN1 transduced lineage depleted murine 

mononuclear cells to generate AML in vivo. The initial step to realise this would 

be to determine if MN1 cells would induce p16 expression in murine BMSCs 

derived from young, 6 to 8 weeks old p16-3MR mice, in vitro.  

 

Figure 6. 6 Schematic of the p16-3MR transgene.  

(A) The tri-modal reporter is under the control of the p16 promoter, which allows the 
visualisation/tracking, isolation and selective depletion of senescent cells in vivo, due 
to the renilla luciferase (renLuc), monomeric red fluorescent protein (mRFP), and 
Herpes simplex virus thymidine kinase (HSV-TK) proteins, respectively. (B) A 
diagram explaining the mechanism by which Gancyclovir (GCV) is phosphorylated by 
HSV-TK. This forms a purine analogue that inhibits DNA polymerase and causes 
chain termination and apoptosis of the affected senescent cells.  

 

6.8. Isolation and culturing of p16-3MR BMSCs 

Once total BM cells from the femurs and tibias of animals were isolated, as 

described in the methods section 2.5.5, I suspended the cells in DMEM 

supplemented with 10% FCS and pen-strep, and cultured them in a T-75 flask. 

The cells were allowed to adhere for 48 hours in normal culture conditions. At 

72-hours, I discarded cells that did not adhere, as this was indicative of dead 

or dying cells, and added 12-15mL fresh growth media. I found that adherent 

BMSCs could be observed at week 1, and gradually become confluent over 2 
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weeks (Figure 6.7). I found that replacing media with fresh media every third 

day is essential to preserve the replicative capacity of cells, and to prevent 

culture-stress or contact inhibition growth arrest. When needed, I trypsinised 

the cells and plated them into 12 well plates for further experimentation.  

 

 

Figure 6. 7 Light microscopy images from the In vitro cultures of p16-3MR 
derived BMSCs.  

Representative images of two samples of p16-3MR BMSCs in culture at specified 
days, post isolation.  

 

6.9. MN1 AML cells induce p16 expression in p16-3MR derived BMSCs 

After successful expansion of the p16-3MR BMSCs, I wished to determine if 

murine AML MN1 cells, could induce p16 expression in p16-3MR BMSCs. 

Thus, I co-cultured MN1 cells with p16-3MR BMSCs in either direct contact 

(DC) or in transwell inserts (TW) for 7 days. Media was replaced on day 3. 

Using western blotting, I determined p16 protein expression in p16-3MR 

BMSCs. Figure 6.8 shows that MN1 cells induced p16 protein expression in 
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p16-3MR BMSCs. These preliminary results provide the scientific rationale for 

an initial in vivo syngeneic MN1 – p16-3MR senescence model.  

 

 

Figure 6. 8 Western-blots showing that MN1 AML cells induce p16 expression 
in p16-3MR derived BMSCs in vitro.  

1x105 P16-3MR derived BMSCs were cultured with 0.5x106 murine MN1 AML cells 
for 7 days, and p16 expression determined by western blotting. Blots were then re-
probed for β-actin as a control (n=1).  

 

6.10. Summary of chapter 6 

In summary, the results presented in this chapter show that AML cells induce 

a senescent phenotype in BMSCs, accompanied by an upregulation of p16. 

Knockdown of p16 in BMSCs leads to reduced AML survival in co-culture. 

Further replication of these results, as well as in vivo validation of the MN1 

AML – p16-3MR senescence model are required. These are planned by the 

team in Norwich and potentially as part of my first post-doc. The new project 

will potentially use this model, amongst others, to further investigate the role 

of senescence and ageing in the initiation and progression of AML.  
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7. Chapter 7: discussion and conclusions  

 

7.1. AML-derived MIF stimulates BMSC IL-8 expression through PKCβ 

and is essential for AML survival 

In chapter 3, I have identified MIF as an AML-derived cytokine that alters the 

cytokine expression profile of primary BMSCs in vitro, specifically through the 

upregulation of the pro-survival chemokine, IL-8. I have shown that MIF is not 

just highly expressed by AML cells, but that it also stimulates IL-8 expression 

in primary AML-derived BMSCs. This upregulation of IL-8 in the BMSCs, 

induced by MIF, is not seen in normal BMSCs, suggesting a malignancy 

exclusive phenomenon. Inhibition of either MIF or IL-8 in the leukaemic setting 

significantly reduces AML survival in vitro. 

7.1.1. Modelling the AML microenvironment using primary AML BMSCs 

Previous studies have also reported both, human and murine BMSC’s ability 

to support AMLs in co-cultures (70, 131, 299, 342). A caveat in these findings, 

however, is that the BMSCs used in the reported studies were primarily 

healthy, non-malignancy-derived BMSCs; thus, they may not ideally represent 

a malignancy-associated secretory profile. All cytokine arrays and analyses 

presented in this work were derived from six primary AML BM samples, 

thereby representing more closely the malignancy-associated secretory 

profile. 

 

Additionally, upon karyotyping, three of the six primary samples revealed a 

normal karyotype. The karyotypes for the other three BMSCs could not be 

determined, as the samples failed to yield analysable metaphases. This issue 

has been reported by other studies as well (343). My findings contrast those 

of Huang et. al., who found that three out of four BMSCs from AML patients 

were cytogenetically abnormal (295). Nevertheless, the sample numbers in 

both our series are too small to be statistically sufficient, and so the real 

incidence of cytogenetic abnormalities in the BMSCs of AML patients remains 

uncertain.  
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7.1.2. AML-induced alternations in BMSC secretory profiles  

The cytokine array data were produced from 24-hour co-culture systems. A 

limitation to this end-point assay, is that it does not account for real-time 

events, such as autocrine and paracrine responses in all three culture 

conditions (AML only, BMSC only and AML/BMSC co-cultures). Hence, it is 

possible that the contribution of some cytokines might have been overlooked 

due to these effects. 

The cytokine profile of the six BMSC and AML co-cultures showed an 

upregulation of LIF, endoglin, MIP-3α, MIP-3β, MIP-1α/β, IL-6 and IL-8 in their 

culture media. IL-8 mRNA was upregulated 50 to 57-fold. These changes in 

AML-induced mRNA and protein expression in BMSCs have been reported by 

other studies, including Civini et. al., where TF-1 and K562 AML cell lines were 

co-cultured with healthy BMSCs, thus showing a varied increase in BMSC 

mRNA expression of IL-8 in the co-cultures (344). In my research, I show a 

consistent increase in all BMSC IL-8 mRNA expression from co-cultures. This 

strongly suggests that cell lines may not be an accurate representative of the 

responses seen with primary tissue.  

In a recent study, Reikvam and colleagues investigated the secretory profile 

of AML co-cultured with healthy BMSCs and observed a constitutive secretion 

of IL-8, IL-6 and VEGF amongst other cytokines from BMSCs (68). Their 

findings are partially consistent with my findings. However, when I co-cultured 

AML cells with HS-5, a normal BMSC cell line, I did not observe an 

upregulation of IL-8 mRNA. Moreover, the HS-5 cell line has been reported to 

support AML survival and to protect AML cells from spontaneous drug 

induced-apoptosis through direct contact (66, 311). Taken together, this 

indicates that the change in secretory profile is unique to AML-derived BMSCs, 

and also, that the HS-5-induced protection may be independent of the MIF-IL8 

axis.  

Ryningen et al. co-cultured fibroblast cell lines and one healthy primary 

BMSCs with AML cells and observed an upregulation of IL-8 secretion in the 

co-cultures. They hypothesised that the overall increase in IL-8 is due to 
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fibroblast and BMSC-induced changes in AML cells, causing an increase in 

their constitutive release of IL-8 (131). Moreover, Huang et. al. reported that 

the canonical IL-8 pathway was upregulated in AML cells compared to BMSCs 

(295). These studies neither reported BMSCs as the main source of IL-8 in the 

co-cultures, nor did they use primary AML-derived BMSCs; however, they 

indicated that IL-8 played an important role in the AML microenvironment. 

Furthermore, Huang et. al. also reported that BMSCs derived from AML 

patients differ from those of healthy donors, mainly in terms of monocyte 

chemoattractant protein-1 (MCP-1) levels. Hence, it is not unreasonable to 

suggest that healthy BMSCs and AML-derived BMSCs differ in their secretory 

profiles when cultured with AMLs. However, due to lack of healthy primary 

BMSCs in my study, I was unable to make any definitive conclusions as to 

how normal BMSCs differ from AML-derived BMSCs in my co-culture model.  

7.1.3. Characteristic primary AML cytokines, an emerging role for MIF 

In monoculture, I found that AMLs secrete high levels of myeloperoxidase, 

MMP9, osteopontin, IL-8, thrombospondin, MIF and serpine1. Interestingly, 

myeloperoxidase is a widely accepted gold standard marker for AML 

diagnosis. It is indicative of a myeloid lineage commitment and is associated 

with favourable prognosis (345). Furthermore, MMPs and osteopontin have 

been shown to be expressed by AML cells and to be associated with poor 

patient prognosis (346, 347). The MMP network is thought to cross-talk with 

other chemokine networks in AML to promote disease progression (348). 

Finally, serpine1 is also known to be secreted by AML cells and plays a role in 

pro-tumoural angiogenesis (349).  

In a recent study investigating the expression of a panel of hypoxia-regulated 

genes in AML and MDS patients, Falantes et. al. showed that MIF was highly 

expressed by a cohort of AML patients compared to those of the MDS cohort. 

Further analysis showed that MIF gene expression correlated with poor patient 

outcomes (300). MIF has also been shown to be overexpressed in other 

haematological malignancies, such as CLL. Binsky et. al. demonstrated that 

CLL cells overexpress the MIF receptor, CD74, and are responsive to 
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recombinant human MIF. Moreover, treatment with ISO-1 inhibited IL-8 mRNA 

and protein expression in CLL cells (170). Nonetheless, MIF protein secretion 

was not determined in this study. They concluded that MIF was secreted by 

CLL cells based on reduced IL-8 levels (which is in line with my findings), and 

furthermore, based on lower antiapoptotic BCL-2 mRNA expression when the 

cells were treated with ISO-1, thereby resulting in reduced cell survival and 

increased cell apoptosis.  

While Binsky and colleagues identified MIF to activate a CLL autocrine loop, 

my findings suggest that MIF activates a paracrine pathway in BMSCs, 

subsequently altering the microenvironment in a pro-tumoural manner. Unlike 

Binsky et. al.’s work, I have not investigated the effect of exogenous MIF or IL-

8 on AML expression of MIF, IL8 or CD74. However, CD74 has been shown 

to be expressed on the cell surface and in the cytoplasm of primary AML cells 

and AML cell lines (350), and to be associated with a poor outcome in younger 

AML patients (351). These studies make it reasonable to hypothesise that MIF 

might have an autocrine effect on the malignant cells as well as BMSCs and 

warrants further investigation of MIF receptor expression and function in the 

AML cells.  

I found that the inhibition of MIF using ISO-1 significantly reduced AML survival 

in co-culture. These results support previous findings that indicated reduced 

CLL survival following functional MIF inhibition, when cultured on a 

macrophage feeder layer (166). Interestingly, in an vivo model of breast 

cancer, MIF have been shown to promote tumour growth and pulmonary 

metastasis by inducing a highly immune suppressive subpopulation of 

myeloid-derived suppressor cells (MDSCs) (352). 

Recently, in a similar breast cancer mouse model, MIF was found to decrease 

the number of intra-tumoural CD8+ T cells, and to inhibit their ability to produce 

the cytokine IFN-gamma, resulting in inhibition of the immune function of these 

cells (353). From these studies and my findings, it is possible to deduce that 

MIF may have a broader effect on cellular components of the BMM, including 

immune cells and BMSCs 
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MIF protein is roughly 30% homologous with the related protein, D-

dopachrome tautomerase (D-DT), also referred to as MIF-2 (354). MIF and D-

DT genes are located on the same chromosome in both human and mouse 

and are ~ 80 kb apart (355, 356). D-DT expression has been detected in a 

number of human organs, however, a comparison of enzymatic activity of the 

two proteins showed that human MIF is about 10-times more active than the 

human D-DT protein (356). Both MIF and D-DT have been shown to have 

overlapping functions in solid tumours, for instance, in a study on renal clear-

cell carcinoma, D-DT and MIF showed additive protumourigenic effects (357), 

similar findings were shown in a model of non-small cell lung carcinoma (358). 

However, there is no data on the expression or role of D-DT in haematological 

malignancies. Taken together, it is plausible that D-DT, if expressed in 

leukemic cells, might play an independent or cooperative role with MIF in AML 

cells.  

My findings only identified MIF-driven survival signals in AML 

microenvironment. The homology in protein structure and similar activity of 

MIF and D-DT, could present an issue of specificity of the assays used to 

detect MIF and MIF-derived responses. In my study, MIF RT-PCR primers and 

MIF ELISA kits were not tested for cross-reactivity with D-DT. Although the 

ELISA assay used to detect MIF protein was validated by the suppliers to be 

MIF specific, ideally, recombinant human D-DT could have been used to 

determine any detection of D-DT. To rule out detection of D-DT using MIF RT-

PCR primers, the PCR transcript can be sequenced to determine the 

specificity of the product and primers used.  Most importantly, these measures 

are valid if mRNA and protein expression of D-DT were detected in AML cells 

used in the study.  

7.1.4. Clinical investigations of MIF inhibitors  

Recently MIF has been shown to exist in two immunologically distinct redox-

dependent isoforms, known as oxidised MIF (oxMIF) and reduced MIF 

(redMIF), total MIF was defined as the sum of oxMIF and redMIF, oxMIF is 

believed to be disease-associated (359). In solid tumours, oxMIF inhibition 
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sensitised human cancer cell lines to cytotoxic drugs (360). In my experiments, 

I assayed for total MIF cytokine secretion. In early phase trials of colorectal 

cancer and selected solid tumours, a novel oxMIF inhibitor (imalumab) was 

found to be effective and well tolerated (361, 362). Therefore, it would be 

interesting to identify the relative abundance of the two MIF isoforms in AML 

patient samples and to evaluate the efficacy of imalumab in in vitro and in vivo 

models of AML. This could help evaluate the plausibility of an MIF inhibitor trial 

in patients with AML.  

7.1.5. PKCβ targeting in leukaemic cells 

In chapter 4, I demonstrated that MIF binding of CD74 on the surface of 

BMSCs activated PKCβ signalling, and that the knockdown of PKCβ in BMSCs 

significantly reduced AML survival in co-culture. PKC signalling has been 

shown to be altered in cancer cells (363). Members of the PKC family have 

been implicated in haematological malignancies. In line with what I have 

shown in AML cells, inhibition of PKCβ with enzastaurin has been shown to 

abrogate the protective effect of BMSCs on MM cell lines (364). PKCβII is over 

expressed in CLL cells and is downstream of the B cell receptor (365).  

El Gamal et al demonstrated that PKC inhibition in CLL promotes apoptosis, 

inhibits proliferation, and abrogates microenvironment mediated protection of 

CLL cells (366). In their study, microenvironmental protection was simulated 

using a cytokine cocktail which mimicked the cytokines shown to be essential 

for CLL survival, whereas in my model, I aimed to mimic the microenvironment 

by co-culturing AML cells with BMSCs. Additionally, activation of PKCβII in a 

murine stromal cell line EL08-1D2 was shown to be essential for the survival 

of leukaemic cells from CLL, ALL and MCL patients (28). Taken together, it is 

postulated that PKCβ is commonly activated in haematological malignancies, 

which supports my hypothesis of its importance in the leukaemic 

microenvironment. 

7.1.6. IL-8 as a key cytokine for AML survival 

In 1993, Tobler et. al. described the constitutive expression of IL-8 and its 

receptor in AML (136). More recently, Schinke et. al. reported that IL-8 is 
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overexpressed in primary AML samples compared to normal HSCs. Inhibition 

of the IL-8 receptor CXCR2 selectively decreased proliferation and cell cycle 

arrest of AML cells (140). In line with these studies, I found that the inhibition 

of CXCR2, or the knockdown of IL-8 in BMSCs reduced AML survival in co-

culture. Elaborating on the role of IL-8 in the AML microenvironment, AML cells 

have been shown to have a higher low-density lipoprotein (LDL) uptake 

compared to normal mononuclear blood cells, which in turn resulted in higher 

cellular cholesterol levels. Cellular cholesterol is essential for membrane 

protein structure and function, and so the inhibition of this uptake sensitised 

AML cells to chemotherapy in clinical trials (367, 368). Very recently, Bhuiyan 

et. al. reported that autocrine and paracrine IL-8 (and IL-6) stimulated LDL 

uptake in AML cells, thereby increasing AML cellular levels of cholesterol 

(369). Taken together, these studies further support the broader role of IL-8 in 

the survival of AML cells.  

7.1.7. In vivo modelling of IL-8 may be challenging 

Because mice lack a direct homologue of IL-8, MIF stimulation of human IL-8 

could not be demonstrated in vivo. An accepted homologue of IL-8 is murine 

MIP-2 (370). HSCs have been shown to respond to murine MIP-2 (371), 

however, to this date, leukaemic cell response to murine MIP-2 has not been 

reported. An alternative model could be a syngeneic murine model in which 

murine AML cells overexpress MIF. However, since IL-8 upregulation is the 

ultimate effect of AML-derived MIF, it is also imperative to evaluate the effect 

of MIF-deletion in AML cells on animal survival. I have presented these results 

in chapter 5, where AML-derived MIF inhibition resulted in reduced tumour 

burden and significantly increased animal survival.  

In summary, I have described how AML stimulates the production of IL-8 from 

BMSCs and using pharmacological and lentiviral intervention, inhibiting this 

process significantly reduces AML survival in vitro.  

7.2. Hypoxia regulates MIF expression through HIF1a  

In the previous section I discussed the importance of MIF as a mediator of 

AML survival. In chapter 5, I reported that hypoxia, acting through HIF1α, is 
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responsible for the up-regulation of MIF, and the subsequent proliferation and 

survival of AML in the tumour microenvironment.  

Hypoxia has as broader malignant phenotype in the proliferation of solid 

tumour cells in studies of breast, prostate, ovarian and pancreatic cancers 

(372-374). Under normal physiological conditions, the BM is a known hypoxic 

environment. Fiegl et. al. have established that the AML BM is also hypoxic 

(240). Furthermore, tumour-specific transcriptional programs in AML patient 

samples included an up-regulation of the hypoxic response genetic signature 

(375).  

7.2.1. AML emerges as a hypoxia driven malignancy  

In a study evaluating the effectiveness of hypoxia-activated pro-drug TH-302, 

Benito et al report that BM and PB AML samples exhibited a greater hypoxic 

signature than those of healthy controls. This suggests that AML cells retain a 

hypoxia-induced gene signature even after they exit the hypoxic BM (246). 

However, the study does not report a direct comparison of hypoxic signatures 

between AML PB samples and normal PB samples. Moreover, it has been 

reported that AML PB CD34+ cells are functionally different from those in the 

BM. Cheung et. al. identified 9 genes whose expression was significantly 

higher in BM CD34+ cells compared to PB CD34+ cells (376). Among these 

genes, MCL-1 and DUSP1 have been shown to be HIF1α target genes (377, 

378).  

In line with these studies and, using bioinformatic analysis, I reported that AML 

samples from the BM are enriched in hypoxia regulated genes compared to 

samples from the PB (section 5.2). I further confirmed this in vitro, using five 

primary AML samples, in which hypoxia regulated GLUT1 and MIF were 

higher in BM AML cells than in the PB. I found that hypoxia did not induce MIF 

expression in normal peripheral CD34+ cells. However, normal CD34+ in this 

experiment were derived from healthy donors and may be intrinsically different 

from AML PB CD34+ cells. Whether PB AML cells are different from healthy 

PB CD34+ cells warrants further investigation. In summary, these findings 
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suggest that hypoxia is key to AML pathogenenesis and, most importantly, it 

is a tumour-specific feature.  

I report above in chapter 5 that the upregulation of MIF is a functional 

consequence of the hypoxic microenvironment. Interestingly, others have 

shown in their studies that it was hypoxia that regulated MIF expression in 

endothelial cells and vascular smooth muscle cells (321, 328). MIF was shown 

to be up-regulated by hypoxia in several tumour cell types in vitro including in 

breast carcinoma cells (323). Interestingly, CLL cells are highly dependent on 

MIF for their survival (166) and have been shown to constitutively express 

HIF1α under normoxic conditions (379). Hence, the inhibition of HIF1α or MIF 

interactions have been suggested as a plausible therapeutic approach for CLL 

(380). Following these, I demonstrated that by silencing HIF1α, using a 

lentivirus-mediated knockdown in both primary AML and in the OCI-AML3 cell 

line, the expression of MIF is regulated by hypoxia driven HIF1α.  

7.2.2. The role of HIFs in AML remains to be delineated  

In my studies, the knockdown of HIF1α in primary AML cells significantly 

reduced their proliferation in culture, and significantly increased the survival of 

NSG mice injected with HIF1α-KD OCI-AML3luc cells. Previously published 

results using a syngeneic murine AML model showed that genetic deletion 

of HIF1α had no effect on mouse AML maintenance, and may accelerate 

disease development (248). In another study by the same group, it was shown 

that the loss of HIF1α accelerated murine FLT3-ITD induced 

myeloproliferation (381). This observation appears contrary to my own data, 

where I found that the loss of HIF1α reduced the number of AML cells, 

compared to controls (section 5.7, Figure 5.11D).  

However, other studies have shown that deleting HIF1α in a subset of primary 

AML LSCs led to a decrease in their sensitivity to HIF1α inhibition. Wang et. 

al. demonstrated an important role for HIF1α in the in vitro colony-forming 

activity of their 7 clinical AML samples, where the experiments employed 

echinomycin as a HIF1α inhibitor (326). This was also demonstrated in another 

study using AML cell lines to study the effect of HIF1α in AML (382). However, 
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since echinomycin blocks HIF1α transcriptional activity by binding to DNA via 

bi-functional intercalation into the hypoxia response element, this would also 

compromise HIF2α transcriptional activity (216). Vukovic et. al. revealed that 

HIF-1α and HIF2α are not required for leukaemia stem cell maintenance and 

AML propagation, but that they acted synergistically to suppress leukaemia 

development in mice. In their models, the knockout of HIF2α or the 

pharmacological inhibition of the HIF pathway in human AML cells had no 

impact on their survival and proliferation under hypoxic conditions (253).  

In my experiments, I showed that HIF2α is detectable under normoxic 

conditions in AML patient samples and in the OCI-AML3 cell line. Interestingly, 

I observed that the HIF2α protein, unlike HIF1α, is not increased under hypoxic 

conditions, while I found that HIF1α is only stabilised under hypoxic conditions. 

In AML cell lines (HL60 and THP-1), HIF1α has been shown to be 

constitutively expressed under normoxic conditions (383). More recently, it has 

been shown that in primary and cell line CML cells HIF1α is stabilised under 

normoxic conditions (384). The discrepancy in the status of HIF1α, in primary 

and cell line AML models, indicate that they are intrinsically different from one 

another. Hence, observations in cell lines cannot always be generalised to the 

primary disease.  

I demonstrated that specific KD of HIF1α but not HIF2α prevented MIF 

induction under hypoxic conditions. Taken together, these results suggest that 

HIF1α, but not HIF2α, is responsible for driving MIF expression in my AML 

samples. In my in vivo studies, HIF1α-KD AML cells took longer to engraft, 

compared to the control-KD cells for which animal survival was longer. 

Therefore, this suggests that human AML benefits from the hypoxia present 

within the bone marrow microenvironment. 

Previously published studies demonstrated that the overexpression of HIF2α 

accelerate myeloid leukaemia in mice. Conversely, HIF2α-KD in leukaemic 

cell lines prolonged the survival of transplanted mice (252). Rouault-Pierre and 

colleagues show that cells from primary AML samples were dependent on the 

level of HIF2α for their survival, and were protected from apoptosis induced by 
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ER stress (251). This is in contrast to my results, where I found that the 

knockdown of HIF2α in primary AML cells did not lower the survival of AML 

cells in culture, and it had a minimal effect on MIF secretion by the cells. 

7.2.3. In vivo modelling of the role of MIF in AML BMM 

I found that knocking down MIF significantly reduces AML survival and colony 

forming ability. Moreover, animals transplanted with AML cells following MIF-

KD had significantly improved survival compared to controls. This is in 

agreement with observations in MM, where MIF-KD in MM cells did not form 

tumours in bone of MM mouse models, whereas control KD cells caused 

tumours in the bone (385), thereby, suggesting a role for MIF in the 

microenvironment of AML and MM likewise. Moreover, I found that MIF-KD 

induced apoptosis in AML cells. Recently, the presence of MIF-KD in cervical 

adenocarcinoma cells was shown to induce apoptosis and to inhibit cell 

proliferation, via the upregulation of proapoptotic proteins and the 

downregulation of antiapoptotic proteins of the Bcl-2 family (386). MIF can also 

induce apoptosis by inhibiting wildtype p35 activity, as demonstrated in lung 

adenocarcinoma cells (154). The mechanism by which MIF induces apoptosis 

in AML cells remains to be investigated.  

In the CI-AML3luc mouse models, MIF-KD mice had less tumour burden than 

the HIF1α-KD mice. Moreover, survival was slightly more improved for the 

MIF-KD mice (section 5.9). This may be due to indirect protein interactions, by 

which MIF may regulate HIF1α function, as deduced from a study in which the 

overexpression of MIF in selected cell lines enhanced HIF1α activation under 

hypoxia, and was dependent on wildtype p53 (387). In my experiments, I did 

not investigate whether MIF regulates HIF1α function in the AML cells. It would 

be interesting to determine the effect of exogenous MIF on HIF1α activity in 

MIF-KD cells. Furthermore, in case this interaction is dependent on wildtype 

p53, this mechanism might be attenuated in p53 mutant AML. In conclusion, 

the functional interactions of MIF and HIF1α in AML remain to be elucidated. 

Finally, in the primary AML PDX used in my studies, MIF gene silencing with 

shRNA provided better survival differences than using the pharmacological 
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inhibitor, ISO-1, which only extended survival by less than 10 days. A possible 

explanation for this could be that the ISO-1 dosage was suboptimal. In fact, in 

a study using ISO-1 to inhibit MIF function in a model of sepsis, doses of up to 

35 mg/kg/day were used (388), while the dose used in my studies was only 

10mg/kg/day. I postulate that a higher dose could have improved survival and 

improved AML cell mobilisation to the PB. 

In conclusion, my study presents a mechanism linking hypoxia to a chemokine 

factor, inducing a pro-tumoural signalling pathway in the AML 

microenvironment. In doing so I establish a potential strategy to target AML. 

7.3. AML induces senescence in BMSC through upregulation of p16  

In chapter 6, I presented novel data that identified the BMM as a progressively 

senescent one which enhances the survival of AML within the BM. I also 

showed that the senescence of BMSCs in the environment is induced by AML 

cells and is brought about through the cyclin-dependant kinase inhibitor, p16. 

Finally, BMSCs from the p16-3MR mice were successfully cultured and p16 

expression was determined in co-cultures with murine MN1 AML cells. 

Knockdown of p16 in BMSCs reduced AML survival in co-cultures; as a result, 

in vivo experiments with the p16-3MR animal model will be optimised for 

further senescence studies in AML. 

7.3.1. An ageing-induced malignant environment   

AML is a disease of the older population (27) and senescent cells have been 

shown to naturally accumulate with age (265). Moreover, it has been shown 

that, senescent fibroblasts stimulate the growth of neighbouring pre-neoplastic 

epithelial cells, in co-culture experiments of prostate cancer and in in vivo 

models of lung cancer (389, 390). These studies suggest that as aging cells 

accumulate, they create an environment which is favourable to cancer cell 

survival. Interestingly, it has also been shown that cancer cells can induce 

normal cells to become senescent. In an vivo model of p16 driven senescence, 

imaging revealed p16 expression in the emerging neoplasm and surrounding 

stromal cells (391). This is in line with my observation that AML cells induce 
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p16 expression in BMSCs. However, I did not study p16 expression in the 

malignant compartment.  

7.3.2. Senescence in AML cells 

Müller-Tidow et. al. investigated the expression levels of cell cycle genes in 

primary AML patient cells and found that average expression levels 

of p16 (and tumour suppressor p14) were higher in AML samples, compared 

to control samples. However, the median age for the AML cohort in this study 

was 52 years and the control group included only six samples (392). In a more 

recent study, p16 mRNA was shown to be downregulated in AML cells with 

increasing age (393). Considering the differing outcomes of these studies, an 

interpretation of the significance of p16 expression in the AML compartment 

can only be accurate if the patient ages are comparable.  

7.3.3. In vitro markers and inducers of senescence  

Since it was first described in 1995 by Professor Campisi’s research group, β-

galactosidase (β-gal) staining has been widely used for detecting senescence. 

Senescent cells are identified by their failure to synthesise DNA. Nonetheless, 

this is also characteristic of quiescent and differentiated cells. The β-gal 

staining assay has the following advantages: i) it is easy to detect, ii) it has 

been shown to be independent of DNA synthesis in senescent cells, and iii) it 

generally differentiates senescent cells from quiescent cells (394, 395). 

Hence, it was ideal for detecting AML-induced senescence in my co-culture 

model.  

I found that BMSC from late passages become senescent in culture. This is 

not surprising as cultured primary BMSCs have been shown to undergo 

senescence (396, 397). Moreover, AML-derived BMSCs may be intrinsically 

different from normal BMSCs in terms of the rate at which they undergo 

senescence. Kim et. al. reported that AML derived BMSCs had lower 

proliferative activity than that of the controls due to increased senescence 

(343). Hence, in my study, the lack of normal BMSCs and the small sample 

size of AML-BMSCs may be a limiting factor in the interpretation of data. More 
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definite conclusions may be made from a bigger sample size, and including a 

comparison with normal BMSCs. 

In my culture model, I used daunorubicin as a positive control to induce 

senescence in BMSCs. It is the immediate precursor of the more widely used 

doxorubicin (398). Doxorubicin and daunorubicin are both anthracyclins with 

the same mechanism of action (399), and they have been sown to induce a 

senescent-like phenotype in vitro and in vivo (282, 400). Additionally, 

daunorubicin is a critical component of standard induction chemotherapy in 

AML patients (401). It would be interesting to investigate whether the effect of 

daunorubicin and AML are synergistic on BMSC senescence, and how it can 

be eliminated.  

Alhtough SASP factors have been shown to develop slowly over time, not all 

of them are secreted at the same time (261). I have reported that AML cells 

induced SASP-related factors in 24-hour co-cultures. I then performed β-gal 

staining in BMSCs after 6 days of co-culture, however, I did not check for 

SASP factors at 6 days. It is possible that AML-derived BMSCs may be pre-

conditioned to developing an SASP at an earlier time point once they are 

cultured in vitro. Ideally, AML-BMSCs should be compared to healthy, age 

matched BMSCs to allow identification of intrinsic differences between 

malignant and healthy BSMCs.  

7.3.4. In vivo modelling of the senescent BMM in AML  

In efforts to optimise the p16-3MR model to study AML BM senescence, I 

showed that murine AML cells, overexpressing the MN1 AML oncogene 

induced p16 protein expression in p16-3MR-derived murine BMSCs after 7 

days of co-culture. Ideally, additional confirmatory experiments need to be 

performed to confirm this result and to optimise the AML p16-3MR mouse 

model.  These include, determining luciferase activity of the senescent p16-

3MR BMSCs in co-culture with MN1 cells, identifying if p16 expression 

developed at earlier time points while in culture, and assaying for SASP factors 

in co-cultures compared to monocultures of p16-3MR BMSCs. 
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The p16-3MR transgenic mouse model is instrumental in studying AML 

induced senescence. It has previously been used to study the role of 

senescent cells in wound healing and in age-related diseases (262). This 

model permits the non-invasive clearing of senescent cells in vivo using 

gancylovir (explained in section 6.7). A similar mouse model, referred to as the 

INK-ATTAC mouse (283, 402) is the only other model where p16 senescent 

cells can be depleted in vivo.  

I have reported that AML cell co-cultures with p16-KD BMSCs significantly 

reduced survival in vitro. This observation can be validated in vivo with the 

p16-3MR model. Using gancylovir, the elimination of senescent cells from p16-

3MR mice that have developed AML, would be expected to increase their 

survival compared to controls (no gancycolvir). Pharmacologically, senolytic 

agents have been shown to effectively and selectively ablate senescent cells. 

An example of this is ABT-263, which inhibits the anti-apoptotic proteins Bcl-2 

and Bcl-xL in senescent cells, leading to their apoptosis. Interestingly, Chang 

et. al. used the p16-3MR mouse model in conjunction with ABT-263 to 

rejuvenate aging HSCs in the BM of mice (403). Importantly, ABT-263 has 

been shown to target AML cells too (404). As it is not known how this 

compound will perform in an AML and BMSC co-culture, its effects will need 

to be evaluated in vitro and in vivo.  

In conclusion, senescence has been shown to be both, tumour-supressing and 

tumour promoting, depending on the biological contexts of the disease being 

studied. In AML, senescence may be induced by both, the treatment and the 

malignancy. This creates a novel therapeutic angle which seeks to manipulate 

the tumour favouring environment to act against the tumour, and may be an 

important and interesting strategy in identifying the state and prognosis of AML 

patients. 

7.4. Conclusions and future directions  

Despite the progress made in understanding the biology of AML cells, 

relatively little has been achieved with regards to the treatment of AML in 

patients >70 years. With accumulating evidence supporting a key role for the 
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BMM in the pathogenesis of AML, it is imperative to believe that unless AML 

cells and critical components of the BM microenvironment are targeted 

concomitantly, progress in AML treatment may not be realised.  

New insights into the cross-talk between AML cells and BMSCs were 

presented in this thesis, where I have identified MIF as a key AML-derived 

cytokine that alters the pro-tumoural BMM. Accordingly, MIF presents itself as 

a potential therapeutic target in AML, and pre-clinical studies of MIF would be 

instrumental in realising this. Moreover, as chemotherapy is indispensable for 

the treatment of AML, it is predicted that MIF inhibitors may improve tolerability 

and treatment outcomes for AML patients treated with chemotherapy.  

Currently, chemotherapy treatment aims to eradicate leukaemic cells. 

However, treatment leaves behind an altered microenvironment that is highly 

permissive to disease recurrence. Tumour and therapy induced senescence 

is a novel aspect of the AML BMM. Future investigation should aim to re-

establish a BMM that is conducive to normal haematopoiesis rather than 

leukaemogenesis. 
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Appendix 

Table 1: Cytogenetic profiles of primary BMSCs 

 

BMSC Sex BMSC cytogenetics AML cytogenetics  

BMSC#1 M N/A Normal 

BMSC#2 F N/A t(5;12)(q13;q24) 

BMSC#3 M Normal Normal 

BMSC#4 F Normal t(8;21)(q22;q22),del(9)(q13q22) 

BMSC#5 M Normal Normal 

BMSC#6 M N/A add(5)(q35),add(6)(q22) 

 

AML cytogenetics refers to the cytogenetics of the AML sample from which 

the BMSC were derived. 

Karyotype reports provided by the Norwich Cytogenetics Service, where the 

karyotyping/cytogenetic analysis was performed, are included below. 

Karyotype results for samples 1 and 2 were communicated by e-mail to Dr 

Stuart Rushworth.  
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Table 2: AML, BMSC and AML/BMSC cytokine array data sets  

Cytokine array blots were analysed for mean optical densities using 

HLimage++ software. Outputs are presented in the tables below. AML only 

refers to AML cell culture control, BMSC only refers to BMSC cell culture 

control. 
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Oxidative stress as a result of elevated levels of reactive oxygen species (ROS) has been observed in almost all cancers, including
leukaemia, where they contribute to disease development and progression. However, cancer cells also express increased levels of
antioxidant proteins which detoxify ROS. This includes glutathione, the major antioxidant in human cells, which has recently
been identified to have dysregulated metabolism in human leukaemia. This suggests that critical balance of intracellular ROS
levels is required for cancer cell function, growth, and survival. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription
factor plays a dual role in cancer. Primarily, NRF2 is a transcription factor functioning to protect nonmalignant cells from
malignant transformation and oxidative stress through transcriptional activation of detoxifying and antioxidant enzymes. However,
once malignant transformation has occurred within a cell, NRF2 functions to protect the tumour from oxidative stress and
chemotherapy-induced cytotoxicity. Moreover, inhibition of the NRF2 oxidative stress pathway in leukaemia cells renders them
more sensitive to cytotoxic chemotherapy. Our improved understanding of NRF2 biology in human leukaemia may permit
mechanisms by which we could potentially improve future cancer therapies. This review highlights the mechanisms by which
leukaemic cells exploit the NRF2/ROS response to promote their growth and survival.

1. Introduction

Acute myeloid leukaemia (AML) is primarily a disease of
the elderly with 75% of cases being diagnosed in patients
over 60 years of age [1]. AML comprises a biologically
heterogeneous group of disorders that occur as a consequence
of a wide variety of genetic abnormalities in haematopoietic
progenitors that are derived from the bone marrow. In
fitter, generally younger patients complete remission can be
achieved only in a minority with current chemotherapeutic
regimens. Patients who are not fit for intensive chemotherapy
are generally managed with a palliative approach without a
chance of cure. Furthermore, even in patients who do achieve
remission following intensive chemotherapy many relapse
from the persistence of a small clone of minimal residual
disease [2, 3] and, despite considerable efforts over the last 30
years to develop and improve therapy, presently two-thirds
of younger adults and 90% of older adults still die of their

disease [4]. It is envisaged that improved outcomes for all
patients will now only come from novel treatment strategies
(beyond increasing doses of conventional cytotoxic drugs)
derived from an improved understanding of the biology of
the disease.

2. Oxidative Stress

Oxidative stress is described as a change in the balance
between reactive oxygen species and antioxidant defence
mechanisms, where the balance is disturbed for the support
of the oxidants [5]. Together, oxidants and antioxidants are
essential for normal cellular function including metabolism
and signal transduction which allow for the maintenance
of cellular homeostasis [6, 7]. However, oxidative stress, if
unconstrained, results in the damage of important cellular
components which may result in DNA mutations or cell
death.
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Reactive oxygen species (ROS) are oxygen-containing
chemical species with reactive properties, including free
radicals such as superoxide and nonradical molecules such
as hydrogen peroxide [8]. These reactive species result from
both endogenous and exogenous cellular sources. Endoge-
nous sources of cellular ROS include oxidative phosphory-
lation within mitochondria, which results in the formation of
dioxygen, which is normally reduced to water but in some
instances is partially reduced to form superoxide. Further
reduction reactions can subsequently give rise to hydrogen
peroxide [9, 10], which has long been thought of as a harmful
molecule; however, recently, new evidence has emerged
which suggests that at low concentrations hydrogen peroxide
acts as an intracellular signalingmolecule involved in survival
and proliferation mechanism. In contrast, exogenous ROS
is produced by many environmental mediators which have
demonstrated involvement in a number of pathological states
including cardiovascular disease [11], chronic inflammation
[12], and neurodegenerative diseases [13] as well as cancer
[14].

3. Reactive Oxygen Species

There is a complex interaction between ROS generation,
signaling, and toxicity that results in the initiation, growth,
and survival of cancer. Cancer may be induced through
oxidative damage to cellular macromolecules as a result of
overproduction of ROS, which subsequently affects antiox-
idant and/or DNA repair mechanisms [15]. In addition,
ROS can stimulate signal transduction pathways leading
to activation of key protumoural transcription factors [16].
Once the malignant state has been established, the same
cellular survival mechanisms that the cell had employed to
protect against tumorigenesis are subsequently subverted to
support a protumoural state and protect the cancer cells from
chemotherapy. ROS have a physiological cellular response to
trigger cellular inflammation and damage that may lead to
cell death.This protective effect is lost in cancer cells and thus
endogenous and exogenous efforts to induce cytotoxicitymay
also be lost in cancer. Specifically in human leukaemia the
NRF2 pathway appears central to the control of the redox
state functioning at least in part through its regulation of
glutathione synthesis and regeneration. It is envisaged that
the identification of tumour-specific dependence within this
pathwaymay ultimately be exploited to developmuch needed
new treatments.

4. Acute Myeloid Leukaemia

AML develops from a common myeloid progenitor, a cell
whichwould physiologically differentiate to formmonocytes,
granulocytes, platelets, and erythrocytes in the bone marrow
[17, 18]. AML is the most common acute leukaemia affecting
adults, and its incidence increases with age [19]. However,
AML is a heterogeneous disease driven by a wide variety of
genetic lesions [20]. In patients fit enough for conventional
intensive cytotoxic chemotherapy, the treatment destroys
actively cycling leukaemic cells and initial remission rates

are high. However, in these patients following remission
induction and despite in many cases the disease becoming
undetectable by current testing technologies, a subpopula-
tion of cells with leukaemic stem cell properties frequently
survives chemotherapy and it is this subpopulation (minimal
residual disease) that is responsible for the relapse commonly
encountered in this disease [21]. In patients not fit for such
cytotoxic chemotherapy, management is presently based
around palliation and symptom control.

The discovery of specific mutant genes in AML has
provided increased biologic understanding, new potential
targets for drug development [22], and new diagnostic meth-
ods for detection of minimal residual disease [23, 24]. For
instance, mutations of the FMS-like tyrosine kinase-3 (FLT3)
receptor (internal tandem duplication (ITD)) are found in
approximately 25% of new cases of AML [25, 26]. FLT3-
ITD has been found to cause increased levels of ROS within
murine Ba/F3 or 32D cells expressing FlT3-ITD as well as
MOLM-14 and MV-4-11 human AML cell lines which carry
FLT3-ITDmutations [27], suggesting that ROS are important
in regulating FLT3 mutated AML.

5. Manipulation of the Redox Status by
Leukaemia Oncogenes

A number of oncogenes such as KRAS, cMYC, BCR/ABL,
NRF2, and NF-kappaB (NF-𝜅B) are able to alter the redox
balance of human cancer cells including leukaemic cells [26,
28–32]. The oncogenic BCR/ABL fusion gene found mainly
chronic myeloid leukaemia (CML) is capable of inducing
ROS levels in both human and murine cell lines [33, 34].
Moreover, BCR/ABL-induced ROS can also result in signal-
ing changes including the upregulation of the nonreceptor
tyrosine kinase FYN [35, 36]. FYN deficiency in the presence
of BCR/ABL expression is a mediator of chronic myeloid
leukaemia (CML) proliferation and CML resistance to the
drug of choice for CML, the BCR/ABL inhibitor, imatinib.
Together, these findings illustrate how a cancer associated
tyrosine kinase can induce ROS resulting in leukaemia
proliferation and drug resistance.

It has also been described that leukaemic oncogenes
may also affect the transcription, stability, or activity of
antioxidant proteins within leukaemic cells. For example,
BCR/ABL and NF-𝜅B can increase the transcription of
NRF2 and by association its regulated genes, which have
been shown to have cytoprotective properties. Furthermore,
activation of NRF2 requires a phosphorylation process which
results in the stabilisation of NRF2 and its release from its
negative regulator allowing transcription of the antioxidant
genes [37]. The transcription factor NRF2 is activated by
increased oxidative stress inducing protection of normal
cells against electrophilic and oxidative stress [38]. This
provides an example of transcriptional pathways by which
leukaemic oncogenes can influence the redox environment of
leukaemia cells and represent possible targets for therapeutic
intervention.
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Figure 1: Glutathione synthesis as seen through NRF2. GSH is a two-step synthesis reaction catalysed by glutamate-cysteine ligase (GCL)
and GSH synthetase. GSH is consumed in many ways, such as by oxidation or conjugation. In addition, cells may lose GSH due to export
of its reduced, oxidized, or conjugated forms and intracellular GSH is regenerated via reduction at the expense of one NADPH molecule.
Highlighted in red are the genes regulated by NRF2 activity.

6. NRF2 Regulated Cellular
Antioxidants in Leukaemia

Our research has previously shown that current standard
AML chemotherapy (cytarabine and daunorubicin) induces
an increase in ROS inAML cells as part of theirmechanism of
cytotoxic action [39]. Furthermore, we also recently reported
that malignant blasts from AML patients have inappropriate
constitutive NRF2 activation, resulting in increased cell
survival and chemotherapy resistance [40, 41]. The NRF2
signaling pathway is a major cellular pathway that under
normal conditions protects nonmalignant cells against elec-
trophilic and oxidative stress [38]; however, in AML as well
as many other malignancies, including chronic lymphocytic
leukaemia (CLL), NRF2 is constitutively activated [42]. In
AML, constitutive activation of NRF2 occurs not through
somatic mutation of NRF2 or its inhibitor KEAP1 but as a
result of upstream constitutive activation of NF-𝜅B.

NRF2 regulates the expression of over 200 genes includ-
ing many antioxidant genes and phase II enzymes such
as heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxi-
doreductase 1 (NQO1) [43, 44] and genes involved in glu-
tathione metabolism and regeneration [45–48]. No single
gene induced by NRF2 can be identified as the most impor-
tant for cell protection, as cell protection is a result of the coor-
dinated induction of NRF2 target genes. As well as the work
on AML, NRF2 genes have also been dysregulated in other
human blood cancers including CLL and multiple myeloma
(MM). In CLL, experiments show the presence of NRF2
signaling and suggest that altered NRF2 responses may con-
tribute to the observed selective cytotoxicity of electrophilic

compounds in this disease [49]. In MM, HO-1 is increased in
bortezomib-resistant MM cells, suggesting a possible role for
HO-1 and NRF2 in chemotherapy resistance [50]. Together
these results highlight the importance of NRF2 in human
blood cancer.

6.1. Glutathione Metabolism, Regeneration, and Control of
ROS. GSH has emerged as an important regulator of
chemotherapy resistance in human cancer. GSH is present in
all mammalian tissues at 1–10 millimolar concentrations and
protects against oxidative stress [51]. In the cell GSH exists
in the thiol-reduced GSH and disulfide-oxidized (GSSG)
forms [52] and its major reservoir is the cytosol (80–85%)
[53–55]. GSH synthesis occurs via a two-step ATP-requiring
enzymatic process and exerts a negative feedback inhibition
on key rate limiting enzymes including glutathione cysteine
ligase (GCL) [56, 57] either by phosphorylation or by protein
expression [58]. The regulation of GSH synthesis is under
tight control involving key enzymes including GCL, GSH
synthetase, and GSH reductase. More importantly these
enzymes are all regulated, at least in part, by NRF2 through
its activation of the ARE [59].This highlights the importance
of addressing the link between NRF2 and GSH in disease,
especially leukaemia. Figure 1 shows the link between NRF2
and GSH synthesis and regeneration.

It is becoming apparent that NRF2 is the main transcrip-
tion factor that controls the regulation of many aspects of
GSH synthesis and regeneration [60, 61]. Importantly the
regulation of GCL at the transcriptional level is essential
for the maintenance of GSH homeostasis in response to
oxidative stress. In addition, levels of GCLC and GCLM are



4 Oxidative Medicine and Cellular Longevity

decreased in NRF2 knockout mice; the resulting lack of GSH
synthesis is lethal during embryogenesis [62].Moreover, GSH
synthetase which catalyses the second step of GSH generation
is also regulated by NRF2 and overexpression of either NRF1
or NRF2 induced the GSS promoter activity by 130 and
168%, respectively. Other genes involved in GSHmetabolism,
regeneration, and function are also regulated by NRF2
activation, which include GSH S-transferases (GSTs), GSH
reductase (GR), and GSH peroxidase (GPX) [48, 63, 64].
Together, this information suggests that NRF2 controls the
effectiveness of GSH to combat the excess of ROS.

Hydrogen peroxide is one of the main activators of
the NRF2-KEAP1 pathway. It is metabolised by GPX in
the cytosol resulting in GSH being oxidized to GSSG in
the mitochondria. GSSG can be reduced back to GSH by
GR at the expense of NADPH, thereby forming a redox
cycle, where organic peroxides can be reduced by either
GPX or GSH S-transferase (GST) [65]. GSTs are a family of
phase II conjugation enzymes under the regulation of the
NRF2/ARE pathway [66]. The main role of GST is to catal-
yse the detoxification of various harmful compounds [67].
This detoxification process is under the tight control of NRF2
as GST mRNA and protein expression are decreased in
NRF2-null mice, and NRF2 is required for GST induction
[68]. Moreover, the mRNA expression of GST is markedly
increased in KEAP1-null mice [69]. This provides evidence
that not only GSTs but also many other enzymes that are
involved in GSH synthesis and regeneration are coordinately
regulated by NRF2 and justifies the necessity to address the
NRF2 GSH axis in human cancers, especially leukaemia.

6.2. NRF2, GSH, and Leukaemic Cell Survival. Although
NRF2 is protective against tumorigenesis by reducing the
amount of ROS and DNA damage in cells, tumour cells were
found to be capable of harnessing the protective function
of NRF2 for their own protection and survival [42, 70].
Indeed, NRF2 activity itself is elevated in some leukaemia
types where it contributes to leukaemogenesis [71]. Elevated
nuclear localization of NRF2 and the subsequent genetic
changes result in reduced sensitivity to proteasome inhibitors
inAML cell lines [41], suggesting thatNRF2may also regulate
sensitivity to ROS-producing therapeutic agents. Moreover,
molecular analyses have revealed that treatment with stress
inducers (e.g., tumour necrosis factor) results in increased
NRF2 activity inTHP-1,HL-60, andAML 193 cell lines, which
in turn increases the transcription of antioxidants [72].

Primitive hematopoietic stem and progenitor cells reside
within the bone marrow and express the CD34 surface
antigen [73, 74].Moreover, primitive AML cells also generally
express CD34 and are more resistant to chemotherapy [74,
75]. A recent study by Pei et al. evaluates the characteristics
of primary CD34+ cells derived from patients with AML in
comparison to normalCD34+ controls [76].This is consistent
with the finding that CLL cells have elevated levels of reactive
oxygen species (ROS) compared to normal controls [77].
Taken together, this suggests that altered GSH content might
be a common property of primary hematopoietic malignant
tissues.

The prognostic value of GST deletions in adult AML,
including individuals with GSTM1 or GSTT1 deletions (or
deletions of both), is found to have enhanced resistance
to chemotherapy, lower complete remission, and a shorter
survival [78]; this further supports the suggestion of a dis-
turbed glutathione metabolism in AML cells. AML cells have
elevated expression of multiple GSH metabolising enzymes
including GCL and GST compared to control CD34+ cells
and knockdown of GCLC or GPX1 impaired the growth
of leukaemic cells in vitro [76]. Moreover, a significantly
decreased GSH to GSSG ratio further indicates aberrant
glutathione homeostasis in AML cells; this is consistent with
findings of increased basal levels of nuclear NRF2 in primary
AMLs [41]. This highly suggests that increased NRF2 activity
inAMLcells is responsible for the elevated expression of these
genes as a mechanism by which AML cells compensate for
increased oxidative stress in leukaemic cells. The aberrant
glutathione metabolism presents a unique and potentially
useful asset for targeting of primitive leukaemic cells.

7. Conclusion

ROS play an important functional role in human leukaemia.
NRF2 and its control of GSH regulate ROS. Recent data
suggests that GSH is fundamental to NRF2 function in AML
suggesting that this pathway may yield future therapeutic
targets for leukaemia cells in which GSH is dysregulated.
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MIF-Induced Stromal PKCb/IL8 Is Essential in
Human Acute Myeloid Leukemia
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Matthew J. Lawes3, Stuart A. Rushworth1, and Kristian M. Bowles1,3

Abstract

Acute myeloid leukemia (AML) cells exhibit a high level of
spontaneous apoptosis when cultured in vitro but have a
prolonged survival time in vivo, indicating that tissue micro-
environment plays a critical role in promoting AML cell sur-
vival. In vitro studies have shown that bone marrow mesen-
chymal stromal cells (BM-MSC) protect AML blasts from spon-
taneous and chemotherapy-induced apoptosis. Here, we report
a novel interaction between AML blasts and BM-MSCs, which
benefits AML proliferation and survival. We initially examined
the cytokine profile in cultured human AML compared with
AML cultured with BM-MSCs and found that macrophage
migration inhibitory factor (MIF) was highly expressed by

primary AML, and that IL8 was increased in AML/BM-MSC
cocultures. Recombinant MIF increased IL8 expression in BM-
MSCs via its receptor CD74. Moreover, the MIF inhibitor ISO-
1 inhibited AML-induced IL8 expression by BM-MSCs as well
as BM-MSC–induced AML survival. Protein kinase C b
(PKCb) regulated MIF-induced IL8 in BM-MSCs. Finally,
targeted IL8 shRNA inhibited BM-MSC–induced AML surviv-
al. These results describe a novel, bidirectional, prosurvival
mechanism between AML blasts and BM-MSCs. Furthermore,
they provide biologic rationale for therapeutic strategies in
AML targeting the microenvironment, specifically MIF and IL8.
Cancer Res; 77(2); 303–11. �2016 AACR.

Introduction
Survival of patients with acute myeloid leukemia (AML) is

presently poor; two thirds of young adults and 90% of older
adults die of their disease (1). Even in patients who achieve
remission with chemotherapy, relapse is common and occurs
from minimal residual disease sequestered in protective
niches in the bone marrow microenvironment (2). According-
ly, it is envisaged that improved outcomes will come from
novel treatment strategies derived from an improved under-
standing of the biology of AML within the bone marrow
microenvironment.

AML cells exhibit a high level of spontaneous apoptosis when
cultured in vitro but have a prolonged survival time in vivo,
indicating that the tissue microenvironment plays a critical role
in promoting AML cell survival (3–6). Knowledge of the com-
plexity of the bone marrow microenvironment is increasing,
especially with respect to the bonemarrowmesenchymal stromal

cells (BM-MSC), which are considered amajor protective cell type
(7). BM-MSCs generate various factors whose primary functions
are to influence tumor cell survival and homing (4, 8, 9). The
apoptotic defect in AML is not cell autonomous but highly
dependent on extrinsic signals derived from their microenviron-
ment. The complex cell–cell interactions between the AML tumor
cells and their microenvironment are therefore essential for
tumor growth and survival and thus present an attractive target
for novel drug therapies.

Macrophage migration inhibitory factor (MIF) is a pleiotropic
cytokine, which under normal conditions regulates cell-medi-
ated immunity and inflammation (10). In cancer, MIF is over-
expressed in a number of solid tumors, including breast, pros-
tate, and colon cancers (11–13). MIF has also been shown to be
overexpressed in various blood cancers, including chronic lym-
phocytic leukemia (CLL; ref. 14). In CLL, MIF is expressed by the
malignant cells and induces protective IL8 release in an auto-
crine-dependent manner. Blocking either MIF or IL8 reduces
survival of CLL. The increased secretion of IL8 from tumor cells
is thought to have wider significance to the tumor microenvi-
ronment. Serum IL8 is known to be higher in patients with AML,
myelodysplasia (MDS), and non-Hodgkin lymphoma than in
normal controls, and levels of IL8 in these patients are similar to
those found in patients with multiple organ failure of nonseptic
origin (15, 16). Furthermore, leukemic blasts from the majority
of patients with AML constitutively express IL8 (17). In addi-
tion, inhibition of the IL8 receptor, CXCR2, selectively inhibits
proliferation of MDS/AML cell lines and patient samples (18).
Together, these studies suggest that MIF and IL8 are functionally
important in regulating the survival and proliferation of mul-
tiple tumors, including AML.

In the current study, we investigate how AML cells program
BM-MSCs via MIF to produce the survival cytokine IL8 and
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characterize the signaling pathways underlying this interdepen-
dent cell–cell communication.

Materials and Methods
Materials

Anti-PKC, MAPK, and AKT antibodies were purchased from
Cell Signaling Technology. Anti-CD74, anti-CXCR2, and anti-
CXCR4 antibodies were purchased from Miltenyi Biotec. All
inhibitors were purchased from Tocris. The CD74 blocking anti-
body was purchased from BD Biosciences. Proteome Profiler
Human XL array and recombinant human MIF were purchased
from R&D Systems. MIF ELISA was purchased from BioLegend.
IL8ELISAwaspurchased fromeBioscience. All other reagentswere
obtained from Sigma-Aldrich

Cell culture
For primary cell isolation, heparinized blood was collected

from volunteers, and human peripheral bloodmononuclear cells
were isolated by Histopaque (Sigma-Aldrich) density gradient
centrifugation. AML samples that comprised less than 80% blasts
were purified using the CD34 Positive Selection Kit. Cell type was
confirmed by microscopy and flow cytometry. BM-MSCs were
isolated by bone marrow aspirates from AML patients. Mononu-
clear cells were collected by gradient centrifugation and plated in
growth medium containing DMEM and 20% FBS and 1% L-
glutamine. The nonadherent cells were removed after 2 days.
When 60% to 80% confluent, adherent cells were trypsinized and
expanded for 3 to 5 weeks. BM-MSCs were checked for positive
expression of CD105, CD73, and CD90 (BM-MSC markers) and
the lack of expression of CD45 and CD34 by flow cytometry. All
patient information, including genotype and WHO classification
for AML and genotype and phenotype of AML BM-MSCs, are
included in Supplementary Tables S1 and S2.

RNA extraction and real-time PCR
Total RNA was extracted from 5 � 105 cells using the Nucleic

Acid PrepStation from Applied Biosystems, according to the
manufacturer's instructions. Reverse transcription was performed
using the RNA PCR Core Kit (Applied Biosystems). Relative qRT-
PCR used SYBR Green technology (Roche) on cDNA generated
from the reverse transcription of purified RNA. After preamplifi-
cation (95�C for 2minutes), the PCRswere amplified for 45 cycles
(95�C for 15 seconds and 60�C for 10 seconds and 72�C for 10
seconds) on a 384-well LightCycler 480 (Roche). Each mRNA
expression was normalized against GAPDH mRNA expression
using the standard curve method.

Western immunoblotting and ELISAs
SDS-PAGE and Western blot analyses were performed. Briefly,

whole-cell lysates were extracted and SDS-PAGE separation was
performed. Protein was transferred to nitrocellulose membrane
and Western blot analysis performed with the indicated antisera
according to theirmanufacturer's guidelines. To examineMIF and
IL8 secretion into media, we used LEGEND MAX Human Active
MIF ELISA Kit (BioLegend) andHuman IL-8 ELISA Ready-SET-Go
(eBioscience).

shRNA silencing of CD74, PKCb, and IL8
Five Mission shRNA targeted lentivirus particles (Sigma-

Aldrich) for each target were obtained. BM-MSCs (2 � 104 cells)
were infected with each lentivirus. For all gene expression experi-

ments, the cells were incubated for 72 hours posttransfection
before RNA extraction.

Flow cytometry
Flow cytometry formeasuring AML cell numberwas performed

on the Cube 6 (Sysmex Partec). For the AML/BM-MSC cocultures,
AML cell viability was measured using flow cytometry. After
exclusion of BM-MSCs by electronic gating using forward scatter,
AML cells were counted using CD34 gating.

Cytokine array expression analysis
Primary AML blasts 0.25 � 106 were cultured alone or cocul-

tured on confluent primary BM-MSCs. Conditionedmediumwas
then collected from these cultures aswell as fromBM-MSC culture
and analyzed using the Proteome Profiler Human XL Cytokine
Array following themanufacturer's instructions.Quantificationof
cytokine optical densities was obtained with the HLimageþþ
software (WesternVision).

Statistical analyses
The Mann–Whitney U test was used to compare test groups

where stated. Results where P < 0.05 were considered statistically
significant. Results represent the mean � SD of four or more
independent experiments. We generated statistics with GraphPad
Prism 5 software (GraphPad). For Western blotting, data are
representative images of three independent experiments.

Study approval
AML cells and BM-MSCswere obtained fromAMLpatient bone

marrowor blood following informed consent andunder approval
from the UK National Research Ethics Service (LRECref07/
H0310/146).

Results
BM-MSCs support AML survival

The microenvironment supports AML survival and prolifera-
tion (4, 5, 19). To study the cell–cell communicationbetweenBM-
MSCs and AML cells, we established a coculture system using
primary AML cells and BM-MSCs derived from treatment-na€�ve
AML patients. Here, we show a significant difference in primary
AML survival when cultured on BM-MSCs for 6 and 14 days
compared with AML blast survival when cultured in basal media
alone (Fig. 1A; Supplementary Fig. S1). Supplementary Figure S2
shows the different combinations of AML and BM-MSCs in all
experiments.

To determine what factors are responsible for improved pri-
mary AML blast survival on BM-MSCs, we analyzed the profile of
cytokines and chemokines present in primary AML cultures, BM-
MSC cultures, and primary AML blasts cultured in combination
with BM-MSCs. Cytokine array profiles of the three culture con-
ditions (Fig. 1B) show a consistent upregulation of IL8 in the
coculture sample media (Fig. 1C). Moreover, we also observed
high levels ofMIF in all AML supernatants, low levels ofMIF in all
BM-MSC supernatants, and high levels of MIF in the AML/BM-
MSC cocultures (Fig. 1B and D). To verify these observations, we
carried out IL8- and MIF-specific ELISAs. IL8 concentrations peak
at 8 and 24 hours in the AML/BM-MSC coculture supernatants
(Fig. 1E), whereas MIF concentrations were high and at similar
levels in AML culture supernatants and AML/BM-MSC coculture
supernatants (Fig. 1F).
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AML-derived MIF induces IL8 expression in BM-MSCs
Next, we looked to determine whether BM-MSCs needed

direct contact with AML to increase IL8 expression. RT-PCR
showed that IL8 mRNA from BM-MSCs incubated with AML
increased by 57-fold when in direct contact and by 50-fold
when in indirect contact with AML blasts (Fig. 2A). This
confirms that direct tumor cell to stromal cell contact is not
necessary for AML to induce increased IL8 expression by
BM-MSCs.

Next, we examined the mRNA expression levels of MIF in
primary AML (n ¼ 5) and BM-MSC (n ¼ 5) cultures. RT-PCR
showed that primary AML cultures, but not BM-MSC cultures,
express high levels of MIF mRNA under normal basal conditions
(Fig. 2B). As MIF expression has been shown to be increased in
AML patients compared with normal patients (20) and the ability
of MIF to induce IL8 production by primary CLL (14), we
hypothesized that MIF from AML was responsible for the
increased IL8 expression in BM-MSCs. To test this hypothesis,
we stimulated BM-MSCs with 100ng/mL recombinant human
MIF and assayed for IL8 mRNA and protein expression over a

period of 24 hours. We show that IL8 mRNA and protein
increased (Fig. 2C and D) in response to MIF. To confirm that
MIF secreted from AML cells regulates IL8 expression, we used
ISO-1, a nontoxic inhibitor ofMIF, which functions by binding to
bioactive MIF at its N-terminal tautomerase site (21). MIF-stim-
ulated BM-MSCs pretreated with ISO-1 showed a decrease in
IL8 mRNA levels compared with untreated BM-MSCs (Fig. 2E).
Moreover, AML survival was inhibited when cultured with BM-
MSCs in the presence of ISO-1 compared with control AML–BM-
MSC cultures (Fig. 2F). Together, these data confirm that MIF
secreted by AML cells induces IL8 expression in BM-MSCs.

MIF-induced IL8 upregulation is mediated through CD74
Depending on the cellular context and the disease involved,

MIF signaling is mediated by its receptors CXCR2 (IL8 receptor,
ILR8) and/or CXCR4 (stromal-derived factor 1 receptor),
and/or CD74 (22, 23). BM-MSCs have been reported to express
all three receptors (24–26). Using CD105 as a BM-MSC marker
to confirm mesenchymal cell phenotype, we show that CD74
and CXCR4 are expressed but CXCR2 is not expressed on

Figure 1.

BM-MSCs support AML survival.
A, AML blasts (0.25 � 106) were
cocultured with primary BM-MSCs on
a 12-well plate for 6 days (n¼ 20); AML
blast number was assessed
using Trypan blue exclusion
hemocytometer–based counts and
CD34þ staining using flow cytometry.
B, Cell-free supernatants from
7 individual AML patient blasts
(0.25 � 106) were cocultured with
primary BM-MSCs for 24 hours and a
representative cytokine antibody
array of each of the cell culture
conditioned media using the Human
Cytokine Proteome Profiler Array.
C, Fold induction of cytokines
between BM-MSCs and AML cultured
on BM-MSCs. Results from 7 different
primary AML on four different
BM-MSCs. Bars, mean and SEM.
Significantly upregulated cytokines
are included in the graph. D,
Quantification of cytokine optical
density of AML only arrays
(7 individual AML samples). Graph
shows the top 8 cytokines expressed
by AML. Bars, mean and SEM. E, IL8
ELISA of each of the cell culture
conditioned media from various time
points (three individual AML samples).
F,MIF ELISA of each of the cell culture
conditioned media from various time
points (three individual AML samples).
The Mann–Whitney U test was used to
compare between treatment
groups (� , P < 0.05).
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all primary BM-MSCs isolated from AML patients (Fig. 3A).
BM-MSCs were further characterized using CD73 and CD90,
and lack of CD45 expression.

We used specific inhibitors of CXCR2, CXCR4, and CD74 to
determine which receptor/s were responsible for MIF-induced
IL8 upregulation. Inhibition of CXCR2 and CXCR4 using
pertussis toxin (a GPCR inhibitor) had no effect on MIF-
induced IL8 mRNA expression (Fig. 3B). However, the anti-

CD74 blocking antibody inhibited MIF-induced IL8 expression
in BM-MSCs (Fig. 3C). These results suggest that CD74 is the
dominant receptor in regulating MIF-induced IL8 expression
in AML patient-derived BM-MSCs. To further characterize this
interaction, we used lentiviral-mediated knockdown (KD) of
CD74 in AML patient-derived BM-MSCs, confirming reduced
mRNA and protein expression of CD74 after transduction with
control KD or CD74 KD lentivirus (Fig. 3D). Furthermore, we

Figure 2.

AML-derived MIF induces IL8
expression in BM-MSCs. A, AML blasts
from 5 patients (0.25 � 106) were
cocultured with primary BM-MSCs
either in direct contact (DC) or indirect
contact (IC, transwell insert) for
24 hours. IL8 mRNA in BM-MSCs was
then assessed by real-time PCR. mRNA
expression was normalized to GAPDH
mRNA levels (n ¼ 5). B, BM-MSCs and
primary AML from 5 patients were
cultured alone and measured for MIF
mRNA levels (n¼ 5). mRNA expression
was normalized to GAPDH mRNA
levels. C, BM-MSCs from 5 patients
were treated with rhMIF (100 ng/mL)
for indicated times, and then extracted
RNA was assessed for IL8 mRNA by
real-time PCR. mRNA expression
was normalized toGAPDHmRNA levels
(n ¼ 5). D, BM-MSCs from 5 patients
were treated with rhMIF (100 ng/mL)
for indicated times, and then, media
were assessed for IL8 protein
expression by ELISA. (n ¼ 5).
E, BM-MSCs from four patients were
pretreated with ISO-1 (10 mmol/L) for
5 minutes before treatment with rhMIF
(100 ng/mL) for 4 hours and then
assessed for IL8 mRNA expression
(n ¼ 4). F, BM-MSCs were pretreated
with ISO-1 (10 mmol/L) for 5 minutes
before the addition of primary AML
blasts from 10 patient samples for
48 hours. AML blast number was
assessed using Trypan blue exclusion
hemocytometer–based counts (n¼ 10).
The Mann–Whitney U test was used to
compare between treatment groups
(�, P < 0.05).
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demonstrate that CD74 knockdown inhibits MIF-induced IL8
mRNA expression in AML patient-derived BM-MSCs (Fig. 3E).

Pharmacologic inhibition of PKCb inhibits MIF-induced
IL8 induction in BM-MSCs

We next investigated the signaling cascade in AML patient-
derived BM-MSCs downstream of MIF-induced CD74 activa-
tion. It has been shown that MIF binding to CD74 activates
downstream signaling through the PI3K/protein kinase B
(AKT) and MAPK signaling pathways and promotes cell pro-
liferation and survival (27). In addition, Lutzny and colleagues
recently described the activation of a PKC pathway in murine
stromal cells cocultured with chronic lymphocytic leukemia
(28). We treated AML-stimulated BM-MSCs with LY294002
(a PI3K/Akt inhibitor), PD098059 [a MAPK kinase (MEK)
1 inhibitor], or Ro-31-8220 (a PKC pan inhibitor) to determine
which pathway/s regulate AML-induced BM-MSC IL8 mRNA
induction. We show that Ro-31-8220, the PKC inhibitor, was
able to significantly inhibit IL8 expression by approximately
80%, whereas LY294002 and PD098059 had little or no effect
(Fig. 4A). Similarly, we found that Ro-31-8220 was able to

inhibit IL8 expression by circa 90% in experiments where BM-
MSCs were directly activated using recombinant human MIF
(rhMIF; rather than AML cells; Fig. 4B). However, in addition,
we observed that PD98059 was able to moderately inhibit
rhMIF-induced IL8 mRNA induction in BM-MSCs by approx-
imately 30% (Fig. 4B).

To clarifywhether PKC,MAPK,or both are activated in response
to MIF, we performed Western blot analysis on BM-MSCs for
specific phosphorylation of PKC isoforms, MAPK, or AKT in
response to MIF activation. BM-MSCs were activated by AML for
15 minutes or MIF treatment (100 ng/mL) for various times. We
initially show that MIF and AML both induce phosphorylation
of PKC a/bII and PKC b in BM-MSCs (Fig. 4C). BMSCs from
4 patient samples treated withMIF had no increase in phosphory-
lationof AKT andMAPK (Fig. 4D).Next, the PKC isoform–specific
inhibitors, Go6976 (PKCa/b) and enzastaurin (PKCb), were used
to blockMIF-induced IL8 expression in BM-MSCs. Both inhibitors
showed inhibition of MIF-induced IL8 upregulation (Fig. 4E).
Finally, we used lentiviral-mediated KD for PKCb, confirming
reduced mRNA expression of PKCb after transduction of BM-
MSCs with control KD or PKCb KD virus (Fig. 4F). We then

Figure 3.

MIF-induced IL8 upregulation is
mediated through CD74. A, BM-MSCs
were assessed for CD105, CD74,
CXCR2, and CXCR4 using flow
cytometry. B and C, BM-MSCs from
four patient samples were pretreated
with the GPCR inhibitor pertussis toxin
(PTX; 100 ng/mL) or for CD74 (aCD74
ab; 10mg/mL) for 30 minutes before
being stimulated with MIF for 4 hours.
RNA was extracted and assessed for
IL8 mRNA by real-time PCR. mRNA
expression was normalized to GAPDH
mRNA levels (n¼4).D,BM-MSCs from
four patient samples were infected
with control shRNA or CD74 shRNA for
72 hours and analyzed for CD74mRNA
expression by RT-PCR and protein
expression by flow cytometry. E, BM-
MSCs from four patient samples were
infected with control shRNA or CD74
shRNA for 72 hours and then treated
with recombinantMIF and analyzed for
IL8 mRNA expression by RT-PCR. The
Mann–Whitney U test was used to
compare between treatment groups
(� , P < 0.05).
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demonstrate that knockdown of PKCb inhibits MIF-induced IL8
mRNA expression (Fig. 4G). Together, these results confirm that
MIF-induced IL8 expression in AML patient-derived BM-MSCs
requires PKCb.

Targeting the MIF–PKCb–IL8 axis disrupts BM-MSC–induced
protection of primary human AML blasts

Finally, to examine the effect of blocking IL8 on BM-MSC
protection and survival of primary AML blasts, we cocultured

Figure 4.

Inhibition of PKCb regulates AML-derived MIF-induced IL8 mRNA induction in BM-MSCs. A, BM-MSCs from four patients samples were pretreated with Ro-
31-8220 (1 mmol/L), PD98059 (10 mmol/L), and LY294002 (10 mmol/L) and then incubated with primary AML blast for 4 hours. RNA was extracted and
assessed for IL8 mRNA by real-time PCR. mRNA expression was normalized to GAPDH mRNA levels (n ¼ 4). B, BM-MSCs from four different samples
were pretreated with Ro-31-8220 (250 nmol/L), PD98059 (10 mmol/L), and LY294002 (10 mmol/L) and then incubated with MIF for 4 hours. RNA
was extracted and assessed for IL8 mRNA by real-time PCR. mRNA expression was normalized to GAPDH mRNA levels (n ¼ 4). C, BM-MSCs were
cultured with AML for 15 minutes or recombinant MIF (100 ng/mL) for various times. Protein was extracted and Western blotting performed. Blots
were probed for pPKCa/bII, pPKCb, PKD/PKCm, PKCd, and PKCd/q. Blots were then reprobed for b-actin to show equal sample loading. D, Four
different BM-MSCs with recombinant MIF (100 ng/mL) at various times. Protein was extracted and Western blotting performed. Blots were probed for pAKT
and pMAPK as well as total AKT and total MAPK. Blots were then reprobed for b-actin to show equal sample loading. E, Four different BM-MSCs
were pretreated with Go 6976 (1 mmol/L) and enzastaurin (1 mmol/L) and then incubated with MIF for 4 hours. RNA was extracted and assessed for
IL8 mRNA by real-time PCR. mRNA expression was normalized to GAPDH mRNA levels (n ¼ 4). F, Four different BM-MSCs were infected with
control shRNA or PKCb shRNA for 72 hours and analyzed for PKCb mRNA expression by RT-PCR. G, Four different BM-MSCs were infected with control
shRNA or PKCb shRNA for 72 hours, then treated with recombinant MIF and analyzed for IL8 mRNA expression by RT-PCR. The Mann–Whitney U test
was used to compare between treatment groups (� , P < 0.05).
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primary AML blasts derived from treatment-na€�ve AML patients
with BM-MSCs (either control KD or IL8 KD). First, we used
lentiviral-mediated KD for IL8. Figure 5A and B shows the mRNA
expression andprotein expression of IL8 after transduction of BM-
MSCs with control KD or IL8 KD virus. Figure 5C demonstrates
that knockdown of IL8 inhibits MIF-induced IL8 mRNA expres-
sion. Next, we show that KD of IL8 in BM-MSCs significantly
inhibits AML survival when in coculture compared with control
KD BM-MSCs (Fig. 5D). Finally, blocking the IL8R using
SB225002 inhibited AML survival when cultured with BM-MSCs
(Fig. 5E). Taken together, these results identify a novel protumoral
regulatory pathway in the AML microenvironment.

Discussion
AML is primarily a disease of the elderly with a median age at

diagnosis in the SwedishAcute LeukemiaRegistry of 72years (29).
Outcomes for the 75% of patients who get AML over the age of 60
remain generally poor, largely because the intensity and side
effects of existing curative therapeutic strategies (which are com-
monly used to treat younger fitter patients), coupled with patient
comorbidities, frequently limit their use in this older less fit
population (30). Accordingly, there is an urgent need to identify
pharmacologic strategies to tackle AML, which are not only
effective but can also be tolerated by both older and less well
patients. It is envisaged that treatments that target the tumor
microenvironment may well help realize this goal.

Here, we report a novel survival pathway within the human
AMLmicroenvironment, which functions as a feedback/autocrine
loop involving the constitutive expression of the chemokine MIF
by the AML blasts, which in turn induces IL8 expression in BM-

MSCs. Interestingly, another group showed that the repertoire of
constitutive in vitro chemokine release from AML shows variation
between different AML patient samples (31). We find that
although baseline expression of MIF by AML varies between
patient samples tested, all samples analyzed expressed MIF.
Moreover in coculture experiments, AML patient-derived BM-
MSCs were found to be ubiquitously responsive to AML-derived
MIF, which resulted in an increase in IL8 expression by the BM-
MSCs. This is in keeping with similar reports on other cytokine
pathways, which have shown that BM-MSCs can constitutively
express various chemokines (32), and AML cells are able to
respond to these chemokines (32, 33). In this study, we also
examined the genotype of six BM-MSCs used for the experiments
and found three of six to be normal and in other three, the
genotyping failed (Supplementary Table S2). This is apparently
in contrast to Huang and colleagues, who found that three of four
BM-MSCs from AML patients tested had cytogenetic abnormal-
ities within the stromal cells (34). Presently therefore, the inci-
dence and functional consequences of cytogenetic mutations
within stromal cells remain undefined. Nevertheless, taken
together, despite the established heterogeneity in AML, we find
the MIF/IL8 autocrine loop a constant finding across the samples
we tested, which makes this an attractive druggable target.

IL8 is a proinflammatory chemokinewhose primary function is
to activate two cell surface G protein–coupled receptors, CXCR1
and CXCR2, which promote neutrophil migration and degranu-
lation (35–37). Elevated IL8 secretion in tumor biology is well
characterized, with a number of studies showing the importance
of this chemokine in AML. In 1993, Tobler and colleagues
described the constitutive expression of IL8 and its receptor in
human myeloid leukemia, and more recently, Schinke and

Figure 5.

Targeting MIF–PKC–IL8 axis in AML
disrupts BM-MSC–derived protection.
A and B, BM-MSCs from six samples
were infected with control shRNA or
IL8 shRNA for 72 hours and analyzed
for IL8 mRNA expression by RT-PCR
and protein expression by ELISA.
C, BM-MSCs from six samples were
infected with control shRNA or IL8
shRNA for 72 hours and then treated
with recombinant MIF and analyzed
for IL8 mRNA expression by RT-PCR.
D, BM-MSCs were infected with
control shRNA or IL8 shRNA for
72 hours and cocultured with AML
blasts from seven samples for 48
hours. AML blast number was
assessed using Trypan blue exclusion
hemocytometer–based counts
(n ¼ 7). E, BM-MSCs were pretreated
with SB225002 (100 nmol/L) for
30 minutes before the addition of
primary AML blasts from 10 samples
for 48 hours. AML blast number was
assessed using Trypan blue exclusion
hemocytometer–based counts. The
Mann-Whitney U test was used to
compare between treatment groups
(� , P < 0.05).
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colleagues have reported that inhibition of the IL8 receptor
CXCR2 selectively inhibits immature hematopoietic stem cells
fromMDS/AML samples (17, 18). In other malignancies, IL8 has
been characterized in endothelial cells and tumor-associated
macrophages, suggesting that IL8 has a function in the liver and
prostate tumor microenvironments (38, 39). As rodents lack a
direct homologue of IL8, we purified BM-MSCs extracted from
patient bone marrow aspirates at the time of diagnosis of AML.
Our study describes for the first time how AML stimulates the
production of IL8 from BM-MSCs and inhibiting this process
prevents AML survival.

Extensive studies of MIF function have revealed its central role
in innate and adaptive immunity (10). More recently, the ability
of this cytokine to support tumor progression has been highlight-
ed, revealing MIF as a potential target for anticancer therapies in
melanomaand colon cancer (40).MIF occurs in immunologically
distinct conformational isoforms, reduced MIF and oxidized MIF
(oxMIF), with the latter predominantly expressed in patients with
inflammatory diseases (41) and is highly expressed by various
cancer cell lines (42). This has led to the evaluation of an oxMIF¼
blocking antibody (imalumab) in early-phase clinical studies of
selected solid tumors (https://clinicaltrials.gov/ct2/show/
NCT01765790). Our findings provide a biological rationale for
the clinical assessment of imalumab or other MIF inhibitors in
AML patients.

Activation of PKC signaling pathway has been characterized in
cancer cells. In hematologic malignancies, different PKC isoforms
have been identified as key players in the leukemia microenvi-
ronment. In multiple myeloma, pharmacologic inhibition of
activated PKCbII using enzastaurin inhibited growth factors and
cytokines secreted by multiple myeloma–derived bone marrow
stromal cells (28). In CLL, PKCb is immediately downstream of
the B-cell receptor andhas been shown to be important to CLL cell
autocrine survival and proliferation in vivo (43). PKCb is also
essential for the development of CLL in the TCL1 transgenic
mouse model, making it a valid therapeutic target in this malig-
nancy (44). Furthermore, induction of PKCbII in stromal cells is
required for the survival of leukemic B cells, and stromal PKCbII is
upregulated in samples from CLL, ALL, and MCL patients (28).
Our results demonstrate that in primary samples from AML
patients at diagnosis, PKCb is phosphorylated in the BM-MSCs

in response to MIF stimulation. This leads us to hypothesize that
this pathway may commonly be activated in other hematologic
malignancies, and moreover, the cancer cell is inducing this
activation. In summary, this study links secretion of MIF from
primary AML to a specific BM-MSC pathway, utilizing PKCb to
feedback survival signals, including IL8 secretion toAML. In doing
so, we have identified in vitro the potential efficacy of targeting any
one of these molecules to disrupt AML/BM-MSC prosurvival
interactions.
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