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Abstract

In this paper we describe two fully mass conservative, energy stable, finite dif-
ference methods on a staggered grid for the quasi-incompressible Navier-Stokes-
Cahn-Hilliard (q-NSCH) system governing a binary incompressible fluid flow
with variable density and viscosity. Both methods, namely the primitive method
(finite difference method in the primitive variable formulation) and the projec-
tion method (finite difference method in a projection-type formulation), are so
designed that the mass of the binary fluid is preserved, and the energy of the
system equations is always non-increasing in time at the fully discrete level. We
also present an efficient, practical nonlinear multigrid method - comprised of a
standard FAS method for the Cahn-Hilliard equation, and a method based on
the Vanka-type smoothing strategy for the Navier-Stokes equation - for solving
these equations. We test the scheme in the context of Capillary Waves, rising
droplets and Rayleigh-Taylor instability. Quantitative comparisons are made
with existing analytical solutions or previous numerical results that validate the
accuracy of our numerical schemes. Moreover, in all cases, mass of the single
component and the binary fluid was conserved up to 10−8 and energy decreases
in time.

Keywords: Energy Stability, Staggered Finite Differences, Multigrid, Binary
fluid flow, Variable Density, Phase-field method.

1. Introduction

Phase-field, or diffuse-interface models [4, 29], have now emerged as a pow-
erful method to simulate many types of multiphase flows, including drop coales-
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cence, break-up, rising and deformations in shear flows [19, 26, 30, 31, 34, 52],
contact line dynamics [14, 15, 27], thermocapillary effects [18, 20], and tumor
growth [24, 38]. Phase-field model are based on models of fluid free energy
which goes back to the work of Cahn and collaborators [6, 7]. The basic idea
is to introduce a phase variable (order parameter) to characterize the different
phases that varies continuously over thin interfacial layers and is mostly uni-
form in the bulk phases. Sharp interfaces are then replaced by the thin but
nonzero thickness transition regions where the interfacial forces are smoothly
but locally distributed in the bulk fluid. One set governing equations for the
whole computational domain can be derived variationally from the free energy,
where the order parameter fields satisfy an advection-diffusion equation (usu-
ally the advective Cahn-Hilliard equations) and is coupled to the Navier-Stokes
equations through extra reactive stresses that mimic surface tension.
The classical phase-field model, the Model H [25], was initially developed for
simulating a binary incompressible fluid where components are density matched,
and was later generalized for simulating binary incompressible fluids with vari-
able density components [1, 2, 5, 11, 13, 28, 36, 41, 43], in which some models,
however, do not satisfy the Galilean invariance or are not thermodynamic consis-
tency. As the phase-field model can be derived through a variational procedure,
thermodynamic consistency of the model equations can serve as a justification
for the model. In addition, this approach ensures the model compatible with
the laws of thermodynamics, and to have a strict relaxational behavior of the
free energy, hence the models are more than a phenomenological description
of an interfacial problem. Lowengrub and Truskinovsky [36] and Abels et al.
[1] extended the Model H to a thermodynamically consistent model for vari-
able density using two different modelling assumptions on the phase variable
(mass concentration [36] or volume fraction [1]) and the velocity field (mass av-
eraged [36] or volume averaged velocity [1]). Although the two models are devel-
oped to represent the same type of flow dynamics, the resulting equations have
significant differences due to the underlying modeling choices. In particular,
the quasi-incompressible NSCH model (q-NSCH) developed by Lowengrub and
Truskinovsky [36] adopts a mass-averaged velocity, and the fluids are mixing at
the interfacial region which generates the changes in density. Such a system was
called quasi-incompressible, which leads to a (generally) non-solenoidal velocity
field (∇ · u 6= 0 but was given through the quasi-incompressibility condition)
and an extra pressure term appears in the Cahn-Hilliard equation comparing
to Model H. In the model of Abels et. al. [1], a solenoidal (divergence-free)
velocity field is obtained due to the volume-averaged mixture velocity modeling
assumption. However the mass conservation equation of their model is modified
by adding a mass correction term. Most recently, another quasi-incompressible
phase-field model [51] was developed to study the binary fluid with variable
density, where the volume fraction is employed as the phase variable leading to
a different free energy.
Solving the q-NSCH model is quite a challenging problem. The CH equation
is a fourth order nonlinear parabolic PDE, which contains an extra pressure
term; the solution of the phase variable varies sharply through the thin diffuse-
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interface region where the velocity field is non-solenoidal; the variable density
is a non-linear function of the phase variable; the NS and CH equations are
strongly coupled, which further increases the mathematical complexity of the
model and that makes it difficult to design provably stable numerical schemes.
Recently, it has been reported that thermodynamic consistency can serve as
not only a critical justification for the phase-field modeling, but also an impor-
tant criterion for the design of numerical methods. When the thermodynamic
consistency is preserved at the discrete level, it guarantees the energy stabil-
ity of the numerical method and also the accuracy of the solution, especially
for the case where a rapid change or a singularity occurs in the solution, such
as occurs in non-Newtonian hydrodynamic systems [32, 33]. Therefore it is
highly desirable to design such an energy stable method for the q-NSCH model,
which dissipates the energy (preserve thermodynamic consistency) at the dis-
crete level. Many time-discrete or fully discrete level energy stable methods
[8, 21, 23, 28, 33, 35] have been presented for the other types of NSCH models
for binary incompressible fluid with the solenoidal velocity field. However for
the q-NSCH model presented by Lowengrub and Truskinovsky [36] or the other
quasi-incompressible type models with the non-solenoidal velocity, relatively few
time-discrete energy stable methods are available [16, 43, 19]. Very recently, a
C0 finite element method for the q-NSCH system with a consistent discrete
energy law was presented by Guo et. al. [19]. where interface topological tran-
sitions are captured and the quasi-incompressibility is handled smoothly. At
the fully discrete level, however, there are no available energy stable numerical
methods for the q-NSCH model.
Another important criterion for the method design is to guarantee mass con-
servation of the binary incompressible fluid at the fully discrete level. Due to
appearance of the diffusion term and numerical dissipation introduced in dis-
cretization of the convective term in the Cahn-Hilliard equation, the total mass
of the binary fluid is usually not preserved exactly. This phenomenon has been
reported in several works [47, 53], where the phase-field models were used to
study the binary incompressible fluid. The mass loss can get even worse for
binary fluid flows with large density ratios, as large numerical dissipation is
needed to obtain a stable solution. To handle the issue of mass loss, usually
the fine grids and small thickness of diffuse-interfaces are used in the phase-field
model to improve mass conservation [3, 12]. Another way to compensate the
mass loss is to add the extra mass correction terms into the CH equation [47].
However, this may need additional efforts for correcting the order parameter at
each time step, and the energy stability of the numerical methods can be hardly
maintained due to the artificial mass correction term.
In the present paper, we develop two fully mass conservative, energy stable,
staggered grid finite difference methods for the q-NSCH model. The temperal
and space discretization for both methods are so designed that the mass for
the binary fluid is preserved naturally at the fully discrete level, and the extra
artificial mass correction is not required. Moreover, both methods are energy
stable at the fully discrete level. Our first method, primitive method, that uses a
primitive variable formulation is based on the Vanka-type smoother [46], where
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the momentum and continuity equations are coupled implicitly and the veloc-
ities and pressures are updated simultaneously in a linear sense. Our second
method that uses a projection-type formulation was originated from the work
by A. Chorin [9] for solving the Navier-Stokes equations. The key advantage of
the projection method is its efficiency such that the computations of the velocity
and the pressure fields are decoupled. Our projection method differs from the
traditional projection method in that the latter method usually uses the pres-
sure to project the intermediate velocity onto a space of divergence-free velocity
field [28], whereas we enforce the quasi-incompressible condition instead. To the
best of the author’s knowledge, for the q-NSCH model, our two finite difference
methods which preserve the mass and meanwhile are energy stable at the fully
discrete level are new. To solve the schemes efficiently, we design a practical
nonlinear multigrid solver - comprised of a standard FAS method for the CH
equation, and a method based on the Vanka-type smoothing strategy for the
NS equation - for solving these equations.
The rest of the paper is organized as follows: in §2, we introduce the q-NSCH
model and its non-dimensionaliz-ation. For convenience of the numerical de-
sign later, we reformulate the system and show the mass conservation and the
energy law (thermodynamic consistency) of the reformulated model in §3. In
§4 we present our two numerical methods, namely the primitive method and
projection method, at the time-discrete level, and we demonstrate the mass
conservation property and energy stability of both methods. In §5, we intro-
duce some basic definitions and notations for the finite difference discretization
on a staggered grid. In §6, we descretize in space and we show that for both
methods the mass conservation and energy stability can be achieved at the fully
discrete level. In §7, we introduce a non-linear multigrid solver for our fully
discrete numerical schemes. In §8, we test our methods and compare with the
existing results. In §9 we present a convergence test for both methods. §10 is the
conclusion. Moreover, the extra notations for the finite difference discretization
and some useful propositions are listed in the Appendix A. The multigrid solver
is briefly introduced in B.

2. Quasi-Incompressible NSCH System

2.1. Dimensional System Equations

As derived in [36], the q-NSCH system governing a binary incompressible
fluid with variable density and viscosity is

ρut + ρu ·∇u =−∇p− ηεσ∇ · (ρ∇c⊗∇c) + ∇ ·
(
µ(c)(∇u + (∇u)T)

)
+ ∇

(
λ(c)(∇ · u)

)
− ρgj, (1)

∇ · u =α∇ · (m(c)∇µc), (2)

ρct + ρu ·∇c =∇ · (m(c)∇µc), (3)

µc =
ησ

ε
f(c)− ∂ρ

∂c

p

ρ2
− ηεσ

ρ
∇ · (ρ∇c). (4)
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Here u is the velocity, p is the pressure, g is the gravity, c is the phase variable
(mass concentration), µc is the chemical potential, f(c) = F ′(c), and F (c) =
c2(c − 1)2/4 is the double-well potential, m(c) =

√
c2(1− c)2 is the variable

mobility, ρ = ρ(c) = ρ1ρ2/((ρ2−ρ1)c+ρ1) is the variable density for the binary
fluid, ρ1 and ρ2 are the constant densities for the two incompressible fluids, α =
(ρ2−ρ1)/ρ1ρ2 is a constant such that ρ′ = −αρ2, µ(c) = µ1µ2/((µ2−µ1)c+µ1)
is the variable viscosity, µ1 and µ2 are the constant viscosities of the two fluids,
λ(c) = − 2

3µ(c), ε is a small parameter that is related to the thickness of the
diffuse-interface, σ is the surface tension from the sharp interface model, η is
a ratio parameter that relates the phase-field model and sharp interface model
[18].
The no-slip boundary condition is imposed for the velocity field

u|∂Ω = u∂Ω, (5)

and the Neumann boundary conditions are imposed for the phase-field variables,

n ·∇c|∂Ω = n ·∇µc|∂Ω = 0, (6)

where n is the normal vector pointing out of the physical domain Ω.
Note that, by multiplying (2) with 1/α and substituting into (3), we obtain,

αρct + αρu ·∇c = ∇ · u (7)

Multiplying the above equation by −αρ and using the definition of α, we obtain

ρt + ∇ · (ρu) = 0, (8)

which shows that the q-NSCH system (1)-(4) satisfies the mass conservation.
Note that this equation is also required to reformulate the system equation in
§3.

2.2. Non-dimentionalization

Let L∗ and U∗ denote the characteristic scales of length and velocity, we
then introduce the dimensionless independent variables: x̂ = x/L∗, û = u/U∗,
t̂ = tU∗/L∗, and the following natural scaling of the dependent variables: p̂ =
ρ∗µc∗pl, ρ̂ = ρl/ρ∗, µ̂ = µl/µ∗, µ̂c = µc/µc∗, η̂ = η∗/ρl, ε̂ = ε/L∗ and m̄(c) =
ml/m∗(c), where the subscripts denote characteristic quantities. Omitting the
hat notation, the non-dimensional q-NSCH model is

ρut + ρu ·∇u =−
1

M
∇p−

ηε

We
∇ · (ρ∇c⊗∇c) +

1

Re
∇ ·

(
µ(c)∇u

)
+

1

3Re
∇
(
µ(c)(∇ · u)

)
−

ρ

Fr
j, (9)

∇ · u =
α

Pe
∇ ·

(
m(c)∇µc

)
, (10)

ρct + ρu ·∇c =
1

Pe
∇ ·

(
m(c)∇µc

)
, (11)
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µc =
Mη

εWe
f(c)−

∂ρ

∂c

p

ρ2
−
Mηε

We

1

ρ
∇ · (ρ∇c), (12)

where M = U2
∗/µc∗ is an analogue of the squared Mach number measuring the

relative strength of the kinetic energy to surface energy, We = ρ∗U
2
∗L∗/σ is

the Weber number, Re = ρ∗L∗U∗/µl is the classical Reynolds number, Fr =
U2
∗/gL∗ is the Froude number, Pe = ρU∗L∗/m∗µc∗ is the diffusional Peclet

number.
Note that the sharp-interface limit analysis is carried out in [36, 18] to show the
convergence of the q-NSCH model. In particular, as the thickness of the diffuse
interface approached to 0 (ε → 0), the q-NSCH reduces to the classical sharp-
interface model for binary incompressible fluids. We will show this convergence
property through the numerical simulations in §8.

3. Reformulation of the system equations

For convenience of the numerical scheme design later, we follow the same
strategy used in [19] to reformulate the q-NSCH system (9)-(12) to obtain

ρut + ρ(u ·∇)u +
1

2
ρtu +

1

2
∇ · (ρu)u = −

1

M
∇p̄+

1

M
ρµ̄c∇c

+
1

Re
∇ · (µ(c)∇u) +

1

3Re
∇
(
µ(c)(∇ · u)

)
−

ρ

Fr
j, (13)

∇ · u =
α

Pe
∇ ·

(
m(c)∇µ̄c

)
+
α2

Pe
∇ ·

(
m(c)∇p̄

)
, (14)

ρct + ρ(u ·∇)c =
1

Pe
∇ ·

(
m(c)∇µ̄c

)
+

α

Pe
∇ ·

(
m(c)∇p̄

)
, (15)

ρµ̄c =
Mη

εWe
ρf(c) +

Mη

εWe

∂ρ

∂c
F (c) +

Mηε

We

∂ρ

∂c

1

2
(∇c ·∇c)−

Mηε

We
∇ · (ρ∇c). (16)

Here we have defined a new pressure p̄ and a new chemical potential µ̄c, such
that

p̄ = p+
ηM

εWe
ρF (c) +

ηεM

We

ρ

2
∇c ·∇c, and µ̄c = µc +

∂ρ

∂c

p̄

ρ2
= µc − αp̄.

(17)

Note that a zero term 1
2ρtu + 1

2∇ · (ρu)u has been added to the momentum
equation, which can be seen as the multiplication of the continuity equation (8)
and the velocity u. The reason is that the test functions in deriving the energy
law can be made much simpler (See also Remark 3.3 below) and thus make it
easier to achieve the energy stable finite difference method.
We now show that, in the time-continuous and space-continuous level, the re-
formulated non-dimensional system (13)-(16) satisfies the Mass conservation for
the binary fluid and also the fluid components. In order to show these proper-
ties, we will only consider the homogeneous boundary condition for u∂Ω = 0,
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such that, the boundary terms that are originated from the integration by parts
can be dropped by using the homogeneous boundary conditions.

Theorem 3.1. The non-dimensional q-NSCH system (13)-(16) preserve the
mass of the binary fluid ρ and the fluid components ρc, i.e,∫

Ω

ρt dx = 0, and

∫
Ω

(ρc)t dx = 0. (18)

Proof. Using the same scheme for (7), we obtain the continuity equation of the
system

ρt + ∇ · (ρu) = 0. (19)

Taking integration of Eq.(19) over Ω with the help of the homogeneous boundary
condition of u in Eq.(5), we obtain the mass conservation for the binary fluid∫

Ω
ρtdx = 0. Multiplying Eq.(19) by c, and adding to Eq.(15), we obtain

(ρc)t + ∇ · (ρuc) =
1

Pe
∇ ·

(
m(c)∇µ̄c

)
+

α

Pe
∇ ·

(
m(c)∇p̄

)
=

1

Pe
∇ ·

(
m(c)∇µc

)
.

(20)

Taking integration of Eq.(20) over Ω with the help of the homogeneous boundary
condition (6), we obtain the mass conservation for the single fluid

∫
Ω

(ρc)tdx =
0.

Theorem 3.2. The non-dimensional q-NSCH system (13)-(16) is energy stable,
namely the system equations satisfy the following energy dissipation law:

dE

dt
=
d

dt

(
1

2
‖√ρu‖2L2 +

ηε

2We
‖√ρ ∇c‖2L2 +

∫
Ω

( η

εWe
ρF (c) +

1

Fr
ρy
)
dx

)
=−

1

Re
‖
√
µ(c)∇u‖2L2 −

1

3Re
‖
√
µ(c)∇ · u‖2L2 −

1

MPe
‖
√
m(c)∇µc‖2L2 ≤ 0,

(21)

where E is the total energy of the binary fluid, and || · ||L2 denotes the norm of
L2(Ω) in Sobolev spaces.

Proof. Multiplying Eq.(13) by u, using integration-by-parts and dropping
boundary terms, we obtain

d

dt

(
1

2
‖√ρu‖2L2 +

∫
Ω

( 1

Fr
ρy
)
dx

)
=

∫
Ω

(
1

M
(∇ · u)p̄+

1

M
ρµ̄cu ·∇c

)
dx

−
1

Re
‖
√
µ(c)∇u‖2L2 −

1

3Re
‖
√
µ(c)∇ · u‖2L2 , (22)

where we have used the continuity equation (19), the homogeneous boundary
condition (5), the following identities∫

Ω

ρu · j dx =

∫
Ω

ρu ·∇y dx =

∫
Ω

−∇ · (ρu)y dx =

∫
Ω

ρty dx, (23)
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∫
Ω

(
ρ(u ·∇)

1

2
(u · u) +

1

2
(u · u)∇ · (ρu)

)
dx = 0. (24)

Multiplying Eq.(14) by p̄/M and using integration-by-parts, we obtain∫
Ω

0 dx =

∫
Ω

(
−

1

M
(∇ · u)p̄−

α

PeM
m(c)∇µ̄c ·∇p̄−

α2

PeM
m(c)∇p̄ ·∇p̄

)
dx.

(25)

Multiplying Eq.(15) by µ̄c/M and using integration-by-parts, we obtain

0 =

∫
Ω

(
−

1

M
ρctµ̄c −

1

M
ρµ̄cu ·∇c−

1

PeM
m(c)∇µ̄c ·∇µ̄c

−
α

PeM
m(c)∇µ̄c ·∇p̄

)
dx. (26)

Multiplying Eq.(16) by ct/M and using integration-by-parts, we obtain

d

dt

(
ηε

2We
‖√ρ ∇c‖2L2 +

∫
Ω

( η

εWe
ρF (c)

)
dx

)
=

∫
Ω

1

M
ρctµ̄cdx. (27)

Summing up the four equations, (22) and (25)-(27), we obtain the energy dissi-
pation law (21) of the continuous system equations.

Remark 3.3. Note that the original non-dimensional q-NSCH system (9)-(12)
also satisfies the energy law (21), which requires, however, much more com-
plicated test functions to derive the energy law. Our reformulation makes the
derivation easier with relatively simpler testing functions being used.

4. Time Discrete, Mass Conservative and Energy Stable Schemes

We now present two time-discrete methods, namely the primitive method
(using the primitive variable formulation), and the projection method (using a
projection-type formulation). Both methods are mass conservative and energy
stable. In the projection method, we show that there is a pressure-Poisson
equation naturally occurring in the reformulated system equation that can be
used for solving the pressure. This differs from the traditional projection method
in that the latter requires constructing an extra pressure-Poisson equation for
solving the pressure. Here we present semi-discrete schemes that motivate the
fully discrete schemes that we exhibit in later sections.

4.1. Time-Discrete Primitive Method

We first present the following numerical method in the primitive variable
formulation. Let δt > 0 denote the time step, and assume un, p̄n, cn, µ̄nc are
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the solution at the time t = nδt, We then find the solutions at time t = (n+1)δt
are un+1, p̄n+1, cn+1, µ̄n+1

c that satisfy

ρn
un+1 − un

δt
+ ρn(un ·∇)un+1 +

1

2
un+1

(ρn+1 − ρn

δt
+ ∇ · (ρnun)

)
= −

1

M
∇p̄n+1

+
1

M
ρnµ̄n+1

c ∇cn +
1

Re
∇ · (µ(cn)∇un+1) +

1

3Re
∇
(
µ(cn)(∇ · un+1)

)
−
ρn

Fr
j,

(28)

∇ · un+1 =
α

Pe
∇ ·

(
m(cn)∇µ̄n+1

c

)
+
α2

Pe
∇ ·

(
m(cn)∇p̄n+1

)
, (29)

ρn+1 c
n+1 − cn

δt
+ ρnun+1 ·∇cn =

1

Pe
∇ ·

(
m(cn)∇µ̄n+1

c

)
+

α

Pe
∇ ·

(
m(cn)∇p̄n+1

)
, (30)

ρn+1µ̄n+1
c =

Mη

εWe
ρn+ 1

2 g(cn+1, cn) +
Mη

εWe
Fn+ 1

2 (c) r(cn+1, cn)

+
εηM

2We
(∇c ·∇c)n+ 1

2 r(cn+1, cn)−
εηM

We
∇ · (ρn+ 1

2∇cn+ 1
2 ), (31)

where ρn+ 1
2 = (ρn+1 + ρn)/2, cn+ 1

2 = (cn+1 + cn)/2, Fn+ 1
2 (c) = (F (cn+1) +

F (cn))/2, (∇c ·∇c)n+ 1
2 = (∇cn+1 ·∇cn+1 + ∇cn ·∇cn)/2 are the temporal

average, and

g(cn+1, cn) =
1

4

(
cn+1(cn+1 − 1) + cn(cn − 1)

)
(cn+1 + cn − 1) (32)

is an approximation to the nonlinear function F ′(c) = f(c) = c(c− 1)(c− 1/2).
Here we note the identity,

F (cn+1)− F (cn) = g(cn+1, cn)(cn+1 − cn). (33)

r(cn+1, cn) = −αρ(cn+1)ρ(cn), (34)

is an approximation of the nonlinear function ∂ρ/∂c = −αρ2, which satisfies
the following identity:

ρ(cn+1)− ρ(cn) = r(cn+1, cn)(cn+1 − cn). (35)

Note that the function g(cn+1, cn) and r(cn+1, cn) are critical for the achieve-
ment of the mass conservation and energy stability of the numerical schemes.
Using the following boundary conditions

un+1|∂Ω = 0, n ·∇cn+1|∂Ω = n ·∇µn+1
c |∂Ω = 0, (36)

we now show that the time-discrete primitive method (28)-(31) satisfies the
following properties:
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Theorem 4.1. The time-discrete primitive method (28)-(31) is mass conser-
vative for the binary fluid and the fluid components, i.e,(
ρn+1, 1

)
L2 =

(
ρn, 1

)
L2 , and

(
ρn+1cn+1, 1

)
L2 =

(
ρncn, 1

)
L2 , ∀n ≥ 0. (37)

Here we use || · ||L2 to denote the norm of L2(Ω) in Sobolev spaces, and (·, ·)L2

denotes the inner product in L2(Ω).

Proof. Multiplying (29) by 1/α and substituting into (30), we obtain

ρn+1 c
n+1 − cn

δt
+ ρnun+1 ·∇cn =

1

α
∇ · un+1. (38)

Multiplying the above by −αρn, we obtain the continuity equation at the time
discrete level

ρn+1 − ρn

δt
+ ∇ · (ρnun+1) = 0, (39)

where we have used the identity (34) and (35). Integrating of Eq.(39) over Ω,
thanks to the boundary condition (36), we obtain the mass conservation for
the binary fluid (ρn+1, 1)L2 = (ρn, 1)L2 . Multiplying (39) by cn, and adding to
Eq.(30), we obtain

ρn+1cn+1 − ρncn

δt
+ ∇ · (ρnun+1cn) =

1

Pe
∇ ·

(
m(cn)∇µ̄n+1

c

)
+

α

Pe
∇ ·

(
m(cn)∇p̄n+1

)
. (40)

Integrating of Eq.(40) over Ω, thanks to the definition (17) and boundary condi-
tion (36), we obtain the mass conservation for the single fluid (ρn+1cn+1, 1)L2 =
(ρncn, 1)L2 .

Theorem 4.2. The time-discrete primitive method (28)-(31) is energy stable,
i.e,

En+1 − En =

(
1

2
||
√
ρn+1un+1||2L2 +

ηε

2We
||
√
ρn+1∇cn+1||2L2

+

∫
Ω

( η

εWe
ρn+1F (cn+1) +

1

Fr
ρn+1y

)
dx

)
−
(

1

2
||
√
ρnun||2L2 +

ηε

2We
||
√
ρn∇cn||2L2

+

∫
Ω

( η

εWe
ρnF (cn) +

1

Fr
ρny

)
dx

)
= −

δt

Re
||
√
µ(cn)∇un+1||2L2 −

δt

3Re
||
√
µ(cn)∇ · un+1||2L2
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−
δt

MPe
||
√
m(cn)∇µn+1

c ||2L2 −
1

2
||
√
ρn(un+1 − un)||2L2 ≤ 0, (41)

where En+1 is the total energy at the time discrete level.

Proof. Multiplying Eq.(28) by δtun+1, using integration-by-parts and dropping
the boundary terms, we obtain

1

2
||
√
ρn+1un+1||2L2 −

1

2
||
√
ρnun||2L2 +

1

Fr

∫
Ω

(
(ρn+1 − ρn)y

)
dx

=
δt

M

(
p̄n+1, (∇ · un+1)

)
L2 +

δt

M

(
ρnun+1 ·∇cn, µ̄n+1

c

)
L2

−
δt

Re
||
√
µ(cn)∇un+1||2L2 −

δt

3Re
||
√
µ(cn)∇ · un+1||2L2

−
1

2
||
√
ρn(un+1 − un)||2L2 , (42)

where we have used the homogeneous boundary condition (36), the identities
(23), (24), (39) and∫

Ω

(
ρnj · un+1

)
dx =

∫
Ω

(
ρnun+1 ·∇y

)
dx = −

∫
Ω

(
∇ · (ρnun+1)y

)
dx

=

∫
Ω

(
ρn+1 − ρn

δt
y

)
dx. (43)

Note that for all the following derivations, the boundary terms originated from
the integration-by-parts can be dropped by using the homogeneous boundary
condition (36).
Multiplying Eq.(29) by δtp̄n+1/M and using integration-by-parts, we obtain

0 =−
δt

M

(
(∇ · un+1), p̄n+1

)
L2 −

δtα

MPe

(
m(cn)∇µ̄n+1

c ,∇p̄n+1
)
L2

−
δtα2

MPe
||
√
m(cn)∇p̄n+1||2L2 . (44)

Multiplying Eq.(30) by δtµ̄n+1
c /M and using integration-by-parts, we obtain

0 =−
1

M

(
ρn+1(cn+1 − cn), µ̄n+1

c

)
L2 −

δt

M

(
ρnun+1 ·∇cn, µ̄n+1

c

)
L2

−
δt

MPe
||
√
m(cn)∇µ̄n+1

c ||2L2 −
δtα

MPe

(
m(cn)∇µ̄n+1

c ,∇p̄n+1
)
L2 . (45)

Multiplying (31) by (cn+1 − cn)/M and using integration-by-parts, we obtain

ηε

2We
(||
√
ρn+1∇cn+1||2L2 − ||

√
ρn∇cn||2L2) +

η

εWe

( ∫
Ω

ρn+1F (cn+1)dx

−
∫

Ω

ρnF (cn)dx
)

=
1

M

(
ρn+1µ̄n+1

c , cn+1 − cn
)
L2 . (46)

Summing up the four relations, (42) and (44)-(46), we obtain the energy stability
(41) for time-discrete primitive method.
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4.2. Time-Discrete Projection Method

To design an efficient projection-type methods, we follow the projection for-
mulation to decouple the computation of the velocity u and pressure p. In par-
ticular, an intermediate velocity that does not satisfy the quasi-incompressibility
constraint (14) is computed at each time step, the pressure is then used to cor-
rect the intermediate velocity to get the next updated velocity that satisfies
the quasi-incompressible constraint. Our projection method differs from tradi-
tional projection methods in that traditional methods usually use the pressure
to project the intermediate velocity onto a space of divergence-free velocity
fields (See [28] as example). Moreover, in our projection method, a pressure-
Poisson equation (49) naturally occurs in the reformulated system equations,
and an extra pressure-Poisson equation is not required, which, however, is usu-
ally compulsory in traditional projection methods (This can be done applying
the divergence operator to Eq.(48), see [42] as a review). Our projection method
for the q-NSCH system (13)-(16) is the following: given ũn, un, p̄n, cn, µ̄nc , find
the solution ũn+1, un+1, p̄n+1, cn+1, µ̄n+1

c satisfying

ρn
ũn+1 − un

δt
+ ρn(un ·∇)ũn+1 +

1

2
ũn+1

(ρn+1 − ρn

δt
+ ∇ · (ρnun)

)
=

1

Re
∇ · (µ(cn)∇ũn+1) +

1

3Re
∇
(
µ(cn)(∇ · ũn+1)

)
, (47)

ρn+1u
n+1 − ũn+1

δt
= −

1

M
∇p̄n+1 +

1

M
ρn+1µ̄n+1

c ∇cn+1 −
ρn+1

Fr
j (48)

∇ · un+1 =
α

Pe
∇ ·

(
m(cn)∇µ̄n+1

c

)
+
α2

Pe
∇ ·

(
m(cn)∇p̄n+1

)
, (49)

ρn
cn+1 − cn

δt
+ ρn+1un+1 ·∇cn+1 =

1

Pe
∇ ·

(
m(cn)∇µ̄n+1

c

)
+

α

Pe
∇ ·

(
m(cn)∇p̄n+1

)
, (50)

ρnµ̄n+1
c =

Mη

εWe
ρn+ 1

2 g(cn+1, cn) +
Mη

εWe
Fn+ 1

2 (c) r(cn+1, cn)

+
εηM

2We
(∇c ·∇c)n+ 1

2 r(cn+1, cn)−
εηM

We
∇ · (ρn+ 1

2
∇cn+ 1

2
), (51)

with the following boundary conditions

ũn+1|∂Ω = 0, n · u|n+1
∂Ω = 0, n ·∇cn+1|∂Ω = n ·∇µn+1

c |∂Ω = 0 (52)

Here the intermediate velocity ũ is solved first in (47), then the pressure p̄ is
solved in (49) and is used to correct ũ to obtain the velocity u that satisfies the
quasi-incompressible constraint through the projection equation (48).

Theorem 4.3. The time-discrete projection scheme (47)-(51) is mass conser-
vative for the binary fluid and single fluid, i.e,(
ρn+1, 1

)
L2 =

(
ρn, 1

)
L2 , and

(
ρn+1cn+1, 1

)
L2 =

(
ρncn, 1

)
L2 , ∀n ≥ 0. (53)
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Proof. Using the same strategy that used for Theorem 4.1, we obtain the mass
conservation equation from our time-discrete projection method:

ρn+1 − ρn

δt
+ ∇ · (ρn+1un+1) = 0, (54)

where we have used the identity (35). Integrating of Eq.(54) over Ω, thanks to
the homogeneous boundary conditions (52), we obtain the mass conservation for
the binary fluid (ρn+1, 1)L2 = (ρn, 1)L2 . Again, multiplying Eq.(54) by cn+1,
and adding to Eq.(50) we obtain

ρn+1cn+1 − ρncn

δt
+ ∇ · (ρn+1un+1cn+1) =

1

Pe
∇ ·

(
m(cn)∇µ̄n+1

c

)
+

α

Pe
∇ ·

(
m(cn)∇p̄n+1

)
. (55)

Integrating of Eq.(55) over Ω, thanks to the boundary condition (52), we obtain
the mass conservation for fluid components (ρn+1cn+1, 1)L2 = (ρncn, 1)L2 .

Theorem 4.4. The time-discrete projection scheme (47)-(51) is energy stable,
i.e,

En+1 − En =(
1

2
||
√
ρn+1un+1||2L2 +

ηε

2We
||
√
ρn+1∇cn+1||2L2 +

∫
Ω

( η

εWe
ρn+1F (cn+1) +

1

Fr
ρn+1y

)
dx

)
−
(

1

2
||
√
ρnun||2L2 +

ηε

2We
||
√
ρn∇cn||2L2 +

∫
Ω

( η

εWe
ρnF (cn) +

1

Fr
ρny

)
dx

)
= −

δt

Re
||
√
µ(cn)∇ũn+1||2L2 −

δt

3Re
||
√
µ(cn)∇ · ũn+1||2L2

−
δt

MPe
||
√
m(cn)∇µn+1

c ||2L2 −
1

2
||
√
ρn(ũn+1 − un)||2L2

−
1

2
||
√
ρn+1(un+1 − ũn+1)||2L2 ≤ 0, (56)

where En+1 is the total energy at time discrete level.

Remark 4.5. Here we omit the details of the proof, as the derivations here are
similar with the proof for the primitive method in many aspects. The primary
differences are that in the projection method, we have one more projection
equation (48), and the mass conservation equation (54) here is slightly different
to that of the primitive methods, moreover the test functions are different as
well. In particular, to show the energy stability of the projection method, we
multiply Eq.(47) by δtũn+1, Eq.(48) by δtun+1, Eq.(49) by δtp̄n+1/M , Eq.(50)
by δtµ̄c

n+1/M and Eq.(51) by (cn+1 − cn)/M . After using the integration-
by-parts with the homogeneous boundary conditions, we sum up the resulted
relations to obtain the energy stability for the projection method (56).
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Remark 4.6. Both numerical methods are highly coupled and non-linear, how-
ever we never observe a problem with existence and uniqueness of the solution
in all our extensive numerical experiments. Here we refer to [22] for some results
and analysis methods about this issue.

5. Finite Difference Discretization on Staggered Grid

Before we present our fully discrete finite difference schemes, we first show
some basic definitions and notations for the finite difference discretization on a
staggered grid. Here we use the notation and results for cell-centered functions
from [49, 10, 50]. Let Ω = (0, Lx)× (0, Ly), with Lx = m1 · h and Ly = m1 · h,
where m1 and m2 are positive integers and h > 0 is the spatial step size. For
simplicity we assume that Lx = Ly. Consider the following four sets

Em1 = {xi+ 1
2
|i = 0, · · · ,m1}, Em1 = {xi+ 1

2
|i = −1, · · · ,m1 + 1}, (57)

Cm1 = {xi|i = 1, · · · ,m1}, Cm1 = {xi|i = 0, · · · ,m1 + 1}, (58)

where xi+ 1
2

= i ·h and xi = (i− 1
2 ) ·h. Here Em1 and Em1 are called the uniform

partition of [0, Lx] of size m1, and its elements are called edge-centered points.
The two points belonging to Em1

∖
Em1 are called ghost points. The elements of

Cm1 and Cm1 are called cell-centered points. Again, the two points belonging to
Cm1

∖
Cm1

are called ghost points. Analogously, the sets Em2
and Em2

contain
the edge-centered points, and Cm2

and Cm2
contain the cell-centered points of

the interval [0, Ly].
We then define the following function spaces

Cm1×m2
= {φ : Cm1

× Cm2
→ R}, Vvcm1×m2

= {f : Em1
× Em2

→ R}, (59)

Eewm1×m2
= {u : Em1

× Cm2
→ R}, Ensm1×m2

= {v : Cm1
× Em2

→ R}, (60)

for cell-centered functions, vertex-centered functions, east-west edge-centered
functions and north-south edge-centered functions respectively. Due to the dif-
ferent locations of the functions, we define several average and difference oper-
ators as follows:

edge to center average and difference : ax, ay, dx, dy;

center to edge average and difference : Ax, Ay, Dx, Dy;

vertex to edge average and difference : Ax, Ay, Dx, Dy;

edge to vertex average and difference : Ax, Ay, Dx, Dy;

center to vertex average : A.

We also define an average operator A = (Ax 0
0 Ay

) and the following divergence
operator:

∇d = (dx, dy), ∇D = (Dx, Dy), ∇(d,D) = (dx,Dy),

∇(D,d) = (Dx, dy), ∇(D,D) = (Dx,Dy), ∇(D,D) = (Dx, Dy). (61)
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We refer the reader to AppendixA.1 and AppendixA.2 for a description of our
notations for the above spaces and operators. Moreover (·, ·)2, and [·, ·]ew,
[·, ·]ns, and 〈·, ·〉vc denote the fully discrete inner product of the cell-centered,
edge-centered and vertex-centered variables respectively which are defined in
AppendixA.3.
Note that in this paper, the cell-centered functions are the phase variable c,
chemical potential µc, µ̄c, and pressure p and p̄, the east-west edge-centered
function is the x-component of the velocity, u and ũ(for projection method),
and the north-south edge-centered function is the y-component of the velocity,
v and ṽ (for the projection method).

6. Fully Discrete Mass Conservative, Energy Stable Schemes

In this section we describe and analyze our two staggered grid finite difference
schemes for q-NSCH model. We show that the property of mass conservation
and energy stability can be achieved at the fully discrete level for both schemes.

6.1. Fully Discrete Primitive Method

The fully-discrete scheme for the primitive method (28)-(31) is the following:
Let δt > 0 represent the time step, and the grid functions cn, µ̄nc , p̄

n ∈ Cm1×m2 ,
un ∈ Eewm1×m2

and vn ∈ Ensm1×m2
, and un = (un, vn) be the solution at time

t = nδt, find cn+1, µ̄n+1
c , p̄n+1 ∈ Cm1×m2

, un+1 ∈ Eewm1×m2
, vn+1 ∈ Ensm1×m2

, and
un+1 = (un+1, vn+1) at t = (n+ 1)δt such that:

Aρn
un+1 − un

δt
+ ρnun ·∇un+1 +

Aρn+1 −Aρn

2δt
un+1 +

1

2
∇ · (ρnun)un+1

= −
1

M
∇D p̄n+1 +

1

M
ρnµ̄n+1

c ∇ cn +
1

Re
∇(D,D) · (µ(cn)∇(d,D)u

n+1)

+
1

3Re
∇D
(
µ(cn)∇d · un+1

)
−

1

Fr
Aρngj, (62)

∇d · un+1 =
α

Pe
∇d ·

(
Am(cn)∇Dµ̄n+1

c

)
+
α2

Pe
∇d ·

(
Am(cn)∇Dp̄n+1

)
, (63)

ρn+1 c
n+1 − cn

δt
+ ρnun+1 ·∇cn =

1

Pe
∇d ·

(
Am(cn)∇Dµ̄n+1

c

)
+

α

Pe
∇d ·

(
Am(cn)∇Dp̄n+1

)
, (64)

ρn+1µ̄n+1
c =

Mη

εWe
ρn+ 1

2 g(cn+1, cn) +
Mη

εWe
Fn+ 1

2 (c) r(cn+1, cn)

+
εηM

2We
‖∇Dc‖

n+ 1
2

2 r(cn+1, cn)−
εηM

We
∇d · (Aρn+ 1

2∇D cn+ 1
2 ). (65)

In Eq.(62), we let

ρnun ·∇un+1 =

(
Ax
(
ρnaxu

ndxu
n+1
)

+ Ay
(
AρnAxvnDyun+1

)
Ax(AρnAyunDxvn+1

)
+Ay

(
ρnayv

ndyv
n+1
)) , (66)
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1

2
∇ · (ρnun)un+1 =

((
Dx(AρnAyun) + Dy(ρnayv

n)
)
un+1(

Dx(AρnAyun) +Dy(ρnayv
n)
)
vn+1

)
, (67)

ρnµ̄n+1
c ∇cn =

(
Ax(ρnewµ̄

n+1
c )Dxc

n

Ay(ρnnsµ̄
n+1
c )Dyc

n

)
. (68)

In Eq.(64) we let

ρnun+1 ·∇cn = ax(ρnewDxc
nun+1) + ay(ρnnsDyc

nvn+1). (69)

Note that the special discretization for the advection terms ax(ρnewu
n+1Dxc

n)
and ay(ρnnsv

n+1Dyc
n) in (69), and the surface tension terms Ax(ρnewµ̄

n+1
c )Dxc

n

and Ay(ρnnsµ̄
n+1
c )Dyc

n in (68), are introduced in AppendixA.4 and AppendixA.5
respectively. These discretizations are critical for deriving the fully mass conser-
vation and energy stability of our primitive method. Moreover, ‖∇Dc

n+ 1
2 ‖2 =

‖∇Dc
n+1‖2 + ‖∇Dc

n‖2 is the temperal average of the norm ‖∇Dc‖2, which is
described in Appendix A.7. The following expression for m(cn+1) is used for
the computations:

m(cn+1) =
√

(cn+1)2(1− cn+1)2 + ε. (70)

We assume the cell-centered functions satisfy the following homogeneous Neu-
mann boundary conditions

n ·∇D cn+1|∂Ω = n ·∇D µn+1
c |∂Ω = 0, (71)

and the velocity un+1 = (un+1, vn+1) satisfies the no-slip boundary condition

un+1|∂Ω = vn+1|∂Ω = 0. (72)

A detailed description of the discrete boundary conditions is provided inAppendixA.6.

Theorem 6.1. The fully discrete primitive scheme (62)-(65) is mass conser-
vative for the binary fluid, i.e,(

ρn+1, 1
)

2
=
(
ρn, 1

)
2
, ∀n ≥ 0. (73)

Proof. Multiply Eq.(63) by 1/α and substituting into Eq.(64), we obtain

ρn+1 c
n+1 − cn

δt
+ ax(ρnewDxc

nun+1) + ay(ρnnsDyc
nvn+1) =

1

α
dxu

n+1 +
1

α
dyv

n+1.

(74)

Multiplying the above equation by −δt αρn, we obtain the continuity equation
at the fully discrete level(

(ρn+1 − ρn), 1
)

2
=− δt

(
ax(un+1Dxρ

n), 1
)

2
− δt

(
ay(vn+1Dyρ

n), 1
)

2

− δt
(
dxu

n+1 ρn, 1
)

2
− δt

(
dyv

n+1 ρn, 1
)

2
, (75)
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where we have used the relation (35) and the following identity

δt

((
ax(ρnewDxc

nun+1) + ay(ρnnsDyc
nvn+1)

)
,−αρn

)
2

= δt
(
ax(un+1Dxρ

n), 1
)

2
+ δt

(
ay(vn+1Dyρ

n), 1
)

2
. (76)

Note that the definition of ρew, ρns and a detailed derivation of (76) are given
in AppendixA.4. Applying summation-by-parts to Eq.(75) and utilizing the
homogeneous boundary conditions (72), we obtain the fully discrete mass con-
servation for the binary fluid:(

(ρn+1 − ρn), 1
)

2
=δt

(
dx(Axρ

nun+1) + dy(Ayρ
nvn+1), 1

)
2

= 0. (77)

Theorem 6.2. The fully discrete primitive scheme (62)-(65) is energy stable
at the fully discrete level, i.e,

En+1
h − Enh =

(
1

2
||
√
ρn+1un+1||22 +

εη

2We
‖
√
ρn+1∇Dc

n+1‖22 +
ηh2

εWe

(
ρn+1F (cn+1), 1

)
2

+
h2

Frδt

(
ρn+1y, 1

)
2

)
−
(

1

2
||
√
ρnun||22 +

εη

2We
‖
√
ρn∇Dc

n‖22) +
ηh2

εWe

(
ρnF (cn), 1

)
2

+
h2

Fr

(
ρny, 1

)
2

)
= −

δt

Re
||
√
µ(cn)∇du

n+1||22 −
δt

3Re
||
√
µ(cn)∇d · un+1||22

−
δt

Pe
||
√
m(cn)∇Dµc

n+1||22 −
1

2
||
√
ρn(un+1 − un)||22 ≤ 0. (78)

where En+1
h is the total energy of the system at the fully discrete level. Here

all the norms are defined by Eqs.(A.55)-(A.57). Here ‖·‖2 is the fully discrete
norm that is defined in AppendixA.7.

Proof. Multiplying Eq.(62) by δtun+1 = δt(un+1, vn+1) in x and y direction
respectively, using summation-by-parts equations and dropping the boundary
terms, we obtain

1

2
‖
√
ρn+1un+1‖22 −

1

2
‖
√
ρnun‖22 +

h2

Fr

(
(ρn+1 − ρn)y, 1

)
2

=−
1

2
‖
√
ρn(un+1 − un)‖22 +

h2δt

M

(
∇d · un+1, p̄n+1

)
2

−
δt

Re
‖
√
µ(cn)∇du

n+1‖22 −
δt

3Re
‖
√
µ(cn)∇d · un+1‖22

+
h2δt

M

(
Ax(ρnewu

n+1)Dxc
n, µ̄n+1

c

)
2
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+
h2δt

M

(
Ay(ρnnsv

n+1)Dyc
n, µ̄n+1

c

)
2
, (79)

where a special discretization for surface tension terms Ax(ρnewµ̄
n+1
c )Dxc

n and
Ay(ρnnsµ̄

n+1
c )Dyc

n, and the corresponding derivations are introduced inAppendixA.5.
The various summation-by-parts equations we have used here are Eqs.(A.13)-
(A.27). Note that in all the derivations throughout this theorem, the boundary
terms that originated from summation-by-parts can be eliminated by utilizing
the homogeneous boundary conditions (71) and (72). We have also used the
fully discrete mass conservation (77) and the following identity

−
h2

Fr

(
Ayρ

n+1, vn+1
)

2
=−

h2

Fr

(
Axρ

n+1un+1, 0
)

2
−
h2

Fr

(
Ayρ

n+1vn+1, Dyy
)

2

=−
h2

Fr

(
Axρ

n+1un+1, Dxy
)

2
−
h2

Fr

(
Ayρ

n+1vn+1, Dyy
)

2

=
h2

Fr

((
dx(Axρ

n+1un+1) + dy(Ayρ
n+1vn+1)

)
, y

)
2

=−
h2

Frδt

(
(ρn+1 − ρn), y

)
2
. (80)

Multiplying Eq.(63) by δtp̄n+1 and using the summation-by-parts Eqs.(A.26)
and (A.27), we obtain

h2δt
(
∇d · un+1, p̄n+1

)
2

=−
α2δt

Pe
‖
√
m(cn)∇Dp̄‖22

−
h2αδt

Pe

(
m(cn)∇Dµ̄

n+1
c ,∇Dp̄

n+1
)
. (81)

Multiplying Eq.(64) by δtµ̄n+1
c and using the summation-by-parts Eqs.(A.26)

and (A.27), we obtain

h2(ρn+1(cn+1 − cn), µ̄n+1
c )2 + h2δt

(
ax(ρnewDxc

nun+1)), µ̄n+1
c

)
2

+ h2δt
(
ay(ρnnsDyc

nvn+1), µ̄n+1
c

)
2

= −
h2αδt

Pe

(
m(cn)∇Dp̄

n+1,∇Dµ̄
n+1
c

)
−

δt

Pe
‖
√
m(cn)∇Dµ̄

n+1
c ‖22. (82)

Again the special discretization for advection terms ax(ρnewDxc
nun+1)) and

ay(ρnnsDyc
nvn+1), and the corresponding derivations are introduced inAppendixA.4.

Multiplying Eq.(65) by (cn+1−cn)/M and using the norm definition (A.51), we
obtain

h2

M

(
ρn+1(cn+1 − cn), µ̄n+1

c

)
2

=
ηh2

εWe

(
(ρn+1F (cn+1), 1)2 − (ρnF (cn), 1)2

)
+

εη

2We
(‖
√
ρn+1∇Dc

n+1‖22−‖
√
ρn∇Dc

n‖22). (83)

Summing up the four relations (79), (81)-(83), we obtain the energy stability
(78) of the primitive method at the fully discrete level. Here all the norms are
defined by Eqs.(A.55)-(A.57).
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6.2. Fully Discrete Projection Method

The fully-discrete scheme for projection method (47)-(51) is the following:
given cn, µ̄nc , p̄n ∈ Cm1×m2 , un ∈ Eewm1×m2

, vn ∈ Ensm1×m2
, and un = (un, vn) at

time t = nδt, find grid functions cn+1, µ̄n+1
c , p̄n+1 ∈ Cm1×m2

, un+1, ũn+1 ∈
Eewm1×m2

, vn+1, ṽn+1 ∈ Ensm1×m2
, and un+1 = (un+1, vn+1) at time t = (n+ 1)δt:

Aρn
ũn+1 − un

δt
+ ρnun∇ũn+1 +

1

2
ũn+1

(Aρn+1 −Aρn

δt
+ ∇ · (ρnun)

)
=

1

Re
∇(D,D) · (µ(cn)∇(d,D)ũ

n+1) +
1

3Re
∇D
(
µ(cn)∇d · ũn+1

)
−

1

Fr
Aρn+1gj,

(84)

Aρn+1u
n+1 − ũn+1

δt
= −

1

M
∇Dp̄

n+1 +
1

M
ρn+1µ̄n+1

c ∇cn+1, (85)

∇d · un+1 =
α

Pe
∇d ·

(
Am(cn)∇Dµ̄n+1

c

)
+
α2

Pe
∇d ·

(
Am(cn)∇Dp̄n+1

)
, (86)

ρn
cn+1 − cn

δt
+ ρn+1un+1 ·∇cn+1 =

1

Pe
∇d ·

(
Am(cn)∇Dµ̄n+1

c

)
+

α

Pe
∇d ·

(
Am(cn)∇Dp̄n+1

)
, (87)

ρnµ̄n+1
c =

Mη

εWe
ρn+ 1

2 g(cn+1, cn) +
Mη

εWe
Fn+ 1

2 (c) r(cn+1, cn)

+
εηM

2We
‖∇Dc‖

n+ 1
2

2 r(cn+1, cn)−
εηM

We
∇d · (Aρn+ 1

2∇D cn+ 1
2 ). (88)

Note that the terms ρnun · ∇ũn+1 and ∇ · (ρnun)un+1/2 in Eq.(84), the
term ρn+1µ̄n+1

c ∇cn+1 in Eq.(85), and the term ρn+1un+1 ·∇cn+1 in Eq.(87)
are defined analogously as in Eqs.(66)-(69), where the main difference is that
in the current method, the above three terms have different upper subscript

representing the solution at the different time step. Again, ‖∇Dc‖
n+ 1

2
2 =

‖∇Dc
n+1‖2 + ‖∇Dc

n‖2 is the temperal average. Once again, the reader is
referred to the Appendix and [50, 49, 10] for a description of the finite dif-
ference notation used here. We assume the cell-centered functions satisfy the
following Neumann boundary conditions

n ·∇Dc
n+1|∂Ω = n ·∇Dµ

n+1
c |∂Ω = 0, (89)

and the intermediate velocity ũn+1 = (ũn+1, ṽn+1) satisfies the no-slip boundary
condition

ũn+1|∂Ω = ṽn+1|∂Ω = 0, (90)

and the velocity un+1 = (un+1, vn+1) satisfies the following boundary condition

n · un+1|∂Ω = 0. (91)

A detailed description for the boundary condition is provided in AppendixA.6.
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Theorem 6.3. The scheme (84)-(88) is mass conservative for the two-phase
fluid, i.e, (

ρn+1, 1
)

=
(
ρn, 1

)
, ∀n ≥ 0. (92)

Proof. Multiplying Eq.(86) by 1/α and substituting into (87), we obtain

ρn
cn+1 − cn

δt
+ ax(ρn+1

ew Dxc
n+1un+1) + ay(ρn+1

ns Dyc
n+1vn+1)

=
1

α
dxu

n+1 +
1

α
dyv

n+1. (93)

Again the definition of ρew, ρns and a detailed derivation of (76) are given in
AppendixA.4. Multiplying the above equation by −αρn and using the same
treatment in Eqs.(76) and (77), we obtain the mass conservation of the binary
fluids from our projection method:

1

δt

(
(ρn+1 − ρn), 1

)
2

=
(
dx(Axρ

n+1un+1)2 + dy(Ayρ
n+1vn+1), 1

)
2
. (94)

Using summation by parts, we obtain(
(ρn+1 − ρn), 1

)
2

= 0, (95)

where we have shown that our projection method preserves the mass of the
binary fluid at the fully discrete level.

Theorem 6.4. The fully discrete projection scheme (84)-(88) is energy stable,
i.e,

En+1
h − Enh =(
1

2
||
√
ρn+1un+1||22 +

εη

2We
‖
√
ρn+1∇Dc

n+1‖22 +
ηh2

εWe

(
ρn+1F (cn+1), 1

)
2

+
h2

Fr

(
ρn+1y, 1

)
2

)
−
(

1

2
||
√
ρnun||22 +

εη

2We
‖
√
ρn∇Dc

n‖22) +
ηh2

εWe

(
ρnF (cn), 1

)
2

+
h2

Fr

(
ρny, 1

)
2

)
= −

δt

Re
||
√
µ(cn)∇dũ

n+1||22 −
δt

3Re
||
√
µ(cn)∇d · ũn+1||22 −

δt

Pe
||
√
m(cn)∇Dµc

n+1||22

−
1

2
||
√
ρn(ũn+1 − un)||22 −

1

2
||
√
ρn+1(un+1 − ũn+1)||22 ≤ 0. (96)

where En+1
h is the total energy of the system at the fully discrete level.

Remark 6.5. Here we omit the details of the proof, as the derivations here are
similar with the proof for the primitive method in many aspects. The primary
differences is that in the projection method has one more projection equation
(85), and the test functions are different. In particular, to show the energy
stability of the projection method, we multiply Eq.(84) by δtũn+1, Eq.(85) by
δtun+1, Eq.(86) by δtp̄n+1/M , Eq.(87) by δtµ̄c

n+1/M and Eq.(88) by (cn+1 −
cn)/M . After using the summation-by-parts with the homogeneous boundary
conditions, we sum up the resulted relations to obtain the energy stability for
the projection method (96).
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7. Multigrid Solver

In this paper, we present an efficient nonlinear FAS multigrid solver for
our schemes. The solver is motivated by that described for the Cahn-Hilliard-
Brinkman scheme in an existing paper [10], where a finite difference method
in primitive variable formulations is used. The primary difference is that in
the present paper, the multigrid solver for our primitive method is designed for
a much more complicated and highly non-linear problem comprised of a full
Navier-Stokes equation and Cahn-Hilliard equation with variable density.

7.1. Primitive Methods

In the multigrid solver for our the primitive method (62)-(65), the smoothing
operators for the Cahn-Hilliard equation and Navier-Stoke equation are decou-
pled. Specifically, for each grid cell (i, j), we perform the following steps:

Step 1. Update ck+1
i,j , µ̄k+1

c i,j using a non-linear Gauss-Seidel method on the CH
equations (64) and (65).

Step 2. Update the five variables uk+1
i± 1

2 ,j
, vk+1

i,j± 1
2

, and p̄k+1
i,j using a Vanka-type

smoothing strategy [39, 45, 46, 48] on the NS equations (62)-(63) with
the updated values for ck+1

i,j , µ̄k+1
c i,j .

Here k stands for the iteration step at the current time step. Note that u and
v are edge-centered variables and this contributes to the complication of the
method. Here we omit the details for the relaxation, and we refer to the [49]
as a description for the Vanka-type smoother for the fluid equation in primitive
variable formulation. Note that the smoother operator for CH equation and the
Vanka-type smoother for NS equation is performed in the RedBlack order.

7.2. Projection Methods

For the projection method (84)-(88), we first perform a relaxation on the
Cahn-Hilliard equations (87) and (88), which is the same as the primitive
method; and then relax the flow equation (84) to obtain the intermediate veloc-
ity by using a Vanka-type smoother. Note that the smoother used here differs
from that of the primitive method in that in the present case the pressure is
not updated together with the four intermediate velocity variables. We next
relax the mass conservation equation (86) to obtain the pressure, and finally we
update the velocity through the projection equation (85).
Specifically, in the proposed smoother, for each grid cell (i, j), we perform the
following steps:

Step 1. Update ck+1
i,j , µ̄k+1

c i,j by using a nonlinear Gauss-Seidel method on CH
equations (87) and (88).

Step 2. Update the four intermediate velocity variables ũk+1
i± 1

2 ,j
, ṽk+1

i,j± 1
2

using a

Vanka-type smoothing strategy on the fluid equation (84), with the
updated ck+1

i,j , µ̄k+1
c i,j .
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Step 3. Update the pressure p̄k+1
i,j by using a nonlinear Gauss-Seidel method on

the the mass conservation equation (86) with the updated ck+1
i,j , µ̄k+1

c i,j

and ũk+1
i± 1

2 ,j
, ṽk+1

i,j± 1
2

.

Step 4. Update the four velocity variables uk+1
i± 1

2 ,j
and vk+1

i,j± 1
2

through the pro-

jection equation (85) with the updated ck+1
i,j , µ̄k+1

c i,j , ũ
k+1
i± 1

2 ,j
, ṽk+1

i,j± 1
2

and

p̄k+1
i,j .

Here we omit the full details of the implementation and smoothing strategy and
refer the reader to [10] for the remaining details of the solver. Moreover, for
both methods, we use a standard FAS V-cycle approach that can be found in
[10].

8. Numerical example

In this section we investigate the performance of our numerical schemes by
solving several test problems. For the advantage of using the finite difference
method, we will focus only on rectangular domains. Due to the page limit, only
two figures are shown in the Appendix B to illustrate the mass conservation of
our methods for Case 1 in Example 1.

8.1. Capillary Wave

The first test is the damping of a sinusoidal, capillary wave, which takes
into account the surface tension, gravity, and two phase flows with variable
density. In [40], an analytical solution was found in the case of the small-
amplitude waves on an interface between incompressible viscous fluids in an
infinite domain. To simulate this problem, we choose a computational domain,
Ω = {(x, y) : 0 6 x 6 1, 0 6 y 6 1}. We assume that the equilibrium position
of the interface coincides with x axis, and the capillary wave-length equals to
the length of the domain in x-direction. We further assume zero initial velocity,
and that the initial profile of the interface given by

c(y, 0) =
1

2

(
1− tanh

(y − ỹ
2
√

2ε

))
(97)

with the perturbation ỹ(x) = 0.5 −H0 coskx, k = 2π/λw = 2π and the initial
amplitude of the perturbation wave H0 = 0.01. We set the gravity g = 1
and surface tension σ = 1. Moreover, the ratio parameter η that relates the
sharp interface model and phase field model is determined through the following
equation [18]:

η =
(ρ2 − ρ1)3

2
√

2ρ1ρ2(ρ2
2 − ρ2

1 − 2ρ1ρ2lnρ2ρ1 )
. (98)
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To test our schemes, two cases with different density and viscosity ratios are
considered. In Case 1 and 2, we choose the following values for kinematic
viscosities and densities for the two fluids respectively:

ν =
µ1

ρ1
=
µ2

ρ2
= 0.01, ρ1 = 1, ρ2 = 10,

ν =
µ1

ρ1
=
µ2

ρ2
= 0.01, ρ1 = 1, ρ2 = 1000. (99)

The other non-dimensional parameters are set as

Re = 100, We = 1, F r = 1, M = ε, Pe = 1/ε, (100)

which is corresponding to the asymptotic analysis of the q-NSCH model [36].
Periodic conditions are imposed on the left and right boundary for the velocity
u, phase-field function c and chemical potential µc. At the upper and lower
boundaries, we impose the no-slip boundary condition for the velocity, and no-
flux boundary conditions for the phase-field functions c, µc. The time step is
set as δt = 10−3. For each case, we use two values of ε = 0.005, and 0.0025
with the corresponding grid size [256×256] and [512×512] respectively. Due to
the sharp interface analysis [18], the numerical results of this phase-field model
approaches to that of the sharp interface model as the value of ε decreases.
Both schemes are computed and the numerical results are compared with the
analytical solution. Figure 1 shows the capillary wave amplitude for Case 1
with density ratio 1 : 10, where for both schemes, the numerical results all
agree well with the analytical solution. Moreover, as ε decreases, the numerical
results converge to the analytical solutions. In Appendix B, Figures B.11 and
B.12 show the time evolution of the mass of single component ρc and binary
fluids ρ, where it can be observed that both methods preserve the mass well. In
particular, the mass can be conserved up to 10−10 with the primitive method,
which performs slightly better than the projection method that preserves the
mass up to 10−9. The similar results can be observed in Figure 2 for the Case 2
with density ratio 1 : 1000. Moreover, it has been confirmed that the mass of the
single component and the binary fluids are preserved up to 10−9 by primitive
method and up to 10−8 by the projection method for Case 2. In Figure 3, we
show the energy dissipation for both cases with both methods. As predicted by
the Theorem 6.2 and 6.4, the energy decreases for both methods, exhibiting a
similar dissipation way.

8.2. Rising Droplets

As a second test, we simulate the dynamics of rising droplets. The test setup
is taken from in [37]. In particular, the computational domain Ω = [0, 1]× [0, 2]
is filled with the heavier fluid (c = 0) and a initially circular shaped lighter fluid
(c = 1) is placed inside. The initial drop has a radius of 0.25 and is centered at
[0.5, 0.5]. This leads to the initial profile of the interface given by

c(r, 0) =
1

2

(
1− tanh

(r −R0

2
√

2ε

))
(101)
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with r =
√

(x− 0.5)2 + (y − 0.5)2 and R0 = 0.25. The parameters of the outer
fluid are ρ2 = 1000, µ2 = 10, and ρ1 = 100, µ1 = 1 for the drop fluid. The
gravity is g = (0, 0.98), and the surface tension is σ = 24.5, which lead to the
values of following non-dimensional parameters

Re = 100, We = 1, F r = 0.98, M = ε, Pe = 1/ε. (102)

As in the previous example, periodic conditions are imposed on the left and
right boundary for the velocity u, pressure p̄, phase-field function c and chemi-
cal potential µc, and the no-slip boundary condition for the velocity, and no-flux
boundary conditions for the phase-field functions c, µc are imposed at the up-
per and lower boundaries. The time step is δt = 10−3 for the two methods.
Moreover, to test the convergence of the diffuse-interface, we use two values
of ε = 0.005 and 0.0025, which corresponds to the grid size [256 × 256] and
[512× 512] respectively.
Because the droplet is lighter than the surrounding fluid, the droplet rises. For
a rigorous estimate of the accuracy of the simulation, we calculated the rising
velocity that is determined by:

Vc =

∫
Ω
vc dx∫

Ω
c dx

(103)

where v is the second (vertical) component of the velocity u. Moreover, to show
the quasi-incompressibility of the q-NSCH model, we calculate the divergence
of velocity ∇d · u at the fully discrete level.
Snapshots of the deformed droplet interfaces and the ∇·u (quasi-incompressibility)
are presented in Figure 4, where we observe that the drop deforms slowly, re-
sulting in a mushroom shape. Recall that the divergence-free condition does
not hold for quasi-incompressible fluids with different densities because the flu-
ids may mix slightly across the interface. The two incompressible fluids can be
compressible across the interface where the two components are mixed. It can be
observed that the fluid is incompressible (∇ · u = 0) almost everywhere except
along the moving interface. Near the interface, waves of expansion (∇ ·u > 0 )
and compression (∇ · u < 0 ) are observed. Figure 5 shows the droplet shapes
at the final time (t = 3), where we observe that the droplet shapes differ clearly
for different values of ε but seem to converge so that there is no big difference
for the finest values ε = 0.0025 and the result obtained from the [37] by using a
sharp interface model. Figure 6 plots the rising velocity of our numerical relusts
and the result obtained from [37], where the agreement improves as ε → 0. In
Figure 7, we show the energy dissipation of the binary fluid system obtained
from both methods by using different values of ε. Note that, to show the energy
dissipation converges as ε is decreased, we also compute the example by using
a even smaller ε = 0.00125. As expected, the energy decreases and yields very
similar way for both methods. it can be observed that the It has been confirmed
that the mass of the single component and the binary fluids are preserved up
to 10−10 by primitive method and up to 10−9 by the projection method.
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8.3. Rayleigh-Taylor Instability

Our last test is the Rayleigh-Taylor instability which would occur for any
perturbation along the interface between a heavy fluid (c = 0) on top of a
light fluid (c = 1), and is characterised by the density difference between the
two fluids. The instability is characterized by the non-dimensional parameter
Atwood ratio, that At = (ρA − ρB)/(ρA + ρB). The initial growth and long-
time evolution of Rayleigh-Taylor instability was investigated by Tryggvason
[44] for inviscid incompressible flows with zero surface tension, at At = 0.50.
Guermond et al [17] studied this instability at the same value of At but ac-
counted for viscous effects. Ding [11] studied this instability problem by using
the a different phase-field model where the velocity satisfies the divergence free
constraint. We validate our code here by investigating the same problem as
Guermond et al [17], i.e., at At = 0.50 and Re(= ρlL

3/2g1/2/µl) = 3000, with
the initial interface being located in a rectangular domain [0, L] × [0, 4L] at
ỹ(x) = 2L+ 0.1Lcos(2πx/L), which represents a planar interface superimposed
by a perturbation of wave number k = 1 and amplitude 0.1L. Here we set
L = 1, and we take

c(y, 0) =
1

2

(
1− tanh

(y − ỹ
2
√

2ε

))
(104)

Here we set the gravitational acceleration g = 1 and surface tension σ = 0.
In the present case of zero surface tension, the Cahn-Hilliard equation simply
amounts to interface tracking only. The non-dimensional parameters are set as

Re = 3000, We = 200, F r = 1, M = ε, Pe = 1/ε. (105)

Periodic conditions are imposed on the left and right boundary for u, c and µc.
At the upper and lower boundaries, we impose the no-slip boundary condition
for u, and no-flux boundary conditions for c and µc. We use two values of ε =
0.005, and 0.0025 which corresponds to the grid size [128×512] and [256×1024].
We set time-step δt = 10−3. Results are presented in Figure 8 in terms of the
y-coordinate of the top of the rising fluid and the bottom of the falling fluid,
together with the corresponding previous results of Tryggvason [44], Guermond
et al [17] (sharp interface models) and Ding [11] (another phase-field model). For
both methods, good agreement is observed with these results. As the value of
ε decreases, our numerical resutls converge to the other numerical results. The
evolution of the interface of our numerical results (projection with ε = 0.0025)
and the results in [11] are shown in Figure 9, in which the rolling-up of the falling
fluid can be clearly seen. At the early time, two counter-rotating vortices are
formed along the sides of the falling filament and grow with time. To a certain
extent, the two vortices are shed and a pair of secondary vortices occurs at the
tails of the roll-ups. Our results agree with those obtained in [11]. However,
comparing to their results, the small structures around the vortices are preserved
and can be observed more clearly due to the mass conservative property of our
numerical methods. The time evolution of the energy is shown in Figure 10,
which decreases as expected. It has been confirmed that the mass of the single
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Primitive Projection
m error rate error rate

16 & 32 6.063×10−3 — 6.409×10−3 —
32 & 64 2.310×10−3 1.40 2.603×10−3 1.30
64 & 128 6.812×10−4 1.76 7.814×10−4 1.73
128 & 256 1.622×10−4 2.06 1.917×10−4 2.03

Table 1: Convergence test for the primitive method and projection method.

component and the binary fluids are preserved up to 10−12 by primitive method
and up to 10−10 by the projection method.

9. Convergence test

To show our two methods are both first order accurate in time and second
order accurate in space, we carry out a convergence test by considering the
Cauchy sequence. We compute our q-NSCH system with the following function
as the initial condition for the phase variable c,

c(x, y) = cos(2πx) + cos(2πy), (106)

and zero for all the other variables, including µ, p and u. The computational
domain is [0, 1]× [0, 1], and the homogeneous Neumann boundary conditions for
c µ and p, and u are applied on the boundary. We refine the mesh and time
step according to the schedule

m = 16 and ∆t = 1/16,

m = 32 and ∆t = 1/64,

m = 64 and ∆t = 1/256,

m = 128 and ∆t = 1/1024.

m = 256 and ∆t = 1/4096.

Here m is the grid points in both x direction and y direction, ∆t is the time
step. To compare solutions on different grid resultions, we push the solution at
the coarse grid up to the next fine grid to calculate the difference in L2 norm,
and then obtain the convergence rate which are shown in Table 1. The second
order convergence rate are achieved for both methods, which indicates that both
of our methods are second order accurate in space and first order accurate in
time. Moreover, we also present the average computational cost for each time
step of both methods with different grid resolutions in Table 2, which indicates
that the Projection method is much more efficient than the Primitive method.
All the tests are carried out on a desktop with 4.0GHz AMD(R) FX(TM)-8350
processor.
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Ave. CPU time per time step (sec)
Primitive Projection

16 2.913×10−2 1.075×10−2

32 1.659×10−1 3.816×10−2

64 2.659×10−1 1.149×10−1

128 1.027×100 4.170×10−1

256 2.622×100 1.246×100

Table 2: Average computational cost for the Primitive method and Projection method.

10. Conclusion

In this paper we presented and analyzed two fully mass conservative and en-
ergy stabel finite difference schemes for the q-NSCH sytem governing the binary
incompressible fluid flows with variable density and viscosity. At the continuous
level, we reformulated the system equations and show that the system conserves
both the component and binary fluid mass and the energy is non-increasing due
to the energy dissipation law that underlies the model. Based on the reformu-
lated system, we introduced two time-discrete and fully discrete numerical meth-
ods using primitive variable and projection-type formulation. Both schemes are
fully mass conserving and the extra mass correction is not necessary. More-
over, the fully discrete energy stability are achieved for both methods, where
the enregy functionals are always non-increasing. In particular, our projection
method differs from the traditional projection methods in two ways: a) due
to the quasi-incompressibility of the q-NSCH model, the pressure here is used
to correct the intermediate velocity to get the updated velocity that satisfies
the quasi-incompressible constraint, whereas in most of the existing projection
methods the intermediate velocity is projected onto a space of divergence-free
velocity field due to the corresponding model constraints (See [28] as example);
b) in our projection method, a pressure-Poisson equation (continuity equation
(49)) naturally occurs in the reformulated system equations, whereas, in most
of the projection methods, the extra construction of the pressure-Poisson equa-
tion is required (this is usually done by applying the divergence operator to the
decoupled equation (48)).
We also present an efficient nonlinear FAS multigrid method for each method,
which is motivated by a Vanka-type smoothing strategy for the Cahn-Hilliard-
Brinkman equation [10].
Three numerical examples are investigated numerically, including the Capillary
Wave, Rayleigh-Taylor instability and rising droplets. Quantitative comparisons
are made with the existing analytical solution or the previous numerical results
to validate the accuracy of our numerical schemes. Moreover it has been con-
firmed that the mass of the single fluid and the binary fluids are preserved up to
10−8, and the energy is always non-increasing for all the examples. The conver-
gence property of the q-NSCH is investigated as well. In particular, our numer-
ical results converge to the analytical or numerical solutions of the other sharp
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interface models as the thickness of the diffuse-interface decreases. Moreover, in
the rising droplet example, we show that the quasi-incompressibility (∇ ·u 6= 0)
is captured smoothly together with the move interface which indicates that the
quasi-incompressibility does not give any problems to our schemes.
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Figure 1: Time evolution of capillary wave amplitude H(t) in Case 1 with density ratio 1 : 10
in §8.1. (a): results from Primitive methods; (b) results from Projection method.

0 1 2 3 4 5 6

−6

−4

−2

0

2

4

6

8

10

x 10−3

Time

W
av

e 
po

si
tio

n

Analytical
    = 0.0025
    = 0.005

(a) Primitive method

0 1 2 3 4 5 6

−6

−4

−2

0

2

4

6

8

10

x 10−3

Time

W
av

e 
po

si
tio

n

Analytical
    = 0.0025
    = 0.005

(b) Projection method

Figure 2: Time evolution of capillary wave amplitude H(t) in Case 2 with density ratio 1 : 1000
in §8.1. (a): results from Primitive methods; (b) results from Projection method.
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(a) Case 1: Density ratio 1:10
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Figure 3: Time evolution of the energy difference En − E0 of the binary fluid system for
(a) Case 1 and (b) Case 2 with density ratio 1 : 10 and 1 : 1000 respectively in §8.1. The
blue (red) dotted lines denotes the solution from Primitive (Projection) method with different
values of ε. Both methods give very similar results.
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Figure 4: Deformed droplet interfaces (left) and ∇ ·u (right) at different times, t = 0, 1.5, 3
for §8.2. (a): results from Primitive methods; (b) results from Projection method.
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Figure 5: Comparison between droplet shapes at t = 3 in §8.2. (a) The comparison between
the results from our primitive method (blue dotted lines) and the result (black solid line) from
Ref [37] by using a sharp interface model. (b) The comparison between the results from our
projection method (red dotted lines) and the result (black solid line) from Ref [37].
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Figure 6: Comparisions of benchmark quantity: rising velocity of a droplet in §8.2. (a)
Primitive method vs Ref [37] by using a sharp interface model; (b) Projection method vs Ref
[37].
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Figure 7: Time evolution of the energy dissipation En − E0 of the binary fluid system in
§8.2. The blue (red) dotted lines denotes the solution from Primitive (Projection) method
with different values of ε.
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Figure 8: Comparison between the numerical results. The y-coordinate of the tip of the falling
and rising fluid versus time: the open diamonds represents the solution of Tryggvason [44],
the filled triangles that of Guermond et al. [17], the black solid line represents that of Ding
[11], and (a) the blue doted lines denote the solution from Primitive method; (b) the red doted
lines denote the solution from Projection method.

(a) Existing numerical results obtained from [11]

(b) Numerical results obtained from projection method

Figure 9: Rayleigh-Taylor instability simulation at different times (t =
0, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5), with density ratio 1:3 in §8.3. The numerical results
from the projection method with ε = 0.0025 are shown at the bottom being compared with
the results in [11] at the top by using a different diffuse-interface model.
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Figure 10: Time evolution of the energy dissipation En − E0 of the binary fluid system in
§8.3. The blue (red) dotted lines denotes the solution from Primitive (Projection) method
with different values of ε.

Appendix A. Finite Difference Discretization on a Staggered Grid

Appendix A.1. Basic Definitions and Properties

Here we use the notations and results for cell-centered functions from [49,
10, 50]. The reader is directed there for complete details. We begin with defi-
nitions of grid functions and difference operators needed for our discretization
of a two-dimensional staggered grid. Throughout this appendix, we use the fol-
lowing symbols to denote the cell-centered, edge-centered and vertex-centered
functions, such that

cell centered functions : φ, ψ, ζ ∈ Cm1×m2
∪ Cm1×m2

∪ Cm1×m2
∪ Cm1×m2

,

east west edge centered functions : u, γ ∈ Eewm1×m2
∪ Eewm1×m2

∪ Eewm1×m2
∪ Eewm1×m2

north south edge centered functions : v, ω ∈ Ensm1×m2
∪ Ensm1×m2

∪ Ensm1×m2
∪ Ensm1×m2

vertex centered functions : f, g ∈ Vm1×m2
.

Here we use the function spaces with over-lined subscript m1 and m2 to denote
the space that include the ghost points in the x and y direction respectively. In
component form, we define

φi,j := φ(xi, yj), ui+ 1
2 ,j

:= u(xi+ 1
2
, yj),

vi,j+ 1
2

:= v(xi, yj+ 1
2
), fi+ 1

2 ,j+
1
2

:= f(xi+ 1
2
, yj+ 1

2
),

where xi = (i− 1
2 ) · h, yj = (j − 1

2 ) · h, and i and j can take on integer values.

Appendix A.2. Average and Difference Operators

We define the edge-to-center average and difference operators ax, dx : Eewm1×m2
→

Cm1×m2
and ay, dy : Ensm1×m2

→ Cm1×m2
component-wise via

axui,j =
1

2

(
ui+ 1

2 ,j
+ ui− 1

2 ,j

)
, dxui,j =

1

h

(
ui+ 1

2 ,j
− ui− 1

2 ,j

)
, (A.1)
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ayvi,j =
1

2

(
vi,j+ 1

2
+ vi,j− 1

2

)
, dyvi,j =

1

h

(
vi,j+ 1

2
− vi,j− 1

2

)
, (A.2)

for i = 1, · · · ,m1 and j = 1, · · · ,m2.
The center-to-edge average and difference operators, Ax, Dx : Cm1×m2

→
Eewm1×m2

and Ay, Dy : Cm1×m2
→ Ensm1×m2

are defined component-wise as

Axφi+ 1
2 ,j

=
1

2
(φi+1,j + φi,j), Dxφi+ 1

2 ,j
=

1

h
(φi+1,j − φi,j), (A.3)

Ayφi,j+ 1
2

=
1

2
(φi,j+1 + φi,j), Dyφi,j+ 1

2
=

1

h
(φi,j+1 − φi,j), (A.4)

for i = 0, · · · ,m1 and j = 0, · · · ,m2.
The center-to-vertex average operator A : Cm1×m2 → Vm1×m2 is defined as

Aφi+ 1
2 ,j+

1
2

=
1

4
(φi+1,j+1 + φi,j+1 + φi+1,j + φi,j), (A.5)

for i = 0, · · · ,m1 and j = 0, · · · ,m2.
The edge-to-vertex average and difference operators, Ax, Dx : Ensm1×m2

→
Vm1×m2

, and Ay, Dy : Eewm1×m2
→ Vm1×m2

are defined as

Axvi+ 1
2 ,j+

1
2

=
1

2
(vi+1,j+ 1

2
+ vi,j+ 1

2
), Dxvi+ 1

2 ,j+
1
2

=
1

h
(vi+1,j+ 1

2
− vi,j+ 1

2
),

(A.6)

Ayui+ 1
2 ,j+

1
2

=
1

2
(ui+ 1

2 ,j+1 + ui+ 1
2 ,j

), Dyui+ 1
2 ,j+

1
2

=
1

h
(ui+ 1

2 ,j+1 − ui+ 1
2 ,j

),

(A.7)

for i = 0, · · · ,m1 and j = 0, · · · ,m2. The vertex-to-edge average and difference
operators, Ax, Dx : Vm1×m2

→ Ensm1×m2
, and Ay, Dy : Vm1×m2

→ Eewm1×m2
are

defined as

Axfi,j+ 1
2

=
1

2
(fi+ 1

2 ,j+
1
2

+ fi− 1
2 ,j+

1
2
), Dxfi,j+ 1

2
=

1

h
(fi+ 1

2 ,j+
1
2
− fi− 1

2 ,j+
1
2
),

(A.8)

Aygi+ 1
2 ,j

=
1

2
(gi+ 1

2 ,j+
1
2

+ gi+ 1
2 ,j−

1
2
), Dygi+ 1

2 ,j
=

1

h
(gi+ 1

2 ,j+
1
2
− gi+ 1

2 ,j−
1
2
),

(A.9)

for i = 0, · · · ,m1 and j = 1, · · · ,m2.

Appendix A.3. Weighted Inner-Products

Based on the above definitions, we define the following 2D weighted grid
inner-products:

(φ, ψ)2 =

m1∑
i=1

m2∑
j=1

φi,jψi,j , (A.10)
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[u, γ]ew =
(
ax(uγ), 1

)
2
, [v, ω]ns =

(
ay(vω), 1

)
2
, 〈f, g〉vc =

(
A(fg), 1

)
2
,

(A.11)

where φ ∈ Cm1×m2
, u, γ ∈ Eewm1×m2

, v, ω ∈ Ensm1×m2
, and f, g ∈ Vm1×m2

. We also
define the following combined 2D weighted grid inner-products:

[φ u, γ]ew =
(
φ, ax(uγ)

)
2
, [φ v, ω]ns =

(
φ, ay(vω)

)
2
, 〈φ f, g〉vc =

(
φ,A(fg)

)
2
.

(A.12)

We also define the one-dimensional inner-products for the edge-centered func-
tions, or cell-centered functions, or the multiple combination of the edge-centered
and cell-centered functions. Here for simplicity, we only introduce the one-
dimensional inner-product for the edge-centered functions, the others combina-
tions can be defined analogously:(

ui+ 1
2 ,∗
∣∣ γi+ 1

2 ,∗

)
=

m2∑
j=1

ui+ 1
2 ,j
γi+ 1

2 ,j
,

(
v∗,j+ 1

2

∣∣ ω∗,j+ 1
2

)
=

m1∑
i=1

vi,j+ 1
2
ωi,j+ 1

2
.

Here the first is defined for u, γ ∈ Eewm1×m2
, and the second for v, ω ∈ Ensm1×m2

.
∗ indicates the sum of the functions in the direction along which the one-
dimensional inner-product acts. Note that, throughout this section, all the
boundary terms that originated from the summation-by-parts can be eliminated
by using the homogeneous Neumann conditions for the cell-centered variables,
and the no-slip boundary conditions for the edge centered variables. The re-
sults are also valid for the periodic boundary conditions for the cell-centered or
edge-centered variables case. For the above definitions, we obtain the following
results:

Proposition Appendix A.1. (Summation-by-parts) if φ ∈ Cm1×m2
, u ∈

Eewm1×m2
and v ∈ Ensm1×m2

then

h2[Dxφ, u]ew =− h2(φ, dxu)2 − h
(
Axφ 1

2 ,∗
, u 1

2 ,∗
)

1

+ h
(
Axφm1+ 1

2 ,∗
, um1+ 1

2 ,∗
)

1
, (A.13)

h2[Dyφ, v]ns =− h2(φ, dyv)2 − h
(
Ayφ∗, 12 , v∗,

1
2

)
1

+ h
(
Ayφ∗,m2+ 1

2
, v∗,m2+ 1

2

)
1
. (A.14)

Proposition Appendix A.2. Let φ ∈ Cm1×m2
, u, γ ∈ Eewm1×m2

and v, ω ∈
Ensm1×m2

. Then

h2
[
Ax(φ axu dxγ), γ

]
ew

+ h2
[1
2
γDx(φ axu), γ

]
ew

=
h

4

(
φm1+1,∗ axum1+1,∗ γm1+ 3

2 ,∗
, γm1+ 1

2 ,∗
)

1
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−
h

4

(
φ0,∗ axu0,∗γ− 1

2 ,∗
, γ 1

2 ,∗
)

1
, (A.15)

h2
[
Ay
(
φ ayv dyω

)
, ω
]
ns

+ h2
[1
2
ωDy(φ ayv), ω

]
ns

=
h

4

(
φ∗,m2+1 ayv∗,m2+1 ω∗,m2+ 3

2
, ω∗,m2+ 1

2

)
1

−
h

4

(
φ∗,0 ayv∗,0 ω∗,− 1

2
, ω∗, 12

)
2
. (A.16)

Proposition Appendix A.3. Let φ ∈ Cm1×m2
, u ∈ Eewm1×m2

and v ∈ Ensm1×m2
.

Then

h2
[
Ay
(
Aφ AxvDyu

)
, u
]
ew

+ h2
[1
2
uDy(AφAxv), u

]
ew

(A.17)

=−
h

2

(
Aφ∗− 1

2 ,
1
2
u∗− 1

2 ,0
u∗− 1

2 ,1
, Axv∗− 1

2 ,
1
2

)
1

+
h

2

(
Aφ∗+ 1

2 ,m2+ 1
2
u∗+ 1

2 ,m2
u∗+ 1

2 ,m2+1 , Axv∗+ 1
2 ,m2+ 1

2

)
1
, (A.18)

h2
[
Ax
(
Aφ AyuDxv

)
, v
]
ns

+ h2
[1
2
vDx(AφAyu), v

]
ns

=−
h

2

(
Aφ 1

2 ,∗−
1
2
v0,∗− 1

2
v1,∗− 1

2
, Axu 1

2 ,∗−
1
2

)
1

+
h

2

(
Aφm1+ 1

2 ,∗+
1
2
vm1,∗+ 1

2
vm1+1,∗+ 1

2
, Axum1+ 1

2 ,∗+
1
2

)
1
. (A.19)

For the sake of simplicity, we omit all the boundary terms of that originated
in the following Propositions.

Proposition Appendix A.4. Let φ ∈ Cm1×m2
, u, γ ∈ Eewm1×m2

and v, ω ∈
Ensm1×m2

. Then

[Dx(φ dxu), γ]ew =− (φ dxu, dxγ)2, (A.20)

[Dy(φ dyv), ω]ns =− (φ dyv, dyω)2. (A.21)

Proposition Appendix A.5. Let φ ∈ Cm1×m2
, u, γ ∈ Eewm1×m2

and v, ω ∈
Ensm1×m2

. Then [
Dy(AφDyu), γ

]
ew

=− 〈φDyu,Dyγ〉vc, (A.22)[
Dx(AφDxv), ω

]
ns

=− 〈φDxv,Dxω〉vc. (A.23)

Proposition Appendix A.6. Let φ ∈ Cm1×m2
, u ∈ Eewm1×m2

and v ∈ Ensm1×m2
.

Then [
Dx(φ dyv), u

]
ew

=− (φ dyv, dxu)2, (A.24)[
Dy(φ dxu), v

]
ns

=− (φ dxu, dyv)2. (A.25)
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Proposition Appendix A.7. Let φ, ψ, ζ ∈ Cm1×m2 . Then(
dx(Axφ Dxψ), ζ

)
2

=−
[
φ Dxψ,Dxζ

]
ew
, (A.26)(

dy(Ayφ Dyψ), ζ
)

2
=−

[
φ Dyψ,Dyζ

]
ns
. (A.27)

Appendix A.4. Special Treatment for the Advection Term in Cahn-Hilliard equa-
tion

To let our numerical schemes satisfy the mass conservation together with
the energy dissipation law at the fully discrete level, we have employed a special
treatment for the advection term in the Cahn-Hilliard equation (64) in primitive
method and (87) in projection method, such that:

ax(ρewDxcu)i,j =
1

2

(
ρi+1,j

ci+1,j − ci,j
h

ui+ 1
2 ,j

+ ρi−1,j

ci,j − ci−1,j

h
ui− 1

2 ,j

)
,

(A.28)

ay(ρnsDycv)i,j =
1

2

(
ρi,j+1

ci,j+1 − ci,j
h

vi,j+ 1
2

+ ρi,j−1

ci,j − ci,j−1

h
vi,j− 1

2

)
,

(A.29)

for i = 1, . . . ,m1 and j = 1, . . . ,m2. Note that, for the sake of simplicity,
we omit the upper subscript n or n + 1 that represent the time step for all
the variables. These two terms are so designed that the primitive method (62)-
(65) and the projection-type method (84)-(88) can satisfy the mass conservation
property and the energy stability at the fully discrete level. In particular, to
prove the identities (76) and (94), we show that(

ax(ρewDxcu),−αρ
)

2

=
1

2

m1∑
i=1

m2∑
j=1

−αρi,j
(
ρi+1,j

ci+1,j − ci,j
h

ui+ 1
2 ,j

+ ρi−1,j

ci,j − ci−1,j

h
ui− 1

2 ,j

)

=
1

2

m1∑
i=1

m2∑
j=1

(
ρi+1,j − ρi,j

h
ui+ 1

2 ,j
+
ρi,j − ρi−1,j

h
ui− 1

2 ,j

)
=
(
ax(Dxρu), 1

)
2
,

(A.30)(
ay(ρnsDycv),−αρ

)
2

=
1

2

m1∑
i=1

m2∑
j=1

−αρi,j
(
ρi,j+1

ci,j+1 − ci,j
h

vi,j+ 1
2

+ ρi,j−1

ci,j − ci,j−1

h
vi,j− 1

2

)

=
1

2

m1∑
i=1

m2∑
j=1

(
ρi,j+1 − ρi,j

h
vi,j+ 1

2
+
ρi,j − ρi,j−1

h
vi,j− 1

2

)
=
(
ay(Dyρv), 1

)
2
.

(A.31)

Here we have used the definition of the variable density ρ, and the following
identity which is analog to (35) in the temporal discretization:

ρi+1,j − ρi,j = −αρi+1,jρi,j(ci+1,j − ci,j), (A.32)

ρi,j+1 − ρi,j = −αρi,j+1ρi,j(ci,j+1 − ci,j). (A.33)
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Appendix A.5. Special Treatment for the Surface Tension

To let our numerical schemes satisfy the mass conservation together with
the energy dissipation law at the fully discrete level, we have employed a special
treatment for the surface tension term in the momentum equations (62) of our
primitive method, and in the projection equations (85) of our projection-type
method, such that

Ax(ρewµ̄c)i+ 1
2 ,j

Dxci+ 1
2 ,j

=
1

2
(ρi+1,j µ̄c i,j + ρi,j µ̄c i+1,j)

ci+1,j − ci,j
h

, (A.34)

Ay(ρnsµ̄c)i,j+ 1
2
Dyci,j+ 1

2
=

1

2
(ρi,j+1µ̄c i,j + ρi,j µ̄c i,j+1)

ci,j+1 − ci,j
h

, (A.35)

for i = 1, . . . ,m1 and j = 1, . . . ,m2. Note that, for the sake of simplicity, we
omit the upper subscript n or n + 1 that represent the time step for all the
variables. These two terms are so designed that our two numerical schemes can
satisfy the energy dissipation law at the fully discrete level. In particular, when
we multiply the momentum equation (62) or (85) by u = (u, v), the surface
tension term can be written as[

Ax(ρewµ̄c)Dxc, u
]
ew

=
(
ax(ρewDxc u), µ̄c

)
2
, (A.36)[

Ay(ρnsµ̄c)Dyc, v
]
ns

=
(
ay(ρnsDyc v), µ̄c

)
2
. (A.37)

Note that, throughout this section, all the boundary terms that originated from
the summation-by-parts can be eliminated by using the homogeneous Neumann
conditions for the cell-centered variables, and the no-slip boundary conditions
for the edge centered variables. The results are also valid for the periodic bound-
ary conditions for the cell-centered or edge-centered variables case.

Appendix A.6. Boundary Conditions

Appendix A.6.1. Cell-Centered Functions

In this paper we use the Neumann or periodic boundary condition for the
cell-centered functions. Specifically, we shall say the cell-centered function φ ∈
Cm1×m2

satisfies homogeneous Neumann boundary conditions if and only if

φm1+1,j = φm1,j , φ0,j = φ1,j , j = 1, · · · ,m2, (A.38)

φi,m2+1 = φi,m2
, φi,0 = φi,1, i = 1, · · · ,m1. (A.39)

We use the notation n ·∇Dφ = 0 to indicate that φ satisfies (A.38) and (A.39).
The cell-centered function φ ∈ Cm1×m2

satisfies periodic boundary conditions if
and only if

φm1+1,j = φ1,j , φ0,j = φm1,j , j = 1, · · · ,m2, (A.40)

φi,m2+1 = φi,1, φi,0 = φi,m2
, i = 1, · · · ,m1. (A.41)
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Appendix A.6.2. Edge-Centered Functions

We use the no-slip or periodic boundary conditions for the edge-centered
functions. We shall say the velocity u = (u, v) (for u ∈ Eewm1×m2

, v ∈ Ensm1×m2
)

satisfies the no-slip boundary conditions u|Ω = 0 if and only if

u 1
2 ,j

= um1+ 1
2 ,j

= 0, j = 1, · · · ,m2. (A.42)

ayui+ 1
2 ,

1
2

= ayui+ 1
2 ,m2+ 1

2
= 0, i = 0, · · · ,m1. (A.43)

vi, 12 = vi,m2+ 1
2

= 0, i = 1, · · · ,m1. (A.44)

axv 1
2 ,j+

1
2

= axvm1+ 1
2 ,j+

1
2

= 0, j = 0, · · · ,m2. (A.45)

We shall say the the velocity u = (u, v) (for u ∈ Eewm1×m2
, v ∈ Ensm1×m2

) satisfies
the boundary condition n · u|Ω = 0 if and only if

u 1
2 ,j

= um1+ 1
2 ,j

= 0, j = 1, · · · ,m2. (A.46)

vi, 12 = vi,m2+ 1
2

= 0, i = 1, · · · ,m1. (A.47)

We shall say the edge-centered function u ∈ Eewm1×m2
(v ∈ Ensm1×m2

) satisfies the
periodic boundary conditions on the east-west (north-south) boundaries if and
only if

um1+ 3
2 ,j

= u 1
2 ,j
, u− 1

2 ,j
= um1+ 1

2 ,j
, j = 1, · · · ,m2, (A.48)

vi,m2+ 3
2

= vi, 12 , vi,− 1
2

= vi,m2+ 1
2
, i = 1, · · · ,m1. (A.49)

Appendix A.7. Norms

We define the following norms for cell-centered functions. If φ ∈ Cm1×m2
,

then ‖φ‖2 :=
√
h2(φ, φ)2. For φ ∈ Cm1×m2

, we define the following norms

‖∇Dφ‖2 : =
√
h2[Dxφ,Dxφ]ew + h2[Dyφ,Dyφ]ns, (A.50)

‖
√
ψ∇Dφ‖2 : =

√
h2[ψ Dxφ‖Dxφ]ew + h2[ψ Dyφ‖Dyφ]ns. (A.51)

We also define the following norms for the vector of the edge-centered functions
u = (u, v) together with the cell-centered function φ , where u ∈ Eewm1×m2

, v
∈ Ensm1×m2

and φ ∈ Cm1×m2 , such that

‖
√
φu‖2 : =

√
h2[φu, u]ew, ‖

√
φv‖2 :=

√
h2[φv, v]ns, (A.52)

‖
√
φdxu‖2 : =

√
h2(φ dxu, dxu)2, ‖

√
φdyv‖2 :=

√
h2(φ dyv, dyv)2,

(A.53)

‖
√
φDyu‖2 : =

√
h2〈φ Dyu,Dyu〉vc, ‖

√
φDxv‖2 :=

√
h2〈φ Dxv,Dxv〉vc,

(A.54)

‖
√
φu‖2 : =

√
‖
√
φu‖22 + ‖

√
φv‖22, (A.55)
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‖
√
φ∇du‖2 : =

√∥∥√φ dxu‖22 + ‖
√
φ Dyu‖22+‖

√
φ Dxv‖22+‖

√
φ dyv‖22,

(A.56)

‖
√
φ∇d · u‖2 : =

√
‖
√
φ dxu‖22+2(φ dxu, dyv)2 + ‖

√
φ dyv‖22. (A.57)

Appendix B. Figures for §8.1
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(a) Primitive method
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Figure B.11: Component mass conservation
∫

(ρncn−ρ0c0) in Case 1 with density ratio 1 : 10
in §8.1. (a) Primitive methods; (b) Projection method.
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(b) Projection method

Figure B.12: Binary fliud mass conservation
∫

(ρn − ρ0) in Case 1 with density ratio 1 : 10 in
§8.1. (a) Primitive methods; (b) Projection method.
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