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Semiclassical regularization of Vlasov equations

and wavepackets for nonlinear Schrödinger equations

Agissilaos Athanassoulis ∗

Tuesday 3rd October, 2017

Abstract

We consider the semiclassical limit of nonlinear Schrödinger equations with initial data that are
well localized in both position and momentum (non-parametric wavepackets). We recover the Wigner
measure of the problem, a macroscopic phase-space density which controls the propagation of the physical
observables such as mass, energy and momentum. Wigner measures have been used to create effective
models for wave propagation in random media, quantum molecular dynamics, mean field limits, and the
propagation of electrons in graphene. In nonlinear settings, the Vlasov-type equations obtained for the
Wigner measure are often ill-posed on the physically interesting spaces of initial data. In this paper we are
able to select the measure-valued solution of the 1+1 dimensional Vlasov-Poisson equation which correctly
captures the semiclassical limit, thus finally resolving the non-uniqueness in the seminal result of [Zhang,
Zheng & Mauser, Comm. Pure Appl. Math. (2002) 55, doi:10.1002/cpa.3017]. The same approach is
also applied to the Vlasov-Dirac-Benney equation with small wavepacket initial data, extending several
known results.

MSC subject classification: 81S30; 35Q55; 81Q20; 81R30
Keywords: nonlinear Schrödinger equation, semiclassical asymptotics, wavepackets, Wigner measure
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1 Introduction

1.1 The problem

A well known asymptotic problem for nonlinear Schrödinger equations

iεBtψ
ε `

ε2

2
∆ψε ´ F p|ψε|2qψε “ 0, ψεpt “ 0q “ ψε0 P H

1pRnq (1)

∗a.athanassoulis@dundee.ac.uk, Department of Mathematics, University of Dundee, UK
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is to describe the evolution of macroscopic observables, such as

mass mpx, tq “ |ψεpx, tq|2,

momentum jpk, tq “ εn| pψεpεk, tq|2,

kinetic energy Ekinpx, tq “ |∇ψεpx, tq|2
(2)

when εÑ 0. Variations of this problem arise in many different physical contexts, including quantum molecular
dynamics [3], mean field limits [13, 33, 34], wave propagation over large (geophysical) distances [48, 50], the
formation of rogue waves [26] and the study of graphene [27, 28]. We will use the term semiclassical to describe
this regime [17, 36, 37]; other terms used in the literature are zero-dispersion limit [52], high frequency limit
[31], and geometric optics [20, 21].

While numerical solution of (1) becomes increasingly expensive as εÑ 0, it often turns out that we can
recover approximations to the observables with Op1q cost, i.e. with complexity independent of ε. This can
be achieved by taking a quadratic transform of (1), namely the Wigner transform (WT)

W εpx, k, tq “W εrψptqspx, kq “

ż

y

e´2πik¨yψpx`
εy

2
, tqψpx´

εy

2
, tqdy, (3)

leading to the nonlinear Wigner equation

BtW
ε ` 2πk ¨∇x ` iF´1

yÑk

”

V px` εy2 ,tq´V px´
εy
2 ,tq

ε Fk1Ñy rW εpx, k1, tqs
ı

“ 0,

V px, tq “ F

˜

ş

ξ

W εpx, ξ, tq

¸

.
(4)

This is essentially a second moment of (1), and it has two important properties. First of all, equation (4)
has a meaningful (formal, for now) limit as εÑ 0, namely the Vlasov-type equation

BtW
0 ` 2πk ¨∇xW

0 ´ 1
2π∇xV ¨∇kW

0 “ 0, V px, tq “ F

˜

ş

ξ

W 0px, ξ, tq

¸

. (5)

Moreover, the Wigner measure, i.e. the limit of the Wigner transform

W 0 “ lim
εÑ0

W ε (6)

controls macroscopic observables in weak sense [44, 31], e.g.

mass mpx, tq“
ş

k

W 0px, k, tqdk`op1q,

momentum jpk, tq“
ş

x

W 0px, k, tqdx`op1q,

kinetic energy Ekinpx, tq“4π2
ş

k

|k|2W 0px, k, tqdk`op1q,

(7)

as ε Ñ 0. A self-contained discussion of Wigner measures, including the sense of convergence and the
systematic extraction of observables, can be found in Section 3.

This technique has been established for a wide variety of wave problems, including Schrödinger [3, 4, 5, 6,
8, 9, 10, 11, 12, 13, 31, 33, 34, 44, 47, 54], Dirac [27, 28], and acoustic [10, 46], elastic and Maxwell equations
with smooth, random or periodic coefficients [14, 31, 48].

A key trade-off between this approach and WKB-type expansions [20, 21, 35, 36, 37, 40, 52] is that we
no longer try to approximate ψε, but only the observables, through the Wigner measure. In return, we get
an elegant and widely applicable model, including in many cases the painless resolution of caustics. This can
be seen as a semiclassical regularization and continuation of the WKB system past the formation of caustics,
by the introduction of a novel sense of solution [39]. Moreover, approximations of ψεptq are often destroyed
by nonlinear effects at a much faster rate than macroscopic approximation for W εrψεptqs; this can be seen
very clearly in the discussion after Theorem 2.3.

2



Another important advantage of the Wigner measures approach is that it does not require the wavefunction
to be approximated by some parametric ansatz such as WKB or coherent states. This non-parametric
character of Wigner measures is crucial for noisy problems where the data of interest are known to not be of
WKB or other explicit parametric forms, not even initially [48, 50, 51]. In fact, the second-moment character
of the Wigner transform makes it a particularly powerful tool for stochastic problems, and it has played a
key role in the recent understanding of self-averaging in wave propagation in random media [10, 47]. In the
same context, the Wigner transform seems to be the appropriate generalization of the spectral density for
harmonizable (non-stationary) processes [45].

Infinite systems of Schrödinger equations can be treated with Wigner measures using the same formalism.
This aspect is crucial in certain fields such as statistical physics; a far-from-exhaustive list of references is
[8, 13, 33, 34] and the references therein. It must be also noted that infinite systems of nonlinear Schrödinger
equations (often referred to as “mixed states”) are attracting intense attention recently [25, 42], following
recent fundamental advances in harmonic analysis [30]. In fact, in the context of Wigner measures, mixed
states lead to simpler problems as they lead to initial data W 0

0 in Sobolev spaces, or even in spaces of analytic
functions. This is elaborated e.g. in [16, 44]. In this work we will focus on pure states only, i.e. we will
always start from a single nonlinear Schrödinger equation (1).

While for many classes of problems the Wigner measures approach is worked out, key questions are still
open in many interesting problems, such as systems with eigenvalue crossings [27, 28], nonsmooth [3, 4, 5, 6],
and nonlinear problems. In nonlinear problems in particular, the limit Vlasov-type equation (5) is typically
not well-posed for measures. For example, in the seminal work by Zhang, Zheng & Mauser [54], it is shown
that if we start with the 1-dimensional Schrödinger-Poisson equation,

iεBtψ
ε `

ε2

2
∆ψε ´

b

2

ż

y

|x´ y||ψεpy, tq|2dy ψε “ 0, ψεpt “ 0q “ ψε0 P H
1pRnq (8)

its Wigner measure W 0 “ lim
εÑ0

W εrψεs satisfies (in an appropriate weak sense [53]) the 1 ` 1-dimensional

Vlasov-Poisson equation with initial data W 0
0 “ lim

εÑ0
W εrψε0s. However, the notion of solution used for the

Vlasov-Poisson equation is so weak that uniqueness is lost. The question of determining the correct weak
solution for the semiclassical limit has been the subject of numerical investigation [38], but it is still not
settled. Theorem 2.1 answers this question for any wavepacket initial data.

More recently, Bardos & Besse in the breakthrough paper [12] showed that, under appropriate conditions,
in the case of the defocusing cubic nonlinearity

iεBtψ
ε `

ε2

2
∆ψε ´ b|ψε|2ψε “ 0, ψεpt “ 0q “ ψε0 P H

1pRnq (9)

the Wigner measure indeed satisfies the resulting Vlasov-Dirac-Benney equation

BtW
0 ` 2πk ¨∇x `

b
2π∇xV ¨∇kW

0 “ 0, V px, tq “
ş

ξ

W 0px, ξ, tq. (10)

However this equation is known to be ill-posed on any Sobolev space [11], and at the moment there is no
sense of measure-valued solutions.

Thus, the picture that emerges for nonlinear problems can be described as follows: in many cases a Vlasov
equation can be derived and justified, i.e. it can be shown that the Wigner measure does satisfy it. However
this is only the first step towards approximating the evolution of the Wigner measure in time, as the Vlasov
equation may be ill-posed. Indeed, as we saw, neither uniqueness nor stability can be taken for granted.
In this paper we construct an approximation to the Wigner measure for wavepackets evolving under some
common nonlinearities for long times, thus extracting the correct weak solution for the semiclassical limit.
By wavepacket we mean any function which is well localized both on space and Fourier space.

More specifically: our main results, stated in detail in Section 2, can be described as the formulation of
linearizability conditions for the Wigner measure, i.e. conditions under which the Wigner measure completely
ignores the nonlinearity. This is significant because it includes problems where the wavefunction ψε is known
to exhibit Op1q nonlinear effects. Thus a regime can be quantified where the wavefunction is not linearizable,
but the Wigner measure is. This highlights a subtle “stability of macroscopic observables” that is not derived
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from the stability of the nonlinear Schrödinger equation on the level of the wavefunction, and can be accessed
only by working directly at the level of the Wigner transform.

On a more technical level, the proofs are based on two key features:

(i) a well-chosen frame of reference;

this allows us to fully exploit the symmetries of the Schrödinger equation in conjuction with the the space-
and-Fourier-localization of wavepackets without being bound to a parametric ansatz. This non-parametric
approach allows a very large class of initial data, stronger nonlinearities and longer timescales than the state
of the art (which is recalled in detail in Section 2). Moreover,

(ii) we introduce a novel functional framework which enables us to have quantitative estimates for the
Wigner measure in a nonlinear context.

The basic notions and standard framework for the Wigner measure were introduced in [31, 44], and are briefly
recalled in Section 3. However, the standard functional framework doesn’t seem to be always ideal for work
in nonlinear problems – even less so for power nonlinearities. This is reflected in the lack of a stand-alone
stability theory for the nonlinear Wigner equation (4) for power nonlinearities, as well as in the recent papers
introducing different functional frameworks for the Wigner measure adapted to specific problems [33, 34].
The A´1 framework we introduce, discussed in some detail in Sections 1.2 and 3, has the advantages that it
is directly comparable to the standard A1 setting; it is very simple to work with; and it demonstrably works
very well for wavepackets. More broadly, a well-posedness theory for the nonlinear Wigner equation in A´1

seems possible in the future, and could impact other nonlinear problems beyond wavepackets as well.

Structure of the paper: The main results are stated in Section 2. Comparisons with existing results are
also given, including evidence for strong nonlinear behaviour of the wavefunction. The proofs of the main
results can be found in Section 5, while auxiliary results are stated and proved in Sections 3 and 4.

1.2 Notations and Definitions

We will use standard multi-index notations. The Fourier transform normalization will be

pfpkq “

ż

xPRn

e´2πik¨xfpxqdx.

Because of the particular manipulations necessary in this work, we will keep track of variable names under
Fourier transforms with the notation

pfpkq “ FxÑkrf s “
ż

xPRn

e´2πik¨xfpxqdx,

pfpX,Kq “ Fx,kÑX,Krf s “
ż

x,kPRn

e´2πirx¨X`k¨Ksfpx, kqdxdk,

FkÑKrf s “
ż

kPRn

e´2πik¨Kfpx, kqdk.

The convention pX :“ tf
ˇ

ˇ pf P Xu will be used for brevity.
We will also use the Wiener-Sobolev spaces As:

Definition 1.1 (The Wiener-Sobolev spaces As). For s ě 0, we will denote with AspRnq the Banach space
of functions generated by the norm

}φ}AspRnq :“

ż

yPRn

p1` |y|sq|pφpyq|dy.
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In phase-space this becomes

}φ}AspR2nq :“

ż

X,KPRn

´

1`
a

|X|2 ` |K|2
s
¯

|pφpX,Kq|dy.

When s ą 0, we will denote the dual of As by A´s, i.e.

}φ}A´s “ sup
}ψ}As“1

|xφ, ψy| .

Remark 1.2. When s “ 0 we recover the standard Wiener algebra, }φ}A0 “ }pφ}L1 . Its dual space will be
denoted as

pA0q1 “ pL8 “ tf : } pf}L8 ă 8u.

The Wiener algebra has been used for semiclassical analysis in other nonlinear contexts, for example [19, 41].
Here we will use heavily A´1 on phase-space as a convenient setting for quantitative approximation of Wigner
measures. The mechanics behind this choice can be seen in the proof of Lemma 5.1.

Definition 1.3. We will denote by Tz the translation operator

Tzfpxq “ fpx` zq, (11)

and by Mz the modulation operator
Mzfpxq “ e´2πiz¨xfpxq. (12)

Definition 1.4. Let ψ P H1 X pH1 be a wavefunction with unit mass, i.e. }ψ}L2 “ 1. We will denote

µxpψq :“

ż

x

x|ψ|2dx, µkpψq :“ ε

ż

k

k| pψ|2dk, (13)

and read µx as the mean position and µk as the mean (rescaled) momentum of the wavefunction ψ. Moreover,
we will denote

σ2
xpψq :“

ż

x

px´ µxpψqq
2
|ψ|2dx, σ2

kpψq :“ ε2
ż

k

ˆ

k ´
µkpψq

ε

˙2

| pψ|2dk, (14)

and read σ2
x as the variance in position and σ2

k as the variance in (rescaled) momentum of the wavefunction
ψ.

The variances σ2
xpψq, σ

2
kpψq are the only measures of space and Fourier localization that we use to develop

our non-parametric wavepacket analysis, as captured in the following

Definition 1.5 (Semiclassical family of wavepackets). Let tψεuεPp0,1q Ď H1 X pH1, }ψε}L2 “ 1 @ε. Then if

lim
εÑ0

µxpψ
εq “ x0 P Rn, lim

εÑ0
µkpψ

εq “ k0 P Rn,

and
lim
εÑ0

σxpψ
εq “ 0, lim

εÑ0
σkpψ

εq “ 0,

we will say that tψεu is a semiclassical family of wavepackets with mean position x0 and mean (rescaled)
momentum k0.

However we can use the term wavepacket more broadly1, to mean any function ψε P H1 X pH1 with
}ψε}L2 “ 1 and

σxpψ
εq ` σkpψ

εq “ op1q. (15)

1Often one has in mind a concrete problem, where ε is a parameter with a fixed value – “small” with regard to other
meaningful quantities, but not tending to 0. Accordingly, there is a single initial datum ψε0. For example, ε « 1

2000
is mentioned

as a reference value of ε in molecular dynamics in [2]. Our main results can be applied in such a context as well, and will give a
bound on the nonlinear effects on the Wigner measure. The judgment of whether the fixed number σxpψεq ` σkpψ

εq is “small”
(and thus whether ψε0 can be considered a wavepacket) will have to be made with regard to other parameters of the physical
problem.
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Equation (15) holds for all standard classes of parametric wavepackets, such as coherent states and
squeezed states, as well as less common parametric classes like chirp wavepackets, i.e. localized functions
with quadratic oscillations, cf. Lemmata 4.10 and 4.12. In any case, this fully non-parametric notion of
wavepacket based on equation (15) is really quantified by Corollary 5.2, where it is shown that

}W εrψεspx, kq ´ δ px´ µxpψ
εq, k ´ µkpψ

εqq }A´1 ď 2π
´

σxpψ
εq ` σkpψ

εq

¯

.

The Banach space A´1, specified in Definition 1.1, contains δ-functions.
It must be noted that, when working on the appropriate frame of reference, the variances σ2

xpψq, σ
2
kpψq

take a very simple form:

Observation 1.6. If a wavefunction ψ is centered via a Galilean transform, i.e. if

u “Mµkpψq

ε

Tµxpψqψ, (16)

then one readily computes

µxpuq “ µkpuq “ 0, σxpψq “ σxpuq “ }xu}L2
x
, σkpψq “ σkpuq “

1
2π }ε∇u}L2 . (17)

The uncertainty principle [29] means that we cannot make both of σxpψq, σkpψq arbitrarily small at the
same time, e.g.

σxpψqσkpψq ě
ε}ψ}2L2pRq

4π
. (18)

While only gaussian coherent states saturate the uncertainty principle, equation (15) outlines a much broader
class. Squeezed states, a class of wavepackets generalizing coherent states, are properly introduced in Defini-
tion 4.9. Chirp wavepackets are introduced in Definition 4.11.

2 Statement of the main results

2.1 Wigner measures for wavepackets

Theorem 2.1 (1-dimensional defocusing Schrödinger-Poisson equation). Let ψεptq be the solution of

iεBtψ
ε `

ε2

2
∆ψε ´

b

2

ż

y

|x´ y||ψεpy, tq|2dy ψε “ 0, ψεpt “ 0q “ ψε0 P SpRq, }ψε0}L2 “ 1 (19)

for some b ą 0. Then

›

›W εrψεptqs ´ δ
`

x´ µxpψ
ε
0q ´ 2πtµkpψ

ε
0q, k ´ µkpψ

ε
0q
˘
›

›

A´1 ď 2πp1` tq

«

σkpψ
ε
0q `

c

b

2π
σxpψε0q

ff

` 2πσxpψ
ε
0q.

The proof is given in Section 5.1.

Thus the Wigner transform for any wavepacket, i.e. any initial data ψε0 so that σxpψ
ε
0q ` σkpψ

ε
0q “ op1q,

remains close to a δ-function. Moreover, despite the fact that the nonlinear effects on ψε are of Op1q, the
Wigner measure is not affected by the nonlinearity. In that sense we can say that the Wigner measure satisfies
the Vlasov-Poisson equation

BtW
0 ` 2πk ¨∇xW

0 `
b

4π
∇x

ż

y,ξ

|x´ y|W 0py, ξ, tqdydξ ¨∇kW
0 “ 0, W 0

0 “ δpx´ x0, k ´ k0q, (20)

if the nonlinear term is completely dropped, which is precisely what happens if we interpret it naively2.

2Indeed, if W 0px, kq “ δpx0, k0q, then

∇x
ş

y,ξ

|x´ y|W 0py, ξ, tqdydξ ¨∇kW 0 “ ∇x
ş

y,ξ

|x´ y|δpy ´ x0, ξ ´ k0qdydξ ¨∇kδpx´ x0, k ´ k0q “

“ ∇x
ş

y
|x´ y|δpy ´ x0qdy ¨∇kδpx´ x0, k ´ k0q “ signpx´ x0q∇kδpx´ x0, k ´ k0q.

Now observe that signpx´ x0q evaluated on x0 is 0; moreover ∇kδpx´ x0, k ´ k0q evaluated on any px, kq with x ‰ x0 is 0.
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Moreover, Theorem 2.1 remains valid for a timescale much longer than the usual log 1
ε Ehrenfest time-scale

[15, 23]. This can be made precise for squeezed states initial data in terms of the following

Corollary 2.2 (Squeezed states for the 1-dimensional Schrödinger-Poisson equation). Let

ψε0 “ ε´
nβ
2 ap

x´ x0
εβ

qe
2πik0¨px´x0q

ε , 0 ă β ă 1,

be a squeezed state as in Definition 4.9, and let

iεBtψ
ε `

ε2

2
∆ψε ´

b

2

ż

y

|x´ y||ψεpy, tq|2dy ψε “ 0, ψεpt “ 0q “ ψε0. (21)

Then there exists a constant C independent of ε, t so that

›

›W εrψεptqs ´ δ
`

x´ x0 ´ 2πk0t, k ´ k0
˘
›

›

A´1 ă p1` tqC
´

ε
β
2 ` ε

1´β
2

¯

.

The same approach can be applied to power nonlinearities as well:

Theorem 2.3 (Defocusing power nonlinearities). Let ψεptq be the solution of

iεBtψ
ε `

ε2

2
∆ψε ´ bpεq|ψε|2σ ψε “ 0, ψεpt “ 0q “ ψε0 P SpRnq, }ψε0}L2 “ 1 (22)

for some b “ bpεq ą 0. Moreover, let CGN˚ be the sharp constant of the Gagliardo-Nirenberg inequality, see
Lemma 4.8 for details. If for some η ą 0

σxpψ
ε
0q ă η, σkpψ

ε
0q ă η, σ

nσ
2

k pψε0q

c

bpεq

εnσ
CGN˚ p2πqnσ´2

2σ ` 2
ă η,

then
›

›W εrψεptqs ´ δ
`

x´ µxpψ
ε
0q ´ 2πtµkpψ

ε
0q, k ´ µkpψ

ε
0q
˘
›

›

A´1 ă 2π
´

3` 2t
¯

η.

The proof is given in Section 5.2.
Allowing bpεq “ Bεγ “ op1q and Op1q initial data, is equivalent to considering small initial data and

b “ B “ Op1q, through the rescaling

iεBtψ
ε ` ε2

2 ∆ψε ´ εγB|ψε|2σ ψε “ 0 ψεpt “ 0q “ ψε0 ô

ô iεBtΨ
ε ` ε2

2 ∆Ψε ´B|Ψε|2σ Ψε “ 0 Ψεpt “ 0q “ ε
γ
2σψε0.

Here we keep the normalization }ψε0}L2 “ 1 so that W εrψεs scales correctly (i.e. so that the Wigner measure
exists and is not zero).

Note that even for these weakly-nonlinear problems, nonlinear effects are known to appear on the level
of the wavefunction [17, 20, 21] and the semiclassical limit for wavepackets was heretofore not known. For
example, in [17] a model of Bose-Einstein condensates is studied, namely equation (22) with

n “ 3, σ “ 1, bpεq “ ε2 ą 0. (23)

It is shown therein that instabilities on the level of the wavefunction are possible for special localized initial
data. This negative result builds upon initial data of the form ψε0 “ ε´

n
2 apx´x0

ε q, which are localized in space
but not in the Fourier variable. In another problem with bpεq “ ε2, σ “ 2

n , it has even been shown that the
Wigner measure can be discontinuous in time [18].

It is natural to ask if for some particularly convenient initial data, like coherent states, the semiclassical
limit for (23) is known. For coherent states, the state of the art is [23]. The main result of [23] can be
summarized as follows: assume

|bpεq| “ Opε1`
nσ
2 q, (24)
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and the initial wavefunction ψε0 is a coherent state

ψε0pxq “ ε´
n
4 ap

x´ x0
?
ε
qe

2πik0px´x0q
ε , a P SpRnq, }a}L2 “ 1, x0, k0 P Rn. (25)

Then this parametric form is preserved, in the sense that there exists a coherent-state approximate solution
of (22),

}ψεpx, tq ´ ε´
n
4 ap

x´Xptq
?
ε

, tqe
2πiKptqpx´Xptqq

ε `iθptq}L2 “ op1q, (26)

where Xptq, Kptq, θptq, apx, tq, satisfy simple ε-independent equations. Moreover, this is valid for timescales

t “ Oplog log
1

ε
q.

A corollary of [23] is that for |bpεq| ě ε1`
nσ
2 nonlinear effects on ψεptq are of Op1q.

Equation (26) provides a lot of information for the problem, but at the cost of a rather weak nonlinearity,
i.e. assumption (24), excluding many physically relevant problems. In particular, the nonlinearity (23) is
too strong for the result of [23]. Moreover, in most realistic settings the values of ε range between 10´2 and
10´6, so this would lead to short timescales as well since, for the natural logarithm, log log106 « 2.6.

In other words, it was not known heretofore whether we can have any control of the observables in the
problem described by the scaling (23) for wavepacket initial data; not even for coherent state initial data. To
answer this question one observes that Theorem 2.3 implies the following

Corollary 2.4 (Squeezed states for defocusing power nonlinearities). Let

ψε0 “ ε´
nβ
2 ap

x´ x0
εβ

qe
2πik0¨px´x0q

ε , 0 ă β ă 1,

be a squeezed state as in Definition 4.9, and let

iεBtψ
ε `

ε2

2
∆ψε ´ εγ |ψε|2σ ψε “ 0, ψεpt “ 0q “ ψε0. (27)

Then there exists a constant C independent of ε, t so that

›

›W εrψεptqs ´ δ
`

x´ x0 ´ 2πk0t, k ´ k0
˘
›

›

A´1 ă p1` tqC
´

εβ ` ε1´β ` ε
γ´nσβ

2

¯

.

Setting γ “ 2, n “ 3 in Corollary 2.4 above means we recover the setting of (23). Then, if ψε0 is a squeezed

state with β ă 2
3 it follows that W εrψεptqs evolves linearly as long as t ¨ pεβ ` ε1´

3β
2 q “ op1q.

Remark 2.5. If we view Corollary 2.4 as a linearizability result, it is interesting to compare with what
is known for linearizability on the level of the wavefunction for the defocusing NLS. Theorem 1.1 in [22]
requires γ ě nσ for linearizability (in an appropriate sense) to hold on the level of the wavefunction. Here,
taking advantage of the wavepacket character of our initial data, we can relax the condition to γ ą nσβ, for
β P p0, 1q.

We can apply this approach to focusing power nonlinearities as well:

Theorem 2.6 (Focusing power nonlinearities). Let ψεptq be the solution of

iεBtψ
ε `

ε2

2
∆ψε ´ bpεq|ψε|2σ ψε “ 0, ψεpt “ 0q “ ψε0 P SpRnq, }ψε0}L2 “ 1 (28)

for some b “ bpεq ă 0, and for nσ “ 1. If for some η ą 0

σxpψ
ε
0q ă η, σkpψ

ε
0q ă η,

|bpεq|

ε

CGN˚
2πp4` 4

n q
`

d

|bpεq|

ε

CGN˚
2πp4` 4

n q

d

|bpεq|

ε

CGN˚
2πp4` 4

n q
`
σkpψε0q

2π
ă η,

then
›

›W εrψεptqs ´ δ
`

x´ µxpψ
ε
0q ´ 2πtµkpψ

ε
0q, k ´ µkpψ

ε
0q
˘
›

›

A´1 ă 2π
´

3` 2t
¯

η.

8



The proof is given in Section 5.3.

Remark 2.7. The restriction nσ “ 1 has to do with working out explicitly the upper bound in the technical
Lemma 4.7. It can be removed at the cost of a less explicit statement. Indeed, if instead of nσ “ 1 we assume

nσ ă 2, |bpεq| “ Opεγq, γ ą nσ,

then it can be shown that

›

›W εrψεptqs ´ δ
`

x´ µxpψ
ε
0q ´ 2πtµkpψ

ε
0q, k ´ µkpψ

ε
0q
˘
›

›

A´1 “ O
´

σxpψ
ε
0q ` σkpψ

ε
0q ` ε

γ´nσ
2´nσ

¯

p1` tq. (29)

The proof of this version of the result is given in Section 5.4.
Now let us compare Theorem 2.6 to the state of the art. The aforementioned result of [23] applies in

the same way to focusing and defocusing problems. Theorem 2.6 allows for stronger focusing nonlinearities,
longer timescales, and of course more general initial data. This can be seen clearly in the following

Corollary 2.8 (Squeezed states for focusing nonlinearities). Let

ψε0 “ ε´
β
2 ap

x´ x0
εβ

qe
2πik0¨px´x0q

ε , 0 ă β ă 1,

be a squeezed state as in Definition 4.9, nσ “ 1, and

iεBtψ
ε `

ε2

2
∆ψε ` εγ |ψε|2σ ψε “ 0, ψεpt “ 0q “ ψε0. (30)

Then there exists a constant C independent of ε, t so that

›

›W εrψεptqs ´ δ
`

x´ x0 ´ 2πk0t, k ´ k0
˘
›

›

A´1 ă p1` tqC
´

εβ ` e1´β ` εγ´1 ` ε
γ´β

2

¯

Thus, for any γ ą 1 control of the Wigner measure is obtained, as opposed to γ ě 3
2 in [23].

Remark 2.9. The counterparts of Corollaries 2.2, 2.4, 2.8 for chirp-wavepacket initial data,

ψε0pxq “ ε´
nβ
2 ap

x´ x0
εβ

qe
2πik0¨px´x0q

ε e
iz¨px´x0q

2

ε

can be readily established by making use of Lemma 4.12.

2.2 Idea of the proofs

The idea behind the proofs for all of the main results follows the same general steps, bringing together several
different ideas, and adjusting the details as needed for each nonlinearity:
Step 1: Go to the appropriate frame of reference. The nonlinearities we work with are Galilean
invariant. In that context, we use a frame of reference that centers the initial data

uε0pxq “Mµkpψ
ε
0q

ε

Tµxpψε0qψ
ε
0 “ ψε0px` x0qe

´2πi
µkpψ

ε
0q¨x

ε , (31)

and work on problem (1) through

iεBtu
ε `

ε2

2
∆uε ´ F p|uε|2quε “ 0, uεpt “ 0q “ uε0. (32)

The Galilean invariance of (1) (recalled in Lemmata 4.4, 4.4) means that ψεpx, tq is related to uεpx, tq
through

ψεpx, tq “ uεpx´ vt´ x0, tqe
i
´

v¨px´x0q
ε ´ v¨v2ε

¯

, v “ 2πµkpψ
ε
0q, x0 “ µxpψ

ε
0q.

Step 2: Show that if σxpψ
ε
0q, σkpψ

ε
0q are small, then σxpu

εptqq, σkpu
εptqq are also small. By state of the

art methods for nonlinear Schrödinger equations, one can obtain bounds for }ε∇uεptq}L2 in terms of }ε∇uε0}L2 .
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Then we proceed to bound }xuεptq}L2 by appropriate functions of }xuε0}L2 , }ε∇uε0}L2 . From this we conclude
that σxpu

εptqq, σkpu
εptqq are bounded by appropriate functions of σxpu

ε
0q “ σxpψ

ε
0q, σkpu

ε
0q “ σkpψ

ε
0q.

Working out the details in each case determines the constants and, crucially, the timescales for which this
bound is useful.
Step 3: Conclude that W εruεptqs « δpx, kq, quantify the rate and timescale of convergence, and
go back to the initial frame of reference to obtain the result for W εrψεptqs. The previous step is
exploited through Corollary 5.2 to complete the proof.

Every effort has been made to state and prove regularity results, bootstrap arguments etc in a self-
contained way in Sections 3 and 4. That way Section 5 is devoted to presenting coherently how the different
pieces fit together, without being sidetracked by various technical details. The engine behind the proofs is
Lemma 5.1 and its Corollary 5.2, which translate H1 and pH1 estimates to convergence results for the Wigner
measure. It is through Lemma 5.1 that the new functional framework, introduced in detail in Section 3
below, makes the results of this paper possible.

3 Wigner measures and the new functional framework

The Wigner transform (WT) can be seen as a sesquilinear transform

W ε : L2pRnq ˆ L2pRnq Ñ L2pR2nq : f, g ÞÑW εrf, gs,

defined as

W εrf, gspx, kq “

ż

yPRn

e´2πikyfpx`
εy

2
qḡpx´

εy

2
qdy. (33)

One easily checks the following elementary properties [7, 9]:

f, g P L2pRnq ñ W εrf, gs P L2pR2nq X L8pR2nq,

f, g P H1pRnq X pH1pRnq ñ W εrf, gs P H1pR2nq X pH1pR2nqXL8pR2nq,

f, g P SpRnq ñ W εrf, gs P SpR2nq.

(34)

Often the quadratic version is used, in which case we denote

W εrf s :“W εrf, f s.

The WT W εrf s describes the quadratic observables of f through

ż

x,kPRn

W εrf spx, kqφpx, kq dxdk “

ż

xPRn

fpxqφpx, ε∇xqfpxq dx

where φpx, ε∇xq is the Weyl pseudodifferential operator with symbol φpx, kq3 [31, 44]. Thus weak approxi-
mations of W εrf s can provide information for the quadratic observables of f – but not for its point values.

The most fruitful application of the ε-dependent WT is to an ε-dependent family of functions, tψεuε.
Under appropriate conditions, it is known that W εrψεs converges in weak-˚ sense to a probability measure
W 0 on R2n as εÑ 0 [31, 44]; W 0 is then called the Wigner measure (WM) of the family of functions tψεuε.
Intuitively, the WM keeps track of the limits of the observables of ψε as εÑ 0 through

lim
εÑ0

ż

xPRn

ψεpxqφpx, ε∇xqψ
εpxq dx “

ż

x,kPRn

W 0px, kqφpx, kq dxdk

while the family tψεuε itself has no meaningful limit (typically lim
εÑ0

ψε “ 0 in the sense of distributions).

3We can think of φ P SpR2nq for now; the point of this discussion is to motivate a judicious selection of the space where φ
will be taken to belong.
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The framework developed in [44] for the weak-˚ convergence of the WT towards the WM is based on the
algebra of test functions A, generated by the norm }φ}A :“ }FkÑKrφspx,Kq}L1

KL
8
x

. A back-of-the-envelope

calculation explains the selection of this norm in the following sense: Let }ψε}L2 “ 1, then
ż

x,kPRn

W εrψεspx, kqφpx, kqdxdk “

ż

x,k,yPRn

e´2πikyψεpx`
εy

2
qψεpx´

εy

2
qφpx, kqdxdk “

“

ż

x,yPRn

ψεpx`
εy

2
qψεpx´

εy

2
q

ż

kPRn

e´2πikyφpx, kqdk dxdy ñ

ñ |xW εrψεs, φy| ď }ψεpx`
εy

2
qψεpx´

εy

2
q}L8y L1

x
}FkÑyrφs}L1

yL
8
x
, (35)

where of course

}ψεpx`
εy

2
qψεpx´

εy

2
q}L8y L1

x
“ sup

y

ż

xPRn

ˇ

ˇψεpx` yqψεpx´ yq
ˇ

ˇ dx “ 1.

Thus the set tW εrψεsuε is uniformly bounded in the dual of A, A1, and hence weak-˚ compact by virtue
of the Banach-Alaoglou Theorem. By extracting a subsequence in ε if necessary, the WM W 0 is now well
defined. It is known that W 0 is in fact a non-negative finite measure [44], hence the term Wigner measure is
justified.

Finding ways to metrise the weak-˚ limit

xW 0, φy “ lim
εÑ0

xW ε, φy @φ P A

is important in itself, as it could yield better control on uniqueness questions, and of course help quantify
the rate of convergence. One might think that since W 0 is a probability measure, W ε would naturally
be seen converge to W 0 in some Banach space of measures. However, for ψε P L2pRnq, W ε “ W εrψεs P
L2pR2nq XL8pR2nq may not even be in L1pR2nq [49]. In that case,

ş

W εdxdk “ }ψε}2L2 in Cauchy-principal-
value sense, but W ε does not define a finite measure at all. By using a Fourier based norm, as in Definition
1.1, we go around this integrability question, and let the Fourier transform absorb any improper integrals.
Moreover it must be noted that the new spaces As are in fact closely related with the space A, as can be
seen in the following

Lemma 3.1 (Consistency of A, A0 and A1). For every φ in the Schwartz class of test functions SpRnq

}φ}A ď }φ}A0 ď }φ}A1 .

Proof: Simply observe that, for any φ P SpRnq,

}φ}A “ }FkÑKrφs}L1
KL

8
x
“

ş

K

sup
xPRn

|FkÑKrφspx,Kq|dK ď
ş

K

ş

X

|Fx,kÑX,KrφspX,Kq| dXdK “ }pφ}L1 “ }φ}A0 .

This leads to the following

Lemma 3.2. For any }ψε}L2 “ 1,

}W εrψεs}A´1 “ }W εrψεs}
pL8 “ 1.

Proof: First of all, recall that pL8 “ pA0q1. Now by virtue of equation (35) we get

|xW εrψεs, φy| ď sup
s
}ψεpx`

εs

2
qψ

ε
px´

εs

2
q}L1 }FkÑyrφs}L1

yL
8
x
ď }ψε}2L2}Fx,kÑz,yrφs}L1

z,y
“ }φ}A0 .

This shows }W εrψεs}FL8 ď 1; equality follows by selecting φR “ e´πRpx
2
`k2q, and taking sup

RÑ0
|xW εrψεs, φRy|

(observe that }φR}A0 “ 1).
The estimate }W εrψεs}A´1 ď 1 follows in the same way. To show that }W εrψεs}A´1 “ 1 it suffices to

take φR as before, and compute }φR}A1 “ 1` CR
3n
2 .

In other words, the norms A´1, pL8 are correctly scaled to capture the Wigner measure as ε Ñ 0. We
will be working mainly in A´1, that is the admissible observables will be those operators with Weyl symbols
φ P A1. Technically, this is a slightly smaller class of observables than the class A introduced in [44].
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4 Background results

4.1 Background on Schrödinger equations

4.1.1 Well-posedness and conservation of energy

The 1-dimensional Schrödinger-Poisson problem has certain special features. One is that 1-dimensional Pois-
son kernel, |x|, grows at infinity. This means that the standard methods for V px, tq “

ş

y

Kpx´ yq|ψεpy, tq|2dy

with kernels K P L8 ` Lp [24] cannot be used off-the-shelf. Because of that feature, the nonlinear potential

V px, tq “
b

2

ż

y

|x´ y||ψεpy, tq|2dy (36)

has nontrivial behavior at infinity,

lim
xÑ˘8

d

dx
V px, tq “ ¯

b

2
}ψεpx, tq}2L2 .

We will use the approach of [54], and modify it to also control the moments of the solution:

Theorem 4.1 (Solutions for the 1-dimensional Schrödinger-Poisson equation). Consider the Cauchy problem

iεBtψ
ε`

ε2

2
∆ψε´

b

2

ż

y

|x´ y||ψεpy, tq|2dy ψε “ 0, ψεpt “ 0q “ ψε0 P H
2pRqX pH1pRq, }ψε0}L2 “ 1. (37)

This problem has a unique, global-in-time solution in H2pRq X pH1pRq which conserves mass

}ψεptq}L2 “ }ψε0}L2“ 1 (38)

and energy

ε2

2
}∇ψεptq}2L2 `

b

4

ż

x,y

|x´ y||ψεpx, tq|2|ψεpy, tq|2dxdy “
ε2

2
}∇ψε0}2L2 `

b

4

ż

x,y

|x´ y||ψε0pxq|
2|ψε0pyq|

2dxdy. (39)

Moreover,

}ε
d

dx
ψεptq}L2 ď }ε

d

dx
ψε0}L2 ` |b||t| (40)

and

}xψεptq}L2 ď }xψε0}L2 `

t
ż

τ“0

}ε
d

dx
ψεpτq}L2dτ. (41)

Proof: By virtue of Theorem B.1 of [54], ψε0 P H
2, }ψε0}L2 “ 1 implies the existence of a global solution

ψε P L8pr0, T s, H2q for any T ą 0, satisfying in addition

}ψ0ptq}L2 “ 1, ε2}ψεptq}H2 ď Cp1` ε2}ψε0}H2qeCt
2

for some absolute constant C. We will now work on this solution to prove equations (39), (40), (41).
Denote for brevity V px, tq the nonlinear potential as in equation (36). V px, tq is the solution of

∆V px, tq “ b|ψεpx, tq|2; (42)

equation (36) yields

d

dx
V px, tq “

b

2

¨

˝

8
ż

y“x

|ψεpy, tq|2dy ´

x
ż

y“´8

|ψεpy, tq|2dy

˛

‚, (43)
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and therefore, using the conservation of mass,

|
d

dx
V px, tq| ď

|b|

2
}ψεptq}2L2 “

|b|

2
}ψε0}

2
L2 . (44)

Now, following the steps of the proof of Lemma 2.1 of [54], we check that

1
2
d
dt}ε

d
dxψ

εptq}2L2 “ ´ε Im
“

xψε ddxV,
d
dxψ

εy
‰

ď
|b|
2 }ψ

ε
0}

3
L2}ε

d
dxψ

εptq}L2 ñ

ñ d
dt}ε

d
dxψ

εptq}L2 ď |b|}ψε0}
3
L2 .

(45)

Thus equation (40), which is essentially equation (2.8) of [54], follows. Similarly,

1
2
d
dt}xψ

εptq}2L2 “ Re
“

iε
2 xx∆ψεptq, xψεptq

‰

“ Re
“

iεxxψεptq, ddxψ
εptq

‰

ď }ε∇ψεptq}L2}xψε}L2 ñ

ñ d
dt}xψ

εptq}L2 ď }ε∇ψεptq}L2 .
(46)

Equation (41) follows.
Now there is enough regularity to justify the conservation of energy by standard arguments [24].

Well-posedness for the nonlinear Schrödinger equation with power nonlinearities on H1 is exhaustively
well studied [24]. Here we briefly recall the relevant results in the semiclassical scaling, and outline how

control of moments ( pH1 norm) follows.

Theorem 4.2 (Solutions for the NLS with power nonlinearities). Consider , i.e. the Cauchy problem

iεBtψ
ε `

ε2

2
∆ψε ´ b|ψε|2σψε “ 0, ψεpt “ 0q “ ψε0 P H

1pRnq (47)

either in the energy sub-critical defocusing regime,

b ą 0, 0 ă σ ă
2

pn´ 2q`
; (48)

or in the mass sub-critical focusing regime,

b ă 0, 0 ă σ ă
2

n
. (49)

Then there is a unique, global-in-time solution in H1 which conserves mass

}ψεptq}L2 “ }ψε0}L2 (50)

and energy
ε2

2
}∇ψεptq}2L2 `

b

σ ` 1
}ψεptq}2σ`2

L2σ`2 “
ε2

2
}∇ψε0}2L2 `

b

σ ` 1
}ψε0}

2σ`2
L2σ`2 (51)

Theorem 4.3 (Moments under power nonlinearities). Let ψε be the solution of

iεBtψ
ε `

ε2

2
∆ψε ´ b|ψε|2σψε “ 0, ψεpt “ 0q “ ψε0 P H

1pRnqX pH1pRnq. (52)

Then

}xψεptq}L2 ď }xψε0}L2 `

t
ż

τ“0

}ε
d

dx
ψεpτq}L2dτ. (53)

Proof: This follows in exactly the same way as in Theorem 4.1. More specifically, one directly computes

1
2
d
dt}xψ

εptq}2L2 “ Re
“

iε
2 xx∆ψεptq, xψεptq

‰

“ Re
“

iεxxψεptq, ddxψ
εptq

‰

ď }ε∇ψεptq}L2}xψε}L2 ñ

ñ d
dt}xψ

εptq}L2 ď }ε∇ψεptq}L2 .
(54)

The result follows.
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4.1.2 Galilean invariance

Lemma 4.4 (Galilean invariance). Let ψ satisfy

iεBtψ `
ε2

2
∆ψ ´ b

ż

y

Kpx´ yq|ψpy, tq|2dy ψ “ 0, ψpt “ 0q “ ψ0 P L
2pRnq. (55)

For any x0, v P Rn, and denote

upx, tq “ ψpx` vt` x0, tqe
´i

ˆ

v¨x
ε `

|v|2

2ε t

˙

. (56)

Then u satisfies

iεBtu`
ε2

2
∆u´ b

ż

y

Kpx´ yq|upy, tq|2dy u “ 0, upt “ 0q “ u0 “ ψ0px` x0qe
´i v¨xε P L2pRnq (57)

and
W εruptqspx, kq “W εrψptqs

´

x` vt` x0, k `
v

2π

¯

. (58)

Similarly, if Ψ satisfies

iεBtΨ`
ε2

2
∆Ψ´ b|ψ|2σΨ “ 0, Ψpt “ 0q “ Ψ0 P L

2pRnq. (59)

and

Upx, tq “ Ψpx` vt` x0, tqe
´i

ˆ

v¨x
ε `

|v|2

2ε t

˙

, (60)

then

iεBtU `
ε2

2
∆U ´ b|U |2σU “ 0, Upt “ 0q “ U0 “ Ψ0px` x0qe

´i v¨xε P L2pRnq. (61)

Moreover,

W εrUptqspx, kq “W εrΨptqs
´

x` vt` x0, k `
v

2π

¯

. (62)

Proof: See [32] for the transformation of equation (59), i.e. for equations (60), (61).
Equation (62) follows by the elementary computation

W εrUptqs “W εrΨpx` vt` x0, tqe
´ip v¨xε `

v¨v
2ε tqs “

“
ş

y

e´2πik¨yΨpx` εy
2 ` vt` x0, tqe

´i

ˆ

v¨px`
εy
2
q

ε ` v¨v2ε t

˙

Ψpx´ εy
2 ` vt` x0, tqe

i

ˆ

v¨px´
εy
2
q

ε ` v¨v2ε t

˙

dy “

“
ş

y

e´2πipk` v
2π q¨yΨpx` εy

2 ` vt` x0, tqΨpx´
εy
2 ` vt` x0, tqdy “W εrΨptqs

`

x` vt` x0, k `
v
2π

˘

.

The proof for the Schrödinger-Poisson nonlinearity is essentially the same.

Lemma 4.5 (Center of mass and conservation of momentum). Let ψ satisfy

iεBtψ `
ε2

2
∆ψ ´

b

2

ż

x

|x´ y||ψpy, tq|2dy ψ “ 0, ψpt “ 0q “ ψ0 P SpRq (63)

Then
d

dt
µxpψptqq “ 2πµkpψ0q,

d

dt
µkpψptqq “ 0.

Similarly, if Ψ satisfies

iεBtΨ`
ε2

2
∆Ψ´ b|ψ|2σΨ “ 0, Ψpt “ 0q “ Ψ0 P SpRnq, (64)

then
d

dt
µxpΨptqq “ 2πµkpΨ0q,

d

dt
µkpΨptqq “ 0.
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Proof: We compute
d
dtµxpψq “

d
dtxxψ, ψy “

iε
2 pxx∆ψ,ψy ´ xxψ,∆ψyq “

“ iε
2 pxψ,∇ψy ´ x∇ψ,ψyq “ iεx∇ψ,ψy “ 2πµkpψptqq.

Moreover, denoting V px, tq “ b
2

ş

y

|x´ y||ψpy, tq|2dy the nonlinear potential we have

d
dtµkpψq “ ε ddtxk

pψ, pψy “ ε
2πi

d
dtx∇ψ,ψy “

1
π Rex∇ψ, V ψy “

“ 1
2π

ş

x

V px, tqpψ∇ψ ` ψ∇ψqdx “ 1
2π

ş

x

V px, tq∇|ψpx, tq|2dx

and now we complete the computation by observing

ş

x

V px, tq∇|ψpx, tq|2dx “ b
2

ş

x

ş

y

|x´ y||ψpy, tq|2dy∇|ψpx, tq|2dx “

“ ´ b
2

ş

x

ş

y

signpx´ y|q|ψpy, tq|2dy|ψpx, tq|2dx “ 0.

The proof for power nonlinearities follows along the same steps.

4.2 Inequalities

Observation 4.6. For any a, b, q ą 0

pa` bq
q
ď Cpaq ` bqq for C “

#

2q´1, q ě 1,

1, 0 ă q ď 1

Lemma 4.7 (Algebraic bound). Let fptq P Cpr0,8q, r0,8qq, 0 ă A,B, 0 ă θ ă 1 and

fptq ď A`Bfθptq.

Then fptq is bounded by the largest positive solution of,

x´Bxθ ´A “ 0. (65)

In the case θ “ 1
2 ,

fptq ď A`
B2

2
`
B
?
B2 ` 4A

2
.

In the case where A, B depend on ε and we have

A ! B as εÑ 0,

then one easily checks that the largest positive solution of (65) has to be of the form

fmax ď B
1

1´θ p1` op1qq.

In the case where A, B depend on ε and we have

B ! A as εÑ 0,

then one easily checks that the largest positive solution of (65) has to be of the form

fmax ď Ap1` op1qq.
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Proof: Since b
?
t grows more slowly than t when tÑ8, it is clear that fptq is bounded above.

Moreover the maximum value fmax will satisfy (65); indeed if for some value f

f ă A`B
a

f

this means that a somewhat larger value f would still be possible.
Thus we need to compute the largest solution of (65); if θ “ 1

2 this is achieved by solving the quadratic
equation

´

a

fmax

¯2

´B
a

fmax ´A “ 0.

When A ! B the problem becomes

x´Bxθ ´A “ 0 ñ
x

B
´ xθ “ op1q ñ xθ´1p1` op1qq “ B´1,

and the computation for B ! A is analogous.

Lemma 4.8. Let

f P H1pRnq, }f}L2pRnq “ 1, σ P

ˆ

0,
2

pn´ 2q`

˙

.

Then
}f}2σ`2

L2σ`2pRnq ď CGN˚ }∇f}nσL2pRnq.

Remark: This is a special case of the Gagliardo-Nirenberg L2-gradient inequality, cf. [1, 24, 32]. The sharp
constant is known; indeed if we denote CGNq,p,n the sharp constant for the Gagliardo-Nirenberg inequality,

}f}LppRnq ď CGNq,p,n}∇f}θL2pRnq}f}
1´θ
LqpRnq, [1], then CGN˚ pn, σq :“

`

CGN2,2σ`2,n

˘2σ`2
.

4.3 Computations for concrete wavepackets

Definition 4.9. Let
a P SpRnq, }a}L2 “ 1, µxpaq “ µkpaq “ 0,

β P p0, 1q. The function

ψε0pxq “ ε´
nβ
2 ap

x´ x0
εβ

qe
2πik0¨px´x0q

ε

will be called a squeezed state with envelope a and rate of concentration β.

Standard computations yield the following

Lemma 4.10. Let

ψε0pxq “ ε´
nβ
2 ap

x´ x0
εβ

qe
2πik0¨px´x0q

ε

be a squeezed state with envelope a and rate of concentration β. Then

}ψε0}L2 “ 1, µxpψ
ε
0q “ x0, µkpψ

ε
0q “ k0, σxpψ

ε
0q “ Opεβq σkpψ

ε
0q “ Opε1´βq.

Other classes of wavepackets can also be of interest:

Definition 4.11. Let
a P SpRnq, }a}L2 “ 1, µxpaq “ µkpaq “ 0,

β P p0, 1q, 0 ‰ z P R. The function

ψε0pxq “ ε´
nβ
2 ap

x´ x0
εβ

qe
2πik0¨px´x0q

ε e
iz¨px´x0q

2

ε

will be called a chirp wavepacket with envelope a, rate of concentration β and quadratic rate of oscillation z.

Direct computations in the spirit of Lemma 4.10 yield the following
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Lemma 4.12. Let

ψε0pxq “ ε´
nβ
2 ap

x´ x0
εβ

qe
2πik0¨px´x0q

ε e
iz¨px´x0q

2

ε

be a chirp wavepacket with envelope a, rate of concentration β and quadratic rate of oscillation z. Then

}ψε0}L2 “ 1, µxpψ
ε
0q “ x0, µkpψ

ε
0q “ k0, σxpψ

ε
0q “ Opεβq σkpψ

ε
0q “ Opε1´β ` εβq.

Proof: The only difference from Lemma 4.10 is in the computation of σkpψ
ε
0q :

σ2
kpψ

ε
0q “ ε2

ş

k

pk ´ k0
ε q

2| pψε0pkq|
2dk “ ε2

4π2

ş

x

|∇
´

ε´
nβ
2 ap x

εβ
qe

iz¨x2

ε

¯

|2dx ď

ď ε2´nβ´2β

4π2

ş

x

n
ř

j“1

a2j p
x
εβ
qdx` ε´nβiz

2π2

ş

x

n
ř

j“1

x2j |ap
x
εβ
q|2dx “ Opε2p1´βqq `Opε2βq.

5 Proof of the main results

5.1 Proof of Theorem 2.1

By virtue of Lemma 4.4, the solution of the problem

iεBtu
ε `

ε2

2
∆uε ´

b

2

ż

y

|x´ y||uεpy, tq|2dy uε “ 0 uεpt “ 0q “ uε0 “ ψε0px` µxpψ
ε
0qqe

´2πi
µkpψ

ε
0q¨x

ε (66)

is related to ψε through

uεpx, tq “ ψεpx` vt` x0, tqe
´ip v¨xε `

v¨v
2ε tq, v “ 2πµkpψ

ε
0q, x0 “ µxpψ

ε
0q. (67)

By virtue of Lemma 4.5 and by the construction of uε0,

µxpu
εptqq “ µkpu

εptqq “ 0,

σxpψ
εptqq “ σxpu

εptqq “ }xuεptq}L2
x
, σkpψ

εptqq “ σkpu
εptqq “ 1

2π }ε∇u
εptq}L2 .

(68)

For now we will work with equation (66), and ultimately transfer our results to W εrψεptqs.
By virtue of the conservation of energy (39), we have

ε2

2 }∇u
εptq}2L2 ď

ε2

2 }∇u
εptq}2L2 `

b
4

ş

x,y

|x´ y||uεpx, tq|2|uεpy, tq|2dxdy “

“ ε2

2 }∇u
ε
0}

2
L2 `

b
4

ş

x,y

|x´ y||uε0pxq|
2|uε0pyq|

2dxdy ď ε2

2 }∇u
ε
0}

2
L2 `

b
2

ş

x

|x||uε0pxq|
2dx ď

ď ε2

2 }∇u
ε
0}

2
L2 `

b
2}xu

ε
0}L2 .

The triangle inequality |x´ y| ď |x| ` |y| was also used; also recall that b ą 0. Thus by virtue of Observation
4.6 we have

}ε∇uεptq}L2 ď }ε∇uε0}L2 `

b

b}xuε0}L2 . (69)

Moreover, by virtue of equation (41),

}xuεptq}L2 ď }xuε0}L2 ` t

ˆ

}ε∇uε0}L2 `

b

b}xuε0}L2

˙

. (70)

Recalling equation (68), we can recast equations (69), (70) as

σkpψ
εptqq “ σkpu

εptqq ď σkpu
ε
0q `

b

b
2πσxpu

ε
0q, σxpψ

εptqq “ σxpu
εptqq ď σxpu

ε
0q ` t

´

σkpu
ε
0q `

b

b
2πσxpu

ε
0q

¯

,

and finally

σkpψ
εptqq ` σxpψ

εptqq ď σkpu
ε
0qp1` tq ` σxpu

ε
0q `

c

b

2π
p1` tq

b

σxpuε0q.

The proof is complete by recalling that

µxpψ
εptqq “ µxpψ

ε
0q ` 2πtµkpψ

ε
0q, µkpψ

εptqq “ µkpψ
ε
0q,

by virtue of Lemma 4.5, and then applying Corollary 5.2.
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5.2 Proof of Theorem 2.3

In exact analogy to what we did before, the solution of the problem

iεBtu
ε `

ε2

2
∆uε ´ b|uε|2σ uε “ 0 uεpt “ 0q “ uε0 “ ψε0px` µxpψ

ε
0qqe

´2πi
µkpψ

ε
0q¨x

ε (71)

is related to ψε through

uεpx, tq “ ψεpx` vt` x0, tqe
´ip v¨xε `

v¨v
2ε tq, v “ 2πµkpψ

ε
0q, x0 “ µxpψ

ε
0q. (72)

Again, by virtue of Lemma 4.5 and by the construction of uε0,

µxpu
εptqq “ µkpu

εptqq “ 0,

σxpψ
εptqq “ σxpu

εptqq “ }xuεptq}L2
x
, σkpψ

εptqq “ σkpu
εptqq “ 1

2π }ε∇u
εptq}L2 .

(73)

By virtue of the conservation of energy, equation (51),

ε2

2 }∇u
εptq}2L2 ď

ε2

2 }∇u
ε
0}

2
L2 `

b
σ`1}u

ε
0}

2σ`2
L2σ`2 ď

1
2}ε∇u

ε
0}

2
L2 `

b
σ`1C

GN
˚ }∇uε0}nσL2 ,

where in the last step we used the Gagliardo-Nirenberg inequality, Lemma 4.8. Using Observation 4.6, this
becomes

}ε∇uεptq}L2 ď }ε∇uε0}L2 `

c

ε´nσ b
CGN˚

2σ ` 2
}ε∇uε0}

nσ
2

L2

Moreover, equation (53) of Theorem 4.3 implies that

}xuεptq}L2 ď }xuε0}L2 ` t

˜

}ε∇uε0}L2 `

c

ε´nσ b
CGN˚

2σ ` 2
}ε∇uε0}

nσ
2

L2

¸

.

Collecting the last two equations, and recalling equation (73), we have

σxpu
εptqq ` σkpu

εptqq ď σxpu
ε
0q ` p1` tqσkpu

ε
0q ` p1` tq

˜

σ
nσ
2

k puε0q

c

b

εnσ
CGN˚ p2πqnσ´2

2σ ` 2

¸

The proof is complete by recalling that

µxpψ
εptqq “ µxpψ

ε
0q ` 2πtµkpψ

ε
0q, µkpψ

εptqq “ µkpψ
ε
0q,

by virtue of Lemma 4.5, and then applying Corollary 5.2.

5.3 Proof of Theorem 2.6

In exact analogy to what we did before, the solution of the problem

iεBtu
ε `

ε2

2
∆uε ´ b|uε|2σ uε “ 0 uεpt “ 0q “ uε0 “ ψε0px` µxpψ

ε
0qqe

´2πi
µkpψ

ε
0q¨x

ε (74)

is related to ψε through

uεpx, tq “ ψεpx` vt` x0, tqe
´ip v¨xε `

v¨v
2ε tq, v “ 2πµkpψ

ε
0q, x0 “ µxpψ

ε
0q. (75)

Again, by virtue of Lemma 4.5 and by the construction of uε0,

µxpu
εptqq “ µkpu

εptqq “ 0,

σxpψ
εptqq “ σxpu

εptqq “ }xuεptq}L2
x
, σkpψ

εptqq “ σkpu
εptqq “ 1

2π }ε∇u
εptq}L2 .

(76)
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By virtue of the conservation of energy, equation (51),

ε2

2 }∇u
εptq}2L2 “

ε2

2 }∇u
ε
0}

2
L2 `

b
σ`1}u

ε
0}

2σ`2
L2σ`2 `

|b|
σ`1}u

εptq}2σ`2
L2σ`2 ď

ď ε2

2 }∇u
ε
0}

2
L2 `

|b|
σ`1}u

εptq}2σ`2
L2σ`2 ď

1
2}ε∇u

ε
0}

2
L2 `

|b|
σ`1C

GN
˚ }∇uεptq}nσL2 ,

where in the last step we used the Gagliardo-Nirenberg inequality, Lemma 4.8. Using Observation 4.6, this
becomes

}ε∇uεptq}L2 ď }ε∇uε0}L2 `

c

ε´nσ |bpεq|
CGN˚

2σ ` 2
}ε∇uεptq}

nσ
2

L2 . (77)

Since nσ
2 “ 1

2 , Lemma 4.7 applies to fptq “ }ε∇uεptq}L2 , yielding

}ε∇uεptq}L2 ď }ε∇uε0}L2 `
|bpεq|CGN˚
εp4` 4

n q
`

1

2

d

|bpεq|CGN˚
εp2` 2

n q

d

|bpεq|CGN˚
εp2` 2

n q
` 4}ε∇uε0}L2 (78)

For brevity we will denote

K :“
|bpεq|CGN˚
εp4` 4

n q
`

1

2

d

|bpεq|CGN˚
εp2` 2

n q

d

|bpεq|CGN˚
εp2` 2

n q
` 4}ε∇uε0}L2 (79)

Moreover, equation (53) of Theorem 4.3 implies that

}xuεptq}L2 ď }xuε0}L2 ` t
´

}ε∇uε0}L2 `K
¯

.

Collecting the last two equations, and recalling equation (76), we have

σxpu
εptqq ` σkpu

εptqq ď σxpu
ε
0q ` σkpu

ε
0qp1` tq `K1` t

2π
.

The proof is complete by recalling that

µxpψ
εptqq “ µxpψ

ε
0q ` 2πtµkpψ

ε
0q, µkpψ

εptqq “ µkpψ
ε
0q,

by virtue of Lemma 4.5, and then applying Corollary 5.2.

5.4 Proof of Remark 2.7

We follow the proof of Theorem 2.6 up to equation (77), i.e. up to the estimation of }ε∇uεptq}L2 by virtue
of Lemma 4.7. Observe that equation (77) is of the form

fptq ď A`Bfθptq, A “ }ε∇uε0}L2 , B “ Opε
γ´nσ

2 q, θ “
nσ

2
, fptq “ }ε∇uεptq}L2 .

Thus we can proceed in each of the following cases:

Case 1: A ! B i.e. }ε∇uε0}L2 “ opε
γ´nσ

2 q. Then Lemma 4.7 yields

}ε∇uεptq}L2 “ Opε
γ´nσ
2´nσ q.

Thus if γ ą nσ one can resume the proof of Theorem 2.6 with K “ Opε
γ´nσ
2´nσ q.

Case 2: B ! A i.e. ε
γ´nσ

2 “ op}ε∇uε0}L2q. Then Lemma 4.7 yields

}ε∇uεptq}L2 “ Op}ε∇uε0}L2q.

Essentially one resumes the proof of Theorem 2.6 with K “ Op}ε∇uε0}L2q.
Observe that since we are interested in wavepackets, i.e. }ε∇uε0}L2 “ op1q, γ ą nσ appears to be virtually

a necessary condition in this case as well.
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5.5 The concentration estimates

Lemma 5.1 (Concentration of Wigner transforms to δpx, kq for Schwartz functions). Let u P SpRnq. Then

}W εrus ´ }u}2L2 ¨ δpx, kq}A´1 ď }u}L2 p2π}xu}L2 ` ε}∇u}L2q .

Proof: For brevity we will denote W εpx, kq “ W εruspx, kq, and X,K the Fourier dual variables to x, k.
Naturally, the idea of the proof will be to work on the Fourier dual of the variables in which the Lemma is
stated, namely we will use the fact that

ˇ

ˇxW ε ´ }u}2L2 ¨ δpx, kq, φy
ˇ

ˇ “

ˇ

ˇ

ˇ
xxW εpX,Kq ´ }u}2L2 , pφy

ˇ

ˇ

ˇ
.

In what follows we will use the elementary computation

xW εpX,Kq “ Fpx,kqÑpX,KqrW εpx, kqs “

ż

x

e´2πix¨Xupx´
εK

2
qupx`

εK

2
qdx. (80)

Now observe that, for any j P t1, . . . , nu,

BKj
xW εpX,Kq “ BKj

ş

x

e´2πixXupx´ εK
2 qupx`

εK
2 qdx “

“ ε
2

ş

x

e´2πixX
”

upx´ εK
2 qBxjupx`

εK
2 q ´ upx`

εK
2 qBxjupx´

εK
2 q

ı

dx ñ

ñ |BKj
xW εpX,Kq| ď ε}∇u}L2}u}L2 ,

(81)

where we used the fact that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

x

e´2πix¨Xupx´
εK

2
qvpx`

εK

2
qdx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď }u}L2}v}L2

by virtue of the Cauchy-Schwartz inequality.
On the other hand, using once again equation (80),

i
πBXj

xW εpX,Kq “ 2
ş

x

e´2πixXxjupx´
εK
2 qupx`

εK
2 qdx “

“
ş

x

e´2πixX
”

px´ εK
2 qupx´

εK
2 qupx`

εK
2 q ` upx´

εK
2 qpx`

εK
2 qupx`

εK
2 q

ı

dx ñ

ñ |BXj
xW εpX,Kq| ď 2π}u}L2}xju}L2 .

(82)

Combining equations (81) and (82) it follows that

}∇X,K
xW pX,Kq}L8X,K ď }u}L2 p2π}xu}L2 ` ε}∇xu}L2q . (83)

Finally, observe that
xW εp0, 0q “ }u}2L2 , (84)

e.g. by evaluating equation (80) at pX,Kq “ p0, 0q. Now we Taylor expand xW pX,Kq around p0, 0q to obtain
ˇ

ˇ

ˇ

xW εpX,Kq ´ }u}2L2

ˇ

ˇ

ˇ
ď |pX,Kq| ¨ }∇X,K

xW }L8 ď
a

|X|2 ` |K|2 }u}L2 p2π}xu}L2 ` ε}∇u}L2q . (85)

The proof is completed by integrating against any A1 test function φ,

ˇ

ˇxW ε ´ }u}2L2 ¨ δp0, 0q, φy
ˇ

ˇ “

ˇ

ˇ

ˇ
xxW εpX,Kq ´ }u}2L2 , pφy

ˇ

ˇ

ˇ
ď

ď }u}L2 p2π}xu}L2 ` ε}∇u}L2q
ş

X,K

a

|X|2 ` |K|2|pφpX,Kq|dXdK ď

ď }u}L2 p2π}xu}L2 ` ε}∇u}L2q }φ}A1 .

(86)
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Corollary 5.2 (Concentration of Wigner transforms to δpµxpψq, µkpψqq for Sobolev functions). Let ψ P

H1 X pH1, }ψ}L2 “ 1. Then

}W εrψs ´ δpx, kq}A´1 ď 2π}xψ}L2 ` ε}∇ψ}L2 , (87)

and more generally

›

›W εrψs ´ δ
`

x´ µxpψq, k ´ µkpψq
˘
›

›

A´1 ď 2π
´

σxpψq ` σkpψq
¯

. (88)

Proof: The proof of the Corollary consists of two parts: first, we check that the arguments in the proof of
Lemma 5.1 still work for H1X pH1 wavefunctions. Then we apply a Galilean transform to obtain concentration
on any point of phase-space.

Since ψ P H1pRnq X pH1pRnq, recall that W εrψs P H1pR2nq X pH1pR2nq X L8pR2nq by virtue of equation

(34). Moreover, equations (81) and (82) mean that xW εrψs P W 1,8pR2nq. Therefore the Taylor expansion of
equation (85) makes sense as a Taylor expansion in W 1,8pR2nq [43], and equation (87) follows.

In order to prove equation (88), let us call u the “centered version of ψ,”

upxq “Mµkpψq

ε

Tµxpψqψ “ ψpx` µxpψqqe
´2πi

µkpψq¨x

ε ;

by construction µxpuq “ µkpuq “ 0. Now observing that

σxpψq “ σxpuq “ }xu}L2 , σkpψq “ σkpuq “
ε

2π
}∇u}L2 ,

equation (87) implies that

}W εrus ´ δpx, kq}A´1 ď 2π
´

σxpψq ` σµpψq
¯

. (89)

Moreover,

W εruptqs “W εrψpx` µxpψqqe
´i

2πµkpψq¨x

ε s “

“
ş

y

e´2πik¨yψpx` εy
2 ` µxpψqqe

´i
2πµkpψq¨px`

εy
2
q

ε ψpx´ εy
2 ` µxpψqqe

i
2πµkpψq¨px´

εy
2
q

ε dy “

“
ş

y

e´2πipk`µkpψqq¨yψpx` εy
2 ` µxpψqqψpx´

εy
2 ` µxpψqqdy “W εrψs

`

x` µxpψq, k ` µkpψq
˘

and thus (89) means

}W εrψs px` µxpψq, k ` µkpψqq ´ δpx, kq}A´1 ď 2π
´

σxpψq ` σkpψq
¯

ô

ô }W εrψspx, kq ´ δ px´ µxpψq, k ´ µkpψqq }A´1 ď 2π
´

σxpψq ` σkpψq
¯

.
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