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Abstract 

Metabolites are small molecules involved in cellular metabolism, that can be detected in biological 

samples using metabolomic techniques. Here we present the results of genome-wide association and 

meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the 

Biocrates metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we 

find 4,068 genome- and metabolome-wide (Z-test, P < 1.09 × 10-9) associations between single 

nucleotide polymorphisms (SNPs) and metabolites, involving 59 independent SNPs and 85 

metabolites. Five of the 59 independent SNPs are new for serum metabolite levels, and were 

followed up for replication in an independent sample (N=1,182). The novel SNPs are located in or 

near genes encoding metabolite transporter proteins or enzymes (SLC22A16, ARG1, AGPS and ACSL1) 

that have demonstrated biomedical or pharmaceutical importance. The further characterization of 

genetic influences on metabolic phenotypes is important for progress in biological and medical 

research. 
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Metabolite levels in human blood reflect the physiological state of the body, and may differ between 

individuals due to variation in genetic makeup and environmental exposure1. The study of the 

genetic contribution to variation in metabolite levels is an important basis for improved etiological 

understanding, prevention, diagnosis and treatment of complex disorders1,2. Modern 

high-throughput metabolomics enables the cost-effective measurement of large metabolite panels in 

blood samples obtained from many individuals. The data generated by such metabolomic 

experiments have been combined with genotypic data in several recent genome-wide association 

(GWA) studies2-12. Indeed, the combined investigation of large numbers of genetic variants and large 

numbers of metabolic traits is beginning to draw a systems-wide overview of genetic influences on 

human metabolism11. However, the heritability estimates from twin and family studies9-11,13 suggest 

that additional genetic variants influencing variation in serum metabolite levels remain to be found in 

GWA studies. 

 

In the current study we set out to further characterize the genetic contribution to variation in human 

blood metabolite levels. We perform GWA and meta-analyses for the concentrations of 129 serum 

metabolites in seven independent cohorts, with replication analyses in one additional cohort. To 

functionally characterize the significant SNP-metabolite associations, we integrate the results of the 

GWA meta-analyses with those from gene expression analysis in whole blood and liver. Finally, we 

compare the variance explained by significantly associated SNPs with heritability estimates for each 

metabolite. 

 

We identify 4,068 significant SNP-metabolite associations, involving 59 independent SNPs and 85 

different metabolites. Five of the 59 independent SNPs are novel for serum metabolite levels. The 

newly found SNP-metabolite associations may lead to a better understanding of cardiovascular and 

metabolic disease, and may have implications for chemotherapy. Our findings contribute to the 

understanding of human metabolism. 
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Results 
 
Discovery meta-analysis of GWA scans. Primary genetic association analyses were carried out in 

seven cohorts (TwinsUK, KORA, EGCUT, LLS, QIMR, ERF, and NTR) with a combined sample size of 

7,478 individuals. Characteristics of the study participants included in the analyses (all of European 

descent) are given in Supplementary Table 1. Within each cohort, SNP genotypes were imputed and 

analyzed for association with the concentrations of each metabolite, assuming a linear model of 

association and correcting for population stratification (see Methods and Supplementary Table 2). 

Supplementary Tables 3–5 and Supplementary Data 1 list the characteristics of the 129 metabolites 

(18 acylcarnitines, 14 amino acids, 82 glycerophospholipids, 14 sphingolipids, and hexose) that were 

measured in the serum samples from all study participants using the Biocrates platform. The 

cohort-level GWA results were pooled in inverse variance-weighted, fixed-effects meta-analysis. The 

values of the genomic control lambda (λ_gc, applied to the individual cohort-level results for each 

metabolite prior to meta-analysis) varied between 0.976 and 1.081 across all metabolites and 

cohorts (see Supplementary Table 6), suggesting little residual influence on the GWA results of 

population stratification and other potential confounders. A three-dimensional Manhattan plot 

providing an overview of the association P values in the discovery phase for all metabolites is given in 

Figure 1; two-dimensional Manhattan plots and quantile-quantile plots for each metabolite 

separately are given in Supplementary Fig. 1 and Supplementary Fig. 2, respectively. Overall, 4,068 

SNP-metabolite associations reached genome- and metabolome wide significance (Z-test, 

P < 1.09 × 10-9), which reduced to 123 associations involving 59 independent SNPs and 85 different 

metabolites. Of these 123 associations (listed in Supplementary Data 2), four represented secondary 

association signals according to approximate conditional analysis. Regional association plots, showing 

the association signals in the regions surrounding the lead metabolomic SNPs, are given for all 123 

associations in Supplementary Fig. 3. SNPs representing independent association signals were 

aggregated into 31 genomic loci, which are listed in Supplementary Data 3. Figure 2 depicts all 

associations between loci and metabolites as detected in the discovery phase. 
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Five independent SNPs had not been associated with variation in serum metabolite levels in previous 

GWA studies (see Table 1). To further interpret the association of the remaining 54 SNPs with serum 

metabolite concentrations, we compared our findings with those from 11 published GWA studies2-12 

for which at least one of the included metabolites overlapped with the current study. The identified 

associations of known SNPs with metabolites that were significant in discovery stage meta-analysis in 

the current study and that had not been reported in those previous studies are highlighted in Fig. 2 

and in Supplementary Data 2. 

 

Replication analysis. Replication analyses were performed in an independent sample (N=1,182) from 

the KORA S4 cohort (hereafter KORA S4 replication sample) for the five new SNPs for serum 

metabolite levels that had been found in the discovery phase meta-analysis. The associations with 

their most strongly associated metabolite were replicated for four of these five novel SNPs; the only 

non-replicated association was that between SNP rs7582179 and metabolite PC ae C44:5. Although 

the effect sign was concordant between the discovery set and the KORA S4 replication sample 

(Table 1), this association was significant in the discovery phase for the NTR and KORA cohorts only 

(see Supplementary Fig. 4). 

 

Integration with gene expression analysis results. We integrated the results of the metabolomics 

discovery stage GWA meta-analysis with the results of gene expression analyses in whole blood and 

liver. In whole blood, both cis and trans expression quantitative trait locus (cis-eQTL and trans-eQTL, 

respectively) analyses were performed in two different samples originating from the United 

Kingdom, the Netherlands, and Estonia: the Dutch NTR-NESDA sample (N=5,071) and the 

Fehrmann-EGCUT sample comprising data from three cohorts that were meta-analyzed (total 

N=2,360; see Methods and Supplementary Methods). The results of cis-eQTL analysis for lead 

metabolomic SNPs showing overlap with cis-eQTL SNPs are given for the NTR-NESDA and 
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Fehrmann-EGCUT samples in Supplementary Data 4 and 5, respectively. Significant (false discovery 

rate < 0.05) trans eQTL effects for lead metabolomic SNPs in the Fehrmann-EGCUT sample are listed 

in Supplementary Data 6. We did not detect trans eQTL effects for the lead metabolomic SNPs in the 

NTR-NESDA sample. Thirty-five lead metabolomic SNPs identified cis-eQTLs in at least one of the 

searched tissues (i.e., whole blood and/or liver) with a (t-, Z-, or Kruskal-Wallis test) P value < 0.001, 

defining a total of 67 SNP-gene pairs and 28 different genes (see Supplementary Data 7). The 

cis-eQTL analysis results were used to support the annotation of likely causal genes to loci that 

displayed significant association with variation in serum metabolite concentrations in the discovery 

stage meta-analysis (see Supplementary Data 3). Of the 28 genes, 14 were predicted to be causal on 

the basis of our annotation and the other 14 were predicted to be non-causal. 

 

Variance explained. It has been described previously that a relatively small number of genetic 

variants can explain a relatively large proportion of the variance observed for serum metabolite 

levels4,5,9. Therefore, we compared the variance in serum metabolite levels explained by significantly 

associated SNPs, with the heritability as estimated in a monozygotic twin sample from the NTR 

cohort (N=181 pairs; see Fig. 3)13. Among all metabolites, the largest proportion of phenotypic 

variance was explained for C9 (13%; see Supplementary Data 2). In the current study, this metabolite 

associated significantly with SNPs in the THEM4 and CPS1_ACADL loci. The largest proportion of 

heritability was explained for lysoPC a C20:4 (19%; corresponding with 10% of the phenotypic 

variance), which was associated with a SNP in the FADS1-3 locus. The results of polygenic scores 

analyses (see Supplementary Fig. 5 and Supplementary Note 1) suggest different genetic background 

of variation in serum levels for different metabolites, ranging from close-to-monogenic to highly 

polygenic. 
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Discussion 
 
We set out to enhance the current understanding of the genetic underpinnings of variation in 

circulating metabolite levels in humans. To this end, we employed a well-established targeted 

metabolomics platform (Biocrates) in combination with genome-wide SNP genotyping and 

imputation in eight independent cohorts of European descent. By meta-analysis of GWA analyses 

carried out for each of 129 metabolites measured in the serum samples of all individual study 

participants, the current study identified 123 significant SNP-metabolite associations between 59 

independent SNPs and 85 different metabolites. Five of the independent SNPs were new for variation 

in serum metabolite levels. 

 

Consistent with previous reports, for the majority of all 59 independent SNPs we were able to 

annotate a likely causal gene, which in most cases encoded a metabolite transporter protein or 

enzyme. The five new SNPs for serum metabolite levels are also all located nearby such genes, and 

their associations with metabolites tends to match the known function of these genes. SNP 

rs7582179 in the AGPS gene is associated with the choline plasmalogen PC ae C44:5. Mutations in 

AGPS (encoding the enzyme alkylglycerone phosphate synthase) are known to cause rhizomelic 

chondrodysplasia punctata type 3 (RCDP3) [OMIM: 600121; 14], a rare autosomal recessive disorder 

that is fatal, with death occurring often early in childhood. Clinically, RCDP3 is characterized by 

significantly delayed and abnormal physical and mental development, with shortness of the proximal 

limb bones (“rhizomelia”) being one of the hallmarks. RCDP3 has been shown to result from reduced 

production of plasmalogens (a type of ether phospholipids) by alkylglycerone phosphate synthase in 

peroxisomes. The association in the current study of a SNP within the AGPS gene with the serum 

concentration of the choline plasmalogen PC ae C44:5 is therefore perfectly concordant with the 

known gene-disease link between AGPS and RCDP3. PC ae C44:5 also associated significantly with the 

new SNP rs7700133 located near the ACSL1 gene, encoding long-chain acyl CoA synthetase 1. 

Previous studies have shown links between genetic and transcriptional variation of ACSL1 and the 
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metabolic syndrome15,16. The new SNP rs12210538, located within the SLC22A16 gene, associated 

with the two acylcarnitines C18:1 and C18:2. This gene encodes a carnitine transporter that mediates 

the uptake of anticancer drugs such as bleomycin and doxorubicin into tumor cells, and its activity 

correlates with treatment response17,18. Significant associations were found for two SNPs 

(rs17657817 and rs2246012) located inside the ARG1 gene (coding for the enzyme arginase) with 

serum concentrations of the amino acid ornithine that participates in the urea cycle. Importantly, the 

global arginine bioavailability ratio (i.e., the ratio of arginine to ornithine and citrulline19) is of interest 

as a potential biomarker for endothelial dysfunction which is a known risk factor for the 

development of cardiovascular disease20. The two newly identified SNPs associated with serum 

ornithine levels might now be used as instrumental variables in cost-effective Mendelian 

randomization studies in large samples of individuals, to investigate the possible causal relationship 

among ornithine, endothelial dysfunction and subsequent cardiovascular disease21. Among three 

meta-analyses of coronary artery disease and myocardial infarction as carried out by the 

CARDIoGRAMplusC4D Consortium, the association with SNP rs2246012 was the strongest in the 

CARDIoGRAM GWA study (P=0.002) involving 22,233 cases and 64,762 controls22. This suggests that 

the link between genetic variation at SNP rs2246012 and variation in serum ornithine levels as 

identified in the current study will indeed be useful to further establish the possible link between the 

ARG1 gene and cardiovascular disease. 

 

We compared the significant SNP-metabolite associations from the current study with those 

reported in 11 previous publications that employed high-resolution methods to assay the serum 

metabolome. For several SNPs that were associated with variation in metabolite levels in the 

previous studies, we identified new associations with individual metabolites. These new associations 

strengthen the evidence for the associations of these known SNPs with specific metabolites, 

demonstrating their extended effect on phenotypes that are closely related to the metabolites with 

which their association was discovered initially4,23. Also, it has been demonstrated that GWA studies 
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with the more refined metabolic phenotypes provided by metabolomics often yield effect sizes that 

are larger than those observed in GWA studies of composite measures such as high-density 

lipoprotein cholesterol, suggesting that these more refined metabolomic phenotypes provide better 

intermediate traits8,9. In this context it is interesting to note that the large proportion of explained 

heritability we observed for lysoPC a C20:4 (19%) was caused exclusively by the association with a 

single SNP in the FADS1-3 locus, an observation that is in line with the results from previous 

studies4,5,9. 

 

In conclusion, the results obtained in the current study contribute to the understanding of the 

genetic background of variation in serum metabolite levels, and are important for further progress in  

biomedical and pharmaceutical research. 
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Methods 
 
Participants. The meta-analysis included GWA data from 7,478 participants from seven cohorts 

originating from five countries (The Netherlands, Germany, Australia, Estonia, and the United 

Kingdom). The independent test sample (“KORA S4 replication sample”) consisted of 1,182 additional 

KORA participants. The following local research ethics committees approved the individual studies: 

KORA, Ethics Committee of the Bavarian Medical Association (Bayerische Landesärztekammer); NTR, 

Central Ethics Committee on Research Involving Human Subjects of the VU University Medical 

Center, Amsterdam; EGCUT, Ethics Review Committee on Human Research of the University of Tartu; 

TwinsUK, St. Thomas’ Hospital ethics committee; ERF, medical ethics board of the Erasmus MC 

Rotterdam, the Netherlands; LLS, Medical Ethical Committee of the Leiden University Medical 

Centre; QIMR, QIMR Human Research Ethics Committee. Informed consent was obtained from all 

participants. Sample characteristics for all cohorts included in this study and detailed study sample 

descriptions are given in Supplementary Table 1 and in the Supplementary Methods, respectively). 

 

Biocrates metabolite quantification. Targeted metabolomics measurements were performed using 

electrospray - flow injection analysis - tandem mass spectrometry methods and the Biocrates 

AbsoluteIDQ p150 kit (BIOCRATES Life Sciences AG, Innsbruck, Austria), which enables quantification 

of a total of 163 metabolites (see Supplementary Table 3 for an overview of all metabolites targeted 

by this kit)24. The method of AbsoluteIDQ p150 kit has been proven to be in conformance with FDA 

Guidline “Guidance for Industry – Bioanalytical Method Validation (May 2001)”25, which implies proof 

of reproducibility within a given error range. For all cohorts, metabolite measurements were carried 

out at the Metabolomics Platform of the Genome Analysis Center at the Helmholtz Zentrum 

München, Germany in keeping with the instructions as in the manufacturer’s manuals4,24,26,27. In 

brief, the used metabolomics measurement technique is based on a targeted profiling scheme that is 

used to quantitatively screen for known small-molecule metabolites by multiple reaction monitoring, 

neutral loss and precursor-ion scans. Internal standards served as reference for the calculation of all 
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metabolite concentrations, which are reported as micromolar. Data evaluation for quantification of 

metabolite concentrations and quality assessment have been performed with the MetIDQ software 

package, which is an integral part of the AbsoluteIDQ kit. Stability of the assay was assessed using the 

measurement results of five aliquots of the same reference blood sample on every plate. Quality 

control of the Biocrates metabolite concentration measurement data was performed by each 

participating cohort as follows27: for each cohort, metabolite profile measurements for all individuals 

were performed on multiple plates. For each metabolite i and plate j, the coefficient of variation (CVi,j 

) was calculated as:
ji

ji
ji mean

SD
CV

,

,
, = , where the standard deviation (SD) and mean were calculated 

over all reference measurements per plate j (five per plate). Summary statistics for the metabolite 

concentration data for each cohort were compared with the measurement detection limit 

specifications as reported by the manufacturer of the AbsoluteIDQ p150 kit (BIOCRATES). A 

metabolite was excluded from further analyses for a particular cohort if its concentration 

measurement data did not meet all of the following criteria: 1.) mean CVi over all plates <25%; 2.) 

≤5% missing values; 3.) median ≥ lower limit of quantification (for metabolites reported as absolute 

concentrations) or ≥ limit of detection (for semiquantitatively measured metabolites). Outlying 

metabolite concentration values (data points) and outlying samples were also removed, and the 

missing data points were imputed with the “R”28 package ‘mice’27. The resulting concentration data 

for each metabolite were natural log-transformed in order to attain a normal distribution. 

Throughout the article, names of lipids detected by the Biocrates AbsoluteIDQ p150 platform are 

abbreviated as follows: acylcarnitines, Cx:y; hydroxylacylcarnitines, C(OH)x:y; 

dicarboxylacylcarnitines, Cx:y-DC; sphingomyelins, SMx:y; 

N-hydroxylacyloylsphingosylphosphocholine, SM (OH) x:y; phosphatidylcholines, PC (aa = diacyl, 

ae = acyl-alkyl). Lipid side chain composition is abbreviated as Cx:y, where x denotes the number of 

carbons in the side chain and y the number of double bonds. 
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Association analyses and meta-analyses. Genome-wide SNP genotyping was performed in each 

cohort with standard genotyping technologies (see Supplementary Table 2 and Supplementary 

Methods). For the samples contributing to the stage 1 (discovery) meta-analysis, imputation was 

conducted with reference to HapMap phase 2 build 36 release 22 or 24 CEU (Utah residents of 

Northern and Western European ancestry)29 phased genotypes. For the KORA S4 replication sample, 

SNP genotypes were imputed against the 1000g phase1 integrated haplotypes reference set. 

Association analysis was performed assuming a linear regression model for each SNP, adjusting for 

relatedness, age, sex, and study-specific (e.g., ancestry-informative principal component scores) 

covariates as necessary (see Supplementary Table 2). Positions of all SNPs described in the current 

manuscript were mapped to those as in the HapMap 2 Build 36 release 24 reference set (hg18). 

Meta-analysis of GWA results obtained in the cohorts participating in stage 1 was performed as 

follows: the expected minor allele count (eMAC) was computed at the cohort level for each SNP as 

A*2** IMAFNeMAC =  

where N  is the study sample size, MAF  is the minor allele frequency, and AI  is the SNP genotype 

imputation quality measure. SNPs for which eMAC<25 were filtered out of the GWA results for the 

cohort under consideration. After applying genomic control at the individual cohort level, two 

independent analysts carried out additive model fixed-effects meta-analysis of association data for 

imputed autosomal SNPs, using two different software packages (METAL30 and GWAMA31). For a 

given SNP, cohort-specific effect size estimates were weighted inversely with their variance. 

Throughout the manuscript, we report the P values as resulting from Z-tests of association as carried 

out by METAL. A P value equal to 5.0 × 10-8 was adopted as the threshold for genome-wide 

suggestive association between a SNP and the concentration of a metabolite, based on the 

approximate number of independent SNPs in samples of European ancestry32. To obtain a threshold 

for significant association, taking account of the number of metabolites tested and their 

intercorrelations, the threshold value for suggestive association was divided by the number of 

independent tests (Meffli) in the metabolomics data as estimated using the method of Li and Ji33. The 
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value of Meffli was estimated on the basis of the metabolite profiling data in two independent 

cohorts (ERF and NTR). Meffli was estimated to be equal to 46 in both ERF and NTR, rendering the P 

value threshold for genome- and metabolome-wide significance in the present study to be equal to 

5.0 × 10-8/46 = 1.09 × 10-9. 

 

Definition of loci, and secondary signals analysis. Independent signals of association were identified 

in the GWA meta-analysis results for each metabolite separately, using the linkage 

disequilibrium-based “clumping” procedure as implemented in PLINK34. This procedure takes all SNPs 

that show a P value of association with a phenotype below a threshold ('--clump-p1'), and forms 

clumps of these 'index' SNPs together with all other SNPs that are in linkage disequilibrium with 

(controlled by the parameter '--clump-r2') and in physical proximity (controlled by parameter '--

clump-kb') to these index SNPs. For the current study we used the following parameter settings: '--

clump-p1', 5.0 × 10-8; '--clump-r2', 0.1; '--clump-kb', 1000. As input for the ‘clumping’ procedure, we 

used association P values from the discovery phase meta-analysis results and linkage disequilibrium 

patterns as estimated from the HapMap 2 Build 36 release 24 reference set. For each metabolite 

separately, secondary association signals at a locus were verified by approximate conditional analysis 

as implemented in GCTA35. In this analysis, the association for the secondary association signal ‘top’ 

SNP (i.e., the SNP with the lowest P value of association with variation in serum metabolite level at 

the secondary association signal) was conditioned on the top SNP for the locus and metabolite under 

consideration. As input for the approximate conditional analysis, we used the discovery phase GWA 

meta-analysis results and the imputed SNP genotype data from the NTR cohort as a reference for LD 

structure36. We report only secondary signal top SNPs for which the P value remained <1.09 × 10-9 in 

this approximate conditional analysis. In the current manuscript, the term ‘lead metabolomic SNP’ 

refers to a top SNP at a locus or secondary association signal for one or more metabolites. We 

identified genomic loci significantly associating with metabolite levels by grouping lead metabolomic 

SNPs located within 1Mb from each other over all metabolites. 
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Identification of new SNP–metabolite associations. The approach used in the current study to 

identify novel associations between SNPs and serum metabolite levels is described in Supplementary 

Figure 6 and in the Supplementary Methods. In brief, we applied two complementary methods: the 

first method identified novel SNPs associated with variation in serum metabolite levels, and the 

second method identified novel SNP-metabolite associations with respect to 11 previous GWA 

studies that included at least one metabolite that was also included in the current study. 

 

Replication analyses. Replication analyses were performed in the KORA S4 replication sample for the 

associations of the five new SNPs for serum metabolite levels (listed in Table 1) with their lead 

metabolites (i.e., the metabolites that were most strongly associated with these SNPs in the 

discovery phase meta-analysis). 

 

Lookup of association with cardiovascular disease. Data on coronary artery disease / myocardial 

infarction have been contributed by CARDIoGRAMplusC4D investigators and have been downloaded 

from www.CARDIOGRAMPLUSC4D.ORG. We performed a lookup of the associations with SNP 

rs2246012 in the results from all three meta-analyses as provided on this website22,37,38. 

 

Association and Manhattan plots. For each lead metabolomic SNP, the LocusZoom39 tool was used 

to generate association plots in the region between 500kb before the locus minimum position and 

500kb after the locus maximum position. Manhattan plots for each metabolite were generated based 

on the discovery phase meta-analysis results using in-house developed Python40 code. 

 

SNP annotation. In order to facilitate the manual process of selecting plausible candidate genes for 

each locus, we used an automated workflow developed in-house to generate reports containing the 

associated protein, enzyme, metabolic reaction, pathway, and disease phenotypes of each gene 
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within a +/- 500 kb window of each lead metabolomic SNP. SNPs within this window that were 

published in GWAS Catalog41 or in GTEx-eQTL (http://www.ncbi.nlm.nih.gov/gtex/GTEX2) were also 

listed. In detail, the reports created by our workflow were based on the NCBI-Gene 

(http://www.ncbi.nlm.nih.gov/gene), GTEx-eQTL, GWAS Catalog, ConsensusPathDB42, UniProtKB43, 

OMIM44, Gene Ontology45, TCDB46, ExPASy47 and KEGG databases48. These databases had been 

downloaded earlier from the respective File Transfer Protocol servers and have been integrated 

offline in MATLAB (R2009a, The Mathworks Inc., Natick, MA, USA). Overlap of lead metabolomic 

SNPs with cis-eQTL SNPs was also used as evidence to support the annotation of likely causal genes 

to loci. In case no biologically plausible gene could be found, the locus was given the name of the 

nearest gene; a similar approach was followed in the study by Shin et al.11 

 

Variance explained. We estimated the proportion of phenotypic variance explained by each 

independent association signal (lead SNP for a locus or secondary association signal) as Pearson’s phi 

coefficient squared: 

N

2
12 χφ =  

where 2
^

1

^

1
22

1 ))(( ββχ SEz == ; N  is the sample size in the discovery phase meta-analysis for the 

SNP–metabolite association under consideration; 1

^
β  is the ordinary least-squares estimate of 1β  

(i.e., the regression coefficient for the SNP as estimated in the discovery phase meta-analysis); and 

)( 1

^
βSE  is its standard error. For each metabolite, we added up the proportions of variance in 

metabolite level explained by independent association signals to estimate the total proportion of 

phenotypic variance explained. We also estimated for each metabolite the proportion of heritability 

of metabolite level variability explained by approximately independent association signals. As an 

estimate of heritability for this analysis we used the monozygotic twin correlations for each 

metabolite, based on data from 181 pairs from the NTR cohort13. The proportion of heritability in 
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metabolite level variation explained by independent association signals was estimated by dividing 

the proportion of phenotypic variance explained by independent association signals, by the 

monozygotic twin correlation. The total proportion of heritability explained for a particular 

metabolite was estimated by adding up the proportions of variance explained by all approximately 

independent association signals for that metabolite. 

 

Polygenic scores analysis. We investigated evidence for the polygenic nature of variation in serum 

metabolite levels by building a multi-SNP predictor from the meta-analysis results for each 

metabolite to predict the levels of the same metabolite in an independent target cohort (KORA S4 

replication sample). Such a multi-SNP predictor, or polygenic score (PGS), reflects the weighted sum 

of multiple SNPs associated with a phenotype. The discovery meta-analysis forms the basis to select 

SNPs based on liberal significance thresholds (for example, 0.001, 0.01, and so on). In the target 

sample, PGSs are calculated for each individual for each set of SNPs by multiplying the number of 

effect alleles per SNP (0, 1 or 2) with the beta from the meta-analysis, summed over all SNPs in the 

set of SNPs. We performed the PGS analysis49 using the regression coefficients (betas) from the 

discovery phase meta-analyses as weights. Analyses were performed for the 127 metabolites for 

which concentration data were available both in the discovery sample and in the KORA S4 target 

sample. For each of these metabolites, SNPs representing approximately independent association 

signals were selected in the discovery phase meta-analysis results using the PLINK clumping 

procedure. SNPs with P values of association with metabolite concentration levels in the discovery 

meta-analysis below the following thresholds were included: P < 1.0 × 10-8; P < 1.0 × 10-7; P < 1.0 × 10-

6; P < 1.0 × 10-5; P < 1.0 × 10-4; P < 1.0 × 10-3; P < 1.0 × 10-2; P < 5.0 × 10-2; P < 0.1; P < 0.2; P < 0.3; 

P < 0.4; P < 0.5; P < 0.6; P < 0.7; P < 0.8; P < 0.9; P < 1.0 . For each clump of SNPs, the index SNP was 

taken for possible inclusion in the score computation. From the resulting set of SNPs eligible for 

inclusion in the PGS analysis, A/T and G/C SNPs for which (0.35<MAF<0.50) were excluded because 

these SNPs are potentially ambiguous and therefore may lead to spurious association in the case of 
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strand flips50. From the imputed SNP genotype data for the KORA S4 target sample, the SNPs 

corresponding with the remaining clump index SNPs were selected. A PGS was constructed for each 

individual in the KORA S4 replication sample using the ‘--score’ procedure as implemented in PLINK v. 

1.07 (http://pngu.mgh.harvard.edu/~purcell/plink/profile.shtml ). The resulting PGS was included as 

a covariate in a multiple linear regression analysis that was similar to the regression that was carried 

out in the primary single SNP-based genome-wide association analysis: 

)covariates specific-(studysexagePGSy 4321 ββββ ++++= α  

, where y  represents log(metabolite) values, and the study-specific covariates include adjustments 

for e.g. population stratification (and thus 4β  can be a vector). The Biocrates metabolite values were 

obtained and preprocessed using the same methods as described for the primary GWA in the Section 

“Biocrates metabolite quantification”. The proportion of variance explained by the PGSs was 

assessed by comparing the raw (i.e., unadjusted) R2 values for the 'full' model (i.e., a model including 

the genetic score as a covariate) with the raw R2 values when fitting a 'reduced' model that did not 

include the genetic score as a covariate51. The significance of the association of the polygenic scores 

with serum metabolite levels was estimated on the basis of the P value of association for 1β  

according to the full model. 

 

EQTL analyses. Data from two independent samples originating from the United Kingdom, the 

Netherlands, and Estonia (the Dutch NTR-NESDA sample and the Fehrmann-EGCUT sample) were 

used for cis- and trans-eQTL mapping in whole blood. Details of these analyses, and of the 

integration of the cis-eQTL analysis results with the results from the metabolomics genome-wide 

meta-analysis, are provided in the Supplementary Methods. We also assessed the overlap of lead 

metabolomic SNPs with cis-eQTL signals in liver as catalogued in the GTEx-eQTL database, following 

the method of Shin et al.11: for each lead metabolomic SNP, we retrieved all SNPs with r2
 > 0.8 in the 

1000 Genomes Project pilot phase (CEU population). All cis-eQTLs within a 1-Mb window centered on 

the lead SNP were retrieved from the GTEx-eQTL database, and the best eQTL P value was noted. 

Draisma et al. | Page 21 
 



The cis-eQTL results for which overlap with lead metabolomic SNPs was shown and that displayed 

association P values < 0.001 are given in Supplementary Data 7. 
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ACCESSION CODES 
 
The full meta-analysis results for all metabolites are available at 
www.tweelingenregister.org/engagebiocratesgwama 
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Figure legends 

 

Figure 1. Manhattan plots for all metabolites targeted by the Biocrates AbsoluteIDQ p150 kit 

(N=[1497, 7478]). These plots graphically display the P values for significant (Z-test P < 1.09 × 10-9) 

SNP-metabolite associations in the discovery phase in the current study. Panel (a) provides a three-

dimensional view; orthogonal projections are given in panels (b) and (c). SNPs are arranged according 

to genomic location along the 'chromosome' axes. The ordering of the metabolites along the 

'metabolite index' axes is equal in both panels (a) and (c), and equal to that in Supplementary 

Table 3. In panels (a) and (b), all data points are displayed semi-transparent and therefore opaque 

regions in the plot indicate clusters of significant associations. In panel (b), loci are identified by most 

plausible causal gene or, if no plausible genes found, by nearest gene. Where multiple plausible 

genes could be identified at the locus (possibly for different metabolites), the gene names are 

separated by an underscore (“_”) in the locus name. In panel (c), the size of the markers scales 

linearly with -log10(P value). This Figure is also supplied as a movie (see Supplementary Movie 1). 

 

Figure 2. Associations between loci and metabolites detected in stage 1 meta-analysis in the current 

study (N=[1588, 7478]). Loci significantly associated with at least one metabolite are depicted as grey 

circles. Biochemical classes (see Supplementary Table 3) of the metabolites (hexagons) are indicated 

by node colors: green, acylcarnitines; blue, amino acids; purple, glycerophospholipids; yellow, 

sphingolipids. Arrows point from each locus to the associated metabolite(s); arrow widths scale 

linearly with -log10(association P value). Grey arrows denote previously known associations; red 

arrows denote associations that were newly discovered on the basis of stage 1 meta-analysis in the 

current study (i.e., either associations with new SNPs for serum metabolite levels, or an association 

of a known SNPs with a new metabolite with respect to 11 previous GWA studies for serum 

metabolite levels2-12). Loci are identified by most plausible causal gene or, if no plausible genes 

found, by nearest gene. Where multiple plausible genes could be identified at the locus (possibly for 
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different metabolites), the gene names are separated by an underscore (“_”) in the locus name. At 

this significance threshold (P=1.09 × 10-9), the locus-metabolite association network separates into 12 

connected components or disconnected sub-networks, each including metabolites from maximally 

two chemical classes. This figure was created using Cytoscape52. 

 

Figure 3. Decomposition of variation in serum metabolite levels. This figure displays the proportions 

of variance in serum metabolite level explained by significantly associated SNPs; heritability not 

explained by significantly associated SNPs; and unexplained (environmental) variance. Seventy-six 

metabolites are included for which both heritability estimates (monozygotic twin correlations taken 

from reference13; N=181 pairs; Pearson correlation) were available, and that displayed genome- and 

metabolome wide associations with SNPs in stage 1 GWA meta-analysis in the current study 

(N=[1588, 7478]). Proportion of variance explained by significantly associated SNPs was estimated as 

Pearson’s phi coefficient squared. Metabolites are grouped according to biochemical class. 
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Table 1. Novel SNPs for serum metabolite levels identified in the current study. 

Lead 
metabolomic 
SNP 

Lead 
metabolite 

Cytoband P value in 
discovery 
phase 

EA/NEA EAF in 
discovery 
phase 

Beta in 
discovery 
phase 

Total N in 
discovery 
phase 

Nearest gene Beta in 
replication 
phase 

P value in 
replication 
phase 

EAF in 
replicatio
n phase 

replicat
ed 

Locus name 

rs12210538 C18:2 6q21 5.03 × 10-21 A/G 80.8% 0.086 6,574 SLC22A16 0.099 2.65 × 10-13 75.9% * SLC22A16_ 
SLC16A10 

rs17657817 Orn 6q23.2 1.32 × 10-11 T/C 98.0% -0.156 2,991 ARG1 -0.123 1.40 × 10-4 97.5% * ARG1 

rs2246012 Orn 6q23.2 6.43 × 10-12 T/C 83.9% 0.045 7,476 ARG1 0.044 1.57 × 10-3 84.5% * ARG1 

rs7582179 PC ae C44:5 2q31.2 4.07 × 10-10 A/G 16.8% -0.048 5,360 AGPS -0.021 0.147 16.5%  AGPS 

rs7700133 PC ae C44:5 4q35.1 3.35 × 10-11 T/C 30.5% 0.036 7,476 CENPU 0.038 1.12 × 10-3 30.9% * ACSL1 

Lead metabolite, metabolite displaying strongest association with SNP in discovery phase GWA meta-analysis in current study. EA/NEA, effect allele / non-

effect allele. EAF, frequency of EA. P values in discovery and replication phases were calculated by Z- and t-tests, respectively. Loci that were replicated in 

the KORA S4 replication sample (P < 0.05 after Bonferroni correction for 5 tests) are indicated by *. Loci are identified by most plausible causal gene or, if no 

plausible genes found, by nearest gene. Where multiple plausible genes could be identified at the locus (possibly for different metabolites), the gene names 

are separated by an underscore (“_”) in the locus name. 
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