
Medea: Scheduling of Long Running Applications in
Shared Production Clusters

Panagiotis Garefalakis∗
Imperial College London

Konstantinos Karanasos
Microsoft

Peter Pietzuch
Imperial College London

Arun Suresh
Microsoft

Sriram Rao
Microsoft

ABSTRACT

The rise in popularity of machine learning, streaming, and latency-
sensitive online applications in shared production clusters has
raised new challenges for cluster schedulers. To optimize their
performance and resilience, these applications require precise con-
trol of their placements, by means of complex constraints, e.g., to
collocate or separate their long-running containers across groups
of nodes. In the presence of these applications, the cluster sched-
uler must attain global optimization objectives, such as maximizing
the number of deployed applications or minimizing the violated
constraints and the resource fragmentation, but without affecting
the scheduling latency of short-running containers.

We present Medea, a new cluster scheduler designed for the
placement of long- and short-running containers.Medea introduces
powerful placement constraints with formal semantics to capture
interactions among containers within and across applications. It
follows a novel two-scheduler design: (i) for long-running contain-
ers, it applies an optimization-based approach that accounts for
constraints and global objectives; (ii) for short-running containers,
it uses a traditional task-based scheduler for low placement latency.
Evaluated on a 400-node cluster, our implementation of Medea on
Apache Hadoop YARN achieves placement of long-running applica-
tions with significant performance and resilience benefits compared
to state-of-the-art schedulers.

CCS CONCEPTS

• Computer systems organization → Distributed architec-

tures; • Software and its engineering → Scheduling; Cloud
computing; • Theory of computation → Linear programming;

ACM Reference Format:

Panagiotis Garefalakis, Konstantinos Karanasos, Peter Pietzuch, Arun
Suresh, and Sriram Rao. 2018.Medea: Scheduling of Long Running Appli-
cations in Shared Production Clusters. In EuroSys ’18: Thirteenth EuroSys
Conference 2018, April 23–26, 2018, Porto, Portugal. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3190508.3190549

∗The bulk of the work was done while the author was an intern at Microsoft.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSys ’18, April 23–26, 2018, Porto, Portugal
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5584-1/18/04. . . $15.00
https://doi.org/10.1145/3190508.3190549

C1 C2 C3 C4 C5 C6
0

20

40

60

80

100

M
ac

hi
ne

s
us

ed
fo

rL
R

A
s

(%
)

Figure 1: Machines used for long-running applications (LRAs) in six
analytics clusters at Microsoft

1 INTRODUCTION

Modern organizations operate large clusters, which are typically
shared across several users and applications. In this environment,
cluster managers such as YARN [52], Mesos [27], and Borg [53]
carry out the on-demand allocation of resources to applications.
They employ schedulers that package resources (e.g., CPU and
memory) as containers and allocate them to jobs. Since cluster man-
agers are application-agnostic, they have enabled cluster operators
to consolidate diverse workloads onto shared clusters.

Apart from traditional batch analytics jobs [4, 12, 17, 59], work-
loads in production clusters now include stream processing [11, 26],
iterative computations [1], data-intensive interactive jobs [57], and
latency-sensitive online applications [7, 40]. Unlike batch jobs that
typically use short-lived containers (in the order of seconds), these
applications benefit from long-lived containers. These containers are
allocated and used for durations ranging from hours to months, thus
avoiding repeated container initialization costs and reducing sched-
uling load. We refer to this class of applications as long-running
applications (LRAs).

In fact, a substantial portion of production clusters today is dedi-
cated to LRAs. As shown in Figure 1, across six analytics clusters at
Microsoft, each comprised of tens of thousands of machines, at least
10% of each cluster’s machines are used for LRAs. Two of them are
used exclusively for LRAs. At the same time, placing LRAs, along
with batch jobs, in shared clusters is appealing to reduce cluster
operational costs, avoid unnecessary data movement, and enable
pipelines involving both classes of applications.

Despite these observations, support for LRAs in existing sched-
ulers is rudimentary [2, 31, 33, 53]. In particular, the bespoke sched-
uling requirements of LRAs (§2) remain largely unexplored (§8):
(i) Precise control of container placement is key for optimizing the
performance and resilience of LRAs. Simple affinity and anti-affinity
constraints (e.g., collocate containers to reduce network costs or

https://doi.org/10.1145/3190508.3190549
https://doi.org/10.1145/3190508.3190549

EuroSys ’18, April 23–26, 2018, Porto, Portugal P. Garefalakis, K. Karanasos, P. Pietzuch, A. Suresh, S. Rao

separate them to minimize resource interference or chance of fail-
ure), which are already partially supported by a few schedulers, are
necessary but not sufficient. Our experiments with various LRAs
(e.g., HBase, TensorFlow, and Storm; see §2) reveal that power-

ful constraints are required to capture interactions between

containers and unlock the full potential of LRAs.
(ii) When placing LRA containers, the cluster scheduler must
achieve global optimization objectives, such as minimizing the
violation of placement constraints, the resource fragmentation, any
load imbalance, or the number of machines used. Due to their long
lifetimes, LRAs can tolerate longer scheduling latencies than tra-
ditional batch jobs. The second requirement for LRA placement is
therefore to allow cluster operators to optimize for global clus-

ter objectives, but without impacting the scheduling latency

of short-lived containers.
Motivated by these requirements, we describe the design and

implementation of Medea
1, a new cluster scheduler that enables

the placement of both long- and short-running containers. Our
work makes the following contributions:

(i) Two-scheduler design. Medea uses a dedicated scheduler for
the placement of LRAs, but task-based applications are scheduled
directly by a traditional scheduler. This two-scheduler design en-
sures that the scheduling latency for task-based applications is
not impacted, while enabling high-quality placements for LRAs.
It also makes Medea compatible with existing task-based sched-
ulers, reusing existing scheduler implementations and facilitating
adoption in production settings (§3).

(ii) Expressive, high-level constraints.Medea enables applica-
tion owners and cluster operators to specify powerful placement
constraints across LRA containers with formal semantics. We show
that a single generic constraint type is sufficient to express a wide
variety of use cases related to application performance and re-
silience. Relying on the notions of container tags and node groups,
Medea supports both intra- and inter-application constraints, with-
out requiring knowledge of the cluster’s configuration or of already-
deployed LRAs (§4).

(iii) LRA scheduling algorithm. We formulate the placement of
LRAs with constraints as an integer linear program (ILP), and solve
it as an online optimization problem. Unlike existing approaches,
our algorithm considers multiple LRA container requests at once
to achieve higher-quality placements and global objectives (§5).
Moreover, we investigate heuristics that trade placement quality
for lower scheduling latency.

We implementedMedea (§6) as an extension of Apache Hadoop
YARN [4], one of the most widely deployed cluster schedulers,
used by companies such as Microsoft, Yahoo!, Twitter, LinkedIn,
EBay, Cloudera, and Hortonworks. Moreover, we open-sourced our
implementation, which will be included in the upcoming Apache
Hadoop 3.1 release.2 We are currently in the process of deploying
Medea in production clusters.

Our experimental evaluation highlights the benefits of Medea
when placing LRAs (§7). On a 400-node pre-production cluster,

1From Greek Medeia, verb medomai: “to think, to plan”.
2The open-sourcing effort can be tracked in [43].

Medea reduces median runtime of HBase and TensorFlow work-
loads by up to 32% compared to our implementation of Kubernetes’
scheduling algorithm (J-Kube) and by 2.1× compared to YARN, while
significantly reducing runtime variability too.Moreover, it improves
application unavailability by up to 24% compared to J-Kube. Medea
leads to constraint violations of less than 10% even for complex
inter-application constraints involving 10 LRAs, and to reasonable
scheduling latencies. Finally, it does not affect neither the schedul-
ing latency nor the performance of task-based jobs.

2 LONG-RUNNING APPLICATIONS IN

CLUSTERS

In this section, we explore the new challenges that cluster sched-
ulers face due to LRAs. First, we describe practical use cases in
production environments (§2.1). Then we motivate the importance
of LRA placement for the application performance (§2.2) and re-
silience (§2.3), and for the global objectives imposed by cluster
operators (§2.4). We conclude by listing the scheduling require-
ments for LRAs (§2.5).

2.1 Use cases

Based on discussions with cluster operators from several companies,
we identify the following scenarios with LRAs:

• Streaming systems [3, 8, 9, 11, 21, 35] process data in near real-
time via dataflows of operators deployed using containers.

• Interactive data-intensive applications [32, 37, 57] use long-
standing workers (executors) to avoid container start-up costs
and process in-memory data with low latency.

• Latency-sensitive applications [7, 28, 40] serve requests using
long-standing containers to achieve low latency.

• Machine learning frameworks [1, 13, 47] employ executors
to perform iterative computation efficiently.

Within Microsoft’s shared clusters, tens of unique application
classes involve LRAs, falling into the above scenarios (see also
Figure 1). At the same time, task-oriented batch jobs are also sub-
mitted to these clusters.

2.2 Application performance

Next we study the benefit of placement constraints (affinity, anti-
affinity, and cardinality) on application performance.

Affinity. It is often beneficial to collocate the containers of an LRA
on the same node or group of nodes, e.g., to reduce network traffic
between containers of the same or different applications.

To observe the impact of this intra- and inter-application affinity
on application performance, we deploy a Storm application on a 275-
node cluster using YARN. The application identifies top-k trending
hashtags on Twitter over a 60-second sliding window using an input
stream of 6,000 tweets per second [51]. The resulting hashtags are
combined with user profiles loaded from Memcached that stores a
total of two million user profiles. We use five supervisors for Storm
and a single instance for Memcached.

We compare three container placements: (i) with no constraints
(no-constraints); (ii) all Storm containers on the same node (intra-
only); and (iii) both Storm and Memcached containers on the same

Medea: Scheduling of Long Running Applications in Shared Production Clusters EuroSys ’18, April 23–26, 2018, Porto, Portugal

0 200 400 600
Request latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

YARN
MEDEA
(intra-only)
MEDEA

(a) Memcached lookup latency with

node affinity constraints

A B C D E F
YCSB Workload

0

25

50

75

Th
ro

ug
hp

ut
(K

op
s/

s)

YARN
YARN-Cgroups

MEDEA
MEDEA-Cgroups

(b) HBase throughput with node anti-

affinity constraints

1 2 4 8 10
Max RegionServers per node

0

20

40

60

R
un

tim
e

(m
in

)

Low utilized cluster High utilized cluster

(c) HBase total runtime with cardinal-

ity constraints

1 4 8 16 32
Max workers per node

0

100

200

300

R
un

tim
e

(m
in

)

Low utilized cluster High utilized cluster

(d) TensorFlow runtime with cardinal-

ity constraints

Figure 2: Impact of placement constraints on application performance

node (intra-inter). Our results show that intra-only leads to an end-
to-end latency improvement of 31% over no-constraints due to re-
duced network costs. However, this strategy cannot improve mean
Memcached lookup latency (Figure 2a). On the other hand, using
intra-inter, we can reduce meanMemcached latency by 4.6× and end-
to-end latency by 5× over intra-only and by 7.6× over no-constraints
(Figure 2a). Therefore, both intra- and inter-application affinity
constraints are crucial to unlock full application performance.

Anti-affinity. To minimize resource interference between LRAs, it
may be desirable to place containers on different machines through
intra- and inter-application anti-affinity.

To validate the performance benefit of such constraints, we de-
ploy 40 HBase instances with 30 region servers each, occupying
30% of the cluster’s memory. We use the YCSB benchmark [15] with
a dataset of 1 billion records (1 TB) and submit six YCSB workloads
throughmultiple clients to generate load for the HBase instances. To
emulate a shared production environment, we also submit GridMix
batch jobs [24] that use 60% of the cluster’s memory.

We first compare the following placements: (i) no-constraints;
and (ii) with anti-affinity constraints to avoid collocating region
servers of the same or different HBase instances on the same node
(anti-affinity). As Figure 2b shows, no-constraints achieves 34% lower
throughput compared to anti-affinity, as it can lead to collocated
region servers, competing for CPU and I/O resources. Our exper-
iment also reveals that no-constraints incurs increased tail latency
compared to anti-affinity by up to 3.9× for the 99th percentile.

Furthermore, we repeat the above experiment using cgroups [38]
to assess whether resource isolation mechanisms are sufficient
to improve performance, instead of placement constraints. As
shown in Figure 2b, although cgroups improve the throughput
of no-constraints by 20%, they cannot match the performance of
anti-affinity. The isolation offered by cgroups cannot prevent inter-
ference between resources not managed by the OS kernel, such
as CPU caches and memory bandwidth. Hence, anti-affinity is re-
quired for optimizing LRA performance; combining it with resource
isolation leads to the highest performance gains.

Cardinality. The affinity and anti-affinity constraints represent
the two extremes of the collocation spectrum. To strike a balance
between the two, we experiment with more flexible cardinality con-
straints, which set a limit on the number of collocated containers.

1

10

100

0 1 2 3 4

Un
av
ai
la
bl
e	
m
ac
hi
ne

s	
(%
	-
lo
gs
ca
le
)

Days

SU	1 SU	2
SU	3 SU	4
total

Figure 3: Unavailable machines in a Microsoft cluster (total is the
percentage over all machines; SU1–SU4 are percentages over specific service
units, i.e., logical node groups.)

Figure 2c reports the time required to run all YCSB workloads
using 10 HBase region servers (RS) with full anti-affinity (i.e., 1 RS
per node) to full affinity (i.e., all 10 RS on one node). Similarly,
Figure 2d shows the time required for TensorFlow to complete a
machine learning workflow with one million iterations using 32
workers, each time with a varying maximum workers per node.
We use GridMix for additional cluster load (5% and 70% of cluster
memory for the “low” and “high” utilized clusters, respectively).

Based on these results, we make the crucial observation that
affinity and anti-affinity constraints, albeit beneficial, are not suffi-
cient, and tighter placement control using cardinality constraints
is required. In our experiments in the highly utilized cluster, we
observe that collocating up to 16 TensorFlow workers on a node
reduces runtime by 42% compared to the affinity placement (maxi-
mum cardinality of 32), and by 34% compared to the anti-affinity
placement (maximum cardinality of 1). A second observation is that
the cardinality that leads to optimal runtimes can vary based on
the specific application and the current cluster load. Indeed, in the
experiment of Figure 2d, the optimal cardinality value is 16 for the
highly utilized cluster and 4 for the the less utilized one.

2.3 Application resilience

Unavailable machines in large clusters are common. This is due
to machine failures, scheduled maintenance, OS and application
upgrades, or machines being re-purposed. For administrative rea-
sons, cluster operators typically split clusters into fault domains, i.e.,

EuroSys ’18, April 23–26, 2018, Porto, Portugal P. Garefalakis, K. Karanasos, P. Pietzuch, A. Suresh, S. Rao

System

[R1] Expressive constraints between containers [R2] High-level [R3] Global [R4] Low-latency

affinity anti-affinity cardinality intra inter constraints objectives container allocation

YARN [52] ✧ – – ✧ – – – ✓
Slider [10] ✧ ✧ – ✧ – – – –
Borg [53] ✧ ✧ – ✧ ✧ – ✽ ✓
Kubernetes [53] ✓ ✓ – ✓ ✓ ✓ ✽ ✓
Mesos [27] ✧ – – ✧ – – – –
Marathon [39] ✓ ✓ ✓ ✓ – – – –
Aurora [2] ✧ ✓ ✓ ✓ – – – –
TetriSched [50] ✧ ✧ ✧ ✓ – – ✽ ✓
Medea ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Support for LRA requirements R1–R4 in existing schedulers (✧ indicates implicit support for constraints through static machine attributes
and not by declaring explicit dependencies between containers; ✽ indicates a partially supported feature.)

machines with a higher likelihood of joint failure (e.g., racks), and
upgrade domains, i.e., machines that are scheduled to be upgraded
together. In some of Microsoft’s production clusters, node groups
called “service units” account for both upgrades and failures.

Figure 3 shows the percentage of machine unavailability in one
of Microsoft’s clusters with tens of thousands of machines (total)
over four days. We also show the same percentage within four
random service units of the cluster (SU1–SU4), comprising a couple
of thousand machines each. We observe that: (i) unavailability in a
service unit is usually below 3% but can spike to 25% or even 100%;
(ii) there is a strong correlation of unavailability within a service
unit; and (iii) service units tend to fail asynchronously (e.g., when
SU1 is 100% unavailable, total is only 8%).

With a random placement, an application may lose multiple
containers at once, which can in turn impact its recovery time or
performance. Such a placement scheme hurts LRAs in particular
because their containers are by definition long-lived and thus the
failure probability increases over time. Hence, application owners
must be able to spread containers across fault and upgrade domains
(anti-affinity constraints).

However, it should not be required to explicitly refer to spe-
cific node domains when requesting containers: (i) these domains
change over time, e.g., with node addition/removal; and (ii) it is
cumbersome to enumerate all domains of a cluster with thousands
of machines. In cloud environments, it may even not be feasible—
the operator may not reveal the cluster configuration for security
and business reasons.

2.4 Global cluster objectives

Cluster operators must also specify constraints that guarantee the
smooth operation of the cluster. Besides local constraints, such as
restricting the number of network-intensive containers per node,
the scheduling of LRAs must meet global objectives:
• Minimize constraint violations. Satisfying the placement con-
straints of all applications may not be possible, especially in a
heavily loaded cluster. In this case, the number and extent3 of
constraint violations should be minimized.

• Minimize resource fragmentation. It is undesirable to leave
too few free resources on a node, as they might remain unutilized.

3Consider a constraint to place no more than 5 HBase containers on a rack. Placing
instead 10 containers is a more extensive violation than placing 6.

• Balance node load. By balancing the node load, applications
can expand their allocated resources on a given node and better
accommodate load spikes.

• Minimize number of machines used. A low number reduces
the operating cost of a cluster in a cloud environment.

Note that some objectives may be conflicting, e.g., minimizing con-
straint violations and load imbalance, while others may be irrele-
vant in a specific scenario, e.g., minimizing the number of machines
for an on-premises cluster. The cluster operator should be able to
determine the objectives to be used and their relative importance.
Supporting such global objectives should not affect the scheduling
of traditional batch jobs, which are more sensitive to container
allocation latencies due to their shorter container runtimes.

2.5 Scheduling Requirements

Summing up our observations from §2.2–§2.4, we list the require-
ments for the effective scheduling of LRAs:

[R1] Expressive placement constraints:Wemust support intra-
and inter-application (anti-)affinity and cardinality to express de-
pendencies between containers during placement.

[R2] High-level constraints: The constraints must be high-level,
i.e., agnostic of the cluster organization, and capable of referring to
both current and future LRA containers.

[R3] Global objectives: We must meet global optimization objec-
tives imposed by the cluster operator.

[R4] Scheduling latency: Supporting LRAs, which can tolerate
higher scheduling latencies, must not affect the scheduling latency
for containers of task-based applications.

Table 1 highlights the support of existing schedulers for our
requirements. Most schedulers support (only intra-application and
non-high-level) constraints implicitly through machine attributes
(e.g., place two containers on a node with a given hostname or
on machines with GPUs). Only Kubernetes supports explicit intra-
and inter-application high-level constraints between containers,
but not cardinality, and lacks full support for global objectives by
considering only one container request at a time. More details are
provided in §8.

Medea: Scheduling of Long Running Applications in Shared Production Clusters EuroSys ’18, April 23–26, 2018, Porto, Portugal

MEDEA Scheduler

LRAs

Task-based
jobs

LRA Scheduler Task-based
Scheduler

Constraint
Manager Cluster State

Container
allocation

1

2 3

LR
A

In
te

rfa
ce

Figure 4:Medea scheduler design

3 MEDEA DESIGN

Medea supports the scheduling of both LRAs and “traditional”
applications with short-running containers (referred to as task-
based jobs). As shown in Figure 4, Medea uses a two-scheduler
design for placing containers: (i) a dedicated LRA scheduler places
long-running containers, accounting for constraints stored in the
constraint manager component; and (ii) a task-based scheduler places
task-based jobs. Next we discuss the key components of our design.

LRA interface. When an application owner submits a request
to Medea, similar to other schedulers, they specify the required
containers (e.g., “10 containers with 2 CPUs and 4 GB RAM each”).
These resource demands, along with some simple constraints (e.g.,
data locality) are sufficient for task-based jobs. For LRAs,Medea
introduces a rich API for expressive placement constraints that cap-
ture interactions between containers, satisfying requirements R1–
R2 (§2.5). Applications that use the constraints API are handled
by the LRA scheduler, while the ones using the simpler container
request API are handled by the task-based scheduler. A detailed
description of our constraints is given in §4.

LRA scheduler. The LRA scheduler uses an online optimization-
based algorithm that, given the current cluster condition, including
already running LRAs and task-based jobs, determines the efficient
placement of newly submitted LRAs. The scheduler is invoked at
regular configurable intervals to place all LRAs submitted during the
latest interval. Our scheduling algorithm, described in §5, takes into
account multiple LRA container requests at once to satisfy their
placement constraints and attain global optimization objectives
(requirement R3).

Task-based scheduler. Medea’s two-scheduler design removes
the burden of handling complex placement decisions from the task-
based scheduler, allowing the scheduling latency for task-based
jobs to remain low (requirement R4). Moreover, this design allows
the reuse of existing production-hardened task-based schedulers.
This minimizes the changes required in the existing scheduling
infrastructure, and is crucial for adoptingMedea in production.

Constraint manager.We introduce a new central component in
which all constraints—both from application owners and cluster
operators—are stored. This allows Medea to have a global view of
all active constraints and to easily add or remove constraints.
Medea operates as follows: it passes placement decisions made by
the LRA scheduler (step 1 in Figure 4) to the task-based scheduler
(step 2), which then performs the actual resource allocation (step 3).
This approach avoids the challenge of conflicting placements, faced

by existing multi-level [27, 45] and distributed [14, 30, 42, 44] sched-
ulers: in these designs, different schedulers, operating on the same
cluster state, may arrive at conflicting decisions, whereas inMedea
the actual allocations are performed by a single scheduler. We fur-
ther discuss placement conflicts in §5.4.

Performing all allocations through the task-based scheduler also
allows to achieve (weighted) fairness and respect application prior-
ities across both LRAs and task-based jobs.

4 DEFINING PLACEMENT CONSTRAINTS

In this section, we first introduce the notions of container tags and
node groups (§4.1), which will allow us to present the syntax and
semantics of our constraints (§4.2). We finish with a discussion of
our constraint model (§4.3).

4.1 Tag model and node groups

Container tags. Unlike existing schedulers that attach attributes
only to machines (see §8), Medea allows application owners to
attach tags to containers.
Example: An HBase Master container can have the following
tags: appID:00234 to denote the ID of the LRA; hb for the appli-
cation type (HBase); hb_m for the container’s role (master); and
memory_critical as a resource specification.

Each container request r of an LRA submitted toMedea is associ-
ated with a set of tags 𝒯r . Tags are a simple yet powerful mechanism
for constraints to refer to containers of the same or different, possi-
bly not yet deployed, applications. For example, a constraint can
use tag hb to refer to a current or future container of an HBase
application.

Tag sets.We define the node tag set 𝒯n to be the union of tags of
the containers running on node n at a given moment. The node tag
set is dynamic: when a container is allocated on node n, its tags are
added to 𝒯n ; when the container finishes execution, the associated
tags are removed.

Given that each tag in 𝒯n can be associated with multiple con-
tainers on node n, we define the tag cardinality function γn : 𝒯n
→ N, where γn (t) is the number of occurrences of a tag t ∈ 𝒯n on
node n.
Example: Consider two HBase containers deployed on a node
n1: one master with tags {hb, hb_m} and one region server with
tags {hb, hb_rs}. Then, 𝒯n1={hb, hb_m, hb_rs}, with γn1(hb)=2 and
γn1(hb_m)=γn1(hb_rs)=1.

Note that a subset of a node tag set can also be defined statically,
e.g., to identify nodes with specific hardware capabilities, such as
GPUs or FPGAs. Therefore our tag model can also express the static
machine attributes offered by existing schedulers (see §8).

Analogously, we define the tag set 𝒯𝒮 of a set of nodes 𝒮 , such
as a data center rack, to be the union of tag sets of the nodes that
are part of S .

Example: Let nodes n1 (from the above example) and n2 belong to
rack r1, and assume 𝒯n2={hb, hb_rs} with γn2(hb)=γn2(hb_rs)=1.

4To avoid naming conflicts, namespaces can be used in tags, such as the predefined
appID that defines the namespace of application IDs.

EuroSys ’18, April 23–26, 2018, Porto, Portugal P. Garefalakis, K. Karanasos, P. Pietzuch, A. Suresh, S. Rao

Then, 𝒯r1={hb, hb_m, hb_rs}, with γr1(hb)=3, γr1(hb_m)=1, and
γr1(hb_rs)=2.

Node groups. Cluster operators can register node groups, which
specify logical, possibly overlapping, categories of node sets. The
simplest predefined node groups are node and rack. A node set
belonging to the node group node includes a single element that
corresponds to a cluster node; a rack node set contains all nodes of
a physical rack. Other node group examples are fault and upgrade
domains (see §2.3).

Node groups allow constraints to be expressed independently of
the cluster’s underlying organization. They thus allow operators
to not reveal their cluster infrastructure. For example, a constraint
requiring to “place hb containers of the same application in different
upgrade domains” does not need to be aware of the cluster’s upgrade
domains or perform any actions when upgrade domains change.
Node groups also allow for more succinct constraint definitions—in
their absence, the above constraint would have to enumerate all
possible node combinations through a disjunction.

Together with tags, node groups play a key role in enabling
high-level constraints (requirement R2 from §2.5).

4.2 Placement constraints

Medea allows application owners and cluster operators to specify
placement constraints using tags to refer to containers in the same
or different LRAs, and node groups to target specific node sets. In
particular, it supports constraints of the following form:

C = {subject_tag, tag_constraint, node_group}

where subject_tag is a tag (or conjunction of tags) that identifies
the containers subject to the constraint; tag_constraint is a con-
straint of the form {c_tag, cmin , cmax } where c_tag is a container
tag (or conjunction of tags), and cmin , cmax are positive integers;
and node_group is a node group. The tag_constraint can also be a
boolean expression of multiple tag constraints (we do not support
negation yet).

The semantics of a constraint C is that each of the containers
with subject_tag should be placed on a node belonging to a node
set 𝒮 ∈ node_group, such that cmin ≤ γ𝒮 (c_tag) ≤ cmax holds for
the tag cardinality function of 𝒮 (see §4.1).

This constraint type is sufficient to express the wide range of
intra- and inter-application LRA constraints discussed in §2 (re-
quirement R1):
(i) with cmin = 1 and cmax =∞, we can express affinity constraints;

Example: Constraint Caf = {storm, {hb ∧ mem, 1, ∞}, node} requests
each container with tag storm to be placed in the same nodewith at
least one container with tags hb and mem. If we want to restrict the
constraint to a specific application5 with ID 0023, we would use
Caf ′ = {appID:0023 ∧ storm, {appID:0023 ∧ hb ∧ mem, 1,∞}, node}.

(ii) with cmin = 0 and cmax = 0, we can express anti-affinity con-
straints;

5For convenience, we automatically attach some predefined tags to each container,
e.g., the ID of the LRA that it belongs to.

Example: Caa = {storm, {hb, 0, 0}, upgrade_domain} requests each
storm container to be placed in a different upgrade domain from
all hb containers.

(iii) other values for cmin and cmax allow us to express generic
cardinality constraints.

Example: Cca = {storm, {spark, 0, 5}, rack} requests each storm con-
tainer to be placed in a rack that has no more than five spark

containers deployed.

If the subject_tag and tag_constraint use the same tags, we
specify constraints within a group of containers.

Example: Ccg = {spark, {spark, 3, 10}, rack} can be used by the
cluster operator to allow no fewer than three and no more than
five Spark containers in a rack.

Constraint dependencies.With the use of tag sets, which depend
on already deployed containers and that do not have to be statically
predefined, both intra- and inter-application constraints can be
expressed. Note, however, that if a constraint must target a specific
container of another deployed application, its application and con-
tainer ID are required. To address this problem, application owners
can submit the two applications together. Otherwise, a service that
exposes the deployed applications and their containers can be used.

Compound constraints. Multiple constraints can be combined
with boolean operators. Such constraints are specified in disjunctive
normal form (DNF), allowing any combination of constraints.

Soft constraints and weights. Each constraint can be associated
with a weight. An application can use different weights to deter-
mine the relative importance of its constraints, e.g., to request node
or rack affinity, with a preference for the former. By default the con-
straints in Medea are soft, i.e., the scheduler will try to satisfy the
constraint but not deny placement in case of constraint violations
(see §5). In our encountered practical scenarios, soft constraints
capture better the expected behavior by users; Medea can emulate
hard constraints through the use of weight values.

4.3 Discussion

One limitation of the constraint model is that we cannot express
constraints of the form “spread all spark containers across 3 racks”,
i.e., impose cardinality on the number of node sets rather than the
number of containers per node set. Given that we can indirectly
achieve similar placements using the cardinality constraints, we
decided to not complicate our syntax to support these constraints.

Medea currently only allows constraints on LRAs. We discuss
in §5.4 how we could allow task-based jobs to express constraints
targeting LRAs, e.g., to have a map/reduce job be placed on the
same rack as a Memcached application.

Note also that in this work we focus on building the scheduling
infrastructure that enables placement constraints. Automatically
inferring the most appropriate constraints for each application and
cluster is the focus of future work.

Medea: Scheduling of Long Running Applications in Shared Production Clusters EuroSys ’18, April 23–26, 2018, Porto, Portugal

Symbol Description

k Number of LRAs to be placed
N Number of cluster nodes
Ti Number of containers of LRA i

R
f
n , Run Free, used resources of node n6
m Total number of constraints
wi Weights of components in objective function

Bn ,Dn Sufficiently large integers, used in inequalities
Si 1 if all containers of LRA i are placed; 0 otherwise

Xi jn 1 if container j of LRA i placed at node n; 0 otherwise
ri j Resource demand of container j of LRA i
rmin Minimum resource demand

cl,vmin, c
l,v
max Violation of cardinalities cmin, cmax for constraint Cl

vlc Violation for constraint Cl
zn 1 if free resources ≥ rmin after placement; 0 otherwise

Table 2: Notation used in ILP formulation (constants appear above the
dashed line, variables below)

5 SCHEDULING LRAS

In this section, we give an overview of our scheduling approach (§5.1),
present ILP-based (§5.2) and heuristic-based (§5.3) LRA scheduling
algorithms, and discuss further potential improvements (§5.4).

5.1 Overview

When the LRA scheduler is invoked, it considers the following
information: (i) the container requests and placement constraints of
the newly submitted LRAs; (ii) the constraints of already deployed
LRAs and the cluster operator constraints via the constraint man-
ager (see Figure 4); and (iii) the available resources at each node.
It then determines the cluster node at which each LRA container
should be placed.

When determining the LRA container placement, our scheduling
algorithm attempts to: (i) place all containers of an LRA; (ii) satisfy
the placement constraints of the newly submitted LRAs, of the
previously deployed ones, and of the cluster operator; (iii) respect
resource capacities of all nodes; and (iv) optimize for global cluster
objectives (see §2.4).

As mentioned in §3, the LRA scheduler is invoked at regular
intervals, configured by the cluster operator. Longer intervals in-
crease the scheduling latency for LRAs, but allow multiple LRAs to
be considered together, improving placement quality. We experi-
mentally study this trade-off in §7.

5.2 ILP-based scheduling algorithm

LRA placement is an optimization problem under a set of con-
straints, and can thus be expressed as an integer linear program-
ming (ILP) problem. For completeness, Figure 5 provides the ILP
formulation, relying on the notation from Table 2; below, we give
an intuitive description.

Consider k LRAs that are submitted in the latest scheduling
interval and must be scheduled on an N -node cluster.

6For simplicity, we use a single scalar value for the cluster resources. However, our
model can be extended to use a vector of resources instead, having separate equations
for each resource type.

maximize
w1
k

k∑
i=1

Si +
w2
m

m∑
l=1

v lc +
w3
N

N∑
n=1

zn (1)

subject to:
∀i, j :

N∑
n=1

Xi jn ≤ 1 (2)

∀n :
k∑
i=1

Ti∑
j=1

ri j · Xi jn ≤ Rfn (3)

∀i :
N∑
n=1

Ti∑
j=1

Xi jn −TiSi = 0 (4)

∀n :
k∑
i=1

Ti∑
j=1

ri j · Xi jn − Bn (1 − zn) ≤ Rfn − rmin (5)

For each constraint Cl = {s_tag, {c_tag, c lmin, c
l
max }, G},∀ container tis js ∈ s_tag, ∀ node set 𝒮 ∈ G:∑

n∈𝒮

(∑
i, j :tag∈ti j
ti j ,tis js

Xi jn + Dn (1 − Xis js n)

)
− c lmin + c

l,v
min ≥ 0 (6)

∑
n∈𝒮

(∑
i, j :tag∈ti j
ti j ,tis js

Xi jn − Dn (1 − Xis js n)

)
− c lmax − c l,vmax ≥ 0 (7)

v lc =
c l,vmin

c lmin

+
c l,vmax

c lmax
(8)

Figure 5: ILP formulation

Objective. Our objective function (Equation 1) has three compo-
nents: (1) it aims to place as many of the k LRAs as possible; (2) it
minimizes the number of constraint violations (more on this below);
and (3) it avoids resource fragmentation by minimizing the number
of nodes left with few resources (Equation 5).

Note that in order to combine these components linearly, inde-
pendently of their range or units, we normalize each component
to take values from 0 to 1. We also use weights (w1–w3) to assign
different priorities to components. The cluster administrator is re-
sponsible for setting these weights based on the desired cluster
behavior. In Equation 1, we include the components that we use in
our clusters, but additional ones can be easily added, such as load
imbalance or minimizing the number of nodes used for placement.

We also make sure that each container is placed at most once,
respecting node capacities, and that we place either all or none of
an LRA’s containers (Equations 2 to 4).

Placement constraints and violations. For each placement con-
straint that belongs to a newly submitted or already deployed LRA
or to the cluster operator, we use two inequalities to impose the
constraint semantics (see §4.2): one for the minimum cmin and one
for the maximum cmax cardinality (Equations 6 to 7). In case of
a constraint violation, which is more common in heavily utilized
clusters or when dealing with very restrictive constraints, we quan-
tify the extend of the violation relative to the values of cmin and
cmax using Equation 8.

Resolution of constraint conflicts. The set of constraints con-
sidered when placing an LRA may include conflicts, e.g., one con-
straint requesting no more than three Spark containers in a rack,
and another one at least four. In such cases, cluster operator con-
straints override the application constraints, as long as they are

EuroSys ’18, April 23–26, 2018, Porto, Portugal P. Garefalakis, K. Karanasos, P. Pietzuch, A. Suresh, S. Rao

more restrictive. In case of conflicting application constraints, our
ILP formulation favors the placement that minimizes the number
of violations.

Compound constraints. To support compound constraints ex-
pressed in DNF (§4.2),Medea treats each DNF conjunct as a sepa-
rate constraint, and adds an extra inequality to guarantee that at
least one of these constraints is met.

5.3 Heuristic-based scheduling

To examine whether simpler approaches are sufficient to achieve
high quality LRA placements, we experiment with various heuris-
tics. Next we discuss the ones that gave us best results in practice;
an experimental comparison with the ILP algorithm is given in §7.

Tag popularity prioritizes the placement of containers that are
associated with tags appearing in the largest number of constraints.
The intuition is that such containers often have complex constraints
and are thus harder to place.

Node candidates heuristic first calculates the number of nodes Nc
on which a given container is allowed to be placed, subject to all
placement constraints. It then places the container with the small-
est Nc , as that container has the least placement flexibility. Note
that Nc values need to be recalculated after each container place-
ment. We avoid this by recalculating Nc only for containers whose
placement opportunities were affected in the previous iteration.

5.4 Discussion

Placement conflicts. GivenMedea’s two-scheduler design (§3),
the cluster state may have changed from the moment an LRA is
submitted until its containers are allocated, due to allocations for
task-based jobs. Possible solutions to this problem are: (i) kill con-
tainers of task-based jobs to free up resources for LRAs, (ii) relax
some LRA constraints, e.g., by placing an LRA container on the
corresponding rack instead of the specified node; (iii) allow LRAs
to reserve cluster resources with constraints in advance. Given
that these approaches could significantly impact the execution of
task-based jobs and increase the scheduler’s complexity, in the
current version of Medea, we opted for the simpler approach of
resubmitting the LRA in case of conflict.

Constraints for task-based jobs. Our focus in this paper is on
placement constraints for LRAs. However, task-based jobs might
also require placement constraints among them or towards LRAs
(see also §4.3). We can address this by extending the task-based
scheduler to support constraints in a heuristic fashion, in order to
not affect the scheduling latency of task-based jobs nor overload
the LRA scheduler.

Container migration. Under high cluster load, when LRAs enter
and leave the system at high rates or when their resource demands
change over time, it might be beneficial to combineMedea’s proac-
tive approach in achieving high quality LRA placements with reac-
tive approaches, such as container migration. As part of our future
work, we can extend our ILP formulation to enable migration, also
accounting for migration cost in our objective function.

Resource Manager

Task-based Scheduler

LRA Scheduler

1

4

. . .

Heartbeats

3

Container Tag Map
Tags Containers

Job
Manager

Node
 Manager

Containers

C_21_23

C_04_18

6

5

Job
ManagerJob

ManagerApplication
Master

Application Constraint Map
appID:023 C= {subject_tag, tag_constraint, node_group}

Node
 Manager

Containers

Constraint Manager

Container Tags

Node Groups

Placement Constraints

2

C
lu

st
er

 S
ta

te

C_01_31

C_08_11

C_21_23
C_04_18
C_01_31
C_08_11

hb_m
hb_rs

spark

Figure 6:Medea architecture

6 IMPLEMENTATION

Our implementation of Medea is built as an extension to Apache
Hadoop YARN [4], following the design from §3. Figure 6 shows (in
blue) the new components added to YARN’s resource manager (RM),
namely the constraint manager (CM) and the LRA scheduler. The
CM is responsible for storing container tags and node groups (§4.1),
along with application-specific and cluster-wide placement con-
straints (§4.2). The LRA scheduler determines the placement of LRA
containers to nodes, given the placement constraints and the cluster
condition. To this end, it uses either the ILP-based (relying on the
CPLEX solver [16]) or the heuristic-based scheduling algorithms
(§5). For the task-based scheduler that handles applications with
no placement constraints, we use YARN’s Capacity Scheduler [5],
but Fair Scheduler [6] can be used instead, simply by changing a
configuration parameter.

LRA life-cycle. Figure 6 also shows the life-cycle of an LRA in
Medea: (1) the client submits an LRA to the cluster, including a set
of tags for its containers and a set of placement constraints; (2) when
the RM receives the LRA, the CM validates and stores the associated
constraints, and then the job-specific application manager (AM)
is initialized; (3) the AM petitions the RM for cluster resources
based on the resource requirements of its containers; (4) the LRA
scheduler takes into account the relevant constraints, the cluster’s
node groups and the current container tags stored in the CM, as
well as the available resources in the cluster, and finds the best
placement for the LRA containers, based on our objective function
(see §5.2). This placement is passed to the task-based scheduler that
performs the allocation (see §3); (5) the RM notifies the AM; (6) the
AM dispatches the containers for execution to the node managers.

7 EVALUATION

We now experimentally validate how Medea meets our require-
ments (§2.5). After describing our setup (§7.1), we study: (i) the
benefit of Medea on LRA performance (§7.2) and resilience (§7.2);
(ii) the achieved global objectives (§7.4); and (iii) the scheduling
latency (§7.5).

Medea: Scheduling of Long Running Applications in Shared Production Clusters EuroSys ’18, April 23–26, 2018, Porto, Portugal

MEDEA J-KUBE J-KUBE++ YARN
0

250

500

750

R
un

tim
e

(m
in

)

(a) TensorFlow

MEDEA J-KUBE J-KUBE++ YARN
0

100
200
300
400
500

R
un

tim
e

(s
ec

)

(b) HBase insert

MEDEA J-KUBE J-KUBE++ YARN
0

150

300

450

R
un

tim
e

(s
ec

)

(c) HBase workloadA

MEDEA J-KUBE J-KUBE++ YARN
0

20

40

60

R
un

tim
e

(s
ec

)

(d) GridMix workload

Figure 7: Application performance (lower is better)

7.1 Experimental setup

Cluster setup. To evaluateMedea on a real deployment, we use a
pre-production cluster of 400 machines grouped into 10 racks. Each
machine has a dual quad-core Intel Xeon E5-2660 CPU with HT,
128 GB of RAM, and ten 3 TB data drives, configured as a JBOD.
The network supports 10 Gbps within and 6 Gbps across racks.

Simulation. To experiment with multiple configurations, we use
a simulator that executes Medea with simulated machines, merely
ignoring RPCs and task execution. To drive the simulations, we
extend the synthetic workload generator GridMix [24] to produce
LRAs with custom constraints, along with short-running batch
Tez [12] jobs.

Workload. To emulate a real shared cluster workload, we use the
following applications:
• HBase [7] instances, eachwith tenworkers.We use the YCSB bench-
mark [15] with 1 TB of data (one billion records), and submit six
YCSB workloads, A–F, using one YCSB client per HBase instance;

• TensorFlow [1] instances, each with eight workers and two pa-
rameter servers. We runmachine learning workloads that involve
one million iterations; and

• Batch Tez [12] jobs, generated using the GridMix workload gener-
ator [24], resembling some of our production workloads, similar
to the ones used in Yaq [44].

To deploy the above applications, we use <2 GB, 1 CPU> containers
for the HBase and TensorFlow workers, <4 GB, 1 CPU> containers
for the TensorFlow chiefworkers, and <1 GB, 1 CPU> containers
for the rest.

Placement constraints. Unless otherwise specified, we use the
following placement constraints when deploying the HBase and
TensorFlow instances: (i) to minimize network traffic, we use the
intra-application affinity constraint that all workers of the same
HBase or TensorFlow instance should be on the same rack; (ii) to
minimize resource interference, we impose the inter-application
cardinality constraint that no more than two (four) HBase (Tensor-
Flow) workers are placed on the same node;7 and (iii) for HBase,
we also request node affinity between the Master and the Thrift
Server, and node anti-affinity between the Master and Secondary.

Comparisons.We compare the following systems:
• Medea-ILP (or Medea): This is our ILP-based algorithm (§5.2). For
the objective function (Equation 1), we use weightsw1=1,w2=0.5

7The maximum cardinality used for each application was decided empirically after
experimenting with different values. See also the discussion in §4.3 on automatically
inferring constraints.

5 10 15 20 25
Max container unavailability per LRA (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

JANUS
J-KUBE
MEDEA

J-KUBE

Figure 8: Application resilience over 15 days

andw3=0.25, i.e., we give higher priority to maximizing the num-
ber of scheduled LRAs and then to minimizing constraint viola-
tions and resource fragmentation. We use a scheduling interval
of 10 sec.

• Medea-NC and Medea-TP: These are our heuristic-based algo-
rithms (§5.3). We also use a 10 sec scheduling interval.

• Serial: This is another heuristic-based algorithm that, unlike
Medea-NC and Medea-TP, does not order the container requests
within a scheduling interval.

• YARN: We use YARN as a production-ready constraint-unaware
scheduler, asMedea is also built on YARN.

• J-Kube: Kubernetes [33] is the most complete system to date for
supporting placement constraints (see Table 1 and §8). As it fol-
lows a different architecture, to have a fair comparison, we imple-
ment its scheduling algorithm inMedea’s LRA scheduler. Kuber-
netes considers one container request at a time during scheduling,
and supports (anti-)affinity but no cardinality constraints.

• J-Kube++: This is the same as J-Kube after extending it to support
cardinality constraints.

Our implementation is based on Apache Hadoop 2.7.2 [4], and we
use Apache Slider 0.92.0 [10] to deploy LRAs.

7.2 Application performance

To study the impact of Medea on application performance in a real
environment, we use the 400-node pre-production cluster described
above and deploy 45 TensorFlow and 50 HBase instances. We also
submit GridMix jobs that account for 50% of the cluster’s memory.

Figure 7a illustrates the runtimes for our machine learning work-
flows on TensorFlow; Figure 7b and Figure 7c show the runtimes
for data insertion and Workload A on HBase, respectively. We use
box plots in which the lower/upper part of the box represents the

EuroSys ’18, April 23–26, 2018, Porto, Portugal P. Garefalakis, K. Karanasos, P. Pietzuch, A. Suresh, S. Rao

10 30 50 70 90
LRAs running (cluster %)

0

10

20

30

40

C
on

st
ra

in
tv

io
la

tio
ns

(%
)

MEDEA-ILP
MEDEA-NC

MEDEA-PT
J-KUBE

Serial

(a) Varying cluster LRA utilization

10 20 30 40 50 60
Short tasks running (cluster %)

0

10

20

30

40

C
on

st
ra

in
tv

io
la

tio
ns

(%
)

MEDEA-ILP
MEDEA-NC

MEDEA-PT
J-KUBE

Serial

(b) Varying task-based utilization

1 2 3 4 5 6
Periodicity

0

10

20

30

40

C
on

st
ra

in
tv

io
la

tio
ns

(%
)

MEDEA-ILP
MEDEA-NC

MEDEA-PT
J-KUBE

Serial

(c) Varying scheduling intervals

1 2 4 6 8 10
Complexity

0

10

20

30

40

C
on

st
ra

in
tv

io
la

tio
ns

(%
)

MEDEA-ILP
MEDEA-NC

MEDEA-PT
J-KUBE

Serial

(d) Varying constraint complexity

Figure 9: Constraint violations

10 30 50 70 90
LRAs running (cluster %)

0

25

50

75

Fr
ag

m
en

ta
tio

n
no

de
s

(%
)

MEDEA-ILP
MEDEA-NC

MEDEA-PT
J-KUBE

Serial

(a) Nodes with resource fragmen-

tation

10 30 50 70 90
LRAs running (cluster %)

5

15

25

N
od

e
ut

ili
za

tio
n
C
v

(%
)

MEDEA-ILP
MEDEA-NC

MEDEA-PT
J-KUBE

Serial

(b) Coefficient of variation for node

memory utilization

Figure 10: Load balance with varying LRA utilization

25th and 75th percentiles, respectively; the middle line is the median;
and the whiskers are the 5th and 99th percentiles, respectively.

Medea consistently outperforms J-Kube across all percentiles due
to J-Kube’s lack of support for cardinality constraints—anti-affinity
constraints alone are not sufficient. In particular, median runtime
is 32% longer on J-Kube for TensorFlow and 23% longer for HBase
Workload A.

We observe similar improvements of up to 28% when comparing
Medea with J-Kube++. Importantly, J-Kube++ leads to significant vari-
ability in runtimes, which is detrimental in production clusters [29]:
while the 5th percentile is similar, the 99th percentile is up to 54%
higher with J-Kube++. By considering only one container request at
a time, J-Kube++ often leads to placements with many constraint vi-
olations (see §7.4), which are also not consistent across application
instances. For instances that happen to have many violations, the
benefit of Medea is higher.

Medea’s benefits are even more pronounced when compared
with YARN that does not support constraints: median runtime is up
to 2.1× shorter and the 99th percentile up to 2.4×. YARN also leads
to high runtime unpredictability, as some constraints are randomly
satisfied for some LRAs.

Finally, Figure 7d shows that Medea’s benefits do not come at
the expense of task-based jobs, whose runtimes are consistently
similar across all schedulers.

Overall, compared to state-of-the-art schedulers, Medea sig-
nificantly improves LRA performance and predictability, without
affecting the performance of task-based jobs.

7.3 Application resilience

To assess the effectiveness of Medea on improving application
resilience, we use unavailability data from one of our production
clusters, which comprises a few tens of thousands of machines
grouped into 25 service units (see §2.3).

We collect the number of unavailable machines per service unit
(due to failures, machine upgrades, maintenance, etc.) for each hour
over a period of 15 days. Then we generate LRAs, with 100 con-
tainers each, and place them with the intra-application anti-affinity
constraint that containers of the same LRA should be spread across
service units, using Medea and J-Kube. Given the machine unavail-
ability and the container placements achieved, we pick for each
hour the LRAwith the highest percentage of unavailable containers.

Medea’s placement leads to fewer anti-affinity constraint vi-
olations compared to J-Kube. As shown in Figure 8, this leads to
lower container unavailability across all percentiles. It improves
the median and maximum unavailability percentage by 16% and
24%, respectively, which is crucial for a production environment.

7.4 Global cluster objectives

We now focus on Medea’s ability to achieve global objectives
(see §2.4 and §5). We use a simulated cluster of 500 machines (8
CPU cores and 16 GB RAM each) and 10 racks. We generate HBase
instances using the constraints mentioned in §7.1. We conduct four
experiments and observe for each scheduling algorithm: (i) the per-
centage of containers that violate constraints; (ii) the percentage
of nodes that are fragmented (i.e., have less than 1 core/2 GB RAM
and are not fully utilized); and (iii) the coefficient of variation of
nodes’ memory utilization (as a proxy for load imbalance).

First, we vary the number of submitted LRAs, for a cluster me-
mory utilization of 10% to 90%. Our results are shown in Figs. 9a,
10a, and 10b. The scheduling interval for our Medea algorithms
(i.e., Medea-ILP, -NC, -TP) is such that two LRAs are considered at
every scheduling cycle. Medea-ILP, thanks to its objective function
and consideration of multiple container requests at a time, leads to
almost no constraint violations, even for 90% utilization (Figure 9a).
In contrast, our heuristic algorithms result in 10%–20% violations,
even for low utilization, despite also considering multiple requests.
J-Kube, handling one request at a time, exhibits even more violations.
Note that for all schedulers, constraint violations do not signifi-
cantly increase with utilization, as most of our constraints in this
experiment are intra-application.

Medea: Scheduling of Long Running Applications in Shared Production Clusters EuroSys ’18, April 23–26, 2018, Porto, Portugal

0 1K 2K 3K 4K 5K
Number of nodes

0

200

400

600

800

LR
A

sc
he

du
lin

g
la

te
nc

y
(m

s)

MEDEA-ILP
MEDEA-NC

MEDEA-PT
J-KUBE

(a) Varying cluster size

0 20 40 60 80 100
Percentage of services

0

2

4

6

To
ta

ls
ch

ed
ul

in
g

la
te

nc
y

(s
ec

)

ILP ALL
MEDEA

(b) Two-scheduler benefit

Google trace 200x speedup
0

1

2

3

4

5

S
ch

ed
ul

in
g

la
te

nc
y

(s
ec

) MEDEA (short tasks) YARN

(c) Task-based scheduling latency

Figure 11: Scheduling latency

All Medea algorithms, as well as J-Kube, lead to few fragmented
nodes except for high utilizations (Figure 10a). Moreover, all al-
gorithms, apart from Serial, perform similarly in terms of load
imbalance (Figure 10b). Notice that load imbalance is more pro-
nounced for low utilizations, but the load evens out for higher
utilized clusters.

Next, we use LRAs with a stable utilization of 10% and task-based
jobs with varying utilization from 10% to 60%. We observe similar
trends for constraint violations as above: Medea-ILP yields less than
10% violations, while the other algorithms lead to more than 15%
and up to 40% violations.

We then vary the scheduling interval with 10% LRA utilization,
affecting the number of LRAs considered at each scheduler invo-
cation (periodicity). With periodicity 1, Medea-ILP also exhibits
violations (Figure 9c). Increasing periodicity reduces violations for
Medea-ILP and -NC. This observation highlights the importance
of considering multiple container requests at a time for satisfying
inter-application constraints.

Finally, Figure 9d reports violations for constraints of varying
complexity (complexity X means that we have affinity or cardinality
inter-application constraints involving up to X LRAs). Even with
constraints involving 10 LRAs, Medea-ILP results in less than 10%
violations; Medea-NC and -TP also perform relatively well with
less than <20% violations. In contrast, J-Kube has more than 20%
violations; considering only one request at a time makes it difficult
to satisfy inter-application constraints.

7.5 Scheduling latency

We investigate the scheduling latency of different LRA scheduling
algorithms, while increasing the simulated cluster size from 50 to
5000 machines. Each time, we generate LRAs to consume 20% of
the cluster resources.

Figure 11a shows the average scheduling latency for placing all
containers of an LRA. Our heuristic algorithms achieve the lowest
latencies, with Medea-NC being more expensive. J-Kube leads to
higher latencies, due to the frequent scoring of nodes, however,
we believe we can further optimize our implementation via smart
caching of node scores. AlthoughMedea-ILP has the highest latency,
even with 5000 machines, the average latency is 850 ms, which is
low compared to the typical execution times of LRAs (hours, days or
months). For larger clusters,Medea-NC and J-Kube can be reasonable

compromises of latency and quality. In practical scenarios, Medea-

ILP is the better choice, as it combines a relatively low latency with
better placement quality.

To assess the benefit of our two-scheduler design, we compare
Medea-ILPwith a modified version that uses the solver for both long-
and short-running containers (ILP-ALL). We simulate a 256-machine
cluster, and generate LRAs and task-based jobs, resulting in a fully
utilized cluster.

Figure 11b shows the total scheduling latency for LRAs, as we
vary the fraction of cluster resources used by LRAs. The single-
scheduler design results in an increased scheduling latency (e.g.,
9.5× worse latency for 20% LRA utilization). This justifies the ra-
tionale behind Medea’s use of the more expensive ILP solver to
schedule only LRAs.

Finally, we study the impact of Medea on scheduling short-
running containers, using the Google cluster trace [54], which we
speed up by a factor of 200×. In Figure 11c, we report the scheduling
latency achieved by Medea-ILP and YARN when placing the trace
tasks (we use box plots as in Figure 7). ForMedea, we add an extra
10% scheduling load coming from LRAs. Despite the additional
LRA load, Medea achieves scheduling latencies similar to those of
YARN, which shows thatMedea’s LRA scheduler does not impact
the operation of the underlying task-based scheduler.

8 RELATEDWORK

An overview of the most related cluster schedulers was given in
Table 1 and §2.5. Below we provide a detailed analysis.

Schedulers with LRA support. YARN [52] was initially designed
for task-based jobs and currently supports only affinity to specific
nodes/racks [31]. Slider [10] and ongoing extension efforts [46]
enable LRAs in YARN. Our work onMedea, which will be included
in the upcoming 3.1 release of Apache Hadoop [43], adds support
to YARN for expressive placement constraints.

Mesos [27] follows a push-based model offering resources to
“frameworks”. Aurora [2] and Marathon [39] add support for LRAs
to Mesos. They enable simple, only intra-application, (anti-)affinity
and cardinality constraints (e.g., limit number of containers per
node or rack), but with no support for container tags (§4.1). Being
external to Mesos, they cannot optimize for global cluster objectives.
In principle, native support for constraints could be added to Mesos,
following a design similar to Medea, but given Mesos’ offer-based
model, it would be harder to do this efficiently.

EuroSys ’18, April 23–26, 2018, Porto, Portugal P. Garefalakis, K. Karanasos, P. Pietzuch, A. Suresh, S. Rao

Google’s Borg [53] schedules both LRAs and task-based jobs,
and supports scoring of nodes during scheduling, which can emu-
late a restricted version of our global objectives. Only support for
affinity to machines with specific attributes is mentioned. Kuber-
netes [33] uses similar node scoring, accounting for constraints and
load balance. Unlike our ILP-based algorithm, it considers only one
container request at a time, which leads to significant constraint
violations (see §7.4). There is no scheduler dedicated to LRAs, al-
though a user could plug one similar to ours. Kubernetes is the only
scheduler other thanMedea that exploits container tags, called pod
labels, with the feature being currently listed as beta [34], but does
not support cardinality constraints.

Prophet [56] improves LRA scheduling based on historical data,
but requires jobs to be recurring.

Constraints in general-purpose schedulers. TetriSched [50]
supports various placement and time constraints, but exact ma-
chines/racks have to be specified. Unlike Medea, it uses its ILP
scheduling algorithm to place all requests and not just the ones
with constraints. This is problematic under high load, because the
scheduling latency or the placement quality gets compromised.
Firmament [23] uses a graph-based approach, supporting simple
constraints, such as affinity to specific machines. Adding more
constraints would require (an exponential number of) additional
vertices in the scheduling graph, increasing scheduling latency. A
few other schedulers offer rudimentary support for constraints,
based again on machine attributes [22, 48, 49].

Multi-scheduler designs.Multi-level and distributed schedulers
also rely on multiple schedulers. They resolve scheduling conflicts
by pessimistic [27] or optimistic [45] concurrency control, or by
queuing tasks at worker nodes [14, 30, 42, 44]. Medea bypasses
this problem by allowing only one of its two schedulers to perform
actual allocations.

Resource isolation. Some schedulers mitigate interference be-
tween collocated workloads by throttling low priority jobs in favor
of LRAs [58], detecting interference though profiling [18–20], or
using hardware-based isolation mechanisms [36]. Our goals are
broader, focusing on both performance and resilience. However,
several of the above techniques can be combined withMedea.

Virtual machine (VM) placement has some commonalities with
LRA placement, as VMs can also be long-running. These approaches
address resource overload and interference through VM migra-
tion [41, 55]. BtrPlace [25] is related to Medea’s LRA scheduler
in that it supports placement constraints defined by applications
and admins. Unlike Medea, it follows a control-loop that mitigates
non-viable placements through VM migration, while minimizing
the number of machines used. Medea targets instead high-quality
placements but could also benefit from container migration.

9 CONCLUSION

We presentedMedea, a system for efficiently scheduling applica-
tions with long-running containers (LRAs). Medea is the first sys-
tem to fully support complex high-level constraints both within and
across LRAs, which are crucial for the performance and resilience

of LRAs. It follows a two-scheduler design, using an optimization-
based algorithm for high-quality placement of LRAs with con-
straints, and a traditional scheduler for placing task-based jobs
with low scheduling latency. We evaluated our YARN-based im-
plementation of Medea on a 400-node cluster and showed that it
achieves significant benefits over existing schedulers for applica-
tions such as TensorFlow and HBase.

ACKNOWLEDGMENTS

We would like to thank our shepherd, Sonia Ben Mokhtar, and
the anonymous reviewers for their valuable comments. We also
thank Carlo Curino, Chris Douglas, Alexandros Koliousis, Virajith
Jalaparti, and Subru Krishnan for their insightful feedback through-
out this work. This work was supported by the EPSRC Centre for
Doctoral Training in High Performance Embedded and Distributed
Systems (HiPEDS) (EP/L016796/1).

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System for Large-Scale Machine
Learning. OSDI, 2016.

[2] Apache Aurora. http://aurora.apache.org. 2018.
[3] Apache Flink. http://flink.apache.org. 2018.
[4] Apache Hadoop. http://hadoop.apache.org. 2018.
[5] Apache Hadoop Capacity Scheduler. http://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html. 2018.
[6] Apache Hadoop Fair Scheduler. http://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/FairScheduler.html. 2018.
[7] Apache HBase. http://hbase.apache.org. 2018.
[8] Apache Kafka. http://kafka.apache.org. 2018.
[9] Apache Samza. http://samza.apache.org. 2018.
[10] Apache Slider (incubating). http://slider.incubator.apache.org. 2018.
[11] Apache Storm. http://storm.apache.org. 2018.
[12] Apache Tez. https://tez.apache.org. 2018.
[13] Matthias Boehm, Michael Dusenberry, Deron Eriksson, Alexandre V. Evfimievski,

Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Frederick Reiss,
Prithviraj Sen, Arvind Surve, and Shirish Tatikonda. SystemML: Declarative
Machine Learning on Spark. PVLDB, 2016.

[14] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,
Ming Wu, and Lidong Zhou. Apollo: Scalable and Coordinated Scheduling for
Cloud-Scale Computing. OSDI, 2014.

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with YCSB. SoCC, 2010.

[16] CPLEX Optimizer. http://www.ibm.com/software/integration/optimization/
cplex-optimizer. 2018.

[17] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. OSDI, 2004.

[18] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-aware scheduling
for heterogeneous datacenters. ASPLOS, 2013.

[19] Christina Delimitrou and Christos Kozyrakis. Quasar: resource-efficient and
QoS-aware cluster management. ASPLOS, 2014.

[20] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. Tarcil: Reconciling
Scheduling Speed and Quality in Large Shared Clusters. SoCC, 2015.

[21] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter
Pietzuch. Making State Explicit for Imperative Big Data Processing. USENIX
ATC, 2014.

[22] Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Choosy: max-min fair
sharing for datacenter jobs with constraints. EuroSys, 2013.

[23] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M. Watson, and Steven
Hand. Firmament: Fast, Centralized Cluster Scheduling at Scale. OSDI, 2016.

[24] Hadoop GridMix. http://hadoop.apache.org/docs/r1.2.1/gridmix.html. 2017.
[25] Fabien Hermenier, Julia Lawall, and Gilles Muller. BtrPlace: A flexible consolida-

tion manager for highly available applications. IEEE TDSC, 2013.
[26] Heron. http://twitter.github.io/heron. 2018.
[27] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.

Joseph, Randy H. Katz, Scott Shenker, and Ion Stoica. Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center. NSDI, 2011.

http://aurora.apache.org
http://flink.apache.org
http://hadoop.apache.org
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
http://hbase.apache.org
http://kafka.apache.org
http://samza.apache.org
http://slider.incubator.apache.org
http://storm.apache.org
https://tez.apache.org
http://www.ibm.com/software/integration/optimization/cplex-optimizer
http://www.ibm.com/software/integration/optimization/cplex-optimizer
http://hadoop.apache.org/docs/r1.2.1/gridmix.html
http://twitter.github.io/heron

Medea: Scheduling of Long Running Applications in Shared Production Clusters EuroSys ’18, April 23–26, 2018, Porto, Portugal

[28] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
ZooKeeper: wait-free coordination for internet-scale systems. USENIX ATC,
2010.

[29] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, ShravanMatthur Narayana-
murthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Iñigo Goiri, Subru
Krishnan, Janardhan Kulkarni, and Sriram Rao. Morpheus: Towards Automated
SLOs for Enterprise Clusters. OSDI, 2016.

[30] Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas, Kishore Chali-
parambil, Giovanni Matteo Fumarola, Solom Heddaya, Raghu Ramakrishnan, and
Sarvesh Sakalanaga. Mercury: Hybrid Centralized and Distributed Scheduling in
Large Shared Clusters. USENIX ATC, 2015.

[31] Konstantinos Karanasos, Arun Suresh, and Chris Douglas. Advancements in
YARN Resource Manager. Encyclopedia of Big Data Technologies, 2018.

[32] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey
Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht, Matthew Jacobs,
Ishaan Joshi, Lenni Kuff, Dileep Kumar, Alex Leblang, Nong Li, Ippokratis Pandis,
Henry Robinson, David Rorke, Silvius Rus, John Russell, Dimitris Tsirogiannis,
Skye Wanderman-Milne, and Michael Yoder. Impala: A Modern, Open-Source
SQL Engine for Hadoop. CIDR, 2015.

[33] Kubernetes. http://kubernetes.io. 2018.
[34] Kubernetes: Assigning pods to nodes. http://kubernetes.io/docs/concepts/

configuration/assign-pod-node. 2018.
[35] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher

Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
Twitter Heron: Stream Processing at Scale. SIGMOD, 2015.

[36] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. Heracles: Improving Resource Efficiency at Scale. ISCA,
2015.

[37] I/O Long-lived daemons for query fragment execution and caching. https://issues.
apache.org/jira/browse/HIVE-7926. 2018.

[38] LXC: LinuX Container. http://linuxcontainers.org. 2018.
[39] Marathon. http://mesosphere.github.io/marathon. 2018.
[40] Memcached. http://memcached.org. 2018.
[41] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds: managing

performance interference effects for QoS-aware clouds. EuroSys, 2010.
[42] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow: Dis-

tributed, Low Latency Scheduling. SOSP, 2013.
[43] Rich placement constraints in YARN. https://issues.apache.org/jira/browse/

YARN-6592. 2018.

[44] Jeff Rasley, Konstantinos Karanasos, Srikanth Kandula, Rodrigo Fonseca, Milan
Vojnovic, and Sriram Rao. Efficient queue management for cluster scheduling.
EuroSys, 2016.

[45] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
Omega: Flexible, Scalable Schedulers for Large Compute Clusters. EuroSys, 2013.

[46] Simplified and first-class support for services in YARN. https://issues.apache.org/
jira/browse/YARN-4692. 2018.

[47] Spark MLLib. http://spark.apache.org/docs/latest/ml-guide.html. 2018.
[48] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny. Condor: a

distributed job scheduler. Beowulf cluster computing with Linux, 2001.
[49] Alexey Tumanov, James Cipar, Gregory R. Ganger, and Michael A. Kozuch.

alsched: algebraic scheduling of mixed workloads in heterogeneous clouds. SoCC,
2012.

[50] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch, Mor Harchol-
Balter, and Gregory R. Ganger. TetriSched: global rescheduling with adaptive
plan-ahead in dynamic heterogeneous clusters. EuroSys, 2016.

[51] Twitter Record. Twitter blog. 2013. http://blog.twitter.com/2013/
new-tweets-per-second-record-and-how.

[52] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, OwenO’Malley, Sanjay Radia, Benjamin Reed, and
Eric Baldeschwieler. Apache Hadoop YARN: Yet Another Resource Negotiator.
SoCC, 2013.

[53] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. Large-scale cluster management at Google with Borg.
EuroSys, 2015.

[54] John Wilkes. More Google cluster data. Google research blog. Nov. 2011. Posted
at http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html.

[55] Timothy Wood, Prashant J Shenoy, Arun Venkataramani, and Mazin S Yousif.
Black-box and Gray-box Strategies for Virtual Machine Migration. NSDI, 2007.

[56] Guoyao Xu, Cheng-Zhong Xu, and Song Jiang. Prophet: Scheduling Executors
with Time-Varying Resource Demands on Data-Parallel Computation Frame-
works. ICAC, 2016.

[57] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster Computing with Working Sets. HotCloud, 2010.

[58] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John
Wilkes. CPI2: CPU Performance Isolation for Shared Compute Clusters. EuroSys,
2013.

[59] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Åke Larson, Ronnie Chaiken,
and Darren Shakib. SCOPE: parallel databases meet MapReduce. VLDB, 2012.

http://kubernetes.io
http://kubernetes.io/docs/concepts/configuration/assign-pod-node
http://kubernetes.io/docs/concepts/configuration/assign-pod-node
https://issues.apache.org/jira/browse/HIVE-7926
https://issues.apache.org/jira/browse/HIVE-7926
http://linuxcontainers.org
http://mesosphere.github.io/marathon
http://memcached.org
https://issues.apache.org/jira/browse/YARN-6592
https://issues.apache.org/jira/browse/YARN-6592
https://issues.apache.org/jira/browse/YARN-4692
https://issues.apache.org/jira/browse/YARN-4692
http://spark.apache.org/docs/latest/ml-guide.html
http://blog.twitter.com/2013/new-tweets-per-second-record-and-how
http://blog.twitter.com/2013/new-tweets-per-second-record-and-how
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

	Abstract
	1 Introduction
	2 Long-Running Applications in Clusters
	2.1 Use cases
	2.2 Application performance
	2.3 Application resilience
	2.4 Global cluster objectives
	2.5 Scheduling Requirements

	3 Medea Design
	4 Defining Placement Constraints
	4.1 Tag model and node groups
	4.2 Placement constraints
	4.3 Discussion

	5 Scheduling LRAs
	5.1 Overview
	5.2 ILP-based scheduling algorithm
	5.3 Heuristic-based scheduling
	5.4 Discussion

	6 Implementation
	7 Evaluation
	7.1 Experimental setup
	7.2 Application performance
	7.3 Application resilience
	7.4 Global cluster objectives
	7.5 Scheduling latency

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

