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The Multipole Method (MPM) is used to simulate the many-body self-consistent problem of interacting 

elliptical micro-cracks and inclusions in single crystals. A criterion is employed to determine the crack 

propagation path based on the stress distribution; the evolution of individual micro-cracks and their in- 

teractions with existing cracks and inclusions is then predicted using what we coin the Discrete Crack 

Dynamics (DCD) method. DCD is fast (semi-analytical) and particularly suitable for the simulation of 

evolving low-speed crack networks in brittle or quasi-brittle materials. The method is validated against 

finite element analysis predictions and previously published experimental data. 
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1. Introduction 

The path followed by a slowly propagating crack depends on

the microstructure of the material, comprising features such as

inclusions, grain boundaries and other cracks. Several techniques

have been developed to predict crack paths. The finite element

method (FEM) is one of the most widely used tools for study-

ing stationary cracks and fracture along a pre-defined path ( Strang

and Fix, 1973; Zienkiewicz et al., 1977; Reddy, 1993 ), but localised

features such as cracks, holes, and inclusions are not efficiently

resolved by mesh refinement, and general path crack growth

cannot be modelled accurately and efficiently using conventional

FEM, which in part led to the development of the extended fi-

nite element method (XFEM) by Dolbow and Belytschko (1999) ,

Belytschko and Black (1999) and, Belytschko et al. (2009) . An-

other alternative to FEM is the boundary element method (BEM),

also referred to as the boundary integral equation method (BIEM)

( Aliabadi and Rooke, 1991; Mogilevskaya and Linkov, 1998 ). The

main attraction of BEM is the reduction of the spatial dimensions

of the problem since only the boundary needs to be discretised. Al-

though the simulation of crack growth including interactions with

inclusions is possible with the XFEM and BEM methods ( Loehnert

and Belytschko, 2007; Belytschko et al., 2008; Natarajan, 2011;

Natarajan et al., 2014 ), these methods become computationally ex-
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ensive when the number of localised features is increased. There-

ore, there is scope to develop more efficient tools to predict the

volution of complex crack/defect networks. In this paper, a semi-

nalytical method is proposed that fulfils this objective. 

Discrete Crack Dynamics (DCD) was developed to predict the

volution of crack networks in heterogeneous solids containing el-

iptical inclusions. Similar to other computational methods, such as

olecular Dynamics or Discrete Dislocation Dynamics ( Alder and

ainwright, 1959; Cleveringa et al., 1997; Van der Giessen and

eedleman, 1995 ), the validity of the calculations relies upon re-

olving the elastic interactions of defects in the system. In DCD,

lliptical inclusions and cracks are the basic constituent elements

f the system, and play a role analogous to that played by disloca-

ions in discrete dislocation dynamics. 

Micro-crack and inclusion interactions have been studied using

nalytical and numerical methods before: notably the Kachanov

ethod ( Kachanov, 1985; 1987; Chudnovsky, 1983; Kachanov,

993; Kachanov et al., 1990; Kachanov and Montagut, 1986;

achanov, 1986; Sevostianov and Kachanov, 2010 ), the modified

achanov method for closely interacting cracks ( Gorbatikh et al.,

0 07; Li et al., 20 03 ), the polynomial approximation method

 Horii and Nemat-Nasser, 1985 ), Maxwell’s method ( Maxwell,

881; McCartney and Kelly, 2008; McCartney, 2010; Mogilevskaya

nd Crouch, 2013; Mogilevskaya et al., 2010 ) and the Multipole

ethod (MPM) ( Kushch, 2013a; 2013b; 1998a; 1998b; Kushch and

angani, 20 0 0; Kushch et al., 2005 ). Kachanov considered the av-

rage traction exerted on a crack by the other cracks in the sys-

em; this was later modified ( Gorbatikh et al., 2007; Li et al., 2003 )
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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u 1 + iu 2 = κϕ(z) − (z − z̄ ) ϕ (z) − ψ(z) . (7) 
o account for linearly varying traction along the crack. Another

ethod approximated the traction using a polynomial expansion

 Horii and Nemat-Nasser, 1985 ), which further improved the ac-

uracy of the representation of the traction along the crack. This

ethod was used and developed in both Maxwell’s method and

he Multipole method. All of these methods have their strengths,

nd weaknesses. Here, the MPM is chosen because it can accu-

ately and semi-analytically capture the elastic interactions of mul-

iple cracks and inclusions in one system; the MPM is used to sim-

late the many-body self-consistent problem of elliptical micro-

rack and inclusion interactions in heterogeneous solids ( Kushch,

013a; 2013b; 1998a; 1998b; Kushch and Sangani, 20 0 0; Kushch

t al., 2005 ). It is a series method that reduces the boundary value

roblem in the homogeneous domain to an ordinary system of lin-

ar algebraic equations. 

By characterising the localised stress fields and crack/inclusion

nteractions using the multipole method, we establish the DCD

ethod. This method is based on the assumption that in brit-

le materials incremental crack growth can be represented by a

equence of micro-crack initiation events ahead of the original

rack tip, which are subsequently merged with the original crack

 Carpinteri and Ingraffea, 2012; Hoagland et al., 1973; Li and Shah,

994; Ortiz, 1988; Pompe et al., 1978; Wu et al., 1978 ). In this

aper, the basic notation of the multipole method is introduced,

nd a general solution for a system comprising a finite array of

lliptical inclusions and cracks is proposed. Once the distribu-

ion of stresses and strains is computed using the MPM, a crack

ropagation criterion is employed to determine the crack propa-

ation path. The algorithm of crack propagation is elaborated in

ection 3 and the results of numerical test problems are sum-

arised in Section 4 in addition to a validation against an experi-

ental result for a crack interacting with a circular inclusion. 

. Crack and inclusion interactions 

.1. Methodology 

The multipole method provides a fast, accurate solution for

ulti-inclusion systems (where cracks may be thought of as col-

apsed elliptical inclusions). The method evaluates the local stress

eld in the vicinity of the inclusions using the linear superposition

rinciple. The local field is the linear sum of the incident far-field

nd the fields generated by all inclusions. The problem has to be

olved for the entire array of inclusions simultaneously. With the

xception of the basis functions used in the expansion, which must

e chosen according to the geometry of the inclusions, the solution

rocedure is identical for different shapes of inclusions ( Kushch,

013a; 2013b; 1998a; 1998b; Kushch and Sangani, 20 0 0; Kushch

t al., 2005 ). 

A general problem contains a distribution of shapes of cracks

nd inclusions, and the latter may deviate considerably from per-

ectly circular. Using elliptical inclusions instead of circular is of

articular interest because both straight cracks and inclusions can

e treated at the same time and with the same formalism, by re-

arding the former as collapsed, zero stiffness inclusions. We apply

he multipole method here to a brittle material containing cracks,

nd elliptical inclusions with initially perfectly bonded ( i . e . dis-

lacement compatible) interfaces. Basis functions for elliptical in-

lusions were introduced by Kushch (2013a,b) . 

.2. Geometry 

Consider a single elliptical inclusion, embedded at the origin

f the Cartesian coordinate system ( ̂ x 1 Ox 2 ), in an infinite isotropic

lastic solid. The Ox 1 and Ox 2 axes are along the major and minor

xes of the ellipse, which have lengths 2 l and 2 l respectively. The
1 2 
spect ratio and the distance between the foci of the ellipse are

 = l 2 /l 1 < 1 and d = 

√ 

l 2 
1 

− l 2 
2 

respectively. 

Conformal mapping is a mathematical technique, applied here,

hat converts one problem into another that is easier to solve. The

ost convenient conformal mapping for problems containing ellip-

ical objects is Kushch et al. (2005) z = x 1 + ix 2 = ω(ξ ) = d cosh ξ ,

here ξ = ζ + iη. Setting ζ equal to a constant, ζ 0 , the Cartesian

xes become x 1 = d cosh ζ0 cos η and x 2 = d sinh ζ0 sin η, which de-

cribes an ellipse in the x 1 − x 2 plane with major and minor axes

 d cosh ζ 0 and 2 d sinh ζ 0 respectively, for which the aspect ratio is

 = tanh ζ0 , and d is again the distance between the foci. Thus the

ocus of the ellipse in the z -plane corresponds to a straight line

= ζ0 in the ξ -plane. Perfect bonding is assumed at the matrix-

nclusion interface ( ζ = ζ0 ), thus displacement u and traction t are

ontinuous there: 

[ u ]] ζ0 
= u 

(0) − u 

(1) = 0 ; [[ t ]] ζ0 
= t (0) − t (1) = 0 (1)

Upper indices 0 and 1 refer to the matrix and inclusion materi-

ls, at the interface, respectively. 

When there are N elliptical inclusions in the material, we define

 parallel local coordinate systems ( x 1 p , x 2 p ), each with its origin

t the centroid of the ellipse; another parallel coordinate system is

esignated as the global coordinate system ( x 1 , x 2 ). Defining z p =
 1 p + ix 2 p and z = x 1 + ix 2 , the coordinates of a point expressed in

he global coordinate system ( x 1 , x 2 ) relates to the coordinates of

he point expressed in the local system ( x 1 p , x 2 p ) by z = z p + Z p ,

here Z p is the coordinate of the centroid of the p th inclusion in

he global coordinate system. 

To describe the differences in the relative orientations of the

llipses another set of N local rotated coordinate systems ( y 1 p ,

 2 p ) is required, aligned along the major and minor axes of each

llipse. If the coordinate axes ( y 1 p , y 2 p ) are related by an anti-

lockwise rotation of θp relative to the local coordinate axes ( x 1 p ,

 2 p ) then y p = y 1 p + iy 2 p = e −iθp z p . The conformal transformation

 p = D p cosh ξp , where 2 D p is the distance between the foci of the

 th ellipse, introduces the local elliptic coordinates ξp = ζp + iηp .

hen z p = D p e 
iθp cosh ξp . 

.3. Formulation of the 2D elastic field problem in terms of complex 

otentials 

We introduce the Muskhelishvili–Kolosov complex analytic po-

ential functions ϕ( z ) and 

˜ ψ (z) , in terms of which the stress ten-

or components σ ij and displacement vector u = (u 1 , u 2 ) may be

xpressed in plane strain as follows: 

11 + σ22 = 4 μ
[
ϕ 

′ (z) + ϕ 

′ (z) 
]

(2) 

22 − σ11 + 2 iσ12 = 4 μ
[
z̄ ϕ 

′′ (z) + 

˜ ψ 

′ (z) 
]

(3) 

 1 + iu 2 = κϕ(z) − z ϕ 

′ (z) − ˜ ψ (z) (4) 

here μ is the shear modulus, ν is the Poisson’s ratio, and κ is

olosov’s constant factor equal to 3 − 4 ν for plane strain and 

3 −ν
1+ ν

or plane stress. The complex conjugate of a function f ( z ) is written

s f (z) , and the primes denote differentiation. The displacement

ector u in the complex form is u = u 1 + iu 2 . 

Following Kushch et al. (2008) we define a potential ψ(z) =
˜ 
 (z) + zϕ 

′ (z) , in terms of which Eqs. (2) –( 4 ) become: 

11 + σ22 = 4 μ(ϕ 

′ + ϕ 

′ ) (5) 

22 − σ11 + 2 iσ12 = 4 μ
[
( ̄z − z) ϕ 

′′ (z) − ϕ 

′ (z) + ψ 

′ (z) 
]

(6) 

′ 
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2.3.1. Arbitrary array of inclusions and cracks (pseudo-inclusions) 

For a 2D solid that contains a finite array of arbitrarily oriented

elliptical inclusions, the displacement fields in the vicinity of any

inclusion comprise disturbance fields generated by all inclusions in

the system. Using the linear superposition principle, the displace-

ment u ( z ) for the multiply connected matrix in the global coordi-

nate system is: 

u (z) = u far (z) + u dis (z) , (8)

where u far and u dis are displacement fields caused by an external

far-field load, and a total disturbance field induced by all inclusions

respectively. Fields generated by inclusions are written in their lo-

cal coordinate systems. However, it is necessary to write all the

fields in a single coordinate system, hence in this section fields

generated by the p th inclusion are expanded again in the q th co-

ordinate system. 

The displacement field of the p th inclusion in the local parallel

coordinate system z p is u p (z p ) = u p (x 1 p , x 2 p ) . When this displace-

ment field is expressed in the local rotated coordinate system y p it

has the form u p (y p ) = u p (y 1 p , y 2 p ) . Here, a function is defined to

be regular if it and its derivatives are bounded within the region,

otherwise, it is singular (irregular). The displacement field induced

by the p th inclusion in its coordinate system is singular as the p th

inclusion is approached, but is regular in the vicinity of other in-

clusions. Upper indices s and r refer to singular and regular func-

tions. The complex displacement caused by the p th inclusion in

its coordinate system is denoted by u s p ; in the local q th coordinate

system, this field is denoted by u r pq . 

u 

s 
p (z p ) = u 

r 
pq (z q ) (9)

Eq. (9) becomes u s p (y p ) e iθp = u r pq (y q ) e iθq in the local y coordinate

systems. The displacements u s p (y p ) and u r pq (y q ) can be expressed

in terms of complex potentials using Eq. (7) : 

u 

s 
p (y p ) = κϕ 

s 
p (y p ) − (y p − ȳ p ) ϕ 

s ′ 
p (y p ) − ψ 

s 
p (y p ) 

u 

r 
pq (y q ) = κϕ 

r 
pq (y q ) − (y q − ȳ q ) ϕ 

r′ 
pq (y q ) − ψ 

r 
pq (y q ) (10)

where ϕ 

r′ 
pq (y q ) = ∂ ϕ 

r 
pq /∂ y q and ϕ 

s ′ 
p (y p ) = ∂ ϕ 

s 
p /∂ y p . The scalar po-

tentials that solve the problem in the p and q coordinate systems

are: 

ϕ 

s 
p (y p ) = 

∞ ∑ 

n =1 

A np v −n 
p 

ψ 

s 
p (y p ) = 

∞ ∑ 

n =0 

[
B np − nA np 

sinh ζ0 p 

sinh ξp 

(
v p 
v 0 p 

− v 0 p 
v p 

)]
v −n 

p (11)

ϕ 

r 
pq (y q ) = 

∑ 

m ±
a mpq v −m 

q 

ψ 

r 
pq (y q ) = 

∑ 

m ±

[
b mpq − ma mpq 

sinh ζ0 q 

sinh ξq 

(
v q 
v 0 q 

− v 0 q 
v q 

)]
v −m 

q (12)

By equating similar terms in u s p (z p ) and u r pq (z q ) and transform-

ing the basis functions, the expansion coefficients a mpq and b mpq 

in the q coordinate system can be derived in terms of A np and

B np . Details of the basis functions v q in different coordinate sys-

tems and the derivation of the coefficients a and b can be found in

Appendix A and Appendix B . Superimposing the disturbance fields

of all inclusions in the vicinity of the q th inclusion and adding it

to the far-field gives the total disturbance for a finite array of N

non-overlapping elliptical inclusions: 

u (z) = u far (z) + 

N ∑ 

p=1 

u 

s 
p (z p ) (13)
s  
Transforming all the disturbance fields into one coordinate sys-

em gives: 

N 
 

p=1 

u 

s 
p (z p ) = u 

s 
q (z q ) + 

∑ 

p� = q 
u 

s 
p (z p ) = u 

s 
q (z q ) + 

∑ 

p� = q 
u 

r 
pq (z q ) (14)

inally, displacement u ( z ) in the local z q coordinate system be-

omes: 

 (z) = 

[ 

u far (z q + Z q ) + 

∑ 

p� = q 
u 

r 
pq (z q ) 

] 

+ u 

s 
q (z q ) 

= u 

′ 
far (z q ) + u q (z q ) (15)

hich means that the condition experienced by each inclusion is

hat of a single equivalent inclusion. In other words, the prob-

em is reduced to the one inclusion problem with a modified far-

eld traction and a 4 N × n set of linear equations. By applying the

oundary conditions of a perfectly bonded inclusion-matrix inter-

ace, the unknown coefficients A and B can be obtained. Once all

oefficients including a npq and b npq are obtained, the scalar poten-

ials and consequently the stress and displacement fields can be

alculated ( Fig. 1 ). 

For simplicity, the problem of one inclusion is solved in the lo-

al y coordinate system. Therefore, the far-field for each inclusion

as to be rotated according to its y local coordinate system. For

nstance, for a uniform far-field tension, the scalar potentials ϕ0 far 

nd ψ 0 far have to be expanded as follows: 

ϕ 0 far (y q ) = 

∑ 

m ±
a m 0 q v −m 

q 

 0 far (y q ) = 

∑ 

m ±

[
b m 0 q − ma m 0 q 

sinh ζ0 q 

sinh ξq 

(
v q 
v 0 q 

− v 0 q 
v q 

)]
v −m 

q (16)

he non-zero coefficients of the field in the local y coordinate sys-

em are as below; details of the derivation can be found in B.3 : 

a 10 q = 

d q e 
−iθq 

2 

(
s 11 + s 22 

8 μ0 

)
 −10 q = 

a 10 q 

v 2 
0 q 

+ 

d q e 
iθq 

8 μ0 
( s 22 − s 11 + 2 is 12 ) , (17)

here d q = D q e 
iθq . After the problem is solved in the local y q co-

rdinate system, a rotational transformation is applied to the cal-

ulated fields to transfer them into the local z q coordinate system

sing σ (z q ) = R σ (y q ) R 
T where R is the rotational transformation

ensor. Additional translation is required to convert the stress fields

rom the local z q system into the global coordinate system. 

.3.2. Stress fields on the perimeter 

To verify the reliability of the multipole method, stress fields of

ne, two and three mis-oriented elliptical holes are analysed. All

imulations are performed under a uniform tensile load in the x 2 
irection. In the first set of simulations, stress fields on the perime-

er of one elliptical hole oriented at 45 degrees with respect to the

lobal axes and subjected to remote tensile load ( σ∞ 

) in the x 2 di-

ection are calculated using the commercial finite element package

BAQUS (FEM), and the multipole method. Stress fields are illus-

rated along the perimeter of the inclusion starting from the point

(y 1 , y 2 ) = (0 , l 1 ) , following the inclusion in the anticlockwise di-

ection in the local y coordinate system. 

Another set of simulations was run to calculate the stress fields

n the perimeter of two and three arbitrarily placed elliptical holes

ith aspect ratio 0.5 ( l 1 = 1 μm and l 2 = 0 . 5 μm ). Fig. 2 illustrates

he stress component σx 2 x 2 /σ∞ 

along the perimeter of the q th in-

lusion starting from the point (y 1 q , y 2 q ) = (0 , l 1 ) , following the in-

lusion in the anticlockwise direction in the local y q coordinate

ystem; in Fig. 2 d calculations were done for the first inclusion
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Fig. 1. Stress fields on the perimeter (distance along the perimeter has been normalised by the perimeter length) of a hole with a 45 ° angle of inclination to the horizontal 

and an aspect ratio of 0.5 ( l 1 = 1 μm and l 2 = 0 . 5 μm ) subjected to a remote uniform tension in the x 2 q direction. Fields calculated by the multipole method and FEM are 

represented by the blue and black lines respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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shown in blue) starting from the point: (y 11 , y 21 ) = (x 11 , x 21 ) =
(0 , l 1 ) . Fields calculated using the multipole method and FEM are

epresented by the blue and black lines, respectively. 

.4. Stress intensity factors 

Analytical expressions for the stress intensity factors of the

racks and stress concentrations of the inclusions can be derived

sing the complex potential technique ( Kushch, 2013a ). Here, K 

+ 

nd K 

− refer to the right and left crack tips with respect to the lo-

al coordinate system. For inclusions the stress concentrations are

alculated at the rounded edge intercepting the major axis of the

nclusion. In linear elastic fracture mechanics the SIFs are defined

s: 

 

±
Iq + iK 

±
I I q = lim 

z q →±d q 
t q 
√ 

2 π(z q ∓ d q ) (18)

here the term ( z q ∓d q ) defines the distance between the branch

oints and the surface of the inclusion. For the case where e q → 0,

he SIFs become: 

 

±
Iq + iK 

±
I I q = 2 μ0 lim 

z q →±d q 
( ϕ 

′ 
q + ψ 

′ 
q ) 

√ 

2 π(z q ∓ d q ) (19)

After some algebra, and considering the fact that complex po-

entials are singular in the local coordinate system, one can obtain

he formula for the case where ζ q → 0: 

 

±
Iq + iK 

±
I I q = −2 μ0 

√ 

π

D q 

∞ ∑ 

k =1 

(±1) k −1 
(
A nq + B nq 

)
(20)

his formulation enables calculating the SIFs without any addi-

ional numerical effort. The formula is valid for inclusions with

early zero aspect ratio and arbitrary far load. 

The SIFs cannot be determined for an ellipse unless we assume

hat a crack is emanating from the ellipse. Analytical solutions for

racks emanating from elliptical inclusions are very difficult to ob-

ain. Here the evaluation of SIFs for cracks emanating from ellip-

ical inclusions is addressed by averaging over a short distance
rom where the crack emanation is predicted. Once the distribu-

ion of stress fields are calculated, the average SIFs are computed

sing K = (1 /l) 
∫ l 

0 

√ 

2 π r σdr. The influence of the length l is inves-

igated and results of calculations are compared with an analytical

ethod given by Panasyuk and Buina (1968) , Berezhnitskii (1967) ,

nd Panasyuk and Berezhnitskii (1966) for an elastic plane weak-

ned by an elliptical hole with a crack terminating at its edge. 

Fig. 3 shows a schematic representation of the problem; a crack

manating from an elliptical hole, in an unbounded solid subjected

o remote Mode I loading. The host material is assumed to be-

ave elastically and isotropically. SIFs are calculated for an ellipse

ith various aspect ratios. The SIFs are averaged over the lengths

/l 1 = 0 . 05 and 0.005. Results of simulations are presented in Fig. 4 .

or comparison purposes, the figure also shows results obtained

y Berezhnitskii. It is observed that the present numerical results

re in excellent agreement with the analytical results, especially

or the voids with larger aspect ratios. 

. Crack propagation: discrete crack dynamics (DCD) 

Discrete crack dynamics, a new tool to study fracture in brit-

le materials, is developed based on four postulates: (i) each crack

an be modelled as a collapsed zero-stiffness inclusion, (ii) crack

rowth is incremental and quasi-static, (iii) crack growth can be

odelled by introducing a small crack (or pseudo-inclusion) ahead

f the existing crack tip in the predetermined propagation direc-

ion at each step. Crack growth can be thought of comprising

equential micro-crack initiation events ahead of the main crack

ip followed by merging of the crack ensemble ( Carpinteri and

ngraffea, 2012; Hoagland et al., 1973; Li and Shah, 1994; Ortiz,

988; Pompe et al., 1978; Wu et al., 1978 ), (iv) two cracks (psudo-

nclusions) can be approximated by a single kinked crack if their

izes and the distance between them satisfy specific criteria, which

ill be studied in detail later. 

The first postulate makes it possible to find the interactions be-

ween cracks and inclusions of the system simultaneously. The sec-
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Fig. 2. Plot of the stress components in the direction orthogonal to the major axis of the elliptical hole under consideration along its perimeter for various configurations. 

The stress fields that are calculated by the multipole method and FEM are represented by the blue and black lines, respectively. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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ond and third postulates allow the introduction of a small crack at

the existing tip to model incremental crack propagation. The di-

rection of crack propagation can be determined using a suitable

mixed mode crack propagation criterion. The fourth postulate is

valid only if the SIF at the tip of the second crack can approximate

the SIF of the two-crack ensemble, which might not be straight.

A consequence of the fourth postulate is that the stress fields be-

tween two adjacent cracks becomes critically high and the field at

the “junction” between the two cracks (see Fig. 5 ) affects the stress

fields and the SIFs at crack tips far away from the junction. Thus, a

modification has to be applied to derive the SIFs of kinked cracks
rom two adjacent cracks; details of the correction are provided in

ection 3.1 . 

Studying crack propagation in elastic materials requires solving

hree distinct problems. Firstly, a method to calculate interactions

etween cracks and inclusions and determine the stress and dis-

lacement fields around the crack must be available. Secondly, the

ethod needs to be capable of computing the fracture parameters,

uch as the stress intensity factors or the energy release rate. In

his study, the multipole method is used to address the first two

roblems. Thirdly, a criteria is needed to characterise the condi-

ions leading to crack propagation, as well as the direction and
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Fig. 3. Schematic representation of the problem; SIF of a crack emanated from an 

elliptical hole, in an unbounded solid subjected to remote Mode I loading. 

Fig. 4. SIF of a crack emanating from an elliptical inclusion with various aspect 

ratios l 2 / l 1 . The blue and black lines are derived from analytical calculations for 

l/l 1 = 0 . 05 , and 0.005 respectively. Data illustrated by triangles are computed by 

the average SIF method along the distance l . (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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ength of propagation. The last problem is addressed in the follow-

ng sections. 

rack propagation criteria 

In most models of brittle fracture the quasi-static evolution of

 crack is governed by the energy release rate along the crack

ath and it is closely related to the metastability of the crack

 Griffith, 1921; Negri and Ortner, 2008 ). Another class of mathe-

atical model for fracture in brittle materials, based primarily on

lobal stability, was proposed by Francfort and Marigo (1998) and

as subsequently been developed by Francfort and Larsen (2003) ,

al Maso et al. (2005) , and recently by Sutula et al. (2017c,b,a) for

ultiple crack propagation in a linear elastic solid under quasi-

tatic conditions. The former formulation of fracture based on the

nergy release rate relies on local stability while the latter re-

uires global stability, i.e. global minimisation of the free energy.

lthough the formulations of the two approaches are quite differ-

nt, it was shown by Francfort and Marigo (1998) and Negri and

rtner (2008) that the resulting solutions should coincide in many

ases. In this paper, we use the energy release rate concept and the
L1

L 2q 

p 
A

B

L1

A

a b 

Fig. 5. a) Two small cracks of length L 1 and L 2 are separated by dista
ocal energy minimisation to model the propagation of individual

icrocracks. 

A fracture criterion is required to accurately determine the

rack propagation path. A number of fracture criteria has been de-

eloped for a crack under critical mixed mode loading ( Erdogan

nd Sih, 1963; Palaniswamy, 1971; Palaniswamy and Knauss, 1972;

ussain et al., 1973; Zhang and Eckert, 2005 ). Here the general

nergy release rate fracture criterion is used. An approximate ex-

ression of the energy release rate ( G ( θ )), as a function of angle-

ependant SIFs, was presented by Chang et al. (2006) . 

 (θ ) = 

K 

2 
I (θ ) + K 

2 
II (θ ) 

E ′ (21) 

The crack initiation angle, θ0 , is derived using the condi-

ions: ∂ G/∂ θ = 0 and ∂ 2 G / ∂ θ2 < 0. The crack initiation condition

s given by G (θ0 ) = G c , where G c = (K 

2 
I C 

+ K 

2 
II C 

) /E ′ and E ′ = E for

lane stress and E/ (1 − ν2 ) for plane strain. 

rack propagation: length scale 

Predictions of crack propagation based on the stress fields at

he notch root (and/or the crack tip) are notoriously inaccurate.

he calculated maximum stress on the surface is unsuitable for

rack propagation prediction in situations where the gradient of

he stress near the notch is high ( Nowell and Dini, 2003; Dini and

ills, 2004; Dini et al., 2006 ). Such high stress fields decrease sig-

ificantly over short distances; it is not the entire stress field that

s important in studying crack propagation, only the field over a

ritical finite distance ahead of the crack tip. This critical distance

elates to the microstructure of the material and it can be deter-

ined using e.g. the Finite Fracture Method (FFM)( Cornetti et al.,

006; Taylor et al., 2005 ). 

FFM is based on the assumption that crack growth is not

mooth and continuous, but instead occurs in a discontinuous

anner. The size of the extension ( L ) is determined by the mi-

rostructure and deformation behaviour of the material. In FFM

he failure condition is obtained using an energy balance similar

o that of Griffith, but assuming a finite amount of crack extension.

or the case of a sharp crack, the value of L = 

1 
π ( 

K C 
σ0 

) 2 is expressed

s a function of two other material constants, the fracture tough-

ess K C and the inherent strength parameter σ 0 . This formula may

equire corrections for crack blunting. A similar material constant

as proposed by Peterson (1959) , Neuber et al. (1946) , and El Had-

ad et al. (1980) using the point method, line method, and imagi-

ary crack method respectively. 

.1. Stress intensity factors of kinked cracks 

It is important at this point to confirm the validity of the last

ostulate, namely that two adjacent cracks can be approximated

y a single kinked crack. In general, two cracks cannot be approx-

mated as one larger crack ( Rubinstein, 1985 ) unless modifications

re applied to the system. In this section, a method to derive the

IFs of a kinked crack comprising two adjacent cracks is discussed.

Consider a pair of cracks, p and q where crack p is short com-

ared to crack q , and their separation δ is small compared to the

ength of either crack ( Fig. 5 a). Under the external loading, crack
L1 L2

q p A B
+L 2

B

c 

nce δ, b) an equivalent kinked crack, and c) two aligned cracks. 
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Fig. 6. The ratio of the optimised distance between two inclusions, δ, to the sec- 

ond crack/inclusion length, L 2 , is plotted versus the ratio of the second to the first 

crack/inclusion length, L 2 / L 1 . 
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q produces disturbance fields in the vicinity of Z p and visa versa.

Kushch et al. (2005) and Kushch and Sevostianov (2015, 2016) de-

rived a formula for the average stress in the p th inclusion < σ > p ,

caused by the q th inclusion in terms of expansion coefficients a n , q , p 
and b n , q , p . 

Berezhnitskii et al. (1973) showed in a system containing two

cracks that under the critical external load, cracks grow initially

one towards the other then merge, and consequently a single

kinked crack is formed. In DCD, cracks are propagated by insert-

ing a microcrack a small distance ahead of the crack tip, in the

direction of crack propagation, as depicted in Fig. 5 a. Therefore, it

is necessary to establish that this ensemble can, to a very good

approximation, represent the equivalent contiguous kinked crack

(in terms of the SIFs and energy release rate) shown in Fig. 5 b, by

suitable choice of the microcrack length and separation distance.

Hence SIFs and energy release rate are computed for the p th crack

at tip B (see Fig. 5 a) also incorporating the disturbance field at tip

B caused by the longer q th crack. To simplify the calculation, the

average disturbance fields introduced in Kushch et al. (2005) are

used. 

The average disturbance fields in one crack in the binary crack

system caused by the other depends on the distance δ ( Fig. 5 a).

If cracks are positioned very close to each other, the large stress

fields of the adjacent tips will reduce the accuracy of the approxi-

mation. Also, if they are positioned too far from each other, the en-

semble in Fig. 5 a is incapable of representing the equivalent kinked

crack in 5 b. Therefore, there is an optimum δ that makes the ap-

proximate SIFs and energy release rate of Fig. 5 a maximally accu-

rate. The case of two aligned cracks in Fig. 5 c is more sensitive to

δ than any other configuration ( Mehdi-Soozani et al., 1987; Peng

and Sung, 2003; Gdoutos, 2012 ), hence δ is optimised for that case

and the value is used for all configurations. 

Since the optimisation of δ also depends upon the crack

lengths, a number of simulations were run using different values

of the crack lengths and junction size δ, to find the optimum δ.

The optimum δ is the distance for which the two crack ensemble

of Fig. 5 a (of length L 1 + L 2 + δ) differs by no more than 1% in its

SIFSs at tip B compared to those of the equivalent contiguous crack

for the aligned cracks case (see Fig. 5 c). Fig. 6 shows the optimum

value of δ for different crack lengths L 1 and L 2 . 

Fig. 7 and Table 1 present results for a successful validation

test performed using kinked crack systems. Normalised SIFs of the

kinked cracks calculated by analytical methods using the complex

potential formulation and Greens function technique ( Lo, 1978;

Chen, 1999 ), and the discrete dislocation density method Hills and

Nowell (1990) are compared with results obtained using the mul-

tipole method for two adjacent cracks separated by the opti-

mum distance δ; the value of δ was obtained from the results of

Fig. 6 for the corresponding b / a ratios used in the comparison, not-
ng that a = L 1 and b = L 2 + δ. Analysing the results shows that

ormalised SIFs calculated using the MPM never differ by more

han 5% for the φ = 15 ◦, 30 °, 45 ° and 60 ° degree cases, com-

ared to the results of Lo (1978) , Hills and Nowell (1990) and

hen (1999) , respectively. Accuracy of the MPM depends on the

umber of harmonic terms, n , used in the calculations. According

o the study performed by Kushch (2013a) , n = 25 gives accurate

esults, which was also confirmed in this study by comparing pre-

ictions to FEM results; hence that value was used here. Data in

able 1 shows that discrepancies are larger for larger angles φ. 

.2. Crack propagation: simulation steps 

In the DCD method, crack propagation is a discretised pro-

ess (based on the concepts of FFM Cornetti et al. (2006) ;

aylor et al. (2005) ), in which the crack advances incrementally at

ach simulation step. The general algorithm to study the evolution

f a crack is as follows. If the crack propagation condition is satis-

ed, a micro-crack is added ahead of the main crack-tip at a dis-

ance equal to the optimal spacing determined in 3.1 . The length

f the micro-crack (the crack extension) is determined from the

heory of FFM; the angle of orientation of the micro-crack is pre-

cribed according to the adopted fracture criterion. The arrange-

ent of the original crack and the new crack is an approxima-

ion of a kinked crack, using the theory developed in Section 3.1 .

ccordingly, the SIFs and the energy of the approximated kinked

rack are calculated. 

A problem arises in the next step of the simulation when the

inked crack propagates further. The discretised process of crack

ropagation requires introducing another micro-crack at the tip of

he crack/micro-crack ensemble. At this point, calculating the SIFs

f the propagated kinked crack comprising one main crack and a

equence of two micro-cracks, as shown in Fig. 8 a, is not straight-

orward. 

In fact, the crack propagation path cannot be determined simply

y adding a succession of small micro-cracks to the main crack-tip,

ecause of the shielding effect associated with the micro-cracks

n this configuration. Crack-tip shielding caused by micro-cracking

as studied by Chudnovsky et al. (1984) , Hutchinson (1987) and

hum and Hutchinson (1990) . An analytical study was done by

ubinstein (1985) for an array of aligned micro-cracks ahead of

 main crack-tip. It was proved that by increasing the number of

icro-cracks used to represent the crack extension, the effect of

he main crack on the local SIFs and stress field distributions of

he leading micro-crack progressively diminishes. Hence the esti-

ated crack propagation direction and energy release rate based

n the leading micro-crack becomes unreliable. Precise prediction

f the SIFs and energy release rate are necessary to determine the

rack propagation path. Therefore, another method to determine

he crack propagation path is required. Here a solution is given for

 system of three cracks, which is then generalised for longer crack

ropagation in the DCD method. 

The problem of a propagating kinked crack may be addressed

y approximating a set of three cracks, comprising a main crack

nd two micro-cracks, using just two cracks: either by replacing

he main crack and the first micro-crack with an equivalent crack

 Fig. 8 b), or by merging the two micro-cracks ( Fig. 8 c) representing

he crack extension. Before using either of these approximations, it

s necessary to assess their accuracy and limitations. The point of

his approach is to always represent a propagating kinked crack us-

ng only a main crack and a single micro-crack ahead of it, since

t was proved in 3.1 that the SIFs and energy release rate for this

onfiguration are an accurate representation of the actual propa-

ating kinked crack provided the optimal spacing between them is

sed, and the micro-crack length is based upon FFM theory. 
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(a) (b) 

Fig. 7. a) Kinked crack benchmark problem. Appropriate δ is selected according to Fig. 6 ; b) Normalised SIF of a kinked crack with b/a = 1 using the MPM method. 

Table 1 

Variation of the normalised SIF ( K/σ
√ 

πa ) with angle for a kinked crack of the same size as the original crack under a uniform tensile stress. Suffix B refers to the endpoint 

(tip B) of the kinked crack (see Fig. 7 ). Methods 1, 2, 3 and 4 are the MPM method, the complex potential formulation, discrete dislocation density and Greens function 

technique, respectively ( Lo, 1978; Chen, 1999; Hills and Nowell, 1990 ). 

Angle ( ϕ°) Method K IB K IIB 
Size b/a Size b/a 

1 0.5 0.1 0.05 1 0.5 0.1 0.05 

15 ° 1 1.3 1.15 0.98 0.97 0.37 0.31 0.21 0.20 

2 – 1.15 1.01 0.98 – 0.32 0.23 0.19 

3 1.32 – 0.97 – 0.41 – 0.22 –

4 1.32 1.15 0.99 0.98 0.38 0.32 0.22 0.19 

30 ° 1 1.07 0.96 0.85 0.86 0.69 0.58 0.4 0.38 

2 – – – – – – – –

3 1.08 – 0.83 – 0.69 – 0.41 –

4 1.08 0.95 0.86 0.86 0.68 0.57 0.4 0.36 

45 ° 1 0.74 0.67 0.64 0.69 0.87 0.76 0.52 0.49 

2 – 0.66 0.66 0.69 – 0.72 0.54 0.47 

3 0.76 – 0.66 – 0.83 – 0.52 –

4 0.74 0.66 0.66 0.69 0.84 0.72 0.52 0.46 

60 ° 1 0.37 0.34 0.41 0.49 0.91 0.82 0.58 0.57 

2 – – – – – – – –

3 0.38 – 0.41 – 0.82 – 0.55 –

4 0.39 0.35 0.43 0.49 0.83 0.74 0.56 0.52 

75 ° 1 0.04 0.01 0.15 0.28 0.78 0.79 0.56 0.55 

2 – 0.1 0.23 0.28 – 0.64 0.51 0.48 

3 0.08 – 0.19 – 0.67 – 0.52 –

4 0.09 0.07 0.2 0.29 0.68 0.65 0.52 0.48 
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It was shown in Bilby and Cardew (1975) , Cotterell and

ice (1980) , and Suresh (1983) that the SIFs of a kinked crack de-

end on the inclination angle of the crack extension and the SIFs of

he main crack tip prior to its extension. Kitagawa et al. (1975) and

echtle et al. (2010) showed that, from the standpoint of the SIFs,

 kinked crack can be approximated by a straight line crack in

hich the orientation is the same as that of the crack extension;

nd Chen (1999) showed that the angle between the crack-tip and

oad directions determines the proportion of Mode I and II, while

he distance between the two extents of the crack ensemble is a

ominant factor on the SIFs. 

Considering the finding of these studies and the fact that the

roportion of Mode I and II at the lead crack tip determines
he orientation of the next increment of crack extension ( He and

utchinson, 1989; Hutchinson, 1990 ), it is clear that the orienta-

ion of the last micro-crack in the problem of three cracks shown

n Fig. 8 a must remain the same in any approximate representa-

ion. If the main crack and the first micro-crack are replaced with

n equivalent crack as shown in Fig. 8 b, the length of the equiva-

ent crack is roughly the same as the distance between the extents

f the crack ensemble, thus, according to Chen (1999) the SIFs in

ig. 8 b should be a good approximation of those at the actual prop-

gated crack-tip. 

Fig. 8 d shows the orientations of the last two micro-cracks in

heir local coordinate systems. It might be more accurate to merge

he two micro-cracks ( Fig. 8 c) rather than replace the main crack
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Fig. 8. Schematic representation of simulation steps. (a) propagated kinked crack, (b) an equivalent crack, (c) merge micro-cracks, (d) micro-cracks orientations. 
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and first micro-crack with an equivalent crack. The criterion for

whether to merge the two consecutive micro-cracks is a function

of the relative angle between them ( �θ = θ2 − θ1 ): if the mis-

match in orientation ( �θ ) of the two micro-cracks is less than a

threshold amount, then the cracks will be merged. The threshold

angular mismatch is that which produces a better estimate of the

SIFs at the lead crack tip by merging the two micro-cracks, than

what is obtained from the alternative combination of equivalent

crack and single micro-crack; it depends on the material and ge-

ometry of the problem. The same methodology can be used in all

of the iterative steps in predicting the crack trajectory. 

The above methodology is adequate to deal with individual

micro-cracks propagating within a loaded system in the presence

of macro-cracks and inclusions. This can be extended to deal with

a network of micro-cracks for example by performing minimisa-

tion of the total energy of the mechanical system with respect to

the crack extension directions and crack extension lengths to solve

for the evolution of the mechanical system over time, as proposed

in Sutula et al. (2017c,b,a) . 

3.3. Finite-size problems 

The aim of this section is to extend DCD to finite-sized prob-

lems using a linear superposition scheme to incorporate boundary

effects; the approach is the same as that commonly used in dis-

crete dislocation dynamics modelling. The superposition principle

is exact at each simulation step and it requires no modification to

the multipole method described here. Let S be the domain of the

boundary-value problem with boundary Γ delimiting a solid body

characterised by stress and displacement fields σ( x , y ) and u ( x , y ).

By virtue of the linear superposition principle, these can be writ-

ten as the sum of two fields: σ = ˜ σ + ˆ σ and u = ˜ u + ˆ u where ˜ σ and

˜ u represent fields of the infinite domain containing the inclusions,

and ˆ σ and ˆ u represent the fields of the finite-size inclusion-free

medium 

ˆ S coinciding with S , in response to the corrective bound-

ary conditions. As a result of inclusion fields, surface ˜ Γ , which co-

incides with Γ, experiences a traction 

˜ t and displacement ˜ u . In

order for the superposition of the fields in 

˜ S and 

ˆ S to equate to

the fields in S , the surface ˆ Γ must have, for every simulation step,

- ̃ t and - ̃  u applied over it in addition to the boundary conditions

applied on Γ . 

To summarise, the problem under consideration is a 2D lin-

ear elastic body of area S comprising elastic inclusions and holes

( Fig. 9 ) subjected to the remote far-field displacement and traction

boundary conditions. The elastic properties of the matrix material

are given by the shear modulus μ0 and Poisson’s ratio ν0 , and

the elastic properties of the i th inclusion are given by the shear

modulus μi and Poisson’s ratio ν i . The stress and displacement

fields of the system are determined by decomposing the problem
f the finite body with inclusions into two problems: the prob-

em of interacting inclusions in the homogeneous infinite solid and

he complementary problem for the homogeneous body without

nclusions subject to the corrective boundary conditions. The for-

er is solved using the multipole method (MPM) formulation, and

he latter can be solved using a numerical scheme such as the fi-

ite element or boundary element methods. The complex variables

oundary element method (CVBEM) Aliabadi and Rooke (1991) ,

ogilevskaya and Linkov (1998) , and Zografos (2011) uses the

ame mathematical framework as the MPM and is therefore

hosen to solve the finite boundary value problem in the ab-

ence of inclusions. In this study, the CVBEM code developed by

ografos (2011) and Zografos and Dini (2009) was integrated with

he DCD method to determine the effect of finite geometry on

rack propagation. 

. Numerical results 

Simulations in this section were conducted to establish the va-

idity of the DCD method, which could become a standard mi-

romechanics model for dealing with crack propagation in net-

orks of inclusions or populations of other objects that can be

epresented as inclusions or collapsed inclusions. 

To start, the DCD method was used to predict the propagation

f an inclined crack under uniaxial tensile loading in the x 2 di-

ection. Fig. 10 shows the predicted propagation path of an in-

lined crack for various inclination angles. Fig. 10 shows that the

rack propagation path tends toward the direction of maximum

ode I loading. This agrees with previous calculations ( Patrıcio and

attheij, 2007; Cherepanov, 1979; Meggiolaro et al., 2005 ), as well

s accepted theoretical and experimental understanding of crack

ropagation in brittle materials. 

The same problem was solved under uniform compression in

he x 2 direction. Fig. 11 graphically compares the numerical re-

ults obtained using DCD and Boundary Element methods given by

aeri et al. (2014) , and demonstrates the accuracy and validity of

he DCD method. Results are in agreement with other predictions

iven by Horii and Nemat-Nasser (1986) and Nemat-Nasser and

orii (1982) . 

Sets of simulations were run to establish the effect of impurity

nd micro-crack interactions on the deflection of the main crack-

ath. The crack propagation trajectory in the vicinity of circular

oft and hard inclusions was studied on a plate with side length

0 μm. The plate was loaded remotely in tension in the x 2 direc-

ion. The initial crack length a and the inclusion radius r were set

o 1 μm, and the inclusion was centred at (5, 1.5) μm. 

Fig. 12 a shows the accuracy of the predicted crack propagation

ath in an infinite system for a hard inclusion case with inclu-

ion stiffness 10 times that of the matrix. The green ( n = 1 ), blue
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Fig. 9. Decomposition of the finite elastic body with inclusions into the problem of interacting elliptical inclusions and the complementary problem for the finite body 

without inclusions. 

Fig. 10. Crack propagation path (dashed line) of cracks (solid lines) with different 

inclination angles under uniform tension. The initial size of the crack is 5 μ m. The 

initial inclination angles of 5 °, 25 °, 45 °, 65 °, 85 ° are presented by black, purple, blue, 

green, and red lines respectively. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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(

 n = 3 ) and red ( n = 9 ) curves represent crack paths for a different

umber of harmonic terms in the expansion. The crack paths are
(a) 

300 450 650

ig. 11. Simulation of the crack propagation process under compression in pre-cracked s

 Haeri et al., 2014 ). 
ndistinguishable for n = 9 and higher values of n ; this value of n

as used in subsequent calculations. 

Fig. 12 b and c show crack path deflection in the presence of cir-

ular hard and soft inclusions in a finite plate. The plate was fixed

t the bottom edge with load distributed uniformly on the top

dge. The relative stiffness of the inclusion to the matrix was taken

o be 2, 10, 100, and 1/2, 1/10 for the hard and soft inclusion cases,

espectively. Fig. 12 d shows that DCD simulations are compara-

le to modelling results in Nielsen et al. (2012) . The results also

gree with other simulations and experimental predictions given

y Bouchard (2005) , Patton (1991) , Patton and Santare (1993) , and

isseroni et al. (2015) . 

Finally, crack paths predicted by the DCD method are com-

ared to the asymptotic model and experimental result presented

n Misseroni et al. (2015) . A 120 × 95 mm plate containing el-

iptical holes was subjected to Mode-I loading; elliptical holes

ith major and minor axes of a = 4 and b = 0 . 6 mm were placed

t (x 101 , x 201 ) = (75 , −9) and (x 102 , x 202 ) = (105 , 8) mm locations.

he inclinations of the elliptical voids are θ1 = 0 and θ2 = π/ 2 ,

espectively. The experimental set up shown in Fig. 13 was re-

roduced in the simulations. In Fig. 13 , the blue and black
(b) 

650300 450

pecimens for 30 °, 45 ° and 65 ° cracks. (a) DCD and (b) Boundary Element Method 
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Fig. 12. Deviation of the crack propagation path in the vicinity of a circular inclusion. (a) Crack path predicted by DCD using different numbers of harmonic terms: n = 1 

(green), n = 3 (blue) and n = 9 (red). (b) Crack path deviation is shown for a range of relative stiffness of the inclusion to the matrix, and (c) a magnified view of the results 

in (b), and (d) a comparison to results in Nielsen et al. (2012) for the same view as in (c). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

-

-

Fig. 13. Experimental crack trajectory (red) compared to the asymptotic model 

(blue) Misseroni et al. (2015) , and the DCD method (black) for the interaction of 

a crack with two elliptical voids. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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curves show the crack path predicted by the asymptotic model

( Misseroni et al., 2015 ) and the DCD method, respectively, whereas

the red curve shows the actual crack path obtained in the exper-

iment. Excellent agreement between the analytical results of the

asymptotic solution, the DCD method and the experiments is ob-

served, further validating the DCD method. 
. Conclusion and further work 

In this paper, the so-called Discrete Crack Dynamics (DCD)

ethod was developed, based upon the multipole method (MPM),

o simulate the interactions between a finite array of arbitrarily

riented cracks and inclusions with varying aspect ratios and ma-

erial properties in a finite geometry. The method provides an ac-

urate semi-analytical tool to derive full stress and displacement

elds, as well as stress intensity factors and energy release rates of

racks, and to predict low-speed crack propagation through com-

licated defect networks in brittle or quasi-brittle materials in a

ery efficient way that is much faster than computational methods

uch as the extended finite element method. A set of test prob-

ems with known analytical, computational and experimental re-

ults was used to assess the method, and it was found to be very

ccurate for these cases. Forthcoming studies will examine in detail

volving low-speed crack networks in brittle or quasi-brittle ma-

erials, cracks developing very near inclusion interfaces and grain

oundaries, and predict the paths of cracks propagating through

rain networks with a background inclusion distribution. 
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ppendix A. Basis functions 

In a multi-inclusion system, the concept of self-consistency be-

omes important. Each inclusion ( q th) is loaded by the stress field

enerated by the reminder of the inclusions (cracks) as well as the

xternal far-field traction. Therefore, the far-field traction of each

nclusion is modified to a summation of the external traction and

tress fields generated by the rest of inclusions. Obtaining the far-

eld traction of each inclusion ( q th) requires the re-expansion of

he singular fields created by the rest of the inclusions into reg-

lar fields in the vicinity and the local coordinate system of the

 th inclusion. For this purpose, the re-expansion formula is defined

 Kushch et al., 2005 ) by 

 

−n 
p = 

∑ 

m 

ηpq 
nm 

v −m 

q (n � 1) (A.1)

here ηpq 
nm 

= ηnm 

(z pq , d p , d q ) is the re-expansion coefficient. A se-

ies form of coefficients is derived by using Hyper-Geometric func-

ions to expand v −n 
p = [ z p /d p ±

√ 

(z p /d p ) 2 − 1 ] −n , then Taylor ex-

ansion of the z p in the vicinity of the z q , and finally re-expansion

f z n q to Hyper-Geometric functions. The obtained series of expan-

ion coefficient are 

pq 
nm 

=n 

(
d p 

2 

)n 

(−1) m 

∞ ∑ 

l=0 

(
d q 

2 

)2 l+ m 

M nml (d p , d q ) 
(n + m + 2 l−1)! 

( Z pq ) n + m +2 l 

(A.2) 

here 

 nml (d p , d q ) = 

l ∑ 

k =0 

(d p /d q ) 2 k 

k !(l − k )!(k + n )!(m + l − k )! 
(A.3)

Converting a “singular” elliptical harmonic v −n 
p to a series of

yper-Geometric functions and applying an additional Taylor ex-

ansion provides an additional geometric restriction on the con-

ergence of ηpq 
nm 

series. Therefore, another computationally expen-

ive formula for the nearest neighbours ( Yardley et al., 1999 ) shall

e used. This condition defines the convergence area for any two

on-overlapping ellipses. 

pq 
nm 

= 

1 

π

∫ π

0 

e 
−nArccosh ( 

d q Cosηq + z pq 
d p 

) 
Cos (mηq ) dηq (A.4) 

Another useful formula that is used in this context is a differ-

ntiation of the re-expansion formula with respect to the z p . 

∂v −n 
p 

∂z p 
= 

∑ 

k 

μpq 

nk 
(v q ) −k (A.5) 

The above mentioned method is used to evaluate fields in a sys-

em containing a finite array of aligned inclusions. 

ppendix B. Expansion coefficients 

This section is concluded with three parts dealing with a

erivation of the a npq , and b npq , and associated coefficients of

he uniform far-field load. While this section is of considerable

athematical interest, it is not central to study crack/inclusion

nteractions in earlier sections. The reader may pass directly to

ection B.1 at this time and refer back when necessary. Before ad-

ressing the main derivation of the coefficients, some lemmas are

ntroduced and proved. 
.1. Lemma 1 

 

s ′ 
p = 

∂ϕ 

s 
p 

∂y p 

= 

∂(ϕ 

r 
pq ) 

∂y p 
e iθpq = 

∂(ϕ 

r 
pq ) 

∂y q 

∂y q 

∂y p 
e iθpq (B.1) 

where 
∂y q 
∂y p 

= e −iθpq , so 

ϕ 

s ′ 
p = ϕ 

r′ 
pq . (B.2) 

.2. Lemma 2 

z q = −Z pq + z p 

 q e 
iθq = −Z pq + y p e 

iθp (B.3) 

y q = −Z pq e 
−iθq + y p e 

−iθpq (B.4) 

.3. Lemma 3 

In the first step, the formula (v p + 

1 
v p ) 

∂v −n 
p 

∂z p 
has to be deter-

ined, where y p = 

D p 
2 (v p + 

1 
v p ) and v p = exp ξp . 

v p + 

1 

v p 

)
∂v −n 

p 

∂z p 
= 

∂v −n +1 
p 

∂z p 
+ 

∂v −n −1 
p 

∂z p 
− 2 

d p 
v −n 

p 

= 

∑ 

m ±
(μpq 

n −1 ,m 

+ μpq 
n +1 ,m 

) v −m 

q − 2 

d p 
v −n 

p (B.5) 

hen, 

 p ϕ 

s ′ 
p = z p e 

−iθp 
∂ 

∂y p 
ϕ 

s 
p = z p e 

−iθp 
∂ϕ 

s 
p 

∂z p 

∂z p 

∂y p 
= z p 

∂ϕ 

s 
p 

∂z p 

= 

d p 

2 

(
v p + 

1 

v p 

) ∞ ∑ 

n =1 

A np 

∂v −n 
p 

∂z p 

= 

d p 

2 

∞ ∑ 

n =1 

A np 

∑ 

m ±
(μpq 

n −1 ,m 

+ μpq 
n +1 ,m 

) v −m 

q 

−
∞ ∑ 

n =1 

A np 

∑ 

m ±
ηpq 

n,m 

v −m 

q (B.6) 

Thus, 

y p ϕ 

s ′ 
p = 

∑ 

m ±

{ ∞ ∑ 

n =1 

A np 

[(
μpq 

n −1 ,m 

+ μpq 
n +1 ,m 

)d p 

2 

− ηpq 
n,m 

]}
v −m 

q (B.7) 

.4. Lemma 4 

ϕ 

s ′ 
p = e iθp 

∞ ∑ 

n =1 

A np 

∂v −n 
p 

∂z p 
= e iθp 

∑ 

m ±

( 

∞ ∑ 

n =1 

A np μ
pq 
n,m 

) 

v −m 

q (B.8) 

.5. Lemma 5 

v −n −1 
p 

sinh ξp 
= 2 

v −n −1 
p 

v p − 1 
v p 

(B.9) 

∂v −n 
p 

∂z p 
= −2 n 

d p 

v −n 
p 

v p − 1 
v p 

(B.10) 

v −n 
p 

v p − 1 
v p 

= − d p 

2 n 

∂v −n 
p 

∂z p 
= − d p 

2 n 

∑ 

m ±
μpq 

n,m 

v −m 

q (B.11) 
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So, 

v −n −1 
p 

sinh ξp 
= − d p 

n + 1 

∑ 

m ±
μpq 

n +1 ,m 

v −m 

q (B.12)

B.6. Lemma 6 

∑ 

m ±
m 

v −m −1 
q 

sinh ξq 
a mpq = 2 

∑ 

m � 1 

ma mpq 

v −m −1 
q − v m +1 

q 

v q − 1 
v q 

= 2 

∑ 

m � 1 

m 

v q 
a mpq 

v −m 

q − v m 

q 

v q − 1 
v q 

(B.13)

Thus, 

a mpq = a −mpq (B.14)

B.7. Lemma 7 

∑ 

m ±
m a mpq 

sinh ζ0 q 

sinh ξq 

(
v q 
v 0 q 

− v 0 q 
v q 

)
v −m 

q 

= 

∑ 

m ±
m a mpq 

[(
1 − v −2 

0 q 

)
v −m 

q − 1 

2 

(v 0 q − 1 

v 0 q 
) 2 

v −m −1 
q 

sinh ξq 

]
(B.15)

The second term can be written as: 

−1 

2 

(v 0 q − 1 

v 0 q 
) 2 

∑ 

m ±
m a mpq 

v −m −1 
q 

sinh ξq 

= −
(

v 0 q − 1 

v 0 q 

)2 ∑ 

m> 0 

a mpq 
m 

v q 
v −m 

q − v m 

q 

v q − 1 
v q 

= −
(

v 0 q − 1 

v 0 q 

)2 ∑ 

m> 0 

m −1 ∑ 

k =0 

a mpq m v 2 k −m 

q 

= −
(

v 0 q − 1 

v 0 q 

)2 ∑ 

m ±

∞ ∑ 

k =0 

| 2 k + m | a | 2 k + m | pq m v −m 

q (B.16)

Using Formula ( B.23 ), we have: 

−1 

2 

(
v 0 q − 1 

v 0 q 

)2 ∑ 

m ±
m a mpq 

v −m −1 
q 

sinh ξq 

= −
(

v 0 q − 1 

v 0 q 

)2 ∑ 

m ±

∑ 

n � 1 

∞ ∑ 

k =0 

| 2 k + m | A np e 
−iθpq ηpq 

n, | 2 k + m | v 
−m 

q (B.17)

Thus, Eq. (B.15) becomes: 

∑ 

m ±
m a mpq 

sinh ζ0 q 

sinh ξq 

(
v q 
v 0 q −

v 0 q 
v q 

)
v −m 

q 

= 

∑ 

m ±

∞ ∑ 

n =1 

{
m A np e 

−iθpq ηpq 
nm 

(
1 − v −2 

0 q 

)
−(v 0 q − 1 

v 0 q ) 
2 

∞ ∑ 

k =0 

| 2 k + m | A np e 
−iθpq ηpq 

n, | 2 k + m | 

}
v −m 

q 

(B.18)

B.1. Expansion coefficients: a npq 

The singular disturbance field induced by the p th inclusion u s p
( lim | z|→∞ 

| u s p | = 0 ) can be expanded to the regular field in the q th

coordinate system. The transformation from the y local coordinate

system requires a rotational transformation of the coordinate sys-

tems. 

u 

s 
p (z p ) = u 

r 
pq (z q ) 

u 

s 
p (y p ) e 

iθp = u 

r 
pq (y q ) e 

iθq (B.19)
Both u s p (y p ) and u r pq (y q ) are written in terms of complex poten-

ials 7 format: 

u 

s 
p (y p ) = κϕ 

s 
p (y p ) − (y p − ȳ p ) ϕ 

s ′ 
p (y p ) − ψ 

s 
p (y p ) 

 

r 
pq (y q ) = κϕ 

r 
pq (y q ) − (y q − ȳ q ) ϕ 

r′ 
pq (y q ) − ψ 

r 
pq (y q ) (B.20)

here ϕ 

r′ 
pq (y q ) = 

∂ϕ r pq 

∂y q 
and ϕ 

s ′ 
p (y p ) = 

∂ϕ s p 
∂y p 

. By equating similar terms

n u s p (z p ) and u r pq (z q ) , the coefficients a mpq and b mpq can be de-

ived. By applying Eq. (B.20) to ϕ 

s 
p , we obtain 

 

s 
p (y p ) = ϕ 

r 
pq (y p ) e 

iθpq (B.21)

∞ ∑ 

m =1 

A mp e 
−iθpq v −m 

p = 

∞ ∑ 

n = −∞ 

a npq v −n 
q 

∞ ∑ 

 =1 

A mp e 
−iθpq 

{ ∑ 

n � 1 

ηpq 
mn v −n 

q 

} 

= 

∞ ∑ 

n = −∞ 

a npq v −n 
q (B.22)

rom where, 

a npq = 

∞ ∑ 

m =1 

A mp e 
−iθpq ηpq 

mn . (B.23)

.2. Expansion coefficients: b npq 

Determination of b npq is somewhat more complicated sand re-

uires to equate the second term in Eq. (B.20) as: 

( y p − y p ) ϕ 

s ′ 
p − ψ 

s 
p 

)
e −iθpq = ( y q − y q ) ϕ 

r′ 
pq − ψ 

r 
pq . (B.24)

By substituting y q , and y q from ( B.4 ) into ( B.24 ) and using

emma B.2 , ψ 

r 
pq is derived as: 

 

r 
pq = (−Z pq e 

iθq + Z pq e 
−iθq ) ϕ 

s ′ 
p + y p (e iθpq − e −iθpq ) ϕ 

s ′ 
p + ψ 

s 
p e 

−iθpq 

(B.25)

nd then ψ 

r′ 
pq is determined by finding the conjugate of the func-

ion. 

 

r 
pq = (−Z pq e 

−iθq + Z pq e 
iθq ) ϕ 

s ′ 
p + y p (e −iθpq − e iθpq ) ϕ 

s ′ 
p + ψ 

s 
p e 

iθpq 

(B.26)

Using Lemmas B.7 , and B.8 , ψ 

r 
pq is re-written as: 

 

r 
pq = 

∑ 

m ±

{ 

∞ ∑ 

n =1 

e iθp A np μ
pq 
n,m 

(−Z pq e 
−iθq + Z pq e 

iθq ) 

+ 

∞ ∑ 

n =1 

A np 

[
(μpq 

n −1 ,m 

+ μpq 
n +1 ,m 

) 
d p 

2 

− ηpq 
n,m 

]
(e −iθpq − e iθpq ) 

} 

×v −m 

q + ψ 

s 
p e 

iθpq (B.27)

Here, ψ 

s 
p is presented using the formula derived by

ushch et al. (2005) where, 

 

s 
p = 

∑ 

m ±

{ 

∞ ∑ 

n =1 

[
B np η

pq 
n,m 

− nA np (1 − v −2 
0 p ) η

pq 
n,m 

−d p 

2 

(
v 0 p − 1 

v 0 p 

)2 
nA np 

n + 1 

μpq 
n +1 ,m 

] } 

v −m 

q (B.28)

Substituting Eq. (B.28) into ( B.27 ) results into ψ 

r 
pq as: 

 

r 
pq = 

∑ 

m ±

∞ ∑ 

n =1 

{
A np 

{ 

e iθp μpq 
n,m 

(−Z pq e 
−iθq + Z pq e 

iθq ) 

+ 

[
(μpq 

n −1 ,m 

+ μpq 
n +1 ,m 

) 
d p 

2 

− ηpq 
n,m 

]
(e −iθpq − e iθpq ) 
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ψ  

 

e

�

�

−ne iθpq (1 − v −2 
0 p ) η

pq 
n,m 

− d p 

2 

(
v 0 p − 1 

v 0 p 

)2 

e iθpq 
n 

n + 1 

μpq 
n +1 ,m 

} 

+ B np e 
iθpq ηpq 

n,m 

}
v −m 

q (B.29) 

On the other hand, complex potential ψ 

r 
pq (y q ) is defined in

q. (12) as : 

 

r 
pq (y q ) = 

∑ 

m ±

[
b mpq − ma mpq 

sinh ζ0 q 

sinh ξq 

(
v q 
v 0 q 

− v 0 q 
v q 

)]
v −m 

q (B.30)

Using Lemma B.18 , ψ 

r 
pq (y q ) becomes: 

 

r 
pq (y q ) = 

∑ 

m ±

{
b mpq −

∞ ∑ 

n =1 

{ 

m A np e 
−iθpq ηpq 

nm 

(1 − v −2 
0 q ) 

−
(

v 0 q − 1 

v 0 q 

)2 ∞ ∑ 

k =0 

| 2 k + m | A np e 
−iθpq ηpq 

n, | 2 k + m | 
} 

}
v −m 

q 

(B.31) 

By equating Eqs. (B.31) and ( B.29 ), coefficients b npq s are derived

or ( n > 0) as follow: 

b npq = 

∑ ∞ 

n =1 B mp e 
−iθpq ηpq 

mn 

= 

∑ ∞ 

n =1 A mp 

{[
ne −iθpq (1 − v −2 

0 q 
) − me iθpq (1 − v −2 

0 p 
) 
]
ηpq 

mn 

− d p 
2 

m 

m +1 

(
v 0 p − 1 

v 0 p 

)2 

μpq 
m +1 ,n 

+ 

(
v 0 q − 1 

v 0 q 

)2 ∑ ∞ 

k =0 | 2 k + n | ηpq 

m, | 2 k + n | 
+ 

(
z pq e 

iθq − z pq e 
−iθq 

)
e iθp μpq 

m,n 

+ 

[ 
(μpq 

m −1 ,n 
+ μpq 

m +1 ,n 
) 

d p 
2 

− ηpq 
mn 

] 
(e −iθpq − e iθpq ) 

}
(B.32) 

For ( n < 0), we can either use 

 npq = 

∞ ∑ 

n =1 

B mp e 
−iθpq ηpq 

mn 

= 

∞ ∑ 

n =1 

A mp 

{[
ne −iθpq (1 − v −2 

0 q ) − me iθpq (1 − v −2 
0 p ) 

]
ηpq 

mn 

−d p 

2 

m 

m + 1 

(
v 0 p − 1 

v 0 p 

)2 

μpq 
m +1 ,n 

+ 

(
v 0 q − 1 

v 0 q 

)2 ∞ ∑ 

k = 1 
| 2 k + n | ηpq 

m, | 2 k + n | 

+ 

(
z pq e 

iθq − z pq e 
−iθq 

)
e iθp μpq 

m,n 

+ 

[
(μpq 

m −1 ,n 
+ μpq 

m +1 ,n 
) 

d p 

2 

− ηpq 
mn 

]
(e −iθpq − e iθpq ) 

}
(B.33) 

r use the equation below, where the ( n > 0). 

 −npq = b npq − 2 a npq | n | sinh 2 ξ0 q (B.34)

.3. Expansion coefficient of uniform far-field load 

Complex potentials for uniform far-field loading have to be se-

ected as a linear function of z due to constraints imposed by the

isplacement and traction in the complex potential form. Poten-

ials are chosen as: 

 0 = �1 z; ψ 0 = �2 z (B.35)

Here, u 0 q , and u 00 q are displacement fields caused by the far-

eld loading in the global ( z ) coordinate, and in the local y q co-

rdinate systems respectively. By substituting ϕ0 , and ψ 0 into u 0 q 
nd using formulas z = Z q + z q , and z q = y q e 
iθq , u 0 q is derived in

erms of u 00 q . 

 0 q (z) = κϕ 0 (z) − (z − z̄ ) ϕ 

′ 
0 
(z) − ψ 0 (z) 

= κ�1 z − (z − z̄ ) �1 − �2 z 

= 

(
κ�1 Z q − (Z q − Z q ) �1 − �2 Z q 

)
+ 

(
κ�1 z q − (z q − z q ) �1 − �2 z q 

)
= u 00 q (Z q ) + u 01 q (z q ) (B.36) 

As far-field load is a regular field at infinity, complex potentials

hould obey 

ϕ 

r 
0 q (y q ) = 

∑ 

m ±
a m 0 q v −m 

q 

 

r 
0 q (y q ) = 

∑ 

m ±

[
b m 0 q − ma m 0 q 

sinh ζ0 q 

sinh ξq 

(
v q 
v 0 q 

− v 0 q 
v q 

)]
v −m 

q (B.37) 

here 0 denotes the far-field load. Using formula a mpq = a −mpq ,

nd b mpq = b −mpq + 2 ma mpq sinh 2 ζ0 q , complex potentials are de-

ived as: 

ϕ 

r 
0 q (y q ) = a 00 q + a 10 q (v −1 

q + v q ) 

 

r 
0 q (y q ) = b 00 q + 

2 z q 

d q 

[
b −10 q + a 10 q 

(
1 − 1 

v 2 
0 q 

)]
(B.38) 

Using the u 0 q (z) = e iθq u q (y q ) relation between displacements in

oordinate systems z , and y q , complex potentials in the y q coordi-

ate are predicted. Displacements are calculated by: 

 0 q (z) = u 00 q (Z q ) + 

(
κ�1 z q − (z q − z q ) �1 − �2 z q 

)
(B.39)

 q (y q ) = κϕ 

r 
0 q (y q ) − (y q − ȳ q ) ϕ 

r ′ 
0 q 

(y q ) − ψ 

r 
0 q 

(y q ) (B.40)

Displacement u q contains two parts, a constant term and a lin-

ar function of coordinate. 

 q (y q ) = 

(
κϕ 00 − (y q − ȳ q ) ϕ 

′ 
00 

− ψ 00 

)
+ 

(
κϕ 01 (y q ) − (y q − ȳ q ) ϕ 

′ 
01 

(y q ) − ψ 01 (y q ) 
)

(B.41) 

Using formulas ( B.38 ) and ( B.39 ), expansion coefficients are de-

ermined as follow: 

 00 q (Z q ) = (κa 00 q − b 00 q ) e 
iθq = κ�1 Z q − (Z q − Z q ) �1 − �2 Z q 

(B.42) 

 01 = e −iθq �1 z q = 

2 a 10 q 

d q 
z q (B.43)

ence, 

a 10 q = a −10 q = 

D q �1 

2 

. (B.44) 

etermination of b 10 q is somehow involved. All remaining terms in

qs. (B.39 ) and (B.41) are equated. Thus, 

 01 (y q ) e 
iθq = z q (�2 − �1 ) + z q e 

−2 iθq �1 (B.45)

Substituting ψ 01 ( y q ) to the formula using Eq. (B.38) results the

xpansion coefficient of unifor far-field as: 

b −10 q = 

e 2 iθq D q 

2 

(�2 − �1 ) + 

a 10 q 

v 2 
0 q 

. (B.46) 

In the case of far stress tensor S = s i j , �1 , and �2 are: 

1 = 

s 11 + s 22 

8 μ

2 = �1 + 

s 22 − s 11 + 2 is 12 
(B.47) 
4 μ
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