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 Abstract 

In Europe the regulations that limit vehicle emissions, the Euro Standards, have failed 

to effectively tackle pollutant emissions in the real world. This thesis contains an 

appraisal of the real world emissions of modern European vehicles, which were 

identified as a major cause of uncertainty in UK policy with respect to compliance with 

air pollution legislation. The thesis includes key background information on air pollution 

and its control in the UK and a comprehensive review of the existing literature relating 

to real world emissions of petrol and diesel passenger cars.  

The real world emissions performance of modern vehicles was assessed using 

Portable Emissions Measurement System (PEMS) data, provided by Emissions 

Analytics, which included 147 Euro 5 and 6 diesel and petrol vehicles. Comparisons 

were made to the emissions factors of the recommended air quality transport model 

of the European Union, COPERT, as well as the Euro standard type approval limits. 

The potential impact of these real world emissions was also assessed using the UK 

Integrated Assessment Model to perform scenario analysis up to 2030. Scenarios 

were used to explore the potential effect of different passenger car emissions factors 

on total UK NOx (nitrogen oxides) and CO2 (carbon dioxide) emissions, damage costs 

and annual mean concentrations of nitrogen dioxide (NO2). Considering the results of 

these investigations, wider conclusions were drawn as to how policy makers might 

effectively reduce passenger car related pollution in European towns and cities. A key 

conclusion of this thesis is that due to the large variability in the real world emissions 

of vehicles within a single Euro class, policies could be more effect if real world 

variability was taken into account, as opposed to relying solely on the Euro standard. 
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Chapter 1.  Introduction 

 

Air quality in the United Kingdom has been described by many, including the United 

Nations, as being in a state of crisis. Much of this stems from a report by the Royal 

College of Physicians that estimated in the UK ~40,000 deaths per year are 

attributable to outdoor air pollution (RCP, 2016). This report, along with a growing body 

of evidence, links air pollution to a litany of adverse health effects. These include; 

cancer, COPD, diabetes, stroke, dementia and asthma. Similar reports by the 

European Environment Agency (EEA, 2016) and World Health Organisation (WHO, 

2016) have revealed the global scale of the air pollution crisis, with an annual estimate 

of 467,000 premature deaths in Europe attributable to air pollution and 3 million 

premature deaths worldwide. Whilst these figures are often misquoted and refer to 

statistical lives rather than cause of death prognosis, the message is clear; action must 

be taken to tackle air pollution in our towns and cities. 

Currently in the UK the most prominent issue relating to air quality is the concentration 

of nitrogen dioxide (NO2) at roadside locations. NO2 is the only statutory limit value the 

UK consistently fails to meet. Crucially, transport emissions often occur in the urban 
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environment where public exposure is highest. As a result, most policies to address 

the UK’s air quality problem have transport at their heart. Transport emissions, 

particularly from diesel fuelled vehicles, constitute one third of the UK’s total annual 

nitrogen oxides (NOx) emissions. 

As well as limits on ambient concentrations of NO2, the European Union (EU) also sets 

a limit on the maximum allowed annual NOx emissions of member states in tonnes. 

These limits are regulated by the National Emissions Ceiling Directive (NECD). In this 

research, projections of total NOx emissions and concentrations of ambient NO2 were 

modelled by the UK Integrated Assessment Model (UKIAM). UKIAM is an integrated 

assessment air pollution model, developed by the Integrated Assessment Unit at 

Imperial College London. UKIAM performs policy appraisals and cost benefit analysis 

of proposed policies by considering emissions projections, abatement options, 

atmospheric dispersion and environmental impacts. 

To tackle road transport emissions the EU introduced the Euro standards in the late 

1990’s. The Euro standards use type approval tests to regulate the exhaust emissions 

of road transport vehicles. Successive Euro standards have set increasingly stringent 

emissions limits, leading to a reduction in vehicular emissions and improvement in 

European air quality. However, by the early 2000’s it became clear that emissions in 

the real world were not falling at the same rate as the Euro standard limits.  

A key issue, relating to diesel vehicles, is that the emissions recorded when driving in 

the real world often far exceed the EU type approval limits which are met in the lab. 

Previously it was thought the difference between real world and type approval limits 

was due to the type approval test being conducted in a laboratory and the test cycle 
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not being representative of the real world. The Volkswagen Emissions scandal of 

September 2015 shed light on a more sinister explanation with the discovery of defeat 

devices. 

The US Environmental Protection Agency found Volkswagen had illegally installed 

software in their diesel vehicles that cheated the type approval tests. Since then cases 

have been brought against several other motor manufacturers. A study by the German 

government found evidence of some form of defeat device in 30% of the diesel 

vehicles they tested. The presence of a defeat device explains some of the deviation 

between real world emissions and type approval limits, but not all. This leaves policy 

makers with a serious problem. Diesel vehicles make up ~40% of the UK passenger 

fleet, but there is huge uncertainty surrounding their emissions performance in the real 

world. This begs the question; under such uncertainty, how do decision makers design 

policies that will effectively tackle the health threats posed by diesel emissions? 

This thesis aims to address this uncertainty and provide scientific evidence to assist 

in policy decisions. This is done using a variety of methods including real world 

emissions measurement data from a Portable Emissions Measurement System 

(PEMS) and sensitivity analysis using the UKIAM. 

1.1  Research Questions 

This thesis answers three key research questions: 

 What are the key uncertainties relating to emissions from passenger cars? 

 How can these uncertainties be minimised? 

 How can this be translated into effective air quality policy? 
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1.2  Research aim and objectives 

The main aim of this research is to reduce the uncertainty surrounding real world NOx 

and carbon dioxide (CO2) emissions from passenger cars and provide a more robust 

evidence base for policy makers. A series of research objectives have been defined 

in order to thoroughly address the research questions stated above: 

1. Develop a framework to assess the possible causes of uncertainty in passenger 

car emissions and potential risks 

2. Use Portable Emissions Measurement System (PEMS) data to explore real 

world emissions of passenger cars  

3. Use modelling to project and estimate the impact and risk associated with real 

world passenger car emissions and surrounding uncertainty 

4. Identify how air quality policies can tackle air pollution from passenger cars 

given the identified uncertainty  

1.3  Scope of research 

The analysis presented in this thesis relates specifically to tail pipe emissions from 

passenger cars; explicitly NOx, NO2 and CO2 from Euro 5 and 6 diesel and petrol 

passenger cars. The research has a specific UK focus, though many of the findings 

are transferable to other European countries. 

The limitations of this research are therefore the sectors and pollutants not included in 

the analysis. These include; pre- Euro 5 (2009) passenger cars, heavy goods vehicles, 

light duty vehicles and buses. Of the pollutants not included, the most important 

omission is Particulate Matter (PM). Existing literature relating to PM is referred to 
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throughout and factored into the discussion and analysis of results. The reason for the 

omission of PM was it could not be recorded by the PEMS equipment used in the 

analysis. Additionally, it is now thought more than half of PM at roadside locations 

comes from non- exhaust emissions.  This analysis also omits well-to-wheel and non- 

exhaust emissions, though like PM they are considered in the discussion. 

1.4  Research methods 

In this thesis mixed methods are applied to bridge the science/policy interface. 

Elements of the research are highly quantitative, such as analysis of the PEMS data 

and modelling of emissions scenarios, other elements use qualitative methods, such 

as the Hazards and Operability (HAZOP) technique for risk assessment. The HAZOP 

technique provides a structural framework for the research, HAZOP assessments first 

identify an uncertainty, then quantifying it and finally deducing the risk it poses.  

The study begins with a case study to demonstrate how HAZOP can be used as an 

uncertainty framework. A HAZOP assessment of the UKIAM identifies the areas of 

uncertainty in air quality policy making and the risks attached. A key area of uncertainty 

is passenger car emissions, with the two biggest concerns being real world NOx 

emissions from diesel passenger cars and the emissions factors assumed by air 

quality models. 

In depth analysis is then performed to quantify these risks. First by a PEMS study of 

Euro 6 diesel cars, followed by a comparison with the emissions factors of the 

recommended air quality transport model for the EU, COPERT. Scenario analysis is 
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then performed, using the UKIAM, to assess the risk posed by these real world 

emissions factors and the uncertainty surrounding them. 

Following this analysis, the potential risk of increased CO2 emissions if diesel vehicles 

were phased out of the UK fleet is assessed. Again, this risk is quantified by a PEMS 

study which this time includes; Euro 5, petrol and hybrid vehicles. Finally, the risk of 

increased CO2 emissions is weighed up against the risk of not reducing NOx emissions 

using a cost benefit analysis. 

1.5  Structure of thesis 

The research presented in this thesis is divided into 7 chapters. Chapters 1 – 3 

introduce the research objectives, methodologies and approach taken, provide the 

necessary background and frame the research. Chapters 4 – 6 are the main results 

chapters, each contains additional background and literature review specific to the 

analysis presented in each chapter, as well as a discussion and summary.  Finally, 

Chapter 7 includes discussion, conclusions and a summary of the work presented in 

the previous chapters. 

Chapter 1. Introduction 

Chapter 1 provides a brief overview of the thesis and the rationale behind it. The 

Introduction identifies the key topics the thesis aims to address and outlines the 

context, aims and structure.  

Chapter 2. Background and Literature Review 

Following on from the Introduction, Chapter 2 expands on the necessary background 

information in more detail, much of which is of a technical nature. Chapter 2 also uses 
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a review of relevant academic literature to position the research within the discipline 

of air pollution (specifically passenger car emissions) and acknowledge the work that 

has come before. 

Chapter 3. The HAZOP approach 

Chapter 3 serves a dual purpose. Firstly, it presents Hazards and Operability (HAZOP) 

as a framework to identify uncertainties in complex systems. Secondly, a case study 

is outlined using the UKIAM through which an overview and analysis of the UKIAM is 

presented. Chapter 3 identifies the key areas that will be investigated further in the 

following chapters, the most important of which is NOx emission factors from Euro 6 

diesel passenger cars. 

Chapter 4. NOx emissions from Euro 6 diesel passenger cars and comparison 

with COPERT 

Chapter 4 is the first core results chapter. It aims to address the most pressing 

uncertainty identified in the previous chapter (NOx emissions factors from diesel 

passenger cars). It includes a study into the real world NOx and NO2 emissions from 

39 Euro 6 diesel passenger cars measured using PEMS. This chapter highlights the 

variability of real world emissions, it also reveals emissions much higher than type 

approval limits and COPERT emissions factors. Real world emissions factors for Euro 

6 diesel urban and motorway driving are derived and set in the context of existing 

literature. 

Chapter 5. Scenario analysis of Euro 6 diesel NOx emissions for 2030 

Chapter 5 uses the emissions factors from the previous chapter along with existing 

literature to develop 5 scenarios for 2030. Each scenario assumes a different evolution 
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of real world diesel Euro 6 emissions factors. Modelling is performed by the UKIAM 

and the outputs compared include total NOx emissions in tonnes, damage costs and 

changes in roadside concentrations of NO2.  

Chapter 6. CO2 and NOx emissions from diesel and petrol passenger cars 

Chapter 6 extends the scope of the research to include CO2 and CO as well as petrol 

and hybrid Euro 5 and 6 passenger cars. This adds important context as diesel 

vehicles were promoted to reduce CO2 comparative to petrol. The air quality / climate 

change trade-off is the focus of this chapter. 

Chapter 7. Summary and Discussion 

Chapter 7 draws together the research and resets it in the body of existing literature. 

Results are linked with research aims and the limitations of the work are discussed. 

This will build on discussion sections included at the end of each of the core results 

chapters (Chapters 4 – 6). The final chapter pulls out the key conclusions and lessons 

from the research and identifies areas in which further work is required. Chapter 7 

illustrates how the research questions have been answered and aims met. 
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Chapter 2. Background 

and literature review 

 

This chapter provides an overview of the general, technical and policy background 

relevant to this research project as well as a review of existing academic literature. It 

starts with background relating to air pollution in the EU and the statutes that regulate 

it. The scope then narrows to more technical background specific to passenger car 

emissions. The background information presented here draws on existing literature 

and frames this research within the existing body of academic work. Later chapters 

also contain additional background sections which include content specific to that 

section of the research.  
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2.1  Introduction to air pollution 

The World Health Organisation (WHO) defines air pollution as “contamination of the 

indoor or outdoor environment by any chemical, physical or biological agent that 

modifies the natural characteristics of the atmosphere”. Air pollution can be divided 

into two main categories; pollutants that impact air quality, causing environmental 

damage on a local scale, and pollutants that impact the global climate. The first group 

are known commonly as air quality pollutants, the second as greenhouse gases. 

Though both often stem from the same sources and there is overlap between the two, 

policy makers have historically tackled air quality and climate change separately. For 

example, in the UK air quality policy is the remit of the Department for Environment, 

Food and Rural Affairs (DEFRA) whereas climate change is the remit of the 

Department for Business, Energy and Industrial Strategy (BEIS, which absorbed the 

Department of Energy and Climate Change (DECC) in 2016). 

Transport is a significant source of both air quality and climate change emissions and 

there are often trade-offs between the two. The most relevant example of this is diesel 

and petrol emissions. Diesel vehicles have lower greenhouse gas emissions, but 

higher emissions of air quality pollutants. The reverse is true for petrol. The following 

section provides an overview of both air quality and climate change emissions from 

transport, set in the context of the UK. 

2.1.1 Air quality pollutants 

The WHO describes air pollution as “world’s largest single environmental health risk”.  

This is because air pollution is extremely detrimental to human and environmental 

health. The WHO estimated in their global burden of disease report that indoor and 
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outdoor air pollution carry responsibility for approximately one in every nine deaths 

(WHO, 2016). In the UK ~40,000 premature deaths per year are linked to air pollution 

(RCP, 2016) as well as increased hospital admissions due to respiratory and 

cardiovascular disease (Brunekreef & Holgate, 2002). In Europe road transport is the 

dominant source of urban air pollution. This is because the vast majority of road 

transport vehicles still rely on internal combustion of fossil fuels. Many dangerous air 

quality pollutants are by-products of this combustion process. The pollutants with the 

greatest impact on European public health are nitrogen dioxide (NO2), particulate 

matter (PM) and ozone (O3) (RCP, 2016). The European Environment Agency 

estimated in 2013 that these pollutants were responsible for over half a million 

premature deaths in Europe: 467,000 from PM; 71,000 from NO2; and 17,000 due to 

O3 (EEA, 2016a). 

2.1.1.1 Nitrogen oxides (NOx) 

NOx refers to the combination of two oxides of nitrogen: nitric oxide (NO) and nitrogen 

dioxide (NO2). NOx is the main air quality pollutant considered in this research. Both 

NO and NO2 are toxic gases but NO2 has five times the toxicity of NO. NO2 irritates 

lung tissue and causes inflammation of the airways. Long term exposure can reduce 

lung function and increase the chances of respiratory diseases such as lung cancer 

and COPD (Hamra et al., 2015; Adam et al., 2015; Gauderman et al., 2002; DeNicola, 

Rebar & Henderson, 1981).  

The NO2 that is formed during combustion and emitted though a vehicles tailpipe is 

known as primary NO2 (sometimes called fNO2). NO2 can also be formed by the 

oxidation of NO in the atmosphere, this is known as secondary NO2. Given time and 

well mixed air NO and NO2 will settle in an equilibrium ratio.  
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NOx is of particular concern not only due to the direct health effects associated with its 

inhalation but also because once in the atmosphere it reacts to form tropospheric 

ozone (the main component of smog) and ammonium nitrate. NOx also leads to 

secondary particulate formation. It is difficult to apportion health effects between NO2 

and PM2.5 (see below for definition) exposure because both occur in the same 

locations, most studies assume an overlap in health effects of ~30% (Walton et al., 

2015). An added complication is due to the chemical coupling of O3 and NOx, ambient 

concentrations of NO2 do not respond linearly to emissions of NOx  (Derwent, 1995). 

This causes difficulties when modelling NO2 concentrations, as discussed later in this 

chapter. 

 

 

Figure 2-1. UK source apportionment of NOx (NAEI, 2014a) 
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Figure 2-1 shows the source apportionment of NOx by sector in the UK (2014) 

according to the National Atmospheric Emissions Inventory (NAEI). The total UK NOx 

emission was 957 kilotons. Almost one third of all NOx emissions came from road 

transport, another third from energy production and the rest from various combustion 

and industrial sources.  

In December 1952 London suffered a severe air pollution episode, since dubbed ‘The 

Great Smog’. At the time the government estimated the smog cost the lives of 4,000 

Londoners, but a recent review of the evidence revised this figure up to 12,000 (Bell 

& Davis, 2001). In reaction to ‘The Great Smog’ the government passed the first Clean 

Air Act in 1956 which included measures to relocate power stations outside cites, away 

from human populations. As a result, today NOx emissions from energy generation, 

though similar in quantity to NOx from road transport, pose much less of a threat to 

human health. This is because for air quality pollutants the location of the emission 

determines the magnitude of population exposure. Modern power stations have 

sufficient stack heights and remote locations to reduce human exposure to the 

emissions they produce. In contrast transport emissions are often emitted in urban 

centres where population exposure is highest. 

According to the NAEI, of the 31% of UK NOx emissions attributable to road transport 

the vast majority came from diesel fuelled vehicles, with 13% from diesel passenger 

cars alone. Nearly all buses and Heavy Goods Vehicles (HGVs) are also fuelled by 

diesel. Figure 2-1 illustrates the magnitude of diesel emissions in the UK, however, it 

is likely the NAEI underestimated the diesel contribution to NOx. A recent study found 

measurements of NOx in London at sites where traffic was the dominant source were 

80% higher than estimated using the NAEI emissions factors (Lee et al., 2015). This 
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was largely attributed to an underestimate of emissions from the diesel vehicles in the 

fleet. Addressing NOx emissions from diesel vehicles is a top priority in tackling urban 

air pollution and this priority is reflected in this research. Petrol and diesel cars in the 

UK account for approximately the same amount of vehicle kilometres (VKM) annually, 

yet by the NAEI estimate diesel accounted for 4.3 times as much NOx emissions. This 

discrepancy between petrol and diesel car emissions is another focus of this research. 

Ambient concentrations of NOx and NO2 have decreased in recent years, though at a 

slower rate than expected, with emissions plateauing around in the early 2000’s. 

Figure 2-2 comes from a paper by Carslaw, Murrells, Andersson, et al (2016). The 

study looked at trends in annual average NOx and NO2 concentrations from 35 

roadside monitoring stations in London from 1996 to 2014.  

 

 

Figure 2-2. (a) Trends in the mean concentration of NOx across 35 roadside 
sites in Greater London with at least 10 years of data capture and (b) the same 

for NO2 (Carslaw et al., 2016) 
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The plateauing of emissions has been attributed to the failure of Euro 3 – 5 legislation 

to reduce real world NOx emissions from diesel vehicles (see below for further detail). 

Additionally Carslaw et. al found NOx concentrations had on average reduced by 2.4% 

per year over the period measured, whereas NO2 concentrations had only decreased 

by 0.4% per year. This was attributed to the growing proportion of diesel NOx 

emissions being emitted as primary NO2.  

As mentioned earlier, given adequate time and well mixed air atmospheric NOx 

concentrations will settle into an equilibrium ratio of NO to NO2 by reacting with O3. 

However, at urban roadside locations where there is little time between source and 

exposure, and where much of the O3 is already depleted the proportion of NOx emitted 

as primary NO2 becomes an important factor in ambient concentrations (Grice et al., 

2009; Carslaw, 2005; Degraeuwe et al., 2015). This is why research into real world 

emissions of primary NO2 from diesel vehicles is important in understanding and 

developing policies that reduce ambient concentrations of NO2. As such it is one of 

the key considerations of this thesis. The technological reasons why fNO2 emissions 

from diesel vehicles have been increasing are discussed later in this chapter. 

2.1.1.2 Particulate Matter (PM) 

Particulate matter refers to a complex mixture of particulates in the air including dust, 

dirt, smoke and liquid droplets. It and can be anthropogenic or natural. PM is 

categorised according to its aerodynamic diameter. Particles with a diameter < 10 µm 

are referred to as PM10 and those between 2.5 µm - 10 µm as the “coarse” fraction. 

These include particles such as dust from construction, pollen and mould which  are 

small enough to be inhaled and accumulate in the respiratory system. Particles with a 

diameter < 2.5 µm are referred to as PM2.5 or “fine” particulates. These include 
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combustion particles, organic compounds and metals. PM2.5 pose a greater health risk 

than the coarse fraction as the particles are smaller and can reach deeper in the lungs.  

An important component of PM2.5 from diesel vehicles is black carbon or “soot”. Black 

carbon is pure carbon produced by incomplete combustion. Inhalation of black carbon 

is associated with cardiopulmonary morbidity and mortality (WHO, 2012). Black 

carbon is also a climate forcer and is thought to be the second most important 

contributor to global warming after CO2 (Schmidt & Noack, 2000; Jacobson, 2001).  

Particulates less than 0.1 µm are known as ultra-fine particles. These commonly 

include carbon based and metallic particulates. There is a growing body of evidence 

linking ultra-fine particles to the most severe health effects of PM exposure (Miller et 

al., 2017; Oberdorster, Oberdorster & Oberdorster, 2005; Peters et al., 1997). This is 

because ultra-fine particles are so small they can penetrate the lung tissue and be 

absorbed into the bloodstream. Once in the body they are not easily removed and 

have been found to accumulate in the heart and brain. 

In Europe urban particulates are mainly attributable to road traffic (Harrison, Smith & 

Luhana, 1996; Masiol et al., 2012) with ~80% of respirable PM10 in cities coming from 

road traffic sources (Bencs et al., 2010). It used to be the case that PM emissions 

were much higher from diesel vehicles than from petrol vehicles; however, since 2009 

all diesel vehicles have been fitted with a Diesel Particulate Filter (DPF). DPFs have 

significantly reduced the exhaust particulate emissions of diesel vehicles, including 

emissions of ultra-fines, reducing the number and mass of primary particles by up to 

99% (Bergmann et al., 2009a; Liu et al., 2005). However, where there is a high sulphur 
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content of fuels (e.g. in China and India) the DPF can result in an increase in formation 

of secondary nucleation mode particles (Kumar et al., 2014). 

PM from road traffic can be broadly split into two categories: exhaust and non- 

exhaust. Non- exhaust emissions include resuspension of particles and road, brake, 

tyre and clutch wear. In the early 2000’s it was estimated the levels of exhaust and 

non- exhaust particulates in urban environments were approximately equal (Querol et 

al., 2004; Lenschow, 2001). Recent studies have found that as levels of exhaust 

particulates have fallen (with the introduction of particulate filters) the proportion of PM 

from non- exhaust emissions has increased. A 2016 study in the Hatfield tunnel (north 

of London) found 60% of PM10 was attributable to non- exhaust emissions (Lawrence 

et al., 2013). 

The research presented in this thesis relates only to exhaust emissions. The 

measurement study which provided estimates for real world emissions used a Portable 

Emissions Measurement System (PEMS) that did not record PM. Academic literature 

is largely in agreement that DPFs have successfully solved the problem of exhaust 

PM emissions from diesel cars (May et al., 2014; Mathis, Mohr & Forss, 2005; 

Bergmann et al., 2009b). This is why the main focus of this research is NOx emissions, 

where there is still large uncertainty and discrepancy between diesel and petrol 

vehicles. However, PM is an extremely important element of urban air pollution and 

will be kept in consideration as part of the wider context of this work. 

2.1.1.3 Ozone (O3) 

Stratospheric ozone is essential for life on earth; it absorbs the majority of harmful 

ultraviolet rays from the sun. In contrast tropospheric (ground level) ozone is a toxic 
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atmospheric pollutant and enhanced levels are detrimental to human and 

environmental health (though some O3 near ground level is needed to produce the 

hydroxyl radical (OH) and breakdown pollutants). Tropospheric ozone is formed when 

NOx and hydrocarbons (HC) from combustion processes such as energy generation 

and transport react with volatile organic compounds (VOCs) in the presence of sunlight 

to form ozone. This means control of NOx is key in reducing ambient levels of ozone 

(Derwent et al., 2003). 

As mentioned previously ozone is a key component of smog. The reaction that forms 

smog is dependent on sunlight; this is why smog is more common on sunny days. 

Ozone exposure contributes to poor cardiopulmonary health and mortality and can be 

a contributing factor in pneumonia, chronic obstructive pulmonary disease and asthma 

(Ebi & McGregor, 2008). Ozone also effects forests, crops and ecosystems. 

2.1.2 Climate change pollutants (Greenhouse gases) 

The main greenhouses gases emitted by the UK are carbon dioxide (CO2), methane 

(CH4), nitrous oxide (N2O) and fluorinated gases. Of these, CO2 is the most common 

by far, making up 81% of all 2014 greenhouse gas emissions. Greenhouse gases are 

collectively measured in megatons of CO2 equivalent (MtCO2e).  
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Figure 2-3. UK source apportionment of greenhouse gases for 2014 (DfT, 
2015a; DECC, 2016) 

 

Figure 2-3 shows total UK greenhouse gas emissions in 2014 by sector according to 

DECC (now BEIS). The total emission was 514.4 MtCO2e. Transport (road and non-

road) accounted for 23% of all greenhouse gas emissions, compared to 40% of total 

UK NOx. Energy generation accounted for a similar proportion of NOx as greenhouse 

gas emissions. 

As discussed, CO2 is the main greenhouse gas but NO2, O3 and black carbon also 

contribute to climate change and are emitted at higher rates from diesel vehicles. 

However, it should also be noted that secondary PM can also have a cooling effect in 

the atmosphere by reflecting radiation (Fuzzi et al., 2015). 
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2.1.2.1 Carbon dioxide (CO2) 

CO2 is a naturally occurring colourless odourless gas that is essential to life on earth. 

Plants require CO2 for the process of photosynthesis which produces glucose; this 

process sustains plant, animal and human life. Since the industrial revolution humans 

have been burning fossil fuels at an unprecedented rate. This has increased the 

concentration of CO2 in the earth’s atmosphere. Greenhouse gases are so called 

because they act like the glass in a greenhouse, trapping heat below the atmosphere. 

This is known as global warming. The effects of global warming on natural systems 

are already evident through multiple indicators including changing precipitation 

patterns, changing migratory patterns and ocean acidification (IPCC, 2014). More 

difficult to predict are the potentially catastrophic consequences of continued warming. 

Through initiatives such as the Kyoto protocol and Paris climate accord an 

international consensus has consolidated around the need for greater mitigation of 

climate change.  

Due to an increase in number of passenger cars on the roads and vehicle kilometres 

driven by each vehicle, transport is currently the only major sector in the EU for which 

CO2 emissions continue to rise (CCC, 2015; Fontaras, Zacharof & Ciuffo, 2017). It is 

essential that future policies regarding air quality do not have negative impacts on 

climate change objectives.  This thesis therefore includes detailed analysis of CO2 

emissions from both diesel and petrol cars as well as NOx from diesel cars. 
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2.2  Air pollution regulation 

There are three main bodies of regulation that govern the emissions of air quality 

pollutants in the European Union (EU): the Euro Standards, the National Emissions 

Ceiling Directive and the Ambient Air Quality Directive.  

2.2.1 Euro Standards 

The Euro Standards are the legislation that sets statutory limits for exhaust emissions 

from road transport vehicles in the EU. Limits are set in terms of grams of pollutant 

emitted per kilometer driven (g km-1). The first European legislation regarding 

emissions from passenger cars was passed in 1970 setting legal limits for carbon 

monoxide and unburned hydrocarbons (EEC, 1970). In 1977 an amendment added 

the first limit for NOx. These limit values were successively reduced (Directives 

78/665/EEC, 83/351/EEC and 88/76/EEC) and in 1988 a limit value was introduced 

for particulates from diesel engines (Louka, 2004; Tiwary & Colls, 2010). Since 1988 

successively tighter regulations, known as the Euro Standards, have been enacted. 

These are Euro 1- 6 for passenger cars and light duty vehicles and Euro I-VI for heavy 

duty vehicles. Successive Euro standards have extended the number of pollutants 

regulated and reduced limit values. Petrol and diesel vehicles are subject to different 

limit values for some pollutants. The emission limits and date of implementation for 

Euro 1-6 are listed in Table 2-1 below.  

The current Euro standards set limits for carbon monoxide (CO), total hydrocarbons 

(THC), non-methane hydrocarbons (NMHC), hydrocarbons and oxides of nitrogen 

(THC + NOx), PM, number of particles (PN) and NOx. European legislation does not 

differentiate between NO and NO2, the type approval only relates to total NOx. 
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Table 2-1. Emission Limits for M1 (passenger cars) 

Engine 

type 

Date 

(new) 

Date 

(all) 

CO 

[g km-1] 

THC 

[g km-1] 

NMHC 

[g km-1] 

(THC + 

NOx) 

[g km-1] 

PM 

[g km-1] 

PN 

[# km-1] 

NOx 

[g km-1] 

Euro 1 (Directive 91/441/EEC ((EEC, 1991)) 

Petrol 
1992 1993 

2.72 - - 0.97 - - - 

Diesel 2.72 - - 0.97 0.14 - - 

Euro 2 (Directive 94/12/EC (EEC, 1994)) 

Petrol 
1996 1997 

2.2 - - 0.5 - - - 

Diesel 1.0 - - 0.7 0.08 - - 

Euro 3 (98/69/EC (EC, 1998)) 

Petrol 
2000 2001 

2.3 0.2 - - - - 0.15 

Diesel 0.64 - - 0.56 0.05 - 0.5 

Euro 4 (98/69/EC (EC, 1998)) 

Petrol 
2005 2006 

1.0 0.1 - - - - 0.08 

Diesel 0.5 - - 0.3 0.025 - 0.25 

Euro 5 (EC 715/2007 (EC, 2007)) 

Petrol 
2009 2011 

1.0 0.1 0.068 - 0.005* - 0.06 

Diesel 0.5 - - 0.23 0.005 - 0.18 

Euro 5b (EC 692/2008 (EC, 2008)) 

Diesel 2011 2013 0.5 - - 0.23 0.0045 6 x 1011 0.18 

Euro 6b (EC 459/2012 (EC, 2012) ) 

Petrol 
2014 2015 

1 0.1 0.068 - 0.0045* 6 x 1011 0.06 

Diesel 0.5 - - 0.17 0.0045 6 x 1011 0.08 

 

*applies to gasoline direct injection (GDI) only 
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2.2.1.1 Type approval 

Before being sold within the EU single market new vehicle models must pass a type 

approval test. Standardised tests assure that new models adhere to EU 

environmental, safety and conformity of production requirements (EC, 2016b). These 

tests are performed by privately owned technical service providers but the ultimate 

decision to approve a vehicle lies with national type approval authorities. Currently 

emissions are tested in a laboratory on a chassis dynamometer (rolling road). The 

standardised test cycle used to assess vehicle emissions is called the New European 

Driving Cycle or NEDC. The Urban Driving Cycle (UDC/ECE-15) was introduced in 

1970 with the first European emissions legislation. The Extra Urban Driving Cycle 

(EUDC) which includes more aggressive driving was added in 1990. The NEDC 

consists of four UDCs and one EUDC as shown in Figure 2-4.  

 

Figure 2-4. Speed profile of NEDC (EC, 1998) 
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To pass the type approval test new models must have an average emission in g km-1 

below the limit values stated in Table 2-1. Limit values are only legally binding during 

this type approval test, there is currently no legal consideration of how a vehicle 

performs outside of this laboratory test. Since the late 90’s the NEDC has been 

criticised for not being representative of real world emissions (Kågeson, 1998; 

Williams & Carslaw, 2011). These are often referred to as real driving emissions (RDE) 

or real world driving. Whilst RDE exceeding type approval limits is potentially 

hazardous for human health it is not illegal under current legislation. 

To ensure repeatability strict rules regulate the type approval process, these rules are 

detailed in UNECE Regulation No. 83 (UNECE, 2015). Some of these controls 

contribute to the unrealistic emissions from vehicles during type approval. For 

example, the test must be performed at an ambient temperature between 20 – 30°C, 

whereas the average ambient temperature in the UK is 9°C. Low ambient 

temperatures increase NOx emissions because emission controls are often switched 

off at lower temperatures to protect the engine (DfT, 2016d; Kwon et al., 2017). 

Engines are optimised for the NEDC cycle and vehicles are stripped back and 

streamlined. Though these so called “golden vehicles” produce emissions much lower 

emissions than in the real world, they operate within the current rules, unlike defeat 

devices.  

2.2.1.2 Introduction of RDE type approval 

To address the discrepancy between NEDC assessments and real driving emissions 

the EU is introducing a real driving component to the passenger car type approval test. 
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Table 2-2. Future emissions limits include RDE test component 

Engine 

type 

Date 

(new) 

Date 

(all) 

CO 

[g km-1] 

THC 

[g km-1] 

NMHC 

[g km-1] 

(THC + 

NOx) 

[g km-1] 

PM 

[g km-1] 

PN 

[# km-1] 

NOx 

[g km-1] 

Euro 6d- TEMP (EC 459/2012) 

Petrol 
2017 2019 

1 0.1 0.068 - 0.0045* 6 x 1011 0.06 

Diesel 0.5 - - 0.17 0.0045 6 x 1011 0.168 

Euro 6d 

Petrol 
2020 2021 

1 0.1 0.068 - 0.0045* 6 x 1011 0.06 

Diesel 
0.5 - - 0.17 0.0045 6 x 1011 0.120 

 

The test will be carried out using a PEMS and will consist of urban, motorway and rural 

sections. However, responding to pressure from the motor manufacturing industry the 

European Commission have allowed a so called “conformity factor” to be applied to 

the diesel type approval limit. In practice this means up to 2020/21 new diesel cars will 

be permitted to emit 2.1 times the current type approval limit in the new RDE test. 

From 2020 the conformity factor will be reduced to 1.5 times the current limit. The 

potential impact of the new RDE procedure is discussed further in Chapter 5. Detailed 

characteristics of the RDE testing regime are presented in Chapter 6. 

2.2.1.3 Deviation Ratio 

The factor by which real-world emissions exceed the relevant limit value is known as 

the deviation ratio or conformity factor. “Conformity factor” also has an alternative 

definition relating to the new RDE type approval procedure as stated above. Therefore 

to avoid confusion this thesis uses the term deviation ratio. The deviation ratio is 

calculated using Equation 2-1. 
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Equation 2-1. Deviation ratio 

𝐃𝐑𝐢 =

𝐦𝐢
𝐬𝐢

⁄

𝐄𝐒
 

 

DRi =  deviation ratio of trip for pollutant i  

mi =  mass of pollutant i emitted over trip in g 

si =  distance of trip 

ES =  emission standard in g km-1 

For diesel vehicles the deviation ratio has been steadily increasing as type approval 

limits have become more stringent. This is illustrated in Figure 2-5. 

 

Figure 2-5. Type approval limit, RDE estimate and deviation ratio (ICCT, 2016a, 
2012) 
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Figure 2-5 shows the type approval limits (red), estimate of real world emissions 

(green) and estimated deviation ratio (blue) for Euro 3- 6 diesel and petrol passenger 

cars. The dashed horizontal line represents the point at which the deviation ratio is 

equal to type approval limit. A deviation ratio < 1 means real world emissions is below 

the relevant type approval limit, deviation ratio > 1 means RDE is above the type 

approval limit. Since Euro 5 petrol cars have had real driving emissions lower than 

their type approval limit. In contrast whilst diesel real world emissions has fallen, it has 

not fallen by as much as the type approval limit and the deviation ratio has steadily 

increased to approximately 6 for Euro 6 diesel. The International Council on Clean 

Transport (ICCT) calculated these real world estimates from PEMS measurements 

and remote sensing data. They estimated NOx emissions from Euro 6 diesel cars were 

10 times higher than Euro 6 petrol cars. 

Until recently it was assumed that the difference between real world emissions of 

diesel passenger cars and NEDC emissions was entirely due to the unrepresentative 

nature of the test. The 2015 Volkswagen emissions scandal called this into question. 

A recent study found that the limited driving conditions of the NEDC could account for 

no more than 20% of the discrepancy between real world and type approval emissions 

(Degraeuwe & Weiss, 2017). Real world emissions of diesel vehicles are often many 

times higher than type approval limits. There is no such increase for petrol cars and 

no satisfactory explanation as to why this should be the case. 

2.2.1.4 Defeat devices (“Dieselgate” Scandal)  

Whilst the behaviour of manufacturers described above is undesirable, it is not illegal. 

Defeat devices, like those installed in 11 million Volkswagen vehicles between 2008 

and 2015, are illegal. The energy consumed running emissions controls reduces fuel 
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economy, increasing the cost of running a vehicle. Defeat devices are used to cheat 

the type approval test in order to deliver real world fuel economy benefits that are 

appealing to consumers. A defeat device is defined in Article 3 (10) of Regulation (EC) 

No 715/2007 as; 

“any element of design which senses temperature, vehicle speed, engine speed 

(RPM), transmission gear, manifold vacuum or any other parameter for the purpose 

of activating, modulating, delaying or deactivating the operation of any part of the 

emission control system, that reduces the effectiveness of the emission control 

system under conditions which may reasonably be expected to be encountered in 

normal vehicle operation and use” 

In 2015 the US EPA discovered that Volkswagen had written a “switch” code into their 

diesel vehicles electronic control module (ECM). The “switch” identified type approval 

conditions by vehicle behaviour (e.g. position of steering wheel, atmospheric 

pressure). When type approval conditions were identified the ECM fully implemented 

the NOx emissions controls. However, at all other times (i.e. when the vehicles were 

being used in the real world) emissions controls were only partially implemented, 

resulting in higher NOx emissions. This is an example of a “cycle detection” defeat 

device (T & E, 2016). A recent study found 1,200 early deaths in Europe, each losing 

as much as a decade of life, were attributable to the presence of the defeat device in 

Volkswagen cars sold in Germany alone (Chossiere et al., 2017). 

Though Volkswagen was the first company to admit to the use of a defeat device, 

evidence points to widespread use. The German Federal Motor Transport Authority 

(KBA) has accused Fiat of installing certain models with a defeat device that turns off 
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emissions controls after the first 22 minutes of a journey (the NEDC is 20 minutes 

long). Other types of defeat device are thought to be in use, the most common being 

the “thermal window”. This exploits the rule that allows emissions controls to be 

disengaged at certain temperatures to protect the engine. It is thought many 

manufacturers disengage emission controls at much higher temperatures than 

necessary. For example, Opel (Vauxhall) and Renault- Nissan until recently reduced 

emission controls below 17°C, far above the UK average temperature of 9°C (T & E, 

2016). 

Another defeat device, known as the “hot restart” is thought to only fully engage 

emission controls after a cold start. Cold start is when the engine has cooled to 

ambient temperature before it is switched on. The type approval procedure stipulates 

engines must be “soaked” (rested) overnight to ensure the test is performed after a 

cold start. Independent testing in Europe has found many vehicles produce higher 

emissions after a hot restart than a cold start. A UK government report found 32 out 

of 38 diesel vehicles tested had higher emissions after hot restart then a cold start 

(DfT, 2016d). Similarly the German government found the same phenomenon for 48 

out of the 53 vehicles they tested (BMVI, 2016).  

These results indicate a defeat device is present that activates when an engine is 

started from a cold start. During a cold start the engine temperature is too low for NOx 

reduction technologies to be effective, therefore NOx emissions should be higher. 

Indeed, in the USA where the type approval procedure includes both a cold start and 

a hot restart in a sample of 30 diesel vehicles not a single one had hot restart 

emissions higher than cold start emissions (ICCT, 2016b). In contrast over 80% of 

vehicles tested in the UK and Germany measured higher emissions after a hot restart 
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(DfT, 2016d; BMVI, 2016). Manufacturers have provided no explanation for lower 

emissions after a cold start that makes engineering or physical sense. This has led to 

accusations of widespread use of defeat devices. 

2.2.1.5 CO2 fleet average target 

The NEDC also regulates fuel consumption and CO2 emissions for new vehicles. 

Unlike air quality pollutants the legal CO2 limit applies to a manufacturer’s fleet, not an 

individual model. There is a fixed “target” that the fleet average of each manufacturer 

must fall below. Manufacturers are permitted to achieve this by having lighter vehicles 

with lower CO2 and heavier vehicles with higher CO2. Individual vehicles are supposed 

to fall within a limit curve that is proportional to the vehicles weight (Error! Reference 

source not found.). 

Equation 2-2. CO2 specific emissions target  (EC, 2009a) 

𝐶𝑂2 = 𝑇𝑎𝑟𝑔𝑒𝑡 + 𝑎(𝑀 −  𝑀0) 

Target  = target fleet average 
a   = gradient of line 
M  = mass of vehicle 
M0  = average mass of new passenger cars in the previous 3 years 

 

Table 2-3. Parameters for the 2015 and 2020 CO2 specific emissions limit curve  

 2015 2020 

Target 130 95 

a 0.0457 0.0333 

M0 1372 kg (2012-15) 1392.4 kg (2016) 
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The fleet average target introduced in 2015 was 130 g CO2 km-1. This will be reduced 

to 95 g CO2 km-1 in 2020. The parameters used to calculate the limit curve are listed 

in Error! Reference source not found. and the curves are plotted in Figure 2-6. 

 

Figure 2-6. 2015 and 2020 CO2 specific emissions target curve by weight 
 

As discussed, there is substantial evidence of growing discrepancies between real 

world NOx emissions and type approval limits (Franco et al., 2014; Weiss et al., 2011a; 

Carslaw et al., 2011b; O’Driscoll et al., 2016; Kågeson, 1998). The same phenomenon 

has also been observed for CO2, with the gap between type approval and real world 

emissions growing from 8% in 2001 to 31% in 2012, and increasing to 40% in 2014 

(Fontaras & Samaras, 2010; Fontaras et al., 2014; T & E, 2015). This will be discussed 

further in Chapter 6. 

In addition to the Euro Standards the two main pieces of legislation that regulate 

emissions of air quality pollutants in the EU are the National Emissions Ceiling 

Directive and the Ambient Air Quality Directive.  
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2.2.2 National Emissions Ceiling Directive  

The National Emissions Ceiling Directive (NECD) sets legal limits (ceilings) on the 

emission of pollutants in kilo-tonnes that member states are permitted to emit annually. 

The amount decreases for successive target years and is measured relative to the 

baseline year of 2005, and is specified as a percentage of 2005 emissions. There have 

been two tiers of legislation, Directive 2001/81/EC which legislated from the period 

2010 – 2020 and Directive 2016/2284/EU which legislates from 2020 – 2030. The 

NECD sets limits for NOx, PM2.5, non-methane volatile organic compounds 

(NMVOCs), sulphur dioxide (SO2) and ammonia (NH3) and has been legally binding 

since 2010. Compliance is monitored through annual reporting by member states 

national emission inventories to the European Environment Agency. 

The UK met its first emissions ceilings for every pollutant (EEA, 2016b). Table 2-4 lists 

the UK’s ceilings for NOx from 2005 to 2030. 

Table 2-4. UK National Emission Reduction Commitments (EEB, 2017) 

 2005 2010 2013 2020 
 

2030 2030 
CLE 

2030 
MTFR 

NO
x
 reduction 

relative to 2005 [%] 

- -29% -35% -55% -73% -72% -80% 

NO
x
 ceiling  

[kilo-tonnes] 

1592 1130.3 1034.8 716.4 429.8 445.8 318.4 

 

CLE = The Current Legislation scenario is a national emissions projection that 

assumes full implementation of existing EU policies without any additional measures 
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MTFR = The Maximum Technically Feasible Reductions is a national emissions 

projection of the maximum emission reduction that could be achieved if all readily 

available technical measures were implemented. 

The UK’s latest CLE predicts a 3.7% exceedance of the 2030 national emission 

reduction commitment. However, it should be noted that the CLE is subject to change 

and differs depending on the baseline emissions figure used for 2005. It is likely that 

the value stated in the EEB report used COPERT 4v11 speed dependent emissions 

factors which would lead to an underestimate in projected UK 2030 NOx emissions. 

2.2.3 Ambient Air Quality Directive (2008/50/EC) 

In contrast to the NECD which sets a limit to the total emission of pollutants, the 

Ambient Air Quality Directive sets Air Quality Limit Values limiting pollutant 

concentrations in ambient air. Whereas the UK has so far succeeded in meeting the 

NECD commitments the same cannot be said for the Ambient Air Quality Directive. 

Limit values for air quality pollutants were first legislated in the EU Ambient Air Quality 

Framework Directive (96/62/EC) and fourth Daughter Directive (2004/107/EC). Most 

recently the Ambient Air Quality Directive (2008/50/EC) set legally binding limits for 

concentrations of the pollutants SO2, NO2, PM10, PM2.5, Lead, Benzene and CO. 

Unlike the NECD that regulates only total NOx emissions the Ambient Air Quality 

Directive regulates also for concentrations of NO2, the more harmful component of 

NOx. 

For NO2 there are two Air Quality Limit values, one for hourly mean concentration and 

one for annual mean concentration. These are listed in Table 2-5. 
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Table 2-5. NO2 limit values Ambient Air Quality Directive (2008/50/EC) 

Averaging period Limit value Date by which limit is to 

be met 

One hour 200 µg m-3 not to be 

exceeded > 18 times per 

calendar year 

1 January 2010 

One year 40 µg m-3 1 January 2010 

 

Directive (2008/50/EC) allowed that if member states had particular difficulty in 

achieving compliance of the NO2 limit value by January 2010 the member state could 

apply to the Commission and postpone the date of compliance to January 2015 (at the 

latest) on a zone by zone basis. In 2009 the UK applied for a time extension in 24 

zones and was successful (granted the extension) in 9. However, the period of 

extension has now ceased and even at the time of writing (2017) the UK is still in 

exceedance in 37 of the 43 reporting zones (DEFRA, 2017a). The UK is also failing to 

comply with the hourly mean limit. In 2017, Brixton Road in London breached the 

yearly exceedance allowance (18 exceedances) of the hourly mean limit in just five 

days (Guardian, 2017). 

2.2.4 Climate change legislation 

In 2008 the UK passed the Climate Change Act which enacted the commitments of 

the Kyoto Protocol into UK law (Parliament of the United Kingdom, 2008; UNFCCC, 

1998). Explicitly the commitment to reduce greenhouse gases in 2050 by 80% 

compared with a baseline year of 1990. The Act also created the independent 
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Committee on Climate Change (CCC). To achieve the goal of an 80% reduction the 

CCC has set 5 “carbon budgets” which each set an incremental reduction target up to 

2050 to keep the UK on track to meet its Kyoto commitment. The UK is currently on 

track to outperform its 2nd carbon budget which commits to a 31% reduction in GHGs 

relative to 1990 from (2013 – 2017). 

2.3  Recent developments in UK air quality  

The rejection in 2009 of the UK government’s time extension bid for 15 of the zones it 

applied for an extension in was due to lobbying of the European Commission by the 

environmental law NGO Client Earth. 

In April 2015 Client Earth took DEFRA to the Supreme Court challenging DEFRA’s 

2011 plan to clean up air quality in the UK, “Air Quality Plans for the achievement of 

EU air quality limit values for nitrogen” (DEFRA, 2011). The plan did not bring the UK 

into compliance with Directive (2008/50/EC) until 2030, 20 years after the original 

deadline. Client Earth argued this was unacceptable and ministers should devise a 

new air quality plan. The Supreme Court unanimously ruled against DEFRA and 

stipulated a new air quality plan should be produced before December 2015 to bring 

the UK into compliance as soon as feasibly possible. 

In December 2015 DEFRA released a second air quality action plan “Improving air 

quality in the UK- Tackling nitrogen dioxide in our towns and cities” (DEFRA, 2015b). 

The key policy instrument of the new action plan was Clean Air Zones (CAZ’s) to be 

introduced in five UK cities. Again the plan was deemed unsatisfactory by Client Earth 

and the air quality community as a whole. This was partly due to the limited scale of 
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additional measures but also the use of COPERT 4v11 emission factors, which greatly 

underestimated NOx emissions from Euro 6 diesel passenger cars (O’Driscoll et al., 

2016). This was acknowledged by DEFRA and in the accompanying technical report 

they stated the COPERT underestimate “could result in up to 22 additional zones 

being in exceedance of the NO2 limit value in 2020”.  

Client Earth brought DEFRA back to the High Court in November 2016 and again won 

the case. The judge ruled the government was not taking sufficient action to bring the 

UK into compliance “as soon as possible”. The government was ordered to produce 

another air quality action plan by May 2017. The additional measures in this latest plan 

included additional CAZ’s to be implemented by local authorities, speed limits on 

motorways near areas of exceedance and introduction of Euro 6d. At the time of writing 

Client Earth have described the latest action plan as “weak” and indicated they intend 

to return to the courts. 

2.4  Passenger cars in the UK 

There were 31 million licensed passenger cars in the UK in 2016. Petrol cars 

accounted for 59.7%, diesel cars 39.1% with the remainder made up of hybrids (1.0%), 

gas (0.1%) and electric (0.1%) (DfT, 2016c). The average annual mileage of the diesel 

vehicles (17,220 km) is 65% higher than that of a petrol vehicle (10,460 km) (DfT, 

2015b). As a result, the split in total passenger car vehicle kilometres (VKM) driven is 

roughly equal. In Great Britain the total VKM in 2015 was 510 billion km, 80% of which 

was driven by cars and taxis (DfT, 2016b). Additionally petrol and diesel passenger 

cars are not evenly distributed throughout the road network. 
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Table 2-6. Diesel and petrol split of GB VKM (NAEI, 2014b; DfT, 2016b) 

 Urban Motorway Rural Total 

Total passenger car VKM (Billion km) 151.2 80.3 171.9 403.4 

Total diesel VKM (Billion km) 70.0 48.7 85.6 204.3 

Total petrol VKM (Billion km) 81.2 31.8 85.9 198.9 

% of total diesel VKM 34% 24% 42%  

% of total petrol VKM 41% 16% 43%  

 

The figures in Table 2-6 are derived from NAEI fleet composition data and Department 

for Transport (DfT) statistics for 2014.  The data shows different behavioural patterns 

for drivers of petrol and diesel vehicles. Both spend similar proportions of total VKM 

on rural roads (~43%), but petrol vehicles spend the majority of the remaining VKM 

(41%) on urban roads with only 16% on motorway. In contrast the urban / motorway 

split for diesel (34% / 24%) is less substantial. 

2.4.1 The difference between petrol and diesel engines 

Petrol and diesel vehicles both use petroleum fuel in an Internal Combustion Engine 

(ICE). However, there are key differences in the chemical makeup of the fuels and 

engineering of the engines. This section presents a basic overview of these 

differences and how they result in very different exhaust gas compositions. 

Crude oil is subject to a process called fractional distillation by which it is separated 

into its many “fractions” using differences in boiling points of component parts. Diesel 

oil and gasoline (petrol) are two such components. Some of the differences in diesel 

and petrol exhausts, mainly relating to CO2 emissions, can be attributed to the 
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differences in chemical composition of the fuel. Fundamentally diesel is a denser fuel 

than petrol. As a result less diesel fuel is required to produce the same amount of 

energy. This is one reason CO2 emissions are lower from diesel vehicles. The second 

reason is diesel has a more efficient combustion process. The elemental trade-off 

between NOx and CO2 occurs because fuel- efficient combustion requires a higher 

temperature, and at higher temperatures more NOx is formed. 

2.4.2 Combustion in diesel engines 

Diesel engines are also known as compression ignition (CI) engines. In a diesel engine 

the fuel is injected into the combustion chamber under high pressure (>2000 bar) 

causing the fuel to rise to a temperature at which it ignites. This mechanism means 

the mixture of air and fuel occurs during combustion. Diesel is dense and therefore 

does not mix easily with air as it is injected into the combustion chamber. When air 

and fuel are not well mixed irregular combustion occurs, allowing pockets of 

incomplete combustion which result in  the formation of particulates (Überall et al., 

2015).  

Diesel engines operate under a wide range of air / fuel ratios, though nearly always 

higher (i.e. more air) than the “stoichiometric” ratio. The stoichiometric ratio is the ideal 

ratio for combustion, at this ratio there is the exact amount of fuel and air for complete 

combustion. Diesel engines run “lean”, meaning there is a higher ratio of air. This 

means less fuel is required for the same power output, resulting in lower CO2 

emissions. However, the lean air/ fuel ratio is also the main reason NOx emissions 

from diesel vehicles are much higher than from petrol. Lean combustion creates a lot 

of heat which contributes to the efficiency of diesel engines but is key in the formation 
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of NOx. At temperatures >1500 °C nitrogen in the air reacts with oxygen and NOx is 

formed. 

2.4.3 Combustion in petrol engines 

Petrol engines are commonly known as spark or positive ignition (PI) engines. There 

are now two different types of petrol engine; conventional port fuel injection (PFI) and 

the relatively new gasoline direct injection (GDI). 

2.4.3.1 Port Fuel Injection (PFI) 

In a Port Fuel Injection (PFI) petrol engine the fuel is injected through an intake track 

at a low pressure and ignited by a localised high temperature supplied by an external 

energy source (i.e. a spark). This is possible as petrol fuel is much lighter than diesel 

and readily evaporates to mix efficiently with the air in the combustion chamber. As a 

result a small spark can produce smooth combustion throughout the well- mixed 

combustion chamber. Petrol engines operate at much lower air / fuel ratios than diesel 

engines, oscillating around the stoichiometric ratio. This means less particulates are 

formed because all the fuel is completely burned. 

2.4.3.2 Gasoline Direct Injection (GDI) 

40% of the petrol vehicles tested for this research project were Gasoline Direct 

Injection (GDI). GDI engines in theory have higher fuel efficiency (therefore lower CO2 

emissions) than conventional PFI petrol engines. In recent years the GDI market share 

has rapidly increased, now making up ~50% of new petrol vehicles (Saliba et al., 2017; 

Wolfram et al., 2016).  

In GDI engines the petrol fuel is injected at higher pressure (up to 200 bars) straight 

into the combustion chamber and then ignited. GDIs create a lean air / fuel mixture 
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meaning, like diesel combustion, there is a higher ratio of air. As a result less fuel is 

consumed and less CO2 produced. Chan, Meloche, Kubsh, et al., (2012) found GDI 

engines deliver a fuel consumption saving of between 3-6% compared with PFI.  

However, higher emissions of pollutants characteristic of diesel engines also effect 

GDI engines. GDI engines have much higher emissions of particulates than PFIs, 

higher than a diesel vehicle with a Diesel Particulate Filter (DPF) (Peckham et al., 

2011; Liang et al., 2012; Wang et al., 2014). GDIs also emit a higher number of 

smaller, ultra-fine particles < 100 nm diameter which, as discussed previously, are 

associated with many adverse health effects. 

DPFs successfully reduce diesel particulate emissions (Mathis, Mohr & Forss, 2005). 

It is thought the introduction of Gasoline Particulate Filters (GPF) for GDIs will have a 

similar reduction effect (Chan et al., 2012).  

2.4.4 Abatement technologies 

This section describes the most common exhaust after treatments used to reduce 

harmful emissions from petrol and diesel cars. 

2.4.4.1 Three way catalyst (TWC) 

All modern petrol vehicles are fitted with a catalytic converter known as a three way 

catalyst (TWC). TWCs use the chemical processes of oxidation and reduction to turn 

harmful pollutants into harmless by-products. These reactions are facilitated by the 

precious metals Platinum, Rhodium and Palladium spread over a 3D ceramic honey 

comb structure to maximise surface area. TWCs reduce ~95% of CO, NOx and HC 

emissions (Santos & Costa, 2008). 

A TWC essentially completes the combustion process via three reactions listed below;  



51 
 

 

1. The reduction of NOx to nitrogen and oxygen (2NOx → O2 + N2) 

2. The oxidation of CO to CO2 (2CO + O2 → 2CO2) 

3. The oxidation of unburnt HC to CO2 and H2O (water) 

The optimum efficiency for these three reactions is facilitated by the exhaust emissions 

of an engine running close to its stoichiometric ratio. As discussed the air / fuel ratio in 

a petrol engine oscillates around the stoichiometric ratio, creating ideal conditions for 

all three of the reactions above to take place. The TWC will only work for stoichiometric 

engines (like petrol engines) where the O2 concentrations are <1%. 

2.4.4.2 Diesel oxidation catalyst (DOC) 

Another key reason NOx emissions are higher from diesel engines is they cannot use 

a TWC. Diesel engines run lean, operating far above the stoichiometric ratio. As a 

result the exhaust gases from diesel vehicles have much higher levels of oxygen. This 

means oxidising reactions (2 and 3) are favoured at the detriment of the reduction 

reaction (1). For this reason diesel vehicles cannot use a TWC and instead use a 

diesel oxidation catalyst (DOC). The DOC works in a similar way to the TWC above to 

effectively reduce CO and HC but is unable to remove NOx. The oxidising effect of the 

lean exhaust gases is the reason diesel vehicles have lower emissions of CO and HC 

than petrol vehicles. It also oxidises some of the NO to NO2, which is partly why diesels 

emit a higher proportion of primary NO2 (Carslaw et al., 2016). As the DOC is unable 

to reduce NOx from the exhaust, diesel vehicles deploy a number of additional NOx 

abatement technologies. 



52 
 

 

2.4.4.3 Exhaust gas recirculation (EGR) 

As discussed above the key reason for heightened NOx emissions from diesel vehicles 

is the high temperatures that facilitate the oxidisation of nitrogen. EGR reduces NOx 

formation by lowering the temperature of combustion. It does this by taking a 

proportion of the exhaust gas and returning it into the combustion chamber. The 

exhaust gas is inert, meaning it is virtually void of oxygen and will not support 

combustion. Some of the heat energy generated during combustion is absorbed by 

exhaust gas, reducing the peak combustion temperature and formation of NOx. 

All diesel passenger cars Euro 5 and later use EGR to reduce NOx formation. However 

EGR alone is no longer sufficient to meet type approval limits and most Euro 6 diesels 

also deploy additional technologies to remove NOx from the exhaust gases once it has 

formed. 

2.4.4.4 Selective catalytic reduction (SCR) 

SCR was first used in stationary sources such as large municipal waste boilers. It then 

began to be used by large diesel engines on ships and trains, eventually being 

installed on buses and HGVs and finally in recent years it has been used in diesel 

passenger cars (Malpartida et al., 2012). In a passenger car the SCR is installed after 

the DOC and DPF.  

First an injection of Diesel Exhaust Fluid (DEF) is mixed with the exhaust gases. The 

most common DEF, AdBlue, is 30% high purity urea dissolved in deionised water. 

When mixed with exhaust gases the DEF is rapidly hydrolysed to form ammonia (NH3) 

and CO2, this is the first reaction in the SCR process. The NH3 and NOx then pass into 

the SCR catalyst where a reaction is facilitated by a honeycomb structure of precious 
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metals, turning NOx into nitrogen (N2) and water (Ofoli, 2014). Finally the gases pass 

through an oxidation catalyst that turns any remaining ammonia into N2 and water. 

SCR is called “selective reduction” because the ammonia catalyst reduces only the 

NOx in an oxidising environment.  

One of the criticisms of SCR is the process is very sensitive to the quantity of DEF 

injected. If there is too much DEF NH3 can be released into the atmosphere, this is 

known as “ammonia slip”. However, if there is too little there is insufficient NOx 

conversion. Another problem is the DEF tank must be refilled sporadically by the 

vehicle owner. It is also the case the SCR is more effective at removing NOx when 

there is a higher ratio of primary NO2 (Malpartida et al., 2012). As a result systems 

using SCR encourage a higher fNO2 within the SCR process, which results in a higher 

fNO2 tailpipe emission. This will be explored further in Chapter 4. 

2.4.4.5 Lean NOx traps (LNT) 

As the name indicates the lean NOx trap (LNT) is a device that reduces or “traps” NOx 

emissions from a lean burn engine. The LNT is the latest diesel NOx reduction 

technology to be introduced. Exhaust gases are filtered over a molecular “sponge” of 

alkali or alkaline- earth metal oxides. This removes the NOx and stores it in the form 

of nitrites and nitrates (Larson et al., 2008). The stored NOx is periodically released 

and reduced. This is done by briefly creating reducing conditions (i.e. lower levels of 

O2) by a short period of rich engine operation which generates reductants such as CO, 

H2 and HC. These reductants stimulate the release of the stored NOx and catalytically 

reduce it to N2 and O2. However there is also potential for the formation of harmful by-

products such as N2O and NH3.  
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Another issue with LNT is the period of rich burn required for regeneration incurs a 

fuel/ CO2 penalty. This is the main element of emission control that was manipulated 

by the Volkswagen defeat device. Volkswagen reduced the number of LNT 

regenerations when the vehicle was in normal operation (not on a chassis 

dynamometer) in order to save fuel and deliver efficiency savings. When the LNT is 

not regenerated at regular intervals the “sponge” becomes saturated with NOx unable 

to absorb any more. As a result tail pipe NOx emissions increase.  

2.4.4.6 Particulate filters (DPF and GPF) 

All diesel vehicles Euro 5 and after (since 2009) have been fitted with a Diesel 

Particulate Filter (DPF) to reduce emissions of PM. As discussed previously a 

particulate filter was not necessary for PFI vehicles as only low levels of particulates 

are formed during stoichiometric combustion. However the new GDI petrol vehicles 

require Gasoline Particulate Filters (GPF) to pass the Euro 6 PN limit. DPFs have been 

found to reduce particulate emissions by up to 99% (Liu, Skemp & Lincoln, 2003; 

Mayer et al., 2002).  

Exhaust gases pass through the particulate filter after the DOC but before the SCR. 

DPFs are essentially filtration devices that successfully filter the majority of soot 

particles (Mathis, Mohr & Forss, 2005). DPFs have a honeycomb structure made of 

microscopic channels which the exhaust gases flow through. These channels trap the 

soot particles removing them from the exhaust. The soot particles accumulate on the 

walls of the microscopic channels and must be burned off regularly in regeneration 

events.  
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The main concern relating to particulate filters are the high levels of particulate 

emissions, especially ultrafine particulates, during regeneration (Giechaskiel et al., 

2007; Hawker et al., 1998). Regeneration occurs spontaneously when the DPF 

reaches a temperature of > 600 °C, which usually only occurs during motorway driving, 

where public exposure is low. DPFs also slightly increase CO2 emissions by 2-5% 

because of an increase in back pressure requiring additional mechanical work to be 

overcome (Liu, Skemp & Lincoln, 2003; Mayer et al., 2002). 

2.4.5 Cold start emissions 

A cold start refers to an engine starting once it has cooled fully to ambient 

temperatures (< 30°C) (Heimrich, 1990). In the first minutes of engine operation low 

temperatures result in incomplete combustion, producing higher emissions than 

normal operation (Cao, 2007; Weilenmann et al., 2005). This coincides with the 

catalytic converter being below its optimum operating temperature (~ 400°C), 

preventing the removal of HC, CO, PM and NOx (Chang et al., 2014; Mathis, Mohr & 

Forss, 2005). As a result pollutant emissions in the first few minutes of operation can 

be many times those from normal operation.  

Cold start emissions are extremely sensitive to ambient temperature (with the 

exception of NOx from gasoline vehicles (Reiter & Kockelman, 2016; Weilenmann, 

Favez & Alvarez, 2009)) and are a significantly lower proportion of total emissions for 

diesel vehicles than for petrol. For petrol vehicles the vast majority of HC, CO and NOx 

emissions are from the cold start period (Weilenmann et al., 2005). 

Previous studies estimated the cold start period covers the first 1 – 5 km of urban 

driving (Favez, Weilenmann & Stilli, 2009; André & Joumard, 2005). In terms of 
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duration Chen, Chiang, Chen, et al., (2011) reported emissions stabilised after the first 

120s of a journey. In the US and the UK almost half of all car journeys are less than 

5km (de Nazelle et al., 2010; DfT, 2016a). For short journeys cold start emissions are 

the dominant source of total pollutant emission and can last the duration of the journey. 

Most journeys start in urban conurbations close to people’s homes and workplaces, 

meaning the cold start often occurs in the areas of highest public exposure. Miller & 

Franco (2016) estimate cold starts make up 8% of vehicle kilometres driven.  

2.5  COPERT 

COPERT stands for Computer Program to calculate Emissions from Road Transport. 

It is an air quality transport model developed by the European Environment Agency. 

The European Monitoring and Evaluation Program (EMEP) recommends COPERT as 

the preferred tool in the calculation of vehicle emissions (EEA, 2013). COPERT is also 

widely used in modelling studies. The COPERT model provides speed dependent 

emissions factors for regulated pollutants such as CO, NOx, VOC and PM along with 

unregulated pollutants such as N2O, NH3, SO2 and NMVOC. 

COPERT is currently used for road transport inventories and emissions projections by 

22 of the 28 EU member states (Kioutsioukis et al., 2010). It is used in the UK for NOx 

emissions projections, road transport emissions modelling and provides speed 

dependent emissions factors for the Emissions Factor Toolkit  and the Pollution 

Climate Mapping (PCM) model (DEFRA, 2014; Kousoulidou et al., 2013). The PCM 

model is used by DEFRA in scenario assessment and population exposure 

calculations to inform policy development. It is therefore extremely important that 
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COPERT emissions factors are representative of real world driving. The COPERT 

emissions factors for Euro 6 diesel vehicles are evaluated in Chapter 4. 

The version of COPERT used in this analysis is 4v11. This was the recommended 

version at the time the work was carried out and published (see O’Driscoll, ApSimon, 

Oxley, et al., 2016). COPERT has since been updated to Version 5, this will be 

discussed briefly at the end of Chapter 4. 

2.6  Real driving emissions (RDE) measurement 

Much of the research presented in this thesis relates to real driving emissions of 

passenger cars. As discussed RDE refers to exhaust emissions during ‘normal 

operation’, which are often higher than type approval limits. The discrepancy between 

type approval limits and RDE has been apparent since the early Euro standards 

(Kågeson, 1998). The development of Portable Emissions Measurement Systems 

(PEMS) for passenger cars has undoubtedly played an important role in exposing real 

driving emissions. 
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2.6.1 Portable Emissions Measurement Systems (PEMS) 

 

Figure 2-7. Diagram of PEMS (Source: Emissions Analytics) 

 

PEMS are a mobile laboratory that record a constant real time measurement of 

exhaust emissions of CO, CO2, NOx, NO,NO2 and THC (and experimentally CH4, PM 

and total PN, though these were not measured by the PEMS used in this study). They 

can be fitted to the tail pipe of practically any passenger car without the need for 

vehicle modification. Vehicle emissions can then be measured during normal 

operation on public roads. Figure 2-7 is a diagram of a PEMS system in operation. 

Typically the on board gas analyser will be placed in the boot or back seat of the 

vehicle.  

The RDE component of the light duty type approval process being introduced in 2017 

will be enforced using PEMS. PEMS were developed in the late 90’s, were approved 

for use in the heavy duty type approval process in 2009 and became a mandatory 
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component in 2011 (EC, 2009b, 2011). Along with remote sensing PEMS studies have 

exposed the discrepancies between certification and on road emissions (Rubino et al., 

2007; Weiss et al., 2011b; Carslaw, 2005). The introduction of a PEMS component to 

the light duty test procedure is expected to tackle the issue of NO2 exceedance in 

urban areas (Degraeuwe et al., 2015; Weiss et al., 2012).  

Previous studies have found vehicle emissions are strongly correlated with a variety 

of operating and environmental conditions including congestion, driving style, wind and 

ambient temperature (Kousoulidou et al., 2013; Gallus et al., 2017; De Vlieger, 1997; 

Weiss et al., 2011b). This introduces a level of variability in PEMS tests because 

external factors cannot be controlled and regulated the way they are in laboratory 

based chassis dynamometer tests (Weiss et al., 2011b). Reduced repeatability is the 

main criticism of PEMS but it is also what makes PEMS measurements more 

representative of the real world. TNO state “as a rule of thumb a 15 to 20% variation 

for similar trips appears natural” (Gerrit et al., 2016). 

PEMS already play a substantial role in compiling emissions inventories, developing 

emissions factors for projections and use in emissions models (Collins et al., 2007; 

Frey et al., 2003). These include the air quality model COPERT. The PEMS testing 

presented in this thesis was performed by Emissions Analytics using a SEMTECH-

DS. Further details relating to the measurement procedure can be found in Chapter 4. 

The strength of PEMS data is that it is recorded at 1 Hz resolution. This allows analysis 

of emissions in real time, facilitating analysis of the relationship between driving 

characteristics (e.g. speed) and exhaust emissions. The main limitation of PEMS is 

that the equipment is very expensive, bulky and energy intensive. As a result sample 
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sizes can be small (often less than 10 vehicles) and tests run no longer than a few 

hours. To address this TNO have developed the Smart Emission Measurement 

Systems (SEMS) that measures CO2 and NOx. It is smaller than the PEMS and lower- 

cost but also less accurate. The other benefit of the SEMS is it can conduct 

measurements over a longer timescale (weeks as opposed to hours). 

2.6.2 Remote sensing 

Remote sensing (in contrast to PEMS) provides a snapshot of exhaust emissions for 

a very large sample of vehicles (>70,000). A key advantage of remote sensing is a 

large number of vehicles can be sampled relatively quickly (Williams & Carslaw, 2011). 

Remote sensing involves a non- mobile measurement station being installed close to 

the traffic stream. The Remote Sensing Detector (RSD) consists of an emitter and a 

detector positioned facing each other with the traffic flowing between them. The emitter 

emits light at various frequencies which the detector detects. Spectroscopy is 

performed on the exhaust gases of vehicles as they pass between the emitter and 

detector breaking the beam. Essentially the RSD records to what extent the exhaust 

plume absorbs energy in different frequency bands (Bishop et al., 2010).  

If the RSD is paired with an Automatic Number Plate Recognition (ANPR) camera 

individual vehicles can be matched to emissions measurements. This creates the 

potential for remote sensing to be used for in service conformity tests. It also allows 

profiles to be built up for specific technology types (e.g. Euro 5 diesel) and conclusions 

drawn as to the average performance across the fleet. A limitation of remote sensing 

is that emissions are recorded as a ratio of CO2, and CO2 is not recorded by the RSD. 

It is therefore not possible to make a direct comparison with type approval limits which 

are measured in g/km without using an estimate for CO2. 
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Another limitation of RSD is that (as it provides a snapshot) it is not possible to know 

whether the emission recorded is a peak or spike in emissions occurring due to 

acceleration or DPF regeneration or if the vehicle in question has consistently high 

emissions. PEMS data reveals that pollutants are emitted in peaks and troughs, with 

RSD it is impossible to say which part of the emission you are capturing. RSD is good 

at producing large statistical overviews but is not as good as PEMS for evaluating 

individual vehicles. 

2.6.3 Other measurement techniques 

Other measurement techniques include chase measurements where the vehicle being 

measured is followed by a vehicle containing a mobile emissions laboratory. Though 

these studies have been found to be within the accuracy of laboratory based testing 

the requirement that the vehicles are within 10m of each other means in practice these 

studies cannot be conducted on open roads (Bergmann et al., 2009a). 

Tunnel studies use measurements of pollutant concentrations at the entrance and exit 

to a tunnel along with a measurement of airflow to estimate the total amount of 

pollutant emitted in the tunnel. These studies are useful for estimating aggregate real 

world emissions data, but difficult to focus on specific vehicle technologies.  

2.7  The UK Integrated Assessment Model 

(UKIAM) 

The UKIAM is an integrated assessment model developed by the Integrated 

Assessment Unit at Imperial College London designed to evaluate emissions control 

strategies in the UK (Oxley, ApSimon & Valiantis, 2011). It fulfils the requirement of 
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the DEFRA Support for National Air Pollution Strategies contract and explores the 

impacts of a potential policy developments and cost-effective strategies for improving 

future air quality. The UKIAM has some similarities to the Pollution Climate Mapping 

(PCM) model, the official DEFRA air quality model used to fulfil the requirements of 

Ambient Air Quality Directive (2008/50/EC). Both UKIAM and PCM model background 

locations at a 1 km2 resolution and both consider roadside contributions as a separate 

increment. However UKIAM is more deterministic and PCM is semi-empirical. 

It brings together data from the other DEFRA contractors to create a multifaceted 

projection and appraisal of proposed strategies. The pollutants modelled by the 

UKIAM are SO2, NOx, PM10, PM2.5 and NH3 (ammonia, mainly from agriculture, 

contributes to nitrogen deposition and health risks). The initial scoping exercise of this 

research project was to identify possible uncertainties in the UKIAM and infer any 

action required to mitigate or allow for these uncertainties. This is presented in the 

next chapter. The UKIAM has also been used to generate the 2030 emissions 

projections reported in Chapter 5. 

 

Figure 2-8. Basic schematic of the UKIAM 
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As shown in Figure 2-8 the UKIAM can be subdivided in to five main topic areas; 

emission projections, costs and benefits, atmospheric dispersion, abatement options 

and environmental impacts. A brief overview of each of these main topic areas is given 

below. 

 Emissions projections are calculated for future scenarios up to 2030. These 

are used in atmospheric modelling and defining potential abatement measures. 

Emission projections depend on activity data and emission factors as emission 

activity data which comes from a number of different sources such as the NAEI, 

LAEI (London Atmospheric Emissions Inventory) and DfT. 

 Atmospheric Dispersion Models use emissions data to predict 

concentrations and deposition of pollutants across the country. The UKIAM can 

interchange the Source Receptor framework from various models including 

FRAME and EMEP. 

 Environmental Impacts are split into two main categories; ecosystems and 

health impacts. For ecosystems the UKIAM puts emphasis on Sites of Special 

Scientific Interest (SSSIs) and risk classes. The UKIAM accesses 

improvements in protection for different potential abatement strategies. 

Deposition of ammonia (eutrophication) is an important factor in ecosystem 

protection and it is the pollutant with the biggest uncertainty attached to it. 

Health Impacts are calculated using change in Population Weighted Mean 

Concentration (PWMC) of pollutants as an indicator of exposure of the UK 

population.  
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 Abatement Options can be categorized as technical measures and 

behavioural changes. Technical measures are based on the Multi Pollutant 

Measures Database (MPMD compiled by Amec Foster Wheeler) and work by 

Rothamstead on emissions of agricultural NH3. 

 Cost Benefit Analysis in the UKIAM consists of applying marginal damage 

costs related to changes in PWMC to estimate monetised health benefits and 

compare with abatement costs. 

The outputs of the UKIAM include total emissions (in tonnes) of SO2, NOx, PM10, PM2.5 

and NH3, 5 km resolution deposition maps for NHx, SO2 and NOx, 5 km resolution 

concentration maps for NO3, SO4 and NH4, 1 km resolution maps for PM10, PM2.5, NOx 

and NO2, 1 km resolution of PWMC for all pollutants and source apportionment.  

The UKIAM is a series of nested models that are called in succession. Components 

of the UKIAM include the Abatement Strategies Assessment Model (ASAM) which 

models the European imported contribution and Background, Road and Urban 

Transport modelling of Air quality Limit values (BRUTAL) which models road transport 

emissions. UK non-transport sources are modelled by the UKIAM itself. This is 

illustrated by Figure 2-9. The part of the UKIAM used most in this research was the 

BRUTAL model. 
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Figure 2-9. Schematic representation of the integrated structure of the multi-
scale UK Integrated Assessment Model (UKIAM) 

 

A final point relating to the UKIAM is that it is not designed to model aerial sources 

(i.e. planes) and has limited vertical resolution. This leads to an over estimate of 

pollutant concentrations in grid squares containing airports. The UKIAM should 

therefore not be used for modelling in the areas surrounding airports (particularly 

Heathrow). For this reason results presented in later chapters will include the caveat 

(excluding Heathrow).  
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2.7.1 The BRUTAL model 

The BRUTAL model is the high resolution (1 km) urban scale transport sub-model of 

the UKIAM. It adopts a bottom up approach to calculate the total UK transport 

emissions (in tonnes), the background and roadside pollutant concentrations (in µg m-

3) and the number of grid-squares containing roads at risk of exceeding the Air Quality 

Limit Value for annual mean NO2.  

The BRUTAL model is described fully by Oxley et. al 2009 (Oxley et al., 2009). This 

section presents an overview of the model relevant to this analysis. The version the 

model used for this analysis was BRUTAL v4.3 with the baseline year 2014. 

Within the BRUTAL model vector based GIS maps of the UK road network (including 

all motorways, major roads and most minor roads) are mapped onto a 1 x 1 km grid. 

Traffic flows are assigned to the road lengths in each grid-square using monitored 

traffic flow data from the NAEI where available and aggregated regional traffic flow 

data from the DfT. London traffic flow data is taken from the London Atmospheric 

Emissions Inventory (LAEI). The vehicle technology mix varies by road type and region 

and is taken from NAEI projections. Grid-squares also include data relating to 

population density. 

2.7.1.1 Modelling of NOx/ NO2 

As discussed there is a non-linear relationship between NOx emissions and NO2 

concentrations. As a result modelling NO2 concentrations is not straightforward. 

BRUTAL uses a quadratic relationship to calculate background NOx concentrations. 

This approach compares well with the empirical total oxidant method used by Jenkin 

and Clapp (Clapp & Jenkin, 2001). This method deduces that due to the strong 
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chemical coupling between NOx and O3 it is beneficial to regard NO, NO2 and O3 as a 

set species rather than NO and NO2 alone. 

Before the BRUTAL model is called by the UKIAM another sub-model produces 1 x 1 

km background NOx and PM10 concentration maps from the contribution of all non-

traffic sources including transboundary European emissions (fNO2 from non-traffic 

sauces assumed 10%). Ambient concentrations of urban NO2 are affected by changes 

in NOx emissions, the proportion of NOx emitted as primary NO2 and background 

concentrations of NOx and O3.  

Each grid-square is assigned a location type (eg. urban, suburban, rural) dependent 

on the traffic flow, population density and NO2 concentration. A different value of β 

(ratio of NO to O3) is applied for the different types of location.  A background 

concentration for NOx, O3 and NO2 relating to the emissions contribution from non-

traffic sources is calculated for each grid-square by the UKIAM. 

To add the component of background concentration which relates to traffic sources 

BRUTAL adds together fNO2 and NOx emissions from all traffic sources in the grid-

square and calculates the total oxidant. The total NOx from all traffic sources is then 

numerically dispersed and added to the non-traffic background. This combined value 

(traffic + non- traffic) is the predicted background concentration for each grid-square. 

Finally, to calculate the predicted roadside concentrations a roadside enhancement/ 

increment (related to the trafic flow, fleet mix, speed and emission factor of the road) 

is added and multiplied by a street canyon factor (if the grid-square is classed as an 

urban location). The street canyon factor is derived using ADMS-Urban, is modified 
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for different road types and is related to the population density in the grid-square 

(Oxley et al., 2009; Vardoulakis et al., 2007). 

2.7.1.2 Identifying exceedance of annual mean NO2 limit 

For each 1 x 1 km grid-square the BRUTAL model predicts the roadside concentration 

of the busiest road within that square. For example, Figure 2-10 is a 1 x 1 km grid-

square in central London. Though there are many roads within this grid-square the 

BRUTAL output relates only the highest annual roadside reading. For the grid-square 

depicted this will always be Marylebone Road (highlighted by red dashed line), one of 

the main arterial roads into London with Annual Average Daily Flow (AADF) ~100,000 

vehicles. 

 

Figure 2-10. Map of 1 x 1 km square in London, Marylebone Road highlighted 
“Map data ©2017 Google” 



69 
 

 

The UKIAM identifies grid-squares where the busiest road is at risk of exceeding the 

limit value based on the road-side increment superimposed on the background. These 

are grid-squares where more detailed modelling is required, for example using the 

ADMS model.  

2.7.1.3 BRUTAL model validation 

BRUTAL v4.3 model has been validated against 2014 measurement data for sites 

across the UK. For model validation the official (at the time) COPERT 4v11 speed 

dependent emissions factors were used. The locations of the 150 sites used for 

validation are plotted in Figure 2-11. The validation sites were located across the UK, 

with a higher concentration in London. The measurement data for the London sites 

came from the London Air Quality Network (LAQN), the measurement data for the 

national sites came from the Automatic Urban and Rural Network (AURN). 
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Figure 2-11. Validation sites across the UK  
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Figure 2-12. Measured vs. modelled NO2 and NOx for 150 sites across the UK 
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Figure 2-12 is a scatter plot of BRUTAL predictions against measured values for NO2 

and NOx at 150 background and roadside locations. There was good correlation 

between the measured and modelled values. However, Figure 2-12 shows the model 

had a negative bias, meaning it underestimated when compared with measurements. 

This bias is explored in Table 2-7 using the “modStats” function in the R package 

“openair”. The statistics presented are defined in the package as follows: 

FAC2  fraction of predictions within a factor of two 

MB   the mean bias 

MGE  the mean gross error 

NMB  the normalised mean bias 

NMGE the normalised mean gross error 

RMSE  the root mean squared error 

r  the Pearson correlation coefficient 

Table 2-7 shows that the MB (the negative bias) is largest for traffic related sites 

(Roadside and Urban Traffic). A potential explanation for this is that for this 

comparison BRUTAL used the COPERT 4v11 emissions factors, which (as shown in 

the Chapter 4) underestimate Euro 6 diesel emissions factors and potentially other 

vehicle categories also. Oxley, ApSimon & O’Driscoll (2016) investigated the effect on 

model validation of increasing the COPERT 4v11 emissions factors used by BRUTAL 

to match real world emissions. They found the model was better able to replicate the 

measured roadside concentrations of NO2 when the emissions factors were increased, 

indicating an underestimate in emissions factors contributed to the negative bias of 
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the BRUTAL model. This is similar to the findings of Lee et al. (2015) (discussed 

previously) who found in London measurements of NOx at traffic related sites were far 

higher than predicted by the NAEI (which uses COPERT emissions factors). 

Table 2-7. Summary of NO2 model evaluation statistics (against 
measurements) 

Type n FAC2 MB MGE NMB NMGE RMSE r 

Roadside 27 0.96 -7.49 8.84 -0.18 0.21 10.56 0.63 

Urban Traffic 30 0.80 -19.78 26.86 -0.28 0.38 33.18 0.44 

Rural 

Background 

15 0.93 -0.01 1.43 0.00 0.17 2.09 0.88 

Suburban 

Background 

4 0.75 -3.42 4.70 -0.20 0.28 5.59 0.82 

Urban 

Background 

74 0.97 -5.75 6.79 -0.21 0.25 9.10 0.74 

 

Table 2-7 and Table 2-8 quantify the correlation between modelled annual NOx and 

NO2 emissions from BRUTAL v4.3 and measurement data. The best overall 

predictions by site type were for rural background locations.  As discussed other sites 

(which may be more affected by traffic emissions) displayed a negative bias. This 

analysis used an updated version of BRUTAL to that used in DEFRA’s Model Inter-

comparison Exercise (MIE) (Carslaw, 2011) where BRUTAL was compared to ADMS-

Urban, ERG-Toolkit, CMAQ-Urban and PCM. The MIE focused solely on London so 

a direct comparison is not possible. However, in general the analysis presented here 

indicates improvements to the BRUTAL model have been a success. The magnitude 
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of the MB has significantly reduced compared to the MIE findings, and the R values 

have significantly increased. 

Table 2-8. Summary of NOx model evaluation statistics (against 
measurements) 

Type n FAC2 MB MGE NMB NMGE RMSE r 

Roadside 27 0.93 -15.15 21.99 -0.17 0.24 26.44 0.56 

Urban Traffic 30 0.80 -19.78 26.86 -0.28 0.38 33.18 0.44 

Rural 

Background 

15 1.00 0.37 2.35 0.03 0.22 2.98 0.89 

Suburban 

Background 

4 0.75 -8.78 9.73 -0.31 0.34 12.39 0.75 

Urban 

Background 

74 0.97 -9.14 11.13 -0.21 0.26 15.87 0.74 

 

2.8  Summary 

This chapter introduced the relevant background required to frame the research 

presented in the following chapters and an introduction to the models used in this 

analysis. It also provided the rationale behind the investigation into exhaust emissions 

from (particularly diesel) passenger cars and their effect on air quality. A key theme 

was the difference between diesel and petrol vehicles and the air quality / climate 

change trade off. This chapter also provided an overview of the UKIAM, the following 

chapter explains how the UKIAM was used to structure and guide this research 

project. 
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Chapter 3. The HAZOP 

approach 

 

This chapter describes how the Hazards and Operability (HAZOP) technique for risk 

assessment was used to underpin this research and identify areas of interest. A 

preliminary HAZOP assessment formed the basis of the research project and acted 

as a scoping exercise. HAZOP has been a vital tool in determining the direction and 

content of the subsequent research. Chapters 4 – 6 contain separate methodologies 

that refer specifically to the analysis presented in those chapters, the methods 

described in this chapter relate to the structure and direction of the research project 

as a whole. 
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3.1  HAZOP 

The HAZOP technique for risk assessment can be used as a heuristic method to 

identify possible causes of uncertainty within environmental models and provide a 

framework for research (ApSimon, Warren et al. 2002). The technique was endorsed 

by the Chemical Industries Association (CIA, 1989) for chemical engineering plants 

but can be applied to environmental issues. HAZOP assessments contain four main 

steps: 

1. Identify and consider each component of the process/ model being assessed  

2. Define the function of each identified component 

3. Consider deviations from this function and how such deviations might occur. 

Deviations from the function may be described by words such as; “NOT”, 

“LESS”, “MORE”, “AS WELL AS” and “REVERSE” 

4. Consider the consequences of these deviations, identify hazards 

(uncertainties) and define them. Consider the possible deviations from current 

procedure and then consider the consequences of these deviations 

The same four step process used in chemical plants can be used to assess 

environmental models. First the model is broken down into its component parts, then 

the functionality of each part individually assessed. The initial results are concise, 

allowing for further detail to be added where required. More in depth analysis can then 

be performed for the components of the model perceived to pose the biggest risk/ 

uncertainty. The 4th step of a HAZOP assessment of an environmental model will 

usually include a form of sensitivity analysis, an already well-established uncertainty 

technique.  
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The HAZOP technique can be performed multiple times and continuously updated 

throughout the lifetime of an assessment or project. It can also be used to monitor the 

progress of a project as it breaks down complex processes into measurable stages 

and components. Similarly it can be used as a checklist at the end of a project to 

evaluate the delivery of objectives. 

3.2  HAZOP assessment of the UKIAM 

A full HAZOP assessment of the UKIAM can be found in the Appendix. The results 

from Stage 1 (identify and consider each component of the process) are depicted in 

Figure 3-1. The process started by first identifying the 5 main topic areas; costs and 

benefits, abatement options, emission projections, atmospheric dispersion and 

environmental impacts. The main topic areas were then divided into subgroups. The 

HAZOP assessment did not include costs and benefits as this topic area has been 

assessed separately by DEFRA contractor Mike Holland using the Treatment of 

Uncertainty in a Benefit Assessment (TUBA) approach. 

The component of the UKIAM thought to contain the largest uncertainty was 

“Emissions factors” (highlighted in red in Figure 3-1), specifically emissions factors 

from passenger cars. Rationale for this is provided in the next section. This topic was 

subsequently subject to the in-depth analysis presented in this thesis and is presented 

as a case study for application of the HAZOP technique.  
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Figure 3-1. HAZOP assessment of the UKIAM 
Stage 1:  Identify and consider each component 
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3.3  Case study: NOx emissions from Euro 6 

diesel passenger cars 

The component of the UKIAM chosen as a case study was Euro 6 NOx emission 

factors from diesel passenger cars. This section describes why this particular 

component was chosen for closer examination and how HAZOP provided the 

framework for the subsequent research. An overview of the importance of diesel 

emissions to air quality in the UK has already been presented in the previous chapter. 

3.3.1 Rationale for focusing on Euro 6 diesel NOx emission factors 

The first reason to focus on diesel NOx emissions was the consistent failure of the UK 

to meet the Air Quality Limit Value for NO2. UK exceedances of the limit value occur 

almost exclusively at roadside locations and Euro 4 and 5 diesel cars did not deliver 

the real world reduction in emissions promised (Carslaw et al., 2011b). As discussed 

in the previous chapter the failure of successive Euro standards to reduce real world 

NO2 emissions is thought to contribute to current NO2 roadside exceedances. 

As shown in Figure 3-2 the NAEI estimated in 2014 diesel fuels contributed 28% of 

the UK’s total NOx emissions. After energy generation and manufacturing, diesel 

passenger cars were the single biggest source of NOx. Energy and manufacturing are 

stationary sources and as such their emissions are much easier to monitor and 

regulate. They also tend to be located outside urban conurbations meaning public 

exposure is low. In contrast diesel NOx emissions are emitted throughout our towns 

and cities where exposure is high. 



80 
 

 

 

Figure 3-2. Proportion of UK NOx emissions that come from diesel vehicles 
(NAEI, 2014a) 

 

At the time of the HAZOP assessment (2014) much faith was being put in the latest 

Euro 6 diesel cars launched in September 2014. COPERT 4v11 was also published 

in September 2014 and predicted a significant reduction in NOx between Euro 5 and 

6 diesel cars. Given similar hopes had been ascribed to the introduction of Euro 4 and 

5 it seemed prudent to approach these optimistic predictions with a degree of 

scepticism. Improvements in NOx emissions from Euro 6 diesel technology went on to 

form the cornerstone of the DEFRA 2015 air quality plan as well as Clean Air Zones 

and London Ultra-Low Emission Zones. 

Lastly the UNECE GAINS model predictions for UK total NOx emissions were much 

lower than NAEI projections. As the NECD ceilings are dictated by the GAINS figures 

there is a risk that the ceilings will be set lower than the UK could achieve. It was 

therefore important to have more certainty in the emission projections. 
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3.3.2 Stage 1: Identify the components of the process 

The component of the UKAIM being considered in greater detail for this case study is 

the emissions factors used in the BRUTAL model. Specifically the Euro 6 NOx 

emissions factors for diesel passenger cars. Like the NAEI the BRUTAL model uses 

COPERT speed dependent emissions factors. At the time of this research the 

recommended version of COPERT in use was 4v11 (this has since been updated to 

version 5). 

3.3.3 Stage 2: Define the function of the component 

The BRUTAL model takes the COPERT emissions factors and multiplies them by 

activity data to calculate the total emission in tonnes.  

Emissions [grams/tonnes] = Emission Factor [g km-1] x Activity Data [km] 

BRUTAL then disperses this total emission and superimposes it on the background 

to calculate the roadside concentrations of NO2. The diesel car contribution to total 

national NOx emissions is also calculated. 

3.3.4 Stage 3: Consider deviations from this function 

Deviations from this function were considered using the guide words “MORE/ LESS”, 

“NOT” and “AS WELL AS”. 

3.3.4.1 “MORE/ LESS” 

The possible outcomes of this investigation were the COPERT emission factors would 

be “MORE” or “LESS” than the real world Euro 6 diesel emissions. The evidence 

available indicated they would be “LESS”, i.e. an underestimate. The most likely cause 

for the COPERT 4v11 emissions factors being an over/ under estimate was the limited 
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sample size (only six vehicles) of Euro 6 diesels used to inform the model (Rexeis et 

al., 2013; Pastramas et al., 2014). 

3.3.4.2 “NOT” 

Emissions are effected by a wide range of input factors, it is likely estimates that 

depend only on speed will “NOT” be representative. They fail to take into account 

parameters such as ambient temperature, road gradient and wind speed. Also there 

are many other driving parameters (such as acceleration and vehicle specific power) 

that are “NOT” considered by the COPERT speed dependent emissions factors, this 

will be explored further in Chapter 4. 

3.3.4.3 “AS WELL AS” 

Diesel cars were promoted in order to reduce CO2 emissions, it is therefore important 

when considering NOx emissions from diesel passenger cars to also consider CO2 “AS 

WELL”. In the recent past an increase NOx emissions relative to petrol cars was the 

acceptable trade-off for reduced CO2 emissions. For this reason (and for context) it is 

important to consider petrol passenger cars “AS WELL AS” diesel. This is done in 

Chapter 6. 

It is also important, for reasons discussed in the previous chapter, to consider primary 

NO2 “AS WELL AS” total NOx emissions. 

3.3.5 Stage 4: Consequences of this deviation 

The potential consequences of COPERT underestimating NOx emission factors could 

be an underestimate in projections of total UK NOx emissions in tonnes, possibly 

effecting the likelihood of meeting the NECD ceilings. Underestimating NOx emissions 
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from diesel passenger cars may also lead to an underestimate in roadside 

concentrations of NO2 and over confidence in meeting the Air Quality Limit Value. 

To assess the potential risks it was first important to narrow down the possible range 

of the error in the COPERT emission factors. This was done using PEMS testing 

presented in Chapter 4, which indicated the magnitude of the deviation. 

Next the potential consequences of this deviation were explored using modelling and 

sensitivity analysis, presented in Chapter 5. 

3.4  Summary  

The HAZOP technique for risk assessment was applied to the UKIAM to identify key 

uncertainties requiring more in depth analysis. The area of emissions factors, 

specifically NOx emissions from diesel passenger cars was identified and provided a 

case study of the HAZOP approach. The four step process was followed, resulting in 

the research presented in the following chapters.  
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Chapter 4. NOx emissions from 

Euro 6 diesel passenger cars and 

comparison with COPERT 

 

This chapter presents the real world NOx and NO2 emissions from 39 Euro 6 diesel 

passenger cars measured using a Portable Emissions Measurements System 

(PEMS). These measurements are then compared to the EU type approval limit and 

COPERT version 4v11 speed dependent emissions factors. The instantaneous PEMS 

measurements are also analysed for relationships between driving mode and NOx 

emissions with a focus on urban driving. 
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4.1  Methods 

Instantaneous NOx emissions from 39 Euro 6 diesel passenger cars were measured 

by Emissions Analytics using a PEMS in the Greater London area. The test route 

comprised of ~80 km urban and motorway driving. By dividing the accumulated NOx 

emission in grams by the distance travelled, the average NOx emission over the entire 

test route was calculated (hereafter referred to as “trip” emission). Given the 

importance of urban air quality, real world emissions factors were also calculated for 

the composite urban and motorway sections. The COPERT model emissions 

estimates for the trips were calculated from the PEMS speed profile and compared 

with real world measurements.  

4.1.1 Test fleet 

All vehicles in the test fleet were category M1, defined as; “Vehicles used for the 

carriage of passengers and comprising not more than eight seats in addition to the 

driver's seat” (ECOSOC, 2011). The vehicle characteristics are listed in Table 4-1. 

The test fleet has been anonymised due to the commercial sensitivity of the data. Each 

vehicle was assigned a Vehicle ID according to the NOx abatement technology used 

and the engine displacement size. The manufacturers of the vehicles sampled made 

up 70% of new vehicle registrations in the UK in 2015 and included 13 of the 20 most 

popular manufacturers in the Europe  (SMMT, 2016; ICCT, 2015).  
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Table 4-1. Characteristics of the test fleet 

Vehicle 
ID 
 

Year of 
manufacture 

 

Engine 
displacement [ℓ] 

 

Mileage at 
start [km] 

 

NOx after-
treatment 

 

E1.5 2015 1.5 1675 EGR 

E1.6 2014 1.6 2363 EGR 

E2.2a 2012 2.2 6013 EGR 

E2.2b 2012 2.2 225 EGR 

E2.2c 2013 2.2 1164 EGR 

E2.2d 2015 2.2 590 EGR 

E2.2e 2015 2.2 531 EGR 

L1.4a 2014 1.4 2245 EGR + LNT 

L1.4b 2014 1.4 1463 EGR + LNT 

L1.5 2015 1.5 1263 EGR + LNT 

L2.0a 2015 2.0 1059 EGR + LNT 

L2.0b 2014 2.0 2568 EGR + LNT 

L2.0c 2014 2.0 745 EGR + LNT 

L2.0d 2015 2.0 451 EGR + LNT 

L2.0e 2015 2.0 1312 EGR + LNT 

L2.0f 2013 2.0 2019 EGR + LNT 

L2.0g 2014 2.0 640 EGR + LNT 

L2.0h 2014 2.0 2563 EGR + LNT 

L2.0i 2015 2.0 2910 EGR + LNT 

L2.0j 2014 2.0 1000 EGR + LNT 

L2.0k 2014 2.0 1492 EGR + LNT 

L2.0l - 2.0 742 EGR + LNT 

L2.0m 2014 2.0 4356 EGR + LNT 

L2.0n 2015 2.0 4276 EGR + LNT 

L2.0o 2014 2.0 1696 EGR + LNT 

L2.0p 2014 2.0 4192 EGR + LNT 

S1.6a 2014 1.6 2406 EGR + SCR 

S1.6b 2014 1.6 544 EGR + SCR 

S1.6c 2013 1.6 2178 EGR + SCR 

S1.6d 2014 1.6 2028 EGR + SCR 

S2.0a 2015 2.0 2502 EGR + SCR 

S2.0b 2015 2.0 2093 EGR + SCR 

S2.0c 2014 2.0 2567 EGR + SCR 

S2.0d 2014 2.0 5270 EGR + SCR 

S2.0e 2013 2.0 4061 EGR + SCR 

S2.0f 2014 2.0 3842 EGR + SCR 

S2.0g 2015 2.0 1184 EGR + SCR 

S3.0h - 3.0 1861 EGR + SCR 

S3.0i - 3.0 1393 EGR + SCR 
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4.1.1.1 NOx abatement technology 

The vehicles in the test fleet were all equipped with a Diesel Oxidation Catalyst and 

one of the three main diesel NOx abatements; Exhaust Gas Recirculation (EGR), Lean 

NOx Traps (LNT) and Selective Catalytic Reduction (SCR). Further explanation of 

each technology can be found in Chapter 2. All vehicles were fitted with EGR, as are 

all diesel vehicles Euro 5 and above. The majority were fitted with EGR in combination 

with either LNT or SCR. Vehicles labelled as EGR used only EGR. The mixture of 

abatement technologies in the test fleet (7 EGR, 19 EGR + LNT, 13 EGR + SCR) was 

representative of the distribution of these technologies in the 2014 EU diesel 

passenger car sales mix (ICCT, 2015). All vehicles were also fitted with a Diesel 

Particulate Filter (DPF) which has been standard for diesel vehicles since Euro 5. 

4.1.1.2 Engine displacement  

As discussed in Chapter 2 diesel engines tend to be larger than petrol engines. The 

average engine displacement of the Euro 6 test fleet was 2ℓ, and the engines ranged 

between 1.4 ℓ - 3 ℓ. This is representative of the distribution of engine sizes in both the 

UK (Table 4-2) and EU as a whole.  

Table 4-2. Distribution of engine displacements in the test fleet compared to 
UK 2015 sales (DfT, 2015c) 

 
≤1 ℓ 1 to ≤ 1.55 ℓ >1.55 to ≤ 2 ℓ >2 ℓ 

UK 2015 sales diesel cars (%) 0.1% 12% 65% 23% 

Test fleet share (%) 0 10% 72% 18% 
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4.1.1.3 Mileage of test fleet 

The majority of vehicles in the test fleet had a low mileage, the average mileage at the 

start of the trip was 4105 (sd. 3000) km with most vehicles having an initial mileage of 

between 2000 - 5000 km. Historically manufacturers recommended an engine “break-

in” period for new vehicles of 100 miles. In modern vehicles the engine “break-in” is 

part of the production process, meaning all engines in the test fleet were properly 

broken-in and settled into normal operation. As the vehicles in the test fleet had a 

relatively low mileage, emissions degradation (usually observed > 50,000 km (Borken-

Kleefeld & Chen, 2015)) was not a consideration. 

4.1.2 Test route  

The test route was comprised of urban and motorway driving in the Greater London 

area. Each test followed a similar route with slight variations due to unavoidable 

circumstances such as road works or traffic. The average trip length was 84.3 (sd. 

16.6) km and the average duration was 112 (sd. 22) minutes, of which roughly three 

quarters was urban driving and one quarter motorway. 

4.1.2.1 Urban and motorway section selection 

To assess the differences between urban and motorway emissions the relevant 

sections of the route were identified and analysed separately. Sections were identified 

using GPS co-ordinates and purpose built software in the statistical package R. As 

with the manufacturer of the vehicles, the exact location of the test route is 

commercially sensitive. Figure 4-1 is a schematic of the test routes general 

characteristics. The urban section comprised A, B and C roads (UK) in residential 

areas with a speed limit of 50 km h-1 (30 mph). The motorway section was an M road 

with a speed limit of 110 km h-1 (70 mph).  
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Figure 4-1. Illustration of test route and section selection 

 

The test routes started at the test centre in an urban area, vehicles first completed an 

urban loop. This was followed by a period down and back a stretch of motorway, 

usually repeated twice. The vehicles then repeated the urban loop and ended back at 

the test centre. The purpose built software identified when the vehicle passed onto the 

motorway using GPS, as illustrated in Figure 4-1. Thus each trip was broken down 

into its motorway and urban constituent parts. This does not follow the RDE test 

procedure detailed in Regulation (EU) 2016/646. The aim in this chapter is to explore 

real world (particularly urban) emissions exactly as they occur. For that reason the 
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data processing and dynamic conditions specified in (EU) 2016/646 were not used to 

clean the data. However, the RDE test procedure is followed in Chapter 6 and 

comparisons are drawn between the two methods. 

4.1.2.2 Driving characteristics 

Table 4-3 lists the average characteristics of the test trips and the constituent urban 

and motorway sections. For comparison the characteristics of the NEDC (New 

European Driving Cycle) are also listed. As the test route was relatively flat (< 60 m 

elevation gain over 85 km) the effect of road gradient is not considered here. 
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Table 4-3. Characteristics of test route and sections 

 

Trip Urban Motorway NEDC 

Route distance 

[km] 
84.3 (sd. 16.6) 34.8 (sd. 6.0) 37.7 (sd. 5.3) 11.02 

Avg. duration  

[minutes] 
112 (sd. 22) 80 (sd. 17) 22 (sd. 3) 13 

Avg. vehicle speed  

[km h-1] 
45.6 (sd. 4.9) 26.5 (sd. 2.9) 103.8 (sd. 5.6) 34 (sd. 31) 

Avg. RPA  

[m s-2] 
0.25 (sd. 0.12) 0.26 (sd.0.12) 0.15 (sd. 0.16) 0.15 (sd. 0.03) 

Avg. VSP 

[kW t-1] 
3.9 (sd. 8.7) 1.5 (sd. 6.0) 11.8 (sd. 12.3)  

Max elevation 

[m] 
54.7 (sd. 22.2) 28.6 (sd. 7.6) 51.9 (sd. 22.4) - 

Min elevation  

[m] 
-4.7 (sd. 6.6) -4.5 (sd. 6.6) 4.7 (sd. 4.0) - 

Idle [%] (time) 

( v ≤ 2km h-1) 
10.2 (sd. 4.8) % 13.7 (sd. 6.7)% 1.5 (sd. 0.8) 22.9 

Low  [%] (time) 

(2 < v ≤ 50km h-1) 
62.5 (sd. 7.4) % 84.0 (sd. 6.7)% 5.1 (sd. 5.1) 55.3 

Medium [%] (time) 

(50 < v ≤ 90km h-1) 
8.7 (sd. 3.0) % 2.4 (sd. 2.5)% 13.7 (sd. 4.8) 14.6 

High [%] (time) 

(v > 90km h-1) 
18.6 (sd. 4.5) % 0 (sd. 0)% 83.7 (sd. 7.6) 7.2 
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4.1.2.3 Speed distribution 

PEMS tests capture a large range of driving characteristics that are not well 

represented in the laboratory based NEDC. Figure 4-2a shows the cumulative 

frequency speed distributions for the PEMS trips (grey) and compares these to the 

NEDC (red) and the new WLTC (Worldwide harmonized Light vehicles Test Cycle) 

(blue). The WLTC and PEMS speed distributions were much smoother than the 

NEDC, though the distribution of speeds over the PEMS trips were similar to the NEDC 

and WLTC. However, as discussed in Chapter 2, it is now known differences in driving 

dynamics account for only a small part of the difference between RDE and NEDC NOx 

emissions (Degraeuwe & Weiss, 2017). 

Figure 4-2b shows the cumulative frequency speed distributions for the urban and 

motorway sections. The urban sections (green) fell within the range 0 – 50 km h-1 

whereas the vast majority of the motorway sections (orange) fell within the range 70 – 

110 km h-1. As stated previously emissions vary significantly with driving 

characteristics including speed. It was therefore important to have consistency in the 

speed distribution between different trips to ensure comparisons were fair. Plotting the 

cumulative frequency speed distribution (Figure 4-2) is a useful way to compare large 

numbers of trips and ensure continuity and comparability. With the exception of one 

motorway section all speed distribution lines formed distinct groups. This indicated a 

good level of correlation in the speed distributions of trips from different vehicles. The 

one motorway section in Figure 4-2b that stood out from the group had an average 

speed of 80 (sd. 36) km h-1. This was below the motorway section average of 103.8 

(sd. 5.6) km h-1. This test coincided with road works on the motorway. As the aim of 

this analysis is to represent accurately real world emissions (including congestion 
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which occasionally slows motorway traffic) this vehicle was not excluded from the 

study. Emissions from this vehicle were not found to be anomalous. 

 

Figure 4-2. Cumulative frequency speed distribution for a) whole trip and b) 
urban and motorway sections (test cycle data from Tutuianu et al (Tutuianu et al., 

2013)) 
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4.1.2.4 Relative Positive Acceleration (RPA) 

Relative Positive Acceleration (RPA) is a parameter used as a proxy for driving style 

and to assess the comparability of different measurement trips. RPA is the integral of 

the product of instantaneous speed and positive acceleration. This chapter adopts the 

definition of RPA used by Weiss et al., (2011). This definition is slightly different to the 

definition in (EU) 2016/646 (the new RDE type approval legislation). Weiss et al. divide 

the whole trip into numerous “sub-trips” and calculate the RPA of each whereas (EU) 

2016/646 calculates the RPA of the trip as a whole. The (EU) 2016/646 definition of 

RPA will be used in Chapter 6. Equation 4-1 was used to calculate the RPA plotted 

in Figure 4-3. 

RPA =  
∫ (vi ×  ai)dt

tj

0

xj
 

Equation 4-1. Relative Positive Acceleration (Weiss et al., 2011a) 

tj =  time  

xj =  distance of sub-trip j  

νi =  speed during each increment i  

ai =  Instantaneous positive acceleration during each increment i contained in 

the sub-trip j 

A “sub-trip” is defined as “any part of the test route, in which the vehicle speed is at 

least 2 km h-1 for a period of at least 5 seconds”. Meaning when the vehicle speed falls 

below 2 km h-1 one “sub-trip” ends and when a vehicle accelerates again above 2 km 

h-1 for a duration of 5 seconds a new “sub-trip” begins.  
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Figure 4-3 shows the RPA of urban and motorway sections and compares these to 

the NEDC (red) and WLTC (blue). 

 

Figure 4-3. Relative Positive Acceleration (RPA) of urban and motorway 
sections (test cycle data from Tutuianu et al (Tutuianu et al., 2013)) 

 

RPA is a measure of acceleration as well as speed. As a result there was a much 

wider range of RPA for real world driving than for laboratory based test cycles where 

acceleration/ deceleration is controlled. Figure 4-3 shows the RPA range of the WLTC 
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is much more representative of real driving than the NEDC. The majority of the PEMS 

sub trips fell into the “low” RPA bracket (lowest horizontal dashed line). “Low” is 

classified as RPA within the range 0.1 - 0.4 m s-2 and velocity under 50 km h-1. 

“Extreme” is classified as RPA above 1 m s-2 at low velocity or a low RPA at a velocity 

above 120 km h-1 (Weiss et al., 2011a). Only one PEMS sub-trip was classed as being 

“extreme”. The WLTC defines “normal European driving” as having an average RPA 

of 0.2 m s-2 for urban driving and 0.1 m s-2 for motorway driving (Tutuianu et al., 2015)). 

The PEMS trips average RPA was 0.25 (sd. 0.12) m s-2 for urban and 0.15 (sd. 0.16) 

m s-2 for motorway sections. These values fit the definition of “normal European 

driving”, meaning the tests in this study were representative of normal European 

driving. 

4.1.2.5 Vehicle Specific Power (VSP) 

Vehicles specific power (VSP) is another metric used to characterise driving 

behaviour. VSP is an instantaneous measure of a power per unit mass of a vehicle. It 

is a function of vehicles speed, acceleration/deceleration and road gradient (Equation 

4-2). Emissions show strong correlation with VSP (Zhai, Frey & Rouphail, 2008; 

Carslaw et al., 2013).  

𝑉𝑆𝑃 = 𝑣[1.1𝑎 + 9.81(sin(arctan(𝑟))) + 0.132] + 0.000302𝑣3 

Equation 4-2. Vehicle specific power (Jiménez-Palacios, 1999) 

VSP = vehicle specific power in [kW t-1] 

v = velocity [m s-1] 

a = acceleration [m s-2] 

r = road gradient [slope] 
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Figure 4-4. Vehicle Specific Power for whole trip, urban and motorway sections 
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The VSP frequency distribution for each trip/section is represented by a black line in 

Figure 4-4. The distributions formed distinct groups indicating consistency throughout 

the tests. The motorway sections VSP profiles also highlight the trip for which there 

was congestion on the motorway. This is an example of how looking at the VSP 

frequency distribution of different RDE trips can be a quick way to identify similarities 

and differences. 

The VSP frequencies for the whole trip had a bimodal pattern with a central peak 

corresponding to urban driving and a secondary positive skewed peak corresponding 

to motorway. The urban peak was higher as the test route had a much greater 

frequency of urban driving (~75%). The urban sections had much lower VSP with a 

bigger proportion negative due to lower speeds and a greater prevalence of sharp 

deceleration during urban driving. 

4.1.3 Ambient temperature 

The tests were performed over a range of ambient temperatures (3 - 29˚C) within the 

normal range for Europe (EC, 1998). Previous studies found correlation between NOx 

emissions and ambient temperature, with NOx emissions increasing as temperature 

decreased (DfT, 2016d; Kwon et al., 2017). TNO in the Netherlands concluded this is 

due to the “thermal window” phenomena whereby manufacturers disable NOx controls 

at a certain temperature theoretically to protect the engine (Kadijk et al., 2016; DfT, 

2016d). Some manufacturers have reportedly been exploiting the “thermal window” 

regulation and disabling NOx controls at temperatures as high as 17 ˚C (T & E, 2016), 

the UK average ambient temperature is 9 ˚C (DfT, 2016d). Results were not corrected 

for ambient temperature as the aim was to accurately present real world European 

driving emissions which must cover a range of temperatures to be representative. 
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4.1.4 Portable Emissions Measurement System (PEMS) testing 

PEMS testing was conducted by Emissions Analytics using a SEMTECH-DS 

developed by Sensors Inc (Sensors Inc, 2010). The SEMTECH-DS consists of a flow 

meter that measures the volume of exhaust emissions connected to multiple gas 

analysers. The SEMTECH-DS contains a GPS receiver which records latitude, 

longitude, altitude and vehicle speed. There is also an interface that connects to the 

vehicles on-board engine diagnostics (OBD) port. NO and NO2 are measured 

simultaneously and separately using Non-Dispersive Ultraviolet Light (NDUV). NO is 

reported as NO2 and NOx is calculated as the sum of both (Sensors Inc, 2014). 

The SEMTECH-DS was installed and operated following manufacturers 

recommendations. A leak test along with zero and span (known gas concentration) 

calibrations were performed before and after each test-run. Results were deemed 

invalid if the zero or span test at the end of the trip had an error greater than 3%. The 

SEMTECH-DS fulfils both EU and US testing requirements and previous studies have 

found SEMTECH-DS to be accurate within the range of lab based testing methods 

(EPA, 2008b, 2008a; EC, 2011; Weiss et al., 2012). 

The PEMS unit was powered by external batteries meaning engine operation was not 

affected, apart from the additional weight. The PEMS itself weighs approximately 95 

kg. With the addition of drivers the total load weight was 220 kg. This was uniform for 

all tests and supplemented by additional weights if required. Studies have found that 

this additional weight affects the power mass ratio of a vehicle and can potentially 

increase CO2 emissions by up to 3%; it is reasonable to assume a similar margin for 

NOx (Fontaras & Samaras, 2010; Weiss et al., 2012). This is less than the 10 – 20 % 

variability associated with any PEMS measurement (Kadijk et al., 2016). The 220 kg 
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is also roughly equivalent to 2 – 3 passengers, and therefore not outside a vehicles 

normal operating weight. 

As mentioned previously, driving style can have a large impact on emissions. The tests 

were performed by drivers trained in “normal” non-aggressive driving as evidenced in 

Figure 4-3. The same drivers performed all the tests to ensure driving style was 

consistent.  

The SEMTECH-DS samples at a frequency of 1Hz (i.e. 1 second time resolution). This 

allows for real-time scrutiny of instantaneous emissions which is not possible using 

other emissions measurement techniques.  Figure 4-5 is an extract from the urban 

section of vehicle L2.0p showing instantaneous NOx (blue) on the left-hand y axis and 

speed (red) on right. Figure 4-5 shows NOx emissions were delivered in peaks that 

correlated with acceleration events. 

 

Figure 4-5. Extract from vehicle L2.0p urban section showing instantaneous 
NOx and speed 
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4.1.5 COPERT emissions factors 

The speed dependent emissions factors used in this research were the Euro 6 

COPERT 4v11 NOx emissions factors introduced in September 20141. COPERT 

derives emissions factors from the Handbook on Emission Factors of Road Transport 

(HBEFA). HBEFA has been developed from chassis dynamometer tests using the 

ERMES drive cycle. The PHEM model (Passenger car and Heavy duty vehicle 

Emission Model) is then used to expand the chassis dynamometer emissions factors 

to cover all driving conditions. For COPERT 4v11 the Euro 6 emission factors were 

inferred from measurements of 20 vehicles of which only 6 were diesel (Rexeis et al., 

2013; Pastramas et al., 2014).  

The aim in this chapter is to compare the COPERT estimates for NOx and NO2 to the 

real world emissions PEMS measurements using the speed profile of the trips. 

COPERT emissions factors are speed dependent but are not designed to be used with 

instantaneous speed. When modelling with COPERT the road network is broken down 

into a series of links for which the average speed is known. The speed dependent 

emission factor corresponding to this average speed is then applied uniformly to the 

entire link.   

To ensure the comparison between COPERT and PEMS was accurate and fair the 

COPERT estimates were calculated using the speed profile from each individual 

PEMS trip. For this comparison the approach of the INCERT (Interface for the 

Comparison of Emissions from Road Transport) model (Kousoulidou et al., 2013) was 

adopted using purpose built software in the statistical package R. The INCERT model 

                                            
1 COPERT released version 5 in October 2016 after this research had been published 
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splits the PEMS real world speed profile into links of equal length. The average speed 

of each link is then calculated and applied to that whole link, emulating application of 

the COPERT model. 

The reliability of COPERT increases with link length up from a minimum of 400m 

(Samaras et al., 2014). This study used a link length of 1 km. This technique is 

illustrated in Figure 4-6. The blue line is the PEMS speed profile for a 30 minute extract 

from vehicle L2.0p. The red line is the mean speed of each 1 km link. This extract 

includes part of the motorway section where each 1 km link has a much shorter 

duration and there is less variability in the speed. The extract also includes part of the 

urban section where the PEMS profile has much more variability and there is far more 

acceleration and deceleration. The 1 km links in the urban section had much longer 

durations. COPERT has limited modelling capability at low speeds (< 10 km h-1). Using 

the 1 km links avoids modelling in this range. 

 

Figure 4-6. PEMS and 1 km link speed profile generated to calculate COPERT 
emissions estimates  
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Once the required speed profile was generated the appropriate COPERT emissions 

factor was assigned to each link. This was done using the iMove model (Valiantis, 

Oxley & ApSimon, 2007). iMove is a purpose built software that applies COPERT 

emissions factors to custom speed profiles. iMove is embedded in the BRUTAL model 

(Oxley et al., 2012), the road transport sub-model of the UKIAM (Oxley et al., 2013)).  

 

Figure 4-7. COPERT 4v11 speed dependent emissions curves for NOx, dashed 
lines = type approval limits 
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Figure 4-7 shows the Euro 5 (blue) and Euro 6 (red) COPERT 4v11 speed dependent 

emissions factors for NOx along with the relevant type approval limits. COPERT 4v11 

estimated an approximate -64% reduction in NOx between Euro 5 and Euro 6 and the 

relationship with speed became less pronounced (the curve became flatter). The Euro 

6 emission factors were between 2 and 4 times the emissions limit of 0.08 g km-1. 

COPERT does not have a specific function for NO2, it assumes a constant proportion 

of NOx.  For Euro 6 diesel COPERT estimates a flat rate of 30% primary NO2 (Pang, 

2015).   

4.1.6 Data analysis 

4.1.6.1 Emissions factor calculations 

Average NOx emissions in this chapter are stated in g km-1. PEMS record emissions 

in g s-1. The g km-1 emissions were calculated by summing the total trip/ section 

emission in g s-1 to get a total in grams and then dividing by distance travelled. As the 

PEMS did not record the distance travelled this was calculated using Equation 4-3. 

This distance was also verified using the “geosphere” package in R which calculates 

the total distance travelled on a route using GPS co-ordinates. 

𝑆 =  ∑ 𝑣𝑖 × 𝑡𝑖

𝑛

𝑖=1
 

Equation 4-3. Calculating distance of each section 

S =  total distance of section [m] 

vi =  velocity [m s-1] at time i 

ti = time [s] (1 second) 
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4.1.6.2 Acceleration 

Following EU Commission Regulation (EU) 2016/646 acceleration was calculated 

using Equation 4-4: 

 

𝑎𝑖 =
𝑣𝑖+1 − 𝑣𝑖−1

2 ∗ 3.6
                               𝑖 =  1 𝑡𝑜 𝑁𝑡  

Equation 4-4. Acceleration (EC, 2016a) 

a = acceleration in [m s-2] 

v = velocity [km h-1] 

Nt = number of samples 

4.1.6.3 Boxplots 

Many of the results in this chapter are presented in boxplots. Each point on the plot 

represents an individual vehicles’ measurement. Large red triangles represent the 

mean of each category/bin. The thick horizontal line in the middle of each box 

represents the median (middle data point) of each category/bin. The box represents 

the middle half (i.e. the second and third quarter) of the data points. The difference 

between the highest value data and lowest value data point within the box is known 

as the interquartile range (IQR). The whisker extends to data points within 1.5 x IQR. 

Any data point more than 1.5 x IQR is an outlier. In this study the width of the box has 

no significance. Red dashed horizontal lines represent type approval limits. 

4.1.6.4 Cold starts 

The cold starts emissions (defined as the first 300 seconds of each PEMS test (Weiss 

et al., 2011a)) were not included in this analysis. This was due to a lack of continuity 
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between the PEMS tests, the majority were from warm start though some engines 

were soaked overnight (left outside overnight to ensure after treatment system, engine 

coolant and engine were completely cooled to ambient temperature). Cold starts will 

be discussed in more depth in Chapter 6.  

4.2  Results 

This section first presents the results relating to PEMS measurements, then analysis 

of the separate urban and motorway sections and effect of driving mode and 

acceleration followed by the comparison with COPERT speed dependent emissions 

factors. 

4.2.1 PEMS measurements 

The PEMS measured average NOx and NO2 emissions from each trip is presented in 

Figure 4-8. Results are presented in g km-1 on the left-hand y axis and deviation ratio 

on the right y axis. The Euro 6 current type approval limit is marked in red and the 

Euro 6d-TEMP NTE RDE limit is marked in blue. The numerical results from Figure 

4-8 are presented in Table 4-4. 
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Figure 4-8. Trip average NOx and NO2 emissions in g km-1 with Euro 6 type 
approval limit (red) and Euro 6d-TEMP RDE type approval (blue) 

 

Table 4-4. Average trip NOx, Deviation Ratio, NO2 and fNO2 

NOx [g km-1] Deviation Ratio NO2 [g km-1] fNO2 [%] 

0.36 (sd. 0.36) 4.5 (sd. 4.5) 0.17 (sd. 0.19) 44 (sd. 20) 

 

The average NOx emission of 0.36 (sd. 0.36) g km-1 was 4.5 times the Euro 6 type 

approval limit. Furthermore, it was 1.4 times the Euro 4 type approval limit. The 

average NO2 emission of 0.17 (sd. 0.19) g km-1 was twice the Euro 6 type approval 

limit for total NOx. The vast majority of vehicles did not achieve the Euro 6 type 
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approval limit during real world driving, only 2 of the 39 vehicles (5%) met the limit. 

The average emissions of both NOx and NO2 exceeded the Euro 6d-TEMP limit, 

though 11 vehicles (28%) were able to meet it. A high proportion of NOx was emitted 

directly as NO2 with an average of 44 (sd. 20) %. The high levels of NO2 in modern 

diesel vehicles is attributed to the presence of oxidising catalysts (DOCs) in the 

emissions control devices that oxidise NO to NO2 (DfT, 2016d). Higher levels of NO2 

in exhaust gases also enhance DPF regeneration and improve the efficiency of SCR 

processes, reducing total NOx emissions (Wang et al., 2015).  

There was huge variability in both NOx and NO2 emissions. The highest NOx emission 

was 26 times higher than the lowest and the highest NO2 emission was over 100 times 

the lowest. Five vehicles were classed as outliers (outside of 1.5 x the IQR). For both 

NOx and NO2 the mean was higher than the median. This indicated that the 5 outliers 

were having a substantial effect on the group mean and removing them would deliver 

a substantial benefit, this idea is explored further in the Discussion section of this 

chapter.  

The highest NOx emitter was vehicle S3.0h with an average emission of 1.76 g km-1, 

a deviation ratio of 22. The highest NO2 (g km-1) and fNO2 were from vehicle L2.0j, 

0.80 g NO2 km-1 and 88% fNO2 respectively. 
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Figure 4-9. Trip average NO2 against ratio fNO2 

Figure 4-9 illustrates the relationship between fNO2 and NO2 in g km-1. There was 

moderate correlation, though high variance resulted in a relatively low R2 value. This 

was due to instances of high absolute NO2 emission at below average fNO2 and some 

relatively low absolute NO2 at above average fNO2 (circled in red). This highlights the 

importance of discussing NO2 in terms of g km-1 rather than solely as a fraction of NOx. 



111 
 

 

4.2.1.1 NOx abatement technology  

This section compares average emissions from the different NOx abatement 

technologies in the test fleet; Exhaust Gas Recirculation (EGR), Lean NOx Traps (LNT) 

and Selective Catalytic Reduction (SCR). 

Figure 4-10 compares the NOx, NO2 and fNO2 of the three abatement technologies, 

the numerical results are presented in Table 4-5.  With the exception of fNO2 for SCR 

vehicles there was no difference between emissions from the different technology 

vehicles. This finding is in keeping with a remote sensing study by Carslaw & Rhys-

Tyler (2013) that found SCR no better than non-SCR technology in reducing NOx. 

There was huge variation in emissions between vehicles using the same technology. 

For example both the highest (88%, vehicle L2.0j) and lowest (10%, vehicle L2.0a) 

measurements of fNO2 were vehicles using LNT. 

Table 4-5. Average trip NOx, Deviation Ratio, NO2 and fNO2 

NOx control NOx [g km-1] Deviation Ratio NO2 [g km-1] fNO2 [%] 

ALL 0.36 (sd. 0.36) 4.5 (sd. 4.5) 0.17 (sd. 0.19) 44 (sd. 20) 

EGR 0.44 (sd. 0.47) 5.5 (sd. 5.9) 0.12 (sd. 0.08) 31 (sd. 11) 

LNT 0.31 (sd. 0.24) 3.9 (sd. 3) 0.16 (sd.0.23) 41 (sd. 24) 

SCR 0.39 (sd. 0.45) 4.9 (sd.5.6) 0.20 (sd.0.19) 55 (sd. 13) 
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Figure 4-10. Trip average NOx, NO2 and fNO2 by control technology 
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Analysis of Variance (ANOVA) was performed for NOx, NO2 and fNO2. The only 

statistically significant difference between the three abatement technologies was in 

fNO2. The mean fNO2 for SCR (55 sd. 13 %) was ~1.5 times the combined EGR + 

LNT mean of 38 (sd. 21) % with a p value of 0.01. Though LNT had a lower mean than 

EGR the means were not statistically different due to high variance within the two 

groups. 

The increase in fNO2 for SCR did not result in a statistically significant difference in 

NO2 in g km-1. Though the mean NO2 in g km-1 was higher for SCR than LNT and EGR 

combined, again high variance within the groups meant that statistically the means 

were not different.  

There was no statistically significant difference in NOx emissions between the 

abatement technologies. However, one vehicle fitted with SCR and another fitted with 

LNT met the Euro 6 type approval limit whereas no vehicle fitted with only EGR was 

able to. None of the EGR vehicles tested had NOx emissions within the RDE type 

approval limit but neither did they have the highest NO2 emissions. The 5 highest 

emitters of NO2 were all SCR or LNT. 
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Figure 4-11. Bar chart showing average trip NOx and NO2 emissions in g km-1 
by NOx control technology (red dashed line = Euro 6b limit, blue dashed line = 

Euro 6c limit) 

 

Figure 4-11 shows the NO and NO2 components of each vehicles total NOx. Many 

vehicles had NO2 components (dark grey) far exceeding the limit for total NOx and 

forming the majority of the emission. For each abatement technology the vehicles are 

plotted in order of engine displacement along the x axis.  

4.2.1.2 NOx emissions by engine displacement 

There was no direct correlation between engine displacement and NOx emissions, this 

is shown by the low R2 value in Figure 4-12. However, 2 ℓ engines had lower NOx 

emissions than all other sizes. The mean NOx emission of the 2 ℓ engines was 0.26 

(sd. 0.22) g km−1. This was half the mean NOx emission of non 2 ℓ engines. Similarly 

the mean NO2 emissions of non 2 ℓ engines was 50% higher than for 2 ℓ engines. The 

lowest 15 NOx emissions came from 2 ℓ engines as did 12 of the lowest 15 NO2 
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emissions. However, this may be because 2 ℓ engines were the most common in the 

sample (23 out of 39 vehicles). 

 

Figure 4-12. NOx and NO2 emissions by engine displacement 

 

4.2.1.3 NOx emissions by temperature 

As discussed previous studies have found NOx varied significantly with temperature, 

this was thought to be due to NOx controls being disabled at low temperatures. Figure 

4-13 shows NOx and NO2 emissions by ambient temperature. There was no 

relationship between ambient temperature and NO2 (Figure 4-13c).  
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Figure 4-13. NOx and NO2 emission by temperature 
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For NOx the regression line followed the expected trend, NOx increased as 

temperature decreased though there was little correlation and the R2 value was very 

low (Figure 4-13a). The slope in the regression line was due entirely to two anomalous 

high NOx measurements towards the lower end of the temperature scale. The two 

highest NOx emissions (E1.6, S3.0h) occurred between 8 – 14 ° C. When these two 

values were excluded from the analysis (Figure 4-13b) the regression line became 

flat and there was no relationship between NOx and temperature.  

In a report issued by the German government it was found some manufacturers 

disabled the NOx abatement technology at temperatures as high as 18 °C (BMVI, 

2016). It is likely that the two anomalous measurements in this study are an example 

of this “thermal window” phenomena. This is worrying for countries such as the UK 

where the average temperature is 9 °C.  

4.2.2 Urban and motorway sections 

This section compares the average NOx emissions from the urban and motorway 

constituent parts of each trip and analyses the relationship between driving mode and 

emissions. As discussed previously emissions in urban areas are a key consideration 

in air quality policy. The majority of air quality limit value exceedances occur at the 

roadside in urban locations where public exposure is highest. Unfortunately urban 

driving is also where the PEMS recorded the highest NOx emissions.  
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Table 4-6. Average trip, urban and motorway emissions 

 NOx [g km-1] Deviation Ratio NO2 [g km-1] fNO2[%] 

Urban 0.43 (sd. 0.42) 5.4 (sd. 5.3) 0.20 (sd. 0.24) 44 (sd. 22) 

Trip 0.36 (sd. 0.36) 4.5 (sd. 4.5) 0.17 (sd. 0.19) 44 (sd. 20) 

Motorway 0.31 (sd. 0.37) 3.9 (sd. 4.6) 0.14 (sd. 0.18) 45 (sd. 21) 

Increase trip to urban 19% 19% 18% 0% 

Increase motorway to urban 39% 39% 43% -2% 

 

Table 4-6 lists the average emissions of the urban and motorway sections of the trip. 

The trip averages are also included for comparison. On average urban emissions of 

both NOx and NO2 were ~20% higher than for the trip as a whole and 40% higher than 

the motorway. Primary NO2 was consistent throughout.  
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Figure 4-14. Urban average NOx and NO2 emissions in [g km-1] 

 

Figure 4-14 shows the urban average NOx and NO2 emissions in g km-1 with the study 

mean marked by a red triangle. The average urban NOx emission of 0.43 (sd. 0.42) g 

km-1 corresponded to a deviation ratio of 5.4. The highest NOx emission (again from 

vehicle S3.0h) was 2.18 g km-1, a deviation ratio of 27. This is 4 times the first ever 

Euro standard type approval limit for NOx (Euro 3, 0.5 g NOx km-1). The average urban 

NO2 emission was 0.20 (sd. 0.24) g km-1, this is higher than the Euro 5 type approval 

limit for total NOx. This has worrying implications for roadside air quality limit value 

exceedances and urban air quality in general. 
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Figure 4-15. Ratio urban/ motorway trip average emissions of NOx [g km-1], NO2 
[g km-1] and fNO2 [%] 

 

Figure 4-15 shows the ratio of urban emissions to motorway emissions for each 

individual vehicle. A ratio of 1 means urban emission = motorway emission. A ratio > 

1 means urban emission > motorway emission. For both NOx and NO2 urban 

emissions were higher than motorway for the majority of vehicles by an average of 

67% for NOx, 65% for NO2. There was a slight increase of 10% for fNO2. The increase 

between motorway and urban emissions for individual vehicles was higher than the 

increase in the test fleet average.  
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At urban roadside locations the NOx emitted directly as NO2 makes a large contribution 

to ambient NO2 concentrations. An increase in NO2 emissions during urban driving of 

between 43 – 65% has negative implications for air quality objectives and the 

protection of human health.  

4.2.2.1 Emission by driving style 

This section explores why emissions are higher during urban driving. The data was 

divided into different driving modes (as defined  by Frey et al., (2003)). A description 

of the four driving modes and the % of time spent in each during urban and motorway 

sections is given in Table 4-7.  

Table 4-7. Driving mode definitions (Frey et al (2003)) and % time of urban and 
motorway sections spent in each mode.  

Mode 
Vehicle 

speed [ms-1] 

Acceleration* 

range [ms-2] 

% urban 

section 

% motorway 

section 

Idle < 0.5 ± 0.1 12 % 0 % 

Cruise > 0.5 ± 0.1 27 % 70 % 

Acceleration  > 0.1 32 % 16 % 

Deceleration  < - 0.1 29 % 14 % 

*Acceleration calculated by Equation 4-4 (not RPA) 

The majority of time from motorway sections (70%) was spent in cruise, with no time 

spent in idle and the remainder split evenly between acceleration and deceleration. In 

comparison only 27% of the urban section was spent in cruise, with idle accounting 

for 12% and acceleration accounting for 32%. To assess the impact of driving mode 

on emissions each of the 39 trips were segmented into the four driving modes and the 
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average NOx and NO2 emission calculated for each segment. Figure 4-5 showed how 

instantaneous NOx emissions were delivered in peaks coinciding with acceleration. 

This is corroborated by the results plotted in Figure 4-16. 

 

Figure 4-16. NOx and NO2 emissions by driving mode in g s-1 and g km-1 

 

Figure 4-16 is a boxplot of the averages for the four driving modes from each of the 

39 vehicles.  The mean of each driving mode (marked by red a triangle) is listed in 
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Table 4-8. Whilst there was high variability within the driving modes acceleration 

produced the highest emissions for both NO2 and NOx. In Figure 4-16 emissions are 

presented in both g s-1 and g km-1. It is important to note that whilst idle had the highest 

emissions in g km-1 it had the lowest in g s-1. This is because even though the emission 

rate during idle driving was the lowest of all the modes, the distance accumulated was 

also very low. As a result the total grams accumulated were divided by a very small 

distance, resulting in high distance specific emissions (higher than 20 g km-1). To allow 

for this results have been reported in both g s-1 and g km-1.  

Table 4-8 lists the mean NOx and NO2 emission for each driving mode in g s-1 and g 

km-1 and the ratio of all other modes to acceleration. For both NOx and NO2 the rate 

of emission during acceleration was higher than any other driving mode by as many 

as 7 times. This is in agreement with Daham et al., (2005) who found traffic calming 

measures that increased the amount of acceleration/ deceleration (such as speed 

bumps) also increased NOx emissions by 195%.  
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Table 4-8. NOx and NO2 emissions by driving mode in g s-1 and g km-1 

 Acceleration Cruise Deceleration Idle 

NOx [g s-1] 0.007 (sd. 0.008) 0.005 (sd. 0.007) 0.002 (sd. 0.002) 0.001 (sd. 0.001) 

NO2 [g s-1] 0.003 (sd. 0.004) 0.002 (sd. 0.003) 0.001 (sd. 0.001) 0.0005 (sd. 0.0007) 

NOx [g km-1] 0.97 (sd.1.10) 0.30 (sd. 0.32) 0.39 (sd. 0.39) 9.7 (sd. 16.8) 

NO2 [g km-1] 0.46 (sd. 0.58) 0.15 (sd. 0.16) 0.19 (sd. 0.20) 4.2 (sd. 5.8) 

Increase between other modes and acceleration 

NOx [g s-1] - x 1.4 x 3.5 x 7.0 

NO2 [g s-1] - x 1.5 x 3.0 x 6.0 

NOx [g km-1] - x 3.2 x 2.5 x 0.1 

NO2 [g km-1] - x 3.1 x 2.4 x 0.1 

 

These results indicate prevalence of acceleration in urban sections is a dominant 

factor in the 39% increase in average NOx emissions. Therefore substantial reduction 

in urban emissions could be achieved by traffic management and junction redesign. 

Traffic schemes that reduce congestion and ease flow are cheaper and quicker to 

implement than more complex policy tools (such as Low Emission Zones) and can be 

effective at tackling air pollution (Chin, 1996; Carslaw & Beevers, 2005). 
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Figure 4-17. NOx emission in g s-1 by acceleration 

 

Figure 4-17 is a boxplot of the 220,000 instantaneous accelerations (all trips 

combined) and NOx measurements from all 39 vehicles divided into 12 acceleration 

bins each 0.5 m s-2 wide. Approximately half of the data points had a>0 and half a<0. 

Both the mean and median NOx emissions were substantially higher for a>0. The 

mean NOx, range and prevalence of data points for each bin is listed in Table 4-9. The 

majority of data points fell within the range -0.5 < a <0.5. 
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Table 4-9 Cuts, distribution of data points and mean NOx for acceleration bins 

Bin Range Mean NOx [g s-1] % of data points 

-3 [-3,-2.5] 0.0013 0.41% 

-2.5 (-2.5,-2] 0.0012 0.78% 

-2 (-2,-1.5] 0.0013 1.51% 

-1.5 (-1.5,-1] 0.0015 3.06% 

-1 (-1,-0.5] 0.0018 6.41% 

-0.5 (-0.5,0] 0.0026 46.03% 

0 (0,0.5] 0.0053 28.38% 

0.5 (0.5,1] 0.0082 7.84% 

1 (1,1.5] 0.0086 3.26% 

1.5 (1.5,2] 0.0091 1.39% 

2 (2,2.5] 0.0091 0.58% 

2.5 (2.5,3] 0.00808 0.26% 

3 (3,3.5] 0.00773 0.09% 
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4.2.3 Comparison between PEMS and COPERT (4v11) 

In this section PEMS measurements for NOx and NO2 are analysed for speed 

dependency and compared with COPERT 4v11 speed dependent emissions factors. 

The trip average NOx, deviation ratio, NO2 and fNO2 of the PEMS measurements and 

COPERT estimates are reported and compared in Table 4-10. 

Table 4-10. Comparison of PEMS and COPERT trip averages 

 NOx [g km-1] Deviation Ratio NO2 [g km-1] fNO2 [%]* 

PEMS 0.36 (sd. 0.36) 4.5 (sd. 4.5) 0.17 (sd. 0.19) 44 (sd. 20) 

COPERT 0.23 (sd. 0.01) 2.9 (sd. 0.1) 0.07(sd. 0.003) 30 (sd. 0) 

Ratio x 1.6 x 1.6 x 2.4 x 1.5 

*fNO2 calculated by mass 

COPERT estimates were considerably lower than the average emissions measured 

by the PEMS. Comparatively the average PEMS NOx emission was 1.6 times higher 

than the COPERT average estimate. COPERT’s assumption of 30% fNO2 was also 

an underestimate. The combination of the underestimate in NOx and fNO2 resulted in 

an even larger underestimate for NO2 emissions. Real world NO2 emissions were 2.4 

times higher than COPERT estimates. 

In contrast to the PEMS measurements there was very little variation in COPERT 

estimates. This was expected as COPERT estimates are speed dependent and there 

was little variation in the speed profiles between the trips (as seen in Figure 4-2).  
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Figure 4-18. Comparison of PEMS measurements and COPERT estimates for 
NOx (orange line = COPERT mean, purple line = PEMS mean, red dashed line = 

Euro 6b limit, blue dashed line = Euro 6c limit) 
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Figure 4-18 compares the PEMS measurements to the COPERT estimates for each 

vehicle. The orange line represents the COPERT mean, the purple line represents the 

PEMS mean. PEMS measurements were higher in some instances and lower in others 

but the overall trend was an increase from COPERT to PEMS. 24 vehicles (62%) had 

PEMS emissions higher than the COPERT estimate, some by a factor of over 10. 

To investigate the cause of the discrepancy between the PEMS measurements and 

COPERT estimates the speed dependency of the real world emissions was analysed. 

Figure 4-19 is a boxplot of the 220,000 instantaneous speed and NOx measurements 

from all 39 vehicles divided into 11 speed bins each 10 km h-1 wide. The mean NOx, 

range and prevalence of data points for each bin is listed in Table 4-9.  
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Figure 4-19. Comparison of instantaneous PEMS measurements and COPERT 
4v11 speed dependent emissions factors 
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In Figure 4-19 the orange curve marks the COPERT speed dependent emissions 

factors, the boxplots are the instantaneous PEMS measurements (220,000 data 

points), the red triangle is the mean of each PEMS speed bin and the grey dots are 

outliers (some of which have been cropped out). COPERT does not provide emissions 

factors for speeds <10 km h-1.  

The COPERT emission curve was close in value to the PEMS median for each speed 

bin (thick horizontal line across centre of box). However, the curve was much lower 

than the PEMS means. This was due to the large number of outliers with emissions 

far above the interquartile range. These outliers had a significant effect on trip average 

emissions and contributed to the deviation between COPERT estimates and PEMS 

measurements. As illustrated by Figure 4-20 the majority of these outliers were during 

acceleration.  

It should be noted that the gas analysers of the SEMTECH-DS are high resolution, 

and the span and zero tests before and after each PEMS test (tests with error over 

3% are not valid) mean it is extremely unlikely these high measurements were due to 

experimental or measurement error. 
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Table 4-11. Cuts, distribution of data points and mean NOx for speed bins 

Bin Range PEMS NOx  

[g km-1] 

% of data 

points  

0 [0,10] 2.33 20% 

10 (10,20] 0.665 11% 

20 (20,30] 0.499 15% 

30 (30,40] 0.368 19% 

40 (40,50] 0.283 20% 

50 (50,60] 0.432 2% 

60 (60,70] 0.438 1% 

70 (70,80] 0.354 3% 

80 (80,90] 0.311 4% 

90 (90,100] 0.568 2% 

100 (100,110] 0.492 3% 
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Figure 4-20. Comparison of instantaneous PEMS measurements and COPERT 
emissions factors for different driving modes 
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Figure 4-20 compares the PEMS instantaneous emissions measurements to the 

COPERT emissions factors for the different driving modes. The means of the 

acceleration data points exceeded the COPERT curve by a factor of >2. The means 

of the cruise data points followed the COPERT curve almost exactly for speeds >30 

km h-1. Acceleration events accounted for some of the difference between COPERT 

estimates and PEMS measurements but did not account for it all. The mean NOx 

emission for the cruise segments (0.30 (sd. 0.32) g km-1) was still 30% higher than the 

average COPERT estimate. 

4.2.3.1 COPERT estimates for urban and motorway sections 

As seen in Figure 4-7 the COPERT 4v11 Euro 6 emissions factor for NOx was not 

very sensitive to speed. PEMS measurements for NOx increased 39% between 

motorway and urban sections. As a result the divergence between COPERT estimates 

and PEMS measurements was greater for urban driving. 

Table 4-12. Comparison of urban PEMS and COPERT urban averages 

 NOx [g km-1] Deviation Ratio NO2 [g km-1] fNO2 [%] 

PEMS 0.43 (sd. 0.42) 5.4 (sd. 5.3) 0.20 (sd. 0.24) 44 (sd. 22) 

COPERT 0.24 (sd. 0.01)  3 (sd. 0.1)  0.07 (sd. 0.003) 30 (sd. 0) 

Ratio x 1.8 x 1.8  x 2.9 x 1.5 

 

The trip average PEMS measurements for NOx were 1.6 times higher than the 

COPERT estimates. During urban driving this rose to 1.8 times for NOx and 2.9 times 

for NO2. Most air quality policies focus on reducing emissions in urban areas where 

the public exposure is highest. It is also at urban roadside locations where the 

proportion of NOx emitted directly as NO2 becomes the dominant factor in ambient air 
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concentrations. These result shows that in these key areas the COPERT model 

underestimated NO2 by a factor of ~3. This has serious implications for air quality 

policy makers who rely on COPERT 4v11 to model scenarios. Particularly scenarios 

for the near future when the percentage of Euro 6 in the fleet mix will be much higher. 

For example, the NAEI predicts by 2020 ~60% of diesel passenger cars will be Euro 

6. This will be discussed further in the next chapter. 

For motorway driving the PEMS measurements exceeded the COPERT estimate by 

1.4 times for NOx and 2.2 times for NO2. 

4.3 Discussion  

In this section the results from this chapter are put in the context of existing PEMS 

studies and discussed from a policy perspective. This section will focus mainly on 

urban emissions as these are the most relevant to air quality policy. 

4.3.1 Comparison with other studies 

The results from this study have been compared with previous PEMS studies of Euro 

6 diesel passenger cars. Whilst in recent years the number of passenger car PEMS 

studies has slowly increased there are still relatively few and often the sample sizes 

are small. With 39 vehicles this study was the largest published PEMS passenger car 

study to the time of its publication. Test conditions, drivers, measurement equipment, 

route and routine vary between studies. The comparisons made in this section aim to 

put this study in the context of the wider field of PEMS measurements. Figure 4-21 is 

a boxplot of the results from this study and previous studies which together amount to 
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173 vehicles. The names, references, year, sample size and mean NOx emission of 

the previous studies are listed in Table 4-13. 

Results from previous studies are plotted in green, results from this study are plotted 

in purple. The mean from each study is marked with a red triangle. The red dashed 

line marks the Euro 6 type approval limit. The green dashed vertical line marks the 

average of all the previous studies means (not including this study). 
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Figure 4-21. Comparison of PEMS measured NOx emissions from this study 
with other studies (Euro 6 diesel)  
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The results from this study were in good agreement with previous studies. All studies 

found huge variability in the real world performance of Euro 6 diesel cars. The average 

of the means of the previous studies (marked by green dashed line) was 0.47 (sd. 

0.13) g km-1. This was higher than the trip average of this study (0.36 g km-1) though 

much closer to the urban average (0.43 g km-1). Given these studies were performed 

independently across Europe there is a remarkable level of consistency. With the 

exception of Weiss et al. (which had a limited sample size of 1) the COPERT estimates 

were much lower than the PEMS study averages.  

The existing studies together included 134 vehicles. The average NOx emission for 

these 134 vehicles was 0.51 (sd. 0.35) g km-1, a deviation ratio of 6.3. This was higher 

than the urban deviation ratio found in this study (5.4). A potential reason for this may 

be that the test fleet in this study included more vehicles from the premium range than 

the economy. Economy range vehicles are cheaper, use cheaper abatement 

technologies and as a result have higher emissions. Another reason for lower 

emissions in this study may be the prevalence of 2 ℓ engines in the sample (59%) 

which were found to have lower emissions than non 2 ℓ engines. Additionally results 

from this study may be lower than other studies due to the removal/ absence of cold 

starts emissions. Lastly German studies include autobahn driving at much higher 

speeds than UK motorways, resulting in higher NOx emissions. 

7 of the 134 vehicles (5%) met the Euro 6 limit, this is the same percentage as found 

in this study. However only 13% of the vehicles in previous studies met the Euro 6d-

TEMP limit whereas 26% did in this study. This being said the results from this study 

results were within the same range of previous studies. 
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Table 4-13. Previous PEMS studies including Euro 6 vehicles  

Name 

(Location) 

Reference Year # of 

vehicles 

Mean NOx 

[g km-1] 

Deviation 

Ratio 

DUH  

(Germany) 

(DUH, 2016) 2016 20 0.65 8.1 

UTAC  

(France) 

(Ministre de 

l’environnement, 2016) 

2016 23 0.60 7.5 

TNO, 2016 

(Netherlands) 

(TNO, 2016) 2016 15 0.52 6.5 

ICCT 

(UK) 

(Franco et al., 2014) 2014 12 0.52 6.5 

DfT 

(UK) 

(DfT, 2016d) 2016 19 0.50 6.3 

BMVI 

(Germany) 

(BMVI, 2016) 2016 30 0.41 5.1 

Moody et. al 

(UK) 

(Moody & Tate, 2017) 2017 9 0.40 5.0 

TNO, 2015 

(Netherlands) 

(Kadijk, Mensch & 

Spreen, 2015) 

2015 5 0.39 4.9 

Weiss et. al  

(Italy) 

(Weiss et al., 2012) 2012 1 0.21 2.6 

Trip This study 2016 39 0.36 4.5 

Urban This study 2016 39 0.43 5.4 
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Of the six previous studies only two reported NO2 separately from total NOx. The 

results are listed in Table 4-14. 

Table 4-14. NO2 and fNO2 from previous studies  

 # of vehicles NO2 [g km-1] fNO2 

Weiss et. al 1 0.10  51% 

Moody et. al 5 0.10 36% 

Trip 39 0.17 44% 

Urban 39 0.20 44% 

 

Weiss et. al and Moody et. al reported NO2 within the range found in this study. The 

lower % fNO2 reported by Moody et. al is likely because the 5 vehicles in their sample 

were 3 LNT and 2 SCR. The 3 LNT vehicles sampled by Moody et al. had an average 

fNO2 of 30%, the 2 SCR had an average 40%. This is in good agreement with findings 

relating to NOx abatement technologies stated earlier in this chapter (that SCR has a 

higher % fNO2 than LNT and EGR). 

The average fNO2 of 44 (sd. 20) % was also higher, though within the range of, a 

remote sensing study that found fNO2 of 34.0 ± 9.8 % (Carslaw et al., 2016). This is 

potentially because the remote sensing study was carried out in 2012/13 whereas the 

PEMS testing in this study was performed later, in 2015/16. This could be a 

continuation of the trend of increasing fNO2 (Beevers et al., 2012). 

4.3.2 Discussion of variability 

A key challenge facing policy makers tackling air pollution from diesel vehicles is the 

variability in performance between vehicles of the same Euro standard. For example, 
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in urban driving the vehicles in this study had deviation ratios of between 0.7 and 27. 

Increasingly air quality policy makers are depending on schemes such as Low 

Emission Zones to counter the problem of diesel emissions. However, Low Emission 

Zones (LEZ) discriminate by Euro standard and do not take into account real world 

emissions. For example, the Ultra-Low Emission Zone (ULEZ) to be introduced in 

London in 2019 will bar all but Euro 6 diesel passenger cars (Euro 4 for petrol). This 

will mitigate against the oldest and theoretically worst polluting vehicles but it makes 

no allowance for Euro 6 diesels that that emit up to 27 times the current type approval 

limit. 

Figure 4-22 illustrates the potential of discriminating by RDE as opposed to Euro 

classification. Our results indicate a LEZ that bans all but Euro 6 diesel vehicles would 

have an urban average NOx emission (from the diesel proportion of the fleet) of 0.43 

g km-1 (red line). Euro 5 diesel vehicles have real driving NOx emissions of ~0.7 g km-

1 (grey dashed line). If the LEZ were to discriminate on the basis of RDE i.e. instead 

of “only Euro 6 diesel cars allowed” the rule was “only diesel cars with RDE below 

Euro 5 ( < 0.7 g km-1) allowed” the resulting average NOx emission of the diesel 

proportion of the fleet within the LEZ would be 0.28 g km-1 (purple line). This is a 35% 

reduction in average NOx by removing only 15% of the Euro 6 diesel vehicles. The 6 

vehicles that would be barred from a RDE dependant LEZ are circled in red, vehicles 

that have NOx < Euro 5 RDE are plotted as purple triangles. Similarly in the RDE 

dependent LEZ average urban NO2 emissions would fall by 38% to 0.13 g km-1. 

The COPERT estimates were included in Figure 4-22 for comparison (orange). When 

the worst 6 vehicles were removed the new PEMS average was in much better  
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Figure 4-22. Comparison with COPERT with < RDE Euro 5 (circled in red) 
removed for the urban section (grey dashed line = RDE Euro 5 (0.7 g km-1), red 
line = old PEMS mean, purple line = new PEMS mean, orange line = COPERT 

mean 



143 
 

 

agreement with the COPERT average estimate. This means that proposed LEZs 

modelled using COPERT 4v11 emission factors (such as in the DEFRA’s 2015 Air 

Quality Action Plan (DEFRA, 2015b)) would deliver the proposed results if vehicles 

were selected by RDE as opposed to Euro standard.  

A recent review of the efficacy of LEZs in 5 European countries found mixed results, 

in all cases air quality benefits were less pronounced than expected (Holman, Harrison 

& Querol, 2015). The best results were recorded in Germany (the only LEZs to include 

cars and HGVs) though the introduction of LEZs was accompanied by a scrappage 

scheme which accelerated the fleet turn over making initial success hard to attribute 

to any one scheme. The variation and underestimate of diesel RDE is a potential 

reason why modelling of LEZs has often been over optimistic. 

4.3.3 Euro 6d-TEMP real driving type approval limit 

10 vehicles in this study achieved the Euro 6d-TEMP type approval limit of 0.168 g 

NOx km-1 during urban driving. Figure 4-23 is a bar chart showing the NO and NO2 

composition of these 10 vehicles. One vehicle (S2.0c) achieved the Euro 6c limit for 

total NOx with NO2 emissions of 0.1 g km-1, 25% above the Euro 6 limit for total NOx. 

This indicates the introduction of Euro 6d-TEMP may not be as effective as hoped in 

reducing NO2 concentrations in urban areas. Given that in urban areas the amount of 

NOx emitted directly as NO2 dominates ambient concentrations these results indicate 

an additional dedicated NO2 type approval limit should be considered. 
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Figure 4-23. NO and NO2 emissions of vehicles that met the 0.168 g km-1 Euro 
6c NTE limit for NOx (blue dashed line = Euro 6c limit, red dashed line = Euro 

6b limit) 

4.4 Summary 

This chapter described the results of a Portable Emissions Measurements System 

(PEMS) study containing 39 Euro 6 diesel passenger cars and compared the derived 

real world emission factors to COPERT speed dependent emissions factors. The key 

results are listed in Table 4-15. 
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Table 4-15. Key results from Chapter 4, average emissions for PEMS and 
COPERT 

 
NOx 

[g km-1] 

Deviation 

Ratio 

NO2 

[g km-1] 

fNO2 

[%] 

Urban (PEMS) 0.43 (sd. 0.42) 5.4 0.20 (sd. 0.24) 44 (sd. 22) 

Trip (PEMS) 0.36 (sd. 0.36) 4.5 0.17 (sd. 0.19) 44 (sd. 20) 

Motorway (PEMS) 0.31 (sd. 0.37) 3.9 0.14 (sd. 0.18) 45 (sd. 21) 

COPERT average 0.23 (sd. 0.01) 2.9 0.07(sd. 0.003) 30 (sd. 0) 

 

It was found that during urban driving (when public exposure is highest) real driving 

emissions exceeded the Euro 6 type approval limit (0.08 g NOx km-1) by 5.4 times and 

emissions of NO2 were over twice the limit for total NOx. Real world urban emissions 

were found to be 1.8 and 2.9 times COPERT 4v11 speed dependent emissions factors 

for NOx and NO2 respectively. 

Analysis of instantaneous PEMS data found NOx to be delivered in peaks that 

coincided with acceleration. Both NOx and NO2 emissions in g km-1 were three times 

higher during acceleration than deceleration. Urban driving contained twice as much 

acceleration (a > 0.1 ms-2) as motorway driving and which contributed to average NOx 

emissions being 40% higher during urban sections. 
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4.5 A note on COPERT 5 

 

Figure 4-24. COPERT 5 and 4v11 emission factors comparison with PEMS  

COPERT 5 (an update to the COPERT 4v11) was published by Emisia in September 

2016. It included updated emission factors for Euro 6 diesel cars and LGVs and Euro 

5 diesel LGVs (DEFRA, 2017a). The updated COPERT 5 Euro 6 diesel emission factor 

is plotted (green line) in Figure 4-24 and compared with 4v11 and instantaneous 

PEMS measurements from this study. The COPERT 5 emission factor is in much 

better agreement with the PEMS measurements. It is more sensitive to speed, 

increases by a greater amount at lower speeds and has a deviation ratio between 5 –

10. COPERT 5 has been used in the latest DEFRA air quality action plan (DEFRA, 

2017b), this will be discussed further in the next chapter.  
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Chapter 5. Scenario 

analysis of 2030 Euro 6 

diesel NOx emissions  

 

In the previous chapter real world emissions factors were derived for Euro 6 diesel 

passenger cars using PEMS data. In this chapter these emissions factors are used to 

inform five scenarios for 2030. These scenarios are then modelled by the UKIAM to 

assess the potential implications of changing Euro 6 emission factors on UK total NOx 

emissions (in tonnes), annual average roadside concentrations of NO2 (in µg m3), 

change in Population Mean Weighted Concentration of NO2 (also in µg m3) and 

damage cost (in Billion £).  
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5.1  Background 

The NAEI projects that by 2030 over 90% of diesel passenger cars in the UK fleet will 

be Euro 6 (NAEI, 2014b). The real driving emissions type approval process being 

introduced in September 2017 (Euro 6d TEMP) is designed to bring down the deviation 

ratio of Euro 6 diesel cars. However, it will not address the deviation ratio of vehicles 

already in circulation. Without the introduction of policy measures such as a national 

scrappage scheme there will be a time delay in realising any benefits of the new type 

approval regime as the average age of a passenger car in Europe is 9.73 years 

(ACEA, 2017a). 

Current plans are to introduce the Euro 6d TEMP with a limit of 0.168 g km-1 to apply 

to newly approved vehicle models from September 2017, extending to all new vehicles 

sold in September 2019. In 2020 the RDE type approval Euro 6d will be introduced, 

bringing down the conformity factor to 1.5 (0.12 g km-1) for newly approved models 

(applicable January 2021 for all new vehicles sold).  

The International Council on Clean Transportation (ICCT) have comprehensively 

modelled potential Euro 6 emissions factors for various scenarios relating to the 

enforcement of the RDE test procedure up to 2030 (Miller & Franco, 2016). They used 

PEMS data and emissions modelling to calculate the component of real world driving 

that will be covered by the RDE type approval procedure, and the component that will 

not (e.g. cold start, more extreme driving styles and “defeat devices”). They then made 

projections of the real world deviation ratios of new Euro 6 cars from 2017 onwards. 

The ICCT modelling took a large sample of 1 Hz resolution PEMS data from 32 pre- 

RDE Euro 6 diesel cars. They then used the guidelines of the new RDE procedure to 
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identify which driving conditions will be covered during the tests (described as the 

“normal” driving component) and which will not. They estimated that 80% of real world 

driving fell within the “normal” driving component captured by the RDE test. Conditions 

not covered in the test were grouped into three components: “cold start”, “extended 

driving” and “defeat device”. The “cold start” component related to additional emissions 

as a result of SCR being below optimum temperature in a cold engine, estimated to 

affect 8% of driving. “Extended driving” included events such as DPF regeneration, 

aggressive driving and driving at altitude, which occur in the real world but will not be 

captured by the RDE test. These conditions were estimated to account for 12% of total 

driving. “Defeat device” refers to any additional emissions that may be present due to 

the presence of legally questionable defeat devices such as driving cycle identification, 

thermal windows, or timers. Some form of defeat device was thought to be 

implemented in 30% of vehicles in the sample. 

The percentage of total driving time spent in each component was then multiplied by 

the deviation ratio measured during these components from the PEMS data. For 

example, the deviation ratio was 6 during “cold starts” and 7.6 during “extended 

driving”. Vehicles using “defeat devices” were assumed to have a deviation ratio of 7.6 

across all driving. For Euro 6d- TEMP vehicles “normal” driving was assigned a 

deviation ratio of 2.1 (with a safety margin of 30%). The various projected fleet average 

real world emissions factors were then devised by reducing these component 

deviation ratios and the percentage of driving not included in test, in line with evolution 

of the RDE test procedure. 

The ICCT projected that the implementation of Euro 6d TEMP (2017/19) will bring the 

real world deviation ratio of new Euro 6 vehicles down to 4. With the introduction of 
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Euro 6d the deviation ratio was projected to fall to 2 by 2022. The ICCT concluded that 

EU must introduce additional RDE components to the type approval process (for 

example an extension to include cold starts) to eventually bring the Euro 6 diesel 

deviation ration down to 1.  

Given the average age of a car in Europe is ~10 years it is likely, if the ICCT projections 

are accurate, that the average deviation ratio in 2030 will be somewhere between ~6 

(as it is now) and 1 (best case scenario). The scenarios modelled in this chapter cover 

the full range of the ICCT modelled Euro 6 emissions factors for 2030. 

5.1.1 DEFRA “Draft UK Air Quality Plan for tackling nitrogen dioxide” (2017)  

 

Figure 5-1. Scaled factors of COPERT 5 used by DEFRA  
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As mentioned at the end of the previous chapter, the updated (third) DEFRA air quality 

action plan used the new COPERT 5 emissions factors for Euro 6 diesel passenger 

cars. DEFRA’s modelling also accounted for the reduction in Euro 6 diesel emissions 

factors as a result of the introduction of Euro 6d TEMP and Euro 6d. These reduced 

emission factors are plotted in Figure 5-1. DEFRA assumed a deviation of ~6.7 for 

2016, falling to ~5.1 for 2017–19 and eventually ~2.5 for 2020 onwards. This is similar 

to the reduction in deviation ratio projected by the ICCT. 

Figure 5-1 also illustrates by how much the COPERT 4v11 (orange line) emissions 

factors underestimated compared to the latest version (green line). 

  



152 
 

 

5.2  Methods 

The real driving emissions factors from Chapter 4 were used to create five scenarios 

for 2030 with varying NOx and NO2 emission factors for Euro 6 diesel vehicles. These 

scenarios were then modelled by the UK Integrated Assessment Model. The UKIAM 

generated background emissions that remained constant for each scenario, only Euro 

6 diesel NOx emissions factors were changed. The key model outputs were the total 

NOx in kilo-tonnes produced by Euro 6 diesel passenger cars (and comparison to UK 

NEC Directive ceilings for 2030), and annual mean roadside concentrations of NO2 in 

µg m-3 (and comparison to annual mean limit value). The total NOx emission in tonnes 

was also used as an input for the Abatement Impact Monetisation (AIM) model to 

calculate the change in Population Weighted Mean Concentration (PWMC) of NO2 

and annual damage cost in Billion £. Damage costs were also calculated using the 

DEFRA damage costs £/tonne method and comparisons made. 

5.2.1 Scenarios  

Each scenario had an “a” and “b” component relating to the fraction of primary NO2 

assumed. For “a” scenarios the COPERT fNO2 emission factor of 30% was used, for 

“b” scenarios fNO2 of 44% as measured by PEMS was used.  

The scenarios are described in Table 5-1, with emissions factors listed in Table 5-2 

and plotted in Figure 5-2. The deviation ratios stated in the tables refer to the average 

deviation ratio. Each scenario uses a scaled version of COPERT’s speed dependent 

emissions factors (as shown in Figure 5-2). 

The ICCT report and DEFRA projections indicate that the most likely fleet average 

deviation ratio by 2030 is somewhere between S3 and S4. 
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Table 5-1. Description of scenarios 

Scenario 1 (S1) – By 2030 all Euro 6 diesel vehicles have real world emissions in 

compliance with the Euro 6 type approval limit (i.e. fleet average emission factor for 

NOx of 0.08 g km-1, deviation ratio = 1). This is the best case scenario, and given 

the long phase in time for new vehicles, quite unlikely without some form of national 

scrappage scheme. 

Scenario 2 (S2) – By 2030 all Euro 6 diesel vehicles have real world emissions in 

compliance with the Euro 6d type approval limit (i.e. emission factor for NOx of 0.17 

g km-1, deviation ratio = 2.1). It is likely all new Euro 6 vehicles will be compliant with 

Euro 6d by 2030 but due to the age of fleet it is unlikely the average deviation ratio 

will fall to 2.1 by 2030. 

Scenario 3 (S3) – By 2030 all Euro 6 diesel vehicles have real world emissions in 

line with COPERT 4v11 Euro 6 emissions factors, a deviation ratio of 2.4. This is the 

more ambitious of the two most likely scenarios. 

Scenario 4 (S4) – By 2030 all Euro 6 diesel vehicles have real world emissions with 

trip average emissions factors derived from the PEMS study in the previous chapter, 

a deviation ratio of 4.5. This is the more pessimistic of the two most likely scenarios. 

Scenario 5 (S5) - By 2030 all Euro 6 diesel vehicles have real world emissions 

derived from the PEMS study in the previous chapter, applying the urban average 

to urban roads and the motorway average to motorways, an urban deviation ratio of 

5.4. This scenario assumes no improvement in Euro 6 diesel deviation ratios; it is a 

worst case scenario and given the introduction of Euro 6d quite unlikely. 
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Table 5-2. Emissions factors used in scenarios 

Name 
Average Euro 6 

diesel NOx [g km-1] 

Deviation 

Ratio 

fNO2 [%] 

a b 

S1 0.08 1.0 30 44 

S2 0.17 2.1 30 44 

S3 0.19 2.4 30 44 

S4 0.34 4.5 30 44 

S5 Motorway (0.31) 

Urban (0.43) 

3.9 

5.4 
30 44 

 

Figure 5-2 shows the 2030 Euro 6 diesel speed dependent NOx emission factors for 

each scenario. These are scaled versions of the COPERT 4v11 curve. 

The UKIAM does  not model the clear air zones proposed in DEFRA’s air quality action 

plans (DEFRA, 2015b, 2011, 2017a) or the Mayor of London’s ambitious plans for a 

Greater London wide Ultra Low Emission Zone. S4 / S5 (using the real world emissions 

factors) can be seen as pessimistic Business As Usual scenarios (2030 emissions if 

no action is taken to reduce Euro 6 diesel emission factors or implement new air quality 

policies). S1 – S3 can be seen as more optimistic, best case scenarios. 
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Figure 5-2. Speed dependent NOx emissions factors from scenarios  

 

5.2.2 UKIAM and BRUTAL 

Transport emissions in the UKIAM are simulated by the BRUTAL model. A description 

of the UKIAM and BRUTAL model has been given in Chapter 2. In this analysis Euro 

6 diesel emission factors were isolated, all other inputs were kept constant between 

scenario runs; the traffic mix, flow, and emissions factors of all other vehicles were 

kept constant. Results stated relate only to Euro 6 diesel emissions.  

5.2.2.1 Fleet mix 

The vehicle fleet mix in BRUTAL is taken from NAEI projections. It is projected that by 

2030, 92% of diesel passenger cars will be Euro 6 standard (Table 5-3) (NAEI, 2014b). 

The 2030 petrol car projected fleet composition is also stated for comparison.  
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Table 5-3. 2030 percentage of petrol and diesel cars by technology (NAEI, 
2014b) (ICE = Internal Combustion Engine) 

 Diesel Petrol 

Euro 5 (ICE) 1% 1% 

Euro 6 (ICE) 92% 78% 

Full hybrid 7% 10% 

Euro 6 plug in hybrid - 11% 

 

The fleet split by fuel type again comes from NAEI projections and varies by region 

and road type. The lowest projected proportion of diesel passenger cars is 28.1% in 

Central London, the highest is 51.2% on Welsh motorways. The majority of roads are 

projected to be between 36-44 % diesel passenger cars. These fleet projections were 

calculated assuming that diesel will continue to make up ~50% of UK passenger car 

sales. They do not allow for the most recent developments in UK sales, which indicate 

the diesel share is in decline, however this will be discussed further in the following 

chapter. This is another large uncertainty. It is possible that a market shift away from 

diesel will result in fewer diesel cars on the road but a higher average deviation ratio 

across the Euro 6 fleet. This is because the fleet will contain fewer new cars (meeting 

Euro 6d) and a higher proportion of older cars with higher deviation ratios (Miller & 

Franco, 2016). 

5.2.3 Damage costs 

In this Chapter damage costs will be used from two sources; the Abatement Impact 

Monetisation (AIM) model and DEFRA guidance. 
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5.2.3.1 Abatement Impact Monetisation (AIM) model  

The AIM model is a spreadsheet model designed by the Integrated Assessment Unit 

at Imperial College for the Department of Environment Food and Rural Affairs. AIM is 

a simplified version of the UKAIM that estimates the effects of abatement measures 

on the exposure of the UK population to NH3, NOx, SO2 and primary PM2.5. The main 

purpose of which is to perform cost benefit analysis for abatement measures listed in 

the Multi Pollutant Measurement Database (MPMD). AIM uses impact factors 

calculated by the UKIAM to give the change in population weighted mean exposure 

per 1 tonne reduction in each pollutant from each source category. The benefit of each 

measure can then be monetised.  

5.2.3.2 Impact Factors 

The impact factors in the AIM model are calculated by the UKIAM. The Source 

Receptor (SR) matrices from the FRAME model are combined with the SR matrix from 

the UKIAM (for NOx) to calculate the change in population weighted mean 

concentration (Δ PWMC n gm-3) per unit change in total UK emission in kilotons of 

emission by source. The impact factor used in this analysis is listed in Table 5-4. This 

essentially means that for every additional kiloton of NOx emitted by diesel cars 

annually the PWMC of NO2 increases by 30.263 ng m-3. 

Table 5-4. Impact factor per kiloton of NOx 

SID Source Name ΔPWMC [ng m-3] per 1 kiloton reduction 

of NOx 

47 07_Road_Transport_Diesel_Cars 30.263 
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5.2.3.3 Cost per unit of NO2 exposure for the UK population 

The UKIAM and AIM both include low, medium and high cost scenarios. These are 

taken from existing literature and are described below. The costs come from internal 

communication with Mike Holland, an economist who is part of the Committee On the 

Medical Effects of Air Pollution (COMEAP) and are described below. The costs 

corrected for 2016 per million people are listed in Table 5-5. 

LOW – The “low” cost scenario is valued at £385 Million £ per year per unit 

change [µg m-3] in PWMC. This is derived from the Inter Departmental Group 

on the Costs and Benefits of Air Quality (IGCB (A)) valuation based COMEAP 

preliminary report that assigned the value of a life year lost at £35,000. This 

valuation only includes chronic effects on mortality. 

MEDIUM – The “medium” cost scenario is valued at £505 Million £ per year per 

unit change in PWMC. This cost is derived from the DEFRA guidance report. 

HIGH – The “high” cost scenario uses the same exposure-response functions 

(from COMEAP) as the “low” scenario but an alternative valuation of mortality 

based on a paper for the Interdepartmental Group on Valuation of Life and 

Health (IGVLH) (Franklin, 2014). A higher value of life year lost (£60,000) is 

also assumed. 

Table 5-5. AIM model damage cost £ million per ΔPWMC NO2 [µg m-3] per 
million people 

 Low Medium High 

Million £ per year per ΔPWMC NO2 [µg m-3] per 

million people (2016 price) 

6.244 8.191 12.245 
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The change in PWMC NO2 is assumed to be 70% of the change in PWMC NOx. This 

is an approximation and does not account for the non-linear relationship between NO2 

and NOx, however, it is consistent with the average ratio of background concentration 

in the UKIAM. 

5.2.4 DEFRA damage costs per tonne of NOx 

These values come from DEFRA report “Damage costs by location and source” 

(DEFRA, 2015a). These costs most commonly used to assess national policies, 

programmes and projects and are stated in £ per tonne of NOx (Table 5-8). The “Travel 

average” (underlined below) was used for this analysis.  
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Table 5-6. Damage cost per tonne of NOx 

 
Low Central 

Range 

[£] 

Central 

Estimate 

[£] 

High Central 

Range 

[£] 

Transport average 10,101 25,252 40,404 

Agriculture 2,020 5,050 8,080 

Waste 4,343 10,858 17,373 

Energy Supply Industry 505 1,263 2,020 

Industry 5,253 13,131 21,010 

Domestic 5,859 14,646 23,434 

Transport central London 46,162 15,5405 184,648 

Transport inner London 47,475 118,688 189,901 

Transport outer London 31,010 77,526 124,041 

Transport inner conurbation 24,546 61,365 98,184 

Transport outer conurbation 15,253 3,8191 61,010 

Transport urban big 18,182 45,455 72,728 

Transport urban large 14,647 3,6617 58,587 

Transport urban medium 11,545 28,788 46,061 

Transport urban small 7,273 18,182 29,091 

Rural 3,131 7,829 12,526 
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Table 5-6 highlights the importance of location when assessing the impact of NOx 

emissions, the central estimate of damage costs per kiloton of transport related NOx 

in central London is ~20 times higher than transport emissions in rural areas. This 

indicates that reducing emissions in some areas (i.e. urban) is more important than in 

others. The “Travel average” is calculated by weighting these various damage costs 

according to their prevalence. The range in the DEFRA low to high estimates reflects 

the uncertainty in risk coefficients, whereas the range in AIM damage costs reflects 

differences in the monetisation of health impacts and takes only a central risk 

coefficient. 

The damage costs listed above do not allow for the fact that there is substantial double 

counting in health effects from emissions of NOx and PM2.5. Recent discussions with 

the COMEAP group gave the best estimate of this double counting to be 33%. The 

“Travel average” damage costs for NOx once double counting for PM2.5 has been 

removed are listed in Table 5-7. 

Table 5-7. Travel average damage cost per tonne of NOx after removing double 
counting from PM2.5 

Location and source Low Central High 

Travel Average 

(considering PM) 

£6,734 £16,835 £26,936 

These values differ from those stated in the 2015 DEFRA guidance. This is because 

in 2015 DEFRA’s costs considering PM were calculated as the average between the 

cost not considering PM and the advised COMEAP reduction of 33% (i.e. DEFRA 

reduced the cost by 1/6 instead of 1/3). 
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5.3  Results  

This section first presents the total NOx emissions from Euro 6 diesel vehicles from 

the 5 scenarios and then the associated damage cost estimates. This is followed by 

analysis of the effect on annual mean NO2 concentrations. 

5.3.1 Total NOx emissions 

Total NOx emissions increased significantly with the Euro 6 emissions factor. In Figure 

5-3 the light grey section is the NO component and the dark grey is NO2. The total NOx 

emission is constant between the ‘a’ and ‘b’ scenarios but the amount of NO and NO2 

varies. 

 

Figure 5-3. Total Euro 6 diesel 2030 NOx and NO2 emissions in kilo-tonnes 
(Scenario a- fNO2=30%, Scenario b- fNO2=44%) 
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The difference between S5 (worst case scenario) and S1 (best case scenario) was 

97.9 kilotons. This represents the potential additional amount of NOx emitted in the 

year 2030 as a result of diesel passenger cars not meeting the type approval limit 

during real world driving if the deviation ratio is not reduced. 

Table 5-8. 2030 total Euro 6 NOx emissions and comparison to National 
Emissions Ceiling   

Scenario 
NOx 

[kilotons] 

% of 2030 NEC 

[429.8 kilotons] 

S1 24.0 5.6 % 

S2 34.8 8.1 % 

S3 50.3 11.7 % 

S4 102.9 23.9 % 

S5 121.9 28.4 % 

 

The 2030 UK National Emission Ceiling for NOx is 429.8 kilo-tonnes. The difference 

between the best and worst case scenarios in this analysis makes up a significant 

proportion of this ceiling. Table 5-8 lists the % of NOx in kilo-tonnes that Euro 6 diesel 

cars (~90% of all diesel cars by 2030) would make of the 2030 UK emission inventory 

if the National Emission Ceiling (429.8 kilo-tonnes) was met. For context, in 2014 

~13% of the UK’s total NOx emissions came from diesel passenger cars. This is similar 

to the 11.7% predicted by S3. However, for S5 diesel passenger cars would produce 

28.4% of the 2030 ceiling. The results in Table 5-8 highlight the need for greater 
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certainty in projected Euro 6 diesel emissions factor reduction if the UK is to meet its 

2030 national emission reduction commitment. 

5.3.2 Damage costs 

In this section the total Euro 6 NOx emissions calculated for 2030 by the UKIAM are 

used to derive the relevant damage cost from each scenario using the costs described 

in the Methodology earlier in this chapter. 

5.3.2.1 AIM damage cost  

Total Euro 6 NOx emissions from the UKIAM were multiplied by impact factors and 

costs from the AIM model to calculate the cost of the scenarios due to the change in 

PWMC of NO2. The results are listed in Table 5-9.  

Table 5-9. ΔPWMC NO2 and damage costs calculated using AIM model 

Scenario 
NOx 

[kilotons] 

Δ PWMC NO2 

[µg m-3] 

Cost [Billion £] 

Low Medium High 

S1 24.0 0.51 0.23 0.31 0.46 

S2 34.8 0.74 0.34 0.45 0.67 

S3 50.3 1.07 0.49 0.64 0.96 

S4 102.9 2.18 1.00 1.32 1.97 

S5 121.9 2.58 1.19 1.56 2.33 

 

Table 5-9 shows the difference in 2030 PWMC between S1 and S5 (best and worst 

case scenario) was 2.07 µg m-3 with a cost of between 0.96 – 1.87 Billion £. The 

difference in 2030 PWMC NO2 between Euro 6 emissions as modelled by COPERT 
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4v11 (S3) and real world driving (S5) was 1.51 µg m-3 with a cost of between 0.7 – 

1.37 Billion £. 

Using the AIM model the damage costs per tonne for diesel cars for 2030 were £9,752 

(low), £12,793 (medium), £19,125 (high). 

5.3.2.2 DEFRA damage costs 

The damage costs associated with the 2030 modelled Euro 6 NOx emissions using 

DEFRA 2015 “Travel Average” costs (not considering PM) are listed in Table 5-10. 

Table 5-10. DEFRA damage costs not considering PM 

Scenario 
NOx 

[kilotons] 

Cost [Billion £] 

Low 

[£10,101 £/tonne]  

Medium 

[£25,252 £/tonne] 

High 

[£40,404 £/tonne] 

S1 24.0 0.24 0.61 0.97 

S2 34.8 0.35 0.88 1.41 

S3 50.3 0.51 1.27 2.03 

S4 102.9 1.04 2.60 4.16 

S5 121.9 1.23 3.08 4.93 

 

The damage costs calculated from the DEFRA 2015 “Travel Average” cost per tonne 

were consistently higher than the AIM model estimates. This is mostly because the 

DEFRA damage costs do not allow for double counting of health effects between PM 

and NO2 (approximately 1/3). Table 5-10 shows that using the DEFRA damage costs 

the difference in 2030 between S1 and S5 (best and worst case scenario) was 

between 0.99 – 3.69 Billion £.  
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The damage costs associated with the 2030 Euro 6 NOx emissions using the DEFRA 

2015 “Travel Average” damage costs for NOx, removing double counting for PM, are 

listed in Table 5-11. These are more in line with the AIM damage costs listed in Table 

5-9. 

Table 5-11. DEFRA damage costs removing double counting for PM 

Scenario 
NOx 

[kilo-tonnes] 

Cost [Billion £] 

Low 

[£6,734 £/tonne]  

Medium 

[£16,835 £/tonne] 

High 

[£26,936 £/tonne] 

S1 24.0 0.16 0.40 0.65 

S2 34.8 0.23 0.59 0.94 

S3 50.3 0.34 0.85 1.35 

S4 102.9 0.69 1.73 2.77 

S5 121.9 0.82 2.05 3.28 

 

5.3.2.3 Combination and comparison of damage costs 

Figure 5-4 is a boxplot showing the low, medium and high estimates from the three 

different damage costs for each scenario. The red triangle marks the mean of the 9 

different costs, the value of the mean for each scenario is listed in Table 5-12. 
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Table 5-12. Mean damage cost by scenario 

Scenario Mean damage cost Billion £ 

S1 0.45 (sd. 0.26) 

S2 0.65 (sd. 0.37) 

S3 0.94 (sd. 0.54) 

S4 1.92 (sd. 1.10) 

S5 2.28 (sd. 1.31) 

 

To put these costs in context, the Royal College of Physicians currently value the total 

economic cost to the UK from the impact of air pollution at £20 Billion a year (RCP, 

2016). This is similar to the annual national cost of obesity of £27 Billion (Morgan & 

Dent, 2010). The 2015 estimated annual tax revenue from diesel cars was £5.6 Billion 

(Brand, 2016). 

Given that the ICCT predicted a Euro 6 real world deviation ratio between S3 and S4, 

this modelling indicates 2030 UK damage costs from Euro 6 diesel vehicles are likely 

to be between 0.95 – 1.92 Billion £. The additional annual cost to the UK by 2030 of 

Euro 6 vehicles not meeting type approval limits in the real world (S3/4 – S1) would 

be between 0.49 – 1.47 Billion £.  
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Figure 5-4. Total cost in Billion £ by scenario using all damage costs 

Figure 5-4 highlights the large amount of uncertainty there is relating to the true cost 

of NOx emissions. It also shows that the DEFRA costs that do not allow for the 

double counting of NO2 and PM (orange) are far higher and in less agreement than 

the AIM model and the DEFRA study that allows for 33% double counting. 

5.3.3 Annual mean concentrations of NO2 

Table 5-13 lists the number of grid-squares in 2030 projected to contain roads with 

annual mean NO2 emissions in exceedance of 40 µg m-3. The exceedances are listed 
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for each scenario for the whole of the UK and for Greater London (excluding 

Heathrow). As mentioned previously, this modelling does not include the clear air 

zones proposed in DEFRA’s air quality action plans (DEFRA, 2015b, 2011, 2017a).  

Table 5-13. Number of grid squares in 2030 with NO2 roadside exceedances 
(excluding Heathrow) 

 UK  London 

 a b a b 

S1 0 1 0 1 

S2 0 2 0 1 

S3 9 18 3 4 

S4 43 79 13 17 

S5 67 136 16 36 

 

The locations of the grid-squares with roads at risk of exceedance are plotted in Figure 

5-5: ~30% were in London. As discussed earlier, this modelling did not account for the 

Mayor of London’s new T-charge or Ultra Low Emission Zone (ULEZ). It is hoped that 

these policies when implemented will mitigate most if not all exceedances in the 

Greater London area.  



170 
 

 

 

Figure 5-5. 2030 NO2 roadside exceedances by location (UK) 
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Figure 5-6. 2030 Greater London NO2 (µg m-3) (excluding Heathrow) 
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Figure 5-6 is a concentration map of 2030 annual mean NO2 for Greater London. 

Heathrow has been removed for reasons discussed in Chapter 2. Figure 5-6 shows 

that without the ULEZ and a reduction in deviation ratio there may still be roadside 

exceedances of the annual mean limit in London in 2030. S1a and S2a were the only 

scenarios with no exceedances. This shows that reducing the Euro 6 fleet average 

deviation ratio is essential if the UK is to be in compliance with limit values. 

Table 5-13 (number of grid squares in 2030 with NO2 roadside exceedances) showed 

that whilst fNO2 did not affect total NOx (in tonnes), it did affect the number of grid-

squares with roads at risk of exceedance. An increase in fNO2 from 30 – 44% (47% 

increase in fNO2) resulted in a national increase in roads at risk of exceedance of 

between 84 – 103%. There was an increase in annual mean NO2 concentrations 

between the two scenarios for all grid-squares. The increase in fNO2 between ‘a’ and 

‘b’ led to an increase in roadside concentrations as seen in Figure 5-7. The 

discrepancy between ‘a’ and ‘b’ scenarios increased with the NOx emission factor. This 

is expected, as fNO2 is a fixed ratio, therefore as NOx emissions increased NO2 

emissions increased at the same rate. 
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Figure 5-7. Ratio of Sb (fNO2 = 44%) to Sa (fNO2 = 30%) across Greater London 

 

Figure 5-7 is the ratio of annual mean roadside concentration of NO2 from the ‘a’ and 

‘b’ components from each scenario for the ~2500 grid squares in London. The majority 

of concentration increases did not result in a compliant grid-square being forced into 

exceedance, though for some the increase was substantial (>15%). Any increase in 

ambient NO2 concentrations, even if small, poses a risk to public health. For S3, the 

‘b’ scenario annual mean roadside NO2 concentrations were on average 2.3% 

(equating to 0.4 µg m-3) higher than ‘a’ scenario, and the highest increase was 10.5% 

(equating to 3.5 µg m-3). For S4, the average increase was 4.0% (equating to 0.8 µg 

m-3) and the highest increase was 16.1% (equating to 7.2 µg m-3).  
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Figure 5-8. Annual mean NO2 ‘a’ component vs. ‘b’ component by scenario 

The increase in annual mean NO2 concentrations between ‘a’ and ‘b’ scenarios was 

greater at roadside locations with higher concentrations of NO2, as seen in Figure 5-8. 

This is because higher concentrations occurred on busier roads with taller buildings 

causing a street canyon effect. The BRUTAL model assigns a higher “street canyon” 

factor to those grid squares, therefore the roadside increment was higher. This is 

representative of real world roadside locations in urban areas where often the 

background O3 has already been depleted, limiting the amount of O3 available for the 

fast chemistry reactions described in Chapter 2. In these circumstances NOx emitted 

directly as primary NO2 becomes a dominant factor in ambient concentrations 

(Degraeuwe et al., 2015; Carslaw et al., 2016).  
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Figure 5-9. Roadside annual mean NO2 by background concentrations and 
traffic flow 
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Figure 5-9 shows the effect of background concentrations and traffic flow on annual 

mean roadside NO2. AADF stands for Annual Average Daily Flow. Each diagonal line 

connects an ‘a’ component of a scenario for an individual grid square to the ‘b’ 

component for the same location. The slope of the line represents the magnitude of 

the increase from ‘a’ to ‘b’, the colour of the line represents the AADF (red/ orange the 

highest, yellow the lowest). Figure 5-9 again shows that the increase in annual mean 

NO2 from ‘a’ to ‘b’ is greater for scenarios with higher deviation ratios and higher 

background concentrations. This indicates, similar to the findings of Degraeuwe, 

Thunis, Clappier, et al., (2015), that if the Euro 6 deviation ratio is reduced to 

compliance (S1), then fNO2 will be less of a cause for concern. However, if Euro 6 

diesels continue with higher deviation ratios (S4/S5) fNO2 will have a much greater 

impact on annual mean roadside concentrations of NO2. 

Figure 5-9 highlights the importance of the background concentration’s contribution 

to roadside exceedances. The vast majority of roads with low background 

concentrations also had low AADF. There were also many roads with high AADF that 

had medium background concentrations and were still in compliance with Air Quality 

Limit Value for NO2 (marked as red dashed line). The highest annual mean roadside 

concentrations of NO2 were recorded at locations with high background concentrations 

and high AADF.  
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5.4  Discussion 

The scenarios used in this analysis were carefully chosen to cover the best and worst 

cases for the evolution of Euro 6 diesel NOx emissions by 2030. However, these 

projections are subject to huge uncertainties and limitations. In this section these 

uncertainties and limitations will be outlined briefly and discussed. 

5.4.1 Emissions factors 

Firstly, there is huge uncertainty in how the emissions factors for Euro 6 will evolve 

with new type approval. Thanks to a growing body of PEMS evidence there is now a 

clear picture developing of the current real world emissions from Euro 6 diesels. 

Failure to account for how deviation ratios will evolve, and the assumption that type 

approval will translate to proportional real world reductions, was a mistake of policy 

makers regarding the introduction of Euro 4 and Euro 5 standards (Beevers et al., 

2012). This analysis ensured that all likely scenarios were covered by consulting 

existing literature from the ICCT and DEFRA. For this reason, S3 and S4 have been 

used to provide a most likely range of total NOx and costs. However, learning from 

previous mistakes, policy makers should err on the side of caution and deploy the 

precautionary principle.  

5.4.2 Market share diesel 

There is currently huge uncertainty in the future market share of diesel in the UK fleet. 

Early evidence seems to indicate changes in public opinion and Vehicle Excise Duty 

are driving consumers away from diesel, but at the time of writing it was still too soon 

for certainty. Given the slow turnover of the passenger car fleet (without introduction 

of a national scrappage scheme, not proposed at the time of writing) these changes 
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will take approximately a decade to become significant. The ICCT project the lowest 

likely diesel market share percentage by 2030 to be 20%. The 36 – 44 % in this study 

is the highest likely diesel share, but given current emerging trends it is very unlikely 

that the market share of diesel will increase. It is therefore likely that the 2030 Euro 6 

diesel activity will be less than what is modelled in this study. However, as previously 

discussed, a slowdown in the renewal of the Euro 6 fleet will also slow down the 

reduction in deviation ratio. 

5.4.3 Comparison with other studies  

Following on from this there are several key policies (ULEZ, CAZ) that were not 

modelled in these scenarios. As a result, the projections from this study present a 

more pessimistic view than other studies. However, within the range of scenarios there 

is a level of agreement. The latest DEFRA action plan projects that there will be 

compliance in all but 1 zone by 2030 (DEFRA, 2017b). This result is in agreement with 

the S1 and S2 scenarios modelled in this study. This is because, as discussed 

previously, DEFRA project that after 2020 the Euro 6 deviation ratio will be 2.5. Rather 

than a direct comparison between the two studies, it may be more useful to view the 

analysis in this chapter as an assessment of what could potentially happen if the Euro 

6d type approval process fails to effectively bring down the Euro 6 average deviation 

ratio. 

5.4.4 Other pollutants 

It should also be noted that this analysis focused on the costs relating to NOx alone. 

There are also damage costs associated with emissions of CO2, PM, PAH and CO, 

VOCs and SO2. Consideration particularly of CO2 emissions is important to frame this 

discussion because a reduction in CO2 emissions (and the air quality / climate change 
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trade off) was the initial argument for the mass introduction of diesel vehicles. This will 

explored further in the next chapter. 

5.5  Summary 

Five scenarios assuming various deviation ratios for Euro 6 diesel passenger cars 

were modelled for 2030 using the UKIAM. The scenarios (S1 – S5) started with the 

most optimistic (S1) assuming service conformity to the type approval limit (0.08 g NOx 

km-1), and ended with most pessimistic (S5), which used deviation ratios devised in 

the previous chapter and assumed no improvement between 2016 and 2030. Each 

scenario had an ‘a’ and ‘b’ component relating to fNO2 (30% for ‘a’, 44% for ‘b’). 

Uncertainty in both the deviation ratio and fNO2 of the Euro 6 diesel passenger fleet 

creates uncertainty in the UKs ability to comply with both the National Emissions 

Ceiling Directive and the Air Quality Framework Directive. The difference between the 

best and worst case scenarios amounted to a substantial proportion of the entire UK 

2030 NOx allowance, and the number of grid squares with roads at risk of exceedance 

varied from 0 for scenario 1a to 136 for scenario 5b. 

The total NOx modelled in the scenarios ranged from 24 – 121.9 kilotons, though the 

most likely range was between 50.3 –102.9 kilotons. Using nine different damage cost 

estimates, this study calculated that the most likely range for annual damage cost for 

2030 from Euro 6 diesel cars was between 0.95 – 1.92 Billion £. 

The fraction of NOx emitted as NO2 (fNO2) was found to have a significant impact on 

roadside concentrations, and was more significant for scenarios with higher deviation 

ratios.  
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Chapter 6. CO2 and NOx 

emissions from diesel 

and petrol passenger 

cars 

 

The previous two chapters focused on NOx emissions from Euro 6 diesel passenger 

cars. This chapter extends the scope to include Euro 5 and Euro 6 diesel, petrol and 

hybrid passenger cars as well as CO2 and CO emissions. The aim is to present an 

accurate representation of emissions from the current Euro 5 and 6 passenger cars in 

order to inform policies relating to both air quality and climate change objectives.  
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6.1  Background 

In Europe the majority of passenger cars are fuelled by either petrol or diesel internal 

combustion engines. The market share of diesel varies between member states, 

though in recent years the European average has been ~50% (ICCT, 2016a). In the 

UK diesel accounts for ~40% of the currently licenced passenger car fleet (DfT, 

2016c). As discussed emissions from petrol and diesel vehicles have different exhaust 

compositions due to differences in energy density and engine mechanics. Previous 

studies have found diesel engines produce between 20 – 30 % less CO2 but emit 

many times more NOx (Suzuki & Matsumoto, 2004; Moody & Tate, 2017; Weiss et al., 

2012).   

In the mid 1990’s the vast majority of the European passenger fleet was fuelled by 

petrol. The Kyoto Protocol of 1997 committed signatories (of which the UK was one) 

to reducing their CO2 emissions by 8% over the next 15 years (UNFCCC, 1998). Whilst 

America and Japan focused CO2 reduction efforts on hybrid and electric vehicles, the 

EU opted to promote diesel fuel. Diesel was touted as the environmentally friendly 

alternative to petrol and promoted through tax incentives. This led to a peak in the EU 

wide market share diesel of 52% in 2015 (ICCT, 2016). However, recent trends 

indicate that the VW emissions scandal combined with the growing body of evidence 

relating to the adverse health effects associated with diesel fumes have started a 

decline in diesel sales (RCP, 2016; COMEAP, 2010; WHO, 2016; EEA, 2015; FT, 

2016). This is illustrated by Figure 6-1.  

In Figure 6-1 the bars represent the difference in total passenger car sales in the UK 

between 2016 and 2017. A positive value represents an increase from 2016- 17, a 
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negative value represents a decrease. The green section of each bar relates to diesel 

vehicles. Since June 2016 the majority of months have seen a decrease in the number 

of diesel cars sold compared to the same month in the previous year. The increase in 

March 2017 was due to a rush to buy vehicles before the UK government’s change to 

the Vehicle Excise Duty (VED, a form of tax). The VED changes introduced in April 

2017 considerably increased the annual cost of keeping diesel cars on the road and 

applied to all vehicles registered after March 2017. These changes were introduced 

(in part) to disincentivise diesel. Early results indicate this was a success, with April 

2017 diesel passenger car sales -27% lower than April 2016 and May 2017 sales 20% 

lower than May 2016. 

 

 

Figure 6-1. Comparison of UK passenger car sales to previous year by fuel 
type (SMMT, 2017) (AFV= Alternative Fuel Vehicle) 

 



184 
 

 

However, total passenger car sales in the UK are increasing annually. The annual 

average VKM driven are also increasing (DfT, 2014), which is the case across the EU. 

Whilst technological advancements have reduced vehicles’ on-road CO2 emissions, 

increased activity has outweighed carbon intensity improvements. This has resulted 

in transport being the only major sector in the EU for which greenhouse gas emissions 

continue to rise (CCC, 2015; Fontaras, Zacharof & Ciuffo, 2017). It is therefore a 

matter of concern that (as shown in Figure 6-1) the majority of consumers moving 

away from diesel are switching back to petrol instead of alternative fuel vehicles (AFV). 

Across Europe the fall in diesel sales since 2015 has been entirely offset by an 

increase in petrol sales, whilst from 2015 – 2016 the share of AFV fell from 4.5% to 

4.2% (ACEA, 2017b). 

AFV refers to vehicles that are powered by sources other than traditional petroleum 

fuels using internal combustion engines. This includes electric vehicles (EV), plug in 

hybrid- electric vehicles (PHEV), hybrid- electric vehicles (HEV) and hydrogen fuel 

cells. Currently in the UK over half all AFVs are petrol- electric hybrids, these have 

been found to deliver fuel economy savings between 40- 60% relative to conventional 

petrol vehicles (Fontaras, Pistikopoulos & Samaras, 2008). In the UK AFVs are the 

fastest growing passenger car sector, and this growth has accelerated since the VED 

change in April 2017. May 2017 represented a 47% increase in sales compared to 

May 2016, however, the market share (4.4%) was still relatively low. 

6.2  Methodology 

The testing regime undertaken by Emissions Analytics followed exactly the same 

procedure as described in Chapter 4. The Euro 6 diesel vehicles were the same as 
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used in Chapter 4, however the urban and motorway section selection method was 

different. In Chapter 4, sections were selected by road type and GPS, whereas in this 

chapter sections were selected following “EU Commission Regulation (EU) 2016/646 

of 20 April 2016 amending Regulation (EC) No 692/2008 as regards emissions from 

light passenger and commercial vehicles (Euro 6)”. Regulation (EU) 2016/646 dictates 

the procedure for the RDE test component of Euro 6d TEMP. The sections selected 

in this chapter followed this guidance including the minimum and maximum dynamic 

boundary conditions relating to relative positive acceleration (RPA) (which takes a 

different definition from that used in Chapter 4) and v.apos_[95] (defined below). 

However, some guidance from (EU) 2016/646 (e.g. speed binning) was not followed. 

Areas where the selection method used in this chapter differs from (EU) 2016/646 are 

discussed below. 

6.2.1 Test fleet 

The test fleet contained 37 Petrol Euro 5 (P5), 35 Petrol Euro 6 (P6), 36 Diesel Euro 

5 (D5), 39 Diesel Euro 6 (D6), 1 Euro 5 petrol- electric Hybrid (H5) and 1 Euro 6 petrol- 

electric Hybrid (H6). The vehicle models in the test fleet accounted for 56% of all 

passenger cars sold in Europe in 2016 and included 27 different manufacturers. Table 

6-1 lists the main characteristics of the 149 vehicles in the test fleet.  

The Euro 6 diesel vehicles were the same as those used in Chapter 4. 
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Table 6-1. Characteristics of vehicles in test fleet 

Vehicle ID Fuel Euro Engine 
size [ℓ] 

Segment Kerb 
weight [kg] 

Year of 
manufacture 

Mileage 
[km] 

Fuel 
injection 

D5.1.5a Diesel Euro 5 1.5 C 1500-2000 Dec-13 5123 - 

D5.1.5b Diesel Euro 5 1.5 B 1500-2000 Jun-13 5057 - 

D5.1.5c Diesel Euro 5 1.5 C 1500-2000 Dec-13 5087 - 

D5.1.5d Diesel Euro 5 1.5 C 1500-2000 Jan-14 1585 - 

D5.1.6a Diesel Euro 5 1.6 I 1500-2000 Oct-14 2268 - 

D5.1.6c Diesel Euro 5 1.6 I 1500-2000 Nov-13 946 - 

D5.1.6d Diesel Euro 5 1.6 B 1000-1500 Apr-14 4741 - 

D5.1.6e Diesel Euro 5 1.6 C 1500-2000 Jan-14 2794 - 

D5.1.6f Diesel Euro 5 1.6 H 2000-2500 Jul-14 2548 - 

D5.1.6g Diesel Euro 5 1.6 H 1500-2000 Jul-14 5333 - 

D5.1.6h Diesel Euro 5 1.6 C 1500-2000 Nov-11 10240 - 

D5.1.6i Diesel Euro 5 1.6 C 1500-2000 Jan-14 6442 - 

D5.1.6j Diesel Euro 5 1.6 D 1500-2000 Feb-14 2937 - 

D5.1.6k Diesel Euro 5 1.6 D 1500-2000 Mar-13 2831 - 

D5.1.6l Diesel Euro 5 1.6 C 1500-2000 Oct-13 3174 - 

D5.1.6m Diesel Euro 5 1.6 I 1500-2000 Feb-14 2200 - 

D5.1.6n Diesel Euro 5 1.6 C 1500-2000 Jan-14 5789 - 

D5.1.6o Diesel Euro 5 1.6 B 1500-2000 Jul-12 6185 - 

D5.1.6p Diesel Euro 5 1.6 C 1500-2000 Jan-14 4519 - 

D5.1.6q Diesel Euro 5 1.6 C 1500-2000 Mar-14 4216 - 

D5.1.6s Diesel Euro 5 1.6 C 1500-2000 Mar-13 1294 - 

D5.1.6t Diesel Euro 5 1.6 B 1500-2000 Nov-12 5113 - 

D5.1.7a Diesel Euro 5 1.7 C 1500-2000 Jul-12 12754 - 

D5.1.7b Diesel Euro 5 1.7 H 1500-2000 May-13 4176 - 

D5.2.1 Diesel Euro 5 2.1 E 1500-2000 Dec-13 4807 - 

D5.2.2a Diesel Euro 5 2.2 H 2000-2500 Oct-13 3589 - 

D5.2.2b Diesel Euro 5 2.2 H 2000-2500 Sep-12 17489 - 

D5.2.3c Diesel Euro 5 2.3 C 1500-2000 Jul-13 7495 - 

D5.2b Diesel Euro 5 2.0 D 1500-2000 May-13 21129 - 

D5.2c Diesel Euro 5 2.0 D 2000-2500 Jul-13 1242 - 

D5.2d Diesel Euro 5 2.0 D 2000-2500 Jan-14 6233 - 

D5.2e Diesel Euro 5 2.0 H 1500-2000 Oct-13 3438 - 

D5.2f Diesel Euro 5 2.0 C 1500-2000 Feb-13 7173 - 

D5.2g Diesel Euro 5 2.0 H 1500-2000 Dec-11 2829 - 

D5.3a Diesel Euro 5 3.0 D 2000-2500 Mar-13 7669 - 

D5.3b Diesel Euro 5 3.0 H 3000-3500 Aug-12 2205 - 

D6.1.4a Diesel Euro 6 1.4 B 1000-1500 Nov-14 3613 - 

D6.1.4b Diesel Euro 6 1.4 B 1500-2000 Jun-14 2354 - 

D6.1.5a Diesel Euro 6 1.5 C 1000-1500 Apr-15 2033 - 



187 
 

 

D6.1.5b Diesel Euro 6 1.5 B 2500-3000 May-15 2696 - 

D6.1.6a Diesel Euro 6 1.6 I 1000-1500 Jun-14 3872 - 

D6.1.6b Diesel Euro 6 1.6 D 1000-1500 Sep-14 875 - 

D6.1.6c Diesel Euro 6 1.6 C 1000-1500 Jul-15 3803 - 

D6.1.6d Diesel Euro 6 1.6 I 2500-3000 Oct-13 3505 - 

D6.1.6e Diesel Euro 6 1.6 D 1000-1500 Aug-14 3264 - 

D6.2.0a Diesel Euro 6 2.0 D 2000-2500 Jul-15 1704 - 

D6.2.0b Diesel Euro 6 2.0 D 2000-2500 Sep-15 4027 - 

D6.2.0c Diesel Euro 6 2.0 E 2000-2500 Apr-14 4131 - 

D6.2.0d Diesel Euro 6 2.0 C 1500-2000 Jul-14 4133 - 

D6.2.0e Diesel Euro 6 2.0 G 1500-2000 Sep-14 1199 - 

D6.2.0f Diesel Euro 6 2.0 D 2000-2500 May-14 3368 - 

D6.2.0g Diesel Euro 6 2.0 E 2000-2500 Jun-14 8481 - 

D6.2.0h Diesel Euro 6 2.0 D 1500-2000 May-15 726 - 

D6.2.0i Diesel Euro 6 2.0 H 2000-2500 May-15 2111 - 

D6.2.0j Diesel Euro 6 2.0 D 1500-2000 Dec-13 3249 - 

D6.2.0k Diesel Euro 6 2.0 C 1500-2000 Jul-14 1030 - 

D6.2.0l Diesel Euro 6 2.0 C 1500-2000 Feb-15 4683 - 

D6.2.0m Diesel Euro 6 2.0 D 1500-2000 Jul-14 4125 - 

D6.2.0n Diesel Euro 6 2.0 D 1500-2000 Apr-13 6536 - 

D6.2.0o Diesel Euro 6 2.0 C 1500-2000 Sep-14 2401 - 

D6.2.0p Diesel Euro 6 2.0 D 1500-2000 Aug-14 1609 - 

D6.2.0q Diesel Euro 6 2.0 C 1000-1500 Feb-15 1905 - 

D6.2.0r Diesel Euro 6 2.0 I 1000-1500 Jan-14 6183 - 

D6.2.0s Diesel Euro 6 2.0 E 1500-2000 Jul-15 2729 - 

D6.2.0t Diesel Euro 6 2.0 I 1500-2000 Jul-15 6882 - 

D6.2.0u Diesel Euro 6 2.0 C 1000-1500 Jul-15 6746 - 

D6.2.0v Diesel Euro 6 2.0 C 1000-1500 Mar-14 1194 - 

D6.2.0w Diesel Euro 6 2.0 E 1500-2000 Nov-14 7010 - 

D6.2.2a Diesel Euro 6 2.2 D 1500-2000 Nov-12 9677 - 

D6.2.2b Diesel Euro 6 2.2 D 1500-2000 Feb-15 950 - 

D6.2.2c Diesel Euro 6 2.2 D 1500-2000 Dec-12 362 - 

D6.2.2d Diesel Euro 6 2.2 D 1500-2000 Jan-13 1873 - 

D6.2.2e Diesel Euro 6 2.2 H 1000-1500 Mar-15 855 - 

D6.3.0a Diesel Euro 6 3.0 F 1500-2000 Oct-13 2242 - 

D6.3.0b Diesel Euro 6 3.0 F 2500-3000 Apr-13 2995 - 

P5.1.0a Petrol Euro 5 1.0 B 1500-2000 Nov-12 4030 PFI 

P5.1.0c Petrol Euro 5 1.0 B 1500-2000 Nov-12 9608 GDI 

P5.1.0d Petrol Euro 5 1.0 A 1000-1500 Jun-12 3640 GDI 

P5.1.0e Petrol Euro 5 1.0 C 1000-1500 Dec-13 7052 GDI 

P5.1.0f Petrol Euro 5 1.0 B 1000-1500 Sep-12 2939 GDI 

P5.1.2a Petrol Euro 5 1.2 A 1000-1500 Jan-14 1885 GDI 

P5.1.2b Petrol Euro 5 1.2 A 1000-1500 Jan-14 4130 GDI 
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P5.1.2c Petrol Euro 5 1.2 B 1000-1500 May-14 2371 PFI 

P5.1.2d Petrol Euro 5 1.2 B 1500-2000 Jan-15 1040 GDI 

P5.1.2e Petrol Euro 5 1.2 B 1000-1500 Jul-13 1688 PFI 

P5.1.2f Petrol Euro 5 1.2 C 1500-2000 Jan-14 5042 GDI 

P5.1.2g Petrol Euro 5 1.2 C 1500-2000 Jan-14 5258 PFI 

P5.1.2h Petrol Euro 5 1.2 B 500-1000 Apr-14 803 GDI 

P5.1.2i Petrol Euro 5 1.2 B 1000-1500 Jan-13 5415 GDI 

P5.1.2j Petrol Euro 5 1.2 B 1000-1500 Oct-15 565 PFI 

P5.1.3a Petrol Euro 5 1.3 B 1000-1500 Jul-14 7229 GDI 

P5.1.3b Petrol Euro 5 1.3 B 1000-1500 Jul-14 504 PFI 

P5.1.4a Petrol Euro 5 1.4 C 1000-1500 Jul-13 2628 PFI 

P5.1.4b Petrol Euro 5 1.4 C 1500-2000 Jun-13 6404 PFI 

P5.1.4c Petrol Euro 5 1.4 C 1000-1500 Jul-12 2383 GDI 

P5.1.4d Petrol Euro 5 1.4 B 1500-2000 Jul-14 2673 PFI 

P5.1.6a Petrol Euro 5 1.6 B 1500-2000 Mar-13 4606 PFI 

P5.1.6b Petrol Euro 5 1.6 H 1500-2000 Nov-12 2400 PFI 

P5.1.6c Petrol Euro 5 1.6 C 1500-2000 Jan-14 7408 GDI 

P5.1.6d Petrol Euro 5 1.6 B 1500-2000 Jan-13 6396 GDI 

P5.1.6e Petrol Euro 5 1.6 D 2000-2500 Jun-15 4154 PFI 

P5.1.6f Petrol Euro 5 1.6 G 2000-2500 Apr-13 1905 PFI 

P5.1.6g Petrol Euro 5 1.6 C 1500-2000 Oct-12 5995 PFI 

P5.1.6h Petrol Euro 5 1.6 B 1000-1500 Mar-13 4437 GDI 

P5.1.6i Petrol Euro 5 1.6 B 1500-2000 Mar-13 3000 PFI 

P5.1.8 Petrol Euro 5 1.8 C 1500-2000 Apr-14 7636 PFI 

P5.2.0b Petrol Euro 5 2.0 C 1500-2000 May-12 5483 PFI 

P5.2.0c Petrol Euro 5 2.0 C 1500-2000 Jun-14 6787 GDI 

P5.2.0d Petrol Euro 5 2.0 C 1000-1500 Oct-13 6690 GDI 

P5.2.0e Petrol Euro 5 2.0 C 1500-2000 Oct-13 11309 PFI 

P5.2.5a Petrol Euro 5 2.5 C 1500-2000 May-14 4620 GDI 

P5.2.5b Petrol Euro 5 2.5 G 1500-2000 Jul-12 3174 PFI 

P6.1.0a Petrol Euro 6 1.0 C 1000-1500 Mar-12 2131 PFI 

P6.1.0b Petrol Euro 6 1.0 B 1000-1500 Mar-16 1954 GDI 

P6.1.0c Petrol Euro 6 1.0 A 500-1000 Apr-15 3658 PFI 

P6.1.0d Petrol Euro 6 1.0 A 500-1000 May-15 2103 GDI 

P6.1.2a Petrol Euro 6 1.2 C 1000-1500 Feb-16 2015 GDI 

P6.1.2b Petrol Euro 6 1.2 B 1000-1500 Nov-14 2366 PFI 

P6.1.2c Petrol Euro 6 1.2 B 1000-1500 May-15 1221 GDI 

P6.1.2d Petrol Euro 6 1.2 B 1500-2000 Sep-15 2073 PFI 

P6.1.2e Petrol Euro 6 1.2 B 1000-1500 Feb-15 7281 PFI 

P6.1.2f Petrol Euro 6 1.2 B 1000-1500 Oct-14 1621 PFI 

P6.1.4a Petrol Euro 6 1.4 B 1000-1500 Jan-15 7775 PFI 

P6.1.4b Petrol Euro 6 1.4 B 1500-2000 Feb-15 1917 GDI 

P6.1.4c Petrol Euro 6 1.4 C 1500-2000 May-14 8383 GDI 
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P6.1.4d Petrol Euro 6 1.4 C 1500-2000 Jun-15 3259 PFI 

P6.1.4e Petrol Euro 6 1.4 C 1500-2000 Jun-14 2937 PFI 

P6.1.4f Petrol Euro 6 1.4 B 1000-1500 Sep-15 3803 PFI 

P6.1.4g Petrol Euro 6 1.4 I 2000-2500 Nov-15 1318 PFI 

P6.1.4i Petrol Euro 6 1.4 C 1500-2000 Jul-05 - PFI 

P6.1.5a Petrol Euro 6 1.5 C 1000-1500 Sep-15 1790 PFI 

P6.1.5b Petrol Euro 6 1.5 B 1500-2000 Mar-14 4307 PFI 

P6.1.6a Petrol Euro 6 1.6 C 1500-2000 Jul-15 - PFI 

P6.1.6b Petrol Euro 6 1.6 C 1500-2000 Jul-15 - PFI 

P6.1.6c Petrol Euro 6 1.6 C 1000-1500 Mar-15 1978 GDI 

P6.1.6d Petrol Euro 6 1.6 C 1500-2000 Jan-16 2100 GDI 

P6.1.6e Petrol Euro 6 1.6 H 1500-2000 Feb-16 1746 GDI 

P6.1.6f Petrol Euro 6 1.6 C 1000-1500 Jan-16 1936 PFI 

P6.1.6g Petrol Euro 6 1.6 B 1000-1500 May-15 3621 PFI 

P6.1.8a Petrol Euro 6 1.8 D 2000-2500 Jul-15 - PFI 

P6.2.0a Petrol Euro 6 2.0 C 1000-1500 Jun-13 1658 PFI 

P6.2.0b Petrol Euro 6 2.0 B 1000-1500 Mar-14 6882 GDI 

P6.2.0c Petrol Euro 6 2.0 C 1500-2000 Mar-14 3330 PFI 

P6.2.0d Petrol Euro 6 2.0 C 1500-2000 Apr-14 2321 GDI 

P6.2.0e Petrol Euro 6 2.0 C 1500-2000 Jul-15 - PFI 

P6.2.0f Petrol Euro 6 2.0 I 2000-2500 Dec-13 4484 PFI 

P6.3.0a Petrol Euro 6 3.0 D 1000-1500 Jun-14 5110 PFI 

H5.1.8 Hybrid Euro 5 1.8 C 1500-2000 Nov-12 - PFI 

H6.1.8 Hybrid Euro 6 1.8 C 1500-2000 Dec-16 - PFI 

 

6.2.1.1 Hybrid vehicles 

This analysis includes a limited sample of 2 petrol- electric hybrid passenger cars. Due 

to the limited sample size a greater level of caution should be used when drawing 

conclusions from these results. It should also be noted that these results relate only to 

petrol- electric hybrids deploying kinetic energy recovery technology, and both 

vehicles sampled were made by the same manufacturer. No inferences can be made 

for other types of hybrids (e.g. diesel or plug-in) and results may only be indicative of 

this particular manufacturer. 
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6.2.1.2 Engine displacement 

In Chapter 4 it was shown engine displacement was not a significant factor for NOx 

emissions. However, engine size is known to correlate closely with CO2. In this chapter 

vehicles have been divided into categories relating to their engine displacement; <1.4 

ℓ = Extra Small [XS], 1.4 ℓ - ≤1.55 ℓ = Small [S], 1.55 ℓ - ≤2ℓ = Medium [M] and >2 ℓ = 

Large [L]. The number of vehicles in each engine displacement category is listed in 

Table 6-2. 

Table 6-2. Engine displacement of test fleet 
 

<1.4 ℓ 

[XS] 

1.4ℓ - ≤1.55 ℓ 

[S] 

1.55ℓ - ≤2 ℓ 

[M] 

>2 ℓ 

[L] 

Petrol 27 14 28 3 

Diesel - 8 54 13 

 

Following the general European trend, diesel engines in the test fleet were on average 

larger than petrol engines, an average of 1.9 ℓ for diesel compared to 1.5 ℓ for petrol.  

The distribution of engine displacements in the test fleet was representative of the UK 

as shown in Table 6-3. 
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Table 6-3. Comparison of size distribution of vehicles in study and UK fleet 
(DfT, 2015c)  

 ≤1 ℓ 1ℓ to ≤1.55 ℓ >1.55ℓ to ≤ 2 ℓ >2 ℓ 

Petrol 

UK 2015 sales petrol cars (%) 12% 44% 39% 5% 

Test fleet share petrol cars (%) 12% 45% 38% 5% 

Diesel 

UK 2015 sales diesel cars (%) 0.1% 12% 65% 23% 

Test fleet share diesel cars (%) 0 11% 72% 17% 

 

6.2.1.3 Euro car segment 

Table 6-4 describes the test fleet by European market segments. The most 

represented segments in the test fleet were B, C, D and H. These were also the most 

common in the EU passenger car market, in the UK in 2015 they made up 83% of new 

vehicles registered (SMMT, 2015). 
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Table 6-4. Comparison of segments of vehicles in study and EU 2015 sales 

Segment % new cars sold in EU 

2015 (ACEA, 2016) 

# in test fleet 

D5 D6 P5 P6 

A Mini 
31% 

- - 3 2 

B Supermini/ Small 4 3 16 12 

C Lower Medium 22% 14 9 14 17 

D Upper Medium 10% 6 14 1 2 

E Executive 

3% 

1 4 - - 

F Luxury Saloon - 2 - - 

G Specialist Sport - 1 3 - 

H Dual Purpose (SUV) 23% 8 2 2 1 

I Multi-Purpose Vehicle 11% 3 4 0 2 

 

6.2.1.4 Mileage 

The vehicles in the test fleet were all relatively new, with an average start mileage of 

4105 (sd. 3000) km. As a result emission degradation (usually observed > 50,000 km 

(Borken-Kleefeld & Chen, 2015)) is not considered in this analysis. It is still too soon 

for there to be substantial evidence relating to emission degradation from Euro 5 and 

6 cars, though it is a fair assumption that emissions stated here will not remain 

constant over the lifetime of the vehicles (Chen & Borken-Kleefeld, 2016). 

6.2.1.5 After treatment technologies 

All petrol vehicles were fitted with a three way catalytic converter (TWC). TWCs 

effectively control emissions of NOx, CO and total hydrocarbons. Like all diesel 

vehicles Euro 5 and above the D5 cars were fitted with a Diesel Oxidation Catalyst 
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(DOC), Diesel Particulate Filter (DPF), and Exhaust Gas Recirculation (EGR). As 

discussed in Chapter 4 the majority of Euro 6 diesels were also fitted with additional 

NOx abatement technology (either LNT or SCR). 

In terms of CO2 abatement, half of the test fleet was fitted with fuel saving stop- start 

technology. This is in line with the 60% of European new passenger cars that now use 

stop- start technology (Gross, 2015). Previous studies found stop- start delivers fuel 

savings of between 3 – 5 % (Bishop et al., 2007), meaning any CO2 benefit from stop-

start fell within the natural variability of the PEMS testing and were not detectable in 

this study. 

6.2.2 Ambient temperature 

For reasons previously stated in Chapter 4, the results were not corrected for ambient 

temperature and pressure. However, as this analysis made comparisons between the 

different vehicle categories, it was important to ensure a level of consistency in local 

ambient temperatures between categories to avoid bias. Table 6-5 shows that the 

mean ambient temperature of tests for each category fell within the same range. 

Table 6-5. Average temperature by category 

 D5 D6 P5 P6 

Average temp. 

[°C] 
15.0 (sd. 5.5) 17.1 (sd. 6.2) 15.1 (sd. 5.9) 14.0 (sd. 5.4) 
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6.2.3 Test sections  

Table 6-6. Motorway and urban cycle characteristics 

 

Duration 
[s] 

Distance 
[km] 

Average 
speed 
[km h-1] 

% idle* 

Urban  
2368 (sd. 105) 16.1 (sd. 0.1) 24.5 (sd. 1.1) 17.9 (sd. 3.1) 

Motorway  
580 (sd. 10) 16.1 (sd. 0.1) 99.8 (sd. 1.5) 0.02 (sd. 0.1) 

*Vehicle speed < 0.5 ms-1, acceleration between ± 0.1 ms-2  

 

 

The average characteristics of the motorway and urban sections in this analysis are 

presented in Table 6-6. As discussed, the urban and motorway sections were selected 

following Regulation (EU) 2016/646. This was done by creating a moving 16 km 

window (Regulation (EU) 2016/646 stipulates 16 km is the minimum allowed trip 

distance) and evaluating the characteristics of each window to assure the dynamic 

boundary conditions were met. This was done using purpose built software written in 

the statistical package R.  

This analysis differs from Regulation (EU) 2016/646 guidelines in that urban and 

motorway sections were not identified by binning for speed (urban < 60 km h-1, 

motorway > 90 km h-1). Regulation (EU) 2016/646 also gives a wide range for the 

average speed of the urban section (15 – 40 km h-1), however to ensure comparability 

between the vehicles in this analysis all urban sections had an average speed of ~25 

km h-1. Regulation (EU) 2016/646 states there must be over 150 data points with 

acceleration higher than 0.1 ms-2, all sections in this analysis had many more than 

150. These are examples of rules in Regulation (EU) 2016/646 that allow for different 

driving characteristics that will impact on the average emissions. This is discussed 

further in the Discussion section of this chapter. 
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Figure 6-2. a) Cumulative frequency of speed b) Frequency diagram of VSP 
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The analysis here differs from Regulation (EU) 2016/646 guidelines in that urban and 

motorway sections were not identified by binning for speed. However, guidelines 

relating to minimum, maximum and speed ranges were followed. As with the previous 

analysis in Chapter 4, urban sections were selected from A, B and C roads with a 

speed limit < 50 km h-1, motorway sections were selected from M roads with a speed 

limit < 110 km h-1.  

Figure 6-2 shows the speed and Vehicle Specific Power (VSP, defined in Chapter 4) 

distribution of the urban and motorway sections. The data fell into distinct groups for 

both parameters, indicating a high level of consistency between the tests. Figure 6-2a) 

compares the speed distributions of the urban and motorway sections selected for this 

analysis to the NEDC and WLTC. Urban sections covered the range 0 - 50 km h-1, 

motorway sections mainly covered the range > 75 km h-1. Figure 6-2b) shows the 

frequency distribution of VSP for urban and motorway sections. As with the analysis 

in Chapter 4, urban sections were characterised by lower VSP and motorway sections 

higher. The difference in the height of the peaks reflects the duration spent in each 

section; the average duration of an urban section was 4 times the average duration of 

a motorway section. 

v.apos_[95] is defined fully in section 6.2.5 Data analysis (below). It is the metric that 

determines the maximum dynamic boundary condition of a test trip in (EU) 2016/646. 

v.apos_[95] refers to the 95th percentile of speed*positive acceleration. For a test 

section to be valid it must have a value of v.apos_[95] below a certain value. This value 

is proportional to the average speed of the test section, and the upper limits for each 

average speed are marked in Figure 6-3a). There are two limits for v.apos_[95], one 
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for low speeds and one for high. All the test data points fall below the relevant dashed 

lines indicating that all tests met the v.apos_[95] maximum dynamic boundary condition. 

 

Figure 6-3. Dynamic boundary conditions from (EU) 2016/646 
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The metric for assessing the minimum dynamic boundary condition in (EU) 2016/646 

is relative positive acceleration (RPA). The definition of RPA used by (EU) 2016/646 

differs from the definition of Weiss, Bonnel, Hummel, et al., (2011) (used in Chapter 

4). Weiss et. al broke each trip down into sub-trips whereas (EU) 2016/646 calculates 

the RPA of an entire test section (this is described further in the Data analysis section 

below). As with v.apos_[95] the minimum RPA boundary is proportional to average 

speed (marked on Figure 6-3b) by dashed lines). For a section to be valid, the RPA 

must be above a certain value. All section data points fell above the relevant dashed 

lines, showing that they met the minimum dynamic boundary condition. 

6.2.4 Cold starts 

The urban and motorway sections selected for this analysis were part way through a 

test and therefore did not include a cold start. Furthermore, the majority of test trips 

were from warm start (as opposed to cold start) and there was no uniform engine rest 

period before each test trip. Because of this, cold start analysis does not form a core 

part of this research. However, using the exhaust temperature as a proxy, several cold 

starts were identified. Analysis of two identified cold starts will be presented in the 

results section of this chapter, one petrol and one diesel.  

6.2.5 Data analysis 

Data analysis such as emissions factor calculations, VSP and acceleration were 

calculated as in Chapter 4. Additional parameters of v.apos_[95] and an alternative RPA 

are detailed below. 
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6.2.6 v.apos_[95] 

The value v.apos_[95] must be below a certain value for the trip to be valid in the RDE 

test procedure. It was calculated as follows: 

First the product of vehicle speed per acceleration was calculated using Equation 6-1: 

Equation 6-1. Vehicle speed per acceleration 

(𝑣 ∗ 𝑎)𝑖 =
𝑣𝑖 ∗ 𝑎𝑖

3.6
                                   𝑖 =  1 𝑡𝑜 𝑁𝑡  

ai  = instantaneous acceleration in [m s-2] 

vi  = instantaneous velocity [km h-1] 

Nt = number of samples 

To calculate v.apos_[95] values of (v*a)i,k with ai,k ≥ 0.1 m s-2 are sorted in ascending 

order and assigned a rank 1 to k, with 1 being the lowest value and k assigned to the 

highest. The highest value (v*a)i,k  is denoted as Mk . 

Percentile values were assigned to (v·apos)j,k values with ai,k ≥ 0.1 m s-2. The 

lowest v*apos value was assigned the percentile 1/Mk , the second lowest 2/Mk 

etcetera, the highest value (Mk/Mk) represented 100 %. The value of (v*apos)k _[95] 

was the (v*apos)j,k value, with j/Mk equal to 95 %.  

6.2.6.1 Validity of v*apos_[95] 

𝑣𝑘̅̅ ̅ = average speed of entire section. 

For 𝑣𝑘̅̅ ̅  ≤ 76.6 km h-1 a trip was not valid if (v · apos)k _[95] > (0.136*𝑣𝑘̅̅ ̅ + 14.44) 

For 𝑣𝑘̅̅ ̅ > 76.6 km h-1 a trip was not valid if (v · apos)k _[95] > (0.0742*𝑣𝑘̅̅ ̅ + 18.966) 
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6.2.6.2 Relative Positive Acceleration 

The maximum metric of the dynamic boundary conditions in (EU) 2016/646 is Relative 

Positive Acceleration. The value RPA must be above a certain value for the trip to be 

valid in the RDE test procedure. RPA was calculated using Equation 6-2. 

Equation 6-2. RPA as defined by (EU) 2016/646 

𝑅𝑃𝐴 =  
∑ ∆𝑡∗(𝑣.𝑎𝑝𝑜𝑠)𝑗𝑘𝑗

∑ 𝑑𝑖,𝑘
                      j = 1 to Mk, i = 1 to Nk, 

Δt  = time difference (1 second) 

Mk  = samples in test section (i.e. urban / motorway) with ai,k ≥ 0.1 m s-2 

Nk  = samples in entire test section (i.e. urban / motorway) 

6.2.6.3 Validity of RPA 

For 𝑣𝑘̅̅ ̅  ≤ 94.05 km h-1 a trip was not valid if RPAk < (-0.0016*𝑣𝑘̅̅ ̅ + 0.1755) 

For 𝑣𝑘̅̅ ̅ > 94.05 km h-1 a trip was not valid if RPAk < 0.025 
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6.3  Results 

This section presents analysis for individual pollutants (CO2, NOx, NO2 and CO) 

followed by cold start emissions, an evaluation of the (EU) 2016/646 selection method 

and a discussion. 

6.3.1 CO2 emissions 

Figure 6-4 compares average CO2 emissions by category (engine size) from petrol, 

diesel and hybrid vehicles for urban and motorway sections. The increase in CO2 from 

diesel to petrol vehicles of the same engine size ranged between 13 – 66%. ANOVA 

statistical analysis was performed using the software package R, no statistically 

significant difference was found in CO2 emissions from Euro 5 and 6 technology 

vehicles for either petrol or diesel. The sample size for hybrids was too small for 

ANOVA analysis, but there was little difference between the H5 and H6 vehicles. CO2 

varied significantly with engine size and urban emissions were much higher than 

motorway for diesel and petrol vehicles, the reverse was true for hybrids. 

The average CO2 emission for each category by fuel type for the motorway and urban 

sections is listed in Table 6-7. The UK weighted average was calculated by weighting 

the vehicles in the study relative to the distribution of petrol and diesel engines in the 

UK using the 2015 new car sales data presented in Table 6-3. 
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Figure 6-4. Urban and motorway average CO2 emissions by engine size, red 
dashed line = 2015 fleet average target 
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Table 6-7. Average CO2 emission by engine displacement, section and fuel 
type [g km-1] 

Urban  [XS]  [S]  [M]  [L] 
UK weighted 

average 

Petrol 
175.2 

(sd. 23.3) 

199.2 

(sd. 25.2) 

231.5  

(sd.42.3) 

340.9 

(sd. 28.6) 

 210.5  

(sd. 47) 

Diesel 
- 141.9 

(sd.11.6) 

163.4 

(sd. 21.6) 

205.1 

(sd. 55.1) 

 170.2  

(sd. 34) 

Hybrid 
- - 117.4 

(sd. 12.4) 

- - 

Motorway  [XS]  [S]  [M]  [L] 
UK weighted 

average 

Petrol 
140.6 

(sd. 20.3) 

154.3 

(sd. 24.9) 

174.4 

(sd. 17.9) 

213.0 (sd.6.0)  160.2  

(sd. 29) 

Diesel 
- 137.1  

(sd. 19.8) 

149.0 

(sd. 18.9) 

170.0 

(sd. 36.4) 

 152.3  

(sd. 22) 

Hybrid 
- - 150.9  

(sd. 36.3) 

- - 

 

The petrol- electric hybrids were by far the best group, particularly during urban driving. 

Hybrids were the only group to have an average (117.4 (sd. 12.4) g km-1) below the 

2015 CO2 fleet average target of 130 g km-1. This equated to a 49% reduction 

compared to conventional petrol vehicles of the same size. For the motorway section 

the average CO2 (150.9 (sd. 36.3) g km-1) was 13% below the conventional petrol 

average for that category and on a par with diesel. Hybrids were the only group for 

which motorway emissions were higher than urban. These results show that whilst the 
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hybrid technology performed well in both sections it is most effective in urban driving. 

This is because the vehicles tested deployed kinetic energy recovery technology, 

which is utilised most effectively when there are regular acceleration and deceleration 

events. Further work should include analysis of other types of hybrid. 

Table 6-8 lists the % increase in average CO2 from diesel to petrol by category. The 

increase was between 12.5 – 66.2%, stated another way this equated to a reduction 

from petrol to diesel of between 11.1 – 39.8%.  

Table 6-8. Increase [%] average CO2 from diesel to petrol 
 

[S] [M] [L] 
UK weighted 

average 

Urban 40.4% 41.7% 66.2% 23.7% 

Motorway 12.5% 17.0% 25.3% 5.2% 

 

Engine size is a key factor when considering the replacement of diesel vehicles with 

petrol. CO2 emissions increased significantly with engine size and the increase was 

greatest for petrol vehicles. For example [L] vehicles’ urban average CO2 was 71.1 % 

higher than [S] for petrol cars and only 44.5 % higher for diesel. This indicates there 

are potential CO2 savings to be made by downsizing petrol engines. However, as 

shown in Table 6-3 the majority of petrol engines are already small, with [L] engines 

accounting for only 5% of the UK fleet. 

As consumers move away from diesel and towards petrol, a determining factor in the 

CO2 penalty incurred will be the size of the new petrol engines.  Table 6-7 shows that 

an [M] diesel, the most common size in the UK, replaced by an [M] petrol would result 
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in a 42% increase in urban CO2. The same [M] diesel replaced with an [S] petrol would 

result in a 22% increase. The lowest CO2 penalty (7%) would be incurred by 

substituting the [M] diesel with an [XS] petrol. 

2.1.1.1 CO2 fleet average target 

Figure 6-5 shows CO2 average emissions by vehicle weight for urban and motorway 

sections. The diagonal red dashed line is the weight dependent 2015 limit curve, the 

horizontal red dashed line is the fleet average target of 130 g CO2 km-1.  

 

Figure 6-5. CO2 by vehicle weight and comparison to 2015 fleet average target 

 

Figure 6-5 shows that for both urban and motorway driving a number of diesel vehicles 

had emissions below the weight dependent limit curve. For urban driving, 6 vehicles 

(2 diesel, 2 petrol, 2 hybrid) met the fleet average target of 130 g CO2 km-1 and the 
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average exceedance was +31% for diesel and +62% for gasoline. This increased to 

25 vehicles (10 diesel, 13 gasoline, 2 hybrid) for the motorway section, and the 

average exceedance fell to +16% for diesel and +23% for petrol. 

2.1.1.2 Comparison with manufacturers’ stated emissions 

The PEMS average CO2 measurements were also compared to the manufacturers’ 

official estimates, recorded over the NEDC. Table 6-9 lists the average percentage by 

which real driving emissions exceeded the manufacturers’ official estimates. 

Table 6-9. Percentage by which PEMS measurements exceeded 
manufacturers’ official estimates 

 Urban Motorway Average 

D5 35.1 % 29.9 % 32.5 % 

D6 46.7 % 25.1 % 35.9 % 

P5 60.0 % 20.0 % 40.0 % 

P6 61.1 % 26.7 % 43.9 % 

H5 13.1 % 83.9 % 48.5 % 

H6 80.2 % 78.9 % 79.6 % 

 

On average hybrid vehicles exceeded the manufacturer’s estimates by the largest 

percentage, though they also had the lowest CO2 emissions. In general petrol vehicles 

exceeded the manufacturers’ official estimates by a higher percentage than diesel. 

The results stated in Table 6-9 are in good agreement with previous studies, which 

found RDE of CO2 exceeded manufacturers’ estimates by ~40% (Fontaras & 

Samaras, 2010; Fontaras et al., 2014; T & E, 2015). These results were also in 

agreement that the discrepancy between manufacturers’ estimates and real world 
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emissions is increasing. For diesel, petrol and hybrid vehicles on the motorway and 

urban roads the increase was greater for Euro 6 vehicles than for Euro 5. This is 

because manufacturers have reported a reduction in CO2 that was not evident in the 

PEMS measurements. 

2.1.1.3 CO2 urban vs. motorway emissions 

As discussed, for petrol and diesel vehicles average CO2 emissions were higher 

during urban driving, with the reverse being true for hybrids. The UK weighted average 

urban CO2 emission for petrol vehicles was 31.4% higher than the motorway sections, 

for diesel the increase was only 11.8%.  

 

Figure 6-6. Motorway vs. Urban CO2 by fuel 
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The results stated previously related to the average increase in CO2 by fuel type or 

category. When considering the increase for individual vehicles between motorway 

sections and their urban counterparts the results are very similar, an average increase 

of 31.1% for petrol and 12.0 % for diesel. 

Previous studies have found the increase in CO2 during urban driving is due to driving 

behaviour at these speeds (i.e. increase in stop/ start due to traffic lights and 

congestion) and not something inherent to emissions at low speeds  (Barth & 

Boriboonsomsin, 2008; Daham et al., 2005). 

2.1.1.4 CO2 from GDI engines 

The average urban and motorway CO2 emissions from petrol GDI and PFI are listed 

in Table 6-10 along with the % reduction in CO2 delivered by GDI. 

Table 6-10. CO2 in g km-1 for GDI, diesel and PFI 

URBAN [XS] [S] [M] 

GDI 164.3 198.6 233.4 

PFI 187.0 199.5 230.3 

% reduction 12.1% 0.5% -1.3% 

MOTORWAY [XS] [S] [M] 

GDI 133.9 151.4 177.9 

PFI 147.8 156.0 172.1 

% reduction 9.4% 2.9% -3.4% 

 

Half the GDI engines in the test fleet were [XS] and this was the only category for 

which there was a significant improvement from PFI. The urban [XS] average CO2 
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emission was 12.1% less than for PFI, though still higher than the [S] and [M] diesel 

averages as seen in Figure 6-7.  

Whilst the results for [XS] GDIs were promising, they still emitted more CO2 than both 

the diesel and hybrid vehicles tested in this study. There are also questions 

surrounding GDI not addressed in this analysis relating to particulate emissions, 

specifically ultrafine particles and cold starts. 
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Figure 6-7. Urban and motorway average CO2 emissions for GDI, PFI, diesel 
and hybrid 
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6.3.2 NOx emissions 

Compared with CO2 emissions there was greater variation within vehicle categories 

for NOx and a greater divergence between petrol and diesel. The highest recorded 

CO2 emission in the study was 4 times the lowest, whereas the highest NOx emission 

was over 4000 times the lowest. Unlike CO2 there was a significant improvement in 

NOx from Euro 5 to Euro 6 for both petrol and diesel vehicles. This is a potential 

indication that carbon intensity improvements moving from Euro 5 to 6 were partly 

cancelled out by additional NOx abatement strategies (which often incur a carbon 

penalty). 

Figure 6-8 shows the average urban and motorway NOx emissions from the different 

vehicle categories. The red dashed horizontal lines represent the type approval limits; 

0.18 g km-1 for Euro 5 diesel, 0.08 g km-1 for Euro 6 diesel, 0.06 g km-1 for Euro 5 and 

6 petrol. As the hybrids in this study were petrol- electric, the relevant type approval 

limit for comparison is the petrol limit. Red triangles mark the mean of each category. 

Figure 6-8 illustrates that, as with CO2, hybrid vehicles were the best performing 

group, with every measurement far below the type approval limit. The NOx emissions 

measured from hybrid vehicles in this study were very low, within the error range of 

the PEMS system used. Whilst this may impact the numerical accuracy, the key finding 

to be drawn from these results is that NOx from these hybrids was extremely low, far 

lower than any other group. 

With the exception of P5 urban sections the majority of petrol vehicles met their type 

approval limit in the real world. In contrast the majority of diesels failed to meet the 

even more lenient Euro 5 diesel limit.  
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Figure 6-8. Urban and motorway NOx emissions  
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Table 6-11 lists the mean NOx emission by vehicle category. Also stated is the 

reduction in average NOx from diesel to petrol vehicles of the same Euro standard. As 

with CO2, the average NOx emission for D6 and P5 was higher for urban sections than 

for motorway and the reverse was true for hybrids. However, for P6 the average urban 

and motorway emissions were the same and for D5 motorway emissions were slightly 

higher. 

Table 6-11. Mean NOx emission by sections and category in [g km-1] 

NOx [g km-1] 
Reduction 

diesel to petrol 

  H6 H5 P6 P5 D6 D5 Euro 6 Euro 5 

Urban 
0.002 0.003 0.04  

(sd. 0.04) 

0.09  

(sd. 0.1) 

0.44  

(sd. 0.44) 

0.72 

(sd. 0.45) 

91% 86% 

Motorway 
0.003 0.010 0.04  

(sd. 0.06) 

0.03  

(sd. 0.04) 

0.33 

 (sd. 0.36) 

0.74 

 (sd. 0.54) 

88% 96% 

Deviation ratio  

Urban 0.03 0.05 0.7 1.5 5.5 4 

Motorway 0.05 0.17 0.7 0.5 4.1 4.1 

 

In agreement with previous studies it was found that the deviation ratio increased from 

D5 to D6, as has been the case with successive Euro standards (Carslaw et al., 2011a; 

Franco et al., 2014). In contrast, the urban section petrol deviation ratio halved from 

P5 to P6. As discussed in the previous section, the gap between real world and 

manufacturers’ estimates has also been expanding for CO2. However, the ratio 
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between real world diesel and lab measurements for CO2 (~35%) is an order of 

magnitude smaller than for NOx (~400%). 

Table 6-11 also lists the reduction in average NOx emissions from diesel to petrol: the 

reduction ranges between 86 – 96%. This can also be stated as the increase in NOx 

between petrol and diesel, which was between 11 – 25 times. 

P5 was the only petrol category with an average NOx emission above the petrol type 

approval limit. The urban P5 sections had an average NOx emission of 0.09 (sd. 0.1) 

g km-1, 1.5 times the petrol limit. 16% of the P5 vehicles in the test fleet (6 out of 37) 

had urban emission above the Euro 5 diesel type approval limit. 

6.3.2.1 NOx emissions by temperature 

The relationship between urban NOx emissions and local ambient temperature is 

plotted in Figure 6-9, a similar result was found for motorway sections. There was a 

trend of increased NOx at lower temperatures for every category, however the trend 

was much more profound for Euro 5 vehicles (D5 and P5). This is probably because 

in recent years, due to pressure from the European Commission, the temperature 

ranges of “thermal window” engine protection functions have been extended. For 

example, Renault have extended their thermal window from a narrow 17 -35 °C to a 

much broader 5 – 40 °C (T & E, 2016). This is the most likely explanation for the 

decrease in correlation between temperature and NOx from Euro 5 to Euro 6. A recent 

remote sensing study in Sweden also found that the temperature dependence of NOx 

emissions had declined with Euro standard (Sjödin et al., 2017). 
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Figure 6-9. Urban section NOx emissions by temperature 

 

6.3.2.2 NOx urban vs. motorway emissions 

As discussed previously the urban section emissions were higher than motorway for 

P5 and D6, equal for P6, and lower for D5 and hybrids. Figure 6-10 shows the ratio 

between motorway and urban section emissions for individual vehicles. The dashed 

vertical line represents a ratio of 1 (i.e. urban section average = motorway section 

average). Data points above the line are vehicles with higher urban section emissions, 

data points below the line correspond to vehicles with higher motorway section 

emissions. 
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Figure 6-10. Individual vehicle urban / motorway section NOx emissions by 
category 

 

When comparing vehicles’ urban sections to their own motorway counterparts, the 

average ratio between urban and motorway was; 4.3, 4.6, 1.2, 1.9, 0.3 and 0.7 for P5, 

P6, D5, D6, H5, and H6 respectively. Only hybrid vehicles had lower NOx emissions 

during urban driving. The emissions increase in urban driving for both petrol and diesel 

vehicles was much greater for individual cars than for the category averages. This 

indicates that the vehicles with the highest urban/ motorway ratios had low NOx 

emissions in g km-1, meaning that even an increase from the motorway to urban 

section of up 10 times had little effect on the category averages. As with CO2 the 

increase was greater for petrol vehicles than for diesel. 
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6.3.2.3 NOx emissions by engine displacement 

 

Figure 6-11. Urban NOx emissions by engine displacement 

 

As illustrated by Figure 6-11 there was no significant relationship between NOx 

emissions and engine displacement.  

6.3.3 Primary NO2 emissions  

As well as differences in total NOx emissions, diesel and petrol engines also differed 

in the amount of NOx emitted as primary NO2, as seen in Figure 6-12. Each bar 

represents a vehicle’s total average urban NOx, with the NO2 component in dark grey 

and NO light grey. The diesel vehicles in the study emitted a much higher proportion 

of fNO2 than the petrol; 42% and 46% for D5 and D6 respectably compared with 27% 
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and 17% for P5 and P6. This is similar to the range found by Weiss, Bonnel, Hummel, 

et al., (2011). The proportion fNO2 is higher for diesel vehicles due to the presence of 

the Diesel Oxidation Catalysts (DOC), which has the intended purpose of oxidising 

CO and THC. The DOCs also oxidise NO to NO2 increasing the proportion fNO2. It is 

also the case that some NOx abatement technologies (SCR) are more effective at 

reducing total NOx if the proportion fNO2 is higher. Hybrids were not included in this 

analysis as the measured NO2 emissions were extremely low, far below the 

measurement error of the PEMS system used. 

 

Figure 6-12. NOx in g km-1 as NO and NO2 components for urban sections (bar 
represents individual vehicle, red dashed line = NOx type approval limit) 
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The average NO2 emissions in g km-1
 for motorway and urban sections by category 

are listed in Table 6-12. The average D6 urban NO2 emission was 2.7 times the Euro 

6 diesel type approval limit for total NOx, the average D5 urban NO2 emission was 1.8 

times the Euro 5 diesel type approval limit for total NOx. 

Table 6-12. NO2 emission by category [g km-1] 

NO2 [g km-1] 
Reduction from 

diesel to petrol 

 
D5 D6 P5 P6 Euro 5 Euro 6 

Urban 0.315 0.215 0.025 0.007 92% 97% 

Motorway 0.305 0.158 0.013 0.004 96% 97% 

 

Table 6-12 also lists the % reduction from diesel to petrol, which ranged from 92% - 

97%. NO2 emissions from diesel vehicles were between 12.6 – 39.5 times higher than 

petrol vehicles of the same Euro standard. For all categories the average NO2 

emissions were higher for the urban sections than motorway and, as with NOx and 

CO2, the increase was highest for petrol vehicles. 

6.3.4 CO emissions 

The Euro standards also set legal limits for emissions of carbon monoxide (CO), 1.0 

g km-1 for petrol vehicles and 0.5 g km-1 for diesel. These limits have been constant 

since Euro 4. Figure 6-13 is a boxplot of urban and motorway section average CO 

emissions grouped by category. As with NOx there was large amount of variance within 

the categories. Six D5 vehicles exceeded the diesel CO limit during urban driving, 

eight P5 vehicles exceeded the petrol CO limit during motorway driving. However, the 

vast majority of vehicles met both the petrol and diesel limit and every category 
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average (marked with red triangle) was well below the relevant type approval limit. 

These results indicate that the catalytic converters used by both petrol and diesel 

vehicles are effective at oxidising CO. The average CO emission were   0.12 g km-1, 

0.09 g km-1, 0.63 g km-1,  0.21 g km-1, 0.14 g km-1, 0.00 g km-1 for D5, D6, P5, P6, H5 

and H6 respectively. 

 

Figure 6-13. Urban and motorway CO emissions  

 



221 
 

 

6.3.5 Cold start emissions 

As discussed, the majority of trips did not include a cold start. In this section two 

examples of cold starts recorded at the beginning of a test trips are illustrated. Figure 

6-14 shows the speed, CO and NOx trace for the first 10 minutes of the trip for vehicle 

P5.1.4a. This was identified as cold start (as opposed to a warm/ hot start) using the 

initial exhaust temperature. The initial exhaust temperature for P5.1.4a was 15°C 

(ambient temperature) whereas the trip average exhaust temperature was 83.1 (sd. 

36) °C.  

 

Figure 6-14. First 10 minutes of P5.1.4a trip including cold start. Dashed line 
marks approximate end of cold start period 
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Figure 6-14 shows spikes in CO and NOx emissions that fell away after the first 200s. 

This is longer than the 120s cold start time period found by Chen et al. (2011). The 

Carbon monoxide (CO) type approval limit is 1.0 g CO km-1 for gasoline and 0.5 g CO 

km-1 for diesel. In the first 200s of the trip P5.1.4a had an average CO emission of 

19.1 g CO km-1. This was 830 times the urban section average from this vehicle. The 

first 200s had an average NOx emission of 0.46 g NOx km-1. This was 4.6 times the 

urban section average and 23 times the motorway section average.  

 

Figure 6-15. First 10 minutes of D6.2.2b trip including cold start. Dashed line 
marks approximate end of cold start period 
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Figure 6-15 is the first 10 minutes of emissions from vehicle D6.2.2b. Again the cold 

start period lasted ~200s. The average CO emission during the cold start period (2.48 

g CO km-1) was 15 times higher than urban average. The cold start average NOx (0.78 

g NOx km-1) was 2.4 times higher than the urban average. 

These examples demonstrate how for both petrol and diesel vehicles the cold start 

emissions can be many times higher than the CO and NOx emissions during normal 

driving operation. However the PEMS tests analysed in this study were not specifically 

designed to monitor cold start emissions. Therefore conclusions cannot be drawn from 

this PEMS testing regime as to the magnitude and characteristics of cold starts. These 

results highlight that cold start emissions are an area in which further work is required. 

This should include a PEMS testing regime specifically targeting cold start emissions. 
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6.4  Discussion 

This section includes a discussion of the results presented in the previous section, 

with a particular emphasis on Euro 6 diesels. The D6 results from this chapter are 

compared to results from Chapter 4 and followed by discussion of the Euro 6d RDE 

type approval procedure. This is followed a basic cost benefit analysis of damage cost 

per km between the vehicle categories.  

6.4.1 Petrol- electric hybrids 

The petrol-electric hybrids in this analysis showed a clear improvement compared with 

convention petrol and diesel vehicles. However, with only two vehicles the sample size 

was very limited. The average NOx and CO2 emissions presented in this chapter are 

strengthened by the fact they are in good agreement with previous studies. The 

average NOx and CO2 emissions from this analysis (between 0.002 – 0.010 g NOx km–

1
 and 117.4 – 150.9 g CO2 km-1) were within the range found by Wu et al., (2015) 

(0.009 ± 0.005 g NOx km–1
, 136 ± 21 g CO2 km-1). This again was similar to the findings 

of Weiss, Bonnel, Hummel, et al., (2011).  

6.4.2 Comparing D6 with urban and motorway sections from Chapter 4  

Using the selection method from Chapter 4 (sections selected by GPS co-ordinates) 

the D6 urban deviation ratio was 5.4 and motorway was 3.9. This is very similar to the 

results from this chapter (where 16 km sections were selected to meet dynamic 

boundary conditions of Regulation (EU) 2016/646), which had an urban deviation ratio 

of 5.5 and motorway of 4.1. Results from the two selection methods were in good 

agreement, as illustrated by Figure 6-16, which is a scatter plot of the average NOx 
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calculated using the different methods. There was strong correlation (R2 > 0.9) for both 

urban and motorway sections. 

 

Figure 6-16. Comparing methods of urban and motorway section selection 
(dashed line y = x) 

 

This result does not however show that the test routes used during the Euro 6d RDE 

type approval will be completely representative of real world driving. As discussed 

previously, the sections selected for this chapter met the dynamic boundary conditions 

but differed from the potential sections for Euro 6d type approval in several ways. 

Firstly, the results from this chapter were not binned by speed. Secondly, for continuity 

the sections selected in this chapter had an average speed ~25 km h-1. In the Euro 6d 

type approval vehicles are permitted a range of average speeds between 15 – 40 km 

h-1
, this gives manufacturers leeway to minimise NOx emissions. Thirdly, the RDE type 
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approval sets a minimum limit to the number of datasets with ai > 0.1 ms-2 of 150. The 

majority of NOx emissions occur during acceleration, so manufacturers could aim for 

as close to 150 datasets with ai > 0.1 ms-2 as possible in a bid to minimise emissions. 

In the sections analysed in this chapter the average number of datasets in the urban 

section with ai > 0.1 ms-2 was 778 (sd. 55), potentially much higher than tests that 

could be submitted as Euro 6d RDE type approval sections. 

2.1.1.5 Lowest possible NOx emissions from same measurement data 

For comparison the urban section for each vehicle with the minimum average NOx 

whilst still meeting the Regulation (EU) 2016/646 was found. This was done using 

purpose built software in the statistical package R. Each trip was binned by speed (< 

60 km h -1) and again split into moving 16 km sections. The 16 km section that fulfilled 

all the requirements listed above and had the lowest average NOx was then selected 

for comparison. 

Figure 6-17 compares the average NOx emission from each vehicle calculated in this 

chapter (16 km section selected using the Euro 6d dynamic boundary conditions and 

average speed ~ 25 km h-1) to the lowest possible NOx measured over a 16 km section 

(within the RDE boundary conditions) from the same test data. The aim of this is to 

show that even within the same test trip there are sections that meet the urban Euro 

6d type approval specifications that have average NOx emissions much lower than the 

emissions recorded across the entire urban section of the trip. This shows that even 

with the introduction of RDE into the type approval process, real world emissions may 

still exceed emissions recorded during the RDE type approval test.  
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Figure 6-17. D6 comparison of sections with lowest NOx meeting RDE type 
approval standards and sections used in this analysis 

 

The lowest urban NOx sections had a mean deviation ratio of 3.7, and 16 vehicles met 

the Euro 6d-TEMP type approval limit compared to 13 using the Chapter 6 method. 

The sections selected in this chapter had NOx emissions on average 58% higher than 

the Euro 6d lowest NOx sections. This is within the range of variability between the 

Euro 6d RDE type approval and real world predicted by the ICCT (21 – 63%) due to a 

combination of  “engineering safety margin for RDE” and “extended conditions” (Miller 

& Franco, 2016). This shows how controlling driving characteristics within the RDE 

type approval could result in average NOx emissions ~30% lower than the true real 

world emissions. Furthermore, neither of the methods compared in Figure 6-17 

included cold starts, as a result they are both likely to be an underestimate. 
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6.4.3 Damage costs 

The results presented in this chapter indicate that a consumer shift towards petrol cars 

would incur a CO2 increase per vehicle of between 13 – 66% and deliver a reduction 

in NOx of 88 – 96%. Whilst the UK has firm commitments to reduce CO2 emissions 

some argue that the benefits to air quality of replacing diesel with petrol far outweigh 

the potential climate change costs. For example, a recent study by Brand (2016) found 

that in the UK the relative air quality benefits of switching from diesel to petrol 

outweighed any carbon dis-benefits. NOx and CO2 are notoriously difficult to compare, 

and most studies focus on either air quality or climate change (van der Zwaan, Keppo 

& Johnsson, 2013). Air pollution presents an immediate threat to human health 

whereas climate change presents a profound longer-term hazard to the climate and 

those, like humans, who depend on it. 

This section aims to quantify the potential costs/ benefits between diesel and petrol 

vehicles using a basic damage cost approach similar to that used in Chapter 5. The 

range of CO2 and NOx damage costs presented in the previous chapter were applied 

to the real world emissions factors from this chapter. This was done in two different 

ways. First, the damage cost per km was calculated simply by multiplying the average 

emission factor in g km-1 by the various CO2 and NOx damage costs in £/tonne to 

calculate vehicle specific damage costs in £/km. Second, scenarios were devised to 

2030 modelling different evolutions of petrol and diesel real world emissions factors 

and comparing the total projected UK annual 2030 combined damage cost for CO2 

and NOx.  

Note this is not a full Life Cycle Analysis and there are additional costs associated with 

various pollutants not considered here. There are also additional CO2 emissions 
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associated with the extraction, refining and distribution of petroleum fuels. The JRC 

“Well-to-wheels Analysis of Future Automotive Fuels and Powertrains” is a well-

recognised study analysing well to wheel emissions and energy efficiencies of various 

fuels. They found that in terms of energy requirement and GHG emissions, diesel is 

~10 – 20% more efficient than petrol (Edwards et al., 2011).  

6.4.4 Damage cost per km  

The NOx damage costs used in this analysis are the lowest, middle and highest NOx 

damage costs from the previous chapter. The lowest NOx cost (NOx [L]) was 

£6,734/tNOx, the mid cost (NOx [M]) was £16,853/tNOx and the highest (NOx [H]) was 

£40,404/tNOx. Damage costs for CO2 came from the UK Department of Energy and 

Climate Change (DECC, now BEIS) Green book supplementary guidance (2015). 

These values are listed in Table 6-13  and are non-traded carbon values used for UK 

public policy appraisals (DECC, 2015).  

Table 6-13. CO2 damage costs (DECC, 2015) 

Non- traded CO2 damage costs Low CO2 

[L] 

Central CO2 

[M] 

High CO2 

[H] 

2015 Baseline costs [£/tonne CO2] £31 £62 £94 

 

The DECC damage costs are based on a target-consistent approach as opposed to 

the Social Cost of Carbon. There is huge uncertainty relating to CO2 marginal damage 

costs, with studies presenting values as varied as $5/tCO2 to $200/tCO2 (Tseng & 

Hung, 2014). The widely renowned Stern Review on The Economics of Climate 

Change (2007) decided on a mean value of $85/tCO2 (approximately £79/tCO2 in 2017 

after allowing for inflation) (Stern, 2007). This Stern figure was derived using a low 
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discount rate (how much less future generations are valued compared to those who 

are alive today) of 1.4%. However, the UK government guidance recommends a 

higher discount rate of 3.5% (HM Treasury, 2011). 

Damage costs per km have been calculated by converting each vehicle’s average NOx 

and CO2 emission in g km-1 to tonne/km and then multiplying by the various damage 

costs listed above and adding the NOx and CO2 components. The vehicles were then 

grouped by category and an average taken. Figure 6-18 is a boxplot of damage cost 

per urban km for each damage cost combination and vehicle category.  

The label above each plot indicates which combination of damage costs was used in 

the plot below. The first segment of the title refers to the NOx damage cost used, the 

second refers to the CO2 damage cost used. The mean for each category is marked 

with a red triangle. 
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Figure 6-18. Urban total damage cost per km by category using DEFRA and 
AIM damage costs for NOx and DECC damage costs for CO2 

 

Figure 6-18 shows that the relative benefits of each fuel type varied widely depending 

on the damage cost combination used. For all NOx [L] scenarios there was little benefit 

in switching from diesel to petrol, whereas for the NOx [H] scenarios diesel average 

damage costs were between 2 – 4 times higher than petrol. Similar results were found 
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for motorway driving. Table 6-14 lists the urban and motorway £/km using the central 

cost combination (NOx [M] + CO2 [M]) and the mean £/km from all costs for each 

vehicle category. 

Table 6-14. Mean urban and motorway damage costs £ per km 

[£ per km] 

Urban central 

estimate 

(NOx[M]+CO2[M]) 

Urban mean 

estimate 

Motorway 

central estimate 

(NOx[M]+CO2[M]) 

Motorway 

mean estimate 

D5 0.027 (sd. 0.011) 0.033 (sd. 0.025) 0.027 (sd. 0.013) 0.033 (sd. 0.028) 

P5 0.016 (sd. 0.004) 0.016 (sd. 0.008) 0.011 (sd. 0.002) 0.011 (sd. 0.005) 

H5 0.007 0.007 (sd. 0.003) 0.011 0.011 (sd. 0.005) 

D6 0.021 (sd. 0.012) 0.025 (sd. 0.022) 0.017 (sd. 0.009) 0.019 (sd. 0.017) 

P6 0.014 (sd. 0.003) 0.014 (sd. 0.006) 0.010 (sd. 0.002) 0.011 (sd. 0.005) 

H6 0.008 0.008 (sd. 0.003) 0.008 0.007 (sd. 0.003) 

 

Hybrid vehicles were the clear best for all damage cost combinations. The mean 

damage cost reduction per km by replacing a diesel vehicle with a petrol- electric 

hybrid (of the same Euro standard) ranged between 37 – 93 % (dependant on the 

damage costs used) with a mean of 68% reduction. Compared with conventional 

petrol, hybrids reduced damage costs per km in the range between 38 – 71% with a 

mean of 51%. 

As discussed in Chapter 5 the damage cost of NOx emissions are dependent on where 

the emission takes place, emissions in densely populated urban areas cause the most 

damage. The different NOx damage costs used in Figure 6-18 could be used as a 
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proxy for location. This indicated that in rural areas where the damage cost of NOx is 

low, the total damage cost from using petrol would be higher, whereas in urban areas 

the reverse is true. Table 2-5 (Chapter 2) showed the existing trend is for diesel cars 

to spend ~10% more VKM on the motorway and petrol cars to spend ~10% more VKM 

on urban roads. Policies that promoted this trend could result in air quality and climate 

change benefits. 

For all but one cost combination petrol had a lower average per km damage cost than 

diesel. The increase in damage cost per km between petrol and diesel was most 

substantial for the NOx [H] scenarios (bottom row of Figure 6-18). The reduction in 

£/km from diesel to petrol (of the same Euro standard) ranged from -2 – 75% with a 

mean of 38%.  

These results indicate that Brand (2016) was right to say the NOx benefits of petrol 

outweigh the carbon dis-benefits. However, these results do not take into account what 

has been a key finding of this research: the huge variability in real world emissions of 

diesel passenger cars. As seen previously with average NOx emissions, a few high 

emitting diesels for both D5 and D6 increased the diesel mean damage costs. When 

considering performance of vehicles individually there was a lot of overlap between 

diesel and petrol as shown in Figure 6-19. 
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Figure 6-19. Urban damage cost per km for individual vehicles for NOx [M] + 
CO2 [M] 

 

Figure 6-19 uses the central costs for both NOx and CO2. When using this central 

damage cost estimation, the mean reduction in £/km from D6 to P6 was 33%. 

However, when comparing individual vehicles the majority for D6 and P6 fell within the 

same range, this range is marked with dashed horizontal lines in Figure 6-19. 63% of 

D6 vehicles and 68% of P6 vehicles fell within this range. As seen throughout this 

analysis the diesel damage costs were greatly increased by the ~10% of high polluting 

vehicles that pulled up the mean. The mean D6 damage cost for NOx [M] + CO2 [M] 

was 0.21£/km. When the worst 10% of NOx emitters were removed this fell to 0.16£/km 
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and was comparable to the P6 cost of 0.14£/km. This highlights the value of 

discriminating on the basis of real world emissions as opposed to Euro standards and 

the importance of tackling the worst diesel vehicles. 

These results indicate that the potential cost/ benefits of switching from diesel to petrol 

are hugely dependent on the damage costs assigned to NOx and CO2. Given the huge 

uncertainty surrounding these damage costs and a lack of academic consensus it is 

difficult to draw firm conclusions. There are also additional Well-to-Wheel emissions 

(not considered in this analysis), which are higher for petrol cars (Edwards et al., 

2011). Additionally there are health effects not factored relating to other pollutants and 

the effect of cold start emissions which are thought to effect ~8% of VKM (Miller & 

Franco, 2016). The only consistent result was the reduction in damage cost per km 

when switching to petrol- electric hybrids. 

2.1.1.6 Damage costs projected to 2030 

As discussed in Chapter 2 petrol and diesel vehicles are distributed differently 

throughout the road network. Diesel vehicles have ~65% higher annual average 

mileage and spend a higher percentage of time on motorways. In this section a simple 

spreadsheet model used VKM outputs from the UKIAM to calculate the potential 2030 

damage costs of 7 different scenarios relating to real world Euro 5 and 6 petrol and 

diesel emissions of CO2 and NOx. 

The PEMS measurements for NOx and CO2 were combined with UK traffic projections 

and damage costs to perform a cost benefit analysis. The year 2030 was chosen 

because by 2030 the vast majority of both petrol and diesel passenger cars will be 



236 
 

 

Euro 6 standard, with the remainder being Euro 5. The results presented relate only 

to Euro 5 and Euro 6 passenger car emissions.  

Seven scenarios were chosen to represent possible outcomes of various transport 

emissions policies and incoming emissions regulations. The scenarios have been 

chosen to highlight the air pollution/ climate change trade off. 

Table 6-15. Description of 2030 diesel and petrol CO2 and NOx scenarios 

Scenario 1 (S1) – No improvement in petrol or diesel emissions from 2016 – 2030. 

NOx and CO2 emissions factors from this PEMS study were applied to 2030 VKM. 

This is the worst case scenario and unlikely due to introduction of new regulatory 

limits for both NOx and CO2. 

Scenario 2 (S2) – No improvement in NOx emissions but big improvement in CO2 

from 2016 – 2030. NOx emissions factors from the PEMS study are used but it is 

assumed the average CO2 emissions for all vehicle types falls to 130 g CO2 km-1 

Scenario 3 (S3) – No improvement for D5, P5 and P6 vehicles NOx emissions and 

no improvement in CO2 but improvement in D6 NOx in line with that projected by 

ICCT. PEMS emissions factors are used for all vehicles except D6 NOx which is 

changed to 0.168 g NOx km-1 (the Euro 6d TEMP real driving limit) 

Scenario 4 (S4) – No improvement for D5, P5 and P6 vehicles NOx emissions and 

no improvement in CO2 but big improvement in D6 NOx. PEMS emissions factors 

are used for all vehicles except diesel Euro 6 NOx which is changed to 0.08 g NOx 

km-1, the Euro 6 type approval limit (deviation ratio = 1) 

Scenario 5 (S5) – No D5 or D6 vehicles in the fleet mix. All km driven by diesel 

cars are replaced by petrol cars of the same engine size (i.e. petrol cars replace all 



237 
 

 

diesel cars). This models a national diesel scrappage scheme which by 2030 leads 

to the replacement of all diesel cars with petrol 

Scenario 6 (S6) - No D5 or D6 vehicles in the fleet mix. All km driven by diesel cars 

are replaced by petrol- electric hybrid cars (i.e. hybrid cars replace all diesel cars). 

This models a national diesel scrappage scheme which by 2030 lead to the 

replacement of all diesel cars with hybrid 

Scenario 7 (S7) – Improvements in CO2 emissions from all cars and D6 NOx. The 

average CO2 emissions for all vehicle types falls to 130 g CO2 km-1. Diesel Euro 6 

NOx emission factor is changed to 0.08 g NOx km-1, the Euro 6 type approval limit 

(deviation ratio = 1) 

 

The total combined CO2 and NOx cost in Billion £ for each scenario was calculated in 

the five steps illustrated in the flow chart below ( 

Figure 6-20).  
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Figure 6-20. Flow diagram of spreadsheet model 

 

The total 2030 VKM for motorway, urban and rural driving were taken from the UKIAM 

2030 projections, as used in Chapter 5. The urban and motorway emissions factors 

were taken from the analysis in this chapter or modified as indicated above. For rural 

km the average between the urban and motorway emissions factors was taken. This 

is in keeping with the findings of Heijne, Ligterink & Stelwagen (2016) that NOx and 

CO2 was highest in urban driving, followed by rural and lowest in motorway. This is an 

assumption that should be noted when discussing the results of this modelling. The 

damage costs used were the same as in the previous section, they were combined in 

exactly the same way and stated in 2015 prices.  

1. Urban / Mot / 

Rural VKM by 

category [km] 

 

 

2. Urban / Mot / Rural 

emission factors for NOx and 

CO2 [g km-1] 

3. Total 2030 

emission [tonnes] 

4. Damage 

costs [£/tonne] 

[£/tonne] 

5. Total cost 

[Billion £] 
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Figure 6-21. 2030 damage costs for the scenarios using various damage cost 
in [£/tonne] combinations 

The damage costs for each scenario by cost combination are plotted in Figure 6-21. 

The highest total damage cost for each cost combination is plotted in red, the lowest 

in green. The highest cost scenario for all but one damage cost combo was S1 (BAU). 

The only cost combination for which S1 was not the highest was NOx [L] +CO2 [H], for 

which S5 (all diesel cars replaced with petrol) was marginally higher. This is to be 

expected, as replacing diesel (S5) with petrol reduces NOx and increases CO2, and 

NOx[L]+CO2[H] has the lowest value for NOx and highest for CO2. S5 (replace all diesel 

cars with petrol) was also one of the lowest cost scenarios for many damage cost 

combinations, especially those with NOx [H]. This highlights the level of uncertainty 
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surrounding the air quality/ climate change trade off and the need for coherent policies 

that tackle both. The scenario with the lowest total damage cost for 7 out of 9 cost 

combinations was S7 (all CO2 = 130 g km-1, D6 NOx = 0.08 g km-1). The remaining 2 

lowest were scenario S6 (replace all diesel cars with petrol- electric hybrids). This 

indicates that the best potential outcome (S7) was if both CO2 and NOx emissions 

regulations were properly effective. 

Table 6-16  lists the central estimate (NOx [M] + CO2 [M]) and mean of all damage 

costs for the seven scenarios. For the central cost combination scenario, S1 had the 

highest damage cost. There was little difference between S2 – S5. For both the central 

estimate and mean of all damage costs, the lowest impact scenario was S7 (all CO2 

= 130 g km-1, D6 NOx = 0.08 g km-1). 
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Table 6-16. Damage cost by scenario (red = highest cost, green = lowest cost) 

Scenario Central estimate 

(NOx[M]+CO2[M]) 

[Billion £] 

Mean estimate of all 

damage cost combos 

[Billion £] 

S1 6.60 7.06 

S2 5.33 5.79 

S3 5.70 5.92 

S4 5.34 5.47 

S5 5.55 5.63 

S6 4.54 4.58 

S7 4.08 4.21 

 

Table 6-16 highlights that potential damage costs can be mitigated by addressing NOx 

or CO2, but the most effective course of action would be to tackle both. The potential 

damage cost saving by 2030 if all vehicles reduced CO2 and D6 conformed to type 

approval (compared to BAU i.e. S1 – S7) was 2.52 – 2.85 Billion £. 

The main conclusion that can be drawn from both the £/km calculation and 2030 total 

damage costs is that there is huge uncertainty caused by the wide range in both NOx 

and CO2 damage costs. Within this uncertainty range it is possible that replacing diesel 

cars with petrol will result in air quality benefits that outweigh climate change dis-

benefits. However, it is also possible the two will cancel each other out. It was clear 

from this basic modelling the optimum approach would be to tackle both CO2 and NOx.  
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6.5  Summary 

 

Figure 6-22. Urban NOx vs. CO2 by fuel type   

 

In this chapter the results from PEMS measurements of NO2, NOx, CO2 and CO were 

presented for 149 diesel, petrol and hybrid vehicles. The key findings of this analysis 

are summarised by Figure 6-22, which plots CO2 against NOx for the urban sections. 

There was huge variability within the vehicle categories but in general data followed 

the expected trends. Petrol vehicles CO2 emissions were between 13 – 66% higher 

than diesel, and petrol NOx emissions were 88 – 96% lower.  

For urban driving the two hybrid vehicles delivered a 50% reduction in CO2 when 

compared to conventional petrol, as well as reduced NOx emissions. This is in 
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agreement with existing literature, however it should be noted that the sample size in 

this study was small and both vehicles came from the same manufacturer. Further 

work should include an expansion of the petrol- electric sample and an extension to 

include different types of hybrid technology, about which no conclusions can be drawn 

from this study. 

The vast majority of diesel vehicles exceeded the relevant type approval limits for NOx 

many times over. With the exception of urban driving for hybrid cars, all vehicle 

categories exceeded the fleet target CO2 limit of 130 g km-1. Most vehicles exceeded 

the manufacturers’ stated CO2 emissions by ~40%. 

A cost-benefit analysis highlighted the uncertainty surrounding the air quality/climate 

change trade off relating to replacing diesel with petrol. However, scenarios that 

reduced both CO2 and NOx consistently delivered the greatest benefit. This indicates 

that more should be done to include CO2 in the discussion as consumers move away 

from diesel. 
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Chapter 7.  Summary and 

Discussion 

 

This is the final chapter of the thesis, it pulls together the themes and major findings 

of the work and discusses them in a wider policy context. The aim of this research was 

to investigate the uncertainties relating to emissions from passenger cars with a view 

to mitigating some of them and considering how they affect air quality policy. This 

chapter summarises the work and indicates how the initial aims and objectives were 

realised within the thesis.  
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7.1  Summary and Discussion 

This thesis set out to identify the key uncertainties relating to passenger car emissions, 

explore how they could be minimised and how they affect air quality policy. This 

section describes how this was achieved using the aims and objectives stated in 

introductory chapter as guidance. 

7.1.1 Develop a framework to assess the possible causes of uncertainty in 

passenger car emissions and potential risks 

The Hazards and Operability (HAZOP) approach described in Chapter 3 provided the 

framework for the uncertainty analysis presented in this thesis. The initial HAZOP 

assessment highlighted NOx emissions from passenger cars as a key uncertainty in 

applying the UK integrated assessment model (UKIAM) to future air pollution 

scenarios for the UK. The crucial concern identified was real driving emissions and 

how they relate to type approval limits and the emissions factors used in the air quality 

models, particularly the latest Euro 6 vehicles (first sold in 2014). With the introduction 

of Euro 6 the diesel type approval limit for NOx was reduced by 56% but there had 

been little real world testing. 

The four step process that forms a HAZOP assessment (identify, define, consider 

deviations, consider consequences) provided a useful framework for the subsequent 

research. The “identify” and “define” steps were fulfilled by the work in Chapters 2 and 

3, the PEMS studies in Chapters 4 and 6 were part of the “consider deviations” step 

and the scenario analysis in Chapters 5 and 6 “considered the consequences” of those 

deviations. The framework provided by HAZOP ensured the thesis was a well-

structured and cohesive body of work. 
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The potential risks identified related to the National Emissions Ceiling Directive 

(NECD) and the Air Quality Framework Directive (AQFD). For the NECD the risk was 

possible failure to meet the national NOx ceilings in future years when the ceilings will 

be lower and Euro 6 vehicles dominant. For the AQFD the risk was UK exceedance 

of the air quality limit value for NO2 continuing for many years to come. 

7.1.2 Use Portable Emissions Measurement System (PEMS) data to explore real 

world emissions of passenger cars 

The first PEMS study (presented in Chapter 4) included 39 Euro 6 diesel passenger 

cars and focused on emissions of NOx and NO2. The average urban NOx emissions 

were 5.4 times the Euro 6 type approval limit. It was also found that the average NO2 

emission was 2.5 times the type approval limit for total NOx and that the proportion of 

NOx emitted as primary NO2 had risen to 44%. This increase in the primary NO2 was 

due to the introduction of Diesel Oxidation Catalysts and NOx abatement technologies 

that either increase primary NO2 or require higher levels of NO2 to improve operating 

efficiency.  

The 39 Euro 6 vehicles tested each used one (or two) of the three main NOx after 

treatments; Exhaust Gas Recirculation (EGR), Lean NOx Traps (LNT) and Selective 

Catalytic Reduction (SCR). There was no significant difference between the NOx and 

NO2 emissions of vehicles using these three technologies. The only significant 

difference was in the proportion of primary NO2 emitted, for which SCR had a higher 

percentage than LNT and EGR. It is possible the lack of distinction in real driving 

emissions between vehicles using different after treatments was due to the presence 

of defeat devices. Particularly as all vehicles used EGR, most also used either SCR 

or LNT in addition. It would be expected that if the LNT and SCR were fully functioning 
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vehicles would produce lower emissions than those using EGR only. This was the 

case for some vehicles. Cars using both LNT and SCR had real driving emissions 

below the type approval limit. However, LNT and SCR vehicles also produced some 

of the highest emissions. 

A key finding from this study was the huge variability in NOx emissions from diesel 

cars, even from vehicles using the same abatement technologies. Two vehicles were 

able to meet the Euro 6 type approval limit (0.08 g km-1) whereas some had emissions 

many times higher, by as many as 23 times. Six vehicles in particular had NOx 

emissions far exceeding the others, with the effect of increasing the mean. When these 

6 vehicles were removed there was a 35% reduction in the average NOx emission of 

the test fleet. The thermal windows used by manufacturers to switch off NOx controls 

outside a certain temperature window also add to the variability. The scale of variability 

creates the need for a grading system based on real driving emissions (such as the 

EQUA index) to inform consumers and policy makers of the true emissions of the 

vehicles on the road.  

Due to the deviation from type approval limits road transport models are required to 

develop emissions factors to represent real world driving. The accuracy of these 

emissions factors was identified as an important uncertainty in the initial HAZOP 

analysis. This thesis focused on COPERT as it is recommended model of the 

European Environment Agency. Comparison with the Euro 6 diesel PEMS data found 

real world emissions were 1.8 times higher than COPERT 4v11 estimates for NOx and 

2.9 times higher for NO2. COPERT uses speed dependent emissions factors but 

analysis in this study found emissions correlated more with acceleration than with 

speed. 
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Diesel NOx emissions were found to be highest during urban driving. This is of 

particular concern as public exposure is highest in urban locations. Analysis of the 

instantaneous emissions measurements in relation to speed and acceleration found 

the reason for the increase in emissions during urban driving was the increased 

prevalence of acceleration events. Both NOx and NO2 emissions were three times 

higher during acceleration than deceleration, and urban driving contained twice as 

much acceleration as motorway driving. 

The second PEMS study (described in Chapter 6) expanded the scope to include Euro 

5, petrol and hybrid vehicles with a larger sample of 149 vehicles. This study placed 

the Euro 6 diesel emissions in a wider context. It was also important because 

consumer data indicates a decline in diesel sales, the majority of consumers instead 

choosing petrol, with only a modest increase in the number of alternative fuel vehicles. 

The key results from the second measurement study are listed in Table 7-1. 

Table 7-1. Urban real driving emissions recorded in this study 

 NOx 

limit 

[g km-1] 

NOx 

[g km-1] 

Deviation 

Ratio 

NO2 

[g km-1] 

fNO2 

[%] 

CO2 

limit 

[g km-1] 

CO2 

[g km-1] 

D6 0.08 0.44 5.5 0.215 46% 130 170.2 

D5 0.18 0.72 4 0.315 42% 130 170.2 

P6 0.06 0.04 0.7 0.007 17% 130 210.5 

P5 0.06 0.09 1.5 0.025 27% 130 210.5 

H6 0.06 0.002 0.03 - - 130 117.4 

H5 0.06 0.003 0.05 - - 130 117.4 
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Petrol vehicles had CO2 emissions between 13 – 66% higher than diesel vehicles of 

the same engine size. Petrol NOx emissions were 88% lower for Euro 5 and 96% lower 

for Euro 6. This study included 2 hybrid vehicles, the sample was small and the results 

only related petrol-electric hybrids using kinetic energy recovery. These 2 hybrids were 

the best performing group. During urban driving the hybrids emitted 50% less CO2 

than the conventional petrol cars, as well as greatly reduced NOx emissions. They 

were the only group to have average emissions below the fleet target CO2 limit of 130 

g km-1. However, these results are only representative of one make of hybrid with 

unique technology, further work is needed on other types. 

As with NOx emissions CO2 was found to exceed manufacturers’ official estimates. 

For the newest Euro 6 petrol vehicles the average urban CO2 emission was 44% 

higher than officially stated, Euro 6 diesel emissions were 36% higher.  

Again it was found a large factor in the uncertainty surrounding diesel NOx emissions 

was the huge variability between seemingly similar vehicles. For CO2 engine size was 

a good indicator of emissions and there was a clear trend of increasing CO2 with 

increased engine size. For NOx no such trend was found and the variability was much 

larger. Across all vehicle types the highest CO2 emission was 4 times the lowest, 

whereas the highest NOx emission was over 4000 times the lowest. This research also 

highlighted the uncertainty in the air quality / climate change trade-off between petrol 

and diesel vehicles. 
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7.1.3 Use modelling to project and estimate the impact and risk associated with 

real world passenger car emissions and surrounding uncertainty 

The first use of scenario analysis in this thesis was the modelling of 2030 Euro 6 NOx 

emissions in Chapter 5. This was based on the first PEMS study relating to NOx and 

NO2 emissions. The scenarios (S1- S5) assumed varying NOx emissions factors and 

proportion of primary NO2. These ranged from S1 which assumed full Euro 6 

conformity with the type approval limit to S5 which assumed no improvement from the 

current Euro 6 real world emissions. Each scenario also had an ‘a’ and ‘b’ component 

with varying percentage primary NO2, 30% for ‘a’, 44% for ‘b’. 

The UKIAM was used to model the total Euro 6 NOx emission in tonnes in the year 

2030. The difference between the best and worst case scenarios made up a 

substantial proportion of the entire UK 2030 NOx national emission ceiling. The most 

likely range was between 50.3 –102.9 kilotons, between 12 – 24% of the UK’s 2030 

NOx ceiling. Using various damage costs this was estimated to cost between 0.95 – 

1.92 Billion £. 

The modelling found that unless Euro 6 real world emissions factors are reduced to at 

least the level of the Euro 6d- TEMP type approval (0.168 g km-1), modelled by S2, 

there will still be roads at risk of exceeding the NO2 air quality limit value in the year 

2030. The number of grid squares containing roads at risk of exceedance varied from 

0 for S1a to 136 for S5b. The fraction of NOx emitted as NO2 was found to have a 

significant impact on roadside concentrations. An increase in the proportion NO2 from 

30 to 44% could result in a national increase in roadside exceedances of the NO2 air 

quality limit value of between 84 – 103%. In some grid squares it was found an 



251 
 

 

increase in primary NO2 from 30% to 44% resulted in an increase in ambient NO2 

concentrations of over 15%.  

The second scenario analysis in the thesis is found at the end of Chapter 6. It was 

based on the second PEMS study and again modelled emissions in 2030, but this time 

including CO2 from Euro 5 and petrol vehicles. The total emissions were calculated 

using emissions factors multiplied by kilometres driven, estimated by the UKIAM. 

These emissions were then multiplied by different combinations of damage costs for 

CO2 and NOx, ranging from low to high. There were 7 scenarios (S1 – S7), each 

assumed different fleet average emissions factors for petrol and diesel vehicles. Some 

scenarios also modelled shifts in the fleet composition due to the implementation of 

certain policies, such as a diesel scrappage scheme.  

As expected the business as usual scenario, S1, which had no improvement from 

current real world emissions, had the highest damage costs. The scenario with the 

lowest damage costs (S7) assumed all vehicles met the CO2 fleet average target of 

130 g km-1 and Euro 6 diesel vehicles had real world NOx emissions equal to the type 

approval limit (0.08 g km-1). The difference in 2030 damage costs between the 

business and usual (S1) and best case (S7) scenarios was ~ 3 Billion £. 

The second least damaging scenario S6 replaced all diesel vehicles with petrol- 

electric hybrids. These results showed that the best way to reduce environmental 

damage (even given the wide uncertainty in damage costs) is policies that reduce both 

CO2 and NOx. The current trend of diesel vehicles being replaced with petrol was not 

one of the lowest damage cost scenarios for any combination of damage costs, in fact 
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when NOx damage costs were low and CO2 costs high this scenario was the most 

damaging.  

7.1.4 Identify how air quality policies can tackle air pollution from passenger 

cars given the identified uncertainty 

This section discusses the main policies being proposed as options to tackle 

passenger car emissions in the UK and the impact of the results in this thesis on these 

policies. 

7.1.4.1 The EQUA index 

A key finding was the huge variability in NOx emissions from diesel vehicles of the 

same Euro standard. Until recently this was not well understood or communicated 

effectively to the general public. The EQUA index is an accreditation scheme devised 

by Emissions Analytics to inform consumers of the real world emissions of vehicles on 

market, it currently has ratings for ~1000 vehicles. An average emission is taken from 

a repeated sections of the urban test route. This measurement is then assigned a 

grade from A (<0.08 g km-1) to H (>1.00 g km-1). The grade for all 1000 vehicles is 

available on the EQUA index website and consumers can search by manufacturer, 

model and fuel type. There are also grades assigned for carbon monoxide, carbon 

dioxide and mpg. 

The idea has been adopted by the Mayors of Paris and London who will launch and 

“Clean Vehicle Checker” in autumn 2017 using data from Emissions Analytics and the 

International Council on Clean Transport. These schemes will have the benefit of 

informing consumer choice and putting pressure on manufacturers to sell vehicles with 
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low emissions in the real world, not just during type approval. The onus will now be on 

manufacturers to prove their green credentials in the real world. 

7.1.4.2 Clean Air Zones / Low Emission Zones (LEZ) 

The current air quality plan put forward by the UK government relies heavily on local 

councils setting up clean air zones. The benefit of these are they are relatively easy to 

implement based on number plate recognition, especially in London where the 

congestion charging zone is already in place. Clean air zones also have the benefit of 

being easy for the public to understand. Variability in RDE of diesel vehicles could 

hamper the effectiveness of LEZs. 

The introduction of the RDE test procedure in September 2017 is an attempt to 

address this, although it will have no impact on the millions of vehicles already in 

circulation. Low Emission Zones, such as that being introduced in London 2019, will 

discriminate on the basis of Euro standard. The variability evidenced in this thesis 

shows that more discrimination based on real driving emissions could be beneficial, 

as illustrated in Chapter 4 when removing the worst Euro 6 diesels reduced the 

average emission by 35%. The ULEZ in London will allow diesel Euro 6, but not diesel 

Euro 5. 
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Figure 7-1. Urban NOx emissions from Euro 5 and 6 diesels (type approval 
limits marked in red) 

 Figure 7-1 highlights the huge overlap between Euro 5 and 6. Some Euro 5 diesels 

had emissions much lower than some Euro 6 vehicles and vice versa. As illustrated in 

Chapter 4 the average emission of the fleet could be greatly reduced by focusing on 

RDE. The EQUA index is the first step in moving the discussion away from Euro 

standards and towards real world emissions. 

7.1.4.3 Diesel scrappage scheme 

All the modelling in this thesis assumed there would not be a national diesel scrappage 

scheme. A scrappage scheme was not included in the latest DEFRA air quality plan 

published July 2017. As public opinion shifts away from diesel and the market share 

declines there will be clear benefits for urban air quality. However, this shift will do 

nothing to address problems posed by the diesel passenger cars currently in 

circulation, which make up ~40% of UK passenger car fleet. This has led many 
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(including the Mayor of London) to call for a National Diesel Scrappage Scheme to 

accelerate the turnover of the worst diesel vehicles (TfL, 2017).  

A national diesel scrappage scheme could be effective at removing the worst polluting 

vehicles and accelerating vehicle turnover. Without a scrappage scheme the benefits 

of new type approval procedures will take longer to be realised, given the average age 

of a passenger car in Europe is 10 years (ACEA, 2017a). 

The results in this thesis indicate that any proposed scrappage scheme should have 

a dual climate change focus (e.g. replacements must be hybrid or EV) as well as 

consideration of real world emissions. There is the potential to include a real world 

emissions component (similar to the EQUA index) to identify which vehicles to scrap 

first, especially if it is a targeted rather than “blanket” scrappage scheme. Focus on 

real world emissions would allow the scheme to be targeted initially at the most 

polluting vehicles, maximising the benefits. There may also be more benefit in 

scrapping newer vehicles with very high real world emissions, as they have a longer 

remaining lifespan. Whilst pre- Euro 4 cars (12 years old) emit more pollution they 

would most likely be retired much sooner, scrapping newer cars might prove unpopular 

but may in the long run be more cost effective. The worst diesel Euro 6 vehicles tested 

in this study had real world NOx emissions ~3 times the Euro 4 limit. 

A criticism often made of scrappage schemes is they are a subsidy for the middle 

classes, as the ~£2000 incentive is not enough for people on lower incomes to afford 

a brand new car. Another is that (as with the UK scrappage scheme in 2009) they 

provide a boost for the motor manufacture industry. Given the ‘diesel gate’ scandal 
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and recent unscrupulous behaviour of certain companies this does not currently seem 

a particularly well earned reward, with the tax payer footing the bill. 

7.1.4.4 Measures to disincentivise diesel 

Tax incentives can be used to influence consumer behaviour. As discussed in Chapter 

6 changes in vehicle excise duty (VED) in April 2017 coincided with a sharp reduction 

in the sales of new diesel cars. However the new VED puts road tax at £140 for petrol 

and diesel vehicles and £130 for alternative fuel vehicles (AFVs) does not go far 

enough to incentivise AFVs. The previous tax free incentive has been removed from 

hybrids and instead only applies to full electric vehicles. More work is needed but the 

results of this study indicate certain hybrids can deliver big emission reductions. 

Emissions from hybrid vehicles measured in this study had both CO2 and NOx 

emissions far below their diesel and petrol counterparts. Early evidence in the UK and 

across Europe indicates the majority of the decline in diesel sales is being matched 

by an increase in petrol sales. More thought should be done to incentivise hybrid 

vehicles instead. 

Tax in the first year of the new VED is currently determined by CO2 emissions. The 

higher the manufacturers stated CO2 emission the higher the tax in the first year, with 

the highest band being £2000 for CO2 > 255 g km-1. This research found that for Euro 

6 vehicles real world CO2 emissions were 36% higher for diesel cars and 44% higher 

for petrol cars. None of the vehicles in the test fleet would be charged the maximum 

£2000 based on their official CO2 emission. However, if the tax was based on RDE 

instead 9 petrol and 2 diesel vehicles would pay the maximum.  
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Another way in which consumer behaviour can be influenced is by the cost of fuel. If 

someone considering a switch from diesel to petrol was made aware that the petrol 

running costs are (on average) 44% higher than advertised they may choose to 

purchase a hybrid or electric vehicle instead. Additionally the tax on diesel fuel could 

be increased to account for the higher damage cost per km. An increase in the cost of 

diesel fuel would remove the largest consumer incentive, fuel economy.  

7.2  Limitations 

As discussed in Chapter 2 a limitation of PEMS studies is always the sample size. 

PEMS equipment is expensive and testing is time consuming, this is why PEMS and 

remote sensing studies should be used to complement one another. There was also 

a lack of repetition in the testing. Real driving emissions depend on a lot of external 

factors such as wind speed and temperature as well as natural variability in the testing 

itself. The results would be more robust had each vehicle been tested numerous times 

in different conditions to compare for continuity. Unfortunately the vehicles used in the 

testing were often only loaned for one day, so this was not possible with the current 

Emissions Analytics set up. It would also have been interesting to test the same 

vehicles on a chassis dynamometer for comparison. 

It is thought much of the variability in NOx emissions comes from thermal windows and 

defeat devices. PEMS do not include detailed analysis of the on-board software, this 

would allow identification of when NOx controls were operating and at what efficiency. 

The omission of measurements of particulate matter and non- exhaust emissions is a 

major limitation of this work, especially when looking at the Gasoline Direct Injection 
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vehicles. With the decrease in exhaust emissions the non-exhaust components are 

becoming an ever bigger fraction of PM. This will still be a concern for electric vehicles. 

As the topic of this thesis was exhaust emissions from passenger cars the policy 

measures discussed throughout relate only to emissions reduction. It is extremely 

important to add that the most effective pollution reduction measure is the removal of 

the car altogether. Promotion of cycling and walking should always be a priority for 

policy makers. As well as reducing air pollution the co-benefits associated with 

exercise improve health, happiness and wellness and ultimately could save the NHS 

billions of pounds per year. Almost half of all car journeys in the UK are less than 5 km 

in length, many of these could easily be cycled instead or replaced with public 

transport. Additionally, better city planning and land use has potential to greatly reduce 

the amount of vehicle kilometres driven by building new residential settlements within 

walking/ cycling distance of local amenities and schools. 

Finally, this work has coincided with enormous changes in the field of air quality, with 

air pollution becoming part of the public consciousness in a way it hasn’t perhaps since 

the Great Smog. The final year of this work also coincided with a period of political 

instability in the United Kingdom. The combination of these two circumstances mean 

air quality policy is constantly changing and developing in ways that make it difficult to 

judge which decisions future governments will make. All the regulations referenced in 

this thesis are from the EU, it is not clear how the UK will develop its own air quality 

regulations after leaving the European Union in 2019. 
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7.3  Recommendations 

There should be extended testing of petrol- electric hybrids, to include vehicles made 

by a number of different manufacturers. PEMS testing should also be extended to 

include other types of hybrid vehicles such as plug-in hybrids.  A dedicated PEMS 

study (with sufficient sample size) should be performed to measure emissions during 

cold starts for petrol, diesel and hybrid vehicles. For comparison there should be 

continuity between the route followed and speed in all tests. 

There should be extensive PEMS testing of vehicles that pass the new real driving 

type approval test from September 2017 onwards to ascertain what (if any) will be the 

increase between type approval and real world emissions. There should also be 

moves to ensure type approval becomes more representative by including cold starts 

and not allowing manufacturers to choose the ambient temperature on the day of the 

test. 

Lastly more research is required into the real world emissions of light goods vehicles 

and vans. The NAEI estimate in 2014 they made up 6% of total UK NOx emissions 

and with the rise of home delivery and online shopping the miles driven by LGVs are 

also rising. Many vans use the same engines found in the cars tested in this study but 

in much heavier vehicles with much heavier loads. This is likely to result in much higher 

emissions then recorded for passenger cars. 
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Appendix 1: HAZOP analysis of the UKIAM 

The tables below summarise the full preliminary HAZOP analysis of the UKIAM. This 

initial HAZOP review provided a framework which could be continually updated, and 

provided a record of how uncertainties were addressed. This was put together by 

Rosalind O’Driscoll, Helen ApSimon and Tim Oxley as part of the DEFRA Support for 

National Air Pollution Strategies (SNAPS) Working Package 1. 

 



Emission projections:  

Definition of emissions of specified pollutants (SO2, NOx, NH3, PM10, PM2.5, VOCs) for future scenarios up to 2030, for use with the 

atmospheric modelling module, and in the module defining potential abatement measures. Depend on projected activity data and 

emission factors as emission per unit activity. 

 

Source of uncertainty 

 

Comment 

 

Action 

 

UK emissions : 

Activity data (sources within SNAP 

sectors) 

        

 MORE/LESS 

 

 

 

Based on national projections from DECC, 

DfT, agricultural scenarios etc 

Or from independent studies e.g. CCC 

energy and agriculture scenarios 

 

e.g apply to different source/ technology 

 

 

 

 

 

Variant scenarios including high and low 

estimates of activity data e.g. as with 

UEP45 projections 
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       NOT Sensitivity studies e.g to type of domestic 

stove for biomass in CCC study 

Emission factors   

MORE/LESS 

 

 

 

 

NOT 

 

 

 

 

AS WELL AS 

 

 

Where possible adopt NAEI emission 

factors. May be based on legislation rather 

than specifying technology/ abatement 

measures in place 

 

New technologies not covered in NAEI 

 with EFs taken from literature (e.g CCS) 

or consultation (e.g. CHP plants/biomass) 

 

 

Missing sources e.g. anaerobic digesters 

in UEP45.  

 

Comparison with GAINS 

Reference to NAEI reports 

Sensitivity studies, Monte Carlo analysis 

 

 

Specify source of value adopted e.g.  in 

RAPID database, and undertake source 

apportionment to see how significant 

source is for model results + conclusions 

 

More likely to occur with new activities 
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Missing pollutant e.g primary NO2, or 

black carbon 

Or more detailed chemical speciation e.g. 

VOCs 

 

Add pollutant by estimating relative to 

related pollutant by factors/fractions for 

most important sources until full inventory 

available e.g. as for black C in UKIAM 

UK road transport emissions 

(BRUTAL) 

         MORE/LESS (Traffic flows, Traffic 

mixes, Speed) 

 

       Emission factors MORE/LESS 

 

      

  Emission factors NOT 

 

Modelled on a road by road basis across 

the UK network  

From DfT data, road type etc 

 

 

Same as NAEI 

 

 

Problems of Euro standards not delivering 

expected improvements in real world e.g. 

Sensitivity studies, model validation 

studies e.g. MIE 

(Comparison with Kings observations- not 

funded) 

 

Sensitivity studies using MIE software 

NB Kings data from exhaust scanning 

 

As above, plus sensitivity studies using 

GAINS emissions 
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AS WELL AS 

 

Shipping emissions 

 

 

 

 

European emissions other countries 

 

Euro 6. NB difference between GAINS 

and NAEI 

Other associated sources : tyres and 

brakes covered but not road abrasion or 

resuspension 

 

Alternative vehicle technologies 

 

Based on AMEC/ENTEC projections for N 

Sea and local sea areas plus GAINS for 

rest. NB based on different assumptions 

and ship data 

 

Based on GAINS scenarios 

 

 

 

 

 

 

 

 

? data available from Ricardo-AEA (& 

Kings) 

 

???? 
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Other aspects: (AS WELL AS) 

 

Spatial mapping 

 

        

 

 

 

Temporal variation 

 

 

 

 

 

UK emissions on 1x1 km grid plus point 

sources plus roads. Change over time e.g. 

power plants. 

 

 

 

Only annual emissions. Hence 

uncertainties re episodes or diurnal 

variations, and with non-linear chemistry 

Note underlying assumptions re 

projections and include full range of 

alternative scenarios (e.g. based on 

national projections)  

Currently being updated based on NAEI 

source footprints & remodelling of roads to 

include NI. 

Test atmospheric model sensitivity to grid 

resolution 

 

Supporting atmospheric modelling studies 

(if funded) 
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Atmospheric modelling:  

Purpose- to estimate contributions of different sources to primary and secondary pollutant concentrations, and to sulphur and nitrogen 

deposition (+ ozone fluxes and PODs in future development). This is used to estimate environmental impacts in response to changes 

in emissions. The focus here in WP1 is on S-R relationships because other work is being undertaken on uncertainties in atmospheric 

modelling by CEH, including EMEP4UK as well as FRAME. 

Note that UKIAM provides a framework for swapping source-receptor relationships from different models. There is also the potential 

to use the Model Intercomparison Exercise, MIE software. 

 

Source of uncertainty 

 

Comment 

 

Action 

 

NOx/NO2 concentrations. BRUTAL 

model 

 

 

 

Emphasis on urban areas. Imported 

contribution small 
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  Background NOx  MORE/LESS 

 

 

 

  

  

Roadside NOx  MORE/LESS 

 

 

 

 

  NO2 concentrations  MORE/LESS 

 

 

 

Background concentrations of annual 

average in 1x 1 km grid squares. 

Dispersion based on PPM Gaussian 

model; detailed treatment of traffic 

contribution 

 

Simple roadside increment to allow for 

restricted dispersion by buildings and 

street canyons, depending on urban 

(population) density 

 

Derived from NOx using quadratic 

relationship between annual average NO2 

and NOx; parameters depend on rural, 

urban, roadside site characteristics. 

Participation in MIE, to be repeated with 

updated emissions 

 

 

 

 

Derived from sensitivity studies with 

ADMS street canyon model. 

? compare with PCM empirical formulae. 

 

 

Special study by R O’Driscoll. Sensitivity 

study to model parameters defining 

quadratic equation. Comparison with 

Jenkins and Clapp shows good 
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Exceedance of NO2 limit value (40 µgm-3) 

 

a) Background MORE/LESS 
 

    

 
b) Road-side  MORE/NOT 

 

 

 

Identified as priority for investigation in 

MIE, and evidence of overestimation at 

road side sites 

Also NB fraction of NOx emitted as primary 

NO2- see emissions 

 

 

 

Background based on 1x1km grid 

 

 

Road lengths at risk of exceedance may 

be overestimated. BRUTAL takes worst 

road in each grid square, and if limit 

agreement. Focus on roadside using 

diffusion model for profiles of NO, NO2 and 

O3 near roads to develop 

parameterisation used in BRUTAL 

 

 

 

MIE comparison with more detailed spatial 

modelling 

 

Make clear BRUTAL identifies grid 

squares including road-side exceedance, 

and requiring more detailed spatial 

modelling, rather than total road length of 

exceedance. 
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exceeded assumes all roads in square at 

risk. 

 

Sensitivity to threshold limit value 

 

Estimate exceedance relative to higher 

and lower thresholds. 

 

Concentrations of PM10/PM2.5 

 

Primary PM   

 

 

 

 

Secondary SO4,NO3 and NH4 

 

 

 

Built up from several components 

 

Similar uncertainties to NOx 

concentrations based on BRUTAL model. 

Small imported contributions based on 

EMEP modelling. 

 

Based on EMEP and FRAME models 

 

 

 

 

 

 

 

 

Swap models and compare (as in 

previous contract) 
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Imported contributions  

 

 

 

LESS THAN 

 

       

 

 

NB Have calibrated and uncalibrated 

versions for FRAME. But hybrid of EMEP 

and FRAME avoids need for calibration. 

 

 

 

Currently use EMEP model for imported 

contributions. 

 

 

FRAME model- constant drizzle leads to 

underestimate.  

 

Also comparison with PCM maps 

interpolated from measurements (which 

do not show as much spatial variability e.g 

in NO3 aerosol due to NH3 availability) 

 

 

Recently revised data from IIASA-> 

comparisons with previous model when 

incorporated in UKIAM 

 

Refinement of FRAME model to dry and 

wet periods 
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National contributions   

 

       

  

MORE THAN 

 

 

Non- linearity / chemistry: MORE/LESS 

 

    

 

Other components of PM :AS WELL AS 

 

   Secondary organic aerosol 

 

Use FRAME uncalibrated as standard 

model. Gives better spatial mapping than 

EMEP 

 

Constant cloud leads to excess SO4 

production in FRAME. 

 

Depends on how big a change is made 

from scenario used to derive S-Rs 

Fraction of NO3 aerosol as PM2.5 

 

Kept constant 

 

Currently from NAME model 

 

Scale average to match EMEP. 

 

 

 

Refinement of FRAME to have intermittent 

cloud 

 

Comparisons of different models 

undertaken in SSNIP. 

Sensitivity of total  to fraction generally 

small 

 

 

Comparison with HARM. Future 

comparison with EMEP4UK 
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Water 

 

  

  Urban and rural dust 

 

AS WELL AS: Temporal 

 

 

 

 

 

    

 

 

   

Based on EMEP. Uncertain how much this 

reduces in response to changes in SIA  

 

Adopted from PCM modelling. 

 

Legislation for PM10 based on episode 

days, (related statistically to annual 

average in UKIAM as in PCM). 

Episodes may behave in a different way to 

abatement strategies from the annual 

average e.g. episodes of high SIA 

coinciding with peaks in agricultural NH3 

in air from continent. 

 

 

????? 

 

 

 

Further work in this area by Ricardo-AEA? 

NB Inter-annual variability. Evidence of 

effect from PCM modelling. 

Proposed work with NAME to look at this 

but not funded 
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 Spatial 

 

 

 

   PM2.5 and other size fractions of PM10 

    NOT 

 

 

 

    

 Chemical composition of PM 

Primary PM background on 1x1 km grid as 

for NOx/NO2 

Patchy effect of NH3 emissions on SIA 

 

Primary emissions as fraction of PM10 

emissions. Assumptions about size 

distributions. No microphysics for particle 

processes like coagulation. 

 

Can be derived from source 

apportionment 

Sensitivity to grid resolution of models 

 

 

 

Model would not be applicable to smaller 

particles and ultra-fines. 

 

 

 

 

See section on health impacts 

 

Sulphur and nitrogen deposition 
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Deposition MORE/LESS 

 

Wet deposition 

 

 

 

 

Orographic enhancement wet deposition 

 

 

 

 

 

 

 

 

 

Constant drizzle in FRAME will deplete 

imported fluxes leading to 

underestimation of wet deposition – so  

use EMEP imported fluxes 

 

Difference clearly indicated between 

FRAME which includes it, and EMEP 

which does not, 

Currently assume the EMEP imported 

fluxes with FRAME spatial distribution. 

 

 

 

May underestimate wet deposition due to 

imported fractions. Compare with new 

FRAME with dry and wet periods , as 

compared with constant drizzle version 
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Dependence on chemistry 

 

 

 

Dry deposition 

 

      

     

 

Occult deposition NOT 

     

 

 

  

 

Non-linear chemistry effects on deposition 

appear a bit less critical than for SO4 and 

NO3 concentrations, but may affect range 

 

Dependent on assumed deposition 

velocities which vary with type of land 

use/cover. No allowance for co-deposition 

of NH3 and SO2 

 

Deposition direct from cloud is altitude 

dependent and is not considered 

separately from orographic enhancement 

 

 

 

Comparisons EMEP and FRAME. 

Sensitivity of source apportionment and 

UK versus imported contributions 

 

Differentiate contributions from dry and 

wet deposition, and effect of say 20% 

increase or decrease in dry portion (will be 

smaller for NOx deposition) 

 

Could lead to underestimation of 

deposition over hills and mountains 
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Other considerations AS WELL AS 

 

     Spatial    

 

 

 

    

 

   

Temporal  

 

 

Currently mapped at 5x5 km resolution. 

Cannot resolve local scale deposition of 

NH3 round sources with this resolution. 

Big uncertainties in dry deposition from 

emissions within local square 

 

 

A large proportion of wet deposition 

occurs in a few concentrated episodes. 

There are also large inter-annual 

variations 

 

 

Exploratory runs to investigate 

contribution from dry deposition of NH3, 

and role in exceedance of critical loads. 

Where this is dominated by local square 

emissions of NH3 local measures may be 

appropriate. 

 

Compare different years where separate 

data is available. 
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Environmental impacts and effects 

Purpose: calculation of indicators to quantify environmental impacts and as input to environmental damage costs and CBA. 

Impacts on health are derived from population weighted means of atmospheric concentrations of fine particulates (generally PM2.5 

but also calculated for PM10 as that has been used in the Defra damage costs) and NO2. These are derived from population data and 

concentrations on the 1x1 km grid, with no contribution from road side increments in exposure. Can be broken down into London or 

urban v rural, and different regions. 

 

                Source of uncertainty 

 

                           Comment 

 

                                  Action 

 

 

 PM, NO2 exposure MORE/LESS 

(also see tables on emissions and 

concentrations) 

 

 

 

Assumes static population with no 

allowance for travel or indoor exposure 

 

 

 

 

Compare with epidemiological estimates 

of exposure 
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Other considerations AS WELL AS 

 

Differential toxicity between components 

of PM 

 

 

 

 

 

Uncertainty in direct health impacts of NO2 

 

 

 

 

 

 

 

Health impacts based on total PM mass 

eg effects of SIA are same as primary 

diesel exhaust per unit mass 

 

 

 

 

There is no agreed relationship between 

NO2 exposure and health impacts. Hence 

impacts of NOx are currently based on 

exposure to secondary nitrate particles 

which is a long-range as opposed to a 

local exposure impact. However tentative 

 

 

Break down exposure into different source 

components . This clarifies for example 

reductions in exposure to particles in 

diesel vehicle exhausts as compared with 

brakes and tyres, or primary versus 

secondary PM 

 

Explore use of HRAPIE proposals and 

compare with PM based on NO3. 
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Ozone NOT 

relationships have been proposed by 

HRAPIE although not yet accepted. 

 

Ozone is not yet considered although 

there are plans to do so based on 

SOMO35 using S-R data from IIASA until 

data available from EMEP4UK.  

NB need to allow for urban deficit of ozone 

which can be derived from NO2 v NOx 

modelling 

 

 

 

Current underestimation of health impacts 

due to omission. Remedied by model 

extension. 
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Protection of ecosystems with respect to acidification and eutrophication is assessed by comparing deposition with the respective 

critical loads. Where there is no exceedance protection is assumed. For acidification critical loads are determined such that there is 

no net change in soil acidity. For eutrophication critical loads are empirical and separate data is provided for total ecosystem areas 

broken down by habitat, and for SSSIs. In the latter case upper and lower bounds for critical loads for each habitat are available from 

CEH. The criterion for protection is very sensitive to small changes in deposition as well as the critical loads. Large changes in 

deposition can have relatively little effect on % ecosystems protected unless in the vicinity of the critical load itself, so that areas or 

%s protected are insensitive indicators of protection. For this reason accumulated exceedance above the critical loads is also 

calculated as an indicator. 

NB No impacts on crops are currently included although there are plans to do so for wheat based on EMEP/IIASA data for POD6. In 

the longer term this could be extended to forests. 
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      Source of uncertainty 

 

                         Comment 

 

                        Action 

Critical loads MORE/LESS 

(re deposition see previous table on  

uncertainties) 

 

 

 

 

Other considerations AS WELL AS 

 

Spatial 

 

 

 

Sensitivity to critical loads. Since 

eutrophication is the more difficult problem 

more emphasis is placed on this.  

 

 

 

 

 

 

For SSSIs the location of the sensitive 

ecosystems within the SSSI area is not 

specified, and so it is assumed that any 

part of the SSSI area may be sensitive. 

For SSSIs a different approach has been 

developed based on different classes of 

risk re exceedance. This reflects the 

uncertainty range for the critical load for 

each habitat, and the ratio of the 

deposition to the upper limit of critical load 

where this is exceeded. 

 

 

May result in pessimistic bias in estimation 

of protection of sensitive habitats 
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NB also comments on small scale 

variability of NH3 deposition 

 

 

Temporal 

Where more than one habitat is present in 

an SSSI the focus is on the most sensitive. 

 

Limitations of model close to sources of 

NH3 emissions due to local dry re-

deposition of NH3  

 

Estimated exceedance in a given year 

gives no indication of temporal effects and 

accumulated deposition history over time. 

Nor does it address recovery of damaged 

areas. More complex dynamic modelling 

has been developed to address these 

temporal issues 

 

 

 

Examine effect of removing NH dry 

deposition, which is the component that 

can be altered most by local measures. 

 

Explore the use of target loads in order to 

achieve recovery by a set date derived 

from dynamic models. Such target loads 

are smaller than critical loads and more 

difficult to achieve. Has been tried in past 

work for freshwater systems, and recovery 

times may be too long for other systems.  
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Abatement options and costs 

Purpose – for use in deriving potential abatement scenarios to investigate cost effective strategies for reduction of emissions and 

improved environmental protection. The main source used is the Multi-Pollutant Measures Database, MPMD, provided by AMEC. 

For each measure the applicability, efficiency and annualised cost per ton reduced are defined; and where possible implications for 

greenhouse gas emissions are given too. Care has to be taken in combining measures distinguishing incremental measures, 

alternative measures, and additional measures; in some cases a measure may involve coupled changes in more than one sector, 

e.g. electric cars. Some of the measures are add-on technical measures or involve changes in technology; whereas others imply 

changes in activity data (affecting, for example, energy projections) or behavioural change (e,g, eco driving).   

Alternative data are abatement measures in the GAINS data base. These are mainly add-on measures although direct comparison 

with the MPMD is not necessarily straightforward. 
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           Source of uncertainty 

 

                     Comment 

 

                      Action 

 

Applicability and efficiency MORE/LESS 

NB Also refer to tables on uncertainty in 

emissions 

 

Costs 

 

 

 

 

Costs  negative NOT 

 

 

 

These depend on the assumed 

technology and abatement in place which 

is not necessarily defined in the NAEI.  

 

Uncertainties vary greatly between 

measures, and may reduce over time for 

new technologies. Can be difficult to 

define for behavioural change. 

 

In some cases costs are negative, 

although may be treated as zero in 

UKIAM. Care needed with co-benefits to 

 

Uncertainty reduced by close 

collaboration between AMEC, Ricardo 

AEA and Aether in the NAEI.  

 

Sensitivity analysis for measures with 

major effect on emissions. 

 

 

 

Note negative costs and any identified 

barriers to implementation. 
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Measures not included  NOT 

 

 

 

 

 

New technologies 

 

 

 

 

avoid overlap with benefits assessment 

and double counting in CBA. 

 

This can be a special problem in 

applications of the RAPID model, where 

new technologies such as CCS are 

specified not specifically targeted at air 

quality pollutants. 

 

 The role of new technologies may not be 

clearly defined in the baseline scenario, or 

in enough detail eg CHP, biomass 

combustion, or energy from waste. NB 

Task 1.5.7 

 

 

 

 

Improve RAPID database including 

consultation with Imperial colleagues. 
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Other considerations: AS WELL AS 

 

Annualised costs do not reflect factors like 

lifetimes before closure of plant if 

retrofitting. 

This is a limitation of the snap-shot in time 

for a given year. 

 

There may be other factors affecting 

uptake of measures as well as costs.  

Critical review of abatement scenarios 

analysed, and comparison of different 

target years e.g. 2025 and 2030 

 

 

 

Look back at work by N Hasnain on 

stakeholder considerations in her PhD. 

Also other work on barriers to 

implementation such as benefits not 

accruing to those bearing costs. 

 

NB. New data is being added to the MPMD for measures to reduce agricultural emissions of ammonia which will require specific 

attention with respect to uncertainties



Permissions 

Figure 2-2. (a) Trends in the mean concentration of NOx across 35 roadside sites 

in Greater London with at least 10 years of data capture and (b) the same of NO2 
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Figure 2-7. Diagram of PEMS 

 


