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Abstract 17 

1. “What controls the distribution and abundance of organisms”? This question, 18 

at the heart of the dynamics of ecological communities, would have been 19 

familiar to the earliest ecologists. Having lain effectively abandoned for many 20 

years, community dynamics today is a vibrant research topic of great 21 

conceptual interest with practical import for conservation, ecological 22 

management, ecosystem services and the responses of ecological 23 

communities to climate change.  24 

2. We describe how modern coexistence theory can be applied to predict 25 

community dynamics through the use of demography. We explore the 26 

challenges that limit the deployment of this demographic framework, and the 27 

tools from phylogenetic and functional ecology that have been used to 28 

surmount them.  29 

3. Finding existing tools not altogether sufficient, we propose the use of ‘hard’ 30 

functional traits and physiological tolerances of environmental conditions and 31 

low resource availability to extend the demographic framework so that the 32 

dynamics of a broader range of ecological communities can be accurately 33 

predicted.  34 

4. We illustrate these new approaches with two case studies. Given the urgent 35 

need to accurately forecast the dynamics of ecological communities, we hope 36 

that many ecologists will adopt these tools.   37 
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Objective 38 

The objective of this contribution is to outline the most promising techniques, as we 39 

see them, to predict community dynamics in the medium term. By community 40 

dynamics, we mean changes in species composition and relative abundance through 41 

time or over environmental gradients. By medium term, we mean 5-10 generations 42 

into the future, a timeframe that varies enormously among organisms. It represents 43 

an important frontier to advance, however, as it is the scale at which extrapolations 44 

from current community structure tend to break down, and yet, given anthropogenic 45 

effects on global climate and to environments around the globe, it is relevant to 46 

conservation, restoration and ecological management (Agrawal et al., 2007; Clark et 47 

al., 2001). Notably, ecologists already have predictive ability over such scales in a 48 

few circumstances. Following decades of research, we can make strong, empirically 49 

grounded predictions about the dynamics expected, for example, upon the 50 

abandonment of agricultural land (Horn, 1974; Norden et al., 2015). Even so, 51 

ecologists’ ability to accurately predict community dynamics remain frustratingly 52 

limited. For example, we currently have little ability to predict changes in tree relative 53 

abundance over 200 years in tropical rain forests, or invertebrate species 54 

composition over five years in temperate vernal pools.  55 

Improving our predictive ability would be of great conceptual interest, yielding 56 

insight into long-standing questions in community ecology. For example, many 57 

ecological communities are puzzlingly rich in competing species despite a lack of 58 

obvious niche partitioning at the scale of individual patches, resulting in what 59 

Hutchinson (1961) famously described as a “paradox of the plankton”. Conceptual 60 

gaps also remain in understanding how the strength and nature of interspecific 61 

interactions vary over space and time and thereby generate variation in community 62 
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structure (Agrawal et al., 2007; Chamberlain, Bronstein, & Rudgers, 2014; Hairston, 63 

Smith, & Slobodkin, 1960). These classic problems deserve general answers. 64 

  We begin by outlining the most-promising current approach, based on the 65 

estimation of demographic parameters relating to stabilising and equalising 66 

coexistence mechanisms (Chesson, 2000b), which has scored notable successes 67 

(Adler, Ellner, & Levine, 2010; Kraft, Godoy, & Levine, 2015; Levine & Hille Ris 68 

Lambers, 2009). Essential to any accurate prediction is the identification and 69 

minimization of uncertainties (Clark et al., 2001), so we next explore the challenges 70 

that limit the current approach. We discuss the tools derived from phylogenetic and 71 

functional ecology that have been used to surmount these challenges, and their 72 

limitations. We conclude by presenting two ongoing investigations that employ 73 

complementary techniques, ‘hard’ functional traits and physiological tolerances, to 74 

further extend the demographic approach. We see them as offering the most 75 

promise to generalise the demographic framework, thus facilitating accurate 76 

predictions of community dynamics of a wide variety of ecosystems.  77 

 78 

Background 79 

25 years ago, Pianka (1992) declared that “Community ecology… remains a 80 

primitive and embryonic science”. He was correct in many ways. Ecologists have 81 

debated the controls on population sizes and community structure since the dawn of 82 

ecology as a science, and conceptual approaches to community dynamics had 83 

proliferated (Fig. 1). Nevertheless, their application stalled because most of the 84 

underlying theory, with the exception of limiting similarity (MacArthur & Levins, 1967) 85 

was qualitative. The lack of mechanistic quantitative theory precluded accurate 86 

predictions of community dynamics (Vellend, 2016).  87 
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Two publications re-founded community ecology on a more rigorous basis at 88 

the turn of the millennium. The first, Hubbell’s ‘neutral’ theory (2001), set forth a 89 

model of community dynamics and biogeography of extreme parsimony. Though its 90 

assumptions of species equivalence were derided as unrealistic (McGill, Maurer, & 91 

Weiser, 2006), it was simultaneously lauded for its capacity to accurately describe 92 

aspects of community structure, such as relative abundance distributions, with a 93 

scant handful of parameters (Volkov et al., 2007). As deriving similar predictions for 94 

species-rich communities from traditional niche-partitioning theory would require 95 

unmanageably many parameters to be estimated (Chase & Leibold, 2003; 96 

Silvertown, 2004), neutral theory led ecologists to radically reconsider their approach 97 

to community dynamics. The previous year, Chesson (2000b) had synthesised niche 98 

theory with an earlier formulation of neutral theory (Hubbell, 1997). He categorised 99 

coexistence mechanisms as either equalising, which minimise average fitness 100 

differences between species, or as stabilising, which intensify negative relationships 101 

between population density and per-capita population growth rate. Chesson’s 102 

synthesis was highly influential because of its generality. For the first time, the 103 

dynamics of any community could be investigated on the basis of the demography of 104 

its component populations, so long as the growth rate of each population and the 105 

intensities of interactions between them could be estimated. 106 

Chesson’s (2000b) synthesis, now referred to as “modern coexistence theory” 107 

(Letten, Ke, & Fukami, 2017) is general, in the sense that it applies to all ecological 108 

communities. Even so, its relatively abstract mathematical formulation limited its 109 

application. Initial attempts to distinguish the relative strength of stabilising and 110 

equalising mechanisms were based on the study of macroscopic patterns observed 111 

in ecological communities. Niche-based and neutral models can generate very 112 
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similar relative abundance distributions, however, rendering such pattern-matching 113 

exercises uninformative (Chave, Muller-Landau, & Levin, 2002; McGill, Maurer, & 114 

Weiser, 2006). A new opportunity for predicting community dynamics was presented 115 

when Adler et al. (2007) proposed a mechanistic operationalisation of Chesson’s 116 

synthesis. 117 

To predict community dynamics from demography, first quantify the intrinsic 118 

population growth rate of each target species, and the effects of those species’ 119 

abundances on the population growth rates of the other species of interest (Adler, 120 

HilleRisLambers, & Levine, 2007). These are traditionally written as i and ij, with i 121 

and j representing distinct species. With estimates of population growth rates and 122 

interaction coefficients in hand, build a demographic model including stabilisation 123 

terms and fitness difference terms for each species (Adler, HilleRisLambers, & 124 

Levine, 2007; Chesson, 2000b). Doing so is conceptually interesting, as it gives 125 

insight into the mechanisms of coexistence operating in the community. The specific 126 

form of the demographic model will depend on the life history of the organisms 127 

examined and the nature of the interspecific interactions. Although originally 128 

proposed to evaluate the importance of neutral- and niche-based coexistence 129 

mechanisms, the Chesson-Adler demographic framework can be applied to predict 130 

various aspects of community structure and dynamics. For example, Adler et al. 131 

(2010) built a spatially explicit individual-based model to predict times to extinction 132 

for each of their studied species, as well as a multi-species integral projection model 133 

to predict the dynamics of population growth rates and asymptotic population sizes.  134 

 135 

Challenges to apply the demographic framework 136 
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As Adler et al. (2007) note, the demographic framework “…require[s] considerable 137 

data on species’ performance and interactions across wide ranges of biotic and 138 

abiotic variabilities, and also sophisticated quantitative techniques.” In this section, 139 

we elaborate on this comment, detailing the challenges that most strongly limit the 140 

deployment of the demographic framework in the prediction of community dynamics.  141 

First, and most simply, estimating population sizes of organisms that are shy, 142 

nocturnal, fossorial, or otherwise difficult to detect is challenging. Moreover, the great 143 

majority of species in any community are rare, complicating the estimation of their 144 

population sizes (Rabinowitz, 1981).  145 

Second, the life history of some organisms makes it difficult to estimate their 146 

population growth rates and the sensitivity of their population growth rates to intra- 147 

and interspecific density. Making observations over the complete lifespan of long-148 

lived individuals is often infeasible (Clark et al., 2010). In such cases, it can be 149 

profitable to separately assess vital rates such as recruitment, individual growth, 150 

survival and fecundity for each target species. Moreover, many species have 151 

multiple pathways to fitness. For example, many species reproduce both clonally and 152 

sexually, either sequentially, as in aphids (Aphidoidea, Hemiptera), or 153 

simultaneously, as in many plants. In the rare systems in which genets are easily 154 

tracked, multiple fitness pathways cause little problem, but more often, only data on 155 

ramets is easily available. Matrix population models are the traditional technique to 156 

integrate vital rates over the lifecycle and estimate population growth rates (Caswell, 157 

2001). They have been widely criticised recently, in favour of integral projection 158 

models, which avoid the issue of into how many stages should the lifecycle be 159 

divided (Ellner, Childs, & Rees, 2016). Long or complex life histories can be 160 
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accommodated through careful model construction, but only with detailed knowledge 161 

of the target species.  162 

Third, estimating interaction coefficients among co-occurring species can be 163 

challenging. To quantify the density dependence of population growth rates 164 

rigorously, it is important that the intensity of interactions among species be 165 

integrated across life stages, as stabilising processes operating on one life stage can 166 

be offset by destabilising effects at others (Adler, HilleRisLambers, & Levine, 2007). 167 

For sessile organisms, especially plants, methods for estimating interaction 168 

coefficients are well established. The degree to which number, size and distance to 169 

neighbouring plants affect plant performance is the subject of a well-established 170 

literature (Canham, LePage, & Coates, 2004). These methods have been further 171 

refined through the inclusion of functional similarity and phylogenetic relatedness 172 

among neighbours (Fortunel, Valencia, et al., 2016; Uriarte et al., 2010). With 173 

extensive fieldwork, it is possible to estimate interaction coefficients observationally 174 

(Clark et al., 2010; Purves et al., 2008). For mobile organisms, including most 175 

animals, on the other hand, it can be challenging to model interactions between 176 

individuals. Most mobile species face constraints in reproduction, however, which 177 

can lead to breeding aggregations on localised limiting resources, such as flies 178 

gathering on dung pats and explosively breeding frogs gathering in temporary pools. 179 

Such aggregations offer opportunities to measure the strength of inter- and intra-180 

specific interactions, which may be negligibly weak at other stages of the lifecycle 181 

(see Sepsidae case study, below).  182 

Moreover, interaction coefficients need to be assessed across the natural 183 

range of population density. A challenge in using observational data to do so is that 184 

most species tend to be either common or rare throughout a study system 185 
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(Rabinowitz, 1981). Thus, regressions of observed population growth rates against 186 

observed frequency often lack sufficient statistical power to yield satisfactory 187 

estimates of interaction coefficients. An alternative is to generate experimental 188 

communities at a range of densities, and to estimate interaction coefficients from 189 

them (Levine, Adler, & Hille Ris Lambers, 2008; Levine & Hille Ris Lambers, 2009). 190 

In species-rich communities, this approach can be simplified by modelling one target 191 

species in competition with the aggregate community, essentially turning a many-192 

species community into a series of two-species systems, and repeating the process 193 

for each species in the community (Adler, HilleRisLambers, & Levine, 2007; Kraft, 194 

Godoy, & Levine, 2015). Data obtained from artificial communities can be used to 195 

parameterise multi-species integral projection models that integrate over the 196 

lifecycle, then estimate interaction coefficients and population growth rates for each 197 

species (Adler, Ellner, & Levine, 2010). 198 

Finally, incorporating environmental heterogeneity into the demographic 199 

framework remains a challenging and open area of research (Agrawal et al., 2007; 200 

Maron, Baer, & Angert, 2014). The degree to which population growth rates vary 201 

along environmental gradients is little studied, and even less is known about 202 

environmental effects on interaction coefficients. Should we expect uncorrelated 203 

changes in community interaction coefficients along environment gradients, or can 204 

we expect the rank order of interaction coefficients among pairs of species to remain 205 

consistent? Although the degree of context dependence in interaction coefficients 206 

has begun to be explored (Chamberlain, Bronstein, & Rudgers, 2014), general 207 

answers to such questions remain unclear, and to our knowledge, no study has 208 

investigated the environmental dependence of population growth rates and 209 

interaction coefficients in species-rich communities (but see Griffiths, Warren, & 210 
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Childs, 2015). Fortunately, from the perspective of tractability, pairwise interaction 211 

coefficients appear to be little affected by the presence of other species 212 

(Chamberlain, Bronstein, & Rudgers, 2014). Acquiring data suitable for testing the 213 

context dependence of interaction coefficients will require careful experimental 214 

design (Levine et al., 2017; Maron, Baer, & Angert, 2014; see Two Ways Forward, 215 

below)  216 

Given this list of challenges, it is perhaps unsurprising that relatively few 217 

investigators have employed the demographic framework to predict community 218 

dynamics. Nor is it surprising that many researchers have turned to tools from 219 

phylogenetic and functional ecology to overcome them.  220 

 221 

Addressing challenges through shared evolutionary history  222 

With access to phylogenetic data, it is possible to estimate the degree to which 223 

shared evolutionary history structures ecological communities (Webb et al., 2002). 224 

Access to these data has been facilitated by inexpensive sequencing and tree-225 

building (The Angiosperm Phylogeny Group, 2016; Webb, Ackerly, & Kembel, 2008). 226 

Nevertheless, phylogenetic tools are not generally sufficient to generate clear 227 

predictions of community dynamics (Gerhold et al., 2015). For example, mortality 228 

rates of seedlings in a French Guianan rain forest increased with increased 229 

phylogenetic relatedness of neighbours (Paine et al., 2012), even as the opposite 230 

pattern was observed in a Panamanian forest (Lebrija-Trejos et al., 2014). More 231 

importantly, phylogenetic information is generally the wrong tool to assess 232 

interactions between species, as organisms can’t detect each other’s evolutionary 233 

history. Rather, they detect only the present-day phenotype (Paine et al., 234 

2012). When ecologists observe phylogenetic community structure, they learn that 235 
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something is going on, but it is rarely clear what that thing is (Castillo, Verdú, & 236 

Valiente-Banuet, 2010). Phylogenetic community structure is particularly difficult to 237 

interpret without estimates of trait conservatism over the phylogeny. And if measures 238 

of trait conservatism are available, then functional traits must also have been 239 

measured. So why not use them directly? Thus, phylogenetic data is unlikely to 240 

provide deep insight into community dynamics, unless interspecific interactions are 241 

mediated by shared natural enemies. Since the natural enemies may have co-242 

evolved with the plants they consume, it is reasonable to think that they would, to 243 

some degree, respond to shared evolutionary history (Paine et al., 2012). 244 

 245 

Addressing challenges through functional traits 246 

Functional traits, morphological or physiological attributes of organisms that affect 247 

population growth rate through their relationships with vital rates (Violle et al., 2007), 248 

hold great promise in the prediction of community dynamics (McGill et al., 2006). 249 

Functional traits can be used to reduce the dimensionality inherent to species-rich 250 

communities, as one can parameterise models on the basis of functional groups 251 

rather than species (Laughlin, 2014). Alternatively, one can assess the degree to 252 

which functional traits are associated with vital rates, then use integral projection 253 

models to predict population growth rates (Adler et al., 2014). Their use by ecologists 254 

has been facilitated by the standardisation of sampling techniques (Pérez-255 

Harguindeguy et al., 2013), and the development of global databases (Kattge et al., 256 

2011). Functional traits frequently vary within, as well as among, species, 257 

contributing to variance in vital rates and thus population growth rates (Bolnick et al., 258 

2011). Albert et al. (2011) therefore suggest that intraspecific trait variation should 259 
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assessed and incorporated in regional- or local-scale studies of community 260 

assembly.  261 

Functional traits can be considered to lie along a continuum, from so-called 262 

‘soft’ traits, which are easily measured but distal to vital rates and therefore to 263 

population growth rates, to so-called ‘hard’ traits, which are more indicative of 264 

physiology and therefore more directly associated with vital rates (Díaz et al., 2004; 265 

Lavorel & Garnier, 2002; Weiher et al., 1999; Table 1). Soft traits indicate potential, 266 

rather than realised vital rates, whereas ‘hard’ functional traits predict vital rates and 267 

population growth rates more accurately, but are often are more time-consuming to 268 

measure and require more-expensive equipment (Díaz et al., 2004; Pérez-269 

Harguindeguy et al., 2013). For example, leaf chlorophyll concentration is associated 270 

with the potential growth rate of plants, given the ideal availabilities of light, water 271 

and nutrients, and can be estimated in less than a second using the difference in 272 

optical density at a pair of wavelengths (Coste et al., 2010). Photosynthetic rate, on 273 

the other hand, indicates the effective net rate of photosynthate production, but takes 274 

longer and requires a much more expensive infrared gas analyser (Table 1). So what 275 

are the costs and benefits of ‘soft’ and ‘hard’ functional traits? 276 

Like evolutionary relatedness, ‘soft’ functional traits are generally insufficient 277 

to predict community dynamics. Vital rates are only moderately associated with ‘soft’ 278 

functional traits (Paine et al., 2015; Wright et al., 2010). These weak relationships 279 

occur, in part, because the trait-vital rate relationships are affected by environmental 280 

conditions, which are rarely taken into account. For example, chlorophyll 281 

concentration may misrepresent a plant’s growth rate when its access to light or soil 282 

resources varies. In such cases, photosynthetic rate would be a better indicator of 283 

growth rate. Finally, and most damningly, the interpretation of functional traits is 284 
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complicated by inter-correlations among traits (Díaz et al., 2004, 2015), and their 285 

potential for simultaneous associations with stabilising or equalising differences 286 

between species (Kraft, Godoy, & Levine, 2015).   287 

 288 

Two ways forward 289 

‘Hard’ functional traits 290 

We see the use of ‘hard’ functional traits and of physiological tolerances as 291 

complementary methods to extend the demographic framework (Craine et al., 2012; 292 

Violle et al., 2007). With hard traits, one can predict population growth rates and 293 

interaction coefficients among species. They are a useful substitute in the many 294 

cases when demographic data are not available or too costly to collect, and they can 295 

be parameterised in models to predict community dynamics. The strength of this 296 

approach is proportional to the strength of the relationship between the functional 297 

trait(s) assessed and vital rates. Thus, we echo the advice of Díaz et al. (2004) for 298 

investigators to use functional traits as mechanistically related as possible to vital 299 

rates.  300 

The use of hard functional traits come with two caveats. First, as they are 301 

associated with actual, rather than potential vital rates, environmental conditions 302 

influence their expression more than soft traits. To extend the previous example, the 303 

soft functional trait of chlorophyll content is relatively independent of abiotic 304 

conditions at the time of measurement, whereas photosynthetic rate is highly 305 

context-dependent (Pérez-Harguindeguy et al., 2013). Thus, the signal that ‘hard’ 306 

traits provide can be noisy, and can only be interpreted in the context of 307 

environmental data. Thus, using them effectively requires not only their 308 

quantification, but also determining the extent of their variation over relevant 309 
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environmental gradients. Moreover, as they are usually tissue specific, rather than 310 

integrating over the entire organism, functional traits may trade off among the tissues 311 

of an organism, obscuring their interpretation (Kraft, Godoy, & Levine, 2015). 312 

 313 

Physiological tolerances 314 

We further suggest the use of whole-organism physiological tolerances (also 315 

referred to as physiological traits; Baltzer et al., 2008) to predict community 316 

dynamics. A physiological tolerance is defined as the critical level of a particular 317 

resource or environmental condition at which an organism can survive for an 318 

extended period (Craine et al., 2012). In other words, it is the whole-organism 319 

compensation point for that resource or condition. The relevant tolerances to assess 320 

will vary depending on the organisms of interest and the environmental context. They 321 

have been intensively investigated for certain taxonomic groups, such as lizards and 322 

other ectothermic vertebrates (Buckley & Jetz, 2008; Kearney & Porter, 2009), 323 

whereas as other taxa such as plants have received less attention (but see, for 324 

example Koehler, Center, & Cavender-Bares, 2012).  325 

Physiological tolerances differ from functional traits in that they integrate the 326 

response of the entire organism to their environment, rather than being specific to a 327 

particular tissue (Craine et al., 2012). For example, one can measure drought 328 

tolerance as the difference in times to death between field capacity and un-watered 329 

conditions (Kursar et al., 2009), rather than as the tissue-level functional traits of leaf 330 

area, leaf water potential or stem vulnerability to embolism (Pérez-Harguindeguy et 331 

al., 2013). Physiological tolerances do not, however, indicate the organ-level 332 

mechanism(s) by which low-resource conditions are tolerated. Therefore, it can be 333 
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useful to measure them in conjunction with functional traits to infer the mechanisms 334 

underlying changes in vital rates and therefore population dynamics.  335 

A great advantage of studying physiological tolerances is that they explicitly 336 

link vital rates to environmental conditions, making it possible to predict how 337 

community dynamics will vary over environmental gradients. The most-relevant 338 

environmental gradients over which population growth rates and interaction 339 

coefficients vary will generally also be those most relevant for the assessment of 340 

physiological tolerances (Kearney & Porter, 2009). One can investigate physiological 341 

tolerances to the low availability of resources such as light or nutrients, or to abiotic 342 

conditions, such as cold temperatures, flooding duration, or fire intensity. The 343 

interpretation of such tolerances differs, in that the former are reduced by 344 

competitors, whereas the latter are independent of the presence of competitors. 345 

Tolerance can be evaluated as a change in individual performance along a gradient 346 

of resource availability, even as interaction coefficients can be inferred as the degree 347 

to which an individual reduces the availability of a resource to other individuals. 348 

Interaction coefficients measured through the assessment of physiological 349 

tolerances thus are closely related to the “effect traits” of Lavorel & Garnier (2002). 350 

One can simultaneously estimate physiological tolerances and assess how 351 

interaction coefficients vary over environmental gradients by exposing individuals of 352 

a focal species to a range of resource availabilities, while simultaneously varying the 353 

density of the aggregate community around each focal individual and monitoring the 354 

availability of the relevant resource. No such study has been performed, to the best 355 

of our knowledge, as the logistical challenges involved in doing so would be 356 

substantial. Note that tolerances of abiotic conditions, such as temperature, would be 357 

less uninformative in this regard, as they are rarely affected by the presence of 358 
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competitors. Exceptions could include cases in which competitors limit the access of 359 

organisms to refuges or microclimates, for example, safe shelters from elevated 360 

temperatures. Physiological tolerances of low resource availability therefore 361 

complement the use of multiple functional traits by linking performance of whole 362 

organisms to population growth rates and interaction coefficients over environmental 363 

gradients. 364 

Physiological tolerances can be assessed observationally or in field-based 365 

experiments, for example using common gardens or reciprocal transplantations 366 

(Craine et al., 2012). Purely observational studies can be stymied by atypical climatic 367 

conditions, however. For example, flood tolerance may be assessed by transplanting 368 

tree seedlings into a floodplain, but floods vary in size and duration, potentially 369 

clouding the relationship between vital rates and particular environmental conditions 370 

(Fortunel, Paine, et al., 2016). Thus, physiological tolerances are more informatively 371 

assessed in experimental settings such as laboratories, controlled environment 372 

facilities, or glasshouses, depending on the target organisms. Regardless of the 373 

setting, the conditions and resources evaluated must be relevant to field conditions, 374 

ideally spanning the entire natural range. The assessment of physiological 375 

tolerances is hampered by a lack of standard protocols, which has led to much 376 

debate about measurement techniques (for shade tolerance, see Valladares & 377 

Niinemets, 2008). Establishing a consensus around experimental protocols for 378 

estimating physiological tolerances should be a top priority.  379 

A final challenge for the use of both physiological tolerances and hard 380 

functional traits is that their measurement is typically labour-intensive, limiting the 381 

number of species that can be feasibly studied. This issue can be addressed in three 382 

ways. First, the careful selection of study species can yield community-level insight. 383 
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In species-rich communities, it is advisable to study relatively common species, as 384 

they represent the majority of the individuals present and are the species most likely 385 

to interact. Interactions among rare species are by definition rare, outside of 386 

specialised host-parasite or mutualistic relationships. It is also advisable to select 387 

species with typical functional traits, as these are most representative of the 388 

community as a whole. A second way to address this issue is to assess soft 389 

functional traits together with hard traits or physiological tolerances. This requires 390 

little additional effort and allows the relationships among traits, and between traits 391 

and tolerances, to be assessed. Thereby, the enormous amount of soft trait data 392 

already available can be leveraged to yield further insight into community dynamics 393 

(Kattge et al., 2011). Third, the use of standard measurement protocols would 394 

facilitate sharing data among studies (Craine et al., 2012). Additionally, depending 395 

upon study design, certain species, for example invasive or endangered ones, may 396 

need to be included. Regardless, logistical constraints will rarely permit all co-397 

occurring species to be investigated, imposing an inevitable loss of precision in 398 

predictions of community dynamics.  399 

The beginning of the physiological tolerance approach is illustrated by 400 

Maynard et al. (2015), who correlated the distributions of three termite species with 401 

climatic variables across the eastern United States. They demonstrated dramatic 402 

interspecific variation in thermal tolerances, then mined the ecological literature to 403 

determine the abiotic and biotic predictors of each species’ distribution. Maynard et 404 

al. (2015) identified the primary correlates of termite distribution and abundance, 405 

illuminating the gaps in knowledge and setting the stage for experimental studies to 406 

predict the dynamics of temperate termite communities. Engelbrecht and colleagues, 407 

on the other hand, illustrate an end of the process, by predicting tropical forest 408 
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community composition on the basis of drought tolerance. As forests on the Isthmus 409 

of Panama span a strong rainfall gradient, Engelbrecht et al. (2007) assessed the 410 

drought sensitivity of tree seedlings in dry and irrigated plots in a common garden. 411 

They coupled these observations with data on species distributions and soil moisture 412 

availability. Drought sensitivity predicted species distributions at regional 413 

(Engelbrecht et al., 2007) and local scales (Comita & Engelbrecht, 2009), owing to 414 

interspecific variation in mortality rates during droughts (Kursar et al., 2009). Thus, 415 

changes in soil moisture induced by global climate change are likely to alter tree 416 

distributions and community dynamics. 417 

 418 

Case studies 419 

Community dynamics on ephemeral patches: a case study of Sepsidae (dung flies) 420 

Although most recent empirical work on community dynamics has focused on plants, 421 

there is considerable scope for extending the demographic framework to predict the 422 

dynamics of animal communities. Among the most tractable of animal communities 423 

are those comprised of short-lived species that complete their life cycles on discrete 424 

ephemeral patches of organic matter (Horn & MacArthur, 1972). Ephemeral patch 425 

communities encompass a high proportion of global biodiversity and include species 426 

that rely on carrion, dung, deadwood, plant tissue, fungi, fruit, flowers, short-lived 427 

water bodies, or host organisms to complete their development. Such communities 428 

are often highly species-rich despite strong competition and a lack of obvious niche 429 

partitioning within patches, making species coexistence especially intriguing (Finn, 430 

2001). They are often highly amenable to experimentation, as the rapid turnover of 431 

patch resources facilitates community manipulation, sampling, and replication, and 432 

the patch environment itself can typically be controlled and measured during 433 
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observation. Obtaining population size estimates for ephemeral patch competitors in 434 

the field, on the other hand, is often prohibitively difficult.  435 

The coexistence of competitors in ephemeral patch communities is widely 436 

assumed to be dominated by the stabilising mechanism of intraspecific versus 437 

interspecific aggregation (Chesson, 2000a; Duthie, Abbott, & Nason, 2014, 2015). In 438 

general, when conspecifics aggregate within or among patches, intraspecific 439 

competition increases relative to interspecific competition, facilitating coexistence. 440 

Mechanisms causing conspecific aggregation include the behaviour of females 441 

ovipositing onto patches in clutches (Takahashi, 2007), and variation among species 442 

in patch attractiveness or accessibility, which generate spatial and temporal 443 

heterogeneity in species distributions (Chesson, 2000a; Duthie, Abbott, & Nason, 444 

2014; Heard, 1998). The mechanisms modulating aggregation may be directly linked 445 

to hard functional traits, such as individual longevity, wing loading, egg load and 446 

larval feeding rate, enabling the prediction of community dynamics (e.g., Duthie, 447 

Abbott, & Nason, 2015).  448 

Black scavenger flies are a family of flies (Sepsidae, Diptera) especially 449 

amenable to a trait-based approach to predict community dynamics. Sepsids occur 450 

worldwide, and 10 species that occur in Scotland form the basis of this case study. 451 

Flies are easily located and collected while mating on dung in the field and can be 452 

maintained in large numbers under laboratory conditions. We measure traits 453 

hypothesised to affect aggregation, and therefore competition, under controlled 454 

conditions. The malleability of dung pats and short generation time of flies facilitate 455 

the estimation of population growth rates and interaction coefficients through 456 

pairwise invasion experiments across a density gradient of resident species (Fig. 2). 457 

Unhatched eggs and larvae are collected from dung to measure the sensitivity of 458 
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each developmental stage to competition (Blanckenhorn et al., 2013). Moreover, we 459 

measure dung mass before and after the invasion experiments to estimate 460 

decomposition rates, thereby linking species composition and functional traits to a 461 

key ecosystem function. Consequently, Sepsids are a promising model system to 462 

address fundamental questions in community dynamics and ecosystem functioning. 463 

We use Sepsidae to extend the demographic framework as well. Following 464 

the approach of Kraft et al. (2015), the set of functional traits measured on each 465 

species is conceptualised as points in multidimensional trait space. Then, 466 

competition coefficients are correlated in multidimensional trait space with niche 467 

differences and fitness differences between species pairs. This approach can identify 468 

the functional traits that are most relevant to coexistence (Table 1), and provides a 469 

whole-organism perspective that is critical to consider, because it cannot be 470 

assumed that species are simply the sum of univariate traits (Kraft, Godoy, & Levine, 471 

2015). Rather, combined effects of traits might be critical for predicting both niche 472 

differences and fitness differences between species. By adopting this whole-473 

organism perspective, it should be possible to predict the recruitment of Sepsidae 474 

species from field populations of ephemeral patch competitors.  475 

The manipulability of this system also offers a promising way forward to 476 

predict community dynamics under changing environmental conditions using the 477 

demographic framework, and for linking demography to functional traits. The short 478 

generation time of Sepsids enables multiple invasion experiments to be performed 479 

simultaneously under controlled environmental conditions (Fig. 2). Though time-480 

consuming, invasion experiments to estimate all intrinsic population growth rates and 481 

interaction coefficients can tractably be replicated across an environmental gradient. 482 

For example, temperature strongly affects the functional traits of Sepsids, including 483 
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body size and development time (Blanckenhorn et al., 2013), and could therefore 484 

modulate their population growth rates and interaction coefficients. Measuring these 485 

traits and parameters across a range of temperature permits us to estimate the 486 

sensitivity of community dynamics to environmental change. Such knowledge would 487 

be valuable for better understanding and predicting the resilience of communities to 488 

environmental change. 489 

 490 

Controls on distribution: a case study of tropical trees 491 

In tropical forests, water and light are two of the most important resources 492 

shaping the vital rates of individual trees, and thus their distributions along 493 

environmental gradients and community dynamics (Baltzer et al., 2008; Engelbrecht 494 

et al., 2007; Valladares & Niinemets, 2008; Wright et al., 2010). As habitat 495 

fragmentation, drought frequency and intense rainfall are set to increase in tropical 496 

regions, a mechanistic understanding of the degree to which water and light 497 

availability interact to control community dynamics will be essential for forest 498 

managers to mitigate potential biodiversity loss.  499 

Seeking strong predictors of vital rates and species distributions, we focus on 500 

whole-plant tolerances to low resource availability and extreme environmental 501 

conditions (Craine et al., 2012). We aim to predict vital rates, and thus community 502 

dynamics, in areas for which demographic data is unavailable. More specifically, the 503 

aim of this case study is to assess the degree to which physiological tolerances 504 

predict observed spatial patterns of vital rates and community compositional 505 

turnover. We hypothesise that integrating physiological tolerances with 506 

environmental data will explain variation in species distributions at the landscape 507 
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level, as well as predict changes in species distributions under different climate 508 

scenarios.  509 

The rain forests of the Paracou Research Station, French Guiana, provide an 510 

ideal situation to assess the influences of light and water availability on the 511 

community dynamics of tropical trees. Permanent plots have been established in 512 

which all trees > 10 cm diameter at breast height have been censused every 1-2 513 

years since 1984. Hydrology & light availability also have been characterised in 514 

these plots (Wagner et al., 2012). The survival and growth of saplings of 25 common 515 

tree species have been monitored since 1992 in subplots nested within the tree plots 516 

(Fig. 3a, b). This abundance of data allows us to characterise resource availability, 517 

species distributions, and the vital rates of individual trees across the landscape. 518 

From observation alone, however, the relative importance of these factors in 519 

determining the distribution and relative abundance of each species is not evident 520 

(Fig. 3b). Stated more precisely, the observed turnover in species composition 521 

between floodplain and plateau forests could occur because floodplain-associated 522 

species cannot tolerate the intensity of seasonal drought on the plateaux, or plateau-523 

associated species may be intolerant of the flooding regime in the floodplain 524 

(Fortunel, Paine, et al., 2016).  525 

We established a shadehouse experiment to assess the physiological 526 

tolerances of tree seedlings to drought, flooding and shading (Fig. 3c). We work on 527 

seedlings because of their experimental tractability, and also because seedlings are 528 

expected to be more sensitive to fluctuations in soil water availability than adult 529 

trees. We use shade-cloth to vary light availability over the range found in the forests 530 

and impose three levels of water availability: drought (no watering since the 531 

commencement of the study), flooding (water maintained above the soil surface) and 532 
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watering to field capacity, in a factorial split-plot design. For each of 11 species, 533 

growth and survival are monitored at least weekly. We generate indices of tolerance 534 

to flooding, drought and shading based on the differential survival and growth of 535 

individuals in the various experimental treatments (Engelbrecht et al., 2007; Kursar 536 

et al., 2009). We also measure a set of functional traits associated with the tolerance 537 

of drought, flooding and shade, to assess their associations with the relevant 538 

physiological tolerances (Table 1). The location of each individual in the shade 539 

houses is mapped, allowing us to assess the effects of neighbourhood composition 540 

on individual performance. Even so, our estimates of interaction coefficients between 541 

species are weak, because the study does not include variation in neighbourhood 542 

density. Including systematic variation in neighbourhood composition and density in 543 

the experimental design would be more logistically challenging but would provide 544 

stronger estimates of interaction coefficients. 545 

We will predict the vital rates of growth and survival observed in the field as a 546 

function of topographic position and physiological tolerance indices. We expect 547 

statistical interactions between topographic position and physiological tolerances. 548 

For example, if drought is the primary mechanism generating species turnover, then 549 

we would expect elevated mortality risk for drought-intolerant species, but only on 550 

the plateaux, which are relatively dry (Fig 4d). Once such relationships are 551 

characterised for flooding, shading and drought, we will build individual-based and 552 

integral projection models to predict the dynamics of our focal species under 553 

scenarios of changing precipitation (Adler, Ellner, & Levine, 2010).  554 

 555 
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Conclusions 556 

Our motivation is to enhance the generality and tractability of predicting community 557 

dynamics, especially for species-rich communities, on the basis of the Chesson-558 

Adler demographic framework. Although powerful, this framework is difficult to 559 

operationalise in its raw form, and has thus primarily been applied to low-diversity 560 

annual plant communities (but see Adler, Ellner, & Levine, 2010). Phylogenetic data 561 

and soft functional traits have been useful for the analysis of community structure but 562 

are less informative for the prediction of community dynamics. Instead, we advocate 563 

the use of hard functional traits and physiological tolerances, as they provide 564 

opportunities to predict community dynamics without a complete reliance on 565 

demographic data. Moreover, they provide a mechanistic way to incorporate the 566 

variation imparted to ecological communities by environmental gradients, over which 567 

population growth rates and interaction coefficients vary. Incorporating 568 

environmental variation is essential for making predictions in the face of 569 

anthropogenic effects, especially over large spatial or temporal scales. Given the 570 

urgent need for ecological forecasting (Clark et al., 2001), we hope that ecologists 571 

will adopt these approaches, extending the range of ecosystems for which accurate 572 

predictions of community dynamics are possible. 573 
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2335.1 824 
 825 
 826 

Table 827 

Table 1. Hard versus soft traits. Examples of ‘hard’ and ‘soft’ functional traits 828 

associated with key vital rates for the animals and plants used in the case studies. In 829 

general, it is easier to measure hard functional traits and vital rates on animals than 830 

on plants. For example, fecundity estimates are relatively easy to measure for many 831 

insects (as egg load), but obtaining the equivalent data for long-lived trees may 832 

require decades of field observations of seed production and complicated modelling 833 

(Clark et al., 2010; Purves et al., 2008).  834 

 Dung flies  Tropical rain forest trees 

Vital Rate Hard trait Soft trait Hard trait Soft trait 

Survival Life span Ovigeny 
index 

Life span Wood density 

Growth Ingestion 
rate 

Body size Photosynthetic 
rate 

Foliar chlorophyll 
concentration 

Wood density 

Maximal stature 

Fecundity Egg load Abdominal 
mass 

Seed 
production 

Above-ground 
biomass 
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Figures  836 

Figure 1. Milestones in the prediction of community dynamics. Each milestone 837 

is indicated by a key reference in the development of that concept or technique, 838 

rather than its first mention in the literature. See also Figure 3.6 in Vellend (2016). 839 

(Brown & Munger, 1985; Diamond, 1975; Hairston, Smith, & Slobodkin, 1960; 840 

MacArthur & Wilson, 1967; Ricklefs, 1987) 841 

  842 
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Figure 2. Overview of the dung fly case study. We study 10 species of Sepsidae 843 

co-occurring in Scotland to link species functional traits to biodiversity and the 844 

ecosystem function of decomposition. Key functional traits are measured for A) fly 845 

eggs, B) larvae and C) adults. D) We perform invasion experiments in which a mated 846 

female of species i (black) oviposits on dung patches that vary in the density of 847 

ovipositing females of species j (red). We repeat this experiment for all combinations 848 

of species i and j (including i = j) over a temperature gradient. Intrinsic growth rates 849 

(i) can be calculated from the number of offspring that eclose from empty patches, 850 

and competition coefficients can be calculated by estimating how the eclosion rate is 851 

reduced by increasing conspecific (ii) or heterospecific (ij) density. Values of i, ii, 852 

and ij can then be used to calculate niche differences and fitness differences. Dung 853 

decomposition can be estimated from the difference in dung mass from oviposition to 854 

eclosion. Differences in trait values between all pairwise combinations of species i 855 

and j will be calculated. Univariate correlations between each of these trait value 856 

differences and stabilising niche and average fitness differences can be estimated, 857 

and model selection can be used to identify combinations of traits that best describe 858 

niche and fitness differences (Kraft et al. 2015). Similarly, trait values and differences 859 

can be associated with decomposition rates. Artwork by A. C. Duthie. 860 
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Figure 3. Overview of the tropical trees case study. A) The abundance of 862 

saplings of 25 common canopy trees has been monitored eight times since 1992 in 863 

960 permanent plots at Paracou Research Station, French Guiana. The sapling plots 864 

are distributed in an 8x8 grid in each of 12 6.25 ha permanent tree plots, in which 865 

light availability, soil moisture and flooding frequency have also been assessed. 866 

Point types and colours indicate the topographic position of each plot. B) The 867 

abundance of one species (Virola michelii, Myristicaceae), is proportional to the size 868 

of the black circles. C) Methods for physiological tolerance testing, in which 11 target 869 

species (indicated by varying point types) are factorially exposed to varying water 870 

and light availabilities. D) Prediction of field mortality risk from estimated species 871 

physiological tolerances. The hypothetical result shown in panel D would indicate 872 

that interspecific variation in drought tolerance contributes far more to spatial 873 

variation in species composition than does variation in the tolerance of flooding or 874 

shading, as drought intolerant species suffer elevated mortality rates, but only on the 875 

relatively dry plateaux.  876 


