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Abstract: This paper evaluates a number of uncertain parameters that affect the accuracy of distribution system state
estimation, and ranks their importance using an efficient sensitivity analysis technique, Morris screening method. The
influence of the uncertain parameters on state estimation performance is analysed globally and zonally. Furthermore the
dependence structure between the critical variable and state estimation accuracy is analysed using copula to establish their
relationship at different section of the bivariate space. The sensitivity of the critical parameter at different ranges is also
studied and ranked using Morris screening methods to present the variation of state estimation performance when the
critical variable is allocated at different sections within the feasible range. Accurate assessment of the importance of
various uncertain parameters and the analysis of the dependence structure can inform power system operators which
parameters will require the greatest levels of mitigation or increased monitoring accuracy in order to have satisfactory
performance of distribution system state estimation.

have studied the impact of different types of measurements

1. Introduction on the accuracy of SE in order to establish the influence of

Secure operation of a power system requires propermeasurement accuracy on the overall estimation accuracy
estimate of the status of operating condition [1], which is [4]. Analytical approach is applied to perform sensitivity
essential for identifying potential critical operating analysis in [5]. h [6], WLS based SE is used to establish
conditions and making decision on selecting preventativeunder which circumstance and to what extent the SE results
measures if necessary. Given inherent measuremenare affected by measurement uncertainty when a minimum
inaccuracies, state estimation (SE) is able to smooth ouhumber of measurements is used.
measurement errors and provide an optimal estimate of the With the increased uncertainties in distribution
system operating states. With the increased capability ofetworks, analysis of the influence/sensitivity of uncertain
data collection in SCADA systems, SE has been widely parameters on DSSE is becoming more and more important.
integrated in Energy Management Systems (EMS) forThe sensitivity analysis can identify critical uncertain
operation and management in transmission systems [2].  parameters and accordingly provide an appropriate resource

Proliferation of active components and changing load allocation guideline for system operators and other
profiles in distribution networks are affecting the operating stakeholders to develog cost-effective mitigation strategy
conditions of distribution netwoskwhich change much where appropriate and avoid wasting resourcas
more frequently than eveBimultaneously more and more mitigating unimportant uncertainty factors. Identifying and
functionalities developed for smart grids are highly ranking important uncertain parameters is therefore essential
dependent on the network state estimation. Therefore it ifor efficient improvement of the accuracy of DSSE.
essential to have appropriate observability of the distributionSensitivity analysis (SA) techniques, which are able to
networks in order to ensure secure and efficient networkprovide a framework to rank and identify the most
operation. This need resulted in an intensive research on Sknfluential uncertain parameters, have been widely used to
at distribution levels, namely Distribution System State determine how input variability propagates through a
Estimation (DSSE). Different from transmission networks, computational model to its output result [7]. In [8], nine SA
the ill conditioned matrices and large number of nodes intechniques including probabilistic approaches have been
distribution networks impose great difficulty and challenges compared in terms of their performance and efficiency, and
to DSSE. Various techniques have been investigated foit has been demonstrated that for many applications, the
DSSE in literature [3], e.g., machine learning, heuristi Morris screening approach is most suitable, providing a
intelligence methods and especially Weighted Least Squaregood balance between accuracy and efficiency. The Morris
(WLS) approach [1]. screening method has also been successfully applied in

DSSE relies on continuous measurements and,different areas [9] including the power system studies,
predominantly, pseudmeasurements. Considering that where the focus has been on generator ranking, load
measurement bias exists in each measurement, the deviatiaflassification and frequency support [10]. Morris screening
of both measuremésn and pseudo-measurements can approach is selected to perform sensitivity analysis in the
appreciably affect the performance of state estimation. Withstudy. The comparisoorf different SA techniques is beyond
the increased attention paid to the study of the influence ofthe scope of this paper and it can be found in [8].
uncertainties on SE accuracy, a number of dedicated papers
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Knowing in general the influence ofincertain the real measurement (of voltage and power) and pseudo-
parameters is not sufficient would be also very useful to measurements (of power and network parameters) have
have the correlation and joint probability between the different measurement tolerances, resulting in different
critical uncertain parameter and the evaluated performanceveights associated with different measurement errors in (2).
indices. For instance, the uncertain parameters lodated The tolerance of pseudo-measurements (power and network
different sections of the possible range may result in veryparameters) is further discussed in Section 3.2. The three-
different dependence relationship with the evaluatedphase weighted least squares (WLS) state estimator is
performance index. The investigatiari their dependence applied to solve DSSE. Further details on DSSE can be
structure can provide more detailed information beyond thefound in [13].
sensitivity of the variable in general. Copula theory has been
widely used to construct dependence function by linking 2.2. Uncertainty Analysis
together univariate distribution functions to form The uncertainty variables used for sensitivity analysis
multivariate distribution function [11]. It has been widely (denoted ag) are the tolerances of uncertain measurements.
applied in finance and economics analysis well as to  In the studyx represents the confidence of measurement
model stochastic dependence in power system uncertaintand determines the deviation of the measurements from
analysis [12] Though the aforementioned techniques are their actual values before the measurements are used as
very useful for uncertainty analysis, they have not beeninputs to DSSE. The generation of distributioredfased on
applied for DSSE analysis. Comprehensive analysis andk is discussed in Section 3.Parametex also determines
comparison among the uncertain parameters that affecthe weights ofR in (2). Therefore x to some extent

DSSE performance are still needed. influences state estimation performandgiven x, state
This paper contributes to comprehensive SA in which estimation error can be evaluated by:

the analysis not only provides the sensitivity of SE to . Vet Vlst |

uncertain parameters in general, but also identifies the SEy(x) = mzif{“ <Z§=1W;j—"e“) x 100 (%) (3)

sensitivity to parameter location in the network and to the
subset of the feasible range of variation in parameter valueswhereN,,; denotes the total number of buses in the network
The uncertain parameters are critically evaluated andI/ijact, Vifm andVi,Jn »m represent the actual, estimated and
analysed, and copula theory is used to present adgutlée  nominal voltages at phase of busi respectively. The
sensitivity and dependence structure among differentgpiective of sensitivity analysis in this paper is to study the
variables when solving DSSE problefihe paper justifies  jnpact ofx on the state estimation errpfx), and to find
the necessity for and benefits of performing this deeper level,,t the relationship/dependence structure betweamd

of SA anlaysis and for the first time applies Morris ) The application and discussion in the rest of the paper
screening method and copula theory for uncertainty analysis, o performed surround this objective.

in DSSE. The global and zonal sensitivity analysis

performed in the study is able to identify the critical 5 2 1 porris Screening Method: Morris screening method
parameters (i.e., which) and the critical locations (i.e., where) 5 randomized Onat-a-Time design. During screening
that should be paid more attention to, and the anabfsis rocedure, only one variable changes at a time by a
dependence structure and sensitivity analysis of the critica agnitude of A. The standardized effect of a positive or
parameter within different sections of the range can negative A change (or step) of an input variable can be

facilitate the decision on required mitigation levels (i.e., o\51uated by Elementary Effect (EE) defined as:
how).

EEi (x) _ [y(x1,%2,.Xi—1,Xi+AXj 41, X) =Y (X)] (4)
A
2. Methodology where A is the multiple of 1/(p-1) representing the
2.1. Distribution System State Estimation (DSSE) magnitude of stem is the number of level,is the number
The three-phase state estimation problem can beof variables, ana=[ x;, x5, ..., x;, ... ;]. The Morris method
defined as: creates a trajectory through the variable space by changing
E=z—-H(S) (1) one variable at a time by A as shown in Fig. 1.

where state variablg consists of three-phase voltages and
voltage anglesM,, Vi, V. 6., 6, 6.). z is a vector of
measurements,H(S) represents a nonlinear set of
measurement functions that describe the measurements in
terms of state variabl&. E is a measurement error vector.
The DSSE problem can be solved by weighted least squares
(WLS) technique which is to minimise the equation as
follows: E—

ming[z — H(S)]TR™ [z — H(S)] 2 Fig. 1. lllustration of Morris screening trajectory
whereR is the covariance matrix of measurement errors, i.e.,
the weights associated with measuremerierance. The Each trajectory is constructed via a series of matrices

uncertainties/tolerance of pseudo-measurements and redii4]. r (r=p-1) trajectories are constructed, andEs are
measurements are taken into account by adding normallyobtained for each input variable [7]. The finite distribution
distributed errors to tleactual values before being used for of EEs that contributed to variableis denoted a®;. Each
estimation. To account for the uncertainties, Monte CarloD; containsr independenEEs. Based orD; the sensitivity
simulations are used in conjunction with DSSE. In the study,indices (or importance measures) can be evaluated by
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calculating the mearu{) and standard deviatiom () of the are also given in Table 1. The nine copulas comprise almost

set ofEEs for each input variable [14, 15]: all of the copulas which are widely applied in statistics and
. ST _L|EEy economics. Among these copulalse normal, Student’s t
i = T ®) and Plackett copula generate symmetric dependence,
. 1 whereas the Gumbel, Clayton, and Joe-Clayton copula
o =\/;ZZ:1(EEn — 1)? (6) generate asymmetric dependence. More details on copula

. : i gh analysis in general, including the nine copulas used together
Index u* provides the overall sensitivity of th&' input with their copula parameters can be founctie]

variable from the perspective of the output response. Large . i
" suggests that the output has a high sensitivity to the input__TaPle 1 Nine Copulas Used in the Study

variable. Index* is used to determine the spread (variance) _Index Copula Co
of the finite distribution of theEE distribution, which 1 Normal Copula p
indicates the independence of the corresponding variaple [8 2 Clayton’s copula 6
9]. The larger indexs* is, the more independent the 3 Rotated Clayton copula 6
corresponding variable is. Further details about Morris 4 Plackett copula n
screening method can be found i [8 5 Frank copula A
6 Gumbel copula 6
2.2.2 Copula Analysis and Dependence: Copula theory 7 Rotated Gumbel copula )
is able to capture the dependence between random 8 Student's t copula P,V
observatiors and also allows the decomposition of a joint 9 Symmetrised Joe-Clayton copula (SJ 7Y, 7%

distribution into its marginal distributions and its

dependence functiorConsider two random observations

=[vy,v2], with joint distributionF and marginal distribution 3, Results and Analysis

of ob_servatlonsvl a}nd'v'z (denqteq a;Fl and '.:2)' The 3.1. Network Settings

mapping from the individual distribution functions to the In the study, a 295-bus generic distribution network

joint distribution function can be defined by a copdla]: (GDN) [17] is used, as shown in Fig. 2. The GDN network
F(v) = C(F,(v,),F,(v;)), Vv €ER" (7) was originally developed as a reference netwrok for the
From any multivariate distributionF, the marginal ~ purpose of distribution netwrok studies in the UK, and all
distributionsF; can be extracted, and the cop@acan be GDN parameters are based on realistic UK distribution
obtained. The information contained in copWais the  networks. Unbalance phenomenon is generated by
information about the dependence between differentunbalanced loads [17]. The network is divided into 5 zones
variables. In this study, the copula is used to construct theds marked in Fig. 2. Zone 1 consists of buses at voltage
dependence relationship between the tolerance oﬂevels larger than 11kV; while zones 2-5 are allocated at
measuremestand the corresponding state estimation error 11kV level (starting from 33kV-11kV substations) and they

in order to establish whether the tolerance of measurementdre divided based on feede%

allocated at different sections of the possible ranges woulc ? 4 = T
affect the performance of the state estinmatithe inputs to L ;i i W) 0T
copula analysis are a seriesaotifservedr andy(x), denoted = [T il
. = e EE: - £E
asv, andv, respectively. iI{* ' |
The copula model which fits the data the misstsed 2e— ,f? d ; Zonedt
to represent the structural dependence of the given date SEE

i
Fitting copula models to observed dégamplemented by r% =
applying widely used maximum likelihood estimation (MLE) :
[11,16] method. The observations are assumed to have .

known probability distribution with unknown copula s JFzone2ll e : '"-:Me(ersj;’::jmcasez
parameters (denoted @g). The joint probability density  Fig. 2. Single-line diagram of the 295-bus generic
functionF of the given observationcan be written in terms  distribution network (GDN)

of these unknown parametetfg. The copula log-likelihood

function defined as {§16] is used to estimate the copula- The study is carried out using two different, arbitrary,
based models and will attain its peak value when thesets of monitor locations for illustrative purposes. (The
unknown parameters are chosen to be closest to their actuaptimal monitor placement for state estimation is not the
values. Hence, MLE is actually an optimisation problem andfocus of this study). These meters provide measurements
its objective is to maximise the copuladllikelihood detailed in Section 3.2.

function (8) by varying the assumed parametgref the C1: Meters are placed at substations only. In total 20 meters
copula models, in order to give the maximum likelihood  are placed at 20 substations.

Zone-4

estimates for the parameters of interest. C2: Meters are placed at both substations and 11kV buses.
maximizeLL=log F(v; Cy) (8) 18 out of the 20 meters used in case 1 remain at
The larger the calculatdd. is, the better the estimation is. substations  while the remaining two meters are placed

In the study, nine widely used copulas are considered, @t 11kV buses (one in zone 4 and one in zone 5), as
as listed in Table 1 [16]. The notations of the unknown Mmarked inFig. 2.
copula parameterg to be estimated during MLE procedure



3.2. Uncertainties voltage distribution systems [26[t can be expected that
In general, there are uncertainties associated withnegative sequence component of the supply voltage shall be

measurements as well as with parameters of network modelaithin the range 0%2% of the positive sequence
The types of real measurements and pseudo-measurementemponent. In some areas, unbalances up to about 3% at
used in the study are based on [13]. Real measurements cdhree-phase supply terminals may occur. [Aje tolerance
be characterized by their own ranges of measurement errorsf the line impedances could change from zero to 20 % [27]
which are primarily determined by the corresponding In [28], the tolerance of short-circuit impedances for
measurement devices [18]The accuracy of pseudo- transformers is 7.5%-15% of the declared values. In [29] the
measurements is highly dependent on the estimationvariation of OLTCT impedance due to the tap changing is
methodologies and the confidence of data resources basefdund to be between 10%-15% of its nominal value. Based
on which the estimation is performed. To have more on the statistics given above, the ranges of uncertainty
accurate pseudo-measurements, various types of data imariables are set as listed in Table 2.
distribution networks have been explored for the purpose of
DSSE [19] Pseudo-measurements of load demand profiles,Table 2 List of input variables for sensitivity analysis

for example, can be further improved by the non-_Index Variablesx ranges
synchronized measurements coming from smart meterst Loadings of the network 26‘?100%
based on the credibility of each available measurement. Thé Voltage unbalance severity 0-2%

Tolerance of real measurementdJof 0.14%-3.04%
Tolerance of real measurements 0.17%-6.16%
power (P and Q)

Tolerance of pseudo measurement of | 10%-40%
Tolerance of pseudo measurement of ¢ 20%-50%
Tolerance of network parameters of lit 0-20%

load estimation accuracy based on available data is nof
considered here and the SA analysis is carried out with the
tolerances provided in literature.

1) Real measurementAs per IEC60044-2, there are
accuracy classes 0.1, 0.2, 0.5, 1.0 and 3.0 of voltage,

transformers (VTs), with phase displacement ranges from impedance

0.15 to 1.2 centiradianR0]. As per IEC61000-4-30, the g Tolerance of network parameters 7.5-15%
measurement uncertainty of r.m.s value of the voltage leakage admittande transformer

magnitudeAU for class A and B performance shall not

exceedt0.1% and+0.5% , respectively, of the declared 4) Transfer from tolerance to standard deviatieor
supply voltage by a transducer ratio respectivi2y]. a given percentage of the maximum allowed deviation (i.e.,

Combing the chain uncertainty introduced by both tglerance) from the mean as given in Table 2, the standard
measurement and VTs, the range of the tolerance of voltaggeviation of the measurement error can be derived based on
(U) measurements is set to [0.14%, 3.04f8P]. The _ mx%error [23]. For each setting of variable, the
standard accuracy classes for current transformers (CTs 3x100 ) i
are 0.1,0.2, 0.5, 1, 3 and 5, with phase displacement ranginf’€asurements (i.e., the input to DSSE) for Monte Carlo
from 0.15 to 1.8 centiradiarf@0]. As per IEC61000-4-30, ~Simulations are generated baseddi (i, o) with 3-sigma.
the measurement uncertainty of r.m.s value of the current It should be mentioned that DSSE, Morris screening
magnitudeA! for classes A and B performance shall not Method and copula estimation have their own different
exceed+0.1% and+2% , respectively, of the full scale [NPuts. For instance, the inputs to DSSE are the
[21]. Considering both VTs and CTs as well as measur_ementsThe inputs to Morris screening method are
measurement uncertainty, the range for the tolerance otNCertainty/tolerance of measurements i.e., uheertainty
power measurement is set to [0.17%, 6.1628]. varlableshsted_ in Table 2, denoted as The inputs to
2) Pudo-measurements (PMsPMs are typically copula analysis are thebservationsof x and y(x)
calculated using load forecasting methods or historical datacalculated from (3), denoted as
They are much less accurate than the real-time
measurements and are usually assigned with low weights in ~ 3.3. Sensitivity Analysis through Morris Method
R (i.e., high error variances). For buses for which there are The uncertainty variables listed in Table 2 are ranked
no data recorded, PMs of the load demand can be generatatsing Morris screening method, and the results are presented
from other buses with similar types of customers. In [13,in Fig. 3 in which the mean dEEs is plotted against the
23], 20% to 50% errors are considered in PMs. In [4], the standard deviation diEs, withp=10, (typicallyp=4-10 [8]).
maximum error of 50% with respect to the reference valuesAs mentioned in Section 2.2, variables with laggehave
for the active and reactive powers (P&Q) drawn by the loadshigher influence on the DSSE performance. It can be seen
is used for PMs. In [24], 10%, 30% and 50% errors are usedrom Fig. 3(a) that loading of the network, voltage
for error of P&Q load. Generally, more information such as unbalance severity, tolerance of the line impedance and real
energy bill data and scheduled power, etc., can be used fomeasurement ofJ are the most important and sensitive
more accurate active power estimation. Therefore it isvariables in case 1. The state estimation performance is
assumed that the error of pseudo-measuremer®® ¢  greatly impacted by loading of the network partly due to its
smaller than that ap. direct influence on the deviation of measurements. If the
3) Network Parameterstoadings of the network point is further away from the red line such that< u*,
were extracted from 2010 survey of different types of loadsthe result is more linearly dependent on the influential inputs
(including commercial, industrial and residential loads).[25] [8]. It can be seen from Fig. 3(a) that variables 1, 3 and 7
In EN 50160, the required level of voltage unbalance factor(see Table 2) have more linear influence on the DSSE
is limited by 2% for 95% of the week in low and medium performance than others. Variables located on the line and
nearby have a more non-linear influence on the output
4



distribution. Variables with low values gf are considered performance rather than the variation of state estimation
as non-influential and have negligible impacts on the DSSEperformance as presented by Morris screening method. It
results. From the perspective of monitoring reinforcementcan be seen that the state estimation errors obtained in case 2
for the purpose of DSSE, therefore, the focus should beare on average 31% smaller than those obtained in case 1.
placed on the analysis and improvement of the accuracy ofAs discussed in Section 3.2, theof EEs of variable 3 in
influential variables (i.e., the critical uncertainty variables). case 2 is increased compared to case 1. This can be also
Morris screening method is also applied to case 2,reflected in Table 3 by the fact that the difference between
and the results are presented in Fig. 3 (b). For all variablesy, and Yn. is larger in case 2 (0.18%) than in case 1
(except for variable 3), the" ando* of theEEs obtained in  (0.14%). Although variable 3 becomes more influential and
case 2 are greatly reduced compared with the results ofensitive in case 2, case 2 actually outperforms case 1 in
corresponding variables in case 1. It suggests that in case &rms of state estimation accuracy, given the same settings
the uncertainty variables (except for variable 3) become lesof variable 3. It can be seen from Table 3 that case 2

influential on DSSE performance compared with the case 1improves the estimation performance by 11_5,&%:5“& x
The ranking of the variables is similar as in case 1, excep 0.52

that the variable 3 moved from th& #o the 2% place in
terms of importance. Thg of EEs of variable 3 (i.e., the
tolerance of real measurementWy is increased from 0.29%

t100) compared to case 1.

Table 3 State Estimation ErroiY(, andYysy) for Variables in

to 0.38%, which suggests that variable 3 becomes mOI%:gelﬁdex 1 > 3 2 5 6 7 s
influential when the meter placement is given as case 2. 1 Y, (%) 089 064 052 046 046 045 045 0.43
Ymal%) 1.43 0.94 066 051 048 049 0.55 0.48
08 - 08 > 2 Y(%) 061 037 046 031 030 032 031 031
y . /,;:G o / EG Yme{%) 0.92 049 064 0.33 033 033 0.35 0.33
“5504 // . 504 / Case 2 is selected for further analysis in this study
g ) g g ey @ due to its accurate state estimation results. As presented in
° 02 };.{ o “o2 ‘/47‘ ’ Section 3.2, the top two sensitive parameters in case 2 are
o ) 005 ° variables 1 and 3. The focus therefore should be on the
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1 . . . oy .
4 (%) of EE 1 (%) of EE improvement of these variables when developing mitigation
a b strategy Between the two variablesariable 1 cannot é
Fig. 3. u* and o* of the EEs of various uncertain reinforcedasthe loading of the network is highly dependent
parameters on customers’ behavior, and in practice it cannot be

(a) Case 1(b) Case 2

o* (%) of EE
o o
> =)

o
N

=)

0.2 04 0.6 0.8 1

arbitrarily controlled by DNOs or other stakeholders in the

network. As for the tolerance of real measurement of

The variable ranking based on Morris method for voltage U, i.e., variable 3, it could be improved by the

case 2 is 1>3>2>7>8>4>5>6. Variables 4 and 8, and 5 and gnhancement of measurement devices

have very similap*, as shown in Fig. 3(b). The Pearson ' PR

correlation coefficient [10] is used to rank the importance of P

variables for case 2 and compared with Morris method. //

With the same number of simulations as Morris method, the o o

Pearson approach generates  the ranking of /z}/sg

1>3>2>5>8>7>6>4, i.e., similar but not exactly the same as >

Morris method. When the number of Monte Carlo _. . X e (36) of EE )

simulations is increased to 500, the ranking is changed td '9- 4- #" anda™ of the EEsof parameter 3 at five different

1>3>2>7>4>8>5>6, i.e., almost exactly the same as MorrisZ°"€S

method (only the rank of variables 8 and 4 was swapped). It

can be seen that with increased number of simulations, the It is not feasible though, to replace the measurement

Pearson approach yields almost exactly the same results gievices at all monitoring locations in the network. It would

Morris method, which demonstrates the efficiency of Morris be useful and cost efficient if the anaIyS|s_can show in which

method, as discussed in Section 1 zone of the network the accuracy of varlablg 3 has greater
EE presents the change/variation of state estimation'mcluence on t_he accuracy of D.SSE' For this purpose, the

error when one variable changes at a time, and it does n?}/}orrls screening _method IS applied to rank the variable 3 in

present the accuracy (or error) of the state estimation with ifferent Zones (in total five zones), and the results are

set of given measurements. To present state estimatim‘?resemeOI in Fig. 4 It can be seen that the to_lerance of real

accuracy, further simulation is carried out as follows. The measurement df) in zone Z5 has the largest mfluenge on

uncertainty variablex (as given in Table 2) is set to a the accuracy of DSSE compared to measurements in

number of values evenly distributed within the pre-defined other zones. Therefore, the improvement .Of the accuracy of

range and other variables are set to base values. Giyen measurement otJ ShO.UId be attempted in zone Z5. TO.

estimation errors/(x) are obtained by performing DSSE. defr.non.strate the eff_ectlveness of the zone-based uncertainty

For each variable in Table 2, the mean and maximum of the(r)mt'gat'.on’ the VTs in zone Z5 are changed from class 3 to

obtained set af(x) are calculated and provided in Table 3 -5 (with measurement pe_rformance of c_Iass A), and the

in which Y, andY,. denote the mean and maximumygk) measurement _tolerance of in other zones is kept at_ bas_e

respectivély. Y, and Y represent the state estimation value. By doing this the accuracy of state estimation
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improved by 37.5% 5{%), which demonstrates the
effectiveness of the mitigation of variable 3 in zone Z5.

3.4. Sensitivity Analysis through Copula Analysis
1) Modelling: The analysis given in Section 3.3 only

presents the sensitivity of different uncertainty variables andrig 7. scatterplot of u against w for illustration of
suggests the general Imganty characterlstlg. Qf thesegependence function
variables. However, knowing general sensitivity and . . . ) .
marginal distributions is not sufficient to describe the The nine copulas given in Section 2.2 are used to fit
dependence relationship between different observationstn€ two series of observatiarased on the ranking of log-
Dependence functions, for example, might present varioué!ke“ho_Od among the nine copulas, the first four copulas as
dependence levels at different uncertainty ranges. CopulaliStéd in Table 4 can adequately present the structural
can be used to reveal this dependence structure as they afglationship between, andu,, while the others do not fit
able to describe nonlinear dependence among multivariatdn© given data due to their poor log-likelihood results. It can
data independent from their marginal probability P& Seen thatamong the copulas, the rotated Clayopula
distributions. has the best performance in modeling the dependence

As discussed in Section 3.3, variable 3 (tolerance ofStructure between; andus, followed by SJC and Gumbel.
real measurements bf) is the main concer in the study. In The rotated Clayton’s copula implies greater dependence for

this subsection, variable 3 is further analysed. Copulas ar&/PPer tailthan for lower tail The Gumbel’s copula implies

applied to model the dependence structure between variabl'€ Same. As for SJC, lt}he esEimated upper and lower tail
3 and state estimation performance. The margina|dependence coefficients; andt”, are 0.7817 and 2.9E-

distribution of variable 3 is given in Fig, which is the  respectively; this also suggests low dependence in lower tail
probability density estimate of all potential combination of @"d high dependence in upper tail. For the purpose of
VTs and measurement classes listed in SectiarVagable ~ comparison, the lower and upper tail dependence
3 is set to a set of values which are generated random|)<;oeff|C|ent:s obtained by each copula are calculated and
based on the probability density given in Fig. 5, and theProvided in Table 4 as well. It can be seen that the first three
corresponding estimation errors are calculated and plotte©Pulas present similar dependence structures with similar
by red solid line in Fig. 6. Copulas are used to model thetdl dependence coefficients, which are in line with the
dependence structure between the two series of dasad  Scatterplotin Fig. 7 . _

V2, which denote the observations of variable 3 and the 10 demonstrate the appropriateness of using the
corresponding estimation errors respectively. weand u, estimated copula to r_epre_:sent the structural dep_endence of
be the “probability integral transform” of v; and v, the observed data, bivariate dataand u, are estimated
respectively, as introduced in Section, 2= [uy, u,]'~C. based on rotatedl&on’s copula together with its estimated
Thus, the scatterplot af; againstu,, which is equivalent to co_pula_ parameter, i.e., the fittes_t copula providec_j_in Tablg 4
the copula, is shown in Fig. 7 to visualize the dependencéJS'“g inverse CDF transformation. The probability density
structure. It can be seen ththe scattered points are more of the state estimation error obtained based on the estimated
tightly clustered around the diagonal in the upper tail (higherPivariate data is given by dash-dot line in Fig 6. It can be
part of uncertainty range), indicating stronger dependance S€€n that the shape of the PDF obtained based on the

joint events in upper tail than that in lower tail (lower part of €Stimated data is very similar to that of the actual data, i.e.,
uncertainty range). the solid line in Fig 6, which demonstrates the accuracy of
0.8

the copula estimated.

06 . . . . . .
0 Table 4 Ranking of Estimated Copulas for Distribution in
Fig. 5
0.2 Rank Copula Copula Cy Tail dependence
o index Lower  Upper
Tolerance of real ﬁweasurement gf U 1 3 Rotated Clayton 27573 0 o7rrr
. . . . . 2 9 SJC 0.7817 2.9E-7 29E-7 0.7817
Fig. 5. Marginal distributions of variable 3 3 6 Gumbel 2 4865 0 0.6785
10 4 4 Plackett 20.3437 0 0

— Actual
I Estimated

. Furthermore, the sensitivity of variable 3 is analysed
& at the upper tail and lower tail respectively by Morris
screening method. The Morris ranking shows that variable 3
05 05 1 at upper tail g* =0.21%) is more sensitive to variable 3 at
Error of state estimation (%) the lower tail @*=0.17%), as greater” suggests higher
Fig. 6. PDF of estimation errors sensitivity, as discussed in Section 2.2. To further

demonstrate this, within lower tail, variable 3 is changed
from 1.1% to 0.1% (improvement of 1%). This resulted in
the improvement of state estimation performance by 25%
with absolute improvement of 0.11%. On the other hand,

6



within upper tail, variable 3 is set from 3.0% to 2% [3] NanchianS. MajumdarA., and Pal B. C.: 'Three-phase
(improvement of 1% as well), resulting in estimation state estimation using hybrid particle swarm optimization’,
performance improvement by 30.8% with absolute IEEE Trans. Smart Gri015 8, (3), pp. 1035-1045
improvement of 0.2%. It can be concluded therefore that the

improvement of measurement tolerance at the upper tai[4] Ke L.: 'State estimation for power distribution system
results in greater improvement of state estimation and measurement impacts', IEEE Trans. Power 3896
performance. In this case, if the tolerance is located at thell, (2), pp. 911816

upper tail, the improvement of the measurement tolerance

can be recommended due to the high dependence betwedB] Minguez R., Conejo A. J.: 'State estimation sensitivity
the tolerance improvement and the improvement of stateanalysis', IEEE Trans. on Power Sy&Q07 22, (3), pp.
estimation. This analysis provides useful information for 10801091

making decision on mitigation levels (i.e., how much [6] Macii D., Barchi G, and Petri D.: 'Uncertainty
uncertainty mitigation is needed) which might vary sensitivity analysis of WLS-based grid state estimators'.
depending on the present location of the concerned variableProc. Int. Workshop on Applied Measure. for Power Syst.,
within the possible range. Aachen, Germany, Sep 2014, pp. 1-6

4. Conclusions [7] King D.M., Perera B.L.: 'Morris method of sensitivity

This paper presents the strategy/procedure thathalysis applied to assess the importance of input variables
analyses and models the sensitivity and dependenc@" Urban water supply yield A case study’, J. of Hydr,,
structure of uncertain parameters in distribution system sat 2013 477, pp. 132

estimation. The sensitivity analysis technique of Morris

screening me_:thod and copula theory are _explored for thi ritical uncertainties affecting small-disturbance stability
purpose and illustrated on a 295-bus realistic network mOdeEsing sensitivity analysis techniques (DO

of a generic distribution system. The sémdy of the 14 1199/TPWRS.2016.2618347)' IEEE Trans. on Power
critical variable in different zones is analysed and r_a_nked iNgyst. 2017, 32, (4), pp. 262539
the study. It shows that the sdnsty level of the critical
variable varies zonally. Due to the non-linear characteristic [9] loossB., Lemaitre, P: 'A Review on Global Sensitivity
between the critical variable anBE performance, their  Analysis Methods', (Springer, 2015)
dependence structuie analysed using copula theory with
nine widely used copulaslt shows that whether the [10] PreeceR., Milanovic JV.: 'Assessing the applicability
improvement of tolerance should take place is alsoof uncertainty importance measures for power system
depending on the dependence section the tolerance currentstudies’, IEEE Trans. on Power Syst., 2015, 31, (3), pp.
locates in 20762084

The performed analysis provides useful information
for planning monitoring reinforcement and developing [11] PattonA.J: ‘Copula-based models for financial time
efficient and effective mitigation strategies. Accurate series," in Anderseii.G., DavisR.A., KreissJP., Mikosch
assessment of the importance among different uncertaintie. (Ed) 'Handbook of Financial Time Series' (Springer
and analysis of the dependence structure can guide poweyerlag,2007)
system operators towards variables that require the greatest
mitigation or increased monitoring accuracy, and such assist[12] Bina M.T. AhmadiD.: 'Stochastic modeling for the
them in making decisions about the location and accuracy ohext day domestic demand response applications', IEEE
monitors for the purpose of state estimation. Trans. on Power Sys015 30, (6), pp. 2880-2893

s[8] HasanK., Preecer., Milanovic J.V.: 'Priority ranking of
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