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ABSTRACT

Counting people automatically in a crowded scenario is im-

portant to assess safety and to determine behaviour in surveil-

lance operations. In this paper we propose a new algorithm

using the statistics of the spatio-temporal wavelet subbands.

A t+2D lifting based wavelet transform is exploited to gener-

ate a motion saliency map which is then used to extract novel

parametric statical texture features. We compare our approach

to existing crowd counting approaches and show improve-

ment on standard benchmark sequences, demonstrating the

robustness of the extracted features.

1. INTRODUCTION

With increases in population, mobility and urbanisation,

there have been many fatal crowd related accidents e.g., the

Love Parade stampede, Germany (2010), the Santa Maria fire

disaster, Brazil (2013) and the Hajj stampede (2015). Not

surprisingly, crowd dynamics and behaviour analysis have

received considerable attention from both social and lately

the technical research disciplines, e.g., signal and image pro-

cessing. Various applications of crowd dynamics include

crowd management, surveillance, public space design, and

virtual environments design for simulation [1]. Crowds can

be described with five fundamental characteristics [2], i.e.,

size, density, time (acting together), collectivity (shared be-

haviour) and novelty (coherent action in unfamiliar situation).

Many algorithms have been proposed for crowd analysis, e.g.,

crowd segmentation, counting, abnormal behaviour detection

and tracking. Here, we concentrate on the problem of count-

ing the number of people in a crowd, which is important in

safety and surveillance operations. The proposed approach

does not track each individual member, as this is difficult,

particularly due to occlusions and close proximity, complex

in processing strategy, and not always necessary.

Previous algorithms proposed in the literature can be cat-

egorised into multiple groups [3], e.g., counting by 1) detect-

ing, 2) clustering, 3) regression and 4) convolutional neural
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network (CNN) of which algorithms consisting a) image fea-

tures and regression and b) CNN exhibit better performances.

Counting by detection implies that each individual has a dis-

tinct signature, for example partial detection, e.g., head or

shoulders [4]. Although these algorithms are tractable in rel-

atively sparse scenes, they often fail in dense crowds. In clus-

tering based approaches, a set of visual features are tracked to

represent individuals or a group as independent moving enti-

ties, e.g., Liang et al. [5] applied Speeded Up Robust Features

(SURF). However, motion coherency of a moving group or

crowd has been assumed which may not always be true due

to variable direction or limb articulation. Regression based

approaches [6, 7] avoid individual detection or tracking and

rely on a holistic description to characterise a crowd. There-

fore regression based methods are an option when detection

and tracking fail in dense scenarios. Recently, CNN based

approaches were proposed in the literature, e.g., cross scene

counting [8] and semantic informed dense feature mapped

counting [9]. However, these rely on large annotated train-

ing datasets which are not often easy to acquire.

In this paper we propose a unique people counting method

based on a spatio-temporal wavelet based saliency model, that

segments the motion salient regions in the scene and extracts

texture features by analysing the multi-resolution subbands

using statistical models. The discrete wavelet transform

(DWT) is a powerful tool for texture analysis [10]. The DWT

decomposes an image into independent frequency subbands

of multiple orientations at multiple scales demonstrating de-

tail and structure. Recently, statistical modelling of wavelet

transform coefficients has gained momentum in solving prob-

lems related to image texture analysis, e.g., retrieval [11].

Our approach uses the DWT and identifies suitable statistical

models to represent crowd texture patterns generated from a

motion saliency map. The contributions of this paper are:

• Spatio-temporal wavelet decomposition of crowd scenes to

segment motion salient regions; and

• A novel parametric approach using statistical subband

modeling to extract unique texture based holistic features

for crowd counting.



Fig. 1: Proposed algorithm.

2. MOTION SALIENT PARAMETRIC FEATURES

Our approach identifies subject movements such as direc-

tional movement, e.g., walking or other small localised move-

ments, e.g., gesturing while standing. We detect and process

such motions using hierarchical measurements of pixel activ-

ity in consecutive frames. Using a spatio-temporal wavelet

transform, directional and localised motions of human sub-

jects are derived in the high-frequency components of the

temporal decomposition while the features are preserved in

the spatial subbands. A block diagram of our algorithm is

shown in Fig. 1. First, the input sequences are decomposed

using t+2D wavelet transforms. A saliency model is then

applied to the high frequency subbands to generate a motion

saliency map which is used to segment and detect local edges

in active regions of the scene. A set of parametric texture fea-

tures (scale and shape of Generalised Gaussian Distribution

(GGD)) are extracted at horizontal, vertical and diagonal ori-

entations, at different resolutions of the spatial decomposed

high frequency subbands. Traditional segmentation features

such as area and local edges are also extracted and concate-

nated with the texture features to form a feature vector which

is the input to a Gaussian process regressor (GPR). Finally,

the regressor is trained and tested to count the crowd.

2.1. t+2D decomposition

The spatio-temporal wavelet decomposition can be either per-

formed by a 3D wavelet transform or by temporal decompo-

sition followed by a spatial transformation [12]. Inspired by

the low complexity lifting schemes for wavelets [13], we use a

lifting based spatio-temporal (3D) decomposition of the input

frames. To enable multi-level 3D wavelet decomposition, the

input frames are temporally decomposed and then organized

in a hierarchical order followed by 2D spatial decomposition

that allows us to identify the motion active pixels and related

spatial texture information. Therefore we call this decompo-

sition t+2D, where t stands for temporal decomposition.

The formulation of the t+2D scheme follows a Haar

wavelet decomposition. Let It be the input video sequence,

where t is the time index. We consider two consecutive

frames It and It−1, as the current and reference frame, re-

spectively. For the [m,n] pixel location the prediction and

update steps for temporal decomposition are defined in Eq. (1)

and Eq. (2), respectively:

I ′t−1[m,n] = It[m,n]− It−1[m,n]. (1)

I ′t[m,n] = It[m,n] +
1

2
I ′t−1[m,n]. (2)

Finally lifting steps are followed by the normalization steps:

I ′′t [m,n] =
√
2I ′t[m,n], (3)

I ′′t−1[m,n] =
1√
2
I ′t−1[m,n]. (4)

The temporally decomposed frames I ′′t and I ′′t−1 are the first

level low and high pass subband frames, respectively. These

steps are repeated for all the frames in the low pass subband

frames to obtain the next level low and high pass subband

frames, and are repeated to obtain the desired number of tem-

poral decomposition levels. Similarly, the lifting based 2D

transform is applied to obtain the desired spatio-temporal de-

composition. We choose a bi-orthogonal 5/3 filter due to its

proven decomposition performance within JPEG2000 image

compression.

2.2. Motion saliency estimation and map generation

A saliency based model mimics human vision and helps to

identify objects that visually stand out from the surroundings.

In the proposed algorithm we generate a spatio-temporal

wavelet based motion saliency map to extract a holistic fea-

ture set, used for counting people in a crowd. Wavelet trans-

formation combines frequency domain analysis and scale-

space decomposition to model visual saliency [14]. We use

the higher frequency spatio-temporal wavelet decomposed

subbands to generate the saliency map. First, the consec-

utive frames are wavelet decomposed in time to generate

high frequency frames (I ′′t−1). This captures the object and

human motion within the scene. Next a multi level spatial

2D wavelet transform is applied to I ′′t−1. An orientation map

is then formed by combining centre-surround differences

among horizontal, vertical and diagonal subbands across dif-

ferent resolutions of the spatial wavelet transform. As we are

interested only in contrast at different orientations, absolute

values of the coefficients are considered here. Finally, the

saliency map Ît is produced by Eq. (5).

Ît =
∑

l,∅
f(Cl

∅
), (5)

where Ît is the final saliency map at time t, Cl
∅

represents

higher frequency subbands of orientation ∅ ∈ Vertical (V),

Horizontal (H), Diagonal (D) at resolution scale l and f() is

an average filtering (to remove noise) and resize function.

2.3. Feature extraction

2.3.1. Parametric texture features

Texture features exhibit strong correlation with the number

of people, particularly in high density regions. In this work



we extracted texture features using the generalised Gaussian

distribution (GGD) of the spatial wavelet subbands, masked

with the saliency map. The GGD is a parametric probability

distribution that includes all Gaussian and Laplace distribu-

tions. The literature suggests that the histograms of the sub-

band coefficients produced by various types of DWTs can be

optimally modeled by adaptively varying the parameters of

the GGD [15, 16]. The pdf of the GGD is defined as:

p(x;µ, α, β) =
β

2αΓ(1/β)
e−(|x−µ|/α)β , (6)

where −∞ < x < ∞ is the detailed DWT coefficient value,

Γ(t) =
∫∞

0
ut−1e−udu is the Gamma function, −∞ < µ <

∞ is the location parameter, α > 0 the scale parameter that

models the pdf peak and β > 0 is the shape parameter that is

inversely proportional to the decreasing rate of the peak. As

the detailed DWT transform coefficients theoretically sums to

zero [15] we can comfortably define µ = 0 in Eq. (6).

Parameter estimation The estimation of the GGD model

parameters, i.e., µ, α & β, can be achieved by maximum-

likelihood estimation (MLE). Varanasi and Aazhang [17]

studied the accuracy of estimates using MLE for various

samples with different sample sizes and shapes of the dis-

tribution and confirmed the usability of MLE for heavy-

tailed distributions, i.e., small β, as normally observed in

the detailed coefficients of crowd images. We have briefly

described here the MLE for GGD. Considering our sample

x = (x1, x2, ..., xN ), i.e., the coefficients of the detailed

DWT subbands, the likelihood function whose parameters α
and β are to be estimated, can be defined as:

L(x;µ, α, β) = log

N
∏

i=1

p(xi;µ, α, β). (7)

Considering µ = 0, Eq. (7) can be modified using Eq. (6) as

L(x;α, β) = N log

{

β

2αΓ(1/β)

}

−
N
∑

i=1

(|xi|/α)β . (8)

A set of likelihood equations can be obtained using the partial

derivatives of Eq. (8) that have a unique root to estimate the

maximum likelihood parameters where Ψ(.) is the digamma

function (Ψ(z) = Γ′(z)/Γ(z)) [18]:

∂L(x;α, β)

∂α
=− N

α
+

β

αβ+1

N
∑

i=1

|xi|β = 0. (9)

∂L(x;α, β)

∂β
=
N

β

{

Ψ(1/β)

β
+ 1

}

−
N
∑

i=1

( |xi|
α

)β

log

( |xi|
α

)

= 0. (10)

2.3.2. Traditional features

In addition to statistical parametric features, we also take ad-

vantage of traditional segmentation features such as Area (A)

and edge (G).

Area (A): The saliency map provides motion active pixels in

the scene. The most salient regions are then segmented into

two levels using Otsu’s [19] adaptive thresholding algorithm.

The segmented area (A) is calculated by counting the number

of pixels present within the motion active regions.

Edge feature (G): The edge map of the salient region is ex-

tracted by applying a Sobel operator to the motion map. The

saliency map preserves the local characteristics of the moving

objects and is thus used to extract edge features. Finally the

edge feature (G) is calculated by counting the number of edge

pixels.

2.3.3. Feature vector formation

Along with area and edge features the scale (α) and shape

(β) parameters of individual wavelet subbands at each de-

composition level are considered as features in this work. We

advocate that the crowd density can be characterised by the

parametric features of the oriented subbands at multiple reso-

lutions. The features, F , of the subbands, grouped by orien-

tation, are defined in vector form as:

FV(∅) =
(

V(∅)
α ,V

(∅)
β

)

, FH(∅) =
(

H(∅)
α ,H

(∅)
β

)

,

FD(∅) =
(

D(∅)
α ,D

(∅)
β

)

. (11)

Finally a feature vector was formed by concatenating the fea-

tures, into F ∈ R
d, which is used as the input to the regres-

sion model described in Section 2.4. The final d-dimensional

feature vector, where d = 2 + 3 · 2 · L (L is the number of

spatial decomposition levels), considering area (A), edge (G)

and three oriented subbands consisting of two parameters at

each resolution scale, is expressed as:

F = (A,G,FV(∅) ,FH(∅) ,FD(∅)) . (12)

2.4. Gaussian process regression

The extracted feature set is a good predictor of the number

of people in a selected region. Our basic assumption is that

these features, captured at different orientations at multiple

resolutions have local deviations which are not necessarily

linear due to occlusions. This indicates the need for a re-

gression framework that handles multiple features with local

non-linearity in a high-dimensional space and can accurately

model crowd counts. In this work we rely on the Gaussian

process regression (GPR)framework proposed by Rasmussen

and Williams [20].

GPR is a Bayesian approach and a distribution over func-

tions that can construct a real process f(x) of a feature vector



x ∈ R
d from a training sample. A Gaussian process (GP) is a

collection of random variables that has a set of finite numbers

with joint Gaussian distribution [20] and can be specified by

its mean m(x) and covariance functions k(x,x′):

f(x) ∼ GP(m(x), k(x,x′)), (13)

where

m(x) = E[f(x)],

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (14)

Finally, the target count y can be a model for prediction by

Eq. (15) considering that f(x) is linear in the transformation

space:

y = f(x) + ǫ, (15)

where ǫ ∼ N (0, σ2
n) is an independent identically distributed

(i.i.d.) Gaussian noise.

The functions, approximated by GPR, rely on the co-

variance (also referred as kernel function). We have used a

squared-exponential kernel kr(x,x
′) producing a regression

model that can handle local non-linearities within the feature

space. This covariance function is also called the Radial Basis

Function (RBF) and can be expressed as:

kr(x,x
′) = θ21e

−(1/θ2
2)||x−x

′||2 , (16)

where θi are the covariance hyperparameters.

3. EXPERIMENTAL RESULTS

In order to evaluate the proposed algorithm we used the pop-

ular benchmark dataset Mall. The Mall pedestrian database

was introduced by Chen et al. [6] and contains 2000 anno-

tated frames captured inside a cluttered indoor shopping cen-

tre. A split of 800 vs 1200 frames were allocated between

training and testing, respectively; following the original test

conditions, i.e., the first 800 frames for Mall database were

used for training. In our experiment, we trained the regressor

using the feature vector and corresponding GT and then eval-

uated the regressor on the unseen data. To handle perspective

problems, frames were divided into four non-overlapping re-

gion.

Two different commonly used evaluation metrics are used

here: 1) mean absolute error (MAE) and 2) mean-square er-

ror (MSE). These are defined as:

MAE =
1

N

N
∑

n=1

|yn − ŷn|; MSE =
1

N

N
∑

n=1

(yn − ŷn)
2,

(17)

where N is the total number of test frames, yn is the actual

number of people and ŷn is the estimated count.
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Fig. 2: Frame by frame crowd counting result on Mall dataset.

Mall

MORR IIS- LAF+ CS- Our

Metric [6] LDL [7] VALD [9] SLR [21]

MAE 3.15 2.69 2.86 3.23 2.72

MSE 15.7 12.1 13.05 15.77 12.28

Table 1: Comparison with state-of-the-art algorithms.

Frame by frame results are shown in Fig. 2. We also

compare the performance for Mall dataset. The results are

reported in Table 1. The results show either better or com-

parable performances over the existing methods. This is be-

cause regular textured structures are formed with higher peo-

ple counts, which can be robustly represented by the para-

metric features estimated from the GGD. The motion saliency

map provides reasonably accurate information on subject mo-

tions, resulting in better segmentation and edge pixel estima-

tions. The proposed algorithm outperformed the state-of-the-

art CNN LAF+VALD [9] approach. Only IIS-LDL [7] re-

ported a better result but this relies on an additional label dis-

tribution from neighboring class labels.

4. CONCLUSIONS

We have proposed a new people counting algorithm which

can be used in a crowded scenario. Unlike existing regres-

sion based methods, our approach focuses on a new set of

low-level features derived from wavelet decomposition. First,

we decompose the input frames using a lifting based spatio-

temporal (t+2D) wavelet transform. Then, we segment mo-

tion salient regions by applying a frequency domain model.

Our texture feature set is derived by using a statistical para-

metric approach. A Gaussian process regressor is used to train

and estimate the number of people. The algorithm has been

evaluated against existing algorithms and exhibits improved

performance, especially for higher density crowds, demon-

strating the advantage of using the features we extract.
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