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Abstract

It is well-known that today’s compilers and state of the art libraries have three
major drawbacks. First, the compiler sub-problems are optimized separately;
this is not efficient because the separate sub-problems optimization gives a
different schedule for each sub-problem and these schedules cannot coexist as
the refining of one, causes the degradation of another. Second, they take into
account only part of the specific algorithms information. Third, they take
into account only a few hardware architecture parameters. These approaches
cannot give an optimumal solution.

In this paper, a new methodology/pre-compiler is introduced, which speeds
up loop kernels, by overcoming the above problems. This methodology solves
four of the major scheduling sub-problems, together as one problem and
not separately; these are the sub-problems of finding the schedules with the
minimum numbers of i) L1 data cache accesses, ii) L2 data cache accesses,
iii) main memory data accesses, iv) addressing instructions. First, the ex-
ploration space (possible solutions) is found according to the algorithm’s
information, e.g. array subscripts. Then, the exploration space is decreased
by orders of magnitude, by applying constraint propagation to the software
and hardware parameters.

We take the C-code and the memory architecture parameters as input and
we automatically produce a new faster C-code; this code cannot be obtained
by applying the existing compiler transformations to the original code. The
proposed methodology has been evaluated for five well-known algorithms in
both general and embedded processors; it is compared with gcc and clang
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compilers and also with iterative compilation.

Keywords: Data reuse, register allocation, optimization, memory
hierarchy, loop tiling, data locality, Diophantine equations

1. Introduction

Regarding data dominant applications (for example linear algebra, im-
age, signal and video processing algorithms), the major performance critical
parameters are i) the number of main memory accesses, ii) the number of
L3/L2 cache accesses, iii) the number of L1 data cache accesses and iv)
the number of executed instructions (we assume that the number of the
algorithm instructions cannot be reduced and thus we reduce only the number
of addressing instructions). The above compilation/scheduling sub-problems
are interdependent and thus they cannot be optimized separately; actually,
the refining of one sub-problem causes the degradation of another, e.g. a
decrease of the number of L2 data cache accesses will consequently increase
the number of L1 data cache accesses. Researchers try to solve this problem
by using iterative compilation techniques.

Iterative compilation has five major drawbacks, i) there are memory
efficient schedules which cannot be produced by applying the existing com-
piler transformations, ii) iterative compilation does not use all the existing
transformations, including all the different transformation parameters, e.g.
unroll factor values and tile sizes, because in this case compilation will last
for years, iii) only one level of tiling is applied, which is not efficient, iv)
register allocation is applied without taking into account the data reuse;
this means that the arrays references are assigned into registers, without
taking into account that some are accessed a lot and others do not, v) the
data array layouts are not taken into account; we will show that when tiling
to multidimensional arrays is applied, the data array layouts must change.
These drawbacks are overcome by the proposed methodology.

The proposed methodology finds the exploration space (all possible so-
lutions), neither by applying compiler transformations nor by utilizing the
above sub-problems separately. Instead, the exploration space is produced
by exploiting the algorithm’s information; we create mathematical equations
and inequalities, according to the array subscripts, the loops iterators and the
loops bounds. These equations (subscript equations), give the data reuse and
the production-consumption of the arrays; the memory access pattern of each
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array reference is given by its subscript equation. Given that the memory
access pattern of each array is given by its subscript equation, we claim
that all memory efficient solutions (exploration space) can be produced by
processing these equations. The subscript equations are processed and a new
iteration space is created. Each subscript equation gives either its iterators or
even new iterators, to the new iteration space. Then, the exploration space
is orders of magnitude decreased by applying constraint propagation to the
software and hardware parameters. Regarding the hardware parameters, we
produce register file and data cache inequalities, which contain all the (near)-
optimum tile sizes; these inequalities contain i) the tiles sizes in elements,
ii) the shape of each array’s tile. Furthermore, new data array layouts
are generated, according to the data cache associativity. All the schedules
with different tile sizes and data array layouts, than these the proposed
methodology gives, are not considered, decreasing the exploration space.

The major contributions of this paper are: i) the optimization of the
above subproblems as one problem and not separately for a wide range
of algorithms and computer architectures, ii) the software information and
several hardware parameters are fully exploited giving high execution speed
solutions and a smaller search space, iii) the proposed methodology, due to
the major contribution of number (ii) above, gives a smaller code size and
a smaller compilation time, as it does not test a large number of alternative
schedules, as the state of the art (SOA) libraries and iterative compilation
do.

The experimental results are taken by using a general purpose proces-
sor, an embedded processor and Simplescalar simulator [1]. The proposed
methodology is evaluated for five well-known data dominant algorithms over
two different compilers (speedup from 1.8 up to 18.3) and iterative compila-
tion technique (speedup up to 2.2).

The remainder of this paper is organized as follows. In Section 2, the
related work is given. The proposed methodology is given in Section 3 while
the experimental results are given in Section 4. Finally, Section 5 is dedicated
to conclusions.

2. Related Work

The independent optimization of the back end compiler phases (e.g. trans-
formations, register allocation), leads to inefficient binary code due to the
dependencies among them. These dependencies require that all phases should
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be optimized together as one problem and not separately. Toward this, much
research has been done, either to simultaneously optimize only two phases,
e.g. register allocation and instruction scheduling [2] [3] or to apply predictive
heuristics [4] [5]. Nowadays compilers and related works, apply i) iterative
compilation techniques [6] [7] [8] [9], ii) both iterative compilation and ma-
chine learning compilation techniques to restrict the configurations’ search
space and thus to decrease the compilation time [10] [11] [12] [13] [14] [15], iii)
iterative optimizations or compiler transformations, by using the Polyhedral
model [16] [17] [18] [19], iv) compiler transformations by using heuristics and
empirical methods [20]. In iterative compilation, a large number of different
versions of the program are generated-executed by applying many compiler
transformations, at all different combinations. Iterative compilation requires
extremely long compilation times to decrease the exploration space iterative
compilation is applied with machine learning compilation techniques. The
five major iterative compilation drawbacks are referred to the introduction.
The proposed methodology achieves up to 2.1 times lower execution time
and an orders of magnitude lower compilation time (Section 4).

The state of the art software libraries, such as ATLAS [21], GotoBLAS2 [22],
Eigen [23], Intel MKL [24], PHiPAC [25], FFTW [26], OpenCV [27] and
SPIRAL [28], manage to find a near-optimum binary code for a specific
application by using a large exploration space (many different executables
are tested and the fastest is picked). Although they achieve high speed,
they are application specific and the final schedule is found mostly by using
heuristics and empirical techniques. A comparison with the above libraries
would be unfair because they use the SIMD (Single Instruction Multiple
Data) vector instructions (they support load/store and arithmetical instruc-
tions with 128/256-bit data); however, our future work includes the support
of SIMD instructions. In [29] [30] [31] [32], we have developed algorithm
specific methodologies (we used the SIMD instructions), which produce lower
execution time, lower compilation time and lower number of data accesses,
than ATLAS [29] [30], FFTW [30] and OpenCV [32]. A comparison between
the proposed methodology and [29] [30], is made in Section 4.

Furthermore, many sub-optimum methods exploiting the memory hierar-
chy have been analyzed in the past, such as [33] [34] [35] [36] [37] [38]. These
works apply compiler transformations to the original code (this is not per-
formance efficient). The cache performance optimizations and compiler tech-
niques are presented in [39] and [40]. Finally, regarding data cache miss elimi-
nation methods, much research has been done in [41] [42] [43] [44] [45] [46] [47].
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Figure 1: Perfectly and imperfectly nested loops are shown at (a) and (b), respectively.

Regarding register allocation problem, many methodologies exist such
as [48] [49] [50] [51] [52] [53] [54]. In [48] - [52], data reuse is not taken into
account; this means that the array references are assigned into registers,
without taking into account that some are accessed a lot and others do
not. In [53] and [54], data reuse is taken into account either by greedily
assigning the available registers to the data array references or by applying
loop unroll transformation to expose reuse and opportunities for maximizing
parallelism. In contrast to the proposed methodology, the [48] - [54] address
the register allocation problem without taking into account the scheduling
problem; instead of finding a good schedule that achieves data reuse and
then apply register allocation, they just apply register allocation to the given
schedule.

3. Proposed Methodology

The proposed methodology takes C-code and the memory architecture pa-
rameters as input, and automatically produces a new faster C-code. The soft-
ware information-characteristics, i.e. data reuse, production-consumption of
intermediate results (when a datum is produced it is directly consumed, e.g.
C[k] = C[k] + ...), data dependences, array subscript equations, existence of
common array references, loop iterators, loop bounds, and the major memory
architecture parameters, i.e. number of data cache memories, data cache
sizes, data cache associativities, data cache line sizes, register file size, are
fully exploited.
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Figure 2: Flow graph of the proposed methodology.

The proposed methodology optimizes source code which contains loops
(loop kernels); as it is well known, 90% of the execution time of a com-
puter program is spent executing 10% of the code (also known as the 90/10
law) [55]. We take a loop kernel as input and we produce a new loop
kernel which cannot be given by applying the existing transformations to the
original code. The methodology optimizes both perfectly and imperfectly
nested loops (Fig. 1), which i) no if-condition exists (if they do, current
expression is skipped), ii) all the array subscripts are linear equations of the
iterators (which in most cases do). Each loop kernel is optimized separately;
each loop kernel may contain either perfectly or imperfectly nested loops
(Fig. 1).

The proposed methodology is shown in Fig. 2. All the steps are automatic.
Firstly, parsing is done; the loops, the loop bounds, the array references,
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for (i=0; i≤9; i++)

for j=0; j ≤9; j++
for k=0; k ≤9; k++

...=A[2*i + j] + B[i][j];

...=A[k];

2*i + j=c1 , 0 ≤ c1 ≤ 27 (1)

i=c21 and j=c22 , 0 ≤ c21, c22 ≤ 9 (2)

k=c3 , 0 ≤ c3 ≤ 9                              (3)

2*i + j - k=c4 , -9 ≤ c4 ≤ 27            (4)

Figure 3: The three first equations contain the separate data reuse of the three array
references respectively, while the fourth equation contains the data reuse between the two
different references of the array A.

the data dependences, the subscript equations etc, are identified. Then,
one mathematical equation is created for each array’s subscript and one for
each two common array references (e.g. eq.(4) in Fig. 3, it is explained
in Subsect. 3.3); each equation defines the memory access pattern of the
specific array reference; data reuse is found by these equations. Given that
the memory access pattern of each array is given by its subscript equation,
we claim that all memory efficient solutions can be produced by processing
these equations (Subsect.3.2). After all the equations have been created, all
the equations are processed one by one, at all different combinations (Fig. 2),
to examine all possible solutions (Subsect.3.2).

For each different combination (e.g. eq.(3), eq.(2), eq.(1) and eq.(4), in
Fig. 3), all the equations are processed one by one, creating the new iteration
space (Subsect. 3.4); the iteration space is defined by the iterators used and
their nesting level values. Each equation inserts its iterators or even new
iterators into the new iteration space; for an iteration space to be created all
the equations must be fetched.

Afterwards, the exploration space is decreased by applying constraint
propagation to the software and hardware parameters. Regarding the soft-
ware parameters (Subsect.3.3), the exploration space is decreased by fixing
the iterators nesting level values (all the schedules having different nesting
level values than these the proposed methodology gives, are not considered,
decreasing the exploration space). Regarding the hardware parameters, we
apply loop tiling for each memory (including the register file) by produc-
ing register file and data cache inequalities (Subsect. 3.6 and Subsect. 3.7,
respectively), which contain all the (near)-optimum tile sizes. Then, for
each schedule has been produced so far, the (near)-optimum data array
layouts are found (Subsect. 3.8); the proposed methodology selects both the
schedules with the new and the default data array layouts, as by changing
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the layouts an additional cost is added which may degrade performance. All
the schedules with different tile sizes and data array layouts than these the
proposed methodology gives, are not considered, decreasing the exploration
space. Finally, all these schedules are transformed into C-code, they are
compiled by the target compiler and the output binaries are run to the target
platform in order to find the one with the best performance (Subsect. 3.9).

The remainder of the proposed methodology has been divided into ten
sub-sections. The first subsection contains the basic definitions and no-
tations. The second presents a new loop transformation and the other
seven ones explain in more detail the most complex steps of the proposed
methodology (Fig 2). Finally the tenth subsection gives an example.

3.1. Definitions and Notations

Definition 1. Equations which have more than one solutions for at least
one constant value, are named type2 equations. All others, are named type1
equations, e.g. eq.(1) and eq.(4) in Fig. 3 are type2 equations, while eq.(2)
and eq.(3) are type1 equations.

Arrays with type2 equations fetch their elements more than once, even
if no other/extra iterator exists (the loop kernel contains only the type2
equation iterators), e.g. 2i + j = 7 holds for several iteration vectors (data
reuse); on the other hand, if no extra iterator exists, arrays with type1
equations fetch their elements only once. However, both type1 and type2
arrays may fetch their elements more than once because of the existence of
another loop iterator(s) above/between from/of theirs; for example, although
eq.(3) in Fig. 3 is of type1, each element of A[k] is fetched 100 times because
of the presence of i, j iterators.

To sum up, arrays with type2 equations achieve data reuse at all cases,
while arrays with type1 equations achieve data reuse only at the case that
extra iterators exist.

The arrays are classified into category-1 and category-2 arrays.

Definition 2. The arrays whose elements achieve data reuse are classified
into category-1 arrays

Definition 3. The arrays whose elements do not achieve data reuse or data
reuse cannot be exploited, are classified into category-2 arrays
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Definition 4. The arrays whose subscript equations are of type1 and they
contain all the loop kernel iterators (no extra iterator exists), are further
classified into Category-2a arrays.

Statement 1. The Category-2a arrays fetch their elements just once (there
is no data reuse).

Proof 1. The subscript equations of these arrays change their values in each
iteration vector and thus a different element is fetched in each iteration.

Definition 5. The arrays whose subscript equations are not given by a com-
pile time known expression (e.g. they depend on the input data), are further
classified into Category-2b arrays.

Statement 2. Data reuse of Category-2b arrays cannot be exploited, as the
arrays elements are not accessed according to a mathematical formula.

Definition 6. If all the iterators of an equation, exist in this equation only
and not in another equation, then these iterators are named unique iterators,
e.g. the i, j iterators of eq.(1) in Fig. 7 are unique, while the i, j iterators of
eq.(1) in Fig. 3 are not.

3.2. Proposed Loop Transformation

As it has been explained in the previous subsection, arrays with type2
equations fetch their elements more than once (data reuse), even if no extra
iterator exists. For example, the iteration vectors (S = (i, j, k)) fetching A[4]
of eq.(1) in Fig. 3, are more than one (data reuse), i.e. 2 ∗ i+ j = 4 holds for
S1 = (0, 4, X), S2 = (1, 2, X) and S3 = (2, 0, X), where X are all the valid k
values. In this subsection, we propose a new loop transformation in order to
exploit the data reuse of type2 equations. The new transformation treats the
type2 equation as a Linear Diophantine Equation (LDE); the solution of an
LDE is a mathematical expression which gives the exact iteration vectors that
each array’s element is fetched only once, e.g. if the proposed transformation
is applied on 2 ∗ i+ j = c1 of Fig. 3, each element of A[2 ∗ i+ j] is accessed
only once.

Statement 3. The proposed transformation is applied to type2 equations
only and gives the minimum number of data accesses of the specific type2
array reference.
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Proof 2. The minimum number of data accesses is achieved because each
array’s element is accessed only once.

The proposed transformation can be applied only if there are no loop
carried data dependencies.

Let us give two examples, Fig. 4. The equation produced by the array
subscript, gives all the information needed about the data reuse of array A.
This equation is treated as a LDE here; its solution gives the i, j values that
c is a constant value, e.g. c = 10 for all 0 ≤ k ≤ 10 values giving a j value
within its bounds (source code 1 in Fig. 4). The solution of the Diophantine
equation and the iterator bounds, give a new iteration space which all the
array elements are fetched just once; i and j iterators are replaced by k and
c iterators. To transform these equations into source code, a new iterator
is added into the source code (c iterator) for all the array elements to be
accessed in order. The added if-condition statements are necessary. In
general, one if-condition statement is needed for each iterator, e.g. at source
code 1, if-condition statements for both i and j iterators are needed; however,
in most cases it is not necessary to add an if-condition statement for all the
iterators because the Diophantine independent variable equals to the iterator,
e.g. i=k in source code 1. Thus, the iterator bounds are preserved by the
loop bounds and no if-condition statement is needed. The break statements
have been inserted to decrease the number of idle iteration vectors.

If the proposed transformation is applied, the number of data accesses
is minimized and the data cache lines utilization is increased since all the
array’s elements are fetched in order and thus from consecutive memory
locations. However, the number of arithmetical instructions is increased
(extra addressing and branch instructions). The schedule with the minimum
number of data accesses does not always provide the best performance,
since the number of extra instructions may degrade performance; the best
performance depends on the target architecture. This is why type2 equations
are treated both as LDE equations and not. The two codes in Fig. 4 are the
schedules with the minimum number of data accesses.

3.3. Create Equations

At this step, each array’s subscript is transformed into a mathematical
equation (Fig. 3).

Statement 4. Each subscript equation separately, gives the data reuse /
production-consumption of the specific array.
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Source code 1:

for (i=0; i<=10; i++)

for (j=0; j<=10; j++)

A[2*i + j]=...

Get subscript info:

2*i + j=c

0 ≤ i, j ≤ 0 and 0 ≤ c ≤ 0

Solve Diophantine equation:

i=k

J=c-2k

0 ≤ k ≤ 0 and 0 ≤ c- k ≤ 0

0 ≤ k ≤ 0 and -5 ≤ k ≤ 5

Thus, 0 ≤ k ≤ 0

Final code 1:

for (c=0; c<=30; c++)

for (k=0; k<=10; k++){

temp = c - 2 * k;

if (temp < 0) break; 

else if (temp <= 10) { 

A[c]=...

}}

Source code 2:

for (i=0;i<=10;i++)

for (j=0;j<=10;j++)

for (k=0;k<=12;k++)

A[2*i + j + k + 3]=...

Get subscript info:

2*i + j + k + 3=c

0 ≤ i, j ≤ 0 and 0 ≤ k ≤  and   ≤ c ≤ 5

Solve Diophantine equation:

We set w=2i+j (1) and thus w+k=c-3 (2)

(2) gives:  w=k1 and k=c-3-k1

0 ≤ k  ≤ 0 and -  ≤ k  ≤ 
(1) gives: i=k2 and j=w-2k2

0 ≤ k  ≤ 0 and -5 ≤ k  ≤ 5

Final code 2:

for (c=3; c<=45; c++)

for (k1=0; k1<=30; k1++){

for (k2=0; k2<=10; k2++){

tempz =  (c-3) - k1;

if (tempz < 0) break; 

else if (tempz <= 12){ 

tempy = k1 - 2 * k2;

if (tempy < 0) break; 

else if (tempy <= 10) { 

A[c]=...

}}}}

Figure 4: Proposed transformation - scheduling with the minimum number of data
accesses.
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It is obvious that the memory access pattern of each array reference is
given by its subscript equation.

Statement 5. The interaction of two or more equations gives i) the data
reuse produced between the common array references (e.g. eq.(4) in Fig. 3)
and ii) the interaction among the arrays data, i.e. by fetching one array’s
element, other array elements are consequently fetched.

Regarding (i), in the case that there are two array references of the same
array, an additional equation is always created to give the iteration vectors
that both references access identical elements, e.g in Fig. 3, A[2] is fetched
by S1=(0,2,X) and S2=(1,0,X) according to eq.(1) and also A[2] is fetched
by S3=(X,X,2) according to eq.(3), where X = [0, 9]. Regarding (ii), it
is obvious that by fetching one array’s element, other array elements are
consequently fetched, e.g. by fetching B(2, 3) in Fig. 3, A(7) and A(0 : 9)
are fetched because of the first and the second array reference respectively.

Rule 1. If there are two array references of the same array, an additional
equation is created to describe the data reuse between these two references, e.g.
eq.(4) in Fig. 3. These equations are further classified into type3 equations.

Rule 2. Regarding 2-d arrays, two equations are created and not one because
the data array layout has not been found yet, e.g. if 9 ∗ i + j = c2 is taken
instead of i = c21 and j = c22 for eq.(2) in Fig. 3, then row-wise layout is
taken which may not be efficient.

The Type1, type2 and type3 equations, are treated differently (Subsec-
tions 3.3.1- 3.3.3).

3.3.1. Type1 equations

All type1 equations add their iterators into the new iteration space (their
nesting level values are found next), e.g. eq.(2) of Fig. 3, gives either S1 =
(i, j) iteration space or S2 = (j, i).

3.3.2. Type2 equations

Type2 equations are treated in two different ways, i.e. they are treated
either as type1 equations or as Linear Diophantine Equations (LDE) (the
transformation of Subsect. 3.2 is applied). In the second case, each element
of the current equation array, is now accessed only once (optimum data
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reuse), e.g. if the proposed transformation is applied on 2 ∗ i + j = c1 of
Fig. 3, each element of A[2∗ i+ j] is accessed only once. Type2 equations are
treated in two different ways because the optimum data reuse of one array
does not always provide the optimum data reuse or the best performance.

Rule 3. type1 equations give their iterators into iteration space, while type2
equations give either their iterators (they are treated as type1 equations) or
new ones (the proposed transformation is applied, Statement 3), into iteration
space.

3.3.3. Type3 equations

Type3 equations contain the iteration vectors that both two array ref-
erences fetch the identical elements (data reuse), e.g. A[2] is accessed by
(0, 2, X) and (1, 1, X) because of the A[i+ j] reference and by (X,X, 2) be-
cause of the A[k] reference in Fig.2. This kind of data reuse is fully exploited
too, by treating the type3 equations as LDE. Let us give an example, Fig. 5.
The equation giving the iteration vectors that both two references fetch the
identical array elements, is i + j − k = c when c = 0. When c = 0 or
k2 + tempy = tempz (final code 0 when c = 0 or final code 1, Fig. 5), only
common elements are loaded. However, there are elements do not loaded in
identical iteration vectors, i.e. c 6= 0 in final code 0, and thus i+ j − k = c.

Rule 4. type3 equations are treated as LDE equations only; the proposed
transformation (Statement 3) is applied to type3 equations giving new itera-
tors

3.4. Find the exploration space

At this step the exploration space is found by processing all subscript
equations. Firstly, the iteration space is created.

Statement 6. The iteration space is created by processing all subscript equa-
tions.

Given that the subscript equations give all the data access patterns and
data reuse, we process all subscript equations to find all memory efficient
solutions.

To create the iteration space, all equations are processed one by one
according to the Rule 3 and Rule 4. The outermost iterators (smallest
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//Initial code

for (i=0;i<=1;i++)

for (j=0;j<=2;j++)

for (k=0;k<=2;k++)

{   cnt1+=A[i+j]; 

cnt2+=A[k]; 

}

Get subscript info
i + j = c1              (eq.1)

k = c2                  (eq.2)

i + j – k =c3 ,       (eq.3)

c1=[0,3], c2=[0,2], c3=[-2, 3]

Solve the Diophantine equation (eq.3):
We set w=i+j (1) and thus w-k=c (2)

(2) gives: w=k1 and z=-c+k1

k1=[0,3], since 

(k1=[0,3] and k1=[-2,3])

(1) gives: i=k2 and j=k1-k2

k2=[0,1], since 

(k2=[0,1] and k2=[-2,3])

//final code 

for (c=-2;c<=3;c++)

for (k1=0;k1<=3;k1++){

for (k2=0;k2<=1;k2++){

tempz = -c + k1;

if (tempz > 2) break; 

else if (tempz >= 0){ 

tempy = k1 - k2;

if (tempy < 0) break; 

else if (tempy <= 2) {

cnt+=A[k2+tempy];  

cnt2+=A[tempz];

}}}}

Figure 5: Proposed transformation; the common elements of A[i+j] and A[k] are accessed
just once.

nesting level values) of the new loop-kernel are these, whose equation has
been processed first, e.g. if eq.(2) of Fig. 3 is processed first, the iteration
space is either S1 = (i, j) or S2 = (j, i). The iterators with the next larger
nesting level values are these, whose equation has been processed second etc,
e.g. if eq.(3) of Fig. 3 is processed after eq.(2), the iteration space is either
S1 = (i, j, k) or S2 = (j, i, k).

Statement 7. All the equations are processed (according to Rule 3 and Rule 4)
one by one, by using all the different combinations, suffice the data de-
pendences are preserved. We process all different combinations in order to
examine all memory efficient solutions.

For a subscript equation, the sooner it is fetched, the better it is treated.
This is because i) an array with small nesting level iterator values (its it-
erators are the upper ones) is fetched less times than one with large ones,
e.g. in Fig. 6, ’A’ array is fetched only once while ’B’ is fetched N2 times;
this is because compilers apply scalar replacement transformation (A(i, j)
is replaced by a variable), and ii) for an equation whose iterators have not
been assigned into iteration space, we can apply the proposed transformation
(Statement 3), decreasing the number of the specific array’s accesses.

Let us give an example, Fig. 3. The four equations of Fig. 3 give 7 different
iteration spaces, i.e. S1 = (i, j, k), S2 = (j, i, k), S3 = (c, p, k), S4 = (k, c, p)
(where c and p are the new iterators created, if the proposed transformation
is applied to eq.(1)), S5 = (k, i, j), S6 = (k, j, i) and S7 = (c, k1, k2) (where
c, k1, k2 are the new iterators created, if the proposed transformation is
applied to eq.(4)).
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If there are N different equations, there are up to N ! different equation
combinations; in practice, the number of different combinations, is smaller
than N ! because i) identical schedules are produced and ii) data dependences
may prohibit some combinations.

Statement 8. The iteration space created according to statement 7, is fur-
ther increased and it contains an enormous number of different schedules
(exploration space)

This is because i) loop tiling can be applied for all memories (new iter-
ators are inserted), ii) loop tiling can be applied for all different tile sizes
and shapes, iii) the new iterators can take all the different nesting level
values, iv) all the array references can be replaced by a different number of
variables/registers, v) many different data array layouts can be used.

Statement 9. The exploration space is decreased by orders of magnitude

The exploration space is decreased by orders of magnitude because a)
only the iteration spaces produced by Statement 7 are considered, b) all
the schedules with different number of assigned variables/registers, tile sizes,
nesting level values and data array layouts, than these the proposed method-
ology gives, are not considered.

3.5. Decrease the exploration space by utilizing the algorithm’s information

As it has been already mentioned in the previous subsection, by creating
the exploration space according to Statement 7, the solutions achieve low
data reuse are not examined, decreasing the exploration space; for example,
for the Gaussian Blur algorithm, the iteration spaces which are tested and
these which are excluded, are shown in Table 2 (Subsection 3.10).

However, the exploration space is decreased even more by utilizing the
software characteristics; the nesting level values of the iterators created
according to Statement 7, Rule 3 and Rule 4, become fixed (Rules 5, 6). All
the schedules having different nesting level values than these the proposed
methodology gives, are not considered, decreasing the exploration space even
more (Rule 5 and Rule 6).

The exploration space is decreased according to the Rules 5, 6.

Rule 5. The unique iterators are not interchanged with iterators of another
equation.
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Source code:

for (i=0; i<N; i++)

for (j=0; j<N; j++)

for (k=0; k<N; k++)

for (m=0; m<N; m++)

A[i][j] += B[k][m] + k * C[j][m];

Fo  e uations’ o de  
eq.1, eq.2, eq.3,

eq. (1) gives:

S1 = (i, j, -, -)

eq. (2) gives:

S2 = (-, -, k, m)

The equations are:

i=c11 & j=c12 (1)

k=c21 & m=c22 (2)

j=c31 & m=c32 (3) eq. (3) gives:

S3 = (i, j, k, m)

S4 = (j, i, k, m)

S5 = (i, j, m, k)

S6 = (j, i, m, k)

Figure 6: An example, eq.(3) gives different iterators nesting levels.

In general, each array is accessed (q × r) times, where q is the number
of the iterations exist above its upper iterator and r is the number of the
iterations exist between its upper and lower iterators. It can be easily be
proved that if the unique iterators change their nesting level values without
satisfying Rule 5, either the (q × r) value increases or the iterators nesting
level values are given by processing another equations’ combination (it is not
an issue here).

Rule 6. The nesting level values of the unique iterators are defined according
to the target compiler.

According to Rule 5, the unique iterators of an equation are not inter-
changed with iterators of another equation. Furthermore, in the case that
they are interchanged with each other, the number of load/store and address-
ing instructions will remain constant; only the number of data cache misses
changes. The number of cache misses changes because multi-dimensional
arrays, access their elements from no consecutive main memory locations,
e.g. if i and j iterators in Fig. 6 are interchanged, A is no further accessed
row-wise but column-wise from main memory; however, the data array layout
is found next. Apart from reducing the number of data cache misses, there
is no use to interchange these iterators. Thus, only these nesting level values
accessing the array row-wise are taken for now (C compiler stores the arrays
row-wise in main memory), decreasing the number of the data cache misses,
e.g. for A(i, j), the i iterator is defined as the outermost one.

3.6. Decrease the number of L1 data cache accesses and the exploration space
- utilizing the Register File (RF) size

At this step, the Register File (RF) size and the subscript equations are
fully exploited, decreasing the number of L1 data cache accesses and the
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exploration space. For each iteration space has been created so far, loop
tiling for the RF is applied. To utilize the RF size, RF inequalities are
produced giving all the (near)-optimum tile sizes. These inequalities contain
i) the number of the registers needed for each array reference and for scalar
variables, ii) the shape of each array’s tile.

The register file inequality is given by:

0.8×RFs ≤ Liter + V ar + ws+R1 +R2 + ...+Rn ≤ 1.2×RFs (1)

where RFs is the number of the available registers, L iter is the number
of the different iterator references exist in the loop body, V ar is the number
of scalar variables, ws is the number of the working space registers, i.e. vari-
ables for intermediate results and Ri is the number of the variables/registers
allocated for the i-th array.

Ri is given by: Ri = it′
1
× it′

2
× ...× it′n, where the integer it

′

i are the unroll
factor values of the iterators exist in the array’s subscript, e.g. for B(i, j)
and C(i, i), RB = i′ × j′ (rectangular tile) and RC = i′ (diagonal line tile)
respectively, where i′ and j′ are the unroll factors of i, j iterators.

Rule 7. Each subscript equation contributes to the creation of ineq.( 1), i.e.
equation i gives Ri and specifies its expression.

The iterators are tiled and the new tiled iterators are fully unrolled,
according to the RF size, to exploit data reuse; in this way, the registers
are reused as many times as the number of the available registers indicate
(register utilization).

Let us give an example. In Fig. 7-a, RA = i′ × j′ and RB = k′ vari-
ables/registers are allocated for A and B arrays, respectively. If we choose a
square tile for array A of size 2× 2, i.e. 4 registers for A, and only 1 register
for B, then the i, j iterators are tiled and the new tiled iterators are fully
unrolled (Fig. 7-b). Then, by assigning the array references into registers,
data reuse is achieved (Fig. 7-c). In Fig. 7-a, the (A,B) arrays are accessed
(1, N2) times while in Fig. 7-c (1, N2/4) times, respectively.

Rule 8. For each iteration space has been created according to Statement 7,
loop tiling for the RF is applied; this means that new iterators are created
with loop bounds equal to the tile sizes; the new iterators are fully unrolled
and all the array references are replaced by scalar variables according to the
RF size and to the subscript equations, achieving data reuse.
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Figure 7: An example, tiling for the RF is applied - we assign 4 registers for A (square
tile of size 2× 2) and 1 for B.

The bound values of the register file inequality (eq.( 1)) are not tight
because the output code is C-code and during its compilation (translate the
C-code into binary code), the compiler may not allocate the exact number
of desirable addressing variables into registers. However, if assembly code
would be produced instead of C-code, the register utilization would be the
optimum.

The number of L iter and ws registers is found after the allocation of the
array elements into variables/registers, because they depend on the number
of tiled iterators. The ws value depends on the target compiler and this
is why it is found approximately; the bounds of the RF inequality are not
tight for this reason too. The goal is to store all the inner loop reused array
elements and scalar variables into registers minimizing the number of register
spills.

Statement 10. All schedules satisfying ineq.( 1), decrease the number of L1
data cache accesses.

Proof 3. The number of L1 data cache accesses is decreased for two reasons.
First, loop tiling for the RF is applied. In general, by applying loop tiling
for the RF, the number of L1 data cache accesses is decreased, as parts
(tiles) of the arrays remain in the RF (data reuse) and therefore they are not
fetched many times from L1. Second, loop tiling is applied according to the
RF size and to the subscript equations (memory access patterns). The new
iterators are fully unrolled and all the array references are replaced by scalar
variables; each variable in the loop body corresponds to a register, minimizing
the number of register spills. The larger the RF size, the larger the tiles used
and the larger the data reuse being achieved.
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Statement 11. All schedules with different number of assigned variables/registers
than these the proposed methodology gives, are not considered, decreasing the
exploration space.

Rule 9. Each different set of it′i values satisfying ineq.( 1), gives a different
schedule. All different it′i values satisfying ineq.( 1) are examined.

Rule 10. The Ri values of ineq.(1), are given by Rules 11- 18 .

Rule 11. The innermost iterator is never tiled because data reuse is de-
creased; if iti is the innermost iterator, then it′i = 1.

Proof 4. By tiling the innermost iterator, e.g. iterator k in Fig. 7, the
array references-equations which contain it, will change their values in each
iteration; this means that i) a different element is accessed in each k iteration
and thus a huge number of different registers is needed for these arrays, ii)
all these registers are not reused (a different element is accessed in each
iteration). Thus, by tiling the innermost iterator, more registers are needed
which do not achieve data reuse; this leads to low RF utilization.

Rule 12. The type1 array references which contain all the loop kernel iter-
ators, do not achieve data reuse; thus only one register is needed for these
arrays, i.e. Ri = 1

Proof 5. The subscript equations of these arrays change their values in each
iteration vector and thus a different element is fetched in each iteration.

Rule 13. If the proposed transformation (Statement 3) is applied to eq.(i),
then only one register is needed for this array reference, i.e. Ri = 1.

Proof 6. In this case, the optimum data reuse for this array is achieved
since each array’s element is fetched just once (all array elements are fetched
in-order); thus only one register is needed for this array, e.g. in Fig. 4, A[c]
needs only one register.

Rule 14. If the proposed transformation (Statement 3) is applied to eq.(i),
then the eq.(i) iterators are never tiled and thus it′i = 1. Otherwise, the
proposed transformation may be invalid.
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Source code (Matrix Matrix Multiplication):

for (i=0; i<60; i++)

for (j=0; j<60; j++)

for (k=0; k<60; k++)

C[i][j] += A[i][k] * B[k][j];

The equations are:

i=c11 & j=c12 (1)

i=c21 & k=c22 (2)

k=c31 & j=c32 (3)

Suppose the e uations’ o de  , , , 
the iterator spaces are:

S1=(i, k, j), S2=(k, i, j)

The RF inequalities for S1 are: 

Low ≤  +0+  + i’ + i’*k’ + k’ ≤ Up, for i’≠  and k’≠
Low ≤  +0+  +  + i’ ≤ Up, for k’=  
Low ≤  +0+  +  + k’ ≤ Up, for i’=  

The L1 Data Cache inequality for S1 is:

Low’ ≤ Tii*Tjj + Tii*Tkk + Tkk*Tjj ≤ Up’

A potential output kernel is:

//tiling for L1 data cache

for (ii=0; ii<60; ii+=10)

for (jj=0; jj<60; jj+=15)

for (kk=0; kk<60; kk+=4)

//tiling for the RF

for (i=ii; i<ii+10; i+=2)

for (k=kk; k<kk+4; k+=4) { 

regA1=A[i][k]; regA2=A[i][k+1]; regA3=A[i][k+2]; 

regA4=A[i][k+3]; regA5=A[i+1][k]; regA6=A[i+1][k+1]; 

regA7=A[i+1][k+2]; regA8=A[i+1][k+3];

for (j=jj; j<jj+15; j++) {

regC1=0; regC2=0; regB1=B[k][j]; regB2=B[k+1][j]; 

regB3=B[k+2][j]; regB4=B[k+3][j];

regC1+=regA1 * regB1;

regC1+=regA2 * regB2;

regC1+=regA3 * regB3;

regC1+=regA4 * regB4;

regC2+=regA5 * regB1;

regC2+=regA6 * regB2;

regC2+=regA7 * regB3;

regC2+=regA8 * regB4;

C[i][j]+=regC1; C[i+1][j]+=regC2; }}

Figure 8: An example, Matrix Matrix Multiplication (MMM) algorithm.

Let us give an example, Fig. 3. If the proposed transformation is applied
to eq.(1), then the B array’s iterators cannot be tiled and thus only one
variable/register is needed for B array.

Rule 15. If there is a type1 array reference i) containing more than one
iterators and one of them is the innermost one and ii) all ineq.( 1) iterators
which do not exist in this array reference have unroll factor values equal to 1,
then only one register is needed for this array, i.e. Ri = 1. This gives more
than one register file inequalities.

Proof 7. When Rule 15 holds, a different array’s element is fetched in each
iteration vector, as the subscript equation changes its value in each iteration.
Thus, no data reuse is achieved and only one register is used. On the
contrary, in the case that at least one iterator which do not exist in this
array reference is tiled, common array references occur inside the loop body
(e.g. regC1 is reused 3 times in Fig. 8); data reuse is achieved in this case
and thus another RF inequality is created.

Let us give an example (Fig. 8). Suppose the S1 iteration space whose
register file inequalities are shown in Fig. 8. The C array subscript contains
i and j iterators. j iterator is the innermost one and thus i′ × 1 registers are
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needed for this array; however, according to Rule 15, C array needs i′ × 1
registers if k′ 6= 1 and 1 register otherwise (if k′ = 1 then the C array fetches
a different element in each iteration vector and thus only one register is
needed). The array A needs i′ × k′ registers while B array needs k′ registers
if i′ 6= 1 and 1 register otherwise. Note that if the i-loop is not tiled (i′ = 0),
the B and C array elements are not reused and there is 1 register for C and
1 register for B (Rule 15). The innermost iterator (j) is not tiled according
to the Rule 11 (data reuse is decreased in this case).

Rule 16. We can decrease the number of it′i values satisfying ineq.(1), by
utilizing the L1 data cache line size. Regarding 1-d arrays, we can select the
it′i values to be either 1 or multiples of the L1 cache line size. Regarding
multidimensional arrays, we can select the it′i values which correspond to the
x-axis, to be either 1 or multiples of the L1 cache line size. The arrays must
be written into main memory aligned.

Moreover, there are cases that data reuse utilization is more complicated
as common array elements may be accessed not in each iteration, but in
each k iterations, where k ≥ 1. This holds only for type2 equations (e.g.
ai + bj + c) where k = b/a is an integer (data reuse is achieved in each k
iterations). The proposed methodology exploits data reuse only when k = 1
here (Rule 17) as for larger k values, the data reuse is low. For example, at
Gaussian Blur algorithm (Subsection 3.10), each time the filter is shifted by
one position to the right (mc iterator), 20 elements of in array are reused
(reuse between consecutive iterations here, i.e. k = 1).

Rule 17. Arrays with type2 subscript equations which have equal coefficient
absolute values (e.g. ai+ bj + c, where a == ±b) fetch identical elements in
consecutive iterations; data reuse is exploited by interchanging the registers
values in each iteration. An extra RF inequality is produced for this case.

Proof 8. The above arrays access their elements in patterns. As the inner-
most iterator (let j) changes its value, the elements are accessed in a pattern,
i.e. A[p], A[p+ b], A[p+2× b] etc. When the outermost iterator changes its
value, this pattern is repeated, shifted by one position to the right (A[p + b],
A[p+2× b], A[p+3× b] etc), reusing its elements. This holds for equations
with more than 2 iterators too.
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Table 1: How tiling affects the number of memories accesses and addressing instructions;
the more the ticks are, the less the number of accesses / addressing instructions, are.

L1 L2 Main Mem Addr

Tiling for RF XXX X X XXX

Tiling for RF, L1 XX XXX XX XX

Tiling for RF and L2 XX X XXX XX

Tiling for RF, L1, L2 XX XX XXX X

To exploit data reuse of Rule 17, all the array’s registers interchange their
values in each iteration, e.g. in (Fig. 10 - a1.2), the (in0, in1, in2, in3, in4, in5)
variables interchanging their values in each iteration.

Rule 18. Regarding very small arrays (e.g. filters in image processing al-
gorithms), it is tested whether their iterators are fully unrolled or not (both
solutions are taken).

To sum up, by applying loop tiling for the RF, as explained above, the
numbers of i) load/store instructions (or equivalent the number of L1 data
cache accesses) and ii) addressing instructions, are decreased. The number
of addressing instructions is decreased for three reasons. Firstly, the array
references are replaced by scalar variables and thus the address computations
are simplified, e.g. A(i, j) is replaced by reg variable. Secondly, several
common subscript expressions which occur by unrolling the loops are replaced
by scalar variables, e.g. the array references array(i + j), array(i + j +
1), array(i + j + 2) and array(i + j + 3) are replaced by array(temp),
array(temp+1), array(temp+2) and array(temp+3) respectively. Thirdly,
loop unroll always decreases the number of addressing instructions.

3.7. Decrease the number of data cache and main memory accesses and the
exploration space - utilizing the Data Cache memories parameters

The data cache memories sizes and the subscript equations are fully
exploited, decreasing the number of data cache / main memory accesses
and the exploration space. To utilize the data cache sizes, a data cache
inequality for each data cache is produced, giving all the (near)-optimum tile
sizes. Each inequality contains i) the tile size of each array and ii) the shape
of each array tile.

The proposed methodology holds for each different cache hierarchy. The
number of the levels of tiling for data cache is found by testing; for a 2 levels
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of data cache architecture, 1 level of tiling (either for L1 or L2 data cache),
2 levels of tiling and no tiling solutions, are applied to all the solutions-
schedules that have been produced so far. The optimum number of levels of
tiling cannot easily be found since the data locality advantage may be lost
by the required insertion of extra load/store and addressing instructions,
which degrade performance (Table 1). In table 1, we can see how tiling
affects the number of data cache accesses and addressing instructions, e.g. if
the performance critical parameter is the number of L1 data cache accesses
or the number of addressing instructions, then tiling is not applied for data
cache. The separate memories optimization gives a different schedule for each
memory and these schedules cannot coexist, as by refining one, degrading
another; thus, either a sub-optimum schedule for all the memories or a (near)-
optimum schedule only for one memory can be produced. However, if the
goal is the minimum number of data accesses for a specific memory (let Li),
loop tiling only for Li−1 is applied.

For the reminder of this paper, we refer to architectures having separate
L1 data and instruction cache (vast majority of architectures). In this case,
the program code always fits in L1 instruction cache since we optimize loop
kernels only, whose code size is small; thus, upper level unified/shared caches,
if exist, contain only data. On the other hand, if a unified L1 cache exists,
memory management becomes very complicated.

Loop tiling is applied to category-1 and category-2a arrays only (Sub-
sect. 3.1). The tiles of Category-1 arrays achieve data reuse and therefore
they must definitely fit in data cache. Although category-2a tiles are not
reused, they have to fit in data cache to avoid cache conflicts with the
category-1 ones; in this way Category-1 tiles remain in data cache. Further-
more, Category-2b arrays cannot be partitioned into tiles as their elements
are accessed in a ’random’ way; this leads to a large number of data cache
conflicts due to the cache modulo effect (especially for large arrays). To
eliminate these conflicts, Rule 19 is introduced.

Rule 19. For all the Category-2b arrays, data cache size which equals to the
size of one cache way is granted. In other words, an empty cache line is
granted for each different modulo (with respect to the size of the cache) of
these arrays memory addresses.

In this way the reused tiles remain in data cache.
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Rule 20. For each register file inequality solution (schedule) produced so far,
loop tiling is applied for all data cache memories and for all valid data cache
tile sizes (ineq.( 2)). All tile sizes do not satisfy ineq.( 2), are not considered,
decreasing the exploration space.

The data cache inequality is given by:

0.6× Lk ×
(assoc− v)

assoc
≤ T ile1 + ...+ T ilen ≤ 1.1× Lk ×

(assoc− v)

assoc
(2)

where Lk is the k-level data cache size, assoc is the data cache associa-
tivity (for an 8-way associative data cache, assoc = 8). v value is zero when
no Category-2b array exist and one if at least one Category-2b array exists.
T ilei is the tile size of the ith array and T ilei = T ′

1
×T ′

2
×T ′

n×ElementSize,
where T ′

i is the unroll factor of the i iterator and ElementSize is the size of
each array’s element in bytes (T ilei refers only to Category-1 and Category-
2a, array). The tiling inequality of Matrix-Matrix Multiplication algorithm
is shown in Fig. 8, e.g. T ileC = Tii × Tjj where Tii = 10 and Tjj = 15.

Regarding data cache tile sizes, they have to be multiples of the RF tiles
sizes. Also, the tile sizes produced by L2 data cache, must be multiples of
the tiles sizes produced by L1 data cache and RF (otherwise, a large number
of addressing instructions is needed). Thus, the exploration space is further
decreased.

The inequality bound values are not tight, i.e. 0.6 and 1.1, because
smaller/larger tile sizes which divide exactly the array sizes, may achieve
a lower number of addressing instructions (e.g. having an array of 2048
elements and only 800 fit in data cache, a tile size of 512 will achieve a lower
number of addressing instructions than this of 800).

Statement 12. Each different set of T ′

i values satisfying ineq.( 2) gives a
different schedule

Statement 13. All schedules satisfying ineq.( 2) decrease the number of
data cache / main memory accesses.

Proof 9. Likewise Statement 10.

Ineq.( 2) gives a large number different tile sizes. However, the curve
expressing the performance versus the tile sizes is smooth having a small
number of change points. It is well known that such functions can be
drastically speedup as it is not required to test all its points, i.e. tile sizes.
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//MVM kernel

for (i=0; i! 100; i+=5) {

reg1=0; reg2=0; reg3=0; 

reg4=0; reg5=0;

for (j=0; j!=100; j++) { 

regB=X[j];

reg1+=A[i][j] * regB;

reg2+=A[i+1][j] * regB;

reg3+=A[i+2][j] * regB;

reg4+=A[i+3][j] * regB;

reg5+=A[i+4][j] * regB; 

}

Y[i] = reg1;

Y[i+1]= reg2;

Y[i+2]= reg3;

Y[i+3]= reg4;

Y[i+4]= reg5; }

//write the new array, A’
a=0;

for (i=0; i! 100; i+=5) 

for (j=0; j!=100; j++) {

A’[a]=A[i][j];
a++;}

//new MVM kernel

a=-5;

for (i=0; i! 100; i+=5) {

reg1=0; reg2=0; reg3=0; 

reg4=0; reg5=0;

for (j=0; j!=100; j++) { 

regB=X[j]; a+=5;

reg1+=A[a] * regB;

reg2+=A[a+1] * regB;

reg3+=A[a+2] * regB;

reg4+=A[a+3] * regB;

reg5+=A[a+4] * regB; 

}

Y[i] = reg1; Y[i+1]= reg2;

Y[i+2]= reg3; Y[i+3]= reg4;

Y[i+4]= reg5; }

Figure 9: Two potential output schedules for Matrix Vector Multiplication (MVM)
algorithm. The code shown at the right is produced by changing the data array layout of
that shown at the left.

Statement 14. The nesting level values of the new tiling iterators are found
theoretically (no exploration is applied)

The nesting level values of the new (tiling) iterators are computed. For
each different schedule produced by ineq.( 2), The proposed methodology
computes the total number of data accesses for all the different nesting level
values and the best are selected.

The number of each array’s accesses is found by:
DataAccesses = n × T ile size in elements ×Num of tiles, where n is

the number of times each tile is fetched and equals to (q× r), where q is the
number of iterations exist above the upper iterator of the array’s equation
and r is the number of iterations exist between the upper and the lower
iterators of the array’s equation.

It is important to say that tiling is applied for multiple index variable
subscripts too (type2 equations), e.g. code shown in Fig. 4; the c iterator is
tiled and all elements are fetched just once and in-order (consecutive memory
locations). So far, compilers do not apply tiling in such cases.
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3.8. Find the optimum data array layouts and decrease the exploration space

At this step, the (near)-optimum data array layouts are found. In this
way, the spatial data reuse is further utilized and the number of data cache
misses is further decreased. For each schedule produced so far, the data array
layouts change; both the schedules with the new data array layouts and not,
are propagated to the next step. Both solutions are taken as by changing
the data array layout the additional cost of re-writing the array to main
memory may be high and the number of addressing instructions is increased.
However, there are several cases that by changing the data array layout, the
performance is increased, i.e. a) if the array whose layout is changed is reused
several times, e.g. MMM, b) if the data array layout is precomputed, c) if the
input data are produced by the current application at run time; in this case,
the initialization and the change of the layout, are made together, decreasing
the overhead.

By changing the data array layout, the tiles are written in consecutive
main memory locations, i.e. just as they are fetched (tile-wise) according
to the new schedule, to increase main memory page and data cache line
utilization. In this way the number of the data cache misses is highly
decreased. The multi-dimensional arrays are transformed into 1-d arrays
having tile-wise data layout in main memory, e.g. Fig. 9. To change the
data array layouts, the array subscripts are changed-simplified, i.e. for each
array reference a new variable is replacing the previous subscript equation
and extra addressing instructions are inserted; these addressing instructions
increase/decrease the subscripts values.

Rule 21. If the number of the arrays is larger than the data cache associativ-
ity value, all the array tiles are stored into one array interleaved and tile-wise
to eliminate the number of data cache misses due to the cache modulo effect.
To do this, all the arrays are partitioned into identical number of tiles.

If the number of the arrays is larger than the data cache associativity
value, the number of data cache misses is high even if the sum of the arrays
size is smaller than the cache size. This is because at least one cache way
contains more than one array’s cache lines; this means that tiles do not remain
in data cache as they conflict with each other due to the cache modulo effect.
To overcome this problem, all array tiles are stored into one array interleaved
and tile-wise (all tiles are written in consecutive main memory locations).
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In general, compilers and related works apply loop tiling without taking
into account the data array layouts. In the case that the arrays are not
written tile-wise in main memory, tiling cannot give a small number of data
cache misses for multi-dimensional arrays because tiles are comprised by
array sub-rows which are written in different main memory locations; this
means that the sub-rows will conflict with each other and thus the tiles do
not remain in data cache.

3.9. Create final code and enumerate all solutions

At this step, all the solutions-schedules that have been produced so
far, are transformed into C-code. These codes are compiled by the target
architecture compiler and the binaries run to the target platform to find the
fastest one. Each binary is run only once. Given the input size and the
input data type (e.g. float, double), we do not use different input sets, as
the proposed methodology optimizes applications which are not affected by
the data values (see second paragraph of Section 3). It is important to say
that if the input size or the input data type changes, the whole procedure is
repeated, as the (near)-optimum schedule normally changes.

The number of the binaries tested depends on the application and on
the hardware parameters; the number of binaries tested are from 1000 up
to 100000 (the application execution time affects the compilation time).
However, we can find a solution very close to the best very fast, by testing an
orders of magnitude lower number of binaries. This is achieved by selecting
only a few sets of different tile sizes for the data caches; performance is not
highly affected by changing the data cache tile sizes, suffice they satisfy the
proposed inequalities, i.e. tiles fit in the cache.

In the case that the schedule with the minimum number of data accesses
for a specific memory is needed, the compilation time is very small as i)
the procedure explained in Subsect. 3.7 is applied only for this memory (1
level of tiling) and ii) given that only the minimum number of data accesses
is needed (the number of instructions is not taken into account here), it is
possible to estimate their number, for each schedule, instead of running the
schedules on the target platform.

3.10. Motivation Example (Gaussian Blur)

Let us consider the C code shown in Fig. 11-(e) (Gaussian Blur) and
an architecture of one level data cache. The equations produced are: (r =
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Table 2: Iteration spaces for the Gaussian Blur C-code.

iteration spaces

Different
combinations Iteration spaces (common spaces occur)

eq.(4)-eq.(5)-eq.(6) S1 = (r, c,mr,mc),S2 = (c, r,mr,mc)

eq.(4)-eq.(6)-eq.(5) S1,S2,S3 = (r, c,mc,mr),S4 = (c, r,mc,mr)

eq.(5)-eq.(4)-eq.(6) S5 = (r,mr, c,mc),S6 = (r,mr,mc, c)
S7 = (mr, r, c,mc),S8 = (mr, r,mc, c)
S9 = (c21, k1, c22, k2)

eq.(5)-eq.(6)-eq.(4) S5,S6,S7,S8,S9

eq.(6)-eq.(4)-eq.(5) S10 = (mr,mc, r, c),S11 = (mr,mc, c, r)
S12 = (mc,mr, r, c),S13 = (mc,mr, c, r)

eq.(6)-eq.(5)-eq.(4) S10,S11,S12,S13

Iteration spaces which are excluded

P1 = (r,mc, c,mr),P2 = (r,mc,mr, c)

P3 = (mc, r, c,mr),P4 = (mc, r,mr, c)

P5 = (c,mr, r,mc),P6 = (c,mr,mc, r)

P7 = (mr, c, r,mc),P8 = (mr, c,mc, r)

P9 = (c,mc, r,mr),P10 = (c,mc,mr, r)

P11 = (mc, c, r,mr),P12 = (mc, c,mr, r)

P13 = (c22, k2, c21, k1)

c11, c = c12) (eq.(1)), (r +mr − 2 = c21, c+mc− 2 = c22) (eq.(2)), (mr =
c31,mc = c32) (eq.(3)).

The proposed methodology processes the subscript equations one by one,
for six different combinations, to create all the iteration spaces (Subsec-
tion 3.4 and Subsection 3.5). The iteration spaces created, are shown in
Table 2 (S1−S13). Table 2 also shows the iteration spaces which are excluded
(P1−P13), decreasing the exploration space. The number of iteration spaces
is further increased (Statement 8).

For each one of the S1 − S13 iteration spaces, the register file size is
utilized. Regarding S1, four register file inequalities are produced. The first
of the four is the following:

0.8×RFs ≤ 3 + 2 + 2 + r′ × c′ + 1 +mr′ ≤ 1.2×RFs, if c 6= 1 or r 6= 1
A potential solution (r′ = 2,c′ = 2,mr′ = 1) of the above RF inequality

is shown at the left of Fig. 10. Rin = 1 (only one register is used for this
array) because of the Rule 15 and mc′ = 1 because of the Rule 11. The first 3
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values of the RF inequality correspond to the Liter, V ar and ws respectively
(they are found after the register assignment); Liter = 3 because mr, mc and
c iterators exist in the innermost loop, V ar = 2 because addr1 and addr2
variables exist and ws = 2; the size of the ws depends on the target compiler
and it is found approximately. The second inequality is given due to the
Rule 15 and is the following:

0.8×RFs ≤ 4 + 0 + 2 + 1 + 1 + 1 ≤ 1.2×RFs, if c = 1 and r = 1
Rmask = 1 because of the Rule 15.
Furthermore, if Rule 17 is applied the data reuse between different itera-

tions (registers in0− in5) is exploited too, giving the following inequality (a
potential solution of this inequality is shown at the right of Fig. 10).

0.8×RFs ≤ 3+1+2+ r′× c′+ r′×mr′× c′+mr′ ≤ 1.2×RFs, if c′ ≻ 1
The fourth inequality is produced if the mask array iterators are fully

unrolled and all the array references are replaced by their constant values
(Rule 18 - the mask array does not further exist). In this case the iteration
space is reduced to S1 = (r, c) and Rout = 1, Rin = 1.

To sum up, all the different values satisfying the above inequalities are
possible solutions. This is repeated for all the iteration spaces, i.e. S1 − S13.

All the schedules produced so far are further tiled according to the L1
data cache size, Subsect. 3.4 (solutions that utilize both the register file and
the data cache and solution that utilize only the register file).

The L1 inequality is:
0.6× L1 ≤ Tr × Tc + (Tr +mr)× (Tc +mc) + Tmr × Tmc ≤ 1.1× L1
All the tile sizes are multiples of the corresponding register file tile sizes.

The nesting level values of the tiling iterators are computed as explained in
Subsect.3.4.

Afterwards, all the schedules produced so far change their data array
layouts (we examine the schedules with the new data array layouts and the
schedules with the default data array layouts). Regarding Gaussian Blur, it
is not performance efficient to change the data array layouts (for the vast
majority of architectures). Finally, all the above schedules are compiled by
the target compiler and they run at the target platform to find the fastest
one.
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A1.1)

for (row = 2; row < N-2; row+=2) {

for (col = 2; col < M-2; col+=2) { 

out0=0;out1=0;out2=0;out3=0;

for (mr=0; mr<5; mr++) {addr1=row+mr-2; 

for (mc=0; mc<5; mc++) { 

addr2=col+mc-2;

reg_mask=mask[mr][mc];

out0 += (in[addr1][addr2] * reg_mask) / 159;

out1 += (in[addr1][addr2+1] * reg_mask) / 159;

out2 += (in[addr1+1][addr2] * reg_mask) / 159;

out3 += (in[addr1+1][addr2+1] * reg_mask) / 159;

} }

out[row][col]=out0;

out[row][col+1]=out1;

out[row+1][col]=out2;

out[row+1][col+1]=out3; 

}}

A1.2)

for (row = 2; row < N-2; row++) {

for (col = 2; col < M-2; col+=6) {

out0=0;out1=0;out2=0;out3=0;out4=0;out5=0;

for (mr=0; mr<5; mr++) {

addr1=row+mr-2; 

in0=in[addr1][col-2];

in1=in[addr1][col-1];

in2=in[addr1][col];

in3=in[addr1][col+1];

in4=in[addr1][col+2];

for (mc=0; mc<5; mc++) {

reg_mask=mask[mr][mc]; 

in5=in[addr1][col+3+mc];

out0 += (in0 * reg_mask) / 159;

out1 += (in1 * reg_mask) / 159;

out2 += (in2 * reg_mask) / 159;

out3 += (in3 * reg_mask) / 159;

out4 += (in4 * reg_mask) / 159;

out5 += (in5 * reg_mask) / 159;

in0=in1; in1=in2; in2=in3; in3=in4; in4=in5; 

}  } 

out[row][col]=out0;

out[row][col+1]=out1;

out[row][col+2]=out2;

out[row][col+3]=out3;

out[row][col+4]=out4;

out[row][col+5]=out5;

} }

Figure 10: Two potential solutions of the example shown in Subsect. 3.10.
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// FIR

// BTMVM

// MVM

// MMM

(a)

(b)

(c)

(d)

(e)

(f)

(g)

// Gaussian Blur

// BTMVM on Simplescalar

(f)

// FIR on Intel

(g)

Figure 11: At (a)-(e) the benchmark codes are shown. At (f) and (g), the C-codes produced
for BTMVM and FIR, for Simplescalar and Intel i7 3930K are shown, respectively.
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4. Experimental Results

4.1. Experimental Setup

The experimental results presented in this section, were carried out on
i) a desktop PC with Intel i7 3930K at 3.2 GHz, ii) a Virtex-5 FPGA
ML507 Evaluation Platform (SDK 12.4) using PowerPC-440 processor and
iii) SimpleScalar simulator [1]. The proposed methodology is compared with
i) gcc and clang compilers, ii) iterative compilation technique. In (i), the
operating system Ubuntu 14.04 LTS is used and two different compilers,
i.e. gcc 4.6.3 and clang 3.0. In (ii), only gcc compiler is used. In (iii), the
sslittle-na-sstrix-gcc compiler is used which supports out of order execution.
Optimization level -O3 was used at all cases. The proposed methodology is
not compared with the SOA libraries such as ATLAS or OpenCV, because
they use the SIMD instructions and thus a comparison would be unfair
(these libraries are also algorithm specific and the final code is not produced
automatically).

The comparison is done for 5 well-known data dominant kernels of lin-
ear algebra, image processing and signal processing. These are: Matrix-
Matrix Multiplication (MMM), Matrix-Vector Multiplication (MVM), Gaus-
sian Blur (5 × 5 filter), Finite Impulse Response filter (FIR) and Bisym-
metric Toeplitz Matrix-Vector Multiplication (BTMVM). The C-codes of
these algorithms are shown in Fig. 11-(a)-(e). These algorithms are mainly
selected because they are well known and simple; thus, the reader can easily
understand the results (e.g. how tiling for data cache is applied), which are
explained in detail.

4.2. Performance Comparison

First, a performance comparison using Intel i7 3930K and PowerPC-
440 processors is performed (Fig. 12, Fig. 13, Fig. 14, Fig. 15, Fig. 16).
Regarding the performance of the benchmark C-codes (Fig. 11-(a)-(e)) on
Intel i7 3930K, gcc produces faster binaries than clang for the MMM (almost
4 times faster) and FIR (from 1.25 up to 1.6 times faster), slightly faster for
the Gaussian Blur (1.15 times faster), slightly slower for the BTMVM (1.15
times slower) and approximately equal performance for MVM. Regarding the
proposed methodology output C-codes, gcc produces slighlty faster binaries
than clang. The speedup values, shown in Fig. 12, Fig. 13, Fig. 14, Fig. 15
and Fig. 16, refer to the ratio of the benchmark time (code in Fig. 11-
(a)-(e)) to the proposed methodology time, e.g. the speedup for gcc is
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Figure 12: Performance comparison of the proposed methodology and gcc/clang compilers
for MMM. The size refer to N of Fig. 11-a.

given by (Unoptimized code in gcc) / (optimized code in gcc), while the
speedup for clang by (Unoptimized code in clang) / (optimized code in
clang). The proposed methodology achieves higher speedup values on Intel
than on PowerPC; PowerPC compiler is more aggressive (it applies more
efficient transformations to the benchmark codes), resulting to faster binary
code. The speedup values are from 1.8 up to 18 and from 1.9 up to 4.2, for
Intel and PowerPC, respectively. As it was expected, at all algorithms, the
speedup increases according to the input size; as the memory size increases,
the memory management problem becomes more critical. Regarding MMM
and Gaussian Blur, the proposed methodology achieves the largest speedup
values (Fig. 12, Fig. 13), as i) their arrays are of larger size and ii) these
algorithms have more data reuse; memory management has a larger effect in
such cases. A more detailed analysis for each algorithm, follows.

Regarding MMM (Fig. 12), the speedup is much higher in clang (from 7.5
up to 18.3) than in gcc (from 3.9 up to 8.1). This is because the benchmark
code shown in Fig. 11-(a), is almost four times slower in clang; this means
that gcc applies transformations in a more efficient way here. Also, the
PowerPC compiler applies efficient transformations to the benchmark code
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Figure 13: Performance comparison of the proposed methodology and gcc/clang compilers
for MVM. The size refer to M of Fig. 11-b.
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and thus a smaller speedup is achieved (from 1.8 up to 3.3). Regarding the
proposed methodology output C-codes, gcc produces about 1.5 times faster
binaries. Gcc, clang and all other related tools and libraries, apply loop tiling
without taking into account the data array layouts and the memory hierarchy
parameters; this leads to a large number of data cache misses (it is explained
in the last paragraph of Subsect. 3.8). In the case that L2 ≻ (4 × N2) (B
array fits in L2), the best schedule found applies loop tiling only for L1 data
cache as follows. The arrays are partitioned in such a way that two rows of
A and p1 columns of B fit in L1 (the proposed methodology gives column-
wise layout for B); when the first row of A is multiplied by p1 columns of
B, the next row of A is fetched and it is multiplied by the same columns
of B as before etc. For larger array sizes, there is no p1 number that two
rows of A and p1 columns of B fit in L1 and this is why the arrays have
to be partitioned even more; in this case, the proposed methodology applies
loop tiling for L2 cache too, i.e. 3 rectangular tiles (one for each matrix)
have to fit in L2. It is important to say that in this case, sub-rows of A
are multiplied by sub-columns of B; however, the sub-rows elements are not
written in consecutive main memory locations and this is why the number
of data cache misses is highly increased. Thus, when the MMM arrays are
partitioned into rectangular tiles, their data layouts must change (A and B
arrays), from row-wise to tile-wise (the change of the layouts is included to
the execution time).

Regarding MVM (Fig. 13), gcc produces higher quality code than clang.
The best schedules produced by the proposed methodology use k registers
for Y, 1 for A and 1 for X. The output schedules are similar to that shown
in Fig. 13. Changing the data array layout of matrix A is not performance
efficient here because i) A array is very large compared to the others (Y,X),
ii) it is not reused (each element of A is accessed only once). Regarding
Intel processor, tiling for data cache is not performance efficient here since
the reused arrays, i.e. Y and X, are small and they fit in data cache in
most cases. On the other hand, tiling for data cache is applied for PowerPC
processor (large array sizes only). The best tiling solutions for MVM that
the proposed methodology gives are as follows. The matrix A is partitioned
in rectangular tiles of size r × c where c ≫ r and the array X is partitioned
into tiles of size c; the schedule defines that each tile of X is multiplied by all
possible tiles of A.

Regarding BTMVM (Fig. 14), the proposed methodology achieves double
speed on PowerPC. This is because the abs() function has a larger effect on
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the performance of PowerPC processor since abs() routine needs more cycles
at PowerPC than at Intel. Also, clang produces slightly faster binaries than
gcc for the benchmark code here. The C-code produced by the proposed
methodology here is similar to that shown at the right of Fig. 11-(f) (more
registers for Y and A are used). The proposed methodology assigns A
array elements into registers which interchange their values in each iteration
(Rule 17 has been applied); thus a smaller number of abs functions is executed
increasing performance even more. Loop tiling for L1 is applied only for
PowerPC as the array sizes are small in contrast to the large Pentium cache
sizes.

Regarding FIR (Fig. 15), the proposed methodology achieves the lowest
performance gain, as FIR arrays have very small size and data reuse is small.
The proposed methodology output code for clang compiler is shown at the left
of Fig. 11-(g) (double precision floating point values). For double precision
floating point values, clang and gcc use the XMM registers of Pentium and
this is why 15 variables are used for the FIR arrays (Intel contains 16 XMM
registers). Loop tiling for L1 is applied only for PowerPC as the array sizes
are small in contrast to the large Pentium caches.

Regarding Gaussian Blur (Fig. 16), the speedups are about the same at
all cases. The schedules shown in Fig. 10 achieve high execution speed at
both processors. The schedules with tile-wise layout for input matrix, are
not performance efficient because even in this case, data locality cannot be
achieved. When tiling for data cache is applied, the best C-codes generated
by the proposed methodology, partition the arrays vertically into parts (sub-
images of size M × p1).

4.3. Comparison on data accesses and arithmetic instructions

Furthermore, a comparison on the total number of L1 data cache accesses,
main memory data accesses and arithmetic instructions is performed, on
SimpleScalar simulator (right of Fig. 17). The architecture used here, consists
of one level of data and instruction cache. To obtain the L1 data cache
accesses gain values, the proposed methodology applies tiling for the RF
only. Furthermore, to obtain the main memory data accesses values, the
proposed methodology applies tiling for both RF and L1; in this case the L1
data cache size is chosen to be smaller than the arrays data (otherwise loop
tiling is useless). It is important to say that SimpleScalar simulator uses a
more naive gcc compiler (sslittle-na-sstrix-gcc) in contrast to that of Pentium
and PowerPC and thus loop tiling is not applied by gcc. The number of L1
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Figure 17: Comparison of the proposed methodology and gcc on SimpleScalar simulator.

and main memory accesses, highly depend on the input size and on the cache
size and associativity. The larger the ratio of the array sizes to data cache,
the larger the number of data cache accesses is. Furthermore, the smaller
the data cache associativity is, the more critical the memory management
problem becomes (in Fig. 17, the data cache is four-way associative). The
data accesses values shown in Fig. 17, are not the maximum ones, but the
average ones (a wide range of array sizes and four-way associative data
cache, are taken). It is important to say that for direct-mapped data cache
memories, the gain values are much larger than those shown in Fig. 17.

Regarding L1 data cache accesses, the proposed methodology achieves a
gain from 1.8 up to 6.6 (Fig. 17). The BTMVM achieves the largest gain
because all its three arrays are reused (all arrays achieve data reuse); the
C-code produced is that shown at the right of Fig. 11-(f); rule 17 has been
applied to exploit the data reuse of A elements. On the other hand, MVM
achieves the smallest gain value, because the size of the reused data (Y and
X arrays) is small, compared to the total arrays’ size (array A is many times
larger than Y and X); the code produced by the proposed methodology is
similar to that shown at the left of Fig. 9.

Regarding main memory data accesses (Fig. 17), the proposed method-
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Table 3: The proposed methodology is compared with iterative compilation. It achieves
higher execution speed, in a orders of magnitude smaller compilation time.

MMM MVM Gaussian Blur FIR BTMVM

Speedup 2.2 1.04 1.31 1.02 1.45

ology achieves a large gain value for MMM; this is because i) the size of the
arrays is many times larger than the L1 size (for medium matrix sizes, e.g.
512 × 512, the arrays size is 3Mbytes), ii) MMM has a lot of data reuse,
iii) the A and B arrays use tile-wize data arrays layouts (the change of the
layouts is included to the Simulation). Regarding FIR, if the L1 data cache
size is smaller than twice the size of the filter array, loop tiling is necessary.
This is because filter array and a part of in array (of the same size) are
loaded in each iteration; if L1 is smaller than this value, the filter array
does not remain in L1 and it is fetched many times from main memory (this
is why a very large gain is achieved). The proposed methodology partitions
filter array in such a way that L1 is larger than twice the size of the array
(the C-code produced here is that shown at the left of Fig. 11-(g) with an
additional loop above the i loop - the j loop is tiled). Regarding MVM,
the number of main memory data accesses is small as the size of the reused
data (Y and X arrays) is small compared to the total arrays size (array A
is many times larger than Y and X); the code produced by the proposed
methodology is similar to that shown at the left of Fig. 9. The proposed
methodology achieves a large gain value for BTMVM too. The most efficient
way of tiling for L1, is the following. The X array is partitioned into tiles
and each tile of X is multiplied by the whole A. Regarding Gaussian Blur,
the images are partitioned vertically into smaller images.

Regarding the number of arithmetic instructions (Fig. 17), the proposed
methodology achieves from 1.9 up to 4.3 less arithmetic instructions. This is
because the proposed methodology decreases the number of the addressing
instructions (see last paragraph of Subsection 3.6). The largest arithmetic
instructions gain value is achieved for Gaussian Blur because Rule 18 has been
applied and thus the Gaussian filter elements have been replaced by their
values. The other 4 algorithms achieve about the half arithmetic instructions.

4.4. Comparison with Iterative Compilation and other related work

Finally, the proposed methodology is compared with iterative compilation
technique on Intel processor. We used almost all the existing compiler trans-
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formations, for the above five algorithms; as it was expected, the compiler
transformations that affect performance are: loop interchange, loop tiling,
loop unroll, scalar replacement, register allocation (via graph coloring). It is
important to say that the compilation time is enormous, and to be decreased,
only power of 2 input sizes are used. Furthermore, the tile sizes and the unroll
factor values are 2, 4, 8, 16, ..., N/2. Loop tiling and register allocation are by
far, the most performance efficient transformations here.

We used the gcc compiler (Table 3) and the C-codes shown in Fig. 11-(a)-
(e). Regarding MMM, the proposed methodology achieves double speed for
three reasons (Table 3). Firstly, to exploit the memory hierarchy architecture,
the proposed methodology applies one level of tiling for each memory, i.e.
RF, L1, L2 (for most input sizes). Iterative compilation applies only one
level of tiling for each loop, which is not efficient, since MMM has a huge
amount of data. Secondly, the proposed methodology changes the data array
layouts of A and B from row-wise to tile-wise, as the matrices have been
partitioned into smaller ones; iterative compilation does not take into account
the data array layouts. Thirdly, in contrast to register allocation via graph
coloring, the proposed methodology applies register allocation by taking into
account the data reuse and production-consumption. Regarding BTMVM,
the proposed methodology achieves a speedup of 1.43 (Table 3). This is
because data reuse is fully exploited; the proposed methodology applies
Rule 17 here (the C-code produced is similar to that shown at the right
of Fig. 11-(f)). By applying Rule 17, the number of data cache accesses
and the number of abs functions are decreased, increasing performance.
Regarding Gaussian Blur, the proposed methodology achieves a performance
gain of 1.28. This is because it applies register allocation more efficient,
exploiting data reuse. Regarding MVM and FIR, the proposed methodology
and iterative compilation find almost the identical schedules. To sum up,
the proposed methodology achieves higher execution speed than iterative
compilation in a orders of magnitude smaller compilation time.

In section 2, we explained why the proposed methodology is not compared
with the SOA libraries referred to Section 2. However, the proposed method-
ology is compared with [29] and [30] which are faster than ATLAS library.
In [29] and [30] we give a matrix-matrix and a matrix-vector (when the matrix
A is regular, Toeplitz and Bisymmetric Toeplitz) multiplication methodology,
respectively; we give the schedules achieving high performance for a wide
range of hardware architectures. The proposed methodology cannot be
compared with [31] because FFT contains nonlinear subscript equations (see
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second paragraph of Section 3). Also, the proposed methodology is not
compared with [32] (Canny algorithm); this is because in [32], the four Canny
kernels are optimized together and instead of four, one output loop kernel is
produced. The proposed methodology optimizes each loop kernel separately
and thus it cannot produce the schedules discussed in [32].

Regarding MVM, the proposed methodology produced all the schedules
discussed in [30]. Regarding MMM, [29] uses the SIMD vector instructions
and therefore the extra 128-bit XMM registers; thus, we will not make a
comparison concerning the schedules utilizing the RF (Subsect.3.6). Except
from the schedules utilizing the RF, the proposed methodology produced
all the schedules used at [29]. The (near)-optimum data array layouts,
data cache tile sizes/shapes and the iterators nesting level values, are pro-
duced. Regarding the BTMVM, the proposed methodology produced the
exact schedules discussed in Subsection 3.1.1 of [30] but not in Subsection
3.1.2. This is because a) these schedules are not performance efficient in this
architecture, b) in Subsection 3.1.2 of [30], BTMVM consists of not one, but
of several output loop kernels, with many extra if-conditions; the proposed
methodology, in its present form, does not produce multiple output loop
kernels and if conditions.

5. Conclusions

We present a new methodology of speeding up loop kernels, for a wide
range of algorithms and computer architectures. The major software and
hardware parameters are fully exploited, giving better solutions, smaller
search space, smaller code size and smaller compilation time, than the SOA
libraries and iterative compilation techniques.
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