
A Matrix--Matrix Multiplication methodology for
single/multi-core architectures using SIMD

KELEFOURAS, Vasileios <http://orcid.org/0000-0001-9591-913X>,
KRITIKAKOU, Angeliki and GOUTIS, Costas

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/18355/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

KELEFOURAS, Vasileios, KRITIKAKOU, Angeliki and GOUTIS, Costas (2014). A
Matrix--Matrix Multiplication methodology for single/multi-core architectures using
SIMD. The Journal of Supercomputing, 68 (3), 1418-1440.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/153533221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Noname manuscript No.
(will be inserted by the editor)

A Matrix-Matrix Multiplication Methodology for
single/multi-core architectures using SIMD

Vasilios Kelefouras, Angeliki Kritikakou

and Costas Goutis

Received: date / Accepted: date

Abstract In this paper, a new methodology for speeding up Matrix-Matrix
Multiplication using Single Instruction Multiple Data unit, at one and more
cores having a shared cache, is presented. This methodology achieves higher
execution speed than ATLAS state of the art library (speedup from 1.08 up to
3.5), by decreasing the number of instructions (load/store and arithmetic) and
the data cache accesses and misses in the memory hierarchy. This is achieved
by fully exploiting the software characteristics (e.g. data reuse) and hardware
parameters (e.g. data caches sizes and associativities) as one problem and not
separately, giving high quality solutions and a smaller search space.

Keywords Matrix-Matrix Multiplication · data cache · cache associativity ·
multi-core · SIMD · memory management

1 Introduction

The state of the art (SOA) hand/self-tuning libraries for linear algebra and
Fast Fourier Transform (FFT) algorithm, such as ATLAS [54], OpenBLAS [1],
GotoBLAS2 [29], Eigen [19], Intel MKL [24], PHiPAC [4], FFTW [13], and
SPIRAL [35], manage to find a near-optimum binary code for a specific appli-
cation using a large exploration space (many different executables are tested
and the fastest is picked). The development of a self-tuning library is a difficult
and time-consuming task for two reasons. Firstly, many parameters have to be
taken into account, such as the number of the levels of tiling, tile sizes, loop
unroll depth, software pipelining strategies, register allocation, code genera-
tion, data reuse, loop transformations. Secondly, the optimum parameters for
two slightly different architectures are different. Such a case is Matrix-Matrix

Vasilios Kelefouras
University of Patras
E-mail: kelefouras@ece.upatras.gr

2 Vasilios Kelefouras, Angeliki Kritikakou and Costas Goutis

Multiplication (MMM) algorithm, which is a major kernel in linear algebra
and also the topic of this paper.

The optimization sub-problems in compilers and MMM are interdepen-
dent; this means that by optimizing one sub-problem, another is degraded.
These dependencies require that all phases should be optimized together as
one problem and not separately. Toward this, much research has been done,
either to simultaneously optimize only two phases, e.g. register allocation and
instruction scheduling (the problem is known to be NP-complete) [41] [44] or
to apply predictive heuristics [3] [18]. Nowadays compilers and related works,
apply either iterative compilation techniques [49] [10] [26] [32], or both itera-
tive compilation and machine learning compilation techniques to restrict the
configurations’ search space [31] [40] [36] [45] [47] [2]. A predictive heuristic
tries to determine a priori whether or not applying a particular optimization
will be beneficial, while at iterative compilation, a large number of different
versions of the program are generated-executed by applying transformations
and the fastest version is selected; iterative compilation provides good results,
but requires extremely long compilation times. The aforementioned SOA li-
braries optimize all the above parameters separately by using heuristics and
empirical techniques.

The major contributions of this paper are six. Firstly, we introduce a new
MMM methodology which is faster than the ATLAS SOA library. Secondly,
the optimization is done by fully exploiting the software (s/w) characteristics
and the major hardware (h/w) parameters, as one problem and not separately,
giving high quality solutions and a smaller search space. Thirdly, the final
schedule is found theoretically and not experimentally, according to the input
size and to the h/w parameters. Furthermore, this is the first time for this
algorithm that the data cache associativity is fully exploited. Also, this is
the first time that loop tiling is applied according to the data cache sizes,
data cache associativities and the data arrays layouts. At last, the proposed
methodology, due to the major contribution of number (ii) above it gives a
smaller code size and a smaller compilation time, as it does not test a large
number of alternative schedules, as the ATLAS library does.

The proposed methodology is compared with the SOA ATLAS library. It is
tested on desktop Personal Computers (PCs) using the Single Instruction Mul-
tiple Data (SIMD) unit; the Intel Pentium core 2 duo and i7 processors have
been used. Also, the Valgrind [38] tool is used to measure the total number of
instructions executed and the number of L1 and L2 data accesses and misses.
Although the proposed methodology is written in C language using Streaming
SIMD Extension (SSE) intrinsics, it achieves speedup from 1.08 up to 3.5 over
ATLAS for one core; if the proposed methodology would be implemented in
assembly language a higher speedup would occur (the proposed methodology
is at a high level and this is beyond the scope of this paper). The proposed
methodology achieves a very large performance gain for small matrices sizes,
a large performance gain for medium matrices sizes and a significant gain for
large matrices sizes. Although it seems that the MMM optimization problem
for small and medium matrices sizes is not important, there are applications

Title Suppressed Due to Excessive Length 3

that MMM lies inside large loops, and hence high performance for smaller
matrices sizes is critical. In this paper, the MMM scheduling for single core
CPUs and for multi core CPUs, is explained in detail, making it easy to be
implemented by everyone.

The remainder of this paper is organized as follows. In Sect. 2, the related
work is given. The proposed methodology is presented in Sect. 3. In Sect. 4, the
experimental results are presented while Sect. 5 is dedicated to conclusions.

2 Related Work

There are several works optimizing the MMM algorithm for one core [17,16,
29,5,15,8,37,48,56,30]. The aforementioned works use loop-tiling transforma-
tion to utilize the data cache hierarchy and the register file. The problem
is partitioned into smaller problems (sub-problems) whose smaller matrices
(Tiles/sub-matrices) fit in the smaller memories. Although loop-tiling is nec-
essary, tiles are found by taking into account either the cache sizes, or the
data arrays layouts; we claim that loop tiling must take into account, the
cache sizes, their associativities and the data arrays layouts, together. For ex-
ample, according to ATLAS, the size of the three tiles (one for each matrix)
must be lower or equal to the cache size. However, the elements of these tiles
are not written in consecutive main memory locations and thus they do not
use consecutive data cache locations. This means that having a set-associative
cache (the general purpose processors have set-associative caches), they can-
not simultaneously fit in data cache duo to the cache modulo effect. In [56],
analytical models are presented for estimating the optimum tile size values
assuming only fully associative caches, which in practice are very rare. In con-
trast to the proposed methodology, the above works find the scheduling and
the tile sizes by searching, since they do not exploit all the h/w and the s/w
constraints. However, if these constraints are fully exploited, the optimum so-
lution can be found by enumerating only a small number of solutions; in this
paper, tile sizes are given by inequalities which contain the cache sizes and
cache associativities.

There are several works that optimize the MMM algorithm for many cores [57,
14,9,33,12,21,23,28,22,11,50,42,27] and for GPUs [20,25]. Regarding multi-
core architectures, the vast majority of the related works, such as SRUMMA [27],
deals with the cluster architectures and mainly with how to partition the
MMM problem into many distributed memory computers (distributed mem-
ory refers to a multiple-processor computer system in which each processor has
its own private memory). SRUMMA [27] describes the best parallel algorithm
which is suitable for clusters and scalable shared memory systems. About half
of the above works, use the Strassen’s algorithm [46] to partition the MMM
problem into many multi core processors; Strassen’s algorithm minimizes the
number of the multiplication instructions sacrificing the number of add in-
structions and data locality. The MMM code for one core, is either given by

4 Vasilios Kelefouras, Angeliki Kritikakou and Costas Goutis

Cilk tool [7] or by cblas sgemm library of ATLAS. Furthermore, [34] and [39]
show how shared caches can be utilized.

ATLAS [54], [55], [53], [52], [51], [43], is an implementation of a high
performance software production/maintenance called Automated Empirical
Optimization of Software (AEOS). In an AEOS enabled library, many different
ways of performing a given kernel operation are supplied, and timers are used
to empirically determine which implementation is best for a given architectural
platform. ATLAS uses two techniques for supplying different implementations
of kernel operations: multiple implementation and code generation. Although
ATLAS is one of the SOA library for MMM algorithm, its techniques for
supplying different implementations of kernel operations concerning memory
management are empirical.

During the installation of ATLAS, on the one hand an extremely complex
empirical tuning step is required, and on the other hand a large number of
compiler options are used, both of which are not included in the scope of this
paper. Although ATLAS is one of the SOA libraries for MMM algorithm, its
techniques for supplying different implementations of kernel operations con-
cerning memory management are empirical and hence it does not provide
any methodology for it. Moreover, for ATLAS implementation and tuning,
there was access at a wide range of hardware architecture details, such as G4,
G5, CoreDuo, and Core2Duo by Apple and UltraSPARC III platform which
ATLAS exploited. Also, the proposed methodology lies at a higher level of
abstraction than ATLAS because the main features of ATLAS are on the one
hand the extremely complex empirical tuning step that is required and on the
other hand the large number of compiler options that are used. These two
features are beyond the scope of the proposed methodology which is mainly
focused on memory utilization. Furthermore, the proposed methodology, AT-
LAS and all the above SOA libraries use the SIMD unit (the performance
is highly increased by executing instructions with 128/256-bit data in each
cycle).

3 Proposed Methodology

This paper presents a new methodology for speeding up Matrix-Matrix Multi-
plication (MMM) using SIMD unit. The proposed methodology achieves high
execution speed in single core and multiple core CPUs having a shared cache
memory, by fully and simultaneously exploiting the combination of the s/w
characteristics (production-consumption, data reuse, MMM parallelism) and
h/w parameters, i.e. the number of the cores, the number of data cache mem-
ories, the size of each memory, the size and the number of the SIMD registers
(XMM/YMM), the associativities of the data caches and the SSE instruc-
tions’ latencies. For different h/w parameters, different schedules for MMM
are emerged.

To utilize the memory hierarchy, the proposed methodology partitions the
three matrices into smaller ones (tiles) according to the memory architecture

Title Suppressed Due to Excessive Length 5

parameters and applies a different schedule for each memory (Subsect. 3.1.1-
3.1.3). The number of the levels of tiling depends on the input size and on the
data cache sizes and it is found by ineq.1 and ineq.2. Although loop tiling de-
creases the number of memories accesses, it increases the number of load/store
and addressing instructions; however, memory management is MMM perfor-
mance critical parameter and thus loop tiling is performance efficient.

For the reminder of this paper, the three matrices’ names and sizes are
that shown in Fig.1, i.e. C = C+A×B, where C, A and B are of size N ×P ,
N ×M and M × P , respectively.

To efficiently use the SSE instructions, ATLAS converts the data layout
of B from row-wise to column-wise. The proposed methodology converts the
data layout of B from row-wise to tile-wise, i.e. its elements are written into
memory just as they are fetched; in this way, the number of data cache misses
is decreased. This routine has also been optimized and its execution time is
included to the total execution time.

The proposed methodology is presented in Subsect. 3.1 and Subsect. 3.2,
when one and all CPU cores are used, respectively.

3.1 Using single CPU core

The proposed methodology partitions the three arrays according to the number
of the memories, their sizes and the data cache associativities and it applies a
different schedule for each memory.

In the case that there is a two level cache architecture (most cases), the
MMM problem is divided into three cases according to the cache sizes and to
the input size (the first case holds for small input sizes, the second for medium
and the third for large ones):

i. SIMD register file utilization - For small matrices sizes (usually smaller
than 90× 90 for typical cache sizes), i.e. if all the data of B and the data of 2
rows of A fit in different ways of L1 data cache (ineq. 1), the scheduling given
in Subsect. 3.1.1 is used.

L1× (assoc− k)

assoc
≥ M × P × element size, (1)

where k = ⌈ 2×M×element size
L1/assoc ⌉ ≤ assoc

2 , L1 is the size of the L1 data cache

memory in bytes, element size is the size of the arrays elements in bytes (e.g.
element size = 4 for floating point numbers) and assoc is the L1 associativity,
e.g. for an 8-way L1 data cache, assoc = 8. M ×P is the size of the B array in
elements. k is an integer and it gives the number of L1 data cache lines with
identical L1 addresses used for 2 rows of A; for the reminder of this paper we
will more freely say that we use k cache ways for A and assoc−k cache ways for
B (in other words A and B are written in separate data cache ways). assoc 6= 1
since direct mapped caches do not exist in SIMD architectures (assoc ≥ 8 in
most modern architectures).

6 Vasilios Kelefouras, Angeliki Kritikakou and Costas Goutis

Given that each row of A is multiplied by all the columns of B, B is reused
N times and thus it has to remain in L1 data cache. To do this, the cache
lines of A must be written in L1 without conflict with the B ones. Two rows
of A have to fit in L1, the current processed row and the next one for two
reasons. Firstly, the next processed row must also be loaded in L1 without
conflict with the B ones. Secondly, when the current processed row has been
multiplied by all the columns of B, the L1 cache lines containing the previous
row of A are replaced by the next processed row ones according to the LRU
cache replacement policy, without conflict with the B ones. To fully utilize
the L1 data cache and to minimize the number of L1 misses, two rows of A
are multiplied by all the columns of B and exact (assoc − 1) cache conflicts
occur (if a larger number of conflicts occurs, the data are spilled from L1;
if a smaller number of conflicts occurs, only a small part of L1 is utilized).
This is achieved by storing the rows of A and the columns of B in consecutive
main memory locations and by using (k × L1

assoc) L1 memory size for A and

((assoc− k)× L1
assoc) L1 memory size for B (ineq. 1). We can more freely say

that this is equivalent to using k cache ways for A and (assoc− k) cache ways
for B. An empty cache line is always granted for each different modulo (with
respect to the size of the cache) of A and B memory addresses. It is important
to say that if we use L1 ≥ (M ×P +2×M)× element size instead of ineq. 1,
the number of L1 misses will be much larger because A and B cache lines
would conflict with each other. To our knowledge, this is the first time for
MMM algorithm that the cache associativity is utilized.

The C array is stored into main memory infrequently (usually 1 cache line
is written to memory when 1 entire row of A has been multiplied by 4 columns
of B) and thus the number of conflicts due to C can be neglected (victim cache
if exists, eliminates the misses of C).

ii. L1 data cache and SIMD register file utilization - For medium matrices
sizes where ineq. 1 does not hold, another schedule is used. If all the data of
A and a Tile1 of B fit in separate ways of L2 cache (ineq. 2), the scheduling
given in Subsect. 3.1.2 is used.

L2× (assoc− 1)

assoc
≥ N ×M × element size (2)

where L2 is the size of the L2 cache, assoc is the L2 associativity and
element size is the size of the arrays elements in bytes (e.g. element size = 4
for floating point numbers). N ×M is the size of array A in elements.

The size of A is much larger than the size of a Tile1 of B and thus ((assoc−
1)× L2

assoc) and (L2
assoc) L2 size is needed for A and B-C arrays, respectively. In

most architectures the size of one Tile1 of B (suppose T ile1) is smaller than
one L2 way since i) the associativity of L2 cache is always larger than 8, i.e.
assoc ≥ 8, ii) L2 ≥ 8× L1 and iii) L1 ≻ T ile1.

iii. L2, L1 and SIMD register file utilization - For large matrices sizes
(usually larger than 900 × 900 for typical cache sizes), where all the data of
A and a Tile1 of B, do not fit in L2 cache, i.e. ineq. 2 does not hold, the
scheduling given in Subsect. 3.1.3 is used.

Title Suppressed Due to Excessive Length 7

For arrays sizes that are close to two of the above cases (i, ii and iii), both
solutions are tested and the fastest is picked.

Most of the current general purpose processors contain separate L1 data
and instruction caches and thus we can assume that shared/unified caches,
contain only data. This is because the MMM code size is small and it fits in
L1 instruction cache here.

The schedules which utilize the number of XMM/YMM registers, L1 and
L2 sizes, corresponding to the three cases above, are given in the Subsect. 3.1.1,
Subsect. 3.1.2 and Subsect. 3.1.3, respectively. In Subsect. 3.1.4, we give the
schedule where B data layout is transformed from row-wise to tile-wise.

3.1.1 SIMD register file utilization

The optimum production-consumption (when an intermediate result is pro-
duced it is directly consumed-used) of array C and the sub-optimum data
reuse of array A have been selected by splitting the arrays into tiles according
to the number of XMM/YMM registers (eq. 3).

R = m+ 1 + 1 (3)

where R is the number of the XMM/YMM registers and m is the number
of the registers used for C array. Thus, we assign m registers for C and 1
register each for A and B.

For small matrices sizes (ineq. 1 holds), each row of A is multiplied by
all columns of B, optimizing the L1 data cache size and associativity (Fig. 1
where p1 = P).

The illustration example consists of the scenario that there are 8 XMM reg-
isters (XMM0:XMM7 of 16 bytes each) and the arrays contain floating point
data (4 byte elements). The first 4 elements of the first row of A (A(0, 0 : 3))
and the first four elements of the first column of B (B(0 : 3, 0)) are loaded from
memory and they are assigned into XMM0 and XMM1 registers respectively
(the elements of B have been written into main memory tile-wise, i.e. just
as they are fetched). XMM0 is multiplied by XMM1 and the result is stored
into XMM2 register (Fig. 2). Then, the next four elements of B (B(0 : 3, 1)),
are loaded into XMM1 register again; XMM0 is multiplied by XMM1 and the
result is stored into XMM3 register (Fig. 1, Fig. 2). The XMM0 is multiplied
by XMM1 for 6 times and the XMM2:XMM7 registers contain the multipli-
cation intermediate results of the C array. Then, the next four elements of A
(A(0, 4 : 7)) are loaded into XMM0 which is multiplied by XMM1 for 6 times,
as above (Fig. 2); the intermediate results in XMM2:XMM7 registers, are al-
ways produced and consumed. When the 1st row of A has been fully multiplied
by the first 6 columns of B, the four values of each one of XMM2:XMM7 regis-
ters are added and they are stored into main memory (C array), e.g. the sum
of the four XMM2 values, is C(0, 0).

The above procedure continues until all the rows of A have been multiplied
by all the columns of B. There are several ways to add the XMM2:XMM7 data;

8 Vasilios Kelefouras, Angeliki Kritikakou and Costas Goutis

C A Bp1

...

R-2

Tile1

P

M

M

NN

P

...

..
.

...

XMM0
XMM1

XMM2
XMM3

XMM4
XMM5

XMM6
XMM7

..
.

Tile1Tile1

Fig. 1 The proposed methodology for one core when tiling for L1 data cache is used

Fig. 2 MMM C code using SSE intrinsics for the 3.1.1 case

three of them are shown in Fig. 3, where 4 XMM registers are used to store
the data of C, i.e. XMM1, XMM2, XMM3 and XMM4 (the SSE instructions’
latencies are taken into account here). The first one (Fig. 3-a) sums the four
32-bit values of each XMM register and the results of the four registers are
packed in one which is stored into memory (the four values are stored into
memory using one SSE instruction). The second one, sums the four 32-bit
values of each XMM register and then each 32-bit value is stored into memory
separately (without packing). For most SIMD architectures, the second (Fig. 3-
b) is faster than the first one, because the store and add operations can be
executed in parallel (the first one has a larger critical path). The third one
(Fig. 3-c), unpacks the 32-bit values of the four registers and packs them

Title Suppressed Due to Excessive Length 9

a) b)

c)

Fig. 3 Three different ways for unpacking the multiplication results using SSE intrinsics;
XMM1, XMM2, XMM3, XMM4 contain the C values. For most SIMD architectures, the
three schedules are in increased performance order.

into new ones in order to add elements of different registers. For most SIMD
architectures, the third is faster than the other two ones, because unpacking
and shuffle operations usually have smaller latency and throughput values than
slow hadd operations.

For small matrices sizes (ineq.1 holds), the above schedule, i.e. the schedule
with the optimum production-consumption of C (each row of A is multiplied
by several columns of B), is the optimum here. is the optimum. We found this
schedule theoretically and not experimentally, by exploiting the s/w character-
istics and the h/w parameters. This is because each register of C contains more
than one C values which have to be added, unpacked and stored into memory;
thus, when the production-consumption is maximized, the number of SSE in-
structions is minimized. Even if the arrays sizes are very large and k iterator
in Fig. 2 or equivalent M dimension in Fig. 1, has to be tiled, the tile with the
larger tile size possible in M dimension is selected, to decrease the number of
SSE instructions (more details in Subsect. 3.1.3). Furthermore, the data reuse
of A is the largest possible according to the number of XMM/YMM registers;
each intermediate result of C is produced-consumed M times and each element
of A is reused R− 2 times.

10 Vasilios Kelefouras, Angeliki Kritikakou and Costas Goutis

3.1.2 L1 data cache utilization

For medium matrices sizes (ineq. 2 holds), another schedule is used. The B
array is partitioned into Tile1 tiles of size M × p1 (Fig. 1). The L1 and L2
cache sizes and their associativities are fully exploited.

In general, if the arrays data do not fit in L1 data cache, tiling is applied
to decrease the number of L1 misses. Although we could, we do not select the
schedule achieving the minimum number of L1 data cache misses here, but
we select the schedule achieving the lower number of L1 misses satisfying that
the minimum number of L2 misses is achieved, i.e each array is loaded/stored
from/to main memory just once and the minimum number of SSE and ad-
dressing instructions is achieved. The sub-problems of finding the minimum
number of L1 misses, L2 misses and number of instructions, are interdepen-
dent; no feasible schedule simultaneously optimizes these 3 subproblems. This
is why the proposed methodology optimizes all these sub-problems as one
problem and not separately. As we have experimentally been observed (exper-
imental results section - Table 1), for medium input sizes, ATLAS achieves
a lower number of L1 misses than the proposed methodology; however, the
proposed methodology achieves higher performance for the reasons explained
above.

To decrease the number of L1 data cache misses, the largest p1 size is
selected so that 2 rows of A and one Tile1 of B (M × p1) fit in separate ways
of L1 data cache (ineq. 4 and Fig. 1). Since ineq. 2 holds, there is a p1 value
where p1 ≥ (R− 2) and 2 rows of A and p1 columns of B fit in L1 data cache;
this is because the L2 size is restricted by the L1 size. We select the maximum
p1 size giving ineq. 4; p1 is a multiple of (R− 2).

L1× (assoc− k)

assoc
≥ p1×M × element size (4)

where k = ⌈ 2×M×element size
L1/assoc ⌉ ≤ assoc

2 , L1 is the size of the L1 data cache

memory, M is the size of each row of A in elements, element size is the
size of the arrays elements in bytes and assoc is the associativity, e.g. for
an 8-way data cache, assoc = 8. k value gives the number of L1 cache lines
with identical L1 address used by array A. If p1 does not equally divide M ,
padding instructions are needed and performance may be degraded; p1 sizes
that equally divide M are preferable.

Each Tile1 of B (M × p1) is reused N times (it is multiplied by N rows of
A) and thus it has to remain in L1 data cache (all the elements of Tile1 of B
are written in consecutive memory locations). To do this, two rows of A (the
current processed row and the next one) must be written in L1 data cache
without conflict with the Tile1 of B. Furthermore, the two rows of A and the
Tile1 of B must be written in cache having k and (assoc − k) identical L1
addresses, respectively for minimizing the number of the L1 misses. In most
cases, assoc = 8 and two rows of A occupy size that equals to 1 or 2 L1 ways
while the Tile1 of B occupies size that equals to 6 or 7 L1 ways, respectively.

Title Suppressed Due to Excessive Length 11

Regarding C array, the C cache lines are fetched infrequently (one cache
line is written to memory when 1 entire row of A is multiplied by several
columns of B) and thus the number of conflicts due to C can be neglected
(victim cache eliminates the misses of C). This is the first time for MMM that
the data cache associativity is fully utilized.

The schedule is shown in Fig. 1. Each row of A is multiplied by the (R−2)
columns of the first Tile1 of B, exactly as in Subsect. 3.1.1, utilizing the number
of XMM/YMM registers. Then, the same row of A as above, is multiplied by
the next (R − 2) columns of the first Tile1 of B etc (Fig. 1). This is repeated
until the first row of A has been multiplied by all the columns of the first Tile1
of B. Then, the remaining N −1 rows of A are multiplied one after another by
the same Tile1 of B as above. After the first Tile1 of B has been multiplied by
all rows of A the next one is fetched and it is again multiplied by all the rows of
A, etc (A is loaded from L2 data cache not from main memory). The optimum
data reuse of B and the sub-optimum data reuse of A are selected according to
the L1 data cache size and associativity. Regarding L1 data cache accesses, the
C, A and B arrays are accessed 1, P/p1 and 1, respectively. Regarding main
memory data accesses, the C, A and B arrays are loaded/stored just once.

As it has already been mentioned, we do not select the schedule achieving
the minimum number of L1 data cache misses here, but the schedule achiev-
ing the lower number of L1 misses satisfying that each array is loaded/stored
from/to main memory just once and the minimum number of SSE and ad-
dressing instructions is achieved. All arrays are fetched just once from main
memory since the whole A is chosen to fit in L2 data cache (ineq. 2) and the
Tile1 of B is chosen to fit in L1 data cache(ineq. 4). Moreover, the minimum
number of SSE instructions (unpack, shuffle, add and load/store instructions)
is achieved because the M dimension has not been tiled and the minimum
number of addressing instructions is achieved because only one of the three
loops is tiled. Both are shown in experimental results section (Table 1).

3.1.3 L2 data cache utilization

For large arrays sizes, ineq.2 cannot give a p1 value where p1 ≥ (R − 2) and
thus to decrease the number of main memory accesses, the arrays are further
partitioned into Tile2 tiles (Fig. 4). The optimum data reuse of A and the
sub-optimum data reuse of B is achieved according to the L2 data cache size
and associativity. The number of SIMD instructions is the minimum since the
tile sizes are as large as possible in the M dimension and the number of the
addressing instructions is the minimum because only one of the three loops is
tiled here.

Now, instead of multiplying rows of A by rows of B, sub-rows of size m2
are multiplied. The matrix A is partitioned into Tile2 tiles of size n2 × m2
(Fig. 4). Also, the Tile1 of B changes its size to m2 × p1. If ineq. 4 cannot
give a p1 value where p1 ≥ (R − 2) and p1 is a multiple of R − 2, the largest
p1 value for m2 = M/2 is selected that p1 ≥ (R − 2), ineq. 5. If ineq. 5, still
cannot give a p1 value that p1 ≥ (R− 2), m2 = M/3 is selected and etc.

12 Vasilios Kelefouras, Angeliki Kritikakou and Costas Goutis

C A B

m2

... m
2

p1

n
2

Tile2

...n
2 ...

...

P

M

M

NN

P

..
.

…

...

...

...
..

.

..
.

..
.

...

...

...

...

Tile1Tile2

…

…

…

..
.

..
.

..
.

..
.

p1

Fig. 4 The proposed methodology for one core when tiling for L2 and L1 data cache is
used

L1× (assoc− k)

assoc
≥ p1×m2× element size (5)

where k = ⌈ 2×m2×element size
L1/assoc ⌉ ≤ assoc

2 , m2 = M
1 , M

2 , ..., M
n and n is posi-

tive integer (n ≥ 1).
Two sub-rows of A and p1 sub-columns of B of size m2, have to fit in

separate ways of L1 data cache. It is important to say that ineq. 5 holds
only if the tiles elements of A and B are written in consecutive main memory
locations (explain further below); otherwise, the tiles sub-rows/sub-columns
will conflict with each other due to the cache modulo effect.

The smallest n value is selected since the larger the size of m2, the lower
the number of the SIMD arithmetic and load/store instructions (the registers
containing the C values, are unpacked, added and loaded/written from/to
memory less times). However, there are cases that the second smaller n value
is selected since it exploits better the L1 data cache size. For example, suppose
that there is an L1 data cache of size 32 kbyte, 8-way set associative (each way
is 4096 bytes). If m2 = 600, k = ⌈1.17⌉ = 2, two and six L1 ways are used for
A and B with exploitation ratios of 4800

8192 and 19200
24576 , respectively (the larger the

exploitation ratio the larger the cache utilization). If m2 = 400, k = ⌈0.78⌉ =
1, the corresponding exploitation ratios are of 3200

4096 and 25600
28672 , respectively. If

m2 = 400, a larger number of addressing and load/store instructions (relative
to m2 = 600) exist, thereby enabling the achievement of larger L1 exploitation
rations; however, the actual performance depends on the hit latency memory
values and the SSE instructions’ latencies.

To efficiently use the L2 cache, the array A is further partitioned into T ile2
tiles. A T ile2 tile of A (size of n2×m2), a tile1 tile of B (size of m2× p1) and
a Tile2 of C (size of n2 × p1), have to fit in L2 cache (ineq. 6). Array A uses
assoc− 1 L2 ways while B-C arrays use only one L2 way. This is because the
sum of the sizes of a Tile2 of C and a Tile1 of B, is smaller than one L2 way
and their elements are not reused and thus there is no problem if their cache
lines are replaced (Tile1 of B is reused in L1 data cache not in L2).

Title Suppressed Due to Excessive Length 13

L2× (assoc− 1)

assoc
≥ n2×m2 (6)

Concerning the data layout of A, when M dimension is tiled, i.e. m2 ≺ M ,
the data layout of A is changed from row-wise to tile-wise; A elements are
written into memory just as they are fetched. If the data layout of A is not
changed, ineq. 5 and ineq. 6 cannot give a minimum number of cache conflicts
since the sub-rows of A will conflict with each other.

The scheduling is shown in Fig. 4. The first Tile2 of the first Tile2 block
column of A is multiplied by all the Tile1 of the first Tile1 block row of B,
exactly as in Subsect. 3.1.2. Then, the second Tile2 of the first Tile2 block
column of A is multiplied by the same Tile1 tiles as above etc. The procedure
ends when all Tile2 block columns of A have been multiplied by all Tile1 block
rows of B.

For large matrices sizes, the above schedule is the optimum. This schedule
has been found theoretically and not experimentally, by exploiting the s/w
characteristics and the h/w parameters. We select the schedule with the op-
timum data reuse of A, since having Tile1 tiles of B in L1 data cache, they
need to be multiplied by as many rows of A as possible before they are spilled
in upper level memories.

It is important to say, that apart from the MMM process, there are other
processes executed by the cores too. They are Operating System (OS) kernel
processes or even user applications processes, such as web and mail browsers
or document editors. All these processes including MMM, use the same h/w
resources; hence during the running time of MMM, they share the cache,
changing its data. Furthermore, for multi-core architectures there are complex
contention aware OS schedulers that manage the h/w resources [58] among
the cores which effect data motion in shared cache. The point is that we do
not know the available shared cache size and the number of its available ways
for exploitation, for achieving high performance. Therefore, the L2 cache size
used by ineq. 6, is found experimentally.

3.1.4 Scheduling for changing the data array layout

When high performance for MMM is needed, apart from the MMM routine,
we must also speed up the routine that changes the data arrays layouts. The
B is not written in main memory column wise as ATLAS does, but tile-wise,
i.e. its elements are written into memory just as they are fetched (Fig. 5).
Firstly, the top four elements of the first, second, third, fourth, fifth and sixth
column of B are written to memory, i.e. (B(0 : 3, 0)), (B(0 : 3, 1)), ..., (B(0 :
3, 5)) respectively; then the next top four elements of the first six columns
of B are written to memory, i.e. (B(4 : 7, 0)), (B(4 : 7, 1)), ..., (B(4 : 7, 5))
respectively, until m2 elements of B have been processed. Afterwards, the
procedure continues with the next R − 2 columns of B etc. In this way, the
number of cache misses is decreased as all the elements are accessed in-order.

14 Vasilios Kelefouras, Angeliki Kritikakou and Costas Goutis

Fig. 5 C code using SSE intrinsics that changes the data layout of B according to Fig. 4
(rectangles of size 4× 4 are used)

To change the data layout of B we use the SSE instructions. The array
is partitioned into rectangles of size length × (R − 2), where length is the
number of the elements the XMM/YMM registers contain. All these rectangles
are fetched one by one, column wise, they are inversed and all the inversed
rectangles are written to memory in order creating a new array with tile-wise
data layout. The most efficient way (for most architectures) to transpose B
when rectangles of size 4× 4 are used, is that shown in Fig. 5.

3.2 Using multiple CPU cores

When using multiple CPU cores, the MMM problem is partitioned into smaller
MMM sub-problems. Each sub-problem corresponds to a thread and each
thread is executed in one core only. Each thread must contain more than
a specific number of instructions for the cores to be idle as less as possible,
since partitioning the MMM into small sub-problems the threads initialization
and synchronization time is made comparable to the threads execution time,
leading to low performance. Thus, an additional constraint is introduced here.

Most multi core processors, typically contain 2 or 3 levels of cache, hav-
ing either separate L1 data and instruction caches and a shared L2 cache or
separate L1 data and instruction caches, separate unified L2 caches and a
shared L3 cache, respectively. All the cache memories have LRU replacement

Title Suppressed Due to Excessive Length 15

C A B
m2

...

...

...

...

..
.

..
.

m
2

p2

p1

n
2

core_0 core_1 core_2 core_3

core_0 core_1 core_2 core_3

Tile2Tile1

... ...

p3

n
2

p2 M

M

P

NN

P

..
.

...

Tile2Tile2

Fig. 6 The proposed methodology for 4 cores having a shared L2 cache. Only the first Tile2
tiles are shown here.

policy. The proposed methodology for shared L2 and shared L3, is given in
Subsect. 3.2.1 and Subsect. 3.2.2, respectively.

3.2.1 Scheduling when L2 shared cache exists

To utilize L2 shared cache, we partition the three arrays into Tile2 tiles (Fig. 6).
Arrays A, B and C Tile2 tiles are of size n2 × m2, m2 × p2 and n2 × p2,
respectively (Fig. 6). Each multiplication between two Tile2 tiles creates a
different thread. Each multiplication between two Tile2 tiles is made as in
Subsect.3.1.1. Having q number of cores, each Tile2 of A is multiplied by q
consecutive Tile2 tiles of B in parallel, each one at a different core (Fig. 6).
Thus, p3 (p3 = q × p2) is evenly divisible by M .

One Tile2 of A and at least q Tile1 of B have to fit in L2 shared cache. The
Tile2 of A is always fetched to all the cores. Also, q Tile1 tiles of different Tile2
tiles of B are loaded, which have no consecutive elements between themselves.
The goal is these q Tile1 tiles of B and the next four ones, do not conflict with
the Tile2 of A and do not conflict with each other. In general, an L2 cache
with assoc ≥ q+1 is needed here. Cache size equal to ((assoc−q)× L2

assoc) and

(q× L2
assoc) is needed for A (array A is written into main memory tile-wise) and

B-C respectively (ineq. 7). Tile2 of A is reused P/p1 times and thus it remains
in L2 cache. On the other hand, the B-C cache lines used for the multiplication
of a Tile2 of A, are of size much smaller than an L2 way and also they are
not reused in L2 cache; thus they do not need more cache space than q ways
in order not to conflict with the A ones (B cache lines are reused in L1 data
cache and thus there is no problem when these cache lines of C conflict with
the B ones in L2).

Regarding L2 data cache, the largest n2 value which satisfy ineq. 7 is
selected (Fig. 6). Given that a Tile1 of B is written in L1 data cache, it is
memory efficient to be multiplied by as many rows of A as possible, before it
is spilled from L1.

16 Vasilios Kelefouras, Angeliki Kritikakou and Costas Goutis

L2× (assoc− q)

assoc
≥ n2×m2 (7)

where the m2 value is determined according to L1 data cache size (ineq. 5).
p2 value depends on the number of instructions each thread must contain and
it is found experimentally; if p2 is smaller than this minimum number, thread
initialization and synchronization time is comparable with its execution time.
The large number of ways needed here is not a problem as the L2 associativity
is larger or equal to 8 in most architectures. As explained in the previous
subsection, we do not know the exact cache size and the exact number of
cache ways to exploit. Therefore, the L2 and assoc values in ineq. 7 are found
experimentally.

The illustration example consists of a scenario that there are four cores
(Fig. 6). Each Tile2 of A is multiplied by a Tile2 of B exactly as in Sub-
sect. 3.1.3. Each multiplication between two Tile2 tiles makes a different thread
and each thread is fully executed at only one core. Firstly, the first Tile2 of
the first Tile2 block column of A is multiplied by all Tile2 tiles of the first
Tile2 block row of B (M/p2 different threads); all M/p2 threads are executed
in parallel exploiting the data reuse of Tile2 of A. Then, the second Tile2 of
the first Tile2 block column of A is fetched and it is multiplied by all the Tile2
of the first Tile2 block row of B as above, etc. The procedure ends when all
Tile2 block columns of A have been multiplied by all Tile2 block rows of B.
Concerning main memory data accesses, A, B and C arrays are accessed 1,
N/n2 and M/m2 times, respectively. Concerning L2 shared cache, we select
the optimum data reuse of A and the sub-optimum data reuse of B.

In the case that the arrays sizes are small and the Tile2 tiles are larger than
the matrices, dividing the MMM problem into threads may decrease perfor-
mance, since the threads do not achieve the minimum number of instructions
needed. Also, in the case that the arrays sizes are small and p3 = M , the
number of threads (q) executed in parallel is small. In this case, it may be
preferable to decrease the data reuse of Tile2 of A in L2 and increase the
number of the threads run in parallel, i.e. all Tile2 tiles of each block column
of A are multiplied by all Tile2 tiles of the corresponding Tile2 block row of
B, in parallel.

3.2.2 Scheduling when L3 shared cache exists

To utilize L3 cache, A and B arrays are further partitioned into Tile3 tiles, of
size ((q× n2)×m2) and (m2× p3), respectively (Fig. 7). Each multiplication
between two Tile2 tiles of A and B makes a different thread. Each multipli-
cation between two Tile2 tiles is made as in Subsect.3.1.1. We determine the
Tile1, Tile2 and Tile3 parameters by the data cache sizes and associativities.

Regarding L1 data cache, we compute the values of m2 and p1 according
to the L1 parameters defined by ineq. 5.

Regarding L2 cache, we compute the n2 value according to the L2 param-
eters defined by ineq. 8.

Title Suppressed Due to Excessive Length 17

C A B

Tile2

m2

...

...

...

..
.

m
2

p2

p1

n
2

co
re

0

Tile2

...

...

p3

n
2

p2 M

M

P

NN

P

...

...

..
.

Tile2

..
.

..
.

..
.

co
re

1
co

re
2

co
re

3

co
re

0
co

re
1

co
re

2
co

re
3

Tile3 Tile3

Fig. 7 The proposed methodology for 4 cores having a shared L3 cache. Only the first Tile3
tiles are shown here.

L2× (assoc− 1)

assoc
≥ n2×m2 (8)

The largest n2 value is selected satisfying ineq. 8. p2 is found experimentally
since each thread has to contain a minimum number of instructions

Given that a Tile1 of B is written in L1 data cache, it is memory efficient
to be multiplied by as many rows of A as possible, before it is spilled from L1.

Thus, L2×(assoc−1)
assoc size of L2 is used for A; the layout of A is tile-wise here.

L2 cache size that equals to one L2 way is used for the Tile1 of B and C, since
their size is small and their elements are not reused (Tile1 of B is reused in
L1 data cache not in L2). The size of one Tile1 of B (suppose T ile1) is always
smaller than one L2 way since i) the associativity of L2 cache is always larger
than 8, i.e. assoc ≥ 8, ii) L2 ≥ 8× L1 and iii) L1 ≻ T ile1.

Regarding L3 cache, we compute p3 according to the L3 cache parameters.
We choose the biggest Tile3 of B possible, to fit in L3 shared cache. There is
((assoc−k−1)× L3

assoc) L3 size for the Tile3 of B, (k× L3
assoc) for A and (L3

assoc)
for C (ineq. 9).

((assoc− k − 1)×
L3

assoc
) ≥ m2× p3 (9)

where k = ⌈ q×n2×m2
L3/assoc ⌉ and L3 is the size of the L3 cache size exploited.

The larger p3 value is selected satisfying ineq. 9. Also, p3 = l × p2 where l is
an integer. p2 value depends on the number of instructions, each thread must
contain and it is found experimentally. m2 value is found according to L1 data
cache size and it is given by ineq. 5.

The elements of Tile3 of A and B are written in consecutive memory lo-
cations in main memory and thus they occupy consecutive cache lines in L3
cache. These two Tile3 tiles must use different L3 cache ways as cache lines
of Tile3 of B must not conflict with Tile3 of A ones. Cache size equals to one
L3 way is used for C array for its cache lines not to conflict with the Tile3 of

18 Vasilios Kelefouras, Angeliki Kritikakou and Costas Goutis

A and B ones; C elements are not reused and they are not occupying a large
space.

The illustration example consists of the scenario that there are 4 cores
(Fig. 7). Each Tile2 of A is multiplied by a Tile2 of B exactly as in Sub-
sect. 3.1.3. Each multiplication between two Tile2 tiles makes a different thread
and each thread is executed in one core only. Firstly, all Tile2 tiles of the first
Tile3 of A are multiplied by all Tile2 tiles of the first Tile3 of B ((p3/p2)× q
different threads); these threads are executed in parallel exploiting the data
reuse of Tile1 of B in L1, the data reuse of Tile2 of A in L2 and the data
reuse of Tile3 of B in L3. Then, the same Tile3 of B as above, is multiplied
by all the Tile2 tiles of the second Tile3 of the first Tile3 block column of A,
etc; each Tile3 of B is reused N/n2 times (this is why the Tile3 of B has to
fit in L3 shared cache) and each Tile2 of A is reused (p3/p1) times in L2 (this
is why Tile2 of A has to fit in L2 cache). The procedure is repeated until all
Tile3 block columns of A have been multiplied by all Tile3 block rows of B.

In contrast to the scheduling described in Subsect. 3.2.1 (in which a shared
L2 cache exists), we do not multiply each Tile2 of A by the q Tile2 of B in
parallel. Instead, we multiply the q Tile2 tiles from A by the several Tile2 tiles
from B. This is because each processor has its private L2 cache here, which
is used to store a Tile2 of A. Thus, it is memory efficient to reuse the data
of this tile as much as possible; each Tile2 of A is loaded into its separate L2
and is reused (p3/p1) times. Also, the largest p3 value is selected according to
the L3 cache size since the number of main memory accesses depends on this
value. A is loaded N/p3 times from main memory while B is loaded just once.

However, this schedule may not be performance efficient when p3 = p2 =
P , e.g. for small matrices sizes, since the memory utilization is lost by the small
number of threads executed in parallel. There are only q threads executed in
parallel and hence performance may be degraded (synchronization time is
large). In this case, it may be preferable to decrease the data reuse of Tile3
of A in L3 and increase the number of threads executed in parallel, i.e. all
Tile2 tiles of each block column of A are multiplied by all Tile2 tiles of the
corresponding Tile2 block row of B, in parallel.

4 Experimental Results

The experimental results for the proposed methodology, presented in this sec-
tion, were carried out with a Pentium Intel core 2 duo E6550 and with a
Pentium Intel i7-2600K at 3.4Ghz both using SSE instructions and ATLAS
3.8.3 and 3.8.4 respectively. Also Valgrind tool is used to measure the total
number of instructions executed and the number of L1 and L2 data accesses
and misses [38]. The first processor contains 8 128-bit XMM registers, L1 data
and instruction caches of size 32 kbytes and shared L2 cache of size 4 Mbytes.
The second processor contains 16 256-bit YMM registers, L1 data and instruc-
tion caches of size 32 kbytes, L2 unified cache of size 256 kbytes and shared
L3 cache of size 8 Mbytes. At both processors, the Operating system Ubuntu

Title Suppressed Due to Excessive Length 19

and the gcc-4.4.3 compiler are used. In the experimental procedure, floating
point numbers (4 bytes) as elements, were used. The three arrays are one di-
mensional arrays and their elements are aligned into main memory according
to the L1 data cache line size, since the aligned load/store instructions have
lower latency than the no aligned ones. The routine changing the arrays layout
is always included to the execution times.

Firstly, a performance comparison is made using Pentium Intel core 2 duo
E6550 using one of the two cores. It is important to say that using only one
core, the thread has to be manually assigned to the core; the programmer has
to set the CPU thread affinity flag. Otherwise, the operating system (OS) will
make the core assignment, and it will toggle the thread among the cores de-
grading performance because of the pure data locality. The proposed method-
ology is compared with cblas sgemm library (Fig. 8). In Fig. 8, the average
execution time among 10 executions is shown; there is a significant deviation
at ATLAS execution time (up to 15%); this is because different schedules take
place for a certain array size.

By using the scheduling provided in Subsect. 3.1.1 on input sizes from
N = 48 to N = 72 (Fig. 8), the proposed methodology has a very large
performance gain over ATLAS, i.e. 3.0 to 3.5 times faster. This is because
the proposed methodology achieves about 42% less load/store and 58% less
arithmetic instructions (Table 1). The number of instructions is less because
the number of XMM registers has been fully exploited; 6, 1 and 1 XMM
registers used for C, A and B arrays, respectively.

By using the scheduling provided in Subsect. 3.1.2 on input sizes from
N = 120 to N = 912 (Fig. 8), the proposed methodology has a large per-
formance gain, i.e. 1.21 to 3.03 times faster. This is because the proposed
methodology executes a smaller number of instructions and it also achieves
a smaller number of L1 and main memory data accesses over ATLAS (Ta-
ble 1). However, ATLAS achieves a smaller number of L1 misses; this is be-
cause the proposed methodology achieves the minimum number of L1 data
cache misses possible, provided that the minimum number of L2 misses is
achieved. In contrast with ATLAS, the proposed methodology optimizes these
two sub-problems together as one problem and not separately. Furthermore,
the number of SIMD instructions (arithmetic and load/store) is smaller than
the ATLAS ones because the arrays are not tiled along to the M dimension
(Fig. 4).

By using the scheduling provided in Subsect. 3.1.3 on input sizes from N =
1200 to N = 4800 (Fig. 8), the proposed methodology achieves a significant
but not large performance gain, i.e. 1.08 to 1.14 times faster. In this case, very
large arrays exist and one of the performance critical parameters is the number
of main memory accesses. The proposed methodology achieves about 3 times
less main memory accesses but about 3 times more L2 data cache accesses;
main memory is many times slower than L2 and this is why performance gain
over ATLAS is achieved. Also, arrays are tiled along to the M dimension too
here and thus the number of arithmetical and load/store instructions is almost
equal with the ATLAS one (Table 1). By using the scheduling provided in

20 Vasilios Kelefouras, Angeliki Kritikakou and Costas Goutis

3.03

3.52

2.33

3.03

1.97

1.56 1.48 1.39 1.35 1.35 1.25 1.25 1.21
1.08 1.14 1.11 1.12 1.14

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

48 72 120 144 216 288 360 432 528 624 768 864 912 1200 1800 2400 3600 4800

S
p

e
e

d
u

p

Array sizes

Fig. 8 Speedup of the proposed methodology over cblas sgemm routine of ATLAS at one
core. Square matrices of size N ×N are used here.

Subsect. 3.1.3, the data of C are loaded/written from/to memoryM/m2 times;
the data are fetched from memory, added with the new C values and then they
are written back to memory. Each time a C load instruction occurs, its data are
fetched from main memory having a large latency penalty. Thus, s/w prefetch
instructions can be used to hide the main memory latency. The programmer
has to write these instructions before the unpack and shuffle instructions, i.e.
at the beginning of the code of Fig. 3.

A performance comparison is also made by using more than one cores. AT-
LAS optimized library is not supported for many CPU cores, but for one (there
is ScaLAPACK [6] which runs at many CPUs - distributed memory). Thus, a
performance comparison is done over cblas sgemm. Given that cblas sgemm
gives the best execution time for one core (suppose ex time), the best execu-
tion time for q cores is always larger than (ex time/q) as the MMM threads
must be synchronized and initialized. Furthermore, the programmer has to
set the CPU thread affinity flag for each thread. Otherwise, the OS will make
the core assignment, and it will toggle the threads among the cores degrading
performance because of the pure data locality.

Firstly, the 2 cores of the core 2 duo are used; a large core utilization factor
is achieved, according to the arrays sizes (Table. 2). For N = 528, its value
is 1.73, while for larger sizes it is near optimum. The core utilization factor
is smaller for sizes N ≺ 528, as the thread initialization time is comparable
with its execution time. The utilization factor values are increased for larger
matrices sizes for the same reason. The speedup values over ATLAS are shown
in Table. 2 (1.99 to 2.11). As it is explained in the next paragraph, if we run
ATLAS routine in the two cores, the utilization factor values are much smaller
than the proposed methodology ones and the speedup is about 1.2 (last two
columns in Table 2).

The proposed methodology is also compared with SRUMMA [27]; SRUMMA
achieves the highest execution speed for a large number of multi core CPUs,
by well reducing the communication contention among the CPUs. Although

Title Suppressed Due to Excessive Length 21

Table 1 Total number of instructions (arithmetic and load/store) and L1, L2 accesses-
misses values of the proposed methodology and cblas sgemm routine of Atlas using one core
(Valgrind tool is used)

Size Instructions (total) L1 accesses - load/stores L1 misses / L2 accesses L2 misses / MM accesses
Proposed Atlas Proposed Atlas Proposed Atlas Proposed Atlas

72 1.64× 106 2.46× 106 8.43× 105 1.2× 106 4.2× 103 3.9× 103 2.5× 103 2.1× 103

120 4.5× 106 5.7× 106 2.3× 106 3.0× 106 1.21× 104 1.48× 105 4.89× 103 5.83× 103

288 3.45× 107 4.22× 107 1.63× 107 1.95× 107 1.36× 105 1.13× 105 2.2× 104 2.3× 104

360 6.09× 107 7.14× 107 2.7× 107 3.16× 107 3.0× 105 2.22× 105 3.36× 104 3.59× 104

528 1.6× 108 1.94× 108 7.1× 107 8.07× 107 1.0× 106 6.34× 105 8.8× 104 1.07× 105

1200 1.88× 109 1.80× 109 6.86× 108 6.63× 108 1.9× 107 6.1× 106 8.13× 105 1.9× 106

1800 6.0× 109 5.7× 109 2.1× 109 2.0× 109 6.39× 107 1.9× 107 2.0× 106 6.0× 106

2400 1.39× 1010 1.31× 1010 4.7× 109 4.5× 109 1.5× 108 4.5× 107 4.3× 106 1.3× 107

Table 2 Core utilization factor and speedup values over cblas sgemm and SRUMMA, using
2 and 4 cores

4 cores 2 cores
array size core util. speedup over core util. speedup over SRUMMA core util. speedup over SRUMMA /

factor Atlas (one core) factor Atlas (one core) factor ATLAS on two cores
528 3.56 4.10 1.73 1.99 1.66 1.20
900 3.71 4.07 1.85 2.05 1.67 1.23
1200 3.76 4.15 1.82 2.02 1.67 1.21
1800 3.79 4.11 1.88 2.01 1.72 1.17
2400 3.82 4.12 1.84 2.08 1.74 1.21
3600 3.81 4.21 1.90 2.10 1.91 1.12
4800 3.82 4.24 1.89 2.12 1.76 1.21

SRUMMA and other related work such as [23], minimize the communication
contention, they do not optimize the MMM problem for one CPU. SRUMMA
partitions the MMM problem into smaller sub-problems, according to the num-
ber of the cores (memories sizes are not taken into account) and each core
runs the cblas sgemm ATLAS optimized library. However, to achieve opti-
mum performance, the memories sizes and the data reuse have to be taken
into account. This is why SRUMMA core utilization factors are small here
(Table. 2). SRUMMA scheduling details are not given in [27] and thus to im-
plement SRUMMA for 1 dual core CPU, we partitioned each one of the three
matrices into two and four parts; also, the tiles are multiplied by using both
a block row-wise schedule and a block column-wise schedule, and the best
core utilization factor value is picked (cblas sgemm routine was used for each
thread).

Large utilization factor values are also achieved using the 4 cores of Pen-
tium Intel i7-2600K at 3.4Ghz (Table. 2). For small arrays sizes, small core
utilization factors values are achieved, while for larger ones, the values are near
optimum. It is important to say that in both CPUs, performance is highly af-
fected by XMM/YMM and L1 tile selection; smaller or larger tiles sizes than
these the proposed methodology gives, highly decrease performance. Regard-

22 Vasilios Kelefouras, Angeliki Kritikakou and Costas Goutis

–

πα ο α α γ α ο ο απ παΈ πα ο α ο α απ οπ ο ο π α ο Π ογ α ο παα α ο Μ ο ο α γ ο Π α οα ο Π – Χ α ο ο ο ο Έ γο: Η ο . π ο α γ ο πα ο ο ο α ο .

Σ α π α ε ε π ε α ογ πα πο η οπο ο ε εί α μ

ing shared caches, performance is not highly affected by the tiles selection,
suffice tile sizes are not larger than the shared cache.

5 Conclusions

In this paper, a new methodology for Matrix-Matrix Multiplication using
SIMD unit, at one and more cores having a shared cache, is presented. This
is the first time for MMM, that i) the optimization is done by exploiting the
major s/w and h/w parameters as one problem and not separately, ii) the
memory hierarchy architecture details (e.g. data cache associativity) are fully
exploited for this algorithm, iii) the final schedule is found by searching an
orders of magnitude smaller exploration space.

Acknowledgements This research has been co-financed by the European Union (Euro-
pean Social Fund ESF) and Greek national funds through the Operational Program ”Ed-
ucation and Lifelong Learning” of the National Strategic Reference Framework (NSRF)
- Research Funding Program: Heracleitus II. Investing in knowledge society through the
European Social Fund.

References

1. Openblas, an optimized blas library (2012). URL available at
http://xianyi.github.com/OpenBLAS/

2. Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G., O’Boyle, M.F.P., Thomson,
J., Toussaint, M., Williams, C.K.I.: Using machine learning to focus iterative opti-
mization. In: Proceedings of the International Symposium on Code Generation and
Optimization, CGO ’06, pp. 295–305. IEEE Computer Society, Washington, DC, USA
(2006). DOI 10.1109/CGO.2006.37. URL http://dx.doi.org/10.1109/CGO.2006.37

3. Bacon, D.F., Graham, S.L., Oliver, Sharp, J.: Compiler transformations for high-
performance computing. ACM Computing Surveys 26, 345–420 (1994)

4. Bilmes, J., Asanović, K., Chin, C., Demmel, J.: Optimizing matrix multiply using
PHiPAC: a portable, high-performance, ANSI C coding methodology. In: Proceedings
of the International Conference on Supercomputing. ACM SIGARC, Vienna, Austria
(1997)

5. Bjørstad, P., Manne, F., Sørevik, T., Vajtersic, M.: Efficient matrix multiplication on
simd computers. SIAM J. MATRIX ANAL. APPL 13, 386–401 (1992)

6. Blackford, L.S., Choi, J., Cleary, A., D’Azeuedo, E., Demmel, J., Dhillon, I., Hammar-
ling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK
user’s guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA
(1997)

7. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.:
Cilk: an efficient multithreaded runtime system. SIGPLAN Not. 30(8), 207–216 (1995).
DOI 10.1145/209937.209958. URL http://doi.acm.org/10.1145/209937.209958

Title Suppressed Due to Excessive Length 23

8. Chatterjee, S., Lebeck, A.R., Patnala, P.K., Thottethodi, M.: Recursive array layouts
and fast parallel matrix multiplication. In: In Proceedings of Eleventh Annual ACM
Symposium on Parallel Algorithms and Architectures, pp. 222–231 (1999)

9. Choi, J.: A new parallel matrix multiplication algorithm on distributed-memory con-
current computers. p. 224 (1997)

10. Cooper, K.D., Subramanian, D., Torczon, L.: Adaptive optimizing compilers for the
21st century. Journal of Supercomputing 23, 2002 (2001)

11. Desprez, F., Suter, F.: Impact of Mixed–Parallelism on Parallel Implementations of
Strassen and Winograd Matrix Multiplication Algorithms. Rapport de recherche RR-
4482, INRIA (2002). URL http://hal.inria.fr/inria-00072106

12. Desprez, F., Suter, F.: Impact of mixed-parallelism on parallel implementations of
the strassen and winograd matrix multiplication algorithms: Research articles. Con-
curr. Comput. : Pract. Exper. 16(8), 771–797 (2004). DOI 10.1002/cpe.v16:8. URL
http://dx.doi.org/10.1002/cpe.v16:8

13. Frigo, M., Johnson, S.G.: The fastest fourier transform in the west. Tech. rep., Cam-
bridge, MA, USA (1997)

14. Garcia, E., Venetis, I.E., Khan, R., Gao, G.R.: Optimized dense matrix multiplication
on a many-core architecture. In: Proceedings of the 16th international Euro-Par confer-
ence on Parallel processing: Part II, Euro-Par’10, pp. 316–327. Springer-Verlag, Berlin,
Heidelberg (2010). URL http://dl.acm.org/citation.cfm?id=1885276.1885308

15. Geijn, R.A.V.D., Watts, J.: Summa: Scalable universal matrix multiplication algorithm.
Tech. rep. (1997)

16. Goto, K., van de Geijn, R.: On reducing tlb misses in matrix multiplication. Tech. rep.
(2002)

17. Goto, K., van de Geijn, R.A.: Anatomy of high-performance matrix multiplication.
ACM Trans. Math. Softw. 34(3), 12:1–12:25 (2008). DOI 10.1145/1356052.1356053.
URL http://doi.acm.org/10.1145/1356052.1356053

18. Granston, E., Holler, A.: Automatic recommendation of compiler options. In: In Pro-
ceedings of the Workshop on Feedback-Directed and Dynamic Optimization (FDDO
(2001)

19. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
20. Hall, J.D., Carr, N.A., Hart, J.C.: Cache and bandwidth aware matrix multiplication

on the gpu. Tech. rep. (2003)
21. Hattori, M., Ito, N., Chen, W., Wada, K.: Parallel matrix-multiplication algorithm

for distributed parallel computers. Syst. Comput. Japan 36(4), 48–59 (2005). DOI
10.1002/scj.v36:4. URL http://dx.doi.org/10.1002/scj.v36:4

22. Hunold, S., Rauber, T.: Automatic tuning of pdgemm towards optimal performance.
In: Proceedings of the 11th international Euro-Par conference on Parallel Process-
ing, Euro-Par’05, pp. 837–846. Springer-Verlag, Berlin, Heidelberg (2005). DOI
10.1007/11549468 91

23. Hunold, S., Rauber, T., Rünger, G.: Multilevel hierarchical matrix multiplication on
clusters. In: Proceedings of the 18th annual international conference on Supercomputing,
ICS ’04, pp. 136–145. ACM, New York, NY, USA (2004). DOI 10.1145/1006209.1006230.
URL http://doi.acm.org/10.1145/1006209.1006230

24. Intel: Intel mkl, available at http://software.intel.com/en-us/intel-mkl (2012)
25. Jiang, C., Snir, M.: Automatic tuning matrix multiplication performance on graph-

ics hardware. In: In the proceesings of the 14th International Conference on Parallel
Architecture and Compilation Techniques (PACT), pp. 185–196 (2005)

26. Kisuki, T., Knijnenburg, P.M.W., O’Boyle, M.F.P., Bodin, F., Wijshoff, H.A.G.: A
feasibility study in iterative compilation. In: Proceedings of the Second International
Symposium on High Performance Computing, ISHPC ’99, pp. 121–132. Springer-Verlag,
London, UK, UK (1999). URL http://dl.acm.org/citation.cfm?id=646347.690219

27. Krishnan, M., Nieplocha, J.: Srumma: A matrix multiplication algorithm
suitable for clusters and scalable shared memory systems. Parallel and
Distributed Processing Symposium, International 1, 70b (2004). DOI
http://doi.ieeecomputersociety.org/10.1109/IPDPS.2004.1303000

28. Krishnan, M., Nieplocha, J.: Memory efficient parallel matrix multiplication operation
for irregular problems. In: Proceedings of the 3rd conference on Computing frontiers,

24 Vasilios Kelefouras, Angeliki Kritikakou and Costas Goutis

CF ’06, pp. 229–240. ACM, New York, NY, USA (2006). DOI 10.1145/1128022.1128054.
URL http://doi.acm.org/10.1145/1128022.1128054

29. Krivutsenko, A.: Gotoblas - anatomy of a fast matrix multiplication. Tech. rep. (2008)
30. Kulkarni, M., Pingali, K.: An experimental study of self-optimizing dense linear algebra

software. Proceedings of the IEEE 96(5), 832–848 (2008)
31. Kulkarni, P., Hines, S., Hiser, J., Whalley, D., Davidson, J., Jones, D.: Fast searches for

effective optimization phase sequences. SIGPLAN Not. 39(6), 171–182 (2004). DOI
10.1145/996893.996863. URL http://doi.acm.org/10.1145/996893.996863

32. Kulkarni, P.A., Whalley, D.B., Tyson, G.S., Davidson, J.W.: Practical exhaustive opti-
mization phase order exploration and evaluation. TACO 6(1) (2009)

33. Kurzak, J., Alvaro, W., Dongarra, J.: Optimizing matrix multiplication for a short-
vector simd architecture - cell processor. Parallel Comput. 35(3), 138–150 (2009). DOI
10.1016/j.parco.2008.12.010. URL http://dx.doi.org/10.1016/j.parco.2008.12.010

34. Michaud, P.: Replacement policies for shared caches on symmetric multicores: a
programmer-centric point of view. In: Proceedings of the 6th International Confer-
ence on High Performance and Embedded Architectures and Compilers, HiPEAC ’11,
pp. 187–196. ACM, New York, NY, USA (2011). DOI 10.1145/1944862.1944890. URL
http://doi.acm.org/10.1145/1944862.1944890

35. Milder, P.A., Franchetti, F., Hoe, J.C., Püschel, M.: Computer generation of hardware
for linear digital signal processing transforms. ACM Transactions on Design Automation
of Electronic Systems 17(2) (2012)

36. Monsifrot, A., Bodin, F., Quiniou, R.: A machine learning approach to auto-
matic production of compiler heuristics. In: Proceedings of the 10th Interna-
tional Conference on Artificial Intelligence: Methodology, Systems, and Applica-
tions, AIMSA ’02, pp. 41–50. Springer-Verlag, London, UK, UK (2002). URL
http://dl.acm.org/citation.cfm?id=646053.677574

37. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the clustering prop-
erties of the hilbert space-filling curve. IEEE Transactions on Knowledge and Data
Engineering 13, 2001 (2001)

38. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not. 42(6), 89–100 (2007). DOI 10.1145/1273442.1250746.
URL http://doi.acm.org/10.1145/1273442.1250746

39. Nikolopoulos, D.S.: Code and data transformations for improving shared cache perfor-
mance on smt processors. In: ISHPC, pp. 54–69 (2003)

40. Park, E., Kulkarni, S., Cavazos, J.: An evaluation of different modeling techniques
for iterative compilation. In: Proceedings of the 14th international conference on
Compilers, architectures and synthesis for embedded systems, CASES ’11, pp. 65–
74. ACM, New York, NY, USA (2011). DOI 10.1145/2038698.2038711. URL
http://doi.acm.org/10.1145/2038698.2038711

41. Pinter, S.S.: Register allocation with instruction scheduling: A new approach (1996)
42. Rünger, G., Schwind, M.: Fast recursive matrix multiplication for multi-core architec-

tures. Procedia Computer Science 1(1), 67–76 (2010). International Conference on
Computational Science 2010 (ICCS 2010)

43. See homepage for details: Atlas homepage (2012). Http://math-atlas.sourceforge.net/
44. Shobaki, G., Shawabkeh, M., Rmaileh, N.E.A.: Preallocation instruction scheduling with

register pressure minimization using a combinatorial optimization approach. ACM
Trans. Archit. Code Optim. 10(3), 14:1–14:31 (2008). DOI 10.1145/2512432. URL
http://doi.acm.org/10.1145/2512432

45. Stephenson, M., Amarasinghe, S., Martin, M., O’Reilly, U.M.: Meta optimization: im-
proving compiler heuristics with machine learning. SIGPLAN Not. 38(5), 77–90 (2003).
DOI 10.1145/780822.781141. URL http://doi.acm.org/10.1145/780822.781141

46. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 14(3), 354–
356 (1969)

47. Tartara, M., Crespi Reghizzi, S.: Continuous learning of compiler heuristics. ACM
Trans. Archit. Code Optim. 9(4), 46:1–46:25 (2013). DOI 10.1145/2400682.2400705.
URL http://doi.acm.org/10.1145/2400682.2400705

48. Thottethodi, M., Chatterjee, S., Lebeck, A.R.: Tuning strassen’s matrix multiplication
for memory efficiency. In: In Proceedings of SC98 (CD-ROM (1998)

Title Suppressed Due to Excessive Length 25

49. Triantafyllis, S., Vachharajani, M., Vachharajani, N., August, D.I.: Compiler
optimization-space exploration. In: Proceedings of the international symposium on
Code generation and optimization: feedback-directed and runtime optimization, CGO
’03, pp. 204–215. IEEE Computer Society, Washington, DC, USA (2003). URL
http://dl.acm.org/citation.cfm?id=776261.776284

50. Tsilikas, G., Fleury, M.: Matrix multiplication performance on commodity shared-
memory multiprocessors. In: Proceedings of the international conference on Par-
allel Computing in Electrical Engineering, PARELEC ’04, pp. 13–18. IEEE Com-
puter Society, Washington, DC, USA (2004). DOI 10.1109/PARELEC.2004.43. URL
http://dx.doi.org/10.1109/PARELEC.2004.43

51. Whaley, R.C., Dongarra, J.: Automatically Tuned Linear Algebra Software. Tech. Rep.
UT-CS-97-366, University of Tennessee (1997)

52. Whaley, R.C., Dongarra, J.: Automatically tuned linear algebra software. In: Super-
Computing 1998: High Performance Networking and Computing (1998)

53. Whaley, R.C., Dongarra, J.: Automatically Tuned Linear Algebra Software. In: Ninth
SIAM Conference on Parallel Processing for Scientific Computing (1999). CD-ROM
Proceedings

54. Whaley, R.C., Petitet, A.: Minimizing development and maintenance costs in supporting
persistently optimized BLAS. Software: Practice and Experience 35(2), 101–121 (2005)

55. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimization of software
and the ATLAS project. Parallel Computing 27(1–2), 3–35 (2001)

56. Yotov, K., Li, X., Ren, G., Garzaran, M., Padua, D., Pingali, K., Stodghill, P.: Is search
really necessary to generate high-performance blas? Proceedings of the IEEE 93(2)
(2005)

57. Yuan, N., Zhou, Y., Tan, G., Zhang, J., Fan, D.: High performance matrix multipli-
cation on many cores. In: Proceedings of the 15th International Euro-Par Conference
on Parallel Processing, Euro-Par ’09, pp. 948–959. Springer-Verlag, Berlin, Heidelberg
(2009). DOI 10.1007/978-3-642-03869-3 87

58. Zhuravlev, S., Saez, J., Fedorova, A., Prieto, M.: Survey of scheduling techniques for
addressing shared resources in multicore processors. ACM Computing Surveys (In Press)

