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Abstract 13 

Fibre reinforced polymer (FRP) composites have been increasingly used worldwide in the 14 

strengthening of civil engineering structures. As FRP becomes more common in structural 15 

strengthening, the development of probability-based limit state design codes will require accurate 16 

models for the prediction of the mechanical properties of the FRPs. Existing models, however, are 17 

based on small sample sizes and ignore the importance of the tail region for analyses and design. 18 

Addressing these limitations, this paper presents a probabilistic-based characterisation of the 19 

mechanical properties of carbon FRP (CFRP) laminates using a large batch of tension tests. The 20 

analysed specimens were pre-cured laminates of carbon fibres embedded in epoxy matrices, which 21 

is the most commonly used laminate for the strengthening concrete beams and slabs. Based on the 22 

existing data, probabilistic models and correlations were established for the Young's modulus, 23 

ultimate strain and tensile strength. Analyses demonstrate the suitability of the Weibull distribution 24 

for the estimation of CFRP properties. Results also show that the statistical characterisation of the 25 

mechanical properties should be performed with a focus on the tail region. The proposed 26 

distributions constitute a set of validated probabilistic models that can be used for performing 27 

reliability analyses of structures strengthened with CFRP laminates. 28 
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1. Introduction 32 

During the last decades, externally bonded reinforcement (EBR) of fibre-reinforced polymers 33 

(FRP) has become a common technique to strengthen and upgrade civil engineering structures. FRP 34 

is usually used in the form of wet lay-up sheets or pre-fabricated laminates due to their simplicity 35 

and lower capital cost. The former system is based on the direct application of fibre sheets saturated 36 

with resin, whereas the second uses pre-fabricated cured strips. There are also automated techniques 37 

using vacuum (e.g. resin infusion techniques) or vacuum and heat (e.g. heated vacuum bag only) for 38 

impregnation of fibres [1-3]. The characteristics of the FRP, namely its lightweight, high durability 39 

in aggressive environments, ease of installation and cost effectiveness, are quite competitive for 40 

strengthening purposes and constitute a good alternative to more traditional methods and materials, 41 

such as EBR using steel plates or concrete jacketing [1]. There are several examples where FRPs 42 

were used to increase the flexural, shear or axial capacity of structural members, such as beams, 43 

slabs, columns, or joints [4-8]. 44 

The growing interest in FRP composites resulted in the development of several design guidelines 45 

(e.g. CEB-FIB [9], TR-55 [10], CNR [11] and ACI 440.2R-08 [12]). These, however, are not 46 

presently at a level of development comparable to those used in structural concrete and steel design. 47 

Considering the uncertainties present in FRP applications, new guidelines are required to develop 48 

probability-based limit state design codes and to support the acceptance of FRP materials in civil 49 

engineering [13, 14]. Despite previous reliability studies (e.g. Ellingwood [13], Plevris, 50 

Triantafillou [15], Okeil, El-Tawil [16], Monti and Santini [17], Atadero, Lee [18], Atadero and 51 

Karbhari [19], Okeil, Belarbi [20], and Ali, Bigaud [21]) having addressed some of these 52 

uncertainties, the statistical information is still limited in the development of more accurate 53 

probabilistic models. 54 

A variety of factors affect the properties of FRP after manufacturing which create a degree of 55 

uncertainty and must be considered in design [22]. Atadero [23] employed normal, log-normal, 56 
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Weibull and Gamma distributions to analyse the probabilistic properties of field-manufactured wet 57 

lay-up carbon and glass composites. Six sets, composed by one, three or four subsets resulting in 58 

903 samples, were considered to assess the tensile strength, the Young's modulus and the laminate 59 

thickness. Despite the large number of samples used, the need to divide them in smaller subsets of 60 

different properties and manufacturing processes led to a significant reduction in the sample size 61 

available for the statistical analysis. From this study, the Weibull distribution was proposed to 62 

model the tensile strength, whereas the Young's modulus and the laminate thickness were modelled 63 

using a log-normal distribution. Zureick, Bennett [24] performed statistical analysis on over 600 64 

samples of pultruded composite materials fabricated from E-glass fibres and polyester or vinylester 65 

matrices. However, due to the differences in the properties of the specimens, each subset contained 66 

no more than 30 samples. Zureick, Bennett [24] investigated the longitudinal tensile and 67 

compressive strengths, the longitudinal tensile and compressive modulus, the shear strength and 68 

modulus. The Weibull distribution was proposed to model the strength and stiffness properties. 69 

Further studies on the probabilistic properties of composites can be found in Jeong and Shenoi [25] 70 

or Lekou and Philippidis [26]. 71 

2. Research Significance 72 

The main limitations in previous studies are mainly related with the small size of the samples that 73 

makes it difficult to accurately characterise probabilistic distributions. Previous models focused on 74 

the entire sample distribution and ignored the importance of the tail region for probabilistic 75 

analysis. It is also difficult to obtain suitable probability distribution functions without sufficient 76 

number of samples and to output accurate estimates for the tail region. As such, discrepancy 77 

between existing models and experimental data could reach several orders of magnitude [27]. To 78 

address these limitations, the main aim of this work is to validate and propose probabilistic models 79 

for the mechanical properties of the carbon FRP (CFRP) laminates (i.e. Young's modulus, ultimate 80 
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strain and tensile strength) and to highlight the importance of the tail of the sample distribution. All 81 

statistical analyses are performed on a large and homogeneous batch of samples.  82 

3. Experimental Tests 83 

The data used in the present study concerns pultruded laminates produced from the same 84 

manufacturer. The CFRP had a density of 1.4g/cm3 and a fibre content above 68% in volume, with 85 

a tensile design stress of 1000 MPa and 1300 MPa, respectively for 0.6% and 0.8% elongation. As 86 

part of the quality process of the manufacturer, the mechanical properties of the CFRP were 87 

consistently assessed in the fibre direction. In total, a large set of 1368 coupon samples were 88 

obtained for this process, collected from specimens with various cross sections (60-168 mm2) – see 89 

appendix A for complete sample characterisation.  90 

The coupon configuration for tensile testing was based on the EN ISO 527-5 [28] standard 91 

(Table 1), with all the tensile tests being carried out according to same standard on a Zwick Z100 92 

universal testing machine (Figure 1a). As part of the experimental procedure, a pre-load of 0.1 kN 93 

was applied to avoid any misalignment within the system. Then, each coupon sample was loaded at 94 

a constant displacement rate of 2 mm/min until failure. Both loading and CFRP strain were directly 95 

measured using a load cell and a strain gauge, respectively (Figure 1b).  96 

Table 1. Details of the tensile samples based on EN ISO 527-5 [28]. 97 

Detail Values (mm) 

FRP length 250 

FRP width 15 (±0.5) 

FRP thickness 1.0 (±0.2) 

Tab extension  > 50 

Tab thickness  0.5-2 

Grip extension ≥ 7 

Gauge length 50 (±1) 

Bevel angle 90 

 98 
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     99 

(a)      (b) 100 

Figure 1. Experimental test set-up: (a) testing machine (courtesy of S&P Clever Reinforcement 101 

Ibérica); (b) instrumentation. 102 

It should be denoted that the pre-load was considered in the analyses described in the following 103 

sections. Furthermore, the data for statistical analysis was carefully selected to exclude invalid 104 

results arising from: (i) tab region failure; (ii) broken fibres in contact with the strain gauge; 105 

(iii) slippage of specimens from the jaws; and (iv) failure of specimens at or close to the jaws. The 106 

stress versus strain curves were plotted, and the tensile strength, modulus of elasticity, and ultimate 107 

strain of the FRP were calculated. Figure 2 illustrates typical raw stress-strain diagrams for coupon 108 

samples tested where the linear elastic behaviour can be observed nearly up to failure. 109 

 110 

Figure 2. Raw stress-strain diagrams for five tested coupon samples. 111 
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4. Statistical Models 112 

Three statistical distributions were considered to model the CFRP properties: (i) normal; (ii) log-113 

normal; and (iii) Weibull. The probability density function (PDF) and the cumulative distribution 114 

function (CDF) for each distribution were obtained from the following relationships. 115 

- Normal distribution 116 
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where P  is the mean and V  is the standard deviation, and t is a real variable. 119 

- Log-normal distribution 120 
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- Weibull distribution 123 

Since previous studies [29] showed that the statistical characterisation of the CFRP does not 124 

improve using a three-parameter Weibull distribution, a two-parameter approach was adopted here. 125 

This is defined by the following expressions: 126 

1
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where D  and E  are the shape and the scale parameters, respectively. 129 
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The best-fit distributions were found following the censored maximum likelihood estimation 130 

(MLE) [30]. This method allows estimating parameters T  of a statistical distribution for a sample, 131 

considering the following: 132 

1 2
1

ˆ ˆ ˆ ˆ( | , , , ) ( | ),
n

n X i
i

L x x x f xT T
 

}  �          (7) 133 

in which (.)L  is the likelihood that the parameters 1 2, , , nT T T T }  properly describe the sample 134 

1 2ˆ ˆ ˆ ˆ, , , nx x x x } , and Xf  is the joint PDF of a sample. The maximum likelihood estimators are 135 

computed from the set of parameters that maximise the likelihood function by considering all 136 

possible cases of T . 137 

Since the tail region is critical for structural reliability analysis and prediction, especial attention 138 

is given to this region in the statistical analysis of the tensile tests. The adopted technique considers 139 

explicitly the values of the lower tail that are smaller than a predefined bound, whereas the 140 

remaining values are used implicitly [31]. The censored MLE can be defined as follows: 141 

1 2L L L u  ,           (8) 142 

with 143 
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where 1L  is the likelihood associated with the j  observations of values equal or lower than the 147 

bound value Gx . 2L  is the likelihood associated with the observations of values higher than the 148 

bound value Gx . ( | )GF x T  is the CDF of Gx  given the PDF T , n  is the total number of 149 
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observations and n j�  is the total number of observations exceeding the bound value Gx . The best 150 

fit can be computed iteratively through the optimisation problem of maximising L . 151 

For each property, the distributions families were adjusted for the entire sample and the lower 152 

percentiles of: 20th, 25th, 30th, 35th and 40th. The 20th percentile is considered to be a reasonable 153 

choice for reliability studies in this research, since it includes the region of interest without 154 

decreasing the sample size to statistically meaningless values.  155 

The goodness of fit for all distributions was examined using the Anderson-Darling test for the: 156 

(i) entire samples; and (ii) samples with right-censored data. The Anderson-Darling test was 157 

adopted since it provides adequate comparison tools for tail regions [32]. The statistic for the right-158 

censored data and entire data can be obtained respectively by [33]: 159 

2
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             (13) 162 

where r  is the uncensored observation, n  is the total number of observations and Z  denotes the 163 

CDF of the probability distribution. The statistic values ( 2A ) were then compared with the critical 164 

values (CV) presented by Stephens and D'Agostino [33]. The null hypothesis (H0) of the data 165 

following the distribution tests was not rejected if the statistic value was lower than the critical 166 

value. The critical values for different percentiles are given in Table 2. To minimise Type I errors, 167 

which occur when H0 was wrongly rejected, or Type II errors, in which H0 was wrongly accepted, 168 

the significance level (D ) was set at 10%. 169 

Table 2. Critical values for different percentiles. 170 

Percentile 20% 25% 30% 35% 40% 100% 

CV 0.436 0.545 0.651 0.756 0.857 1.933 
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4.1. Young's modulus 171 

The Young's modulus is one of the significant parameters related with the structural safety of the 172 

FRP for rehabilitation of structures, particularly in situations where failure is expected to occur at 173 

tensile stresses significantly lower than the ultimate strength of the FRP. This type of failure usually 174 

occurs when debonding of the CFRP or concrete crushing are the dominant failure mechanisms [9].  175 

The best fit for each PDF for the Young's modulus is illustrated in Figure 3. As it can be seen in 176 

Figure 3a, when the distributions were fitted to the entire sample, significant differences existed in 177 

the range of the lower and upper values. Considering the importance of the tail regions in safety 178 

assessment, clear improvements were achieved by applying the approach described above firstly to 179 

the lower 20th percentile region – see Figure 3b. Both normal and log-normal distributions provided 180 

similar results, whereas the Weibull distribution showed the closest fit to the data. For more clarity, 181 

the Q-Q curves were plotted for three distributions in Figure 4. The Weibull distribution was able to 182 

approximate the experimental data with high precision in both 20th percentile lower tail and entire 183 

range regions (Figure 4e and Figure 4f). 184 

 185 
(a)     (b)      (c) 186 

Figure 3. PDF for the Young's modulus of: (a) the entire data fit, (b) the 20th percentile lower tail 187 

fit; and (c) the 20th percentile upper tail fit. 188 

 189 
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   190 

(a)     (b)      (c) 191 
 192 

   193 

(d)     (e)      (f) 194 

   195 

(g)     (h)      (i) 196 

Figure 4. Q-Q plot of the Young's modulus based on: normal distribution adjusted to (a) the 197 

entire range, and (b) the 20th lower and (c) 20th upper percentile; log-normal distribution adjusted to 198 

(d) the entire range, and (e) the 20th lower and (f) 20th upper percentile; and Weibull distribution 199 

adjusted to (g) the entire range, and (h) the 20th lower and (i) 20th upper percentile. 200 

The statistic values for the Anderson-Darling goodness of fit test are presented in Table 3. In this 201 

table, the shaded cells refer to tests where the distributions were not rejected. The results showed 202 

that the Weibull was the only distribution where the null hypothesis was not rejected for the highest 203 

percentile (in this case the 25th). Additionally, this distribution presented the smallest statistical 204 
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values, meaning that the average squared distance between the data and the fitted distribution was 205 

also the lowest. 206 

Table 3. Statistical values for the Anderson-Darling goodness of fit test for each percentile and 207 

distribution. 208 

Percentile Normal Log-normal Weibull 

20% 0.279 0.373 0.123 

25% 0.598 0.696 0.427 

30% 1.587 1.697 1.327 

35% 1.587 1.697 1.327 

40% 4.226 4.351 3.767 

100% 18.236 23.568 13.678 

 209 

Based on the statistical analysis of the experimental data, the following shape and scale 210 

parameters were proposed to model the Young’s modulus based on the Weibull distribution 211 

adjusted to the 20th percentile: 212 

~ W(26.2,180.9) GPa.fE          (14) 213 

Depending on the design situation, the upper percentile of the Young’s modulus might also be 214 

required. For example, in situations of debonding failure, an higher value for this material 215 

parameter can provide more conservative estimates on the capacity of the structural member. For 216 

this reason, the study described in this section was similarly applied to obtain the best fit 217 

distribution for the 20th upper percentile. Results are shown in Figs. 3 and 4, whereas the Weibull 218 

distribution adjusted to the upper tail region was given by the following equation:  219 

~ W(20.4,174.4) GPa.fE          (15) 220 

Using the distributions shown in Eqs. (14) and (15), the characteristic values for the Young's 221 

modulus were determined as 161.5 GPa and 184.0GPa, respectively corresponding to the 5th and 222 

95th percentiles. It should be mentioned that the lower value was only slightly below the design 223 
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value provided by the manufacturer (165 GPa). Results also showed that the coefficient of variation 224 

was reduced, i.e., 0.04.  225 

4.2. Ultimate strain 226 

The ultimate strain of the FRP is another important parameter in structural safety since the 227 

material typically exhibits elastic behaviour until failure. The same procedure described above was 228 

followed to analyse this material parameter from the tensile tests. Conversely to what was observed 229 

for the Young’s modulus, the statistical analysis showed that (Figure 5a) none of the selected 230 

distributions could fit well the lower tail when using the entire sample. Figure 5b shows the ultimate 231 

strain probability density functions adjusted to the lower tail, where the Weibull distribution was the 232 

one that provided the best results. The same trend could be seen in the corresponding Q-Q plots 233 

illustrated in Figure 6. 234 

 235 
 (a)      (b) 236 

Figure 5. PDF for the ultimate strain of the entire data fit (a) and 20th percentile lower tail fit (b). 237 

The Anderson-Darling goodness of fit test presented in Table 4 shows that the Weibull was the 238 

only distribution not rejected for the highest percentile (in this case the 40th), whereas the null 239 

hypothesis was rejected for all the distributions adjusted to the entire sample. Based on these 240 

results, the Weibull distribution adjusted to the 20th percentile was proposed to model the ultimate 241 

strain with a coefficient of variation of 0.06, and the following parameters: 242 

~ W(17.1,1.5) %.fuH           (16) 243 
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  244 

(a)      (b) 245 

  246 

(c)      (d) 247 

  248 

(e)      (f) 249 

Figure 6. Q-Q plot of the ultimate strain based on: normal distribution adjusted to (a) the entire 250 

range and (b) the lower tail; log-normal distribution adjusted to (c) the entire range and (d) the 20th 251 

lower percentile; and Weibull distribution adjusted to (e) the entire range and (f) the 20th lower 252 

percentile. 253 

 254 
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Table 4. Statistical values for the Anderson-Darling goodness of fit test for each percentile and 255 

distribution. 256 

Percentile Normal Log-normal Weibull 

20% 0.206 0.351 0.050 

25% 0.237 0.393 0.057 

30% 0.433 0.656 0.101 

35% 0.771 1.148 0.126 

40% 1.371 2.056 0.136 

100% 2.5453 5.485 8.9873 

4.3. Tensile strength 257 

The tensile strength of the FRP is important in situations where failure occurs within the 258 

laminate. This can be particularly critical for prestressed FRP laminates, since the prestress loading 259 

often represents a high percentage of the tensile strength [34, 35]. Preliminary results of the 260 

distributions adjusted to the entire sample showed that all selected distributions were unable to 261 

provide a good fit in the lower tail, as illustrated in Figure 7a. An improvement could be obtained 262 

when the procedure based on fitting the CDF to the lower tail is followed – see Figure 7b. The 263 

Weibull distribution performed better in both cases. 264 

 265 
(a)      (b) 266 

Figure 7. PDF for the tensile strength of (a) the entire data fit (b) and the 20th percentile lower tail 267 

fit. 268 

The Q-Q plots showed the similarity between normal and log-normal distributions – see  269 

Figure 8a-d – and that using the entire sample was not suitable for the lower tail region. The good 270 
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fit obtained with the Weibull distribution in this region can be noticed by comparing Figure 8e and 271 

f. Despite these observations, the goodness of fit results for the lowest tail fit (Table 5) did not reject 272 

any of the distributions for the 20th and 25th percentiles. However, since the Weibull presented a 273 

better result than the other models overall, it was adopted here as the distribution model for the 274 

tensile strength with the following parameters: 275 

~ W(15.9,2777.0) MPa.ff          (17) 276 

The 5th characteristic value using the proposed distribution was 2304.2 MPa, which was only 277 

0.3% higher than the experimental value (2299.0 MPa). The coefficient of variation was also very 278 

small, i.e. 0.08. The selected distribution is in agreement with the works from Atadero [23] and 279 

Zureick, Bennett [24] for prediction of the tensile strength based on the entire data fit. 280 

  281 

(a)      (b) 282 

  283 

(c)      (d) 284 
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  285 

(e)      (f) 286 

Figure 8. Q-Q plot of the tensile strength based on: normal distribution adjusted to (a) the entire 287 

range and (b) the lower tail; log-normal distribution adjusted to (c) the entire range and (d) the 20th 288 

lower percentile; and Weibull distribution adjusted to (e) the entire range and (f) the 20th lower 289 

percentile. 290 

Table 5. Statistical values for the Anderson-Darling goodness of fit test for each percentile and 291 

distribution. 292 

Percentile Normal Log-normal Weibull 

20% 0.050 0.068 0.064 

25% 0.342 0.366 0.333 

30% 0.894 0.941 0.817 

35% 2.518 2.658 2.154 

40% 4.160 4.429 3.404 

100% 5.453 5.485 9.897 

5. Correlation Analysis 293 

This section presents a correlation analysis on the mechanical properties discussed in the 294 

previous section. Within the linear elastic range, strain, stress and Young’s modulus are naturally 295 

related with each other by the Hooke’s law. When approaching ultimate values – i.e. the material 296 

strength – the standard relation may no longer hold and more suitable relationships may need to be 297 

recommended for reliability analysis. The following pairs were considered: (i) tensile strength and 298 
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ultimate strain, (ii) tensile strength and Young's modulus, and (iii) Young's modulus and ultimate 299 

strain.  300 

A linear regression analysis was firstly performed between tensile strength and ultimate strain 301 

without constraints. Results showed high correlation between these two properties (R2 = 0.75) as 302 

illustrated in Figure 9a. Additionally, the residual standard deviation related with the uncertainty of 303 

the proposed model was 0.062%, which means that a probabilistic model could indeed describe the 304 

correlation between the two mechanical parameters. The corresponding model was defined as 305 

follows: 306 

0.17 0.0005014 0.0618 (%),fu ff ZH  � �         (18) 307 

where ff  is the tensile strength in MPa, fuH  is the ultimate strain and ~ (0,1)Z N . 308 

Based on the results above, a second correlation analysis was performed by constraining the 309 

linear relation to the origin. The results and observations were quite similar, as shown in Figure 9b. 310 

The latter model had a standard deviation of 0.063% and was defined by the following expression: 311 

0.0005646 0.0633 (%)fu ff ZH  � .        (19) 312 

The last expression can be recommended in practice to relate the two expressions, since it provides 313 

good results and is relatively simple. It should be mentioned that such result shows that the ultimate 314 

strain and tensile strength are highly correlated variables. However, since both are not deterministic, 315 

the numerical value in the equation should not be directly compared with the inverse ratio of the 316 

Young’s modulus – although both are similar given the linear nature of the correlation found. 317 

It should be highlighted that from this study, the tensile strength and Young's modulus were 318 

found to have a small correlation – see representation in Figure 10a. Similar observation was also 319 

found between the Young's modulus and ultimate strain (Figure 10b). This suggests that the 320 

variables could be considered as independent in both situations. 321 
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 322 
(a)      (b) 323 

Figure 9. Scatter diagram of tensile strength versus ultimate strain of (a) the regression without 324 

constraints and (b) the regression across the origin. 325 

 326 

 (a)      (b) 327 

Figure 10. Scatter diagram of (a) tensile strength versus Young's modulus ( ff , fE ) and (b) 328 

Young's modulus versus ultimate strain ( fE , fuH ). 329 

6. Conclusions 330 

This manuscript presented a statistical analysis on mechanical properties of prefabricated CFRP 331 

laminates obtained from a large set of tests. Results showed that the Weibull distribution can be 332 

adopted to model the Young's modulus, the ultimate strain and the tensile strength of CFRP 333 

laminates. Furthermore, it was shown that the statistical characterisation of the CFRP should be 334 
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carried out giving particular attention to the tail region. In fact, although an overall good fit of any 335 

selected distribution can be achieved in most cases, the approximation obtained in the tail region is 336 

not acceptable.  337 

A low variability in the mechanical properties was also observed in this study, which is most 338 

significant in terms of structural safety. The lowest coefficient of variation is found for the Young's 339 

modulus, with the characteristic values from experimental data and proposed distributions being 340 

also very similar.  341 

The correlation analysis between mechanical properties demonstrated that a probabilistic model 342 

relating the tensile strength and ultimate strain can be proposed. However, despite the strain, stress 343 

and Young’s modulus being related by the Hooke’s law in the linear elastic region, no probabilistic 344 

model could be proposed between tensile strength or ultimate strain and Young's modulus. In fact, 345 

these pairs of variables can be considered as independent.  346 

As a final note, it should be mentioned that the distributions given in this paper can be used for 347 

carrying out reliability analyses aimed at proposing partial safety factors for the future revision of 348 

design codes.  349 

Acknowledgements 350 

The authors acknowledge the experimental tests data provided by S&P Clever Reinforcement 351 

Ibérica. Sara Gomes would like to acknowledge the research grant from the Portuguese Science and 352 

Technology Foundation (SFRH/BD/76345/2011) and D. Dias-da-Costa would like to acknowledge 353 

the support from the Australian Research Council through its Discovery Early Career Researcher 354 

Award (DE 150101703) and from the Faculty of Engineering and Information Technologies, The 355 

University of Sydney, under the Faculty Research Cluster Program. 356 



20 

 

Appendix A: sample distribution 357 

Table A-1 provides the sample size and geometrical data for the 1368 coupon samples studied in 358 

this paper. 359 

Table A-1. Details of coupon samples. 360 

Cross-section 
(mm2) 

Area 
(mm2) 

Sample size  
(#) 

50u1.2 60 85 
50u1.4 70 422 
60u1.4 8.4 54 
80u1.2 96 110 
80u1.4 112 122 
90u1.4 126 41 

100u1.2 120 144 
100u1.4 140 192 
120u1.2 144 43 
120u1.4 168 155 
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