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Abstract—Periodic speed errors can occur in permanent mag-
net linear synchronous machines for two reasons: 1) a periodic
reference signal; 2) cogging force and friction. For reducing
such periodic errors, iterative learning control or repetitive
control approaches, used in conjunction with more common
control actions, can be strongly effective. However, the design
of the stability filter, robustness filter and other parameters for
a traditional repetitive controller can be a complex task and
may need to be adjusted when the frequency of such periodic
error varies. Existing solutions tend to develop more adaptive
tuning methods for repetitive controller to enhance the whole
control system. This paper shows that the performance of a
traditional speed loop can be enhanced with a repetitive con-
troller without complicating the tuning of the repetitive controller.
Consequently, a position-based repetitive control combined with
deadbeat current control method is proposed. Simulation results
show that the proposed method is effective for reducing speed
ripple at difference frequencies without necessarily adjusting its
parameters.

Index Terms—repetitive control, deadbeat control, speed ripple
reduction, permanent magnet linear synchronous machine

I. INTRODUCTION

Despite different design approaches, iterative learning con-
trol (ILC) and repetitive control (RC) can be considered essen-
tially the same type of control method [1]. There is no doubt
that control methods such as ILC and RC represent the best
solution for tracking periodic references or rejecting periodic
errors. Taking benefit from their inherent learning capability,
iterative learning controllers and repetitive controllers can
be designed without necessarily knowing the parameters of
the plant (only the frequency of the target periodic error is
required). However, the more information about the plant is
known, the easier the controller can be tuned.

Permanent magnet linear synchronous machines (PMLSM)
are widely used in many industrial applications for undertaking
periodic tasks. Hence, the implementation of ILC or RC in
PMLSM drives is also widely discussed in existing literature.
A common approach is to use ILC or RC as a feedforward
controller to enhance the performance of a PID feedback
controller [2].

Many efforts have been taken in order to make the iterative
learning controller or repetitive controller adaptive and robust.
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[3] presents two solutions for increasing robustness to mea-
surement noise when using ILC for PMLSMs. A filtered ILC
is developed for the case when the frequency of this noise is
outside the desired output spectrum. Otherwise, an ILC with
decreasing learning gain can be used, however, convergence
time would increase. [4] presents an ILC with a learning
gain that can be updated online. The solution is claimed to
be adaptive when the reference profile and disturbance are
iteration varying (i.e. along the learning path, the reference
trajectory and disturbance do not remain constant). Some other
online tuning methods for RC and ILC can be found in [5]
[6]. A RC integrated with an adaptive robust control law is
proposed in [7].

As mentioned above, RC or ILC is generally used as an
enhancement of a main control system, and therefore they are
designed relatively independently from the rest of the system.
Therefore, the existing solutions generally tend to modify RC
or ILC to cope with the uncertainties (such as reference profile
changes, disturbance variations) occurring in the rest of the
system. However, this is not the only way. None of these
papers have mentioned that the rest of the control system
can be designed to cope with RC or ILC in a better way.
Consequently, the overall control system can naturally be more
adaptive to such uncertainties, and the parameters of RC or
ILC can possibly be universal.

The aim of this paper is to introduce a new approach of
designing a RC for PMLSM. The key point is to show how
the rest of the control system can cope with the RC. For
this purpose, the relationship between the parameters of RC
(including its gain, length of delay chain, stability filter, robust-
ness filter as shown in Fig. 1) and the rest of the control system
is explained. Consequently, a control topology combining a
position-based RC and a deadbeat current control (DBCC)
loop is proposed. The reason of implementing RC based on
position (instead of traditionally time-based) is mainly due to
the fact that the cogging force of PMLSM is a function of
mover position. Deadbeat current controller has been used for
PMLSM in [8] [9], the combination of RC and DBCC for
PMLSM has never been presented to authors knowledge. The
most important reason of choosing DBCC is due to its fixed
delay nature, a properly designed DBCC loop can be seen as
a delay or two. This feature can simplify the filters in RC.

Overall, simulation results show that the proposed control



method is able to cope with reference of different frequencies
without changing its parameters.

II. MECHANICAL MODEL OF PMLSM

Before any speed ripple reduction methods can be de-
veloped, proper mechanical model of PMLSM needs to be
derived in order to include the main contributors of the ripple.
For PMLSM, its inherent cogging force (due to armature slots
and end effects), and friction (drag force) are the two main
causes for the force ripple of the machine, and consequently
generate speed ripple. In this paper, the mechanical model of
PMLSM is modelled including these two effects as in (1).

Fe =M
dv

dt
+ Fcogg + Ffric + Fload (1)

where, Fe represents the electromagnetic force generated by
the PMLSM, Fcogg denotes the cogging force of the PMLSM
as in (2), Ffric denotes the friction as in (3), Fload represents
the load force, M is the mass (kg) of the mover of PMLSM,
v is the speed of the mover (m/s).

According to [10], the cogging force of PMLSM can be
expressed as in (2).

Fcogg =

N∑
i=1

Aisin(
2πi

τ
x+ ϕi) (2)

where, Ai is the amplitude (N) of the ith harmonic, τ is
the distance (m) between each pole pitch, x is the mover
displacement (m), ϕi is the phase shift of the ith harmonic.
The equation shows that Fcogg is mover position x dependent.
Also, as demonstrated in [11], the order of the cogging force
depends on the number of slots and poles.

A widely known friction equation (3) including coulomb
friction, viscous friction, and Stribeck effect can also be found
in [4] [10].

Ffric = [Fc + (Fs − Fc)e
−( v

vs
)2 ]sign(v) +Bv (3)

where, Fc is the minimum level of Coulomb friction (N), Fs

is the static friction (N), vs is the lubricant parameter (m/s)
for the Stribeck effect, B is viscous friction factor (Ns/m).

III. EQUATION OF THE TRADITIONAL RC

The diagram of the traditional RC is shown in Fig. 1.

Fig. 1. Block diagram of the traditional repetitive controller

Its transfer function can be expressed as in (4).

GRC(z) =
KRCz

−NGf (z)

1−Q(z)z−N
(4)

where, the KRC is the gain of RC, N is the length of the
delay chain in RC, and it is normally chosen to be the closest
integer to the ratio between the sampling frequency fs and

the fundamental frequency of the target error. Gf (z) is called
stability filter, of which some commonly used options can be
the phase lead compensator zM , or the reverse of the plant.
Q(z) is known as robustness filter, of which some options
can be the forgetting factor, or the moving average filter. In
fact, the function of these parameters and filters in RC can
be understood from the viewpoint of system delay. Taking the
control topology in Fig. 2 for example, where, the structure
of the repetitive controller is the same as in Fig. 1.

Fig. 2. Block diagram of an example topology with repetitive control

The key point of using RC to suppress periodic error caused
by external sources (such as periodic references, periodic
disturbances) is to generate the same periodic signal internally.
Therefore, such periodic signal generated by RC needs to be
synchronized with the target periodic error. And the key point
for achieving such synchronization is to align the phase by
considering all the system delays.

For example, the RC as in Fig. 2 needs to generate an
additional force reference FRC

e to cancel the speed error
(vref − v). Consequently, the phase of all the frequencies
in FRC

e should be synchronized with all the frequencies
contained in (vref−v). Therefore, the delay between the force
reference F ref

e applied and the speed response v of the plant
need to be compensated. For this reason, the stability filter
Gf (z) is necessarily included in RC. This also explains why
Gf (z) can be chosen as the phase lead compensator ZM or
the reverse of the plant seen by the RC (i.e. 1

Gcl(z)Gp(z)
).

Besides the pre-mentioned synchronization issue, the noise
in the speed feedback also needs to be considered. Therefore,
robustness filter Q(z) is used. Q(z) can be a forgetting factor
QRC (i.e. a constant value between 0 and 1) or a moving
average filter.

What is more, gain KRC of RC as in Fig. 1 and Fig.
2 is responsible for the amplitude of force reference FRC

e ,
therefore, the choice of KRC can refer to the ratio between
Fe and v according to the speed plant Gp(z).

Additionally, length N of the delay chain in RC is normally
chosen to be the closest integer to fs/fd (where, fs is the
sampling frequency, fd is the fundamental frequency of the
target speed error).

After analysing the purposes of using Gf (z), Q(z), KRC ,
and N , we can clearly see that Gf (z) and N may need to
be redesigned once conditions like speed error frequencies
and system delays change, which is likely to happen once the
speed reference changes. As a result, a more adaptive control
topology is developed in the following section, which allows
the RC to work at different frequencies without necessarily
redesigning its parameters.



IV. DESIGN OF RC WITH DBCC

As mentioned above, the system delay is an important
feature for the design of RC. The system delay seen by the
RC, as in Fig. 2, consists of the delay of the current loop plus
the delay of the speed loop plant. A straightforward way to
simplify the system delay is to use deadbeat control for the
current loop.

For a properly tuned deadbeat current loop as demonstrated
in [12], its delay is fixed to be twice of the sampling period
(i.e. 2Ts). Therefore, Gcl(z) = z−2, and the delay of such
current loop can be easily compensated by a simple phase
lead compensator z2. In such way, the control topology as
shown in Fig. 3 is developed.

Fig. 3. Block diagram of the modified topology with repetitive control

As can be seen in Fig. 3, a force estimator has also been
added. In this way, the RC would work with the force error
instead of the speed error as in Fig. 2. Since the force estimator
would be the reverse of the speed plant, the proposed topology
is equivalent to dividing the stability filter Gf (z) into two
parts: one part is a phase lead compensator zM inside RC,
the other part is the reverse of the speed plant (i.e. the force
estimator) outside of RC. During the (k + 1)th sampling
interval, the equation for the force estimator can be seen
as in (5). In fact, the proposed control can possibly work
without including Ffric(k) in the force estimator. This will
be discussed later in section V.

F est
e (k) =M

v(k + 1)− v(k)

Ts
+ Ffric(k)

=M
v(k + 1)− v(k)

Ts

+ [Fc + (Fs − Fc)e
−( v

vs
)2 ]sign(v) +Bv

(5)

However, still, N needs to be changed if the fundamental
frequency of the target force error changes. It can be told
from the mechanical model (1-3) that, for variable speed,
both speed-based (i.e. Ffric(v)) and mover position-based (i.e.
Fcogg(x)) force ripple exists, while for constant speed, only
mover position based ripple exists. Considering the case when
only step changes are required in the speed reference vref

profile, the speed demand vref is pulses or steps , i.e. when
most of the time the speed is supposed to be constant, a
position-based RC can be used. The implementation of RC
can be found in [13], where an angle-based RC is proposed
for rotational machines. This angle-based RC includes the
time-to-angle conversion, main body of RC, and angle-to-
time conversion. The key point is to memorize the target

error with respect to N selected rotor mechanical locations
over one cycle (i.e. when the mechanical position equals
to 2π/N, 4π/N, , 2π), length N of the delay chain for the
traditional RC becomes therefore the number of the memory
locations, which does not need to be changed when the rotor
speed changes. The same equations of the angle-based RC in
[13] can be applied for the PMLSM if converts the mover
displacement x into an equivalent rotor position (i.e. 2πx/l,
where l is the full journey length (m) of the PMLSM).

Overall, the proposed control diagram is shown in Fig. 4.
Ideally, the position-based RC is responsible for any position-
based force error (i.e. cogging force error), whereas the speed
PI controller Gs(z) is responsible for the transient actions.

Fig. 4. Block diagram of the proposed topology with repetitive control

As discussed above, stability filter Gf (z) has been chosen
to be a phase lead compensator z2. It is also worth noting
that the implementation of phase lead compensator z2 in the
angle-domain requires future position of the mover. The future
position is predicted (as in [13]) using the speed feedback by
assuming speed to be constant during the next 2Ts.

The remaining parameters to be tuned for RC are the
memory length N , its gain KRC and robustness filter Q(z),
which will be discussed later in section V.

V. SIMULATION RESULTS

A simulation model is built using Matlab/Simulink. The
PMLSM model includes the friction model and cogging force
model as demonstrated in section II. The control loops are
implemented as shown in Fig. 4. Again, the deadbeat current
loop is implemented according to [12], the force estimator is as
demonstrated in section IV, and the position-based RC shares
the same equations with the angle-based RC in [13] (the mover
displacement x is converted into an equivalent rotor position
by times 2π/l, l is the full journey length of PMLSM).

As noticed from Fig. 4, the proposed RC learns from the
force error, and generates force reference. Therefore, the gain
KRC can be set to be one. Q(z) is chosen to be a simple
forgetting factor QRC . According to [14], the more QRC is
close to one, the better is performance. Therefore, QRC is
chosen to be 0.999. Key parameters for the simulation tests
are as shown in Table I.

The aim of these tests is to investigate the performance
of the proposed ripple rejection method by comparing the
machine speed waveforms with/without the proposed RC,
with N varies from 500, 1000, 2000 to 4000 respectively,
with/without Ffric(k) in the proposed force estimator, and



TABLE I
MACHINE AND CONTROL PARAMETERS

Symbol Quantity Value
τ Pole pitch 0.016 m
L Full journey length of PMLSM 0.096 m

Fcogg(x) Cogging force 10sin( 4π
τ
x) N

Fc Minimum level of Coulomb friction 2.5 N
Fs Static friction 5 N
vs Lubricant parameter 0.1 m/s
B Viscous friction factor 10 Ns/m
M Mass of mover 0.08 kg
fs Sampling frequency 10 kHz
Ts Sampling period 100 µs
N Length of memory array 500/1000/2000/8000

KRC Gain of RC 1
QRC Forgetting factor of RC 0.999

with the period of speed reference varying from 0.78s to 1.56s
and then from 1.56s to 3.12s. The resultant speed waveforms
are shown in Fig. 5. Further discussions and more results will
be given in the following subsections from three aspects.

Fig. 5. Speed waveforms from the simulation tests with N =
500, 1000, 2000 and under variable frequency speed references (the force
estimator is implemented as equation (5) assuming mechanical parameters
M,B,Fc, Fs, vs are known)

A. Influence of N on Performance

Fig.6 shows the zoom-in of Fig.5. It shows that the proposed
control method is effective for reducing speed error from a
peak to peak value of 54% (red line) to 1.8% (when N=500),
0.7% (when N=1000), or 0.1% (when N=2000). This can be
easily understood since larger memory can offer better ripple
learning accuracy, therefore leads to better performance.

Fig.6(a) also shows that the proposed controller converges
fast. As can be seen, the controller is able to remove the speed
error after only half of a period (0.39s).

B. Performance under Variable Frequency Speed

Fig.7 also shows the zoom-in of Fig.5. The results verify
that the proposed control method can work for speed refer-
ences of different frequencies without necessarily changing
the control parameters.

C. Influence of Friction Model on Performance

Considering that parameters such as Fc, Fs, vs for the fric-
tion force as expressed in (3) might be difficult to identified.
It is worth to investigate the influence of the friction model on
performance. A simulation test is carried out with the Ffric

(a) Zoom in of Fig. 5

(b) Zoom in of (a)

Fig. 6. Performance of the proposed controller with different choices of N
(the amplitude of speed reference is ±0.2m/s, period is 0.78s)

(a) When speed amplitude varies from ±0.2m/s to ±0.1m/s, and period
varies from 0.78s to 1.56s

(b) When speed amplitude varies from ±0.1m/s to ±0.05m/s, and period
varies from 1.56s to 3.12s

Fig. 7. Performance of the proposed controller with variable frequency speed
reference (N=2000, zoom in of Fig. 5)

term being removed from the proposed force estimator as in
(5). Comparing the speed waveforms with and without the
friction model in the force estimator (N=2000), Fig.8(a) shows
that the performance degrades without the friction model,
especially after 4.68s when the speed reference is ±0.05m/s.
However, as discussed above in subsection A, the performance
can be improved by the using larger memory. Therefore,



another simulation test is carried out with N=8000 and without
the friction term in the force estimator. As it can be seen from
Fig.8(b), the performance is improved effectively, and becomes
even better than when with the friction model and N=2000.
This indicates that it may not be necessary to identify the
friction model for applying the proposed control, which can
be another benefit.

(a) Speed waveforms with and without estimating friction force (N = 2000)

(b) Speed waveform without estimating friction force and N = 8000 (speed
reference ±0.05m/s, period 3.12s

Fig. 8. Performance of the proposed controller with/without including the
friction model in the proposed force estimator

VI. CONCLUSIONS

In this paper, a position-based repetitive controller is pro-
posed for a linear permanent magnet synchronous motor
application where the force ripple is high. In the preliminary
analysis, it has been shown that, if combined with a current
deadbeat control, the tuning of the repetitive controller can be
rendered independent from the frequency of the periodic ref-
erence. The initial simulation results show good performance
of the position-based RC which will be expanded in further
works.
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