
 1

Dissecting the role of MADS-box genes in monocot floral development and diversity 1 

 2 

Cindy Callens1,2, Matthew R. Tucker2, Dabing Zhang2,3 and Zoe Wilson1,4 3 

 4 

1School of Biosciences, University of Nottingham, Sutton Bonington Campus, 5 

Loughborough, Leicestershire, LE12 5RD, United Kingdom 6 

2School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 7 

Australia. 8 

3School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 9 

200240, China 10 

4Authors for correspondence: Email zoe.wilson@nottingham.ac.uk;  Tel: +44(0)115 9513235 11 

 12 

cindy.callens@adelaide.edu.au 13 

matthew.tucker@adelaide.edu.au 14 

dabing.zhang@adelaide.edu.au 15 

 16 

Date of Submission: 17 

Number of Tables: 1 Number of Figures: 11 18 

Word Count (introduction to the end of acknowledgements): 12.635 19 

  20 

 21 

Running Title: MADS-box genes in monocot floral development 22 

 23 

 24 

Highlight: MADS-box proteins are critical transcription factors required for floral 25 

development, but their functions in monocots are still relatively uncharacterised. Here we 26 

review how changes in MADS-box proteins throughout evolution have created a diverse 27 

range of monocot flowers and identify key targets for crop improvement and breeding. 28 

 29 

 30 

Key words: Arabidopsis, barley, floral development; inflorescence, lily, MADS-box; 31 

monocots; rice, transcription factors, wheat  32 

 33 

  34 



 2

Abstract  35 

Many monocot plants have high social and economic value. These include grasses such as 36 

rice (Oryza sativa), wheat (Triticum aestivum) and barley (Hordeum vulgare), which produce 37 

soft commodities for many food and beverage industries, and ornamental flowers like lily 38 

(Lilium longiflorum) and orchid (Oncidium Gower Ramsey), which represent an important 39 

component of international flower markets. There is constant pressure to improve the 40 

development and diversity of these species with a significant emphasis on flower 41 

development, and this is particularly relevant considering the impact of changing 42 

environments on reproduction and thus yield. MADS-box proteins are a family of 43 

transcription factors that contain a conserved 56 amino acid MADS-box motif. In plants, 44 

attention has been devoted to characterisation of this family due to their roles in inflorescence 45 

and flower development, which holds promise for the modification of floral architecture for 46 

plant breeding. This has been explored in diverse angiosperms, but particularly the dicot 47 

model Arabidopsis thaliana. The focus of this review is on the less-well characterised roles of 48 

the MADS-box proteins in monocot flower development and how changes in MADS-box 49 

proteins throughout evolution may have contributed to creating a diverse range of flowers. 50 

Examining these changes within the monocots can identify the importance of certain genes 51 

and pinpoint those which might be useful in future crop improvement and breeding strategies. 52 

 53 

 54 

Introduction 55 

 56 

The grass family, Poaceae, diverged from other Poales around 55-70 million years ago 57 

(Bommert et al., 2005). The inflorescence morphology of grasses is one of the major 58 

determinants of yield and is thus a key breeding target (Bommert et al., 2005). Identifying 59 

genes and proteins that are involved in flower development and their behaviour in high-60 

yielding varieties and varieties that are resistant to biotic and abiotic stresses, may help to 61 

identify pathways that can be targeted for the improvement of important crops. 62 

 63 

Much of our knowledge of flower structure, morphology and genetics has been gained 64 

through study of the model dicotyledonous plants Arabidopsis thaliana and Antirrhinum 65 

majus. Arabidopsis flowers contain 4 concentric whorls of organs including 4 sepals, 4 petals, 66 

6 stamen and 2 fused carpels. In general, flowers in the grasses share a similar structure, but 67 

exhibit some key differences. The rice spikelet comprises a single fertile floret that contains 68 
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lemma and palea in whorl 1, two lodicules in whorl 2, six stamens in whorl 3 and a pistil in 69 

whorl 4 (Figure 1A). In addition, there are two pairs of repressed bracts: rudimentary glumes 70 

and sterile lemmas (Zhang et al., 2013). The identity of the palea and lemma has caused a lot 71 

of debate (Bell, 1991; Clifford, 1987). Their morphology is very similar except for three 72 

vascular strand in the lemma compared to two in palea (Ambrose et al., 2000), and a higher 73 

density of trichomes and more stomata in the lemma compared to the palea (Ambrose et al., 74 

2000). The palea is considered a prophyll in whose axil the grass flower arises (Bell, 1991). 75 

Many mutant phenotypes support the interpretation that the palea and lemma are equivalent to 76 

the sepals of most other flowers (Ambrose et al., 2000; Bowman, 1997; Kyozuka et al., 2000; 77 

Prasad et al., 2001; Xu et al., 2017). Their function is to protect the florets and kernels from 78 

pathogens and insect attack and supply carbohydrates to the developing seeds (Zhang et al., 79 

2013). Lodicules play a role in opening the florets and aid in co-ordination of stamen 80 

extrusion, pollination and fertilization (Bommert et al., 2005; Yoshida, 2012). They are 81 

believed to be equivalent to petals in other flowers (Ambrose et al., 2000; Kyozuka et al., 82 

2000; Nagasawa et al., 2003). Wheat, barley and rye have spikelets that are directly attached 83 

to the main axis (Figure 1B), while other grasses have long, branched inflorescences and 84 

spikelets that are attached to lateral inflorescence branches (Zhang and Yuan, 2014). A spike 85 

can contain up to 40 florets (Bommert et al., 2005). 86 

 87 

In rice the inflorescence meristem produces several primary branch meristems and they 88 

produce secondary branch meristems. Both of these in turn produce spikelet meristems 89 

(Hoshikawa, 1989). The spikelet meristem turns into a terminal spikelet meristem and 90 

produces the flowers (Kellogg, 2007). Maize has distinct male (tassel) and female (ear) 91 

inflorescences (Zhang and Yuan, 2014) that are physically separated (Figure 1C) and each 92 

spikelet has a pair of florets, an upper and lower one (Dreni and Zhang, 2016). The Shoot 93 

Apical Meristem (SAM) gives rise to the terminal tassel, which has long branches and 94 

develops male flowers. The first branches that are produced by the apical meristem are long 95 

branches, which produce a large number of short branches. Each short branch produces a 96 

single lateral branch that terminates in a spikelet (Kellogg, 2007).  Ears are derived from 97 

axillary shoot meristems, have no long branches and develop female flowers (Bommert et al., 98 

2005). Male and female flowers initiate one pistil, three stamens, two lodicules, a palea and a 99 

lemma. The carpel primordia in the male florets and the stamen primordia in the female 100 

florets are aborted after initiation to produce unisexual florets (Bommert et al., 2005).  101 

 102 
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Orchids are also members of the monocotyledons, in the family Orchidaceae, but are distinct 103 

from the true grasses. Orchid flowers have a zygomorphic structure, which is very different 104 

from any of the grass floret structures and within the orchid family there is also great diversity 105 

(Pan et al., 2014). Oncidium Gower Ramsey, the variety that has been frequently used for 106 

floral characterisation, has three types of perianth organs. In the first whorl three small sepals 107 

can be identified, while in the second whorl, two petals and the very distinctive lip, or 108 

labellum, are found (Figure 1D); because the sepals and petals are not significantly different 109 

in some plant species, they are often called tepals. The labellum is particularly interesting 110 

from an evolutionary perspective since it represents a unique floral structure that may indicate 111 

a shift in protein function and interactions in the highly conserved MADS-box family 112 

(Mondragon-Palomino and Theissen, 2008). It is essential for the interaction with pollinators 113 

and different models have been proposed to describe the protein interactions leading to 114 

labellum development (Mondragon-Palomino and Theissen, 2008). 115 

 116 

Lily (Lilium longiflorum) from the monocot family Liliaceae produce flowers that have three 117 

sepals in the first whorl, three petals in the second whorl, six stamens in the third whorl and 118 

three fused carpels in the fourth whorl (Figure 1E). In Lilium longiflorum, most parts of the 119 

sepals and petals are still connected to each other giving the lily flowers their distinct trumpet 120 

form and distinguishing them from other lily species. Similar to orchids, the sepals and petals 121 

are almost identical, which earned them the general name tepals (Tzeng and Yang, 2001). 122 

Orchid flowers probably originated from a flower with lily-like actinomorphic perianth with 123 

undifferentiated whorls of tepals (Mondragon-Palomino and Theissen, 2008).   124 

 125 

The MADS-box protein family 126 

 127 

The MADS-box acronym is derived from MCM1 (yeast), AG (Arabidopsis), DEFICIENS 128 

(Antirrhinum) and SRF (mammals), the first four proteins discovered in the transcription 129 

factor family (Lawton-Rauh et al., 2000; Shore and Sharrocks, 1995). The MADS-box 130 

proteins are involved in diverse developmental processes in flowering plants, cardiac muscle 131 

development in animals and pheromone response in yeast (Becker and Theissen, 2003; 132 

Pelucchi et al., 2002; Schwarz-Sommer et al., 1990). 133 

 134 

In plants, the MADS-box genes have been proposed to be the driving force behind much 135 

floral diversity (Theissen and Saedler, 2001; Yamaguchi and Hirano, 2006). Therefore, better 136 
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insight into their expression and function, and their conservation in different species is 137 

important to inform breeding strategies targeting alterations in floral architecture. The 138 

MADS-box domain is highly conserved across different species in dicots and monocots, 139 

which makes the functional diversity of the proteins extremely interesting. In this review the 140 

expression patterns and functions of MADS-box genes relative to flower development in six 141 

different monocot species including barley, wheat, maize (Zea mays), rice, orchid and lily 142 

have been compared. The cereals barley, wheat, maize and rice are mainly cultivated for food 143 

purposes, while orchid and lily have economic value as ornamental plants and flowers.  144 

 145 

MADS-box protein structure is conserved between diverse plant species 146 

 147 

The MADS-box genes have been divided in two groups: Type I and Type II (Becker and 148 

Theissen, 2003). Type I genes seem to have a faster evolutionary rate than Type II genes. The 149 

number of duplications of Type I genes is higher, however, even in the shorter time frame 150 

(Gramzow and Theissen, 2013). In plants the Type II MADS-box genes are called MIKC-151 

type genes, an acronym of the 4 different domains that have been identified in all genes of this 152 

type (Becker and Theissen, 2003).  153 

 154 

The MIKC-type MADS-box genes consist of a MADS-box domain, an intervening domain 155 

(I), a K-box (K) and a C-terminal domain (C) (Figure 2) (Theißen et al., 1996). The highly 156 

conserved MADS-box motif has 60 amino acids for a sequence-specific DNA-binding 157 

activity that also plays a role in dimerization and accessory factor binding. The weakly 158 

conserved intervening domain is a regulatory determinant for formation of DNA-binding 159 

dimers. The keratin-like K-box is defined by conserved regular spacing of hydrophobic 160 

residues and can form amphipatic helices involved in protein dimerization, which mediate 161 

protein-protein interactions. The most variable domain is located at the C-terminal end. It is 162 

involved in transcriptional activation and formation of multimeric transcription factor 163 

complexes (Becker and Theissen, 2003; Fornara et al., 2003; Shore and Sharrocks, 1995; 164 

Zhao et al., 2006a). 165 

 166 

Dependent on the structure of the intervening (I) domain and K-box, the MIKC-type MADS-167 

box proteins can be further subdivided into two categories: the MIKCc-type and the MIKC*-168 

type proteins. The I-domain in the MIKCc-type proteins is only encoded by 1 exon, while that 169 



 6

in the MIKC*-type proteins is longer, with 4 or 5 exons (Becker and Theissen, 2003; Zhao et 170 

al., 2006a). 171 

 172 

Gene duplication within the MADS-box gene family is believed to be a key process during 173 

flower evolution (Theissen and Saedler, 2001). After gene duplication, a gene can have 174 

several different fates. If a gene is duplicated in its entirety, this frequently leads to functional 175 

redundancy (Pickett and Meeks-Wagner, 1995; Tautz, 1992). On the other hand, one 176 

duplicated gene can retain the ancestral function, while the other acquires a mutation or a 177 

series of cumulative mutations and becomes a pseudogene. In another scenario, one gene 178 

retains the ancestral function, while the other gains a beneficial mutation that will be 179 

positively selected for, which results in a new function. Another possibility is that both genes 180 

acquire complementary loss-of-function mutations that result in the preservation of both 181 

genes as they now together retain the original functions of their single ancestor (Lynch and 182 

Force, 2000). This is also referred to as the duplication-degeneration-complementation (DDC) 183 

model (Force et al., 1999; Prince and Pickett, 2002). These are called non-functionalization, 184 

neo-functionalization and sub-functionalization, respectively (Schilling et al., 2015). Most 185 

major difference in the MADS-box gene family between species are thought to have arisen 186 

from gene duplications.  187 

 188 

The role of MIKCc-type MADS-box proteins in the ABCDE model of flower 189 

development 190 

 191 

The floral organ identity MADS-box genes of the MIKCc-type have been divided into five 192 

different classes based on their homeotic function: class A, B, C, D and E genes (Bowman et 193 

al., 1989, 1991; Coen and Meyerowitz, 1991; Theißen, 2001; Weigel and Meyerowitz, 1994). 194 

The A- and E-class protein complexes specify sepals in the first whorl. Complexes of A-, B- 195 

and E-class proteins specify petals in the second whorl (Honma and Goto, 2001). B-, C- and 196 

E-class complexes specify stamens in the third whorl and C- and E-class protein complexes 197 

specify carpels in the fourth whorl (Coen and Meyerowitz, 1991; Honma and Goto, 2001). D-198 

class proteins specify ovules together with E-class genes (Figure 3) (Angenent and Colombo, 199 

1996; Becker and Theissen, 2003; Colombo et al., 1995; Li et al., 2011; Theissen and 200 

Saedler, 2001; Wang et al., 2015a). Another group of genes, phylogenetically related to the 201 

B-class genes was identified and was named the Bsister or Bs genes (Becker et al., 2002). 202 
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Genes in this class are mainly expressed in female reproductive organs, especially in the 203 

ovules (Becker et al., 2002; Becker and Theissen, 2003; Munster et al., 2001). All of these 204 

genes also fall into separate clades, named after the first proteins identified (Figure 4). The 205 

genes in the SQUA-clade all determine either inflorescence or floral meristem identity and 206 

some have additional A-type functions, while genes in the DEF/GLO clade have class B 207 

functions (Theißen et al., 1996). The AG-clade consists of an AG- and an AGL11 (or STK)-208 

lineage and the class E genes are all part of the SEP/AGL2-clade.  209 

 210 

The ABCDE model in monocots 211 

 212 

MADS-box genes involved in flower development have been studied in a wide variety of 213 

species. In monocots, most research has been undertaken in rice, wheat and maize. 214 

Comparing the expression patterns and functions of MADS-box floral genes in different 215 

monocot species provides information on the differences in their morphology and how 216 

evolution may have affected different floral structures and floral diversity among these 217 

species. While rice, wheat and barley have a similar floral pattern, the flowers in orchid and 218 

lily are very different. The emergence of unique organs like the labellum in orchid and the 219 

differentiation between male tassels and female ears in maize are also interesting to be 220 

elucidated. Comparing the expression and function of the ABCDE MADS-box genes within 221 

these monocot species provides an interesting opportunity to elucidate more about their role 222 

in shaping these different floral structures. 223 

 224 

A-class genes 225 

 226 

In Arabidopsis and Antirrhinum, the A-class genes AP1 and SQUA are responsible for the 227 

transition from vegetative to reproductive growth, determination of floral organ identity and 228 

the regulation of fruit maturation (Fornara et al., 2004). Their orthologues in monocots have 229 

some level of conservation, but there is some divergence in sequence, expression pattern and 230 

function (Zhang and Yuan, 2014). In the core eudicots there are two different gene clades 231 

within the class A genes: euAP1 and euFUL, which have arisen from a duplication event that 232 

coincided with the origin of this angiosperm group (Litt and Irish, 2003; Shan et al., 2007). In 233 

non-core eudicots and monocots, only sequences that are similar to euFUL genes have been 234 

found and these have been termed ‘FUL-like’ genes (Litt and Irish, 2003). The monocot FUL-235 
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like genes fall into two successively branching clades, which indicates another duplication in 236 

the gene lineage (Litt and Irish, 2003). 237 

  238 

The FUL-like and the euFUL sequences have a highly conserved motif in the C-terminus 239 

(Figure 5), the FUL-like or paleoAP1 motif (L/MPPWML), which has not been found in the 240 

euAP1 sequences (Litt and Irish, 2003). euAP1 sequences have two distinct conserved motifs 241 

in their C-terminus: RRNa-LaLT/NLa and CFAT/A. These motifs contain an acidic 242 

transcription activation domain and a farnesylation signal (Chen et al., 2008; Fornara et al., 243 

2004; Litt and Irish, 2003). Both of these motifs have not been observed in FUL-like and 244 

euFUL sequences. It is suggested that the euAP1 motif has arisen via a translational 245 

frameshift from the euFUL/FUL-like motif. This frameshift may have resulted in different 246 

functions for the euAP1 proteins (Litt and Irish, 2003). 247 

 248 

The rice genome contains four A-class genes, OsMADS14, OsMADS15, OsMADS18 and 249 

OsMADS20. Northern blot and in situ hybridization analysis showed that OsMADS15 is 250 

expressed in the apical region of the floral meristem and subsequently accumulates in the 251 

developing lemma and palea (Kyozuka et al., 2000). Expression becomes restricted to the 252 

palea, lemma and lodicules after differentiation of the spikelet organs (Figure 5B) (Kyozuka 253 

et al., 2000), which is similar to AP1 (Fornara et al., 2003). T-DNA insertional lines that lead 254 

to loss-of-function mutants of OsMADS15 show smaller paleas, while a single nucleotide 255 

mutation in OsMADS15 leads to degenerative paleas and occasional pseudovivipary (Wang et 256 

al., 2010; Wu et al., 2017). Overexpression of OsMADS15 causes early internode elongation, 257 

shoot-born crown root development, reduced plant height and early flowering (Lu et al., 258 

2012). Northern blot and in situ hybridization analysis showed that OsMADS14 expression is 259 

similar to that of OsMADS15, and is initially detectable in the whole region of the floral 260 

meristem during flower development, and subsequently becomes restricted to the primordia of 261 

glumes, lemma and palea (Pelucchi et al., 2002). In mature flowers the expression of 262 

OsMADS14 is detectable in the reproductive organs (Figure 5B) (Moon et al., 1999b; 263 

Pelucchi et al., 2002). A loss-of-function T-DNA insertion mutant in OsMADS14 showed no 264 

phenotype in the field, while ectopic expression leads to early flowering at the callus stage 265 

(Jeon et al., 2000b; Wu et al., 2017). Double mutant osmads14osmads15 plants fail to 266 

produce secondary branches and spikelets and only leaf-like organs are observed (Wu et al., 267 

2017). The single mutant phenotype of OsMADS14 and that of the double mutant suggest that 268 

its function is largely redundant with other genes, such as OsMADS15. Analysis of 269 
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heterozygous double mutants suggests that OsMADS14 and OsMADS15 went through sub-270 

functionalization and acquired partially overlapping functions (Wu et al., 2017).  They work 271 

together in a dose-dependent manner by antagonizing C-class genes and both determine floral 272 

meristem fate (Wu et al., 2017). OsMADS14 mainly regulates the identities of the lodicule 273 

and stamens, while OsMADS15 is mainly responsible for the empty glumes, palea and lemma 274 

(Wu et al., 2017). OsMADS18 has a different expression pattern compared to the other AP1 275 

orthologues. Northern blot and in situ hybridization analysis revealed expression in roots, 276 

leaves and flowers with a strong signal in the inflorescence (Fornara et al., 2003; Masiero et 277 

al., 2002; Pelucchi et al., 2002). OsMADS18 expression levels are maximal when the plant 278 

reaches the reproductive stage (Fornara et al., 2003), but are absent from the lodicules and the 279 

sterile glumes in mature flowers (Pelucchi et al., 2002). Fornara et al. (2004) described an 280 

RNAi line of OsMADS18 that showed no visible phenotype, while a recent RNAi line 281 

described by Wu et al. (2017) showed only a low seed setting rate. Overexpression of 282 

OsMADS18 induces precocious initiation of axillary shoot meristems and early transition to 283 

flowering (Fornara et al., 2004). These results suggest that OsMADS18 is possibly not 284 

required for specifying floral organ identity but may be involved in promoting the 285 

differentiation of the vegetative shoot or seed development together with OsMADS14 and 286 

OsMADS15 (Fornara et al., 2004; Wu et al., 2017). Yeast-2-Hybrid and BiFC experiments 287 

have shown that OsMADS18 forms heterodimers with OsMADS14, OsMADS15, 288 

OsMADS8, OsMADS7, OsMADS6 and OsMADS47 (Masiero et al., 2002; Wu et al., 2017), 289 

but does not form homodimers (Wu et al., 2017), revealing a conserved aspect between 290 

monocots and dicots (Fornara et al., 2004). Both OsMADS14 and OsMADS15 have been 291 

shown to interact with each other and OsMADS1, and can also form homodimers, (Lim et al., 292 

2000; Wu et al., 2017). The expression of OsMADS20 was detected in shoots and seeds by 293 

RT-PCR (Lee et al., 2003b), but RNAi lines show no observable phenotype (Wu et al., 2017). 294 

The quadruple mutant of osmads14 osmads15 osmads18 osmads20 does not display a more 295 

severe phenotype than the double mutant osmads14 osmads15, suggesting that OsMADS14 296 

and OsMADS15 are sufficient for specifying palea, lemma and lodicule identity in rice florets 297 

(Wu et al., 2017).  298 

 299 

In maize, ZAP1 was identified as the AP1 orthologue because of the sequence similarities and 300 

the similar expression pattern to Arabidopsis (Mena et al., 1995). ZAP1 mRNA was detected 301 

in male and female inflorescences and the husk leaves that surround the developing ear using 302 

northern blot analysis (Figure 5B) (Mena et al., 1995). ZAP1 is expressed in lemma, palea and 303 
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lodicules, similar to OsMADS14 and OsMADS15 (Li et al., 2014). ZMM4 and ZMM15 have 304 

also been identified as orthologues of rice OsMADS14; ZMM28 is the orthologue of rice 305 

OsMADS18 (Table 1) (Li et al., 2014; Zhao et al., 2011). ZMM4 and ZMM15 are not 306 

expressed in young tissues, but accumulate after the transition from vegetative to reproductive 307 

growth in developing apical and lateral inflorescences (Danilevskaya et al., 2008). Expression 308 

of ZMM4 and ZMM15 was not found in any of the embryonic tissues, but low levels of 309 

expression in husk, stalk, mature leaf and root were detected by MPSS analysis, in situ 310 

hybridization and promotor:GUS analysis (Danilevskaya et al., 2008). The expression profile 311 

of ZMM15 is similar to that of ZMM4 but overall has a low expression level (Danilevskaya et 312 

al., 2008). When both genes are overexpressed only ZMM14 mediates early flowering, which 313 

may suggest that ZMM15 has a function similar to but weaker than ZMM14 (Danilevskaya et 314 

al., 2008). 315 

 316 

The expression patterns of the barley A-class genes do not correspond to those of SQUA and 317 

AP1, implying that they are not functional equivalents (Schmitz et al., 2000). In situ 318 

hybridization, RT-PCR and northern blot analysis showed that at the awn primordium stage 319 

the expression of HvBM18 (also known as BM3) and HvBM14 (also known as BM5) is hardly 320 

detectable, while HvBM15 (also known as BM8) expression is strong (Schmitz et al., 2000). 321 

Subsequently the three genes are expressed in all organ primordia and the vascular system of 322 

the barley floret throughout inflorescence development (Schmitz et al., 2000). HvBM14 and 323 

HvBM15 are specific for these tissues, while HvBM18 is also expressed in all other tissues, 324 

similar to its orthologue in rice OsMADS18 (Figure 5B) (Schmitz et al., 2000). HvBM14 325 

shows a marked increase in transcript abundance during the induction of the reproductive 326 

phase, similar to OsMADS18 (Fornara et al., 2004). HvBM14 is the equivalent of the VRN1 327 

gene in other temperate cereals and is generally not expressed in non-vernalized winter 328 

barleys, but is induced by vernalization (Trevaskis et al., 2003). Spring barley lines carrying 329 

dominant spring VRN-H1 alleles or with homozygous recessive VRN-H2 alleles have low 330 

levels of HvBM14 expression (Trevaskis et al., 2003). Trevaskis et al. (2003) suggest that 331 

HvBM14 expression might be controlled by activation and repression to respond to 332 

vernalization, which has been suggested previously in wheat (Sasani et al., 2009; Tranquilli 333 

and Dubcovsky, 2000; Yan et al., 2003).  334 

 335 

Orthologues of the rice genes OsMADS14, OsMADS15 and OsMADS18 have been found in 336 

wheat and have been termed WFUL1 (corresponding to VRN1), WFUL2 and WFUL3 337 
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respectively (Table 1)(Kinjo et al., 2012). In situ hybridization, RT-PCR and qRT-PCR 338 

determined that WFUL3 is expressed in the spikelet primordia and throughout the spikelet 339 

meristem. WFUL1 and WFUL2 are only expressed in the basal part of the spikelet meristem. 340 

WFUL1 is expressed in leaves at the vegetative phase, in young spikes and in all floral organs 341 

after floral organ development, while the expression of WFUL2 is reduced in stamens and 342 

undetectable in pistils (Figure 5B) (Kinjo et al., 2012). This corresponds to the expression 343 

pattern and function of OsMADS14 and OsMADS15 in rice and ZAP1 in maize, indicating 344 

that this diversification of function has also occurred in the common ancestor of all the 345 

mentioned grasses (Murai, 2013). Overexpression of WFUL1 and WFUL2 leads to early 346 

flowering phenotypes (Adam et al., 2007; Kinjo et al., 2012). WFUL1 has been suggested to 347 

have a function in phase transition in leaves and providing flowering competency (Murai, 348 

2013; Murai et al., 2003). WFUL3 seems to have a function in floral meristem development 349 

together with WFUL2, while WFUL2 has a specialised function in development of the outer 350 

floral organs (Kinjo et al., 2012). Yeast-two or three-hybrid analysis showed that WFUL2 351 

interacts with the B-class proteins WAP3 and WPI and the E-class proteins WSEP and 352 

WLHS1, while WFUL1 and WFUL2 both interact with WSEP (Kinjo et al., 2012).  353 

 354 

OMADS10, the AP1 orthologue in orchid, is almost undetectable in flower buds of early 355 

developmental stages and during flower maturation, as shown by RT-PCR (Chang et al., 356 

2009). In mature flowers, OMADS10 is expressed in the labellum, carpel, anther cap and 357 

stigmatic cavity (Figure 5B) (Chang et al., 2009). It is also strongly detected in vegetative 358 

leaves. This expression pattern is different from those of A-function genes in Arabidopsis, 359 

Antirrhinum and the grasses, but is similar to that found in the AP1 orthologues in lily, 360 

LMADS5 and LMADS6 (Chang et al., 2009). Ectopic expression of OMADS10 in Arabidopsis 361 

induced an early flowering phenotype, but no homeotic conversions of floral organs (Chang et 362 

al., 2009). Aside from LMADS5 and LMADS6 there is one more A-class MADS-box gene in 363 

lily: LMADS7. Northern blot analysis showed that LMADS5 and LMADS6 were strongly 364 

expressed in vegetative stem and leaves and carpels and weakly in the other three floral 365 

organs (Chen et al., 2008). LMADS7 expression was absent in vegetative leaves and in any of 366 

the four organs of the flower, but was detected in the vegetative stem and the inflorescence 367 

meristem (Chen et al., 2008). The expression pattern of LMADS5, 6 and 7 is mostly different 368 

from that of other genes in the SQUA clade, with the exception of the A-class MADS-box 369 

genes in orchid (Figure 5B). Ectopic expression of the A-class lily genes in Arabidopsis 370 

results in early flowering phenotypes and floral organ conversions such as carpelloid sepals 371 
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and staminoid petals (Chen et al., 2008). Functional complementation analysis showed that 372 

ectopic expression of these genes could rescue an ap1 mutant phenotype in Arabidopsis 373 

(Chen et al., 2008). Based on their expression pattern and ectopic expression analysis it was 374 

suggested that they have a function in flower induction, initiation and formation (Chen et al., 375 

2008). 376 

 377 

In rice, only OsMADS18 shows a different expression pattern compared to other A-class 378 

genes, whereas all the A-class genes in barley have a different expression pattern. There is 379 

also no OsMADS20 orthologue in barley, maize or wheat. In maize there has been a 380 

duplication event resulting in ZMM4 and ZMM15, and both appear to be orthologues of 381 

OsMADS14. In wheat, only WFUL2 has the ascribed A-class function. WFUL1 and WFUL3 382 

have a different expression pattern and function. The A-class genes in orchid and lily have a 383 

completely different expression patterns to their orthologues in grasses and Arabidopsis. 384 

Loss-of-function or knock-down mutants are currently missing for most of the A-class genes 385 

in maize, barley, wheat, orchid and lily, which could lead to a better understanding of their 386 

function. 387 

 388 

B-class genes 389 

 390 

B-class genes determine the identity of petals and stamens in Arabidopsis (Fornara et al., 391 

2003), and increasing evidence suggests this is an ancestral function (Becker and Theissen, 392 

2003; Munster et al., 2001). Similar to the A-class genes, the B-class genes have been shaped 393 

by a gene duplication event close to the base of the crown group angiosperms, creating two 394 

lineages: the DEF-like lineage which consists of AP3-like proteins and the GLO-like lineage, 395 

which consists of PI-like proteins (Figure 6B) (Becker and Theissen, 2003; Winter et al., 396 

2002a; Zahn et al., 2005b). 397 

 398 

AP3-like genes  399 

 400 

In higher eudicots, an euAP3 motif is found in the AP3-like proteins, but absent in non-core 401 

eudicots and non-eudicots. Instead a highly conserved paleoAP3 motif (YGxHDLRLA) is 402 

observed in their sequences (Figure 6A) (Kramer et al., 1998). AP3-like proteins also have a 403 

highly conserved sequence motif in the K box (Q/HYExM) (Kramer et al., 1998; Tzeng and 404 
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Yang, 2001). Only one DEF-like gene has been found in most monocots, so it is presumed 405 

that no gene duplication event happened here, except for orchids, where the gene duplication 406 

seems to have occurred in the DEF-clade instead of the GLO-clade (Table 1) (Chen et al., 407 

2012). The paleoAP3 motif seems to have significant sequence diversification in the GLO-408 

like lineage after duplication, where it has been termed a PI-like motif (Figure 6A) (Kramer et 409 

al., 1998; Moon et al., 1999a). The observation of these different motifs in the monocot B-410 

class MADS-box genes shows that AP3 homologues were highly conserved in most monocots 411 

during evolution and that they are more closely related to the lower eudicots than to the higher 412 

eudicots (Tzeng and Yang, 2001). 413 

 414 

In rice, OsMADS16 is a member of DEF-clade and expression is detected in lodicule and 415 

stamen primordia from initiation onwards, as revealed by RNA blot analysis and in situ 416 

hybridization (Figure 6B) (Fornara et al., 2003; Moon et al., 1999a; Nagasawa et al., 2003). 417 

DEF- and GLO-like proteins, like AP3 and PI in Arabidopsis, form obligate heterodimers, 418 

which might have originated after the gymnosperm-angiosperm split but before the monocot-419 

eudicot split (Davies et al., 1996; Goto and Meyerowitz, 1994; Winter et al., 2002b). The 420 

interaction between proteins of the GLO- and the DEF-clade is conserved, as shown by the 421 

interaction of OsMADS16 with OsMADS4 and OsMADS2 by yeast-two-hybrid analysis 422 

(Moon et al., 1999a; Yao et al., 2008). They form a heterodimer and may auto-regulate their 423 

own expression (Yadav et al., 2007), similar to AP3 and PI in Arabidopsis (Krizek and 424 

Meyerowitz, 1996). The function of OsMADS16 seems to be well conserved between rice and 425 

Arabidopsis (Yamaguchi and Hirano, 2006). A loss-of-function mutant of OsMADS16, 426 

known as spw1 (superwoman1), shows the homoetic transformation of stamens into carpels 427 

and lodicules into palea-like organs (Nagasawa et al., 2003). Similarly, SILKY1, the AP3 428 

orthologue in maize, is required for the normal development of lodicules and stamens. 429 

SILKY1 is expressed in the centre of the floral meristem after the lemma and palea primordia 430 

have initiated as well as in lodicules and stamens throughout their development (Ambrose et 431 

al., 2000). A loss-of-function mutation of SILKY1 results in homeotic transformations of 432 

stamens to carpels and lodicules to lemma- or palea-like organs (Ambrose et al., 2000). 433 

OsMADS16 also seems to interact with OsMADS3 (C-class), OsMADS15 (A-class), 434 

OsMADS8 (E-class) and OsMADS6 (AGL6-like) (Lee et al., 2003a).  435 

In wheat, two homeologous genes of WAP3 (TaMADS#51 and TaMADS#82) on 436 

chromosomes 7B and 7D respectively were identified as AP3-like B-class genes (Table 1) 437 

(Hama et al., 2004). WAP3/TaMADS#51 expression is only detected in young spikes at the 438 



 14

floral organ development stage, while WAP3/TaMADS#82 expression was lower in young 439 

spikes, but higher in spikes at heading stage (Figure 6B) (Hama et al., 2004).  440 

 441 

The DEF-like genes in orchid are subdivided into four different clades (Mondragon-Palomino 442 

and Theissen, 2008). OMADS3 (clade 2), one AP3-like gene in orchid, does not contain the 443 

C-terminal motif, which differs from the other B-class genes found so far (Figure 6) (Hsu and 444 

Yang, 2002). The conserved K box sequence (QYQRM), however, is present (Hsu and Yang, 445 

2002; Tsai and Chen, 2006). Its expression can be detected in all four floral organs as well as 446 

in vegetative leaves as shown by a combination of RT-PCR and Northern analysis (Hsu and 447 

Yang, 2002) which is different from other B-class genes that show specific expression in 448 

flowers (Figure 6B). Yeast-two-hybrid analysis showed that OMADS3 is able to form strong 449 

homodimers (Hsu and Yang, 2002; Tsai and Chen, 2006). Three other DEF-like genes are 450 

found in orchid; OMADS12 (clade 4), OMADS5 (clade 1) with expression in sepals and petals 451 

and OMADS9 (clade 3) which is highly expressed in petals and absent in vegetative tissues ;  452 

(Figure 6B) (Chang et al., 2010; Hsu et al., 2015). OMADS5 and OMADS9 may play a 453 

different role in the formation of the sepal, petal and labellum (Chang et al., 2010). The 454 

difference for petal and lip formation may be due to the expression of OMADS5 in the petal 455 

and its absence in the lip. OMADS5 may have a negative role in regulating labellum 456 

formation (Chang et al., 2010) which was further supported by the reduced expression of 457 

OMADS5 in lip-like sepals and lip-like petals of peloric orchid mutants of O. Gower Ramsey 458 

(Chang et al., 2010). OMADS5 and OMADS9 are able to form homodimers and heterodimers 459 

with each other and with OMADS3 (Chang et al., 2010). OMADS12 is weakly expressed in 460 

stamen, but strongly expressed in the carpel (Hsu et al., 2015). Its expression is completely 461 

absent in the sepal, petal and labellum (Hsu et al., 2015). This indicates that clade 4 in O. 462 

Gower Ramsey does not appear to affect perianth differentiation (Hsu et al., 2015). 463 

 464 

In lily, the LMADS1 gene is the functional counterpart of AP3 in Arabidopsis (Table 1) 465 

(Tzeng and Yang, 2001) with conserved function in regulating petal and stamen development. 466 

LMADS1 is expressed in all four floral whorls, but the protein is only detected in petals and 467 

stamens, as revealed by Western blot analysis, suggesting post-transcriptional regulation 468 

(Tzeng and Yang, 2001). LMADS1 transcripts were also strongly detected in late-developing 469 

carpels (Tzeng and Yang, 2001). Yeast-two-hybrid analysis showed that LMADS1 can form 470 

strong homodimers, similar to OMADS3 (Hsu and Yang, 2002; Tsai and Chen, 2006; Tzeng 471 

et al., 2004; Tzeng and Yang, 2001). The highly conserved paleoAP3 motif (YGSHDLRLA) 472 
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was found at the C-terminus of LMADS1 (Figure 6A). Within the K box, the highly 473 

conserved sequence (QYEKM) was also identified (Tzeng and Yang, 2001). 474 

 475 

Briefly, wheat has two AP3 homeologues showing different expression patterns, possibly 476 

indicating divergent functions. A series of duplication events in orchid are proposed to form  477 

4 different clades of AP3-like B-class genes with functional diversification which may 478 

contribute to the development of the unique orchid floral structure, the labellum. Unlike the 479 

A-class genes, lily AP3-like genes now show more similarity with the AP3-like genes in 480 

grasses and Arabidopsis than with those in orchid.  481 

 482 

PI-like genes  483 

 484 

Several GLO-like genes have been identified in rice, barley, wheat, maize and lily (Chang et 485 

al., 2010; Chen et al., 2012; Chung et al., 1995; Hama et al., 2004; Munster et al., 2001); 486 

proteins of the GLO-like lineage have a conserved PI-motif in their C-terminal domain 487 

(Figure 6). 488 

 489 

In rice the PI-like genes OsMADS2 and OsMADS4 are mainly expressed in lodicules, stamens 490 

and carpels (Figure 6B) (Chung et al., 1995; Fornara et al., 2003; Kyozuka et al., 2000). The 491 

function of OsMADS2 is similar to that of PI in Arabidopsis, based upon  RNAi analysis 492 

(Kang and An, 2005; Prasad and Vijayraghavan, 2003; Yadav et al., 2007; Yao et al., 2008). 493 

RNAi knock-down lines of OsMADS2 showed continued growth of the distal region of 494 

second whorl organs forming an elongated bract-like structure, but no apparent changes in 495 

stamen shape (Yadav et al., 2007; Yao et al., 2008; Yoshida et al., 2007). OsMADS2 is 496 

transiently expressed early in all floral tissues and later strongly expressed in early stamen 497 

primordia as shown by in situ hybridization (Kyozuka et al., 2000; Yadav et al., 2007). 498 

Similar expression levels are detected in developing lodicules and stamens, but are later 499 

substantially reduced in differentiating stamens (Kyozuka et al., 2000; Yadav et al., 2007). 500 

OsMADS4 transcription activation occurs very early and uniformly during spikelet meristem 501 

initiation (Chung et al., 1995; Yadav et al., 2007). During floret organ development high 502 

levels of OsMADS4 expression occur in stamen and carpel  with reduced expression in 503 

differentiating lodicules (Yadav et al., 2007). RNAi lines of OsMADS4 showed no phenotypic 504 

alterations, indicating that OsMADS4 and OsMADS2 might be acting redundantly in stamen 505 

specification (Yao et al., 2008; Yoshida et al., 2007). Supporting this, in the double knock-506 
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down mutants of OsMADS2 and OsMADS4 the stamens were transformed into carpel-like 507 

organs (Yao et al., 2008; Yoshida et al., 2007). Moreover, the lodicules in these double 508 

mutants also showed a complete homeotic conversion to bract-like organs, suggesting that 509 

OsMADS4 plays a minor role in determining lodicule identity (Yao et al., 2008; Yoshida et 510 

al., 2007). 511 

 512 

The PI orthologs ZMM18, ZMM29 and ZMM16 in maize show an expression pattern similar 513 

to that of OsMADS2 and OsMADS4 (Figure 6B) (Fornara et al., 2003). ZMM16 is the 514 

orthologue of OsMADS2, while ZMM18 and ZMM29 are orthologous to OsMADS4 (Table 1) 515 

(Munster et al., 2001). These maize genes are expressed in lodicules, stamens and carpel 516 

primordia in male and female inflorescences and later are restricted only to stamen and 517 

lodicules (Whipple et al., 2004). ZMM16 was also weakly detected in vegetative organs 518 

(Munster et al., 2001). The observation of  some different expression patterns of ZMM16 519 

from ZMM18 and ZMM29 suggest that different degrees of selection pressures led to a 520 

functional diversification of the genes (Munster et al., 2001).  The gene pair ZMM18 and 521 

ZMM29 appear to have originated by a gene duplication event (Munster et al., 2001). Using 522 

an electrophoretic mobility shift assay (EMSA), Whipple et al. (2004) showed that ZMM16 523 

forms obligate heterodimers to bind DNA. They also showed that neither SILKY1, nor 524 

ZMM16 alone could bind DNA, while SILKY1 and ZMM16 together could bind DNA, 525 

indicating that the heterodimer is necessary for DNA binding.  WPI1 and WPI2 in wheat are 526 

orthologous to OsMADS4 and OsMADS2, respectively. WPI1 is expressed in the primordia of 527 

the stamen and lodicules as shown by in situ analysis (Table 1, Figure 6B) (Hama et al., 528 

2004). The alloplasmic wheat with a deficiency of WPI1 showed pistillody, the change of 529 

stamens into pistil-like structures, suggesting that WPI1 plays a role in floral organ identity 530 

(Hama et al., 2004).  531 

 532 

OMADS8 is the only GLO-like gene identified in O. Gower Ramsey (Table 1) with expression 533 

detected in vegetative leaves, roots and all floral organs (Figure 6B) (Chang et al., 2010; Hsu 534 

et al., 2015). OMADS8 was unable to form homodimers or heterodimers with OMADS5 or 535 

OMADS9，while it does however form heterodimers with OMADS3 (Chang et al., 2010). 536 

Ectopic expression of OMADS8 in Arabidopsis converted sepals into petal-like organs (Chang 537 

et al., 2010). Based on these findings in O. Gower Ramsey, Chang et al. (2010) proposed that 538 

the presence of at least OMADS3/8/5 and/or OMADS9 is required for sepal and petal 539 



 17

formation, whereas the presence of OMADS3/8/9 and the absence of OMADS5 are likely to 540 

be required for labellum formation (Chang et al., 2010). 541 

 542 

LMADS8 and LMADS9 were identified as the PI orthologs in Lilium longiflorum (Table 1) 543 

(Chen et al., 2012). qRT-PCR analysis revealed that LMADS8 is highly expressed in the first 544 

and second whorl tepals in young and mature flowers, but is absent in vegetative leaves, roots 545 

and stem (Chen et al., 2012). The expression pattern of LMADS9 is very similar to that of 546 

LMADS8 (Figure 6B). As seen in Arabidopsis AP3 and PI, and OsMADS4 and OsMADS16 547 

in rice, LMADS8 and LMADS9 are able to form heterodimers with the AP3-like LMADS1 548 

proteins, and can also form homodimers and heterodimers with each other as shown by yeast-549 

two-hybrid analysis (Chen et al., 2012). The function of LMADS8 and LMADS9 seems to be 550 

involved in tepal formation and to a minor extent in early stamen formation (Chen et al., 551 

2012). Interestingly, LMADS9 is a truncated version of LMADS8, missing the PI-motif in the 552 

C-terminal region (Figure 6A) (Chen et al., 2012). Ectopic expression of LMADS8 and 553 

LMADS9 in Arabidopsis partially converts sepals into petal-like organs (Chen et al., 2012). 554 

Overexpression of LMADS8 in the pi mutant of Arabidopsis completely rescued the 555 

phenotype, while overexpression of LMADS9 only partially rescued the phenotype (Chen et 556 

al., 2012). 557 

 558 

Overall, the PI-like B-class genes in the grasses seem to have a conserved expression pattern 559 

and function. Only one PI-like gene is found in orchid, with a different protein-protein 560 

interaction pattern and function, indicating that the B-class genes are essential for the unique 561 

floral structure of orchids (Chang et al., 2010). Even though LMADS9 does not have the 562 

defining PI-motif at its C-terminus, it does not seem to have lost its interaction possibilities 563 

and, possibly may have retained its function (Chen et al., 2012).  564 

 565 

 566 

The Bsister-genes are phylogenetically closely related to the B-class genes but have 567 

different functions 568 

 569 

Close relatives of B-class genes have been identified in various species including rice, maize, 570 

barley and wheat and have been termed the Bsister (Bs) genes. They are mainly expressed in 571 

female reproductive organs, especially ovules. The two lineages were most likely generated 572 

by gene duplication (Becker and Theissen, 2003; Munster et al., 2001). Compared with the B-573 
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class genes, Bsister genes share a shorter I domain, a sub-terminal PI-motif-derived sequence 574 

and in some cases a paleoAP3 motif in the C-terminal region (Figure 7A) (Becker et al., 575 

2002). In Arabidopsis, two Bsister genes have been identified, ABS and GOA (Becker et al., 576 

2002; Mizzotti et al., 2012; Nesi et al., 2002). ABS is expressed in the endothelial layer of the 577 

inner integuments of mature ovules and is necessary for inner integument differentiation (Nesi 578 

et al., 2002). GOA has a broad expression pattern in ovule primordia and in ovules, which 579 

later is restricted to the outer integuments (Prasad et al., 2010). It has functions in ovule outer 580 

integument development and the regulation of fruit longitudinal growth (Prasad et al., 2010; 581 

Yang et al., 2012). 582 

 583 

The Bsister genes form three subclades in monocots: OsMADS29, OsMADS30 and 584 

OsMADS31 (Yang et al., 2012), which are named after the three Bsister genes found in the rice 585 

genome (Table 1). Expression analysis showed that OsMADS29 expression is restricted to 586 

developing seeds, while OsMADS30 is expressed throughout all organs in the plant (Figure 587 

7B) (Yang et al., 2012). Suppressed expression of OsMADS29 by an antisense construct 588 

results in reduced and delayed cell degradation of the nucellar projection, abnormal 589 

endosperm development and altered seed morphology (Yin and Xue, 2012), indicating that 590 

OsMADS29 is important for the degradation of the nucellar projection and the nucellus. 591 

Yeast-two-hybrid analysis showed that OsMADS29 interacts with all five E-class MADS-box 592 

genes and both AGL6-like MADS-box genes (Nayar et al., 2014). It also interacts with A-593 

class OsMADS14 and OsMADS18, C-class OsMADS3 and Bsister protein OsMADS31 and 594 

forms homodimers (Nayar et al., 2014). OsMADS30 lacks the characteristic Bsister motifs 595 

(Becker et al., 2002; Yang et al., 2012) and has a different C-terminal due to the insertion of a 596 

mobile element (OsME), which has altered function and expression profile (Figure 7A) 597 

(Schilling et al., 2015). In maize, ZMM17 has been identified as a Bsister gene; ZMM17 is 598 

expressed in all organ primordia of the female spikelet, but later restricted to the ovule and the 599 

developing silk as determined by northern hybridization analysis (Becker et al., 2002; Yang et 600 

al., 2012). WBsis was classified as a Bsister gene and part of OsMADS29-like clade in wheat 601 

because of the high sequence similarity with OsMADS29 and OsMADS31 (Yamada et al., 602 

2009). WBsis is expressed in the endothelial layer of the inner integument of the ovule, 603 

similar to ABS in Arabidopsis, weak expression is also detected in the nucellus and the outer 604 

integument (Mizzotti et al., 2012; Yamada et al., 2009; Yang et al., 2012). 605 

 606 
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All Bsister genes discussed here show a similar expression pattern, except OsMADS30 which 607 

also has a diverged function. No Bsister genes have been thoroughly investigated in barley, 608 

orchid and lily. 609 

 610 

C- and D-class genes 611 

 612 

C-class genes in eudicots specify the plant reproductive organs alone (carpels) or together 613 

with the B-class genes (stamens) (Fornara et al., 2003). They also seem to be involved in the 614 

negative regulation of A-class MADS-box genes (Gustafson-Brown et al., 1994; Wang et al., 615 

2015b). Upon the discovery of the function of the MADS-box genes FBP7 and FBP11 in 616 

Petunia in regulating ovule organ identity, the ABC model was extended to incorporate a D 617 

function (Angenent et al., 1995; Colombo et al., 1995). D-gene function is involved in the 618 

determination of the identity of the central meristem, the progenitor tissue of the placenta and 619 

the ovules (Angenent and Colombo, 1996). Both C- and D-class genes belong to the AG-like 620 

subfamily and have arisen through a gene duplication event close to base of the angiosperm 621 

emergence (Becker and Theissen, 2003). 622 

 623 

C- and D-class proteins can be distinguished by the structure of the N-terminal part of the K-624 

box. In D-lineage, a glutamine at position 105 is conserved, while this residue is not found in 625 

C-lineage (Figures 7 and 8) (Dreni et al., 2007; Kramer et al., 2004). Most D-lineage proteins 626 

also have a non-polar hydrophobic residue at position 106, whereas C-lineage proteins have a 627 

polar residue at that position (Dreni et al., 2007). Monocot D-lineage proteins have a specific 628 

single amino acid insertion at position 90 and at position 113 there is a histidine residue. Both 629 

of these are not present in C-lineage proteins (Dreni et al., 2007). Furthermore there is a 630 

conserved AG motif I and AG motif II in the C-terminal region of AG-like proteins, which 631 

can be found in C- and D-class proteins (Kramer et al., 2004). A nine-amino acid motif 632 

downstream of the AG motif II is specific for D-class proteins (Hsu et al., 2010) (Figures 8 633 

and 9).  634 

 635 

In rice, two duplicated C-class genes OsMADS3 and OsMADS58 have partially 636 

subfunctionalized (Table 1) (Kang et al., 1995; Yamaguchi et al., 2006). OsMADS3 shows 637 

high sequence similarity and expression with Arabidopsis AG (C-class gene). In situ 638 

hybridization showed that OsMADS3 is strongly expressed in stamen primordia, while 639 
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OsMADS58 is expressed at a lower level uniformly throughout the floral meristem (Dreni et 640 

al., 2011). After the differentiation of the third whorl organ, both OsMADS3 and OsMADS58 641 

have a similar expression profile in the filament and the anther wall and  a stable expression 642 

level in the carpel and ovule primordia (Dreni et al., 2011). OsMADS3 plays a predominant 643 

role in stamen specification, with knock-out mutants by T-DNA insertion (mads3-3) 644 

exhibiting stamens completely or incompletely transformed into lodicules while carpels 645 

developed normally (Dreni et al., 2011; Yamaguchi et al., 2006). Even though osmads58 646 

insertional mutants showed no drastic phenotype (Dreni et al., 2011),  osmads3-3 osmads58 647 

double mutants showed a complete loss of reproductive organ identity and floral meristem 648 

determinacy (Dreni et al., 2011). The size of the floral meristem also strongly increased and 649 

the combination of these features resulted in an enlarged third whorl. In half of the florets, the 650 

carpel was replaced by a small green lemma/palea-like structure (Dreni et al., 2011). Based 651 

on these results it seems that OsMADS3 and OsMADS58 work redundantly, with the 652 

contribution of OsMADS3 being more important (Dreni et al., 2011). OsMADS3 and 653 

OsMADS58 genetically interact with the B-class gene OsMADS16 and together they play a 654 

key role in suppressing indeterminate growth within floral meristem in the third whorl 655 

primordia (Yun et al., 2013). 656 

 657 

WAG1 and WAG2 are classified as C-function genes in Triticum aestivum (Table 1) 658 

(Hirabayashi and Murai, 2009; Meguro et al., 2003; Murai, 2013; Shitsukawa et al., 2007; 659 

Zhao et al., 2006a). Although they share high level sequence similarity to rice OsMADS58 660 

and OsMADS3 respectively, they have different expression patterns and functions (Murai, 661 

2013; Wei et al., 2011). Meguro et al. (2003) detected three homeologues of WAG1 in the 662 

wheat genome on the group one chromosomes (1A, 1B and 1D) by Southern blot analysis, 663 

while Wei et al. (2011) found three homeologues of WAG2 on the group two chromosomes 664 

(2A, 2B and 2D). WAG1 expression is low during initiation of floral organ primordia, but 665 

transcripts accumulate in developing spikes at the booting to heading stage seen by Northern 666 

blot analysis, suggesting it is involved in floral organ development rather than differentiation 667 

(Meguro et al., 2003). In situ hybridization showed that WAG1 and WAG2 are detected in the 668 

stamen, carpel and ovule (Figure 8B) (Yamada et al., 2009). Ectopic expression of the WAG1 669 

and WAG2 genes induced pistilloid stamens in alloplasmic wheat, which suggests they 670 

participate in ectopic ovule formation in these structures (Yamada et al., 2009).  671 

 672 
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The maize orthologues of rice OsMADS3 are ZMM2 and ZMM23, and OsMADS58 is ZAG1 673 

(Table 1) (Li et al., 2014; Münster et al., 2002; Schmidt et al., 1993; Theiβen et al., 1995). 674 

ZAG1 is expressed early in stamen and carpel primordia as shown by RNA blot analysis and 675 

in situ hybridization (Schmidt et al., 1993). ZMM2 is mainly expressed in the anthers (Figure 676 

8B) (Li et al., 2014; Mena et al., 1996). Analysis of loss-of-function mutants showed that 677 

ZAG1 determines the floral meristem, while ZMM2 participates in regulating the formation of 678 

stamens and carpels (Mena et al., 1996; Wei et al., 2011).  The orchid genes, OMADS4 and 679 

OMADS2 are both placed in the AG-clade, with OMADS4 having a C-class function and 680 

OMADS2 a D-class function (Table 1) (Hsu et al., 2010). qRT-PCR analysis showed that 681 

OMADS4 is expressed in stamens, the stigmatic cavity and ovule (Figure 8B) (Hsu et al., 682 

2010), which is similar to that of AG in Arabidopsis (Yanofsky et al., 1990). Yeast-two-683 

hybrid analysis showed that OMADS4 and OMADS2 can form homodimers and 684 

heterodimers with each other (Hsu et al., 2010). LMADS10, the C-class gene in Lily, is 685 

expressed in stamens and carpels (Hsu et al., 2010). This is very similar to the expression 686 

pattern in Oncidium Gower Ramsey (Figure 8B). Ectopic expression of LMADS10 in 687 

Arabidopsis caused early flowering and produced small, curly leaves and floral organ 688 

conversions like carpelloid sepals (Hsu et al., 2010). Overexpression of OMADS4 in 689 

Arabidopsis only showed a moderate early flowering phenotype with no homeotic floral 690 

organ changes (Hsu et al., 2010).  691 

 692 

Rice has two duplicated D-lineage genes: OsMADS13 and OsMADS21 (Table 1) (Dreni et al., 693 

2007; Kramer et al., 2004). OsMADS13 is expressed in the ovule primordium and the inner 694 

cell layer of the carpel wall. Its expression persists during development of the ovule, mainly 695 

in the integuments (Lopez-Dee et al., 1999). In a Tos17 insertion mutant of OsMADS13, 696 

ovule primordia developed into carpelloid structures that grew out of the carpel, giving rise to 697 

ectopic styles and stigmas (Dreni et al. (2007); Yamaki et al. (2011). The osmads3-3 698 

osmads13 double mutant showed a complete loss of floral meristem determinacy inside the 699 

fourth whorl, while the osmads13 osmads58 double mutant showed a similar but milder 700 

phenotype (Dreni et al., 2011; Li et al., 2011). OsMADS13 interacts with the E-class MADS-701 

box proteins, OsMADS7 and OsMADS8, and is involved in ovule specification and floral 702 

meristem determinacy (Dreni et al., 2007; Fornara et al., 2003; Yamaguchi and Hirano, 703 

2006). RT-PCR and in situ hybridization showed that OsMADS21 is expressed at low levels 704 

in the inner two whorls of the flower and ovules, its expression overlaps with that of 705 

OsMADS13 (Arora et al., 2007; Dreni et al., 2007). The OsMADS21 expression is in two 706 
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whorls of the flower which differs from other D-lineage genes, which are ovule-specific 707 

(Figure 9B) (Dreni et al., 2007), it is also highly expressed in developing kernels (Arora et al., 708 

2007; Dreni et al., 2007). T-DNA insertional mutants of OsMADS21 show no aberrant 709 

phenotype while osmads13 osmads21 double mutants showed no more severe phenotypes 710 

than the osmads13 single mutant and upregulation of OsMADS21 resulted in partial 711 

complementation of osmads13 phenotype, but ovule development was not completely 712 

restored (Dreni et al., 2007; Dreni et al., 2011). These results suggest that OsMADS21 has lost 713 

its function in determining ovule identity, presumably because of its redundancy with 714 

OsMADS13 (Dreni et al., 2007; Fornara et al., 2003; Yamaguchi and Hirano, 2006). 715 

  716 

The closest relative to the Arabidopsis D-function gene STK in wheat is WSTK, also known as 717 

TaAG-3 (Table 1) (Paolacci et al., 2007; Zhao et al., 2006a). Yeast-two-hybrid analysis has 718 

shown that WSTK forms a complex with the E-class protein WSEP (Murai, 2013; Shitsukawa 719 

et al., 2007; Yamada et al., 2009). RT-PCR assays showed that it is expressed in pistils with 720 

strong expression in the developing ovule (Yamada et al., 2009). In situ hybridization showed 721 

WSTK mRNA in the ectopic ovules and pistil-like stamens of alloplasmic wheat, suggesting a 722 

role in ovule formation (Yamada et al., 2009). There are presumably three homeologues of 723 

WSTK in the wheat genome (Yamada et al., 2009; Zhao et al., 2006a). The closest relative to 724 

OsMADS21 in wheat has been identified as TaAG-4 (Paolacci et al., 2007). TaAG-4 has weak 725 

expression in stamens and very high expression in pistils as shown by RT-PCR (Paolacci et 726 

al., 2007). ZAG2 and ZMM1 have been identified as D-class genes in maize (Li et al., 2014; 727 

Schmidt et al., 1993; Theiβen et al., 1995). ZAG2 is a floral specific gene, but expressed later 728 

in floral primordia than the C-class gene ZAG1. Expression of ZAG2 is largely restricted to 729 

the developing ovules and the inner carpel face as determined by in situ hybridization 730 

(Schmidt et al., 1993). qRT-PCR showed that OMADS2 in O. Gower Ramsey is expressed in 731 

the stigmatic cavity and the ovary, but is undetectable in sepals, petals, the labellum and 732 

stamens (Figure 9B) (Hsu et al., 2010). Ectopic expression of OMADS2 shows the same 733 

phenotype as LMADS10, except there are no floral organ conversions (Hsu et al., 2010). 734 

LMADS2 was identified as the D-class protein in Lilium longiflorum (Tzeng et al., 2002). It 735 

was exclusively expressed in the carpel, more specifically in the ovule as seen by RNA blot 736 

analysis (Tzeng et al., 2002). LMADS2 can form heterodimers with LMADS10 and both can 737 

also form homodimers as shown by yeast-two-hybrid analysis (Hsu et al., 2010). Ectopic 738 

expression of LMADS2 in Arabidopsis caused early flowering and floral organ conversion of 739 

sepals and petals to carpel- and stamen-like structures (Tzeng et al., 2002). 740 
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 741 

The gene duplication event of C-class genes is also seen in some grasses, for instance, in 742 

maize, leading to three different C-class genes and possible subfunctionalization (Dreni and 743 

Kater, 2014). In contrast, only one C-class gene and one D-class gene have currently been 744 

found in O. Gower Ramsey and L. longiflorum, but their expression patterns are highly 745 

conserved compared with those of Arabidopsis and rice.  746 

E-class genes 747 

 748 

E-class genes belong to AGL2-subfamily and specify flower organ identity by forming higher-749 

order protein complexes with the class A, B or C proteins respectively (Becker and Theissen, 750 

2003; Pelaz et al., 2000; Theißen, 2001). This ability to form tetrameric complexes also 751 

contributes to the development of floral quartets to control sepal, petal, stamen and carpel 752 

formation or their equivalents in grasses (Becker and Theissen, 2003; Fornara et al., 2003; 753 

Theissen and Saedler, 2001). In Arabidopsis, SEP1/2/3/4 have been identified as E-class 754 

genes (Huang et al., 1995; Ma et al., 1991; Mandel and Yanofsky, 1998). SEP1, SEP2 and 755 

SEP4 are expressed in all four whorls of the flower, with SEP4 showing higher expression in 756 

the central dome (Ditta et al., 2004; Flanagan and Ma, 1994; Savidge et al., 1995). SEP3 is 757 

only expressed in the inner three whorls (Mandel and Yanofsky, 1998).  758 

 759 

AGL2-like genes were deduced to have undergone a gene duplication event before the origin 760 

of the extant angiosperms, and after the divergence between extant gymnosperms and 761 

angiosperms, creating the SEP3- and LOFSEP-lineages  (Malcomber and Kellogg, 2005; 762 

Zahn et al., 2005a). Furthermore, SEP3- and LOFSEP-lineages may have undergone more 763 

gene duplication events in the grasses, leading to three LOFSEP lineages: OsMADS1-, 764 

OsMADS5- and OsMADS34-clades and two SEP3-lineages: OsMADS7- and OsMADS8-765 

clade (Malcomber and Kellogg, 2005; Zahn et al., 2005a). In addition, two motifs (SEPI and 766 

SEPII) that consist of hydrophobic and polar residues were observed in AGL2-like proteins 767 

(Vandenbussche et al., 2003; Zahn et al., 2005a). Clade-specific changes in these motifs can 768 

be seen, for instance, the OsMADS5-clade in grasses have lost the final 12-15 amino acids 769 

within the SEPII motif, possibly caused by a recent gene duplication followed by a frameshift 770 

mutation  (Vandenbussche et al., 2003; Zahn et al., 2005a).  771 

 772 

LOFSEP-lineage 773 
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 774 

OsMADS1-clade 775 

OsMADS1, one well-characterised E-class gene in rice, plays an important role in floral 776 

meristem determination and controls the differentiation and proliferation of palea and lemma 777 

specific-cell types (Jeon et al., 2000a; Prasad et al., 2005). The expression of OsMADS1 is 778 

detected in the floral meristem during early flower development, and later in the palea, lemma 779 

and weakly in the carpel shown by northern blot analysis, RT-PCR and in situ hybridization 780 

(Figure 10B) (Chung et al., 1994; Kobayashi et al., 2010; Prasad et al., 2001). 781 

Overexpression of OsMADS1 caused stunted panicles, irregular positioned branches and 782 

spikelets and the rudimentary glumes were transformed into palea/lemma-like structures 783 

(Prasad et al., 2005; Prasad et al., 2001). Different mutants of OsMADS1 have been 784 

investigated. Jeon et al. (2000a) reported that lhs-1 (leafy hull sterile1), which contains two 785 

missense mutations in OsMADS1 MADS-domain, showed a loss of floral meristem 786 

determination and transformation of palea and lemma into leaf-like structures.  Similarly, 787 

other OsMADS1 mutants such as osmads1-z and nsr (naked seed rice) showed the 788 

transformation of the lemma, palea and lodicules into leaf-like structures (Chen et al., 2006; 789 

Gao et al., 2010). OsMADS1 was shown to interact with the A-class proteins OsMADS14 790 

and OsMADS15, the B-class protein OsMADS16, the C-class proteins OsMADS3 and 791 

OsMADS58, the D-class protein OsMADS13, the E-class proteins OsMADS7 and 792 

OsMADS8 and the AGL-like protein OsMADS6 (Cui et al., 2010; Hu et al., 2015; Lim et al., 793 

2000; Moon et al., 1999b). Two maize homologs of OsMADS1, ZMM8 and ZMM14 are 794 

thought to determine the alternative identity of the upper vs the lower floret within each 795 

spikelet primordium (Becker and Theissen, 2003; Cacharrón et al., 1999). Their expression 796 

was only detectable in the upper floret, but not in the lower floret of the developing spike, 797 

shown by in situ hybridization (Figure 10B) (Cacharrón et al., 1995; Cacharrón et al., 1999). 798 

ZMM14 expression is lower than that of ZMM8 and is stronger in the carpels than in the other 799 

tissues (Cacharrón et al., 1999). The function of barley HvBM1 (also known as BM7) remains 800 

to be elucidated. The expression of HvBM1 is seen in the floret meristem at the distal part of 801 

the awn primordium. As floret development continues, expression is detected in the lemma 802 

and palea, in the lodicules and the ovule, but not in the anther (Schmitz et al., 2000).  803 

Wheat has three homeologues of OsMADS1 called WLHS1 located on chromosomes 4A, 4B 804 

and 4C (Shitsukawa et al., 2007). In situ hybridization analysis showed that the expression of 805 

WLHS1 is initially detectable in the inflorescence axis at inflorescence meristem initiation 806 

(Shitsukawa et al., 2007). During floral organ differentiation, their expression signals are 807 
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detected in the spikelet axis at the most proximal position (Shitsukawa et al., 2007). Later, 808 

their expression was observed in the glume, lemma and palea until maturity of the floral 809 

organs (Shitsukawa et al., 2007). Shitsukawa et al. (2007) showed that expression of WLHS1-810 

B is much lower than that of WLHS1-A and –D.  WLHS1-B and WLHS1-D interact with B-811 

class WAP3 and WPI2 and all E-class genes, with the exception of WLHS1-A (Shitsukawa et 812 

al., 2007). It has been suggested that the lack of interaction with WLHS1-A is due to the loss 813 

of the K box in WLHS1-A (Davies et al., 1996; Shitsukawa et al., 2007). Overexpression of 814 

WLHS1 homeologues in Arabidopsis showed no phenotype for WLHS1-A and early flowering 815 

and late production of terminal flowers for WLHS1-B and –D (Shitsukawa et al., 2007).  816 

 817 

OsMADS5-clade 818 

The function of the LOFSEP gene OsMADS5 has remained a mystery because of no 819 

detectable phenotype in either panicles or vegetative organs in loss-of-function mutants, 820 

except for the lodicules being more tightly attached to the lemma and palea upon spikelet 821 

dissection (Agrawal et al., 2005). Recent findings using genetic and molecular approaches, 822 

suggest one role of OsMADS5 is to redundantly regulate spikelet morphogenesis together with 823 

OsMADS1 and OsMADS34, by positively regulating the other MADS-box floral homeotic 824 

genes. Furthermore, OsMADS1, OsMADS5 and OsMADS34 can form protein-protein 825 

interactions with other MADS-box floral homeotic members, which is a typical, conserved 826 

activity of plant SEP proteins (Wu et al., 2018). 827 

 828 

ZMM3 (maize) was classified as a member of the OsMADS5-clade in the LOFSEP-lineage 829 

with unknown function (Malcomber and Kellogg, 2005). Paolacci et al. (2007) identified 830 

TaSEP-6 as an orthologue of OsMADS5, located on chromosomes 7A, 7B and 7D in the 831 

wheat genome. Northern blot analysis, RT-PCR and qRT-PCR showed that it is expressed in 832 

all floral organs, but at very high levels in glumes, lemma and palea (Paolacci et al., 2007).  833 

 834 

OsMADS34-clade 835 

Unlike other SEP-like genes involved in controlling flower development, OsMADS34 836 

(PANICLE PHYTOMER2 [PAP2]), one LOFSEP gene,  is required for rice inflorescence and 837 

spikelet development (Gao et al., 2010; Kobayashi et al., 2010; Lin et al., 2014). osmads34-1 838 

showed altered inflorescence shape with increased primary branch number and decreased 839 

secondary branch number. In addition, osmads34-1 showed fewer spikelets and changed 840 

spikelet morphology, containing elongated sterile lemmas with lemma/palea-like features 841 
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(Gao et al., 2010)(Gao et al., 2010). Recently OsMADS34/PAP2 was shown to be involved in 842 

the transition from vegetative to reproductive development via specifying inflorescence 843 

meristem identity together with three AP1/FUL-like genes OsMADS14, OsMADS15 and 844 

OsMADS18  (Kobayashi et al., 2012). These findings clearly show that OsMADS34 is a 845 

positive regulator of inflorescence meristem identity and spikelet meristem identity as well as 846 

a suppressor of elongation of the glumes (Kobayashi et al., 2010; Kobayashi et al., 2012).  847 

 848 

In maize and wheat, the function of OsMADS34 homologs have not been elucidated, and only 849 

expression data is reported. Two maize homologues of OsMADS34, ZMM24 and ZMM31 are 850 

expressed in early developing tassels and ears, and ZMM24 shows high expression throughout 851 

ear development (Danilevskaya et al., 2008). TaSEP-5 was identified as the orthologue of 852 

OsMADS34 in wheat and its three homeologues are located on chromosomes 5A, 5B and 5D 853 

with high expression level at the early spike developmental stages, which decreases, but 854 

increases again in spikes at the booting and heading stages (Paolacci et al., 2007). Notably, 855 

TaSEP-5 is highly expressed in the glumes, lemma and palea  (Paolacci et al., 2007). 856 

 857 

Orchid and lily 858 

To date there is no direct genetic evidence showing the function of the OsMADS1-like gene 859 

OMADS11 in orchid. OMADS11 is highly expressed in the sepal, petal, lip, carpel, anther cap 860 

and stigmatic cavity and has no expression signal in vegetative leaves and stamens as was 861 

shown by RT-PCR. Ectopic expression of OMADS11 in Arabidopsis showed early flowering 862 

phenotypes and smaller, curled leaves (Chang et al., 2009). In lily, LMADS3 and LMADS4 863 

were identified as E-class genes (Table 1) (Tzeng et al., 2003). LMADS4 is a SEP1/2 864 

orthologue, which is expressed in the inflorescence meristem, floral buds of different 865 

developmental stages and in all four whorls of the flower (Chang et al., 2009; Tzeng et al., 866 

2003). LMADS4 is also expressed in the vegetative leaf and in the inflorescence stem (Tzeng 867 

et al., 2003). Arabidopsis plants with ectopic expression of LMADS4 were indistinguishable 868 

from the wild type plants (Tzeng et al., 2003).  869 

 870 

SEP3-lineage 871 

 872 

OsMADS7-clade 873 

OsMADS7 has redundant function in specifying rice flower development with OsMADS8, as 874 

suggested by the observation that OsMADS7 and OsMADS8 share almost identical expression 875 
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patterns (Kang et al., 1997; Pelucchi et al., 2002). OsMADS7 and OsMADS8 are expressed 876 

early in the floral meristem where the lodicule and stamen primordia develop (Kang et al., 877 

1997; Pelucchi et al., 2002). Subsequently they are expressed in lodicules, developing stamen 878 

and carpel primordia throughout floret development (Figure 10B) (Kang et al., 1997; Pelucchi 879 

et al., 2002). Overexpression and knockdown of OsMADS7 shows similar phenotypes to that 880 

of OsMADS8 (Cui et al., 2010; Jeon et al., 2000b; Kang et al., 1997). Knock-down of both 881 

OsMADS7 and OsMADS8 resulted in late flowering and homeotic transformation of lodicules, 882 

stamens and carpels into palea/lemma-like structures, while knockdown of OsMADS7 or 883 

OsMADS8 using RNAi only showed mild phenotypes (Cui et al., 2010). In vitro and in vivo 884 

assays showed that OsMADS7 interacts with OsMADS8 and OsMADS1 and can form 885 

homodimers (Cui et al., 2010). 886 

 887 

ZMM6 in maize is weakly expressed in all organs of the upper and lower floret during the 888 

inflorescence development and strongly expressed in the endosperm transfer cell region and 889 

the embryo during maize kernel development (Figure 10B) (Cacharrón et al., 1995; 890 

Cacharrón et al., 1999; Lid et al., 2004).  Loss-of-function of ZMM6 with a Mutator-insertion 891 

showed no obvious developmental defects in the kernel (Lid et al., 2004).  892 

In barley, HvBM7 (also known as BM9) expression has been found in anthers, but not in the 893 

lemma or palea and later also in lodicules and the carpel (Figure 10B) (Schmitz et al., 2000). 894 

The wheat SEP-like protein WSEP has three homeologues in the wheat genome on 895 

chromosomes 7A, 7B and 7D (Paolacci et al., 2007; Shitsukawa et al., 2007). Just before 896 

initiation of the lodicule, stamen and carpel formation, WSEP expression was detected in 897 

whorls 2, 3 and 4 (Shitsukawa et al., 2007). In all subsequent stages, expression was also 898 

detected in the palea of the floret (Figure 10B). qRT-PCR showed that there is no difference 899 

in expression between the three homeologues (Shitsukawa et al., 2007). Overexpression of 900 

WSEP in Arabidopsis showed early flowering and four to five curled leaves phenotypes for all 901 

three homeologues (Shitsukawa et al., 2007). The strong expression of WSEP not only during 902 

floral organ differentiation, but also after floral organ determination, suggests that WSEP 903 

genes are involved in both floral organ differentiation but also in their subsequent 904 

development (Chang et al., 2009; Murai, 2013; Shitsukawa et al., 2007). WSEP interacts with 905 

the A-class WAP1, the B-class WAP3 and WPI2, the C-class WAG1 and WAG2, the D-class 906 

WSTK and all E-class genes, except WLHS1-A (Shitsukawa et al., 2007).  907 

 908 

OsMADS8-clade 909 
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The expression pattern of the OsMADS8 homologue in maize ZMM27 is similar to that of 910 

ZMM6, showing weak expression during development of the inflorescence and strong 911 

expression during maize kernel development (Lid et al., 2004).  Further, loss of function of 912 

ZMM27 in a Mutator-insertional mutant did not induce obvious defects and neither did the 913 

double mutant with ZMM6 (Lid et al., 2004). TaMADS1 was identified as the OsMADS8 914 

orthologue in wheat, with the three homeologues located on chromosomes 5A, 5B and 5D 915 

(Paolacci et al., 2007). Northern blot analysis and in situ hybridization showed that they are 916 

uniformly expressed in the spikelet primordia and later confined to the carpels and stamens 917 

(Zhao et al., 2006b). Overexpression of TaMADS1 in Arabidopsis showed mild to severe 918 

phenotypes with early flowering and abnormal floral organs (Zhao et al., 2006b).  919 

 920 

Orchid and lily 921 

Expression of the OsMADS7-like gene in orchid, OMADS6, is abundant in the sepal, petal, 922 

labellum, carpel, anther cap and stigmatic cavity, and weak in the stamen, as shown by RT-923 

PCR (Figure 10B) (Chang et al., 2009). Overexpression of OMADS6 in Arabidopsis resulted 924 

in early flowering, two to four small curled leaves, terminal flowers composed of two to three 925 

flowers and homeotic conversions of sepals into carpel-like structures and petals into stamen-926 

like structures (Chang et al., 2009). In lily, LMADS3 is a SEP3 orthologue, which shows 927 

almost identical expression to that of the OsMADS1-like gene in lily, LMADS4 (Tzeng et al., 928 

2003). Northern blot analysis showed that LMADS3 is expressed in the inflorescence 929 

meristem and later in all four floral organs, but absent in vegetative leaves (Tzeng et al., 930 

2003). Overexpression of LMADS3 in Arabidopsis resulted in early flowering, two to three 931 

small curled rosette leaves and two curled cauline leaves (Tzeng et al., 2003). Inflorescence 932 

determinacy was lost, as was production of terminal flowers at the end of the inflorescence 933 

that had two to three carpels. 934 

 935 

AGL6-like genes 936 

 937 

The AGL6 subfamily is thought to be sister to the E-class AGL2-like genes (Becker and 938 

Theissen, 2003). Rijpkema et al (2009) proposed adding AGL6-like genes to the E-class of the 939 

ABCDE model. Arabidopsis has two AGL6-like genes: AGL6 and AGL13, both of which 940 

have various divergent functions in the plant, although no loss-of-function mutants have been 941 

described so far (Dreni and Zhang, 2016). AGL6 in Arabidopsis can interact with some type I 942 
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MADS proteins, which is unusual for MIKCc-type MADS proteins (Dreni and Zhang, 2016). 943 

AGL6-like proteins have a C-terminus with two short, but highly conserved regions named 944 

AGL6-I and AGL6-II motifs (Ohmori et al., 2009).  945 

 946 

In monocots the AGL6 family has four well-defined clades: AGL6-I to AGL6-IV (Dreni and 947 

Zhang, 2016). Orchid sequences are part of the AGL6-III and AGL6-IV clade (Dreni and 948 

Zhang, 2016). The AGL6-I clade in grasses can be further subdivided in two branches: 949 

ZAG3/OsMADS6 and OsMADS17 (Dreni and Zhang, 2016). Li et al. (2010) proposed a 950 

duplication event that gave rise to these clades may have occurred before the diversification 951 

of grasses . The OsMADS17 clade is characterised by 25 amino acid substitutions, most of 952 

them located in the K-domain and the C-terminal domain. OsMADS6-like sequences in 953 

grasses have a highly conserved motif (MLGWVL) that is different in OsMADS17-like genes 954 

(VMGWPL) (Figure 10A) (Reinheimer and Kellogg, 2009).  955 

 956 

The expression pattern of AGL6-like genes in plants shows clear differences reflecting 957 

evolutionary changes (Reinheimer and Kellogg, 2009). Their expression in the inner 958 

integument of the ovule is ancestral, and is also seen in the gymnosperms. Expression in the 959 

floral meristem was acquired in angiosperms and expression in the second whorl organs was 960 

acquired in monocots. Early in grass evolution a new expression domain emerged in the palea 961 

(Reinheimer and Kellogg, 2009).  962 

  963 

Rice has two AGL6-like genes: OsMADS6 and OsMADS17, which have different expression 964 

patterns (Ohmori et al., 2009; Reinheimer and Kellogg, 2009). RT-PCR and in situ 965 

hybridization showed that OsMADS6 is expressed in the floral meristem at early stages and 966 

later in the emerging palea primordium (Li et al., 2010). It is also detected in developing 967 

palea, lodicules, ovule integuments, carpels and weakly in lemma (Figure 11B) (Dreni and 968 

Zhang, 2016; Li et al., 2010).  Mutants of OsMADS6 (also called mfo1), showed disturbed 969 

palea and lodicule identities and had extra carpels or spikelets (Ohmori et al., 2009).  mfo1 970 

lhs1 double mutant resulted in a severe phenotype including the loss of spikelet meristem 971 

determinacy, suggesting that together with OsMADS1, OsMADS6 determines floral organ 972 

and meristem identities (Li et al., 2010; Ohmori et al., 2009). This also suggests that 973 

OsMADS6 has a very similar function to the E-class genes, which regulate the development 974 

of all four whorls and floral meristem determinacy (Li et al., 2010). OsMADS6 can also form 975 

protein complexes with rice B-, D- and E-class proteins in Yeast-two-Hybrid assays, which 976 
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resemble the complexes formed by E-class genes with A-, B- and C-class proteins in 977 

Arabidopsis (Lee et al., 2003a; Moon et al., 1999b; Seok et al., 2010). OsMADS6 also 978 

interacts with the D-class protein OsMADS13 and Bsister-class protein OsMADS29 (Favaro et 979 

al., 2002; Nayar et al., 2014). Together with B-class proteins it specifies lodicule identity 980 

(Dreni and Zhang, 2016). OsMADS6 also represses the A-class genes OsMADS14 and 981 

OsMADS15. OsMADS17 is expressed in the floral meristem and later becomes restricted to 982 

the lodicule primordia and is also detected in the anther wall (Figure 11B) (Reinheimer and 983 

Kellogg, 2009). Suppression of OsMADS17 by RNAi did not result in any morphological 984 

abnormalities (Ohmori et al., 2009). In mfo1 background however, it enhanced the mfo1 985 

phenotype (Ohmori et al., 2009).  986 

 987 

Maize also has two AGL6-like genes: ZAG3 and ZAG5 (Table 1) (Mena et al., 1995; 988 

Reinheimer and Kellogg, 2009). It was suggested that maize had lost the AGLI/OsMADS17-989 

clade and that both ZAG3 and ZAG5 are orthologues of OsMADS6 (Dreni and Zhang, 2016). 990 

In situ hybridization showed that ZAG3 is expressed in both the upper and lower floral 991 

meristems, but not in the lemma and stamens (Thompson et al., 2009). Later in development 992 

it was observed in developing lodicules, palea, carpel and the inner integument of the ovule 993 

(Figure 11B). ZAG3 interacts with the C-class protein ZAG1 (Reinheimer and Kellogg, 2009; 994 

Thompson et al., 2009). Loss-of-function of ZAG3, known as the bearded-ear (bde) mutant, 995 

resulted in spikelets that produce more florets with more floral organs in the tassels 996 

(Thompson et al., 2009). In the ear of the mutant, the spikelets also produce more florets, 997 

which have more palea/lemma-like organs and sterile ovaries. 998 

   999 

Similar to rice and maize, orchid also has two AGL6-like genes: OMADS7 and OMADS1. The 1000 

expression pattern of OMADS7 is extremely similar to the E-class gene OMADS6 and to 1001 

AGL6-like genes in other species, for example AGL6 in Arabidopsis and ZAG3 in maize 1002 

(Chang et al., 2009). Overexpression of OMADS7 in Arabidopsis resulted in early flowering, 1003 

producing small curled leaves and homeotic conversion of sepals into carpel-like structures 1004 

with stigmatic papillae (Chang et al., 2009). OMADS1 shows a different expression, only in 1005 

the apical meristem, the labellum and carpel of the flowers (Hsu et al., 2003). Yeast-two-1006 

hybrid analysis showed that OMADS1 can interact with OMADS3 (Hsu et al., 2003). Ectopic 1007 

expression of OMADS1 in Arabidopsis and tobacco resulted in reduced plant size, early 1008 

flowering and loss of inflorescence determinacy (Hsu et al., 2003). Homeotic conversions of 1009 
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sepals into carpel-like structures and petals into staminoid structures were also observed (Hsu 1010 

et al., 2003). 1011 

 1012 

AGL6-like genes seem to be involved in diverse processes in all four whorls, with conserved 1013 

expression and function in most of the species. In orchid there seems to be a specialised 1014 

function for these genes in the labellum formation.  1015 

 1016 

Conclusions and perspectives 1017 

 1018 

MADS-box ABCDE genes are crucial for floral development and their evolutionary changes 1019 

with gene duplication, sub-functionalization and neo-functionalization led to novel 1020 

morphological forms in plants. Understanding the function of these MADS-box genes can 1021 

provide information on how different floral structures originated and identify targets for 1022 

future crop improvement.  1023 

In grasses, the A-class genes underwent more gene duplications and acquired functions in 1024 

specifying the grass-specific flower organs such as the palea and lodicule. Clearly the whole 1025 

picture of A-class genes in grasses still remains to be elucidated.   1026 

As in other species, the function of B-class genes is relatively conserved in most grasses even 1027 

though there may has been gene duplication and sub-functionalization. Exceptionally, in 1028 

orchids, two separate duplication events have led to some remarkable changes in floral 1029 

structure. OMADS3 in orchid lost the C-terminal motifs of MADS-box proteins and has 1030 

expression signal in the vegetative leaves (Hsu and Yang, 2002; Tsai and Chen, 2006). It is 1031 

speculated that LMADS1 in lily may represent an ancestral form of the B function gene, which 1032 

retains the ability to form homodimers and regulates petal and stamen development (Tzeng 1033 

and Yang, 2001). Notably, the OsMADS30 Bsister gene has gone through neo-1034 

functionalization, giving it a function in vegetative development instead of ovule and seed 1035 

development (Schilling et al., 2015). Until now, little is known about the Bsister genes in 1036 

most of the species described.  1037 

Despite gene duplication events the C- and D-class genes seem to have retained most of their 1038 

function and expression patterns in monocots. Sub-functionalization has lead to genes 1039 

working redundantly and the rice D-class gene OsMADS21, has lost its ability to determine 1040 

ovule development because of redundancy with OsMADS13 (Dreni et al., 2007; Fornara et 1041 

al., 2003; Prasad et al., 2005; Yamaguchi and Hirano, 2006). Its higher expression in 1042 
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developing kernels might suggest OsMADS21 has gone through neo-functionalization and 1043 

has a function after fertilization (Arora et al., 2007).  1044 

The E-class genes are more difficult to compare than the other classes of genes from the 1045 

ABCDE model as they have diversified with the function in inflorescence and spikelet 1046 

development during evolution. The expression of OsMADS1 homologs in grasses varies from 1047 

species to species with the developmental pattern of florets in the spikelet. OsMADS1-like 1048 

genes may have been involved in morphological diversification of inflorescences during the 1049 

evolution of grass species (Yamaguchi and Hirano, 2006). 1050 

Expression of AGL6-like genes in the palea is conserved in all spikelet-bearing grasses. This 1051 

could indicate that AGL6-like genes might play an conserved role in palea development 1052 

(Reinheimer and Kellogg, 2009). It has been proposed that AGL6-like genes may have played 1053 

an important role in the evolution of unique flower features, such as the labellum in orchids 1054 

(Dreni and Zhang, 2016).  1055 

 1056 

Characterisation of these genes, their structure, their expression pattern and their function will 1057 

give greater insight into their role in flower development. Importantly, phylogenetic analysis 1058 

can sometimes be misleading, and data from functional analysis experiments are needed to 1059 

confirm whether genes belong in specific clades and still retain a function in flower 1060 

development. In line with this, neo-functionalization likely plays a relatively important and 1061 

unexplored role in monocot floral diversity.The identification of orthologues is currently 1062 

heavily reliant on sequence similarities, but due to the many gene duplication events that have 1063 

shaped the MADS-box family, some MADS-box genes in monocots have gained new roles, 1064 

or lost their ancestral function. It must also be noted that most of these sequences are 1065 

extracted from reference genomes, and therefore a much greater level of diversity may be 1066 

present in the pangenome that is not represented here. Since flower development is one of the 1067 

major determinants for yield in important crops, improving our understanding about the genes 1068 

and networks involved in flower development is an essential tool to help towards devising 1069 

new strategies for crop improvement. 1070 
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Orchid Lily Grasses clade Rice  Maize Barley Wheat 
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CAL 

FUL euFUL FUL 
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Figure Legends 

 

Table 1 The ABCDE genes in Arabidopsis and monocot species. Listed are the genes in model 

organism Arabidopsis and the orthologs in monocots rice (Oryza sativa), maize (Zea mays), barley 

(Hordeum vulgare), wheat (Triticum aestivum), orchid (Oncidium Gower Ramsey) and lily (Lilium 

longiflorum) that have been identified to date. 

 

Figure 1 Rice, maize, wheat, barley, orchid and lily floral structures. (A) A rice floret has four 

whorls: a lemma (le) and palea (pa) in whorl 1 that protect the floret, two lodicules (lo) in whorl 2, six 

stamens (sta) in whorl 3 and a carpel (ca) in whorl 4. (B) Barley and wheat florets are very similar, but 

only have 3 stamens. (C) Maize has two separate inflorescences, a male (tassel) and a female (ear) 

one. Spikelets consist of a pair of florets: the upper floret (uf) and lower floret (lf). Female florets (C, 

left) have a lemma, palea, two lodicules and a carpel, but no stamens. Male florets (C, right) have a 

lemma, palea, two lodicules and three stamens, but no carpel. Both are protected by glumes (glu). (D) 

Orchids have three sepals in the first whorl and two petals and a labellum (lab) in the second whorl. 

The third and fourth whorl are located in the column. (E) Lily has five tepals in the first and second 

whorl, 6 stamens in the third whorl and a carpel in the fourth whorl.  

 

Figure 2 Structure of MIKC-type MADS-box proteins. MIKC-type MADS-box proteins consist of 

a highly conserved MADS-box domain, responsible for DNA-binding, dimerization and accessory 

factor binding. The Intervening domain is weakly conserved and a regulatory determinant for the 

formation of DNA-binding dimers. The K-box is a keratin-like domain that mediates protein-protein 

interactions. The C-terminal domain is the most variable domain and is involved in transcriptional 

activation and formation of transcription factor complexes. As an example MIKC-type proteins from 

maize (ZMM2), wheat (WAG2), rice (OsMADS3), orchid (OMADS4), lily (LMADS10), barley 

(HvBM3) and Arabidopsis (AG), all C-class genes, were aligned and their domains were highlighted. 

The C-terminal domain for AG was significantly different in sequence to that of the monocots and is 

therefore highlighted in a different colour. MUSCLE multiple alignment of protein sequences from the 

NCBI, IPK and MSU rice databases.  

 

Figure 3 The ABCDE model in rice florets. The model depicts the pattern of gene expression 

required for normal whorl development. The MIKCc-type MADS-box proteins are divided in 

different classes: A, B, C, D and E-class. The Bsister proteins are classified as B-class proteins, but have 

a distinct function. AGL6-like proteins are often classified together with the E-class proteins because 
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they have similar functions. These proteins form complexes to determine the identity of floral organs 

shown here in a rice floret: lemma (le), palea (pa), lodicules (lo), stamen (sta), carpel (ca) and ovule 

(ov). 

Figure 4 Phylogenetic analysis of ABCDE MADS-box genes from Arabidopsis, Amborella 

trichopoda, Populus trichocarpa, rice, maize, wheat, barley, orchid and lily. Phylogenetic tree 

obtained with RAxML tree building through Geneious version 8.0 by Biomatters. Available from 

http://www.geneious.com. Maximum likelihood tree from 1000 bootstrap replicates. MUSCLE 

multiple alignment of protein sequences from the NCBI, IPK and MSU databases was used. BMGE 

clean up of the multiple aligment via Galaxy@pasteur (https://galaxy.pasteur.fr). The different 

subfamilies are represented by different colours: SQUA (orange), DEF/GLO (pink), GMM13 (blue), 

AG (green), AGL2 (purple), AGL6 (red). Alignments of all proteins in the different subfamilies can 

be found in the supplemental figures S1-7. 

 

Figure 5  Sequence alignment and expression patterns of A-class MADS-box genes in 

Arabidopsis, Amborella trichopoda, Populus trichocarpa, rice, maize, barley, wheat, orchid and 

lily. (A) The conserved FUL-like motif (LPPWML) can be found in all the monocot A-class MADS-

box genes, with only minor differences. In HvBM5 and WFUL1 the Proline at the third position has 

been substituted by a Leucine, while the Leucine at the sixth position has been substituted for a 

Valine. In OsMADS20 the Proline at the third position has been substituted by a Tryptophan and in 

LMADS7 the Leucine at the sixth position has been substituted by an Isoleucine. (B) The expression 

patterns appear conserved in the grasses, with some diversity in orchid and lily. Red squares indicate 

multiple genes expressed in this tissues, while orange indicates only one gene expressed in this tissue. 

White square indicate there is no expression and grey squares indicate no data is available about the 

expression in these tissues. 

 

Figure 6 Sequence alignment and expression patterns of B-class MADS-box genes in 

Arabidopsis, Amborella trichopoda, Populus trichocarpa, rice, maize, barley, wheat, orchid and 

lily. The B-class genes can be subdivided in two different clades: the DEF- and the GLO-clade. (A) 

Multiple alignment of protein sequences from the NCBI, IPK and MSU rice databases. Both clades 

have different motifs, a paleoAP3-motif (YGxHDLRLA) or a PI-motif (MPFTFRVQPSHPNL) 

respectively. HVPI and WPI1 have similar differences in the motif, as have LMADS8 and OMADS8. 

HvBM2, WPI2, OsMADS2 and ZMM16 also have similar differences, identifying them as homologs. 

LMADS9 is a truncated version of LMADS8 and does not have the PI-motif. All members of the 

monocot DEF-clade have a variation of the motif, except OMADS3. (B) The expression patterns of 

the grasses are conserved and have diversified in orchid and lily. Red squares indicate multiple genes 

expressed in this tissues, while orange indicates only one gene expressed in this tissue. White square 
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indicate there is no expression and grey squares indicate no data is available about the expression in 

these tissues. 

 

Figure 7 Sequence alignment and expression patterns of Bsister-class MADS-box genes in 

Arabidopsis, Amborella trichopoda, Populus trichocarpa, rice, maize, barley, wheat, orchid and 

lily. (A) Multiple alignment of protein sequences from the NCBI, IPK and MSU rice databases. A 

conserved PI-derived motif can be found in the B-sister genes together with another unidentified motif 

downstream of the PI-derived motif. Variations in the PI-derived motif seems to divide the B-sister 

genes into two groups. One group consisting of ZMM17, OsMADS29, WBsis and HvBM29 has 

GFRLQPTQPNLQDP as the PI-derived motif. The other group consisting of OsMADS31 and 

HvBM31 has YKLQPL/VQPNLQE as the PI-derived motif. An unidentified TALQL motif can be 

found in all monocot Bsister genes, which is remarkably similar to the motif found in the C-class 

MADS-box genes (see Figure 8). OsMADS30 contains neither of the two motifs. (B) The expression 

pattern of Bsister genes that have been investigated show conservation in the female reproductive 

organs. Red squares indicate multiple genes expressed in this tissues, while orange indicates only one 

gene expressed in this tissue. White square indicate there is no expression and grey squares indicate no 

data is available about the expression in these tissues. 

 

Figure 8 Sequence alignment and expression patterns of C-class MADS-box genes in 

Arabidopsis, Amborella trichopoda, Populus trichocarpa, rice, maize, wheat, barley, orchid and 

lily. (A) The C-class genes are very conserved throughout the entire sequence. A small distinction can 

be made at the C-terminus where the TALQL motif, that is also present in the Bsister genes, can be 

found in some of the homologs. Expression of C-class genes seems to be conserved in all species. (B) 

The expression pattern of C-class genes are conserved across all species that have been investigated to 

date. Red squares indicate multiple genes expressed in this tissues, while orange indicates only one 

gene expressed in this tissue. White square indicate there is no expression and grey squares indicate no 

data is available about the expression in these tissues. 

 

Figure 9 Sequence alignment and expression patterns of D-class MADS-box genes in 

Arabidopsis, Amborella trichopoda, Populus trichocarpa, rice, maize, wheat, barley, orchid and 

lily. (A) Multiple alignment of protein sequences from the NCBI, IPK and MSU rice databases The C-

and D-class MADS-box genes in monocots can be distinguished by a conserved glutamine at position 

105 and a single amino acid insertion at position 90 in the D-lineage. Remarkably, HvBM21 doesn’t 

have a glutamine, but a leucine at position 105. It seems that most monocot genes have a glutamine 

insertion at position 90, except OsMADS21, that has a histidine. (B) Expression of D-class genes 
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seems to be conserved among all species. Red squares indicate multiple genes expressed in this 

tissues, while orange indicates only one gene expressed in this tissue. White square indicate there is no 

expression and grey squares indicate no data is available about the expression in these tissues. 

 

Figure 10 Sequence alignment and expression patterns of E-class MADS-box genes in 

Arabidopsis, Amborella trichopoda, Populus trichocarpa, rice, maize, wheat, barley, orchid and 

lily. (A) Multiple alignment of protein sequences from the NCBI, IPK and MSU rice databases. The 

distinction between the two subgroups can clearly be seen, with the OsMADS1-group less related to 

the Arabidopsis SEP genes and the OsMADS7-group more closely related to the SEP genes. (B) 

Expression of E-class genes in very diverse, but seems to be mostly conserved among the different 

species. Maize seems to have distinct genes with specified expression. Red squares indicate multiple 

genes expressed in this tissues, while orange indicates only one gene expressed in this tissue. White 

square indicate there is no expression and grey squares indicate no data is available about the 

expression in these tissues. 

 

Figure 11 Sequence alignment and expression patterns of AGL6-like MADS-box genes in 

Arabidopsis, Amborella trichopoda, Populus trichocarpa,  rice, maize, wheat, barley, orchid and 

lily. (A) Multiple alignment of protein sequences from the NCBI, IPK and MSU rice databases. The 

AGL6-like genes are very conserved throughout the entire sequence. At the C-terminus (A), the motif 

for the OsMADS6-like genes (MLGWVL) can be distinguished, while the OsMADS17-like genes 

have a different motif (VMGWPL). (B) The expression pattern of AGL6-like genes seems to be 

conserved among the different species, with the exception of the labellum in orchid. Red squares 

indicate multiple genes expressed in this tissues, while orange indicates only one gene expressed in 

this tissue. White square indicate there is no expression and grey squares indicate no data is available 

about the expression in these tissues. 

Supplemental Figure S1 Sequence alignment of A-class proteins in Arabidopsis, Amborella 
trichopoda, Populus trichocarpa, rice, maize, wheat, barley, orchid and lily. 
 

Supplemental Figure S2 Sequence alignment of B-class proteins in Arabidopsis, Amborella 
trichopoda, Populus trichocarpa, rice, maize, wheat, barley, orchid and lily. 
 

Supplemental Figure S3 Sequence alignment of Bsister-class proteins in Arabidopsis, 
Amborella trichopoda, Populus trichocarpa, rice, maize, wheat, barley, orchid and lily. 
 

Supplemental Figure S4 Sequence alignment of C-class proteins in Arabidopsis, Amborella 
trichopoda, Populus trichocarpa, rice, maize, wheat, barley, orchid and lily. 
 

Supplemental Figure S5 Sequence alignment of D-class proteins in Arabidopsis, Amborella 
trichopoda, Populus trichocarpa, rice, maize, wheat, barley, orchid and lily. 
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Supplemental Figure S6 Sequence alignment of E-class proteins in Arabidopsis, Amborella 
trichopoda, Populus trichocarpa, rice, maize, wheat, barley, orchid and lily. 
 

Supplemental Figure S7 Sequence alignment of AGL6-class proteins in Arabidopsis, 
Amborella trichopoda, Populus trichocarpa, rice, maize, wheat, barley, orchid and lily. 
 
























