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ABSTRACT 

 

 

This dissertation reports the research work that was conducted to propose a 

non-volatile architecture for FPGA using resistive switching devices. This is 

achieved by designing a Configurable Memristive Logic Block (CMLB). The CMLB 

comprises of memristive logic cells (MLC) interconnected to each other using 

memristive switch matrices. In the MLC, novel memristive D flip-flop (MDFF), 6-

bit non-volatile look-up table (NVLUT), and CMOS-based multiplexers are used. 

Other than the MDFF, a non-volatile D-latch (NVDL) was also designed. The 

MDFF and the NVDL are proposed to replace CMOS-based D flip-flops and D-

latches to improve energy consumption. The CMLB shows a reduction of 8.6% of 

device area and 1.094 times lesser critical path delay against the SRAM-based FPGA 

architecture. Against similar CMOS-based circuits, the MDFF provides switching 

speed of 1.08 times faster; the NVLUT reduces power consumption by 6.25nW and 

improves device area by 128 transistors; while the memristive logic cells reduce 

overall device area by 60.416μm
2
. The NVLUT is constructed using novel 2TG1M 

memory cells, which has the fastest switching times of 12.14ns, compared to other 

similar memristive memory cells. This is due to the usage of transmission gates 

which improves voltage transfer from input to the memristor. The novel 2TG1M 

memory cell also has lower energy consumption than the CMOS-based 6T SRAM 

cell. The memristive-based switch matrices that interconnects the MLCs together 

comprises of novel 7T1M SRAM cells, which has the lowest energy-delay-area-

i 
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product value of 1.61 among other memristive SRAM cells. Two memristive logic 

gates (MLG) were also designed (OR and AND), that introduces non-volatility into 

conventional logic gates. All the above circuits and design simulations were 

performed on an enhanced SPICE memristor model, which was improved from a 

previously published memristor model. The previously published memristor model 

was fault to not be in good agreement with memristor theory and the physical model 

of memristors. Therefore, the enhanced SPICE memristor model provides a 

memristor model which is in good agreement with the memristor theory and the 

physical model of memristors, which is used throughout this research work.  
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INTRODUCTION 

 

 

1.1   Background 

 

 

Field-Programmable Gate Arrays (FPGA) has become increasingly popular 

compared to Application Specific Integrated Circuits (ASIC) due to their 

configurability, programmability and versatility. With the reduction of gate-length in 

the CMOS process technology, FPGA chips are smaller in size relative to ASIC 

chips and the rising cost of ASIC is at a higher rate than that for FPGA chips [1]. 

Current Static Random Access Memory (SRAM) FPGAs have fast switching speeds 

but are volatile. Furthermore, SRAM cells require 6 transistors to store one-bit logic. 

These factors contribute to larger device area and an increased routing path length, 

which eventually leads to higher power consumption and longer critical path delays. 

Although FPGAs are fully programmable, all programmed information are only kept 

temporarily due to the volatility of SRAM cells. Thus, programmed information is 

lost when power supply to the FPGA is disrupted and hence, requires re-

programming of the FPGA. 

 

The volatility of SRAM cells and the increased demands for density and speed 

in electronic devices has driven an increase in the amount of research and in the 

number of electronic applications being proposed for migration to using non-volatile 
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memory devices. Such applications have adopted memristors in their designs [2]–[4], 

while other applications that uses memristors include memristor oscillators [5], 

memristor-based chaotic circuits [6] and memristor-based adaptive coupling [7]. By 

using memristors in these electronic applications, these applications have benefitted 

from reductions of switching delay, power consumption, and device area. Similarly, 

FPGA applications would also benefit from adopting memristor-based architectures 

[8]. Using memristor-based FPGA architectures also allow the programmed 

information to be retained in the FPGAs even if the power supply is interrupted. 

 

The current FPGA market is dominated by SRAM-based architectures [9]. 

However the SRAM based FGPA architecture is volatile; hence programmed 

information will be lost in the event of power interruption causing the design in the 

FPGA to malfunction. Therefore, to address this issue and improve the performance 

of the FPGA operation in terms of increasing speed, reducing area and reducing 

power dissipation, the main objective of the research work presented in this 

dissertation is to propose a novel non-volatile Configurable Memristive Logic Block 

(CMLB) that can be used in a non-volatile FPGA architecture. 

 

  



20 
 

1.2 Problem statement 

 

 

Due to the numerous memristor models available in the literature review, a 

single memristor model has to be selected for use throughout the entire research if a 

novel memristor model is not designed. The selection of the memristor model from 

the literature is based on the flexibility of the memristor model which allows 

researchers to adapt the memristor model to different simulation environments. 

 

In the FPGA, there are many CMOS-based memory cells and circuits which 

are volatile. The objective of this research is to produce a non-volatile FPGA 

architecture which is based on non-volatile memory cells and circuits. Therefore, 

novel non-volatile memory cells and circuits are to be designed using memristors. 

Comparison of these designed non-volatile memory cells and circuits are then 

compared against similar works in the literature review for verification and 

justification of selection to be used in the non-volatile FPGA. The following section 

explains novel memory cells and circuits that must be designed to produce the non-

volatile FPGA architecture, as well as the summary of the aims of this research. 
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1.3 Aims of the research 

 

 

To achieve the objective of designing a non-volatile FPGA architecture using 

resistive switching devices, the aim of the research works is to produce a non-

volatile configurable logic block. Configurable logic blocks contain various types of 

electronic and electrical components. For the configurable non-volatile configurable 

logic block to be novel, the following categories of circuits must also be designed in 

novelty: 

(i) non-volatile memory cell 

(ii) non-volatile combinational logic circuit 

(iii) non-volatile sequential logic circuit 

 

To produce the above circuits, a single simulation model needs to be identified 

to be used throughout this research. This is performed by conducting a literature 

review on the existing SPICE models of resistive switching devices. The SPICE 

model that is used in this research is obtained by developing an enhanced SPICE 

memristor model, which was adopted and improved from one of the SPICE models 

available in the literature. This SPICE model was then used throughout this research 

to simulate every circuit that are presented in this dissertation, including the 

simulation of the circuits from the literature and other sources, to ensure simulations 

are performed on a similar simulation environment and that the results are unbiased. 
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All the experiments presented in this dissertation are all conducted in SPICE 

simulation environment. All circuit designs and experiments presented in this 

dissertation are performed on the LTspice 4.2 software, which is the latest version of 

the LTspice at the time of the start of this research work. The 32nm transistor gate-

length process technology SPICE model is adopted from Predictive Technology 

Model [10], hence VDD in all simulations are set to 1.0V based on the transistor 

technology. The aims of this research are summarized in figure 1, where each block 

in the diagram is a circuit that needs to be designed using the same memristor model 

and simulation parameters as described. 

 

 

 Summary of the aims of research. Figure 1.
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1.4 Thesis outline  

 

 

The literature review to the research work presented in this dissertation is 

described in chapter 2. The preliminaries include the types of FPGA architectures 

available in the literature and an overview of the CMOS-based FPGA architecture. 

The preliminaries also include the different types of non-volatile memory devices, 

and a brief background on the development of memristors. This chapter also explains 

the development of memristor modelling and SPICE memristor models. How 

previous researches have tried to improve on the FPGA architecture by using non-

volatile memory devices are explained in this chapter. Further literature review is 

conducted on memristive sequential and combinational logic circuit, as well as 

previously proposed improvements on switch matrices. The research work that was 

conducted to provide a detailed comparison between TiO2 and TaO2 memristive 

devices is presented in this chapter also. This chapter concludes by explaining the 

electrical and physical factors that differentiate memristors. 

 

Chapter 3 presents an enhanced SPICE memristor model is presented that is 

based on a previous SPICE memristor model that was found to be working 

differently from the theories of the memristor. 

 

Chapter 4 presents two types of memristive sequential logic circuits, D-latch 

and D flip-flop, as well as their simulation results and analysis. Other memristive 

sequential logic circuits from the literature are also analysed and compared against 

the memristive sequential logic circuits. 
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In chapter 5, the research findings on combinational logic circuits are divided 

into two sections. The first section shows the construction of a non-volatile look-up 

table using a novel one-bit non-volatile memory cell that was designed using 

memristors and transmission gates. The memory cell was compared against other 

similar memory cells available in the literature. In the second section of chapter 5, 

two novel memristive logic gates are proposed (OR and AND). The analysis and 

simulation results are presented in this chapter. Additionally, a method to improve a 

previously published memristive logic circuit in the literature is also discussed and 

explained. 

 

Chapter 6 introduces and discusses the general switch blocks and crossbar 

arrays. The arrangement of memristors in a crossbar array is also discussed in this 

chapter. A research was conducted to compare and analyse crossbars of memristor 

and phase-change memory cells. Upon these results, a memristive memory cell is 

designed to create a memristive switch matrix, which is presented in this chapter. 

Simulation experiments were conducted on this switch matrix memristive memory 

cell along with other similar memory cells found in the literature. 

 

Subsequently, chapter 7 introduces the configurable memristive logic block 

(CMLB) that encapsulates all the research work presented in the previous chapters. 

The CMLB is a network of memristive logic cells (MLC), interconnected to each 

other using memristive switch matrices. The MLC comprises of the non-volatile 

look-up table and the memristive D flip-flop. The CMLB is then proposed to be used 

in a memristive-based FPGA architecture. This chapter also presents the simulation 

results and analysis of the MLC and CMLB using various FPGA test designs. 
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Chapter 8 provides the conclusion to this dissertation and the researches that 

has been conducted and presented. This chapter also discusses all the possible future 

researches that stems from this dissertation. 
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LITERATURE REVIEW 

 

 

2.1   Field-programmable Gate Arrays (FPGA) 

 

 

Field-programmable Gate Arrays (FPGA) are integrated circuits containing 

various types of resource blocks that are programmable and configurable to any 

manner desired by the programmer. Examples of resources that are built in FPGAs 

are built-in memory, clock generators, I/O interfaces, multipliers, arithmetic units, 

Digital Signal Processor (DSP), and logic blocks. Hardware description language 

(HDL) is used to program these resources to however a user wishes it to behave. The 

common SRAM-based FPGA architecture (figure 2) consists of logic blocks (LB) 

and control blocks (CB) interconnected to one another by switch blocks (SB). 

 

 

 

 General FPGA architecture where logic blocks (LB) are interconnected with control           Figure 2.

blocks (CB) and switch blocks (SB). 
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Switch blocks contain switch matrices, where each switch matrix is a network 

of routing channels interconnected to one another via pass-transistors. Switch 

matrices complete the connections between blocks in an FPGA. 

 

Logic blocks are the basic building block for memory storages in an FPGA. 

They are meant to provide an avenue for users to program logical functions, utilize 

built-in functions and modules, such as memory blocks, counters, and registers; or 

perform arithmetic functions. LBs can also be programmed to function as 

combinational logic circuits or sequential logic circuits in synchronous or 

asynchronous manner. Programmable logic blocks are also known as configurable 

logic blocks (CLB) whereas non-programmable logic blocks are called hard-wired 

logic blocks. 

 

LBs are usually constructed from several logic cells (also known as 

configurable logic blocks (CLB), slice, or adaptive logic modules (ALM)), 

interconnected by programmable switch matrices, multiplexers and other logic 

components [11]. Multiple logic cells can be connected to each other to execute 

complexed logic functions. Each logic cell generally consists of look-up tables 

(LUT), multiplexers, full-adders, and D flip-flops. Logic cells are also called as 

Configurable Logic Blocks (CLB) [12], slice [13], Logic Elements [14] or Adaptive 

Logic Modules (ALM) [15], depending on the FPGA manufacturer. 

 

In general, an LUT consists of memory cells which are addressed by the LUT 

inputs. A decoder is used to decode the LUT inputs to select and enable specific 

memory cells for programming or reading, and the output of the LUT is the logic 
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information stored in the accessed memory cell. The LUT functions as a 

programmable combinational logic circuit, where the LUT address inputs are 

analogous to the combinational logic circuit input, while the output of the 

combinational logic circuit is the logic information stored in the memory cell with 

the address that corresponds to the LUT input. Thus, LUTs are usually used to 

execute complex Boolean algebra functions. 

 

Control blocks govern the operating functions of logic blocks and switch 

blocks. To perform this, CBs contain memory elements to store user-programmed 

information and use sequential logic circuits to channel appropriate control signals. 

These control signals configure the operation of the pass-transistors in the switch 

matrices and the functions of the LBs by enabling or disabling transistors, switches, 

multiplexers, and memory cells in the LBs and SBs. There are various types of 

control blocks in an FPGA to control different sections or resources of the FPGA. 

Some examples are clock control block [16], memory controller block [17], 

communication or Transceiver Reconfiguration Controller [18], and I/O control 

block [19], [20]. 

 

FPGAs are mainly used when designing or testing integrated circuits (IC) and 

electronic applications because FPGAs are easily programmable which gives short 

programming and testing times. This shortens debugging and verification processes. 

Conversely, Application Specific Integrated Circuits (ASIC) are non-programmable 

and does not allow flexibility in its applications. ASICs also take a longer time from 

designing stage to fabrication, and are expensive for low volume production. 
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The major concern for FPGAs is the high cost per chip and large device area 

required to manufacture a programmable integrated circuit. Furthermore, the amount 

of power consumption is higher in FPGAs than ASICs due to the various resources 

built into an FPGA chip to accommodate its programmable functionality. However, 

due to the emergence of 20nm and 16nm process technologies, FPGA devices are 

becoming smaller [21]–[23]. Moreover, various articles have also shown that the 

decreasing costs of FPGA could also lead to the possibility of FPGA replacing ASIC 

for medium to high volume production in the near future [1], [24], [25]. 

 

 

 

2.2 Types of FPGA 

 

 

FPGAs are manufactured by semiconductor companies such as Altera (now 

Intel), Xilinx, Lattice Semiconductor, Microsemi, and QuickLogic. These 

manufacturing companies can be divided based on the switching technology used in 

the FPGA: Static Random-Access Memory (SRAM), antifuse or flash. 

 

Out of the three types of switching technology, antifuse FPGAs have the 

densest structure but are not re-programmable [26]. Between SRAM and flash, 

where both are re-programmable, SRAM switching is faster than flash devices. 

However, flash switching technology consumes lower power consumption and has 

higher security. Moreover, flash devices are non-volatile, which enables logic 

information to be retained even after power is disconnected from the device. On the 
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other hand, SRAM-based FPGAs are usually manufactured with the same type of 

Complementary Metal–Oxide–Semiconductor (CMOS) technology with the rest of 

the integrated circuit chip, thus additional manufacturing processes are not required 

and the cost of fabricating SRAM-based FPGAs is reduced. This is the main reason 

for SRAM-based FPGAs dominating the FPGA market [9]. Therefore, the SRAM-

based FPGA has been selected as the benchmark for comparison in this research 

work. 

 

One of the disadvantages of SRAM-based FPGAs is the large SRAM devices 

which reduces the density of FPGA chips, compared to antifuse and flash devices 

[26]. Although SRAM devices are highly re-programmable, SRAM devices are 

volatile and lose logic information whenever power supply to the device is disrupted. 

Despite these disadvantages, SRAM-based FPGAs are widely used in various fields 

and are also reported to be used for security-related applications [27]. Due to the 

high demand for SRAM-based FPGAs, researchers have proposed several methods 

to improve or reduce the disadvantages of SRAM-based FPGAs [28]–[30]. 

 

A study was conducted on various architectures of SRAM cells used in FPGAs 

[28]. The purpose of the study was to propose a 9T SRAM cell with high data 

stability and low power consumption, but suffers from large device area and 

volatility. A novel FPGA architecture that uses controllable-polarity transistors was 

designed [29], which forms the basic building blocks of ultrafine grain cells. These 

ultrafine grain cells function as computational or logic cells and offers an 

improvement on the routing imbalance in traditional FPGA architecture [31], as well 

as reductions in delay and device area. Evolvable processing array-based FPGA 
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architecture constructed using Dynamic Partial Reconfiguration (DPR) was proposed 

[30]. This architecture applies evolvable processing array which features protection 

mechanism against permanent and transient faults, and improve processing quality. 

 

Although these methods to improve SRAM-based FPGA show reliable results, 

they still use CMOS process technologies and researchers were motivated in 

breaking away from conventional CMOS devices. This give birth to resistive 

switching devices and subsequently, FPGA architectures have been proposed and 

designed using resistive switching devices, or non-volatile memory (NVM) devices, 

such phase-change memory cells [32], spintronic devices [33], and magnetoresistive 

memories [34]. 

 

 

 

2.3 Non-volatile memory (NVM) devices 

 

 

Resistive switching devices or non-volatile memory (NVM) devices became a 

sought-after technology due to its relatively faster switching speed, higher endurance 

cycles, and smaller device area per component [35]. Researchers have also managed 

to fabricate flexible NVM devices [36]–[38]. Most of all, NVM devices are 

becoming increasingly popular due to their non-volatility properties, as well as 

multi-level storage capabilities [39]–[41]. NVM devices are also known as resistive 

switching devices because NVM devices use different resistance levels to indicate 

different logic information. The common context is to assign logic ‘0’ to the high 
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resistance state (HRS) and logic ‘1’ to the low resistance state (LRS) of the NVM 

device. So far, the non-volatile memories that have been developed are: 

(i) Phase-Change Memory (PCM) [42] 

(ii) Ferroelectric Random-Access Memory (FeRAM) [43] 

(iii) magnetoresistive memory (MRAM) [44] 

(iv) Memristors 

 

 

2.3.1 Phase-Change Memory (PCM) cells 

 

 

PCM cells switch between resistance states by manipulating the phase of 

chalcogenide materials. Amorphous state of the chalcogenide material is highly-

resistive (logic ‘0’), while crystalline state is of lower resistance (logic ‘1’). The 

phase change is attained by heating or cooling. Rapid cooling of chalcogenide causes 

the material to turn into amorphous state (HRS), while heating it below its melting 

point causes the chalcogenide to crystallize (LRS) [45]. The rate of cooling or 

heating is controlled by manipulating magnitude of input current and pulse width. 

 

 

2.3.2 FeRAM devices 

 

 

FeRAM devices use ferroelectric materials where an application of electric 

field across the device causes polarization in the form of small shifts in the atomic 
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dipoles. The atomic dipoles have the tendency to align themselves according to the 

electric field. Thus, the change in the distribution of electric charges in the 

ferroelectric material causes a change in resistance. The polarization would remain 

after electric field is removed and ferroelectric materials usually have only two stable 

polarized states, resulting in two different resistance states [46]. 

 

 

2.3.3 MRAM devices 

 

 

In MRAM devices, the switching of resistance states in the material is induced 

by an application of magnetic fields. The device structure contains two magnetized 

layers sandwiched between two metal electrodes. One of it is a fixed magnetized 

layer, while another is a freely polarizable magnetized layer. The resistance state of 

MRAM devices are manipulated by controlling the magnetic orientation of the free 

layer using magnetic fields. Thus, the resistance of the MRAM devices is dependent 

on the polarization of the free layer in comparison to the polarization of the fixed 

layer [44]. If the polarization of the layers is parallel to each other, the device is in 

low resistance (LRS), and if they are not parallel, the device is in high resistance 

(HRS). 
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2.4 Memristor 

 

 

The memristor was first theorized in 1971 by Prof. Leon Chua [47]. The four 

electrical quantities that relate the three fundamental passive circuit elements are 

voltage (V), current (I), charge (q) and flux (φ). Voltage is the rate of change of flux, 

while current is the rate of charge flow. Resistance is related by voltage and current, 

capacitance is related by voltage and charge, and inductance is related by current and 

flux. The only remaining relationship is between charge and flux. Thus, the fourth 

passive circuit element, known as memristor, was proposed to complete the network 

of relationships between the four fundamental electrical quantities (figure 3). 

 

 

 

 The relationship between the four fundamental electric quantities. Figure 3.

 

 

In 2002, a physical non-volatile memory device was developed by 

manipulating the resistance of bulk layer of the device, called as Resistive Random-

Access Memory (ReRAM) using colossal magnetoresistance (CMR) materials [48]. 
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CMR materials are usually manganite perovskites and the electrical resistance is 

manipulated using magnetic fields [49]. The ReRAM device has a two-terminal 

device with a bulk layer sandwiched between two metal electrodes. A bias potential 

is applied across the terminals which alters the physical composition of the bulk 

layer. The physical changes that occur cause a change in the resistance of the bulk 

layer and of the device. When no potential bias is applied, the bulk layer does not 

alter its physical composition due to the lack of energy required for physical changes 

to occur, thus leaving the device in its latest resistance state. This is the non-volatile 

characteristics of the ReRAM device. With the development of the CMR-ReRAM 

device, researchers have found a more convenient way to manipulate resistance by 

using electrical fields instead of magnetic fields [50]. 

 

In 2005, TiO2 thin films were grown by atomic-layer deposition using 

platinum (Pt) as top and bottom electrodes, and titanium oxide (TiO2) as bulk layer 

[51]. The electrodes are metals, which are conductive while the bulk layer of TiO2 is 

highly resistive that makes it similar to an insulator layer. This structure mimics a 

Metal-Insulator-Metal (MIM) structure and the behaviour of this device is in good 

agreement with the memristor theory [47]. Around the same time, copper oxide 

(CuO2) was used as the bulk layer to fabricate a device with MIM structure that also 

exhibits similar resistive switching behaviour [52]. This shows that MIM structures 

in general are able to exhibit resistance switching abilities. The resistance states of 

memristors (LRS and HRS) are also commonly known as memristance. 
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Since then, researchers have shown that other metal oxides could also be used 

as the bulk material to fabricate nanoscale memristive devices, such as zinc oxide 

(ZnO) [53], zirconium oxide (ZrO2) [54], nickel oxide (NiO) [55], hafnium oxide 

(HfO) [56], niobium oxide (Nb2O5) [57], and vanadium oxide (VO2) [58], tantalum 

oxide (TaO2) [59], zinc tin oxide [60], bismuth ferrite (BiFeO3) [61], and aluminium 

oxide (Al2O3) [62]. Resistive switching behaviour was also observed when semi-

metal oxides are used as the bulk layer (silicon oxide (SiO2) [63]). Some 

chalcogenides have also exhibited memristive properties such as germanium selenide 

(Ge2Se3) [64] and copper sulphide (Cu2S) [65]. ReRAM and resistance-switching 

devices are also commonly coined as memristors [66] because the physical structure 

of MIM devices are similar to ReRAM devices. Moreover, functional behaviour of 

the ReRAM devices are in good agreement with a memristor [67]. Some authors 

may also abbreviate ReRAM as RRAM [68]–[70]. 

 

 

2.4.1 Advantages of memristor against other NVM devices 

 

 

The introduction of RRAM devices (or memristors) has significantly attracted 

more attention than PCM devices because RRAM devices have better switching 

speeds than PCM. The writing time of RRAM devices is less than 20ns, while PCM 

devices require at least 100ns for writing time [53], [71]. PCM devices also use large 

amounts of heat energy during switching which significantly degrades endurance 

performances [71]. 
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In comparison to MRAM devices, the physical structure of MRAM is larger 

than a typical RRAM device, where RRAM devices can be fabricated in a nano 

crossbar array structure [72]. The read time of FeRAM devices (100 ns) is much 

slower than Dynamic Random-Access Memory (DRAM) devices (40 to 70 ns) [43], 

which is a common memory device used in computers. It is also reported that are 

interface issues between Si and the ferroelectric material when fabricating FeRAM 

devices with current CMOS process technologies [73]. 

 

Between PCM, MRAM, FeRAM and memristors, memristors requires the least 

manufacturing steps to fabricate [74]. In addition, memristors are developed with 

simple fabrication processes and has high-density structure [75], as well as high 

compatibility with current CMOS process technologies [50]. Therefore, there are 

more research and developments in RRAM devices (memristors) than PCM, MRAM 

and FeRAM devices. 

 

 

2.4.2 Types of memristors 

 

 

Among the memristive devices that have been developed, TaO2 is considered 

as one of the prospective resistive switching material due to its existence in only two 

stable phases (TaO2 and Ta2O5) [76] which gives better control over the stability of 

the high and low resistance states. The TaO2 and Ta2O5 layers in the TaO2 memristor 

give rise to a Metal-Insulator-Semiconductor-Metal (MISM) structure. In addition, 

the fabricated TaO2 memristors have exhibited better resistance switching 
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characteristics than TiO2 memristors, in terms of switching speed (5 times faster), 

endurance (10
8
 times more switching cycles) [77], and retention of at least 10 years 

backed by experimental results [78]. Due to these statistics, a detailed comparison 

between fabricated TaO2 and TiO2 memristive devices was conducted as part of this 

research to understand the requirements and factors to fabricate better performing 

memristive devices. TiO2 memristors are selected as the benchmark for this 

comparison because the study and fabrication of TiO2 memristors has been the most 

extensive among the different types of memristors available in the literature. The 

detailed comparison between TiO2 and TaO2 memristors is further discussed in 

sections 2.14 to 2.18 of this dissertation [79][80]. 

 

 

2.4.3 Applications of memristors 

 

 

The objectives of using memristors in circuits are either to: (i) improve 

electrical and physical performance or (ii) introduce non-volatile function. To 

introduce non-volatile functions, the pioneer applications of memristors were 

proposals to replace flash memory [81] and DRAM to improve memory performance 

[82]. Subsequently, memristors are then used to improve electrical and electronic 

circuits, such as memory cells [83], filters [3] and amplifiers [84], by reducing 

device area. Other applications of memristors that were found in the literature 

include neuromorphic circuits [4], Van der Pol Oscillator [85], pH sensors [2], and 

crossbar arrays [86], which are commonly used in FPGA architectures. These 
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applications take advantage of the resistance switching behaviour of memristors to 

improve overall switching speed and energy. 

 

 

 

2.5 The development of memristor models 

 

 

Although there were heavy developments on RRAM devices, none have 

managed to relate it to the memristor that was proposed by Prof. Chua [47]. After 

many years since Prof. Chua’s proposal of the memristor, the breakthrough came in 

2005 where resistive switching mechanism was exhibited in TiO2 thin films [51]. 

The article however did not directly relate the switching mechanism of the TiO2 thin 

films to memristive behaviour. In 2008, a nano-crossbar array with MIM structure 

that shows similar behaviour to memristors was proposed and fabricated using TiO2 

as the bulk layer [87]. The hysteresis loop in the current-voltage curve and a current-

voltage relationship that characterizes the current-voltage behaviour of memristor 

was subsequently presented [88]. A physical model based on the doping of TiO2 in 

the bulk layer was also proposed for the basis of resistive switching mechanism. 

 

According to the physical model proposed in [88], oxygen vacancies act as n-

type dopant in TiO2. Doping of TiO2 with oxygen vacancies would cause the highly 

resistive TiO2 layer to become less resistive. The asymmetric distribution of oxygen 

vacancies during doping process causes the TiO2 layer to have regions of different 

resistances. The highly-doped region is less resistive, while the lowly-doped region 
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is more resistive. The drifting of oxygen vacancies from the region of highly-doped 

TiO2 towards the oxygen-deficient region causes the overall resistance of TiO2 to 

decrease [89], [90]. 

 

 

 

 Barrier width in the bulk layer of MIM memristive devices. Figure 4.

 

 

Using the above explanation, the physical model presented in [88] have 

assumed that the bulk layer is divided into two regions of high and low resistance. 

This is illustrated in figure 4, where w represents the thickness of low resistance 

doped region of the bulk layer (also known as barrier width) and L is the total length 

of the bulk layer. The barrier width is modelled to sweep along the bulk length when 

voltage is applied, ranging from 0 to L. The drifting of oxygen vacancies and 

movement of barrier width along the bulk length are proposed to be linearly [88], 

and the rate of change of barrier width is defined as: 

 
𝑑𝑤(𝑡)

𝑑𝑡
=

𝜇𝑅𝑂𝑁

𝐿
𝑖(𝑡)𝑓(𝑡) (1) 

where i(t) is the amount of current passing through the device and f(t) is a window 

function with respect to time. For the relationship between barrier width x(t) = w(t)/L 

and resistance, the state equation is also proposed by [88]: 
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 𝑅(𝑡) = 𝑅𝑂𝑁𝑥(𝑡) + 𝑅𝑂𝐹𝐹(1 − 𝑥(𝑡)) (2) 

x represents the thickness of low resistance doped region of bulk layer (w) over the 

total thickness of bulk layer (L), giving 𝑥 = 𝑤/𝐿 and x ranges from 0 to 1. RON is the 

resistance of the device when it is in its LRS and ROFF is the resistance of the device 

when it is in its HRS. 

 

Equations (1) and (2) assume that: (i) the bulk layer does not have any other 

titanium oxide phases other than TiO2 and Ti4O7, (ii) the device could be in any state 

of intermediate resistance, where the resistivity of the bulk can be between LRS and 

HRS, (iii) the drifting of oxygen vacancies or barrier width along the bulk length is 

linear and (iv) the resistance of the bulk layer is defined by the resistance of the 

highly and lowly doped regions of the bulk layer. 

 

These assumptions have caused many researchers to propose other nonlinear 

simulation models [91]–[95] that contradict the linearity of this model. These other 

theories and simulation models also aim to reduce the assumptions of equations (1) 

and (2). Biolek [91] was the first published memristor model based on the physical 

memristor device [87]. However, the memristor model is very close to linear 

behaviour and does not allow flexibility in changing switching parameters. The most 

accurate memristor model is the Batas & Fiedler memristor model [92] due to the 

usage of magnetic flux controlled memristor model and it meet the requirements for 

simulations of multi memristor circuits. Other than that, the Batas & Fiedler model 

also allows other researchers to easily modify switching speed and boundary 

conditions in their SPICE model. Therefore, Batas & Fiedler has been selected for 

further improvement and used in this research work. Furthermore, the switching 
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mechanism in memristive devices has been proven to involve the formation and 

collapse of conducting channels, instead of the manipulation of barrier width in the 

bulk layer [96]. 

 

Another type of resistive switching process incorporates the tunnelling 

probability factor (TPF) between the semiconductor and the metal layers, which is 

based heavily on Schottky barrier modulation and tunnelling, where the majority 

charge carrier is electrons. Resistive switching behaviour based on Schottky barrier 

modulation differs from the conducting channel theories, but these switching 

behaviour have also been proven to be correct [97]–[99] and the memristor 

modelling for these type of switching process for MISM memristor devices has also 

been proposed [100]. However, at the time of this research, the conducting channel 

theory was used for memristor modelling due to the lack of MISM memristor models 

and memristor models that are based on the modulation of Schottky barrier. 
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2.6 Window functions 

 

 

The drifting of oxygen vacancies is proposed to be nonlinear in physical 

devices due to the region of high and low resistance not being easily distinguishable 

in the bulk layer [101]. The electric field along the bulk layer is also nonlinear due to 

the asymmetric distribution of oxygen vacancies in the bulk layer, which further 

justifies the theories of nonlinear drift in the bulk layer [102]. Furthermore, the drift 

velocity of charge carriers is strongly affected by the varying resistance along the 

bulk layer [103]. This causes the drift velocity of the charge carriers to change non-

uniformly as they approach or leave electrodes. It is also postulated that the change 

in drift velocity near the electrodes may also be due to the charge carriers moving 

into another medium of different charge density and resistivity. The nonlinear 

models have displayed simulation results which are closer in agreement to the 

physical memristive devices [101], [104], [105]. Therefore, the change of drift 

velocities of charge carriers when it approaches the boundaries is concluded to be 

nonlinear. 

 

Several window functions, f(x) were proposed to model the nonlinear change 

of the mobility of charge carriers when approaching electrode-bulk layer boundaries. 

The window functions proposed are summarized in table 1, arranged in 

chronological order. 
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 Proposed window functions for the behaviour of charge carriers approaching electrode Table 1.

boundaries. 

Author(s) Window function, f(x) 

Strukov et. al. [88] 𝑓(𝑥) = 𝑥(𝐿 −  𝑤)/𝐿2 

Joglekar et. al. [102] 𝑓(𝑥) = 1 − (2𝑥 − 1)2𝑝 

Biolek et. al. [91] 𝑓(𝑥) = 1 − (𝑥 − 𝑠𝑡𝑝(−𝑖))2𝑝 

Prodromakis et. al. [106] 𝑓(𝑥) = 1 − [(𝑥 − 0.5)2 + 0.75]𝑝 

Kvatinsky et. al. [107] 

𝑓𝑜𝑛(𝑥) = 𝑒𝑥𝑝 [−𝑒𝑥𝑝 (−
𝑥 − 𝑎𝑜𝑛

𝑝
)] 

𝑓𝑜𝑓𝑓(𝑥) = 𝑒𝑥𝑝 [−𝑒𝑥𝑝 (
𝑥 − 𝑎𝑜𝑓𝑓

𝑝
)] 

 

The first window function to simulate the rate of change of charge carriers was 

proposed in [88]. The window function was improved by introducing a parameter p 

for generalization of nonlinear behaviour [102]. A larger value of p would cause the 

behaviour to be highly nonlinear, while a value of 1 would give a linear behaviour. 

However, both of these two window functions cause the barrier width to be stuck at 

the boundaries because these two window functions give the rate of change of barrier 

width (
𝑑𝑤(𝑡)

𝑑𝑡
) a value of zero at the boundaries. Thus, the barrier width of the device 

cannot be adjusted further and x remains stuck at 0 or 1. For example, if w is at L, 

meaning x is at 1, 

 f(x) = 1(L – L) / L
2
 = 0 (Strukov window function) (3) 

 f(x) = 1 –[2(1) – 1]
2p

 = 0 (Joglekar window function for any value of p) (4) 

Substituting either of these values into equation (1) would result in a zero rate of 

change of barrier width. This causes the barrier width to be permanently stuck at 1 in 

this example. 
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In order to avoid the simulation of x being stuck at 0 or 1, a window function 

was proposed to be dependent of current [91], where: 

 𝑠𝑡𝑝(𝑖) = {
1,   𝑓𝑜𝑟 𝑖 ≥ 0
0,   𝑓𝑜𝑟 𝑖 < 0

   (5) 

The addition of the stp function allows f(x) value to be non-zero, even though x is at 

0 or 1. For example, if both p and x are 1, and current is positive (𝑖 ≥ 0), stp(-i) 

equals to 0. This causes f(x) = 1 – (1 – 0)
2
 = 0. But if a bias of opposing polarity is 

the applied, or current is negative (𝑖 < 0), stp(-i) equals to 1 and  f(x) = 1 – (1 – 1)
2
 

= 1. This result in a non-zero rate of change of barrier width at the boundaries and 

the simulation of x does not stuck at 0 or 1. 

 

Although the window function from [91] has solved the stuck-at issues and has 

parameter p for curve-fittings, it lacks scalability. A new window function that 

improves scalability giving a range of fmax where 0 ≤ 𝑓max(𝑥) ≤ 1 was proposed by 

[106]. The simulation of the barrier width does not stuck at 0 or 1, but it is still 

mathematically possible for x to be stuck at 0 or 1 with certain input parameters. 

Thus, the window functions for memristors can still be further improved. 
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2.7 Simmons tunnelling current density equation 

 

 

Before the memristance state equation (1) was proposed, a tunnelling current 

density equation, known as the Simmons tunnelling current density equation, for an 

insulator layer sandwiched between two metals was proposed by J. G. Simmons 

[108] but was unused in previous simulation models. The advantages of this equation 

are: (i) it includes the behaviour of current that is dependent on the lengths of the 

insulator layer in MIM structures and (ii) applicable for a various range of voltages 

applied across the MIM structure. At hitherto, the most detailed expression relating 

the current and voltage behaviour for a generalized MIM structure is the Simmons 

tunnelling current density equation. 

 

Currently, no physical devices correlate to equation 1 or any of the window 

functions in table 1. On the other hand, two publications have suggested close 

relations between physical memristive devices and Simmons tunnelling current 

density equation [63], [109]. Due to the window functions hitherto do not fit the 

Simmons tunnelling current density equation, a window function which correlates to 

the Simmons equation was proposed by [107]. The Kvatinsky window function fits 

Simmons equation but it lacks scalability and does not guarantee symmetrical 

behaviour. This means that according to their window function and depending on 

parameters, the rate of change of drift velocity of charge carriers moving towards 

one electrode may be different from towards the opposite electrode. They also 

introduced two more fitting parameters in the form of aon and aoff, used to fit the 

model to the Simmons equation. 
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The Simmons tunnelling current density is given as: 

 𝐽 = ∫ 𝐷(𝐸𝑥)𝜉𝑑𝐸𝑥
𝐸𝑚

0
 (6) 

where ζ is defined as: 

 𝜉 =
4𝜋𝑞𝑚2

ℎ3 ∫ [𝑓(𝐸) − 𝑓(𝐸 + 𝑒𝑉)]𝑑𝐸𝑟
∞

0
 (7) 

and D(Ex) is a function of the probability of an electron being able to overcome the 

potential barrier posed by the insulating layer and penetrate through from one 

electrode to another. f(E) and f(E+eV) is the Fermi-Dirac functions for electrons 

following and against the potential barrier respectively, while dEr is the integral with 

respect to the effective electron direction. The Simmons tunnel equation is the most 

accurate due to its consideration of distribution and drifting of electrons in both 

directions. However, the probability function D(Ex) is ambiguous and difficult to 

obtain. Thus, further research is still needed for the modelling of the general 

memristive switching behaviour in MIM devices. 
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2.8 Memristor modelling for MIM devices 

 

 

Various SPICE memristor models and various window functions have been 

published to simulate memristive behaviour of MIM devices [91]–[95] according to 

the memristor theory [47] and behaviour of physical memristor devices [88]. These 

memristor models are widely used in simulating various electronic applications due 

to the absence of memristor component in current Electronic Design Automation 

(EDA) software. The SPICE memristor models [91]–[95] are based on Bipolar 

Resistance Switching (BRS) mechanism similar to the characteristics exhibited by 

physical memristors, which conforms to the memristor theory [47] and behaviour of 

physical memristor devices [88]. 

 

Among the SPICE memristor models, it was observed that there is room for 

improvement in the Batas & Fiedler model [92]. This memristor model is versatile 

because it can accommodate a variety of window functions. At the time of writing, 

this memristor model is being cited by at least 156 other publications, which justifies 

its popularity and suitability in electronic applications. Thus, chapter 3 of this 

dissertation explains the research work that has been conducted to improve on the 

Batas & Fiedler SPICE memristor model. This SPICE memristor model is then used 

throughout the remainder of this research work [110]. 

 

In this SPICE memristor model, noise was not included into the simulation 

model because noise can be random and is also dependent on the application that 

uses the memristor. Furthermore, all the MIM memristor models that are available in 
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the literature review do not include noise into the SPICE memristor models. This is 

because noise in memristor has not yet been fully researched. Experimental data on 

the effect of noise on memristance switching behaviour is also not available in the 

literature. However, the effect of noise in memristor model is important and could be 

included into future researches. 

 

The SPICE memristor models found the literature are based on MIM devices 

[91]–[95] that switch memristance states by forming and collapsing conducting 

channels in the bulk layer. However, a more accurate MIM memristor model based 

on the modulation of Schottky barrier is in development and has been placed for 

future research. 

  



51 
 

2.9 Memristor modelling for MISM devices 

 

 

For MISM memristive devices, the tunnelling current density for insulator 

layers thinner than 5nm is given as [111]: 

 𝐽 = 𝐴∗𝑇2𝑒𝑥𝑝(−𝛼𝑇𝑑√𝑞𝜙𝑇)𝑒𝑥𝑝 (
−𝑞𝜙𝐵

𝑘𝑇
) [exp (

𝑞𝑉

𝜂𝑘𝑇
) − 1] (8) 

This equation involves the thermionic-emission for Schottky barrier and includes a 

tunnelling probability term, 𝑒𝑥𝑝(−𝛼𝑇𝑑√𝑞𝜙𝑇). A* is Richardson constant, q is 

electron charge, V is voltage applied, T is temperature, k is Boltzmann constant, 𝜙𝑇 

is the effective barrier height, d is insulator layer thickness and 𝛼𝑇 is the base 

transport factor term. 𝛼𝑇 approaches 1 if the effective mass in the insulator is equals 

to the free electron mass. The Schottky barrier height 𝜙𝐵 term exists in the 

tunnelling current density equation due to the movement of charge carriers between 

metal and semiconductor through a very thin insulator layer mimics that of a 

Schottky-barrier diode. Ideality factor, η is close to the value of 1 when the amount 

of doping in the insulator layer is small, and becomes a larger value when doping 

increases. Using this equation, a simulation model has been developed and it 

matches the characteristics displayed by physical TaO2 devices [112]. 

 

Increasing the thickness of Ta2O5 layer decreases the amount of current flow 

through the device in both LRS and HRS [113], which is also shown in equation 8 

that current density J is inversely proportional to insulator layer thickness d. 

Therefore, the equation 8 is in good agreement with the results from experiments of 

physical MISM memristive devices.  
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2.10 Development of FPGA architectures 

 

 

Current FPGA architectures use CMOS-based memory cells and logic circuits 

as the fundamental building blocks. In memristive-based based FPGA architectures, 

these memory cells and logic circuits are replaced with memristive-based memory 

cells and logic circuits. Alternatively, memristive-based memory cells and logic 

circuits can also be constructed using a novel memristor cell. For example, PCM 

cells were used to construct a switch matrix that is used in FPGA architectures [32], 

spintronic devices were used to design a non-volatile LUT for FPGA [33] and 

magnetoresistive memories were used to design switch matrices and sequential logic 

circuits [34]. There are also memristive-based FPGA architectures that have been 

previously proposed by other researchers [114]–[119]. 

 

A Generic Memristive Structure (GMS) was proposed and used to design a 

multiplexer and memory structure [114], while a memory cell was proposed to create 

a configurable logic block and memristors are used to replace interconnect elements 

[117]. Similarly, an NVSRAM was also used to create memristive-based logic, 

control and switch blocks [116]. The mrFPGA proposed in [115] created a generic 

memristive-based placement of logic and switch blocks, as well as memristive 

interconnects. Memristors were also used to design 3-D memristive-based FPGA 

architectures as a method to increase density and decrease routing delay [118], [119]. 
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Apart from using PCM cells [32] spintronic devices [33] and MRAM [34], 

FPGA architectures can also be built using memristors [114]–[119]. These 

memristor-based FPGA architecture designs have shown improvements against the 

SRAM-based FPGA architecture. The Generic Memristive Structure (GMS) for non-

volatile FPGAs [114] presented GMS-based multiplexer and GMS-based memory 

for implementation in the non-volatile FPGA. The article has clearly explained the 

programming and reading processes of the memristors. The GMS for non-volatile 

FPGA reduces device area by 7% and shortened critical path delay by 58%. 

However, power consumption of the GMS for non-volatile FPGA requires additional 

research. The mrFPGA was proposed in response to other works on FPGAs that uses 

emerging resistive switching technologies [115]. The mrFPGA is based heavily on 

memristor routing structure that showed vast improvements with reduction of 5.18 

times of device area, 2.28 times of delay, and 1.63 times lesser power consumption. 

However, in the mrFPGA architecture, the memristive switch blocks circuit design 

with complete read/write control circuit is not presented. 

 

The RRAM-based FPGA have proposed an NVSRAM to be used in the 

architecture [116]. However, the RRAM-based FPGA uses more device area (26%) 

than SRAM FPGA. A Hybrid CMOS-Memristor based FPGA Architecture [117] 

was discussed in detailed about device area and power reduction against SRAM 

FPGA. This architecture uses memristive crossbar, but has been reported to have 

high leakage current [120]. An FPGA based on Integration of CMOS and RRAM 

[118] provided comprehensive qualitative analysis for device area, power 

consumption, and critical path delay for its architecture with various benchmark 

circuits used in its analysis and the results are compared against SRAM FPGA. The 
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article also proposed several memristive memory cells for use in the FPGA 

architecture [118]. However, this design uses 1T1R structures which consume more 

voltage than SRAM cells. This is due to NMOS pass-transistors not being able to 

effectively pass voltages. 

 

The Non-volatile 3D stacking RRAM-based FPGA showed promising results 

with 62.7% reduction of device area and 34% less delay [119]. However, the 3D 

stacking FPGA is placed for future research, as the simulation resources available for 

this research work allows for 2D simulations only. 

 

For this research work, a novel configurable memristive logic block (CMLB) 

is constructed and proposed to replace current configurable logic blocks, as 

presented in chapter 7 of this dissertation. The CMLB comprises of novel 

memristive logic cells (MLC) interconnected with one another using non-volatile 

switch matrices, which are built using novel 7T1M SRAM cells. The MLC 

comprises of a non-volatile look-up table (NVLUT), multiplexer, and memristive D 

flip-flop (MDFF). Therefore, the development of the MDFF, NVLUT, and non-

volatile switch matrix requires further literature review into previous works that are 

related to memristive sequential logic circuits, memristive combinational logic 

circuits, and memristive crossbars. 
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2.11 Sequential logic circuits 

 

 

Although CMOS sequential logic circuits have fast switching times, they are 

volatile. Therefore, novel memristive sequential logic circuits (MSLC) are proposed 

and are presented in chapter 4 of this dissertation, which are able to store logic 

information without power supply. 

 

In this research, only the D-latch and D flip-flop are considered and the CMOS 

D-latch and D flip-flop are shown in figures 5(a) and 5(b) respectively. These two 

circuits are the most frequently used sequential logic circuits in FPGAs. However, 

the improvement on other types of latches and flip-flops has been placed for future 

research, such as SR NOR latch, SR NAND latch, JK latch, T flip-flop, and JK flip-

flop. 

 

(a)  

 

(b)  

 CMOS sequential logic circuits. (a) CMOS D-latch (b) CMOS D flip-flop Figure 5.
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Previously published memristive sequential logic circuits have been simulated 

and tested to be working correctly but faced several issues. The Zero-Sleep-Leakage 

Flip-Flop Circuit [121] reduces switching power up to 97% but the circuit uses 26 

transistors, 2.17 times more transistors than the CMOS flip-flop (12 transistors). This 

requires at least twice the amount of device area to fabricate the Zero-Sleep-Leakage 

Flip-Flop Circuit. The 8T2R Nonvolatile Latch [122] has the smallest device area 

among memristor-based latch circuits with only 8 transistors per latch. However, the 

terminals of the memristors RL and RR are connected to the same bit-lines, BL (bit-

line) and BLB (bit-line bar) of the circuit respectively. Hence, the potential 

difference across the memristors is very small and the speed of resistance switching 

in the memristors is reduced. The memristor-based latch circuit proposed in [123] 

showed promising results, but uses three switches per latch, which may require 

complex programming of the latch circuit, as well as large device area. 

 

Although these proposed circuits meet their objectives to function as non-

volatile sequential circuits, there are several aspects which these circuits can be 

improved on, which are: (i) device area, (ii) resistive switching delay, and (iii) 

simpler programming of the latch circuit. 
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2.12 Combinational logic circuits 

 

 

Current LUTs are constructed with flash RAM and these CMOS memory cells 

consume an average of 26.5fJ when accessed for writing or reading and the 

switching delay is 5.6ns (simulation results from section 5.5 of this dissertation). The 

major issue with these memory cells is that they are volatile and lose logic 

information when power is removed from the LUT. To overcome this, non-volatile 

one-bit memory cells were designed and proposed as a replacement for the CMOS 

memory cells that are used in LUTs [124]–[126]. This ensures that the logic 

information is retained after power loss. By retaining logic information, the LUT 

does not require programming to retain its intended behaviour and thus, avoids 

restoring time. Storing non-volatile logic information also reduces power 

consumption. 

 

Several one-bit non-volatile memory cells are found in the literature which are 

suitable to be used in the LUT to create a non-volatile look-up table [124]–[126]. 

The 1 transistor 1 memristor (1T1M) memory cell is one of the smallest memristive 

one-bit memory cell using only two components in its design [124]. Although the 

1T1M memory cell was designed to have one of its memristor terminal grounded 

which requires a bipolar voltage source to create voltage levels larger and smaller 

than 0V, it is noticed that dynamic ground method of voltage supply for the 1T1M 

memory cell is also possible, where a unipolar voltage source is inverted to create a 

complementary voltage source at the other end of the memory cell. However, it is 

also researched that the 1T1M memory cell uses an NMOS pass-transistor would 
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consume a fraction of the input voltage, thus leaving lesser amounts of voltage for 

the memristor, which slows the resistive switching process in the memristor. 

 

Likewise, the 2 ambipolar transistors 1 memristor (2A1M) [125] memory cell 

uses one pass-transistor and one ambipolar transistor at each end of the memristor. 

This results in the input signal travelling through four other components apart from 

the memristor, which results in larger amounts of voltage loss. This means that the 

switching time is slower than the 1T1M memory cell. 

 

The 3 transistors 2 memristors (3T2M) [126] memory cells does not invert the 

input voltage to create a complementary voltage as the reference at the opposite end 

of the memristor. Instead, the 3T2M memory cell uses VDD/2 and VDD/4 references. 

The use of VDD/2 and VDD/4 voltage references in the 3T2M memory cell requires 

more circuitry which results in larger device area and higher energy consumption. 

 

Therefore, it is noticed that although the 1T1M, 2A1M and 3T2M memristive 

memory cells have efficient read and write processes, the disadvantage is the 

reduced potential difference across the memristor, which decreases switching speed 

and increased energy consumption, as well as a larger device area usage. The 

2TG1M memory cell [83] have addressed these issues by using transmission gates, 

which increases the amount of potential difference dropped across the memristor and 

thus, improving switching speed and reducing energy consumption. 
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The multiplexers in logic cells are made up of logic gates, which may be 

improved by using Memristive Ratioed Logic (MRL) [127]–[131]. These MRL 

circuits were proposed to replace CMOS logic gates, where memristors are used to 

fully replace transistors. MRL circuits have shown that they have the capability to 

replace CMOS logic gates. The MRL circuits have exhibited excellent improvements 

against CMOS logic gates in terms of device area and energy consumption. 

However, it is hypothesised that the output logic is heavily dependent on the 

connection of input supply to the MRL circuit. This hypothesis is investigated in 

chapter 5.7 of this dissertation. 
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2.13 Crossbar topology 

 

 

Another advantage of memristors is the ability to fabricate it into a crossbar 

topology. The memristive crossbar topology is an array of memristors, made up of 

two layers of parallel metal wires arranged perpendicularly on top of each other. The 

programmable interconnects (figure 6) are then placed at the intersection of these 

metal wires. 

 

 

 

 Structure of a crossbar array with programmable interconnects (PI) or vias Figure 6.

connecting the intersections between metal layer 1 and metal layer 2. 

 

 

Recently, there are several research publications that propose the use of 

memristors in crossbar arrays [132]. Memristive crossbars are generally constructed 

by fabricating memristors at the interconnections between the metal wires. The 

general structure of a memristive crossbar is shown in figure 7. It can also be 

observed from this diagram that the width of a memristor is as wide as the metal 

layer width, which is smaller than a transistor by at least 2 times. 
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 Structure of memristive crossbar where memristors are fabricated in the vias between Figure 7.

metal layers. 

 

 

However, there are also research works that highlights the issue of leakage 

current in memristive crossbars [133]. This is due to the parallel paths that currents 

can flow through when reading one memory cell in the crossbar (figure 8). Due to 

this, a research proposed using PCM cells in the crossbar array would improve the 

leakage current issue in crossbar arrays [134]. Therefore, simulation experiments 

were also conducted to perform a comparison of the leakage current in memristive 

crossbar and PCM cells crossbar [135]. 

  

 

 

 Leakage current (also known as sneak current) issue in crossbar array [133]. Figure 8.
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Due to the issues of leakage current in crossbar arrays, researchers have 

proposed memristive SRAM cells which are suitable to replace the volatile CMOS 

6T SRAM cells as the logic storage of the switch matrix [136]–[139]. This converts 

the volatile switch matrix into a non-volatile switch matrix, where the configuration 

of the switch matrix will be lost in the event of power interruption. 

 

Among the memristive SRAM cells in the literature [136]–[139], the 4T2M 

cell [136] uses the least device area, but has high energy consumption due to current 

constantly flowing through two memristors when in operation. Similarly, the 7T2R 

cell [137] also has current constantly flowing through two memristors in series, 

which also causes high energy consumption. Energy consumption and switching 

delay are improved in the NVPG cell [138] by adding pass-transistors to control the 

current through the memristors. However, this comes at the cost of larger device 

area. The rSRAM cell [139] uses the largest device area due to 10 transistors and 4 

memristors used per rSRAM cell. This amounts to unfavourable ratio of logic 

information per device area. 
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2.14 General device structure of TiO2 and TaO2 memristors 

 

 

The physical structures of TiO2 and TaO2 memristors are shown in figures 9(a) 

and 9(b) respectively. TiO2 memristors have a substrate of TiO2-X bulk layer 

sandwiched between two Pt electrodes, resembling Metal-Insulator-Metal (MIM) 

structures [67]. In contrast, TaO2 memristors have two layers in the substrate, as 

compared to the TiO2 memristors containing only one layer (TiO2-X bulk layer) in 

the substrate. The TaO2 memristor has a layer of insulator Ta2O5-X fabricated above a 

semiconductor TaO2-X bulk layer. The top Pt electrode is directly deposited over the 

Ta2O5-X
 

layer [140]. Therefore, TaO2 memristors resemble Metal-Insulator-

Semiconductor-Metal (MISM) structures. 

 

 

(a)     (b) 

 Typical construction of memristive devices. (a) Titanium oxide memristor with TiO2 Figure 9.

bulk layer. (b) Tantalum oxide memristor with TaO2 bulk layer and Ta2O5 insulator layer. 

 

The purpose of the insulator Ta2O5 layer in the substrate of TaO2 memristors is 

to convert the device into a bipolar resistive switching device because TaO2 MIM 

structures exhibit unipolar resistive switching [141], [142]. The difference between 

unipolar and bipolar resistive switching is explained further in section 2.16 of this 

dissertation. On the other hand, Ta2O5 MIM structures are not suitable for bipolar 
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resistive switching owing to the highly resistive Ta2O5 layer forming a very high 

Schottky barrier with the metallic Pt electrodes. Thus, a large reverse bias may be 

required to overcome the high Schottky barrier. Consequently, very large amounts of 

energy are needed to perform resistive switching in Ta2O5 MIM structures. 

 

In the Ta2O5/TaO2 MISM structure, the TaO2 layer functions as an oxygen 

vacancy supply layer whereas Ta2O5 functions as an oxygen vacancy accumulation 

layer [143]. Although the fabrication of TaO2 memristive devices require an 

additional layer of Ta2O5, it serves as an advantage because the variation of the 

thickness of the insulator layer in the substrate provides an easier manipulation of 

resistance ratio between ROFF and RON [113]. 

 

By using the Ta2O5/TaO2 MISM structure instead of an MIM structure, and by 

selecting each of these layers to have the desired resistance levels and ratio, the 

Ta2O5/TaO2 structure has two additional two factors that can be manipulated: 

programming current and device stability [113]. The MISM memristor structure 

reduces the LRS current by maintaining a medium resistance during the switching 

between LRS and HRS [113]. The low-current operated devices (<100 μA) are 

necessary for better Random-Access Memory (RAM) applications [76]. 

 

Despite having different device structures and bulk layer materials, both TiO2 

(MIM) and TaO2 (MISM) memristors exhibit similar resistive switching behaviour. 

This is evident by the fact that both devices are able to switch between high and low 

resistance states and the switching of resistance states depends on the direction of 

current, demonstrating similar bipolar switching behaviours. 
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2.15 Electroformation of NVM devices 

 

 

Post-fabricated MIM structures may not be able to exhibit resistive switching 

behaviour because insulator bulk layers are highly resistive in normal operating 

conditions. To form a device capable of conducting current, electroformation is 

performed, which is an irreversible one-time process that forms a device capable of 

conducting current. This is usually done by applying an electrical potential large 

enough to cause physical changes to the device and form conducting channels 

through the bulk layer, which reduces the resistance of the bulk layer. It is essential 

for MIM structures to undergo electroformation in order to exhibit memristive 

behaviour [144], [145]. 

 

The magnitude of electroforming voltage is usually much larger than the 

switching voltage magnitude required for subsequent resistance switching to take 

place [146]. The electroforming voltage magnitude also usually exceeds the 

breakdown potential of the device, causing a build-up or depletion of oxygen ions at 

the electrodes, depending on the polarity of electroforming voltage. Subsequent 

physical switching mechanisms take place around these erupted regions, where 

conducting channels are formed and collapse near these regions [147]. 

 

During electroformation, the potential bias applied at the electrodes energizes 

the oxygen ions of negative charge to drift to the electrode that is applied with a 

more positive voltage. Oxygen ions combine to form oxygen gas molecules. The 

oxygen gas molecules are trapped in the interface between the electrode and bulk 
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layer. Gas pressure builds up as more oxygen gas molecules are formed. This 

eventually causes an eruption through the top electrode and a permanent physical 

deformation occurs in the memristive device [148]. 

 

Although there is permanent physical change to the device during 

electroformation, subsequent resistance switching after electroformation is not 

affected by the physical damage. This is due to the subsequent conducting channels 

that are responsible for the conduction of current are being formed and collapsed 

near the electroformed conducting channels [149], [150]. Thus, no further 

deformations or physical changes at other regions are required [150]. The theories 

that were proposed to explain electroformation in MIM devices are: 

(i) Gibbs free energy of formation 

(ii) Dearnaley theory 
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2.15.1 Gibbs free energy of formation 

 

 

According to the Gibbs free energy of formation [146], the electroforming 

voltage is given by: 

 𝑉𝐹 ≅ Δ𝐺𝑀𝑋𝑥𝐹 (9) 

where ΔGMX is the Gibbs free energy of formation of the bulk layer material and F is 

Faraday’s constant. The proposed theory by Greene et al. states that the 

electroforming voltage is independent of bulk layer thickness [146], giving equation 

(1). According the equation, the amount of voltage required to electroform a device 

is proportional to the Gibbs free energy of formation of the bulk layer material. This 

theory can be used to compare two devices of similar physical dimensions but 

different bulk layer material. The Gibbs free energy of formation of metal oxides 

commonly used in the bulk layer of MIM resistive switching devices is shown in 

table 2 [151]. 

 

 Gibbs free energy of the formation of metal oxides used in MIM resistive switching Table 2.

devices. 

Metal Oxide Gibbs free energy of formation, ΔfG° (kJ/mol) 

Hafnium oxide (HfO) -1088.2 

Zirconium oxide (ZrO2) -1042.8 

Titanium oxide (TiO2) -888.8 

Silicon oxide (SiO2) -856.4 

Vanadium oxide (VO2) -446.4 

Nickel oxide (NiO) -211.7 

Tantalum oxide (TaO2) -209.0 

Copper oxide (Cu2O) -149.0 
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From table 2, it is observed that the Gibbs free energy of formation of TaO2 

and Cu2O are among the lowest whereas HfO and TiO2 are among the highest. 

Between TaO2 and Cu2O, TaO2 is more widely used over Cu2O due to its more 

stable resistance states as seen in the current-cycle and resistance-cycle graphs of 

TaO2 and Cu2O memristive devices [52], [78], [152]. An example of resistance-cycle 

for TaO2 and Cu2O memristive devices is shown in figures 10(a) and 10(b) 

respectively. Other researchers have also shown that the smaller difference of the 

Gibbs free energy of formation between TaO2 and Ta2O5 phases produces more 

stable resistive switching behaviour [76]. 

 

      

 Resistive switching in memristive devices of (a) TaO2 and (b) Cu2O  Figure 10.

 

Although memristors with bulk layers of high Gibbs free energy of formation 

may also exhibit resistive switching behaviour, these devices require an additional 

one-time electroformation step. This is reflected by TiO2 devices requiring an 

electroformation process that requires a large electroforming potential before TiO2 

devices can exhibit resistive switching behaviour [148]. As TiO2 devices mimics an 

MIM structure, many publications have reported that other MIM structures of 

different materials also require an electroforming step to exhibit memristive 

behaviour [153], [154]. 
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In contrary, TaO2 devices with similar physical dimensions as TiO2 devices 

would require ~4.5 times less energy for the electroforming process because the 

Gibbs free energy of formation of TaO2 is ~4.5 times smaller than the Gibbs free 

energy of formation of TiO2. Moreover, if the Gibbs free energy of formation is very 

small, it is postulated that the electroforming voltage is less than or equal to the 

switching voltage of the memristive device. The damage to the device is 

insignificant and the electroformation process could be part of the first switching 

cycle. This avoids the need of a large voltage for a separate electroforming process. 

This was reported in a TaO2 memristor where no additional electroformation step 

was required [155]. It was also observed that the voltage of the first switching cycle 

is lesser than the voltage of the subsequent switching cycles [155]. 

 

Research also shows that the electroforming voltages of physical TiO2 and 

TaO2 devices are proportional to bulk layer thickness [141], [156]. This may be in 

contradiction to Greene’s theory. Thus, it is reinstated that Greene’s theory is 

applicable only if the devices in comparison are of the same physical dimensions. 

For comparing devices that have different physical dimensions but similar bulk layer 

material, the Dearnaley theory would be more appropriate [157]. 
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2.15.2 Dearnaley theory 

 

 

Dearnaley et al. proposed that the electroforming voltage is proportional to 

insulator thickness in MIM devices [157]. The electric field applied during 

electroforming, EF is the amount of voltage supplied per insulator thickness: 

 𝐸𝐹 = 𝑉
𝐿⁄  (10) 

where V is the voltage applied across the device and L is the thickness of the 

substrate of the device. 

 

Voltage connected to the electrodes is applied across the entire bulk layer 

surface. Owing to the insulator-metal interface not being completely smooth, there is 

a possibility that some regions in the bulk layer are thinner than the intended length 

of the bulk layer. Since electric field is inversely proportional to insulator thickness 

(equation 2), the electric field is larger at the regions of thinner bulk layer. At these 

high electric field regions, electroformation is more likely to occur and thus forms a 

conducting channel at these regions. The Dearnaley theory also explains why 

conducting channels in TiO2 and TaO2 devices are not spanned across the entire bulk 

layer [158]. 

 

Bulk layers or insulators thicker than 1 µm cannot be electroformed due to 

insufficient electroforming electric field applied across the bulk layer [67], [146], 

whereas devices thinner than 10 nm may suffer from permanent dielectric 

breakdown due to the high electric field [159] or due to large amounts of current 

flow [160], [161]. Thus, current compliance methods are used to avoid a permanent 
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breakdown or excess physical damage during the electroformation of devices with 

bulk layer thinner than 10nm [162]. 

 

 

2.15.3 Preventing electroformation in memristive devices 

 

 

To exhibit resistive switching behaviour in TiO2 devices without 

electroformation, two methods were proposed: (i) thinning bulk layer to a few 

nanometres thick while using current compliance methods [148], and (ii) depositing 

bulk layer by reactive sputtering in oxygen rich ambient [163], because 

electroformation of metal-oxide memristors has been shown to be assisted by oxygen 

vacancies [164]. Reducing device size also decreases the physical damages caused 

by oxygen gas eruption because smaller devices increases the rate of release of 

oxygen molecules out of the device [148]. 

 

To prevent electroformation in TaO2 devices, the top electrode Pt is proposed 

to be replaced with Ta [77]. Although a different electrode is used, the device still 

behaves with similar memristive properties [155]. Using magnetron sputtering 

method, TaO2 devices still exhibit memristive behaviour without electroformation 

[143]. This shows that TaO2 devices can exhibit memristive behaviour without the 

need for an additional electroformation process. 
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2.16 Resistive switching mechanism 

 

 

After fabrication, and performing electroformation if necessary, memristive 

devices can undergo resistive switching cycles. The resistive switching mechanism is 

dependent on whether the device is of MIM or MISM type of structure. There are 

also two types of resistive switching mechanisms; unipolar resistive switching 

(URS) and bipolar resistive switching (BRS) mechanisms, which can either occur in 

MIM or MISM type of structure. 

 

 

2.16.1 Unipolar Resistive Switching (URS) 

 

 

In URS devices, the switching operation is selected by controlling voltage 

magnitude and length. URS switching does not depend on the polarity of the applied 

voltage, as shown in figure 11 [165]. 

 

 

 Unipolar Resistance Switching observed in ZrO2 resistive switching device [165]. Figure 11.



73 
 

URS switching operation depends on the amount of energy supplied to the ions 

in the bulk layer. Thus, it is independent of the direction of energy flow, but 

dependent on the magnitude of energy supplied, which is proportional to the 

magnitude of applied voltage and the duration of applied voltage [166]. However, 

URS devices did not gain as much attention due to BRS devices having faster 

switching speeds and requiring lower switching energies [53][67]. Furthermore, 

URS devices are not in agreement with the theory of memristors [47], which states 

that switching of memristive devices require opposing polarities of voltage. 

 

 

2.16.2 Bipolar Resistive Switching (BRS) 

 

 

The BRS mechanism is a switching mechanism that requires opposing voltage 

polarities for different switching operations (turning ON or OFF). BRS can be 

further differentiated into two types; (i) clockwise BRS (figure 12), where positive 

polarity turns device OFF, and (ii) counter-clockwise BRS (figure 13), where 

positive polarity turns device ON. The voltage polarities for device switching 

operations (clockwise BRS or counter-clockwise BRS) are interchangeable 

depending on its fabrication process [167]. 
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 Current-Voltage curve for clockwise bipolar resistance switching. Figure 12.

 

 

 

 Current-Voltage curve for counter-clockwise bipolar resistance switching. Figure 13.

 

 

The BRS of TiO2 memristive devices resembles that of other MIM memristive 

devices [168]. Thus, the general BRS mechanism of MIM memristive devices can be 

explained by studying the switching mechanism of TiO2 memristive devices. 

Similarly, the BRS mechanism of MISM memristive devices can be explained by 

studying the switching mechanism of TaO2 memristive devices. 
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During fabrication of memristive devices with metal oxide bulk layers, oxygen 

ions are injected into the bulk layer as a doping process. This process is uneven and 

the distribution of oxygen ions (and vacancies) are asymmetrical in the bulk layer 

[169], [170]. This contributes to the memristive properties of the device. The defect 

states induced by oxygen vacancies act as n-type dopant in TiO2 and the highly 

resistive TiO2 layer becomes more conductive. The asymmetric distribution of 

oxygen vacancies also causes the TiO2 layer to have regions of high and low 

resistances. The highly-doped region is less resistive, while the lowly-doped region 

is more resistive. Due to the asymmetric doping of bulk layer, only one of the 

electrodes dominates the switching mechanism. The formation and collapsing of 

conducting channels takes place nearer to one of the electrodes that dominates the 

switching cycles [51]. The electrode that is nearer to the higher resistive region of 

the bulk layer is the electrode that dominates the switching cycles. The region where 

switching cycles take place in the bulk layer or the electrode that dominates the 

switching cycles is determined during fabrication [113], [167]. 

 

 

2.16.3 MIM memristive device switching mechanism 

 

 

The switching mechanism in TiO2 devices involves the dislocation of the 

charged species, ions or vacancies, of the metal-oxide towards or away from an 

electrode. This process either forms or collapses conducting channels [171]. 
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 (a) (b) (c) (d) 

 Switching mechanism of TiO2 devices. (a) Positive bias is applied at the top electrode Figure 14.

to switch the device ON, pulling electrons away from the bulk layer, causing an increased 

number of oxygen vacancies in the bulk layer. (b) The oxygen vacancies in the bulk layer create 

a conducting path for current to tunnel through the device and device is in low resistance state. 

(c) Negative bias is applied at the top electrode to switch the device OFF, repelling electrons 

towards the bulk layer and recombination occurs, thus (d) collapsing the conducing channel. 

The device switches to high resistance state. 

 

 

Positive-charge oxygen vacancies are migrated in the bulk layer during 

switching (figure 14(a)). The drifting of oxygen vacancies from the region of highly-

doped TiO2 towards the oxygen-deficient region forms areas of lower resistances in 

the lowly-doped region of the bulk layer [89], [90]. These areas of lower resistances 

then combines to form a chain of low resistance regions, which forms a filament-like 

structure that protrudes the entire bulk layer and creates the conducting channels 

(figure 14(b)). The formation of the conducting channel is localized and do not take 

place throughout the entire cross-section of the bulk layer [158]. The conducting 

channel consists of Ti4O7 phase [154], which is less resistive than the non-doped 

regions of the bulk layer, which are mainly composed of TiO2 phase [171]. Thus, the 

memristive device is in LRS. 
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The application of an opposing voltage causes the opposite movements of 

oxygen vacancies. This transforms the Ti4O7
 
phase in the conducting channel into 

other Ti–O phases, mainly TiO2 phase (figure 14(c)). TiO2 phase is highly-resistive 

and the conducting channel can no longer conduct current. The collapse of the 

conducting channel eliminates the current conduction path from the bulk layer, so 

large amounts of current cannot tunnel through the device (figure 14(d)). Thus, the 

bulk layer is now highly resistive and the memristive device is in HRS. 

 

 

2.16.4 MISM memristive device switching mechanism 

 

 

In TaO2 devices, the resistive switching mechanism is assisted by a very thin 

insulating layer of highly resistive Ta2O5 phase fabricated between the top electrode 

and bulk layer [77], [78], [141]. The insulating layer of Ta2O5 consists of Ta2O5 and 

a very small percentage of TaO2 phase. 

 

To switch the device to its LRS, a negative bias is applied at the top electrode 

and the bottom electrode is grounded. The negative bias at the top electrode repels 

negative charged oxygen ions away from the top electrode (figure 15(a)). This 

causes Ta2O5 molecules to be reduced to TaO [172] and Ta [173] molecules by 

releasing oxygen ions from the Ta2O5 molecules. The oxygen ions then drift from the 

Ta2O5 layer towards the TaO2 bulk layer. After a number of TaO and Ta molecules 

align in the Ta2O5 layer to form a conducting channel that is TaO and Ta-rich, large 
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amounts of current can tunnel through the insulating layer. This switches the device 

into LRS (figure 15(b)). 

 

 

 

 (a) (b) (c) (d) 

 Switching mechanism of TaO2 devices. (a) A negative bias is applied on the top Figure 15.

electrode to switch the device ON, repelling negatively charged oxygen ions away from the 

Ta2O5 layer towards the TaO2 layer. (b) Ta2O5 phase is reduced to TaO and Ta. After low-

resistance TaO and Ta phases align, it forms conducting channels in the Ta2O5 layer. (c) 

Positive bias is applied on the top electrode to switch the device OFF, attracting oxygen ions 

towards the Ta2O5 layer. (d) The oxygen ions oxidize TaO and Ta phases to become Ta2O5 

phases, and cause the collapse of conducting channels. 

 

 

To switch the TaO2 device to HRS, a positive bias is applied at the top 

electrode while the bottom electrode remains grounded. This attracts negatively 

charged oxygen ions from the TaO2 bulk layer towards the top electrode and 

migrates into the Ta2O5 layer (figure 15(c)). As the oxygen ions accumulate in the 

Ta2O5 insulating layer, oxidation takes place and TaO and Ta molecules are oxidized 

into Ta2O5 molecules. The number of Ta2O5 molecules in the conducting channel 

increases and the resistance of the conducting channel increases. The conducting 

channel collapse when a number of Ta2O5 molecules disconnect the conducting 
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channel. This prevents current from flowing through the bulk layer and Ta2O5 layer, 

thus the device is in the HRS (figure 15(d)). 

 

 

2.16.5 Comparison between MIM and MISM switching mechanisms 

 

 

The switching mechanisms of TiO2 and TaO2 devices can be used to represent 

the general switching mechanisms of MIM and MISM devices respectively. The 

similarity between MIM and MISM devices is that redox reactions are performed on 

metal oxides when switching between resistance states. A redox reaction is a 

chemical reaction where one of the reactant undergoes oxidation while another 

reactant undergoes reduction. The resistivity is different for different phases of a 

metal oxide. Thus, by performing oxidation and reduction in memristive devices 

which switches the phases of the metal oxide in the bulk layer, the resistivity of the 

bulk layer is altered. 

 

The difference between the two types of switching mechanisms of MIM and 

MISM devices is the manner of the formation of the conducting channels. In MIM 

devices, the conducting channel spans the entire length of the bulk layer of the 

device, protruding from one electrode to the other. As for MISM devices, the 

conducting channels are formed only in the insulator layer of the substrate. The low 

resistivity of the semiconductor bulk layer in MISM devices does not require a 

conducting channel to conduct. 
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2.17 Evaluation of TiO2 and TaO2 memristive devices 

 

 

The electrical performance of memristive devices are evaluated based on 

switching speed, switching energy, resistance ratio, retention, and endurance. 

 

 

2.17.1 Switching speed 

 

 

The mobility of charged species through the switching layer is dependent on 

the material type and the forming field across that layer [174]. The mobility of the 

charged species in both TiO2 and TaO2 devices is the oxygen vacancies. The oxygen 

vacancies mobility, µ in TiO2 is 1x10
-10

 cm
2
/V.s [88] and in TaO2 is 5.46x10

-10
 

cm
2
/V.s [175]. Assuming that temperature, voltage applied, electric field, and device 

dimensions are the same between TiO2 and TaO2 memristive devices, it is deduced 

that the migration of mobile charged species in TaO2 is about 5 times faster than that 

in TiO2 due to the vacancy mobility in TaO2 is about 5 times faster than that in TiO2. 

This also means that the time taken to form a conducting channel in TaO2 devices is 

about 5 times faster than that in TiO2 devices. Thus, it is postulated that the average 

switching speed of TaO2 devices is about 5 times faster than that of TiO2 devices. 
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2.17.2 Switching energy 

 

 

The amount of electric field applied and charge carrier mobility are considered 

when estimating the energy consumed during the switching cycles in the devices. 

The drift velocity of charge carriers, vd is given as: 

 𝑣𝑑 = 𝜇𝐸𝐿 (11) 

where 𝐸𝐿 is the amount of electric field along the length of the bulk layer, and µ is 

the mobility of the charged species that is responsible for switching process. 

 

In order to maintain similar switching speeds (fixed drift velocity of charge 

carriers) the required application of electric field across the length of the bulk layer is 

inversely proportional to the charge carrier mobility in the bulk material. Assuming 

TiO2 and TaO2 devices of similar physical dimensions, it is postulated that the 

switching energy of TiO2 devices is larger than that of TaO2 devices to obtain similar 

switching speeds based on the oxygen vacancy mobility, µ, in TiO2 is slower than 

that in TaO2. 

 

 

2.17.3 Resistance ratio 

 

 

A large resistance ratio is preferable for NVM devices [176] to ensure that the 

resistance states are further apart to increase the number of switching cycles before 

the resistance states of LRS and HRS intersect on another. When LRS and HRS 
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intersects, where the resistances are almost similar or resistance ratio becomes unity, 

then the device is assumed to cease from behaving as an NVM device as it can no 

longer perform resistive switching cycles. Large resistance ratio also reduces error 

when obtaining logic information from memristors. 

 

To evaluate resistance ratio of memristors, the resistance of a memristor is first 

studied. Since the electrodes and substrate in TiO2 and TaO2 devices are in series to 

each other, the instantaneous resistance (memristance) of memristive devices is the 

summation of the resistance of each layer (electrodes and substrate). The resistance 

of the electrodes is always constant because it does not take place in the switching 

mechanism and is usually made of a metallic element. Thus, memristance is 

dependent on the resistance of the device substrate, which in turn depends on the 

history of charge flow through the memristor [88], i.e. HRS or LRS. 

 

The resistance ratios (ROFF/RON) of TiO2 devices ranges from 500 to 10
5
 [163], 

[169], [51], [177], [178], while the switching resistance ratios of TaO2 devices 

ranges from 10
1
 to 10

6
 [59], [78], [155]. It is estimated that the average resistance 

ratio of future fabricated TaO2 devices may be higher than that of TiO2 devices due 

to the resistance ratios of TaO2 devices reaching 10
6
, while TiO2 devices reaching up 

to only 10
5
 of  resistance ratios. However, further experiments are needed to prove 

this. 

 

In order for memristive devices to be able to replace physical memory devices, 

it needs to be able to consistently switch between resistance states. Although slight 

deviation from its resistance state is allowed, a stable OFF/ON ratio is required. In 
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both devices, the HRS varies much more than the LRS, where an example of 

resistance switching is shown in figure 16. The HRS is formed by collapsing 

conducting channels, which is not a consistent process because the amount of charge 

carriers needed to collapse a conducting channel may vary during each switching. In 

the LRS, the conducting channel effectively shorts the device, so the only resistance 

along the device is the resistances of the electrodes, which is constant [179], [180]. 

The smaller the difference Most of the TiO2 and TaO2 devices have exhibited an 

almost consistent OFF/ON resistance ratio [78],[181]. Therefore, both TiO2 and 

TaO2 devices are two of the suitable candidates of memristive devices to replace 

physical memory devices in terms of stable resistive states. 

 

 

 

 Resistance switching of memristive devices [179], showing that the LRS is more Figure 16.

consistent than the HRS. 
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2.17.4 Retention 

 

 

Retention is the ability of memory and memristive devices to retain logic 

information without power supply, measured by the amount of time that the memory 

is still retrievable. The retention time of a memristive device may also be defined as 

the time taken for the device to deteriorate from its resistance state (HRS or LRS) by 

a certain amount of percentage, R%. The threshold for percentage of change, R% can 

be determined by researchers or manufacturers. Smaller values of R% yield better 

quality of retention in exchange for shorter retention period. Conversely, larger 

values of R% results in a longer retention period but yields a device with poor 

retention quality. 

 

The retention time of memory devices at room temperature or normal 

operating conditions is estimated using extrapolation of the Arrhenius plot, which 

have also been used by other publications [182]–[184]. The Arrhenius equation 

defines the rate constant τ of a chemical reaction as: 

 𝜏 = 𝐴𝑒−𝐸𝑎/𝑘𝑇 (12) 

where Ea is the activation energy of the reaction. A is a pre-exponential factor or 

frequency factor that depends on the frequency of collision between molecules, 

while the rate constant τ is the frequency of a successful reaction between reactants. 

Taking the natural logarithm, equation 12 becomes: 

 ln 𝜏 = −
𝐸𝐴

𝑘
(

1

𝑇
) + ln 𝐴 (13) 
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This method uses temperature-accelerated degradation of memristive devices 

and the percentage of change of resistance or conductivity, ΔR is observed. The 

device is degraded past R% at a specific constant temperature T. These temperature-

accelerated degradations are usually performed at temperatures much higher than 

room temperature or normal operating conditions, in the range between 150 °C to 

250 °C [182]–[184]. From the temperature-accelerated degradation experiment 

performed at temperature T, a graph of ΔR is plotted against time and the gradient is 

the rate constant τ for temperature T (figure 17). 

 

 

 Temperature-accelerated degradation plot of percentage change in resistance against Figure 17.

time at temperature T. 

 

 

A similar procedure is repeated to obtain rate constants at different 

temperatures. The Arrhenius plot is drawn with ln(τ) plotted against T
-1

 (figure 18). 

The graph is then extrapolated to obtain the rate constant at room temperature or at a 

desired operating condition. 
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  Arrhenius plot to find rate constant of at room temperature. 40.0 x10
-3

 °C
-1

 Figure 18.

corresponds to a room temperature of 25 °C, while 4.0, 5.0 and 6.7 (x10
-3

) °C
-1

 corresponds to 

the temperature-accelerated degradation performed at 250 °C, 200 °C, and 150 °C respectively. 

 

 

This approach was used to obtain the retention time for TaO2 devices operating 

between 25°C and 85°C, which is of over 10 years [78]. This retention time meets 

the standards of manufacturers of memory devices [182]. At the time of writing, the 

retention of TiO2 devices has not yet been obtained using extrapolation of Arrhenius 

plot. There were reports stating that TiO2 devices have retention time as long as 10 

years but there are no experimental data or method that could provide sufficient 

evidence to support this statement. Although different fabrication methods and/or 

slightly different electrodes were tried, experiment data could still not provide 

sufficient evidence for retention of 10 years [185]–[188]. Due to the lack of robust 

methods in obtaining the retention period of TiO2 devices, it cannot be concluded yet 

that TiO2 devices have the retention ability of 10 years. 
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2.17.5 Endurance 

 

 

The endurance of memristive devices is measured by the number of resistance 

switching cycles that can be successfully performed until the resistance ratio 

converges towards unity (intersection of HRS and LRS), or when the resistance ratio 

becomes less than a required amount. The minimum resistance ratio is determined by 

the application that uses the memristive device. The method to test device endurance 

is by switching the device continuously until it fails to meet any of the endurance 

criteria above. 

 

Recent publications have shown that TaO2 devices (10
10

 cycles [143]) have 

better endurance than TiO2 devices (10
4
 cycles [189]). It was also shown that after 

10
4
 cycles, the resistance states of TiO2 converges and no longer exhibit memristive 

properties [77], while endurance of TaO2 devices can reach up to 10
12

 cycles via 

increasing device size [113]. Increasing device size improves endurance due to the 

larger space available to produce more conducting channels. In larger devices, if for 

any reasons a conducting channel fails to reconnect while turning-ON, then there is a 

possibility that the turning-ON voltage is able to electroform a new conducting 

channel at other parts of the bulk layer that does not already have a conducting 

channel. Thus, ensuring another switching cycle can occur. 

 

For memristive devices with similar physical device size, TaO2 devices exhibit 

better endurance than TiO2 devices due to the existence of multiple stable Magnéli 

phases in the titanium oxide (Ti-O) series [190], whereas the tantalum oxide (Ta-O) 
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series has only two stable Magnéli phases [191]. The phase diagrams of Ti-O and 

Ta-O are shown in figures 19 and 20 respectively. Magnéli phases of oxides appear 

when crystallographic shear occurs that changes the stoichiometry of the cation 

(metal) but still maintaining the coordination requirements of the cation. The 

homologous series of metal-oxide phases are made up of Magnéli phases of metal-

oxides [192]. 

 

Due to the unstable Ti4O7 phase and multiple Magnéli phases in the Ti–O 

series, the doping of TiO2 results in the formation of oxide phases other than Ti4O7 

[154]. After a number of switching cycles, the redox reaction that takes place in the 

bulk layer forms Ti–O phases other than TiO2 and Ti4O7. The other phases of Ti–O 

are also in thermal equilibrium with TiO2 and Ti4O7, which increases the reluctance 

of the other phases to react. With the increase of other higher resistive phases in the 

bulk layer, the device is unable to switch back to its initial RON and ROFF states. This 

means that the TiO2 device has reached its endurance limit. 
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 Ti-O phase diagram [190]. Figure 19.

 

 

 Ta-O phase diagram [191]. Figure 20.
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For TaO2 devices, the Magnéli series consist of only two stable phases: TaO2 

and Ta2O5. This means that every chemical reaction in the bulk layer only involves 

these two Ta–O phases. This improves device endurance because the redox reaction 

that occurs in TaO2 is only between two phases of Ta–O. Therefore, it is concluded 

that TaO2 devices have better endurance than TiO2 devices due to the lesser number 

of stable Magnéli phases in the Ta–O series. 

 

Apart from using materials with lesser number of stable Magnéli phases, 

endurance of resistive switching devices can also be improved by regulating the 

electroformation process [142]. By minimizing the electroforming process, physical 

damages are minimized. This reduces the probability of a conducting channel failing 

to form or collapse, which eventually increases the number of resistive switching 

cycles that can be performed in the device and improves endurance of the 

memristive device. 

 

 

 

 

  



91 
 

2.18 Physical factors of memristive devices 

 

 

Resistance ratio, retention and endurance are factors of reliability of 

memristive devices, which are affected by the physical factors of memristive 

devices. Apart from resistance ratio, retention and endurance, physical factors also 

affect resistive switching behaviour. The physical factors that affect the behaviour of 

memristive devices are: thickness of bulk layer, device size, and electrode material. 

 

 

2.18.1 Thickness of bulk layer 

 

 

Thick bulk layers in MIM memristive devices prevents conducting channels 

from being formed due to the large amount of electric field required to breakdown 

the thick bulk layer. This is shown by the decrease in probability for formation of a 

conducting channel with an increase in bulk layer thickness [181]. The range of bulk 

layer that consistently exhibits memristive behaviour is below 500nm [193], while 

bulk layers thinner than 50nm [154], [194] or even 10nm [195] also has memristive 

properties. Switching voltages are observed to be independent with varying bulk 

layer thickness [146]. This is due to the forming and deforming of conducting 

channel occurs only at localized areas, which is a small region inside the bulk layer. 

Majority of the applied potential difference is dropped across the switching region, 

which are almost constant in size and independent of bulk layer thickness. Thus, the 

switching bias remains fairly constant with varying bulk layer thickness [154], [156]. 
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The resistivity of the HRS of MIM memristive devices increases with the 

thickness of bulk layer due to the charge carriers needing to drift through a greater 

distance along the device [51]. There are no conducting channels in the HRS of the 

device, thus the greater the distance, the higher the resistivity of the bulk layer. 

Conversely, the resistivity of LRS remains fairly constant because the device is 

fundamentally shorted in the LRS. 

 

In TaO2 devices, the substrate is composed of two layers, the bulk layer with 

majority of TaO2 phase and insulator layer with majority of Ta2O5 phase. Because 

there are two layers with different phases of Ta–O, two types of comparison are 

performed: (i) devices with same layer ratio but different substrate thickness, and (ii) 

devices with different layer ratios. 

 

2.18.1(a) TaO2 devices with similar layer ratio 

 

It was observed that the trend among TaO2 devices with different substrate 

thickness but constant thickness ratio between TaO2 and Ta2O5 layers is similar to 

that of TiO2 devices and the switching bias is fairly constant for constant layer ratio 

between layers [196]. The reason for this trend is due to the similar switching 

characteristics between HRS and LRS given the same ROFF/RON ratio of the 

memristive device. 
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2.18.1(b) TaO2 devices with different layer ratio 

 

For TaO2 devices with different layer ratios [141], there are two types of 

comparison: (i) varying TaO2 bulk layer thickness with constant Ta2O5 insulator 

layer, and (ii)  varying Ta2O5 layer thickness with constant TaO2 bulk layer. 

 

Varying TaO2 layer thickness (fixed Ta2O5 layer thickness) does not change 

the amount of current flow in the LRS due to the device being shorted in LRS. In the 

HRS, it is observed that the current flow is lesser in the device with thicker TaO2 

layer (10
-8

A compared to 10
-6

A), because a longer device increases overall device 

resistance. Due to switching regions located inside the Ta2O5 insulator layer, thus 

varying TaO2 layer does not affect the switching-ON bias (-1.5V) because the 

electric field is applied across the switching region located in the Ta2O5 insulator 

layer. However, the switching-OFF bias is larger with thicker TaO2 layer due to the 

longer distance the oxygen ions need to travel through the thicker TaO2 layer 

towards the Ta2O5 layer to collapse the conducting channels. Therefore, a larger 

switching-OFF bias is required to collapse the conducting channel, and it is 

concluded that varying TaO2 layer affects the HRS but not the LRS of the device 

[141]. 

 

Varying Ta2O5 layer thickness (fixed TaO2 layer thickness) changes the current 

flow in the LRS and HRS of the device. Increasing the thickness of Ta2O5 layer 

decreases the amount of current flow through the device in both LRS and HRS, due 

to increased resistivity of the Ta2O5 layer [113]. Another observation is that both 

switching-ON and switching-OFF biases remain fairly constant with different Ta2O5 
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thickness. Switching-ON bias is constant due to the switching regions, located in the 

Ta2O5 insulator layer, are usually fairly constant in size regardless of the thickness of 

the Ta2O5 layer. Since TaO2 bulk layer has fixed thickness, the distance between the 

switching regions in the Ta2O5 layer to the opposite end of the TaO2 layer is 

constant. Therefore, the switching-ON and switching-OFF biases are constant with 

varying Ta2O5 layer thickness [141]. 

 

 

2.18.2 Device size of memristive devices 

 

 

The device size of memristors is defined by the cross-section area of 

electrodes. For the parameters used in this research work, the device size of the 

memristors is 32nm x 32nm. According to Ohm’s law, resistance of a conductor is 

inversely proportional to cross-section area of the conductor. Increasing memristive 

device size would decrease ROFF only. In the HRS of the devices, there are no 

conducting channels, thus electric field is applied across the entire cross-section of 

the bulk layer. Thus, ROFF decreases with increasing device size. 

 

Increasing device size of memristive devices does not linearly decrease RON of 

TiO2 and TaO2 devices [113]. When a memristive device is in LRS, it forms a thin 

conducting channel with a diameter much smaller than the electrode cross-section 

area. The conducting channels do not span across the entire electrode [197]. This 

observation was also reported for other memristive devices with similar device 

structures [60][198]. Increasing device size does not necessarily mean that the 
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conducting channels increase in size. However, it increases the probability of more 

conducting channels being formed [154], but not all conducting channels are 

switched on when the memristive device is switched ON. Thus, since larger devices 

do not guarantee an increase in conductivity, then it might be a waste to fabricate 

larger devices for the sole purpose of increasing conductivity. 

 

 

2.18.3 Band gaps 

 

 

Comparing band gaps of TiO2 and TaO2/Ta2O5, publications have reported that 

wider band gaps leads to lower switching currents, which are advantageous for 

resistive switching [193]. The band gap of TaO2 is 4.0 – 4.2 eV [199], Ta2O5 is 3.9 – 

5.3 eV [200], [201], and TiO2 is 3.0 – 3.2 eV [193], [202]. Therefore, this adds 

weight to the choice of TaO2 memristive devices over TiO2 memristive devices. 

 

 

2.18.4 Electrode material selection 

 

 

Electrodes do not place in the switching process, but electrode elements affect 

the manner chemical reactions takes place in the bulk layer [203]. Thus, for the same 

type of bulk layer material, it is possible to fabricate a URS or BRS device based on 

the electrode material used. For example, a Ag/TiO2/Ag device shows URS 

mechanism [204], while Pt/TiO2/Pt device shows BRS mechanism [51]. 
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For TiO2 devices, one of the electrode is usually Pt, and the other electrode 

may be replaced with other materials that still allow bipolar resistive switching to 

take place, such as: silver, Ag [202], aluminium, Al [205], and tungsten, W [206]. 

For TaO2 devices, other electrode materials that allow bipolar resistive switching to 

take place are such as: Al [207], copper, Cu [59], nickel, Ni [208], and W [209]. 

 

Electrode material selection is vital to enable resistive switching to take place 

in a device. Resistive switching cannot take place in a device if both top and bottom 

electrodes create ohmic contacts with the bulk layer [210]. Resistive switching can 

only take place when at least one of the electrodes creates a Schottky barrier with the 

bulk layer. This also explains why certain electrode materials can be used to 

fabricate memristive devices with different bulk layer materials, such as tungsten, W 

is used as the electrode material to fabricate memristive devices with bulk layers of 

TiO2 [206], TaO2 [209], silicon oxide, SiO2 [211], or hafnium oxide, HfO2 [212]. 

 

Among the electrodes used to fabricate memristive devices, a common trend 

could not be found and the effect on the performance of the devices varies, albeit 

several similarities in the electrode elements that can be used to fabricate TiO2 and 

TaO2 devices. Hence, the trend in electrode material selection is placed for future 

research. 

 

In summary, the physical factors of memristive devices (bulk layer thickness, 

device size, and electrode material) affect the electrical properties of memristive 

devices (electroformation, switching voltage, resistance ratio, retention, endurance, 

and type of switching). Due to the various physical factors and electrical properties 
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affecting memristive devices, there have been extensive researches conducted to 

further understand the relationships between the various physical factors and various 

electrical properties. It is therefore understood that the role of memristors in its 

application would most likely determine the fabrication process to ensure that the 

electrical properties of the memristors conform to its intended resistive switching 

behaviour in the application. 
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3.  MEMRISTOR MODELLING 
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MEMRISTOR MODELLING 

 

 

3.1 Batas & Fiedler memristor model 

 

 

The Batas & Fiedler memristor model has shown flexibility by being able to 

adapt to a variety of window functions [92]. However, a fault has been found in the 

Batas & Fiedler memristor model and the following sections explain the fault, as 

well as the proposed memristor model [110]. In general, bidirectional current flow 

can be created in two ways: 

(i) fixed ground 

(ii) dynamic ground 

 

 

3.1.1 Fixed ground bidirectional current 

 

 

In the fixed ground method, one terminal of the memristor is permanently 

grounded while biasing potential is applied at the other terminal of the memristor. As 

shown in figure 21, terminal B of the memristor is connected permanently to ground 

(fixed ground) while a voltage supply is applied at terminal A. The voltage supply at 

A can be either a square wave or sinusoidal, but regardless of the waveform the 
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voltage supply at A must have alternating polarity to ensure bidirectional current 

flow through the memristor. 

 

 

 

  Memristor connected using fixed ground method. Figure 21.

 

 

 

 Voltage input at A for the circuit in figure 21. Figure 22.

 

 

 

 Memristive behaviour exhibited by the Batas & Fiedler memristor model using fixed Figure 23.

ground method. 
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Figure 22 shows the voltage applied at A. Current is directed into (1V from 

0ns until 200ns) and drawn out (–1V from 200ns to 400ns) from the memristor at the 

terminal A alternatively, which creates a bidirectional current flow through the 

memristor. The memristive behaviour exhibited by the Batas & Fiedler model is 

shown in figure 23, where the memristance of switches between 100Ω (LRS) and 

16kΩ (HRS). Therefore, the characteristics of the Batas & Fiedler model memristor 

model using fixed ground connection are similar to the mathematical theory of 

memristors [47] and the physical model of the memristor [88]. 

 

 

3.1.2 Dynamic ground bidirectional current 

 

 

 

 Memristor connected using dynamic ground method. Figure 24.

 

 

In the dynamic ground method, none of the terminals are permanently 

grounded. Bidirectional current flow with dynamic ground is created by connecting 

both memristor terminals to two independent voltage sources as shown in figure 24. 

The direction of current flowing through the memristor depends on the polarity of 

the potential difference across the memristor terminals. For instance, if the biasing at 

A is +V and B is at 0V, current flows from A to B. Conversely, if the biasing at B is 
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+V and A is at 0V, current flows from B to A. Thus, dynamic ground method does 

not impose restrictions on grounding on a specific terminal. Such a memristor model 

has been described by the mathematical theory [47] and physical model of 

memristors [88]. 

 

 

 

 Simulation results of the memristor connected using dynamic ground method. (a) Figure 25.

Voltage input of VA. (b) Voltage input of VB. (c) Potential difference across memristor. (d) 

Memristive behaviour exhibited by the Batas & Fiedler memristor model using dynamic 

ground. 
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The behaviour of the Batas & Fiedler memristor model is subjected to the 

dynamic ground method by applying potentials VA and VB as shown in figures 25(a) 

and 25(b) respectively. The potential VA and VB are complementary to each other, 

where if one is at 1V then the other is at 0V, and vice versa. This results in the 

potential difference across the memristor as shown in figure 25(c), which is exactly 

similar to the potential difference across the memristor with fixed ground 

bidirectional current. The resulting memristive behaviour exhibited is shown in 

figure 25(d). 

 

It is observed that the ROFF of the memristor increases to the range of Tera-

Ohms in contrast to the memristor modelling parameters that set ROFF to 16kΩ. Thus, 

the Batas & Fiedler memristor model fails to behave correctly when dynamic ground 

bidirectional current is used and hence, it is not in good agreement with the 

mathematical theory [47] and physical model of memristors [88]. 

 

 

3.1.3 Fault in the Batas & Fiedler memristor model 

 

 

The Batas & Fiedler memristor model consists of two sub-circuits (figure 26). 

For ease of explanation, the sub-circuits are named as Voltage-Input Circuit (VIC) 

and Memristance Function Circuit (MFC). The VIC functions to connect the 

memristor to external circuitry. Apart from receiving input voltage, the VIC also has 

a voltage-dependent variable voltage source (Ememristor) that acts as a variable 

resistance that represents the memristance of a memristor. Meanwhile, the MFC 
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simulates the behaviour of the memristance by using a current source to simulate the 

current flow through the memristor. 

 

 

 

 Batas & Fiedler memristor model [92]. Figure 26.

 

 

In the MFC, the current source is proportional to the amount and dependent on 

the direction of current flowing through the VIC. Thus, the larger the voltage in the 

VIC, the higher the amount of current supplied by the current source in the MFC. 

Similarly, an opposing polarity of voltage applied at the VIC also changes the 

polarity of the current source in the MFC. The memristance behaviour (Ememristor) 

is inversely proportional to the potential difference between nodes w and neg in the 

MFC. Thus, whenever voltage is applied at the VIC, the current source in the MFC 

causes a change in the potential difference between nodes w and neg in the MFC, 

which in turn changes the amount of current flow in the VIC by changing 

(Ememristor), which then affects the current source in the MFC. Eventually and 
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gradually, memristance switches in a nonlinear manner to either LRS or HRS 

depending on the polarity of the applied voltage at VIC. The MFC has voltage-

controlled switches that provide boundary conditions and a capacitor to behave as 

the component that remembers the history of charge flow. 

 

The VIC has two nodes (pos and neg) to establish connections to an external 

circuit. The ground node in MFC is the neg node, which is also connected to the 

VIC. This forces the neg pin of the memristor to be constantly connected to an 

external ground (fixed ground) in order to obtain the correct functionality of the 

memristor. When a positive bias in a dynamic grounding method is applied at neg 

node, the charging and discharging of the capacitor and switches inside the MFC 

fails to conform to correct circuit behaviour. Therefore, this causes the memristance 

of the memristor to increase to the range of Tera-Ohms (Fig. 25(d)). Hence, the 

Batas & Fiedler memristor model fails to exhibit the correct memristive behaviour if 

the neg node is connected to a non-zero voltage source. 

 

  



106 
 

3.2 Enhanced SPICE Memristor Model with Dynamic Ground 

 

 

To address this issue in the Batas & Fiedler memristor model, the neg node 

connection between MFC and VIC in the memristor model is separated and an 

enhanced memristor model with dynamic ground features was published [110]. The 

schematic of the enhanced SPICE memristor model with dynamic ground is shown 

in figure 27 and the netlist for the memristor model is attached in appendix A. 

 

 

 

 Schematic circuit of enhanced SPICE memristor model with dynamic ground. Figure 27.

 

 

In the enhanced SPICE memristor model with dynamic ground model, the neg 

node of the VIC is connected to the external pin of the memristor, while the neg 

node in the MFC is separately grounded. When the neg terminal of the memristor is 

connected to a non-zero voltage source, the circuit behaviour of the MFC is not 

affected due to the independent grounding of MFC. Thus, when the proposed 

memristor model is subjected to dynamic grounding, it is able to admit bidirectional 
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current flow through it and allows the MFC to function correctly regardless of the 

type of biasing of the memristor. 

 

To verify the proposed memristor model, the memristor is subjected to 

bidirectional current flow with both types of biasing; fixed and dynamic ground. 

This is performed by applying voltage inputs similar to that in figures 22 and 25. The 

memristance of the proposed memristor model obtained for both types of 

bidirectional current flow is shown in figure 28. It can be observed that the proposed 

memristor model exhibits correct memristive switching behaviour for the respective 

applied voltage in either fixed or dynamic ground method of biasing. 

 

 

 

 Memristive behaviour exhibited by the proposed memristor model using fixed and Figure 28.

dynamic ground method of input biasing. 

 

 

Furthermore in recent memristive devices, memristive switching times are less 

than 50ns. Due to this, the proposed memristor model was also improvised to 

simulate switching in nanoseconds. This was done by changing the capacitance in 

MFC from 1F in the original circuit to 50nF in the proposed memristor model. 
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 Simulation of the enhanced SPICE memristor model with nanoseconds switching. (a) Figure 29.

Voltage input of VA. (b) Voltage input of VB. (c) Memristive behaviour exhibited by the SPICE 

memristor model. 

 

 

The final memristor model is subjected to similar voltage input magnitude but 

at higher frequencies, as shown in figures 29(a) and 29(b), and the resulting 

memristance behaviour is shown in figure 29(c), where ROFF is 16kΩ and RON is 

100Ω. This summarizes that the proposed memristor model is able to perform at high 

frequency for nanoseconds switching behaviour with both types of grounding 

methods, fixed and ground. 

 

In summary, the published enhanced SPICE memristor model with dynamic 

ground [110] was shown to exhibit memristive behaviour close agreement to 

physical and theoretical characteristics of memristors. Therefore, this SPICE 
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memristor model is used to simulate memristors for the remainder of the research 

work that are documented in this dissertation, unless stated otherwise.  
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4. SEQUENTIAL LOGIC CIRCUITS  
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SEQUENTIAL LOGIC CIRCUITS 

 

 

4.1 Non-volatile memristive D-latch (NVDL) 

 

 

To overcome the volatility of CMOS-based D-latch and to improve power 

consumption, a non-volatile memristive D-latch (NVDL) was proposed and 

published [213]. The NVDL also benefits against CMOS sequential logic circuits 

with the addition of non-volatile memory storage. The non-volatility of memristors 

allows the sequential logic circuit to be independent of input supply when retrieving 

logic information that was previously programmed into the latch circuit. 

 

 

 

 Schematic circuit of the non-volatile memristive D-latch (NVDL) Figure 30.
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The schematic circuit of the NVDL is shown in figure 30 and the netlist is 

attached in appendix B. The NVDL uses 11 transistors (including 4 transistors in the 

logic NOR gate) and 2 memristors, which is 1.83 times more device area than the 

CMOS D-latch. The function of the logic NOR gate is to ensure that the NVDL is 

selected for either writing (𝐶𝐿𝐾) or reading (𝑅𝐸𝐴𝐷) processes. The non-volatility of 

the NVDL is implemented by incorporating memristors into the circuit design. Thus, 

logic information of the latch is stored in the form of memristance. The functionality 

of the NVDL is divided into four parts: (i) latch circuit, (ii) retention of logic 

information, (iii) resistive switching, and (iv) steady-state operation. 

 

 

4.1.1 Latch function of NVDL 

 

 

A latch is defined as a circuit where its output changes whenever its input 

changes, provided that the circuit is enabled by a clock signal. The NVDL functions 

with 𝐷 and 𝐶𝐿𝐾 as inputs to the circuit while 𝑄 and �̅� are the outputs, where 𝑄 and 

�̅� are complementary to each other. 𝐷 is charged to VDD to input logic ‘1’ and 

grounded to 0V to input logic ‘0’. An NMOS pass-transistor with its gate connected 

to 𝐶𝐿𝐾 separates input 𝐷 from output 𝑄, and acts as the circuit-enable switch. 

 

If 𝐶𝐿𝐾 is low, a high impedance channel exists in this NMOS pass-transistor. 

Thus, any changes in input 𝐷 do not affect output 𝑄 when 𝐶𝐿𝐾 is low and 𝑄 remains 

unchanged. When 𝐶𝐿𝐾 is high, the pass-transistor has a low impedance conducting 

channel between input 𝐷 and output 𝑄, and the voltage at 𝐷 is transmitted to 𝑄. 
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Therefore, whenever 𝐶𝐿𝐾 is high, output 𝑄 changes instantaneously towards any 

changes in input 𝐷. Thus, the NVDL functions as a latch. 

 

 

4.1.2 Retention of logic in NVDL 

 

 

For temporary logic information storage, an inverter loop consisting of two 

CMOS inverters connected back-to-back is used. Output 𝑄 is fed into a CMOS 

inverter to produce a complementary output �̅�. At the same time, another CMOS 

inverter is connected to �̅� and the output of this CMOS inverter is connected to 𝑄. 

This ensures that the complementary logic between 𝑄 and �̅� is retained for as long as 

the power supply to the CMOS inverters is uninterrupted. 𝑄 and �̅� are also not 

changeable when 𝐶𝐿𝐾 is low. 

 

 

4.1.3 Resistive switching in NVDL 

 

 

Memristors are also used as logic information storage which can be 

programmed and read. 𝑆𝑊𝐿 controls the access of memristors for programming or 

reading and is the result of 𝑅𝐸𝐴𝐷 or 𝐶𝐿𝐾. Whenever 𝐶𝐿𝐾 is high, 𝑆𝑊𝐿 is activated 

and creates low impedance conducting channels between 𝑄 and memristor M1, and 

between �̅� and memristor M2. 𝐶𝑇𝑅𝐿 is connected to the negative terminals of both 

memristors and is a constant voltage supply. 𝐶𝑇𝑅𝐿 should be between the voltage 



114 
 

levels of VDD (1.0V) and 0V to allow bidirectional current flow through the 

memristors and is set to 0.6V for the NVDL in this research. 𝐶𝑇𝑅𝐿 set to 0.6V also 

ensures the switching speed to switch the memristors to LRS or HRS is almost 

similar. If 𝑄 (or �̅�) is at VDD, the voltage at the positive terminal of memristor M1 

(or M2) is larger, thus current flows into the positive terminal of memristor M1 (or 

M2) and the memristance decreases to its LRS. Conversely, if 𝑄 (or �̅�) is at 0V, the 

voltage at the negative terminal of memristor M1 (or M2) is larger, thus current 

flows out of the positive terminal of memristor M1 (or M2) and the memristance 

increases to its HRS. Since memristors M1 and M2 are connected to 𝑄 and �̅� 

respectively, their memristance states are always complementary to each other due to 

𝑄 and �̅� are complementary of each other. 

 

When 𝐶𝐿𝐾 is low, outputs 𝑄 and �̅� are disconnected from memristors M1 and 

M2 because 𝑆𝑊𝐿 creates a high impedance channel in the pass-transistors between 

outputs 𝑄 and �̅� and memristors M1 and M2 respectively. Thus, memristors are only 

programmed when 𝐶𝐿𝐾 is high. 
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 Equivalent circuit when restoring logic information in the NVDL Figure 31.

 

 

To read from the memristors and restore logic information into the inverter 

loop, 𝑅𝐸𝐴𝐷 signal is triggered and 𝐶𝑇𝑅𝐿 is set to VDD. Current flows with different 

amounts from 𝐶𝑇𝑅𝐿, through the 𝑆𝑊𝐿 pass-transistors, and into memristors M1 and 

M2. The path where the memristor is in LRS provides a path of lower resistance and 

current flow is higher. For example (as shown in figure 31), if 𝑄 was latched to logic 

‘1’ (𝑄 was at VDD) memristor M1 would have been programmed to LRS, and the 

voltage drop across memristor M1 is about 0.2VCTRL and the remaining 0.8VCTRL is 

dropped at 𝑄 when reading the memristor. These values are obtained from 

simulation results. This causes the inverter loop to output 0V at �̅�, and eventually the 

complement CMOS inverter pulls-up 𝑄 to VDD. In the meantime, memristor M2 is at 

HRS and the voltage drop across it is 0.8VCTRL and the remaining 0.2VCTRL is 

dropped at �̅�. This causes the CMOS inverter to output VDD at 𝑄. Conversely, if 𝑄 

was latched to logic ‘0’ (𝑄 was at 0V), memristor M1 is switched to HRS with a 

potential difference of 0.8VCTRL across memristor M1 and only 0.2VCTRL is dropped 

at 𝑄, thus �̅� outputs VDD and 𝑄 is grounded to 0V. 
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4.1.4 Steady-state operation of NVDL 

 

 

Without 𝑅𝐸𝐴𝐷 or 𝐶𝐿𝐾 signals, 𝑆𝑊𝐿 is grounded to 0V and the 𝑆𝑊𝐿 pass-

transistors are in high impedance. Memristors M1 and M2 preserve their 

memristance states because they are disconnected from 𝑄 and �̅�. When the pass-

transistors are in high impedance, current cannot flow through the memristors 

between the outputs (𝑄 or �̅�) and 𝐶𝑇𝑅𝐿. Thus, memristance states are retained. This 

ensures that the NVDL do not lose logic information while in operation. The high 

impedance channels also ensure that the resistance parallel to output 𝑄 and �̅� is high. 

The output impedance parallel to output load is 3.72TΩ. The summary of the 

operation of the proposed NVDL is summarized in table 3, where X refers to ‘don’t 

care’ logic state. 

 

 

 Summary of the operation of NVDL Table 3.

𝐂𝐋𝐊 𝐑𝐄𝐀𝐃 𝐃 𝐐 �̅� 

0 0 X Last Q Last Q̅ 

0 1 X Last Q Last Q̅ 

1 X 0 0 1 

1 X 1 1 0 
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4.2 Memristive D flip-flop (MDFF) 

 

 

Similarly, a Memristive D Flip-Flop (MDFF) has been designed and proposed 

to replace CMOS-based D flip-flops to introduce non-volatile characteristics into 

sequential logic circuits, as well as to improve power consumption. The schematic 

circuit for the MDFF is shown in figure 32 and the netlist is attached in appendix C. 

The MDFF has a master and slave relationship between two sets of CMOS inverter 

loops that satisfies the definition of a flip-flop circuit. 

 

 

 

 Schematic circuit of the Memristive D Flip-Flop (MDFF) Figure 32.

 

 

When clock is low, the master latches onto the input from 𝐷 and the master 

and slave are disconnected by a high-impedance transistor T2. The addition of a 

pass-transistor between the CMOS inverters in both master and slave is to prevent 



118 
 

short-circuiting between the CMOS inverters. This was not evident in the NVDL, 

and thus was not inserted in the NVDL circuit. 

 

When the clock toggles high, any changes at input 𝐷 do not affect the voltage 

levels in the master due to T1 being turned off. Thus, the logic bit has been latched 

in the master. While the clock is high, the master and the slave are connected via 

transistor T2. The CMOS inverters in the master are connected to ensure a stable 

voltage and the slave latches onto the logic bit from master. The CMOS inverter in 

the slave inverts the logic bit from the output of master to produce output 𝑄. At the 

same time when the clock is high, memristors M1 and M2 are programmed to the 

appropriate memristance states. The switching of memristance states of M1 and M2 

depends on the voltage at 𝑄 and �̅�. If 𝑄 or �̅� is at logic ‘1’ (VDD = 1V), current 

flows from 𝑄 or �̅� to 𝐶𝑇𝑅𝐿 (𝐶𝑇𝑅𝐿 = 0.6V). Consequently, M1 or M2 is switched to 

its LRS. Conversely, if 𝑄 or �̅� is at logic ‘0’ (0V), current flows from 𝐶𝑇𝑅𝐿, and M1 

or M2 is switched to its HRS. 

 

When clock returns to low, T2 disconnects the slave from the master and any 

changes in input 𝐷 can only be transmitted to the output 𝑄 at the next rising edge of 

the clock. Simultaneously, output 𝑄 carries the logic bit from the slave for as long as 

power supply to the MDFF is uninterrupted. At this time also, any change in input 𝐷 

is immediately reflected in the master. 

 

If power supply to the memristive sequential logic circuits is interrupted, logic 

information can be restored by reading from the memristors. When the read process 

is initiated, the SWL transistors are turned on and the 𝐶𝑇𝑅𝐿 channels VDD for 5ns 
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through the memristors. The current through the memristor with LRS is larger than 

the current through the memristor with HRS. This causes the voltage dropped at the 

invertor loop that is connected to the LRS memristor to output 0V, due to the higher 

amount of voltage at the input terminal of the inverter. Likewise, the complementary 

inverter outputs VDD and logic information is restored in the slave. 

 

 

 

4.3 Simulation results of memristive sequential logic circuits (MSLC) 

 

 

Simulation of the NVDL and MDFF is shown in figures 33 and 34 

respectively. VDD is set to 1.0V (due to the 32nm CMOS process technology), thus 

0.6V connected to the CMOS inverter input is sufficient for the CMOS inverter to be 

able to output 0V. As such, 𝐶𝑇𝑅𝐿 is set to 1.0V to perform read process to ensure 

that the CMOS inverter is able to produce the appropriate output when retrieving 

logic information from the memristors. 𝐶𝑇𝑅𝐿 is set to 0.6V during normal operation 

to ensure that the potential at the negative terminal of the memristors is between the 

potential of logic ‘1’ (VDD) and logic ‘0’ (0V), as well as to ensure a more 

symmetrical resistance switching between HRS and LRS. 
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 Simulation of the NVDL Figure 33.

 

 

 

 Simulation of the MDFF Figure 34.

 

 

Figure 33 shows that output 𝑄 of the NVDL changes instantaneously with 

input 𝐷 whenever 𝐶𝐿𝐾 is high. This proves that the NVDL functions as a latch. For 

the MDFF (figure 34), output 𝑄 only changes at the rising-edge of 𝐶𝐿𝐾. Between 

0.2μs to 0.4μs, output 𝑄 remains the same although there is a change in input 𝐷 at 

0.3μs. Therefore, this proves that the MDFF functions as a flip-flop. 
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4.3.1 Time measurements 

 

 

The output delay is the time taken for the output 𝑄 to change and switch 

voltage levels between 1V and 0V. It is measured from the time when the input of 

the sequential logic circuit is changed until the time when output 𝑄 reaches a stable 

voltage. The output delay of NVDL, MDFF, and CMOS D-latch and D flip-flop is 

shown in figures 35 and 36, and also summarized in table 4. The output delay for the 

NVDL to switch to logic ‘0’ (0V) is shorter than that for MDFF because the NVDL 

only needs to collapse the conducting channels in one memristor. Conversely, the 

MDFF needs to switch two memristors at the same time; one memristor to HRS and 

another memristor to LRS. This also explains the output delay for MDFF is similar 

between output ‘0’ and ‘1’. 

 

 

 Output delays of sequential logic circuits Table 4.

Sequential logic circuit 
Output delay for logic 

‘0’ (ns) 

Output delay for logic 

‘1’ (ns) 

NVDL 0.030 0.270 

MDFF 0.194 0.196 

CMOS D-latch 0.190 0.160 

CMOS D flip-flop 0.186 0.190 

 

 

Although the NVDL exhibits a wide range of output delay, the output delay is 

0.15ns, which is faster than the average output delay of the CMOS-based D-latch. 

However, the average output delay for the MDFF is longer than the CMOS-based D 
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flip-flop due to the larger number of transistors used in the circuit, which reduces 

current flow to output nodes. 

 

 

 

 Output ‘1’ delay of sequential logic circuits Figure 35.

 

 

 

 Output ‘0’ delay of sequential logic circuits Figure 36.

 

 

Although it takes a very short time for input 𝐷 to be transmitted to output 𝑄, 

the memristors require an average of 143.93ns and 146.07ns to complete resistance 

switching in the NVDL and MDFF respectively. The resistive switching graphs are 
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shown in figures 37 and 38, and are applicable for both memristors for both cases of 

𝑄 and �̅� at VDD and 0V because the memristors are in reciprocal to each other, thus 

their resistance switching is identical. For example, the switching of M1 to HRS (�̅� 

at 0V) is similar to the switching of M2 to HRS (𝑄 at 0V). 

 

 

 

 Resistive switching delay in the memristors of NVDL Figure 37.

 

 

 

 Resistive switching delay in the memristors of MDFF Figure 38.

 

 



124 
 

The memristance switching simulation results show that the switching speed of 

NVDL is an average of 1.68 times faster than the 8T2R Nonvolatile Latch that takes 

between 225ns and 258ns to switch memristance states [122]. Switching speed of the 

MDFF is an average of 1.66 times faster than the memristor-based non-volatile latch 

circuit (243.16ns) [123]. However, the Zero-Sleep-Leakage Flip-Flop Circuit 

exhibited fastest switching speed of 100ns using the results published in [121]. 

 

 

4.3.2 Energy measurement and non-volatile features 

 

 

Energy consumption of a circuit is measured by adding the energy consumed 

by each component in the circuit. Energy consumed by the CMOS D-latch to output 

‘0’ is 18.11fJ and 17.69fJ to output ‘1’. Energy consumed by the NVDL to output 

‘0’ is 0.44fJ and 2.78fJ to output ‘1’. For retrieving logic information from the 

memristors, the NVDL requires 8.07fJ and 8.01fJ to output logic ‘0’ and ‘1’ 

respectively, giving an average of 8.04fJ to retrieve logic information from the 

NVDL. This is compared to 18.11fJ and 17.69fJ required by the CMOS D-latch 

circuit to translate its input D to output Q, giving an average of 17.90fJ. This means 

that the average energy consumed by the CMOS D-latch to read logic information is 

1.5 times more than the energy required by the NVDL to restore logic information. 

The reason for the low energy consumption of NVDL is the usage of memristance, 

instead of re-application of input power supply from input 𝐷. Thus, the overall 

energy consumption by the proposed NVDL is lower than the CMOS D-latch. 
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When operating at 5MHz, the power consumption of the NVDL is 626.20nW, 

which is relatively very high due to large amounts of current and programming the 

memristors at high frequency. However, when the non-volatile features of the NVDL 

is exercised as shown in figure 39, the average power consumption of the NVDL is 

reduced to 198.12fW, while the constant power consumption of the CMOS D-latch 

to operate at 5MHz or to retain logic information is 199.10pW. Thus, it is 

summarised that the NVDL ensures lower power consumption if the non-volatile 

feature is utilised by disconnecting the power supply to the NVDL, and only re-

connected if logic information from the NVDL is required. 

 

The average energy consumed by MDFF to output logic ‘0’ and ‘1’ is 1.464fJ 

and 0.008fJ respectively. To retrieve logic information from the memristors in the 

MDFF, an average energy consumption of 21.320fJ is required. Comparing this 

value against the NVDL that has similar structures to write and read the memristors, 

the energy consumption is higher due to the larger number of components in the 

MDFF than the NVDL. At clock frequency of 5MHz, the power consumption for the 

operation of MDFF is 58.06nW, giving average energy consumption of 11.612fJ per 

clock cycle. If the non-volatile feature is exercised (figure 39), the average operation 

of MDFF consumes only 37.16pW, whereas the constant power consumption of the 

CMOS D flip-flop to operate at 5MHz or to retain logic information is 16.80nW. 

 

This shows that the non-volatile characteristics of the MDFF improve energy 

and power consumption. Similarly, the MDFF is advantageous over the CMOS D 

flip-flop only if the non-volatile features of the MDFF is fully utilised. 
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 Restoration of logic information in the NVDL and MDFF circuits. (a) VDD supply to Figure 39.

the circuit. (b) Read signal, which is turned on for 1ns to retrieve logic information from the 

memristors. (c) Output Q when restoring logic ‘0’. (d) Output Q when restoring logic ‘1’. 

 

 

The non-volatility of the NVDL and MDFF are shown in figure 39, where 

power supply VDD is turned off from 0.06 s onwards, and turned on again from 9s 

onwards (figure 39(a)). Both simulation results are similar due to the similar 

structure of programming and restoring of logic information into and from the 

memristor respectively. According to simulation, it takes about 8s for the volatile 

inverter loop and CMOS D-latch to fully discharge and lose logic information. Thus 

at 9s, 𝑅𝐸𝐴𝐷 signal is triggered for 1 ns to restore logic information (figure 39(b)), 

long enough to draw sufficient current to switch the logic at output Q, as well as 

short enough to maintain memristance states [214]. 
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During the read process, 𝐶𝐿𝐾 signal is not activated, which shows that the 

restoring of logic information does not require the input signal 𝐷. When restoring 

logic ‘0’, output 𝑄 rises to give a spike in voltage, but it does not reach VDD and 

immediately falls to 0V (figure 39(c)). The rise and fall of this spike takes 13.94 ns. 

The reason for the spike when restoring logic ‘0’ is due to �̅� discharged to 0V when 

power supply is disconnected and thus, it turns on the CMOS inverter that would 

momentarily channel VDD into output 𝑄 when VDD is reconnected to the circuit. 

After 13.94 ns, the current through the memristors restore the outputs 𝑄 and �̅� to 

logic ‘0’ and ‘1’ respectively. When restoring logic ‘1’, output 𝑄 takes 16.54ns to be 

pulled-up to VDD (figure 39(d)). 

 

 

4.3.3 Device area 

 

 

Device area of the proposed NVDL is improved against memristive-based 

latch circuits by a total of 13 transistors, whereas the memristor-based non-volatile 

latch circuit [123] uses an operational-amplifier in its design which would 

significantly increase device area. Furthermore, the NVDL does not require 

switches, which eases programming and reading of the NVDL, when compared to 

the memristor-based latch circuit proposed in [123]. Although the 8T2R Nonvolatile 

Latch [122] uses only 8 transistors in its design which amounts to 1.625 times of 

lesser device components, the energy consumption is 10
2
fJ, which is about 12.5 

times more than the proposed NVDL. 
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The MDFF uses 18 transistors, which is less than that compared to the Zero-

Sleep-Leakage Flip-Flop Circuit which uses about 26 transistors [121]. However, 

both the MDFF and NVDL have larger device area than the CMOS D flip-flop and 

D-latch respectively by 2 transistors per circuit. 

 

 

4.3.4 Summary of memristive sequential logic circuits (MSLC) 

 

 

The proposed NVDL and MDFF circuits show non-volatile characteristics in 

the event of power interruption. Programming and restoring operations of both 

NVDL and MDFF were also demonstrated. Although the steady-states of NVDL and 

MDFF consume more energy than the CMOS circuits, the non-volatile nature of 

NVDL and MDFF allows the circuits to store logic information without power, thus 

reducing average power consumption. 

 

In summary, two memristive sequential logic circuits (NVDL and MDFF) 

have been published which show improvements against the CMOS and other 

memristive D-latch and D flip-flops, in terms of switching speed and energy 

consumption. Therefore, the NVDL and MDFF are used wherever sequential logic 

circuits are required in the remainder of this research work, unless stated otherwise. 

The NVDL and MDFF are also used to replace CMOS sequential logic circuits. 
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5. COMBINATIONAL LOGIC CIRCUITS  
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COMBINATIONAL LOGIC CIRCUITS 

 

 

5.1 2TG1M memory cell 

 

 

Current CMOS-based LUTs use flash RAM as the memory cells, which 

volatile. Therefore, to build a non-volatile look-up table (NVLUT), a two 

transmission gate one memristor (2TG1M) memory cell (figure 40) was proposed 

and published [83]. The motivation for using transmission gates (figure 41) is due to 

conventional pass-transistors not being able to effectively pass high and low logic 

levels. The netlists of the 2TG1M memory cell and the transmission gate are 

attached in appendix D and E respectively. 

 

 

 

 Schematic circuit of the two transmission gate one memristor (2TG1M) memory cell. Figure 40.
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 Schematic diagram of the CMOS transmission gate. Figure 41.

 

 

 

 Simulation of pass transistors and transmission gate (a) Input voltage (b) NMOS and Figure 42.

PMOS pass transistor output (c) Transmission gate output. 

 

 

When both NMOS and PMOS pass-transistors are subjected to identical input 

signals (figure 42(a)), it is shown that NMOS pass-transistors are ineffective in 

passing high-logic levels, but can fully pass low-logic levels. Conversely, PMOS 

pass-transistors can pass high-logic levels, but is ineffective in passing low-logic 

levels. These outputs are shown in figure 42(b). 
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The usage of transmission gates ensure that both high and low logic levels are 

passed through the transistors effectively without any noticeable voltage dropped 

across the transmission gate. Simulation results of the transmission gate show that 

the output of the transmission gate is similar to its input (figure 42(c)). 

 

The 2TG1M memory cell is controlled by two data lines, which are the 

complement of one another (𝐷𝐴𝑇𝐴 and 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅ ), and a write line 𝑊𝑅𝐼𝑇𝐸, where 

𝑊𝑅𝐼𝑇𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the complement. The data lines serve to write the memory cell with either 

a ‘0’ or ‘1’ by applying 0V or VDD respectively to 𝐷𝐴𝑇𝐴. 𝑊𝑅𝐼𝑇𝐸 is active high and 

is used to select the respective memory cell to be written. The proposed memory cell 

has two operations: (i) Write operation, and (ii) Read operation. 

 

 

5.1.1 Write operation of 2TG1M memory cell 

 

 

Data line 𝐷𝐴𝑇𝐴 is either charged to VDD or ground, 0V. The purpose of the 

inversion of 𝐷𝐴𝑇𝐴 to create complementary 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  is to ensure that the magnitude of 

potential difference across the memristor whenever the memristor is selected for 

write operation is always VDD. The data lines are connected to opposite ends of the 

memristor, where 𝐷𝐴𝑇𝐴 is connected to the positive terminal of the memristor 

through a transmission gate, while 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  is connected to the negative terminal of the 

memristor through another identical transmission gate. 
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To write a 2TG1M memory cell, the memory cell is selected by activating its 

respective write line. VDD is applied to 𝑊𝑅𝐼𝑇𝐸 and the high voltage in the write line 

creates a low impedance channel in the NMOS of the transmission gates, while 

𝑊𝑅𝐼𝑇𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is connected to the gate terminal of the PMOS of the transmission gates. 

This also creates a low impedance channel in the PMOS of the transmission gates. 

Therefore, the transmission gates connect 𝐷𝐴𝑇𝐴 and 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  to the memristor. If 

𝐷𝐴𝑇𝐴 is charged to VDD then 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  is grounded to 0V, and vice versa. Thus, this 

applies a potential difference magnitude of VDD across the memristor. 

 

When 𝐷𝐴𝑇𝐴 is charged to VDD, the memristor is switched to its LRS due to 

current flowing from the positive terminal of the memristor to the negative terminal 

of the memristor. Current flows in this direction due to the more positive voltage at 

𝐷𝐴𝑇𝐴. Thus, the 2TG1M memory cell is programmed with logic ‘1’ when the 

memristor switches to its LRS. 

 

To write logic ‘0’ into the 2TG1M memory cell, 𝐷𝐴𝑇𝐴 is grounded and 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  

is charged to VDD. This causes a reverse potential difference across the memristor. 

The voltage at the negative terminal is larger than at the positive terminal and current 

flows through the memristor from the negative to the positive terminals. The 

memristor switches to its HRS and the 2TG1M memory cell is programmed with 

logic ‘0’. 
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5.1.2 Read operation of 2TG1M memory cell 

 

 

To read the 2TG1M memory cell, a very short write pulse is signalled, 

enabling current to flow through the memristor. This very short pulse of write signal 

must be less than 5 ns in order to preserve the state of the memristor [214]. For the 

read operation, a sense-amplifier is used in this research work to detect and amplify 

the current drawn from the memristor. 𝐷𝐴𝑇𝐴 and 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  create a constant potential 

difference of 1V between the memristor terminals whenever the cell is selected. 

Thus, the amount of current drawn from the memristor is inversely proportional to 

the resistance of the memristor. A large current drawn from the memristor would 

signify a logic of ‘1’ (LRS), while a small current drawn from the memristor would 

signify a logic of ‘0’ (HRS). Since the direction of current is insignificant to the read 

operation, neither 𝐷𝐴𝑇𝐴 nor 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  needs to be pre-charged to VDD. Hence, the read 

operation can work with either 𝐷𝐴𝑇𝐴 or 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  at VDD. 
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5.2 Simulation results of 2TG1M memory cell 

 

 

The 2TG1M memory cell was compared against the conventional volatile one-

bit six transistor SRAM memory cell [215] and against the popular 1T1M 

memristive memory cell [124]. 

 

 

5.2.1 Comparison against one-bit SRAM memory cell 

 

 

The simulation of the memristance of the memristor in the memory cells when 

writing logic ‘0’ and ‘1’ is shown in figure 43, where figure 43(a) is the 𝑊𝑅𝐼𝑇𝐸 

signal and figure 43(b) is the input 𝐷𝐴𝑇𝐴 connected to the 2TG1M memory cell. 

 

Switching delay is measured by the time taken for the memristor in the 

2TG1M memory cell to switch resistance states, starting from when 𝑊𝑅𝐼𝑇𝐸 is 

active high. The switching delay of the 2TG1M memory cell is 4.01 ns to write logic 

‘0’ and 4.64 ns to write logic ‘1’ (figure 43(c)), while switching delays of an SRAM 

memory cell is 86ps to write logic ‘0’ and 74ps to write logic ‘1’ (figure 43(d)). 

Thus, the SRAM memory cell has faster switching speed than the 2TG1M memory 

cell. 
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 Simulation results of memristive memory cells (a) WRITE signal (b) Input logic to be Figure 43.

written into memory cell (c) Memristance of memristor in the proposed 2TG1M memory cell 

(d) Output of SRAM memory cell (e) Memristance of memristor in the 1T1M memory cell. 
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However, to retain logic information, voltage must be constantly supplied to 

the SRAM memory cell due to its volatile characteristics. The constant supply of 

electric energy to retain logic information in SRAM memory cells means that energy 

requirements would be much higher for retention of logic information in the long-

term. In oppose to this, the non-volatility of the 2TG1M memory cell ensures that 

logic information can be retained without power supply. This means that energy is 

only required by the 2TG1M memory cell during resistance switching, which is 

1.88fJ to write logic ‘0’ and 916.28fJ to write logic ‘1’. Energy consumption is 

measured by accumulating the amount of energy consumed by each component in 

the 2TG1M memory cell during switching process. Once switching is completed 

where memristances become stable, the 2TG1M memory cell will be able to retain 

its memristive state for as long as 10 years [216]. This means that for at least 10 

years, the only time that energy is required by the 2TG1M memory cell is during 

write and read processes, regardless of the retention period. 

 

The switching energy requirements of SRAM memory cell is much lower than 

the proposed memory cell, which is 0.54fJ to write logic ‘0’ and 0.61fJ to write logic 

‘1’. As an estimation, if an SRAM memory cell is supplied with power for one 

second to retain data for one second, the energy requirements are 73.034pJ to retain a 

logic ‘0’ and 12.433nJ to retain a logic ‘1’, as shown in figure 44. By extrapolation, 

retaining logic information in an SRAM memory cell for 1 hour would require about 

262.92nJ for logic ‘0’ and 44.76µJ for logic ‘1’. 
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 Energy dissipation for 1s in a one-bit SRAM memory cell when retaining: (a) logic Figure 44.

‘1’ and (b) logic ‘0’ 

 

 

The energy cost would be 3.92J to retain logic ‘1’ and 0.023J to retain logic ‘0’ 

if the SRAM memory cell is continuously used for 10 years, which is about 4x10
12

 

times the energy required by the 2TG1M memory cell for the same duration. This 

clearly shows that the switching speed of SRAM is offset by its high energy cost. 

Conversely, the reduction of energy consumption of the 2TG1M memory cell is 

proportional to retention period, despite switching 55 times slower than the SRAM 

memory cell. 
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5.2.2 Comparison against 1T1M memory cell 

 

 

In the design of a 1T1M memory cell [124], an NMOS pass-transistor is used 

as the gate control of the memory cell, while the other end is usually grounded. A 

voltage is applied at the gate of the pass-transistor to control the input to the positive 

terminal of the memristor. If VDD is applied at the gate of the NMOS pass-transistor, 

a low impedance conducting channel is created and the input voltage is applied to the 

pass-transistor and memristor in series. Due to a voltage drop across the pass-

transistor, the voltage applied across the memristor, VMEM, is lesser than the input 

voltage. VMEM is equivalent to: 

 VMEM = VCC – VPT (14) 

where VPT is the voltage drop across the pass-transistor and VMEM is the net potential 

difference applied across the memristor. In comparison to the 2TG1M memory cell, 

there is no voltage loss across the transmission gates. Thus, the net potential 

difference across the memristor in the 2TG1M memory cell equals to the input 

voltage of the memory cell, where: 

 VMEM = VDD – 0 = VDD (15) 

 

The increased amount of potential difference across the memristor increases 

switching speed of the 2TG1M memory cell. The 2TG1M memory cell exhibits an 

average of 1.5 times faster switching speed than the 1T1M memory cell. The 

difference in switching speed is illustrated in figures 45 and 46. Simulation results 
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for energy requirements and the switching delays of the 2TG1M, SRAM and 1T1M 

memory cells are summarized in tables 5 and 6 for logic ‘1’ and ‘0’ respectively. 

 

 

 

 

 Simulations results of the proposed 2TG1M (4.64 ns) and the 1T1M (7.56 ns) Figure 45.

memory cells when writing logic ‘1’. 
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 Simulations results of the proposed 2TG1M (4.01 ns) and the 1T1M (6.05 ns) Figure 46.

memory cells when writing logic ‘0’. 

 

 Comparison of switching delay and energy costs for writing logic ‘1’ Table 5.

Memory cell Energy cost (fJ) Switching delay (ns) 

2TG1M 916.28 4.640 

SRAM 0.61 0.074 

1T1M 111.21x10
3 

7.560 

 

 Comparison of switching delay and energy costs for writing logic ‘0’ Table 6.

Memory cell Energy cost (fJ) Switching delay (ns) 

2TG1M 1.88 4.010 

SRAM 0.54 0.086 

1T1M 930.31 6.050 
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5.3 Non-volatile Look-up Table (NVLUT) 

 

 

 

 2-bit input NVLUT constructed with four 2TG1M memory cells. Figure 47.

 

 

A 2-bit input Non-volatile Look-Up Table (NVLUT) is constructed using four 

2TG1M memory cells that share 𝐷𝐴𝑇𝐴 and 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  inputs (figure 47) Instead of a 

one-bit 𝑊𝑅𝐼𝑇𝐸 line, the array of 2TG1M memory cells are indexed using a 2-bit 

𝐼𝑁𝑃𝑈𝑇 that also act as the input signals of the NVLUT. 𝐼𝑁𝑃𝑈𝑇1 and 𝐼𝑁𝑃𝑈𝑇2 are 

decoded using a 2-to-4 decoder to select one of the four address lines (ADD0 – 

ADD3). 

 

At any time, the decoder charges only one of the address lines to VDD, with its 

respective complementary address line discharged to 0V by a CMOS inverter. In the 

meantime, all other address lines are discharged to 0V with their respective 

complementary address lines inverted to VDD. The inverters for each address line 

create their respective complementary to ensure that the PMOS gate in the 

transmission gates is grounded if the respective address is selected, or charged to 
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VDD if the address line is not selected. Thus, only one of the 2TG1M memory cells in 

the NVLUT is accessed for writing or reading at any time. 

 

 

5.3.1 Operation of NVLUT 

 

 

During the writing phase, 𝐷𝐴𝑇𝐴 drives node A and the CMOS inverter INV 

forms 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  at node B. 𝐸𝑁𝐴𝐵𝐿𝐸 is charged to VDD to connect 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  to the memory 

cells. The potential difference across the memristor of a memory cell is equal to the 

potential difference between A and B, where the magnitude is always VDD. When a 

cell is to be written with logic ‘1’, 𝐷𝐴𝑇𝐴 is charged to VDD and 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  is at 0V. 

Thus, INV provides a path to ground via the NMOS in the inverter and current flows 

from 𝐷𝐴𝑇𝐴 to 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅ . Whereas when a cell is to be written with logic ‘0’, 𝐷𝐴𝑇𝐴 is 

grounded to 0V (𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  is charged to VDD). Thus, 𝐷𝐴𝑇𝐴 provides the ground for 

current to flow from the inverter INV. 

 

𝐸𝑁𝐴𝐵𝐿𝐸 is used to enable or disable writing processes in the array of memory 

cells. If 𝐸𝑁𝐴𝐵𝐿𝐸 is grounded, the pass-transistor is driven into cut-off mode, thus 

current path from or to the inverter INV is blocked. Thus, no matter what the voltage 

input at 𝐷𝐴𝑇𝐴 is, current cannot flow through any memristor and the memristances 

of the memristors does not change. Therefore, the logic information of the memory 

cells in the array is retained whenever 𝐸𝑁𝐴𝐵𝐿𝐸 is grounded, as shown in figure 48, 

from 150ns to 200ns. 
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To read a memory cell in the array, 𝐼𝑁𝑃𝑈𝑇1 and 𝐼𝑁𝑃𝑈𝑇2 are pre-charged to 

select the respective memory cell. 𝑅𝐸𝐴𝐷 is then charged to VDD and 𝐸𝑁𝐴𝐵𝐿𝐸 is 

grounded to initiate the reading process. The memristor and Rout creates a potential 

difference at the non-inverting input of the operational amplifier (op-amp). This 

potential is compared against a reference voltage, which is set to 0.5V. Thus, OUT is 

pulled-up to VDD if memristance is at LRS and OUT is pulled-down to 0V if 

memristance is at HRS. Figure 48 shows the entire simulation of the programming 

process of the memory cells in the 2-bit NVLUT. The read circuit is not shown due 

to the flexibility in executing the read process, which is similar to the read process of 

CMOS-based LUTs. 

 

 

 

 Simulation of the 2-bit NVLUT of 2TG1M memory cells. Figure 48.
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5.3.2 Application of Boolean algebra into NVLUT 

 

 

The following Boolean algebra is applied into the 6-bit input NVLUT: 

 X = (AB + CD) · (E + F) (20) 

with 6 inputs (A – F) is programmed into the NVLUT. An extract of the truth table is 

shown in table 7. The memory cell of address ‘101100’ (M45) is programmed with 

logic ‘0’ ((1·0+1·1) · (0+0) = 0), and the memory cell of address ‘101101’ (M46) is 

programmed with logic ‘1’ ((1·0+1·1) · (0+1) = 1). This is executed by setting 

INPUT 1-6 with ‘101101’ and charging DATA to VDD. Memory cell M46 is accessed 

and current flows from DATA to the positive terminal of the memristor in memory 

cell M46. The memristance switches to LRS and memory cell M46 is programmed 

with logic ‘1’. Hence, when the inputs of the NVLUT are ‘101101’, memory cell 

M46 is read and the output of the NVLUT is logic ‘1’. Likewise, setting INPUT 1-6 

to ‘101100’ and discharging DATA to 0V programs memory cell M45 to logic ‘0’. 
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 An extract of the truth table for X = (AB + CD) · (E + F) Table 7.

A B C D E F X 

0 0 0 0 0 0 0 

0 0 0 0 0 1 0 

0 0 0 0 1 1 0 

0 1 1 1 0 0 0 

0 1 1 1 1 0 1 

1 0 0 0 0 0 0 

1 0 1 1 0 0 0 

1 0 1 1 0 1 1 

1 1 0 0 0 0 0 

1 1 1 1 1 1 1 
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5.3.3 Expansion of NVLUT 

 

 

 

 n-bit input NVLUT constructed with non-volatile one-bit memory cells Figure 49.

 

 

Using a similar structure to that shown in figure 47, the 2-bit input NVLUT is 

expanded to 3-, 4-, 5- and 6-bit input NVLUTs. The general n-bit NVLUT is shown 

in figure 49, while the netlist for the 6-bit input NVLUTs is attached in appendix G. 

The NVLUTs can also function as an array of memory cells, by using input lines as 

the address word and the memory cells as the array memory. Using similar 

configuration to the 2-bit input NVLUT, the structure can be expanded to become 8-, 

16-, 32- and 64-bit array of memory cells. 
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5.4 Analysis of NVLUT using different memristive memory cells  

 

 

For selection of non-volatile memory cells to be used in the general n-bit 

NVLUT, memristive one-bit memory cells in the literature that are suitable to be 

used in an array [83], [124]–[126] are simulated and compared, in terms of switching 

energy requirements, device area, switching speed, and flexibility of application. The 

comparison is based on the following aspects: (i) switching energy, (ii) device area, 

and (iii) switching speed. 

 

In each of the memristive one-bit memory cells that are being analysed [83], 

[124]–[126], a reference voltage is placed at the opposite end of a memristor. The 

magnitude of input voltage is either larger or smaller than the reference voltage, but 

of the same polarity. This creates a bidirectional current through the memristor using 

a single unipolar voltage source. 

 

 

5.4.1 Switching energy consumption 

 

 

Energy consumption is observed starting from the moment the memory cell is 

selected for writing or reading until the time when the memristor completely 

switches resistance states or when the logic information is fully switched. Energy 

consumption of every component used in the design of the memory cells are taken 

into consideration when determining the amount of energy consumed by the memory 
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cell during switching. The simulation of the average energy consumption of the 

memory cells are summarized in table 8. The reason for the similar energy 

consumption for writing logic ‘0’ and ‘1’ is due to the similar potential difference 

applied across the memristor when writing logic ‘0’ and ‘1’ in the 2TG1M memory 

cell. For other memory cells, the net potential difference across the memristor is 

different due to different structure of memory cell and different components used. 

Thus, the energy consumption for write operation in other memory cells is different 

between writing logic ‘0’ and ‘1’. 

 

 Average energy consumption of memristive memory cells. Table 8.

Memory cell 
Write Operation (J) 

Logic ‘0’ Logic ‘1’ 

2TG1M [83] 1.66 x10
-12

  1.66 x10
-12

 

1T1M [124] 350.60 x10
-12

 1.67 x10
-12

 

2A1M [125] 1.23 x10
-12 

2.83 x10
-12 

3T2M [126] 0.67 x10
-12

 1.82 x10
-12

 

6T SRAM 0.42 x10
-12 

0.57 x10
-12

 

 

 

Compared to the 1T1M memory cell [124], the 2TG1M memory cell uses 

lesser energy because the transmission gate allows a complete pull-up or pull-down 

of input voltage. There is a voltage dropped across pass transistors, which are also 

used in the other memristive memory cells. This causes energy wastage through the 

pass transistors. It is also shown that the 2A1M memory cell [125] have higher 

energy consumption than the 2TG1M memory cell due to the usage of two pass 

transistors in series with the memristor in the 2A1M memory cell, which causes two 

times more voltage drop across the pass transistors and reduced voltage drop across 



150 
 

the memristor. This causes larger energy losses, and results in a poor ratio of energy 

conversion. 

 

Relying on VDD/2 and VDD/4 voltage references in the 3T2M memory cell 

[126], the voltage lost across the pass transistors is lower in the 3T2M memory cell 

than the 2TG1M and 2A1M memory cells. Consequently, power consumption of the 

pass transistors in the 3T2M memory cells is lesser. Thus, the overall energy 

consumption when switching the 3T2M memory cell would be lower than both the 

2TG1M and 2A1M memory cells. 1T1M memory cells have the highest energy 

consumption due to the largest fraction of input voltage dropped across the pass-

transistor in the cell. 

 

Although the 6T SRAM has lower switching energy requirements per writing 

cycle, the SRAM memory cell requires constant voltage supply to ensure logic 

information is not lost. Through simulations, the energy required to operate and 

retain logic information in an SRAM memory cell for 1 second is 12.433nJ for logic 

‘1’ and 73.034pJ for logic ‘0’. By extrapolating, SRAM memory cells will require 

3.92J to retain logic ‘1’ and 0.023J to retain logic ‘0’ to retain logic information for 

10 years. Conversely, the 2TG1M memory cell requires only 1.66pJ to write logic 

‘0’ or ‘1’ because memristors has the ability to retain logic information for 10 years 

[216]. This means the SRAM requires an average of 1.19 x 10
12

 times more energy 

to retain logic information for 10 years. 
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5.4.2 Device area of NVLUT 

 

 

Device area can be calculated by the number of transistors used per memory 

cell. The size of one transistor is f 

2
, where f is the half-pitched length of transistors. 

Memristors are fabricated in the via between metal layers in a semiconductor device 

fabrication [72], hence the memristor device area can be neglected compared to 

transistor size. Ambipolar transistors show a great potential in offering flexibility of 

designing transistor logic circuits, but the width of ambipolar transistors is 175nm 

[217], which are larger than transistors. Thus, the device area of the 2A1M memory 

cell is approximately at least 4f 
2
. 

 

The 3T2M memory cell requires VDD/2 and VDD/4 references, which would 

require more circuit components. The gate control also requires an OR-gate, which 

uses an additional of at least 4 transistors, making the 3T2M memory cell requiring a 

total of 7 transistors. This amounts to larger device area required per memory cell (at 

least 7f 
2
). 

 

The 1T1M memory cell has the smallest device area among compared 

memristive memory cells, due to the design requiring only one transistor and one 

memristor and the device area is f 
2
. The disadvantage of the 1T1M memory cell is 

that writing logic ‘0’ requires a negative potential (-1V) if the other of the memory 

cell is connected to ground. This reduces the flexibility of designing using 1T1M 

memory cell. Moreover, digital information is transmitted between 0V and VDD. 
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Thus, more circuit components may be required to incorporate the 1T1M memory 

cell into digital circuits. 

 

The proposed 2TG1M memory cell requires a device area of 6f 
2
 due to the 

usage of two PMOS transistors, where each PMOS transistor (2f 
2
) is twice the width 

of each NMOS transistor to ensure that the pull-up and pull-down of both NMOS 

and PMOS are equal. The device area utilized by each unit of memristive memory 

cell is summarized in table 9. 

 

 

 Summary of device area utilized by each unit of the memristive memory cell. Table 9.

Memory cell Device area per memristive memory cell 

2TG1M [83] 6f
2
 

1T1M [124] f
2
 

2A1M [125] 4f
2
 

3T2M [126] 7f
2
 

6T SRAM 8f
2
 

 

 

5.4.3 Switching speed of memory cells in NVLUT 

 

 

The memristor is the main memory storage element and the major factor in 

determining the switching delay of a memristive memory cell is proportional to the 

speed of resistance switching process in the memristor. The speed of charge carriers 

tunnelling through the bulk layer of memristors is proportional to the magnitude of 

the voltage between the terminals of the memristor [218]. Thus, the switching speed 
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is proportional to the effective magnitude of voltage across the memristor in a 

memristive memory cell, which may be lesser than the voltage applied at the input or 

the voltage supplied to the memristive memory cell. 

 

Switching speed is defined that the switching speed of a memristive memory 

cell is equivalent to the amount of time for a memristor to completely switch 

resistance states. This is determined by measuring the time when the memory cell is 

enabled for writing process until the time when the memristor has completely 

switched resistance states or has reached the memristance levels as defined in the 

memristor model. The required writing time of the memory cells studied in this 

research are summarized in table 10 and graphically compared in figure 50. 

 

 

 Writing time of memristive memory cells. Table 10.

Memory cell 
Write time (ns) 

Logic ‘0’ Logic ‘1’ 

2TG1M [83] 14.67 12.14 

1T1M [124] 18.86 27.22 

2A1M [125] 47.13 56.00 

3T2M [126] 44.17 102.12 

6T SRAM 0.05 0.10 
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(a)  

 

(b)  

 Switching delay of NVLUT using different memristive memory cells when storing   Figure 50.

(a) logic ‘0’ and (b) logic ‘1’. The graph for SRAM uses an arbitrary scale to represent 

switching between logic ‘0’ and ‘1’. 

 

 

The 3T2M memory cell uses VDD/4 as a voltage reference during writing 

operation of the memory cell [126]. Effectively, the potential difference across the 

memristor in the 3T2M memory cell would be VDD – VPT – VDD/4, where VPT is the 

voltage loss across a pass transistor. With VDD of 1V, VPT is 0.2V and VDD/4 is 

0.25V. This gives an effective potential difference of 0.55V applied across the 

memristor. A substantial amount of voltage is lost through other components of the 
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memory cell and causes the very slow switching operation of the 3T2M memory 

cell. 

 

The 2A1M memory cell also has a lesser magnitude of potential difference 

applied across the memristor compared to the 2TG1M memory cell. This is due to 

the voltage lost across two pass-transistors that are in series with the memristor. The 

potential difference across the memristor is VDD – 2(VPT), which roughly equals to 

0.6V. The assumption is that there is no voltage loss across the ambipolar transistors. 

The slightly larger potential difference across the memristor in the 2A1M memory 

cell gives faster switching speed than the 3T2M memory cell. Similarly, the 

magnitude of the potential difference across the memristor in the 1T1M memory cell 

is VDD – VPT, which roughly equals to 0.8V. Thus, the switching speed of the 1T1M 

memory cell is faster than the 2A1M and 3T2M memory cells. 

 

The switching speed of the 2TG1M memory cell is the highest and the 

contributing factor to this advantage is the large magnitude of potential difference 

applied across the memristor. The ratio of the potential difference across memristor 

to input voltage is 100%, due to the pass transistors fully transmitting input voltage 

to output voltage almost without any significant loss of voltage across it. Therefore, 

with the components used in every memory cell under comparison are identical, the 

switching speed of the 2TG1M memory cell is be the fastest. 
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5.4.4 Energy-Delay-Area product comparison of  NVLUTs 

 

 

The memristive one-bit memory cells do not excel in every performance 

criteria that they are being evaluated on (energy, device area, and switching speed). 

For example, the 1T1M memory cell uses the least device area per cell, but suffers 

from high energy consumption. Similarly, the 2TG1M has the fastest switching 

speed and lowest energy consumption, but suffers from a large device area. Thus, a 

single performance index is required to estimate the overall performance of the 

memristive memory cells. 

 

Energy-Delay-Area Product (EDAP) is used as the performance index, which 

is the product of energy consumption, switching delay, and device area of a memory 

cell. The value of EDAP is inversely proportional to the overall performance of the 

memory cell. The EDAP results are as follows in table 11, which shows that the 

2TG1M memory cell has the lowest EDAP value. This summarizes that the 2TG1M 

has the superior overall performance among memristive memory cells. 

 

 

 Summary of results of energy, delay, and device area, and values of Energy-Delay-Table 11.

Area Product for the memristive memory cells. 

Memory cell 
Energy (fJ) Delay (ns) Device 

area 
EDAP (fJ-ns) 

Logic ‘0’ Logic  ‘1’ Logic ‘0’ Logic ‘1’ 

2TG1M [83] 1.66 1.66 14.67 12.14 6f
2 

2944.53 

1T1M [124] 350.60 1.67 18.86 27.22 f
2
 300578.69 

2A1M [125] 1.23
 

2.83
 

47.13 56.00 4f
2
 36748.28 

3T2M [126] 0.67 1.82 44.17 102.12 7f
2
 38501.92 
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5.5 Comparison against SRAM-based LUT 

 

 

An LUT of SRAM memory cells is also constructed with similar structure to 

that in figure 51 for 2-, 3-, 4-, 5- and 6-bit input LUTs. The NVLUT, constructed 

with 2TG1M memristive memory cells and the SRAM LUT are compared in terms 

of switching delay, energy requirements and device area. The comparison is 

performed for one complete cycle of write and read processes for logic ‘0’ and ‘1’. 

The transistor sizing and LTspice version is the same for both types of LUTs. 

 

 

 

 (a) Switching delay and (b) energy consumption of 6-bit input NVLUT of 2TG1M Figure 51.

memory cells and LUT of SRAM memory cells. 
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The average switching delay (average of write and read) and energy 

requirements are shown in figures 51(a) and 51(b) respectively. The results show 

that the performance of the proposed NVLUT is more linear against the number of 

input bits than the SRAM LUT. Table 12 also shows that the 6-bit input NVLUT has 

very consistent switching times and energy requirements among its memory cells 

compared to a 6-bit input LUT of SRAM cells. This is attributed to the identically 

repeated memory cells used in the proposed NVLUT. The almost identical 

memristors used in each 2TG1M memory cell ensures a reduction of fluctuations of 

write and read delays between memory cells in the proposed NVLUT, even with a 

larger number of memory cells in the NVLUT. Therefore, based on simulation 

results, an array of 2TG1M memory cells would result in a more consistent 

performance even at larger number of memory cells in the NVLUT.  

 

 

 Writing time and energy requirements of memory cells in a 6-bit input NVLUT of Table 12.

2TG1M memory cells and LUT of SRAM memory cells. 

Address 

Writing time (ns) Energy requirements (x10
-12

 J) 

2TG1M SRAM 2TG1M SRAM 

Logic 

‘0’ 

Logic 

‘1’ 

Logic 

‘0’ 

Logic 

‘1’ 

Logic 

‘0’ 

Logic 

‘1’ 

Logic 

‘0’ 

Logic 

‘1’ 

0 65.13 12.79 4.63 2.52 0.0087 1.6205 0.0267 0.0190 

31 65.13 12.79 5.63 2.23 0.0087 1.6205 0.0172 0.0124 

32 65.13 12.79 4.62 2.40 0.0087 1.6205 0.0265 0.0190 

63 65.13 12.79 5.60 1.07 0.0087 1.6205 0.0172 0.0081 

 

 

The read-out delay of the NVLUT using 2TG1M memory cells is a minimum 

of 1.0ns to draw current into the read circuit through the memristor, whereas for the 
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LUT using SRAM cells, the read-out delay is an average of 3.6ns. This is based on 

the same type of read-out circuit. 

 

 

CMOS-based LUTs are constructed with flash RAM and these memory cells 

consume an average of 26.50fJ and the switching delay is 5.60ns, while the complete 

operation of the CMOS-based LUT (read, write, and steady-state) consumes an 

average of 66.05nW. Using the 6-bit input NVLUT reduces power consumption by 

an average of 6.25nW for its complete operation, but writing speed is an average of 

33.33ns slower than the SRAM-based LUT. However, the read-out delay for the 

NVLUT is faster by 4.95ns, because of the capacitive loading of the SRAM cells in 

the SRAM-based LUT which slows charging and discharging of output, while the 

NVLUT read-out is obtain through a voltage pulse of 5ns through the memristor. 

The read operation is at maximum of 5ns to prevent memristance change [219], 

[220]. The path delay through a 6-bit input NVLUT is the time between addressing 

the NVLUT to obtaining the logic information from the NVLUT, which is 0.321ns. 

 

 

The 6-bit input NVLUT requires a total of 256 transistors. Each 2TG1M 

memory cell uses 4 transistors (2 NMOS and 2 PMOS), and the 6-to-64 decoder 

requires a total of 396 transistors (198 NMOS and 198 PMOS). On the other hand, 

the 6-bit input LUT of SRAM cells uses 384 transistors, where each SRAM cell uses 

6 transistors of 4 NMOS and 2 PMOS, while the 6-to-64 decoder remains the same. 

Therefore, the 6-bit input NVLUT reduces device area by 128 transistors against the 

6-bit input SRAM LUT.  
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5.6 Switching time against transistor width 

 

 

From simulation experiments of the proposed NVLUT, it is observed that the 

switching time is inversely proportional to transistor size. Smaller transistor widths 

mean that the transistor allows lesser electric current flowing through its channel. 

Since electric current is usually proportional to the potential difference across a 

resistive component, channelling more current towards a memristor results in faster 

switching speeds. Figure 52 shows the switching speed is inversely proportional to 

transistor sizing used in the 2TG1M memory cell in the proposed NVLUT, where 

the width of PMOS is twice the width of NMOS transistors. 

 

 

 

  Switching time of writing logic ‘0’ and ‘1’ against NMOS transistor widths Figure 52.

(PMOS width is twice of NMOS width).  
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5.7 Memristive Ratioed Logic (MRL) 

 

 

Memristive Ratioed Logic (MRL) circuits [127]–[131] were proposed to 

replace CMOS-based logic gates. However, it was hypothesized that these MRL 

circuits would not be able to function properly due to the resistive switching delay in 

the memristors that would cause a delay in the propagation of logic signals when 

used in a combinational logic circuit. To prove this, the MRL circuits are used in a 

combinational circuit with the Boolean algebra (16). The CMOS-based logic gates 

circuit for this Boolean algebra is shown in figure 53. 

 𝑋 = 𝐴𝐵 + 𝐶𝐷 (16) 

 

 

 

 Boolean algebra X = AB + CD realized using CMOS logic gates. Figure 53.

 

 

Several designs of MRL circuits have been proposed but the structure, function 

and operation are very much similar to each other [127]–[131]. Since the operation 

and function of the MRL circuits are almost identical, using only one design for 

research would suffice and the MRL circuit proposed in [128] is used in the 

simulation experiments. 
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 Schematic circuit for the MRL circuit implementing the Boolean algebra (16)                    Figure 54.

X = AB + CD. 

 

 

Figure 54 shows the schematic circuit for the MRL circuit implementing the 

Boolean algebra (16). Figure 55 shows the simulation results, which confirms that 

the MRL circuit shows slight deviation and delay in its output. If the signal 

frequency is higher than 20MHz (period slower than 50ns), then the MRL 

combinational circuits will not function properly. This is due to the insufficient path 

delay for signals to propagate from one MRL to the next cascading MRL. The 

insufficient amount of time of the application of the input signals does not allow the 

memristors to fully switch states at higher frequencies. 
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 Simulation of the MRL circuit in figure 54. Figure 55.

 

 

For example, when input ABCD changes from “0001” to “0010” (at 100ns of 

the simulation in figure 55) memristors M3 and M4 changes from LRS and HRS to 

HRS and LRS respectively. This results in the overall resistance in the circuit 

changes, which then results in the output voltage changing from 0.6V to 0V, which 

is seen from 100ns to 135ns. Although the correct output of 0V is observed, the 

output delay of 35ns is not desirable. 

 

As such, the MRL combinational circuits are added with buffers to increase the 

delay in propagation from one MRL to the next cascading MRL, shown in figure 56. 

The buffered MRL combinational circuit is found to behave accordingly to different 
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signal frequencies (figure 57). Adding buffers allow the delay to be shortened. The 

correct output of 0V when changing inputs ABCD from “0001” to “0010” is also 

observed with a shorter delay of 10ns (100ns to 110ns, figure 57). 

 

 

 

 Improved MRL circuit by inserting buffers. Figure 56.

 

 

 

 Simulation of the improved MRL circuit with buffers. Figure 57.

 

 

Although the addition of buffers in the MRL combinational circuit allow it to 

work at different signal frequencies, the MRL combinational circuits are still volatile 

and does store or retrieve logic information. This is because the power supply of the 

output of MRL depends on the input voltage supply to the MRL. Removing the input 
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thus removes the output. If input voltage supply is interrupted, the exact same input 

must be re-connected for the previous output to be retrieved. Otherwise, there is no 

other way to retrieve the previous information, which makes MRL a volatile device. 

Therefore, it is concluded that the MRL circuit is not a non-volatile logic gate 

although it uses memristors. 

 

The following section introduces the Memristive Logic Gates which can 

function both as logic gates and as non-volatile memory devices. The proposed 

design makes full use of the non-volatility of memristors and logic gates that uses 

lesser energy consumption. 
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5.8 Memristive Logic Gate (MLG) 

 

 

The Memristive Logic Gate (MLG) has been submitted for possible 

publication. Two MLGs are proposed: OR-MLG (figure 58) and AND-MLG     

(figure 59), which functions as OR and AND logic gates respectively. The MLG has 

two input (A and B) and one output (Vo) terminals, where �̅� and �̅� are the 

complementary of 𝐴 and 𝐵 respectively. The MLG is designed with three operating 

modes: (i) program, (ii) read, and (iii) steady-state. Logic information is written into 

the MLG during the programming mode, where input signals are applied to the logic 

gate and the MLG is write-enabled. Logic information is retrieved from the 

memristors during the reading mode. If at any time power supply to the MLG is 

interrupted during the output mode, the MLG can retrieve logic information by 

performing the reading mode without re-programming of the memristors. Steady-

state mode is the default mode if the MLG is neither in programming or reading 

modes, where the output of the MLG is constantly provided to external circuitry by a 

pair of CMOS inverters. 
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 Schematic circuit of the OR-MLG. Figure 58.

 

 

 

 Schematic circuit of the AND-MLG. Figure 59.
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5.8.1 Programming mode of MLG 

 

 

For both types of MLG, programming mode is actuated by charging PROG to 

VDD. This allows current flow between 𝐴 and �̅�, as well as between 𝐵 and �̅�. The 

current flow between the complementary inputs functions to alter memristances of 

two memristor pairs: M1 and M2, programmed by input A; and M3 and M4, 

programmed by input B. In each memristor pair, the memristors are connected in 

series in opposite directions, thus each memristor behaves reciprocally against the 

other memristor in a memristor pair. If M1 is in ROFF, then M2 is in RON, and vice 

versa. Similarly, if M3 is in ROFF, then M4 is in RON, and vice versa. The purpose of 

reciprocal memristances in a memristor pair is to create a varying potential 

difference at nodes V1 and V2. 

 

 

 

 An example of a case of programming OR-MLG. Figure 60.
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An example of programming of the OR-MLG is shown in figure 60. Before 

programming, memristors M1 and M4 are initialized to RON while M2 and M3 are 

initialized to ROFF. Inputs A and B are then set to 0V and programming is actuated. 

Memristors M3 and M4 are switched to RON and ROFF respectively. Memristors M1 

and M2 remain in their current states due to the direction of current from �̅� to 𝐴 

which would also program M1 and M2 to RON and ROFF respectively. The behaviour 

of the memristors to produce the truth tables of the OR-MLG and AND-MLG is 

further explained in section 5.8.2, which also explains the reading mode of the MLG. 
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 The four typical cases of programming in the MLG.  Table 13.

Initial state of memristors 

before switching 

State of memristor after 

applying 0V to inputs A 

and B 

Time needed 

for output 

change (ns) 

Switching 

delay of 

memristors 

(ns) 

Energy 

consumption 

(pJ) 
M1 M2 M3 M4 M1 M2 M3 M4 

RON ROFF RON ROFF RON ROFF RON ROFF 0.00 0.00 0.0552 

ROFF RON ROFF RON RON ROFF RON ROFF 26.42 45.00 17.1660 

RON ROFF ROFF RON RON ROFF RON ROFF 25.93 45.00 17.0200 

ROFF RON RON ROFF RON ROFF RON ROFF 25.93 45.00 17.0340 
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 Simulation of the programming of (a) OR-MLG and (b) AND-MLG. Figure 61.

 

 

The programming of OR-MLG and AND-MLG is summarised in table 13, 

where 0V is applied at inputs A and B when programming the MLGs. The simulation 

of programming of the MLGs is shown in figures 61(a) and 61(b) respectively. The 

time needed for output change, switching delay of memristors and energy 

consumption of the two memristor pairs depend on the initial and final memristance 

states, regardless of the combination of inputs. Thus in table 13, the cases for other 

input combinations (A = 0V and B = 1V, A = 1V and B = 0V, and A = 1V and            

B = 1V) are not added to the table because the results of the other input combinations 

are similar to the cases that are already shown in table 13. 
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The average time needed for an output change is 25.93ns if memristance 

switching is required. Otherwise if memristance switching is not required, the output 

voltage level remains the same and there is no output delay. To fully switch the 

memristors to their RON
 
or ROFF states, an average delay of 45ns is required, while 

the energy required to switch memristance states is an average of 17.07pJ. Table 13 

also shows that if two pairs of memristors require switching, the amount of delay and 

energy required does not differ much if only one pair of memristor requires 

switching. This shows that the two memristor pairs are independent of each other. 

Therefore, it is postulated that if the number of inputs are increased, as well as the 

number of memristor pairs, the amount of delay and energy consumption would not 

vary significantly from the results of the two-input MLGs. 

 

 

5.8.2 Reading mode of MLG 

 

 

The function of reading mode is to retrieve programmed information from the 

memristors and translate it to the output node of the MLG. For both OR and AND-

MLGs, reading mode is activated by applying a short pulse to READ, lasting about 

1ns, which is sufficient for the output inverter to sense the voltage at node V2. This in 

accordance to the simulation environment conducted in this research. At the same 

time, the memristors are undisturbed by the short reading pulse [221]. Activating 

READ channels VDD to the four memristors, M1 – M4. During reading mode, the 

output inverters are separated by the PMOS, which is active low. This is to ensure 
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that the voltage at Vo does not interfere with the voltage at V2 during read mode by 

preventing short-circuit between Vo and V2. 

 

The voltage at node V2, which is used to translate to the output of the MLG, 

can be calculated using circuit theories. To develop the equations for the equivalent 

read circuit, the memristors are replaced with resistors that represent instantaneous 

memristances and the circuit becomes that in figure 62. Resistance of transistors are 

as low as 10Ω when in conduction, which is 10 times smaller than the RON of the 

memristors used in the simulation. Thus, it is safely assumed that the removal of 

transistors from the equivalent circuit to do not affect the circuit equations and 

simplifies the circuit equations. 

 

 

 

 Equivalent circuit of the MLG during reading mode. Figure 62.

 

 

The voltage at node V1 is defined by: 

 𝑉1 = 𝑉𝑑𝑑 (
𝑀2||(𝑀3+𝑀4)

𝑀1+𝑀2||(𝑀3+𝑀4)
) (17) 

Hence, V2 equals to: 

 𝑉2 = 𝑉1 (
𝑀4

𝑀3+𝑀4
) (18) 
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Using equations (17) and (18), the programming and reading of the MLGs are 

summarised in table 14, where Vo is the output of MLG. For the OR-MLG, when V2 

is close to 0V, the inverter outputs VDD and the potential at Vo is VDD. Conversely, if 

V2 is close to VDD, the inverter outputs 0V and the potential at Vo is 0V. 

 

 

 Summary of programming of memristors and the output from reading mode for OR-Table 14.

MLG and AND-MLG. 

MLG 
Inputs Memristances (Ω) 

V2 (V) Vo (V) 
A B M1 : M2 M3 : M4 

OR 

0 0 100 : 16000 100 : 16000 0.981558 0 

0 1 100 : 16000 16000 : 100 0.006135 1 

1 0 16000 : 100 100 : 16000 0.006135 1 

1 1 16000 : 100 16000 : 100 0.000038 1 

AND 

0 0 16000 : 100 16000 : 100 0.000038 0 

0 1 16000 : 100 100 : 16000 0.006135 0 

1 0 100 : 16000 16000 : 100 0.006135 0 

1 1 100 : 16000 100 : 16000 0.981558 1 

 

 

As for the AND-MLG, when V2 is closer to 0V, the double inverter outputs 0V 

at Vo. Similarly, if V2 is closer to VDD, the potential at Vo is VDD. For example, when 

inputs A and B connected to the AND-MLG are ‘1’ and ‘0’ respectively, the voltage 

at V1 is 0.9877 of VDD and thus, the voltage at V2 is 0.006135V. Since this 

magnitude of voltage is smaller than VDD/2 (0.5V), the first inverter outputs VDD and 

hence after the second inverter, the output Vo is 0V. 
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5.8.3 Steady-state mode of MLG 

 

 

The steady-state mode is the default mode of the MLGs and is actuated when 

neither PROG nor READ is triggered. The output of the MLG is Vo and is kept in 

steady-state by the inverter loop. The inverter loop ensures that the MLG output is 

retained for as long as power supply to the inverter loop is undisturbed. This means 

that the output of MLG is independent of the presence of input supply. Once the 

MLG is programmed, the inputs can be disconnected from their respective input 

power sources and this provides more design flexibility. This is unlike the 

Memristive Ratioed Logic (MRL) circuits [128], whereby the output is only 

available for as long as the MRL inputs are connected to appropriate voltage levels. 

For example, if the inputs are supposed to be logic ‘1’, the inputs must constantly be 

connected to VDD to ensure a constant output of VDD. 

 

Moreover, the MLG is dependent on only one voltage source, which is to 

supply voltage to the inverter loop, regardless of the number of inputs of the MLG. 

Thus, if the MLG is expanded to increase the number of inputs, the steady-state 

remains dependent on only one voltage source. 

 

If power supply to the MLG is disturbed during steady-state mode, the output 

of the MLG can be refreshed by performing the reading mode on the MLG. Re-

programming is not necessary because the memristance of the memristors is 

unchanged throughout reading and steady-state modes. This feature is not available 

in previous memristive logic gates, where if the input supply is disconnected, then 



176 
 

the only method to retrieve information is by reconnecting input voltages. If input 

voltages cannot be reconnected, then information is permanently lost. 

 

The MLG solves this issue by ensuring the stored information is saved in the 

form of memristances which can be retained for up to 10 years [216] and also 

ensures that the memristors are not affected during the steady-state mode of the 

MLG. 

 

 

5.8.4 Expansion of the 2-bit input MLG 

 

 

The proposed MLGs can be expanded to include more number of inputs by 

repeating the memristor pairs. The general structure of an OR-MLG being expanded 

to n-number of inputs is shown in figure 63. Although the expanded OR-MLG can 

be simulated to show correct functional behaviour, a general equation for the 

potential difference produced at the n
th

 set of memristor could not be derived due to 

the complexity of the equivalent resistive circuit when expanded to n-number of 

inputs. 
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  Expanded OR-MLG to n-number of inputs. Figure 63.

 

 

 

 Simulation results of a 4-bit input OR-MLG. Figure 64.

 

 

A 4-bit input OR-MLG is simulated and simulation results are shown in figure 

64. In the graphs, V(a), V(b), V(c), and V(d) are the input voltages at input pins A, 

B, C, and D respectively, where VDD is 1V, representing logic ‘1’, and 0V represents 
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logic ‘0’. V(prog) and V(read) is used to initiate programming and reading modes 

respectively in the MLGs. The MLGs operate in their steady-state mode when 

neither V(prog) or V(read) is charged to VDD. 

 

From the simulation results, the n-input OR-MLG shows that the output of 

MLG is independent of the presence of the input supplies, where the voltage of input 

A is discharged to 0V, but the output of the OR-MLG remains at 1V (logic ‘1’). This 

is unlike the MRL and CMOS logic circuits. Therefore, the MLG is dependent on 

only one voltage source, which is to supply voltage to the inverter loop, regardless of 

the number of inputs of the MLG. Thus, the energy consumption during steady-state 

remains dependent on only one voltage source even if the MLG is expanded to 

increase the number of inputs; hence this reduces the amount of energy consumed by 

the MLGs, when compared to the MRL and CMOS logic circuits. 
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5.9 Simulation results of MLG and MRL combinational circuits 

 

 

The proposed MLG devices are used in a combinational circuit that realizes the 

Boolean algebra 𝑋 = 𝐴𝐵 + 𝐶𝐷 (19), with its equivalent CMOS circuit previously 

shown in figure 53. The equivalent MLG schematic for this combinational circuit is 

shown in figure 65. 

 

 𝑋 = 𝐴𝐵 + 𝐶𝐷 (19) 

 

 

 

 Boolean algebra X = AB + CD realized using MLG. Figure 65.

 

 

The double inverters at the output of each MLG ensure that the input supply to 

the next MLG is at VDD or 0V. Moreover, the output logic is still independent of 

inputs A – D and the output logic requires only one power source to retain logic 

information in the CMOS inverters of the OR-MLG. The simulation results are 

shown in figure 66. In the graphs, V(a), V(b), V(c), and V(d) are the voltages at 
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input pins A, B, C, and D respectively, and V(x) is the output of the combinational 

circuit. 

 

 

 

 Simulation results of the circuit in figure 64. Figure 66.
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5.9.1 Energy consumption of MLG combinational circuit 

 

 

The average energy consumption to hold an output at steady-state (when 

memristance switching is not performed) for 45ns in the MRL combinational circuit 

is 1.496pJ (33.24μW), where all of the combinations of inputs are taken into 

account, from “0000” to “1111”. The amount of energy consumption is based on a 

period of 45ns, which is the longest amount of time taken to switch memristance 

states in the MLG combinational circuit. The energy consumption for memristance 

switching in the MLG combinational circuit is at most 17.07pJ, while the energy 

consumed during steady-state for 45ns is 1.312pJ (29.16μW). Thus, the rate of 

energy consumption of the proposed MLG circuit during steady-state is about 1.14 

times lesser than the equivalent MRL. 

 

However, the energy consumption for memristance switching (1.892pJ) is 

about 1.28 times higher compared to the 4-input MRL combinational circuit, which 

requires 1.474pJ in average per memristance switching cycle. Although the average 

consumption of MLG circuit is higher per memristance switching, it is noted that the 

majority of the operation of the MLG and MRL circuits is in its steady-state. 

Therefore, at a frequency of 5MHz switching, the energy consumption per clock 

cycle is 6.626pJ and 6.412pJ for MLG and MRL circuits respectively. At 20MHz, 

the energy consumption per clock cycle is 1.640pJ and 2.038pJ respectively. 

 

The MLG circuit improves energy consumption by isolating the CMOS 

inverter loop from the memristors that allows the MLG to power its output during 
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steady-state without depending on input power supply. This drastically reduces 

energy consumption. Since majority of the MLG operation is during its steady-state 

mode, the energy consumption is independent to an increase of inputs of the MLG 

combinational circuit. Furthermore, as shown in the programming mode of the MLG 

circuit (section 5.8.1), the amount of energy consumption and switching delay is 

independent on the number of memristor pairs that undergo memristance switching. 

 

In contrary, the energy consumption of MRL combinational circuits is 

proportional to the number of inputs because the operation of the MRL 

combinational circuits is powered by the consistent supply of input voltages. 

Therefore, it is postulated that the MLG combinational circuits is a better option in 

handling combinational circuits in terms of energy consumption and non-volatility. 

 

 

5.9.2 Output delay of MLG combinational circuit 

 

 

The output delay is the measurement of time taken for the MRL and MLG 

combinational circuits to exhibit proper output voltage levels when addressed. For 

the MLG circuit, it is measured from the time when READ is triggered until the time 

when V(x) completes the switch between logic levels. For the MRL circuit, output 

delay is measured from the time when input connected to the MRL circuit is changed 

until the time when V(x) completes switching between logic levels. Simulation 

results show that the output delay for V(x) in the MLG to switch between logic 

levels is an average of 70.26ps, which is about 500 times faster than when simulating 
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the same Boolean algebra with the unbuffered MRL combinational circuit (average 

of 34.21ns) [128]. The average output delay of the buffered MRL combinational 

circuit is 114.82ps, which is faster than the unbuffered MRL but is still 1.63 times 

slower than the MLG. 

 

During programming, both MRL and MLG combinational circuits require an 

average of 45ns to complete memristance switching. The output voltage takes some 

time for it to become stable while memristance switching is taking place. The 

programming to output delay is measured by the amount of time needed for node Vx 

or V2 to reach a steady voltage level above 0.95V for logic ‘1’ or 0.05V for logic ‘0’ 

during memristance switching. Simulation results show that it takes an average of 

31.66ns for output to be stable during programming in the MRL circuits, which is 

1.22 times slower than the MLG circuit (25.93ns). Although the MRL combinational 

circuit has buffers to decrease the delay of stabilising of output, the MLG circuit 

does not use buffers. Thus, the programming to output delay in the MLG 

combinational circuit is still faster than that in the MRL combinational circuit. 

 

 

5.9.3 Comparison against CMOS combinational circuit 

 

 

The MLG combinational circuit is compared against a CMOS logic gate 

combinational circuit that realizes the same Boolean algebra. The time needed for 

output change in the CMOS combinational circuit is 100.127fs, which is about 700 

times faster than the proposed MLG combinational circuit. However, the CMOS 
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combinational circuit consumed an average of 54.664nW of energy for the 400ns 

simulation as performed by the MLG combinational circuit, which is 25% more 

energy consumed than the proposed MLG combinational circuit (43.535nW). This is 

due to the CMOS combinational circuit uses input power to maintain output logic, 

which similar to the MRL circuits. Therefore, the CMOS combinational circuit also 

consumes more energy than the MLG combinational circuit. 

 

In summary, a non-volatile one-bit memory cell (2TG1M) has been published 

which shows better overall performance against other similar one-bit memristive 

memory cells and against the CMOS memory cell. Using the 2TG1M memory cell, 

an NVLUT was proposed, which reduces device area by at least 128 transistors 

against the CMOS 6-bit input LUT. This chapter also discusses the proposal of an 

improved MRL combinational circuit using buffers, as well as two proposed MLG 

combinational circuits. 
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6. SWITCH BLOCK 
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SWITCH BLOCK 

 

 

6.1 Switch block and switch matrix 

 

 

A switch block is a network of interconnections between routing channels that 

links one resource block (logic block, switch block, control block, I/O block, etc.) to 

another in an FPGA architecture. Switch blocks contain a number of switch matrices, 

where the number of switch matrices in a switch block depends on the number of 

routing channels that passes through the switch block. Each switch matrix 

interconnects routing channels to at least three other routing channels (figure 67). 

The interconnections between two routing channels are completed via pass-

transistors, which are controlled by SRAM cells in the SRAM-based FPGA 

architecture. 

 

 

 General structure of a switch matrix in a switch block. Figure 67.
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6.2 7T1M SRAM cell 

 

 

A 7 transistor 1 memristor (7T1M) SRAM cell was published that provides an 

overall reduction of switching delay, reduced energy consumption, and smaller 

device area against other similar memristive SRAM cells in the literature [222]. The 

schematic of the published 7T1M SRAM cell is shown in figure 68 and the netlist is 

attached in appendix H. 

 

 

 

 Schematic circuit of the 7T1M SRAM cell. Figure 68.

 

 

Different from the CMOS 6T SRAM cell, the 7T1M SRAM cell uses an 

additional one transistor and one memristor in the design, but more importantly it 

exhibits non-volatility features. In the 7T1M SRAM cell, the VCTRL is set to VDD and 

VDD/2 when performing read and write operations respectively, while 𝑊 and 𝑅 are 
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used to select the write and read operations respectively. During write processes, 𝐸 is 

activated in order to ensure the flow of current through the memristor during both 

writing logic ‘1’ and ‘0’ operations. 

 

 

6.2.1 Write operation of 7T1M SRAM cell 

 

 

When programming the 7T1M SRAM cell, VCTRL is set to 0.5V to ensure that 

current can flow through the memristor in either direction and 𝑊 is charged to VDD 

to create a low-impedance channel in the NMOS pass-transistors that connects 𝑄 to 

the voltage from input signal 𝐷. At the same time, 𝑅 is connected to ground that 

turns the transistor into high-impedance and disconnects the cell from resistor Rref. 

To disable write operation, 𝑊 is connected to ground to disconnect the cell from the 

input signal 𝐷. 

 

To write logic ‘1’ 𝐷 is charged to VDD and current flows from positive terminal 

of the memristor to the negative terminal due to potential at the positive terminal of 

the memristor (1.0V) is higher than at the negative terminal (0.5V), thus switching 

the memristor to LRS. On the other hand, to write logic ‘0’, 𝐷 is grounded (0V) and 

the memristance is switched to HRS due to current flowing from the negative 

terminal of the memristor to the positive terminal, where the potential at the negative 

terminal of the memristor (0.5V) is higher than at the positive terminal (0V). Also, 

during write operation 𝑄 is connected to the voltage from input signal 𝐷. Thus, 𝑄 is 
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charged to VDD when the cell is programmed to logic ‘1’ or grounded (0V) when the 

cell is programmed to logic ‘0’. 

 

 

 

 Simulation of the write process of the 7T1M SRAM cell. Figure 69.

 

 

Simulation of the proposed 7T1M SRAM cell shows that the writing delay is 

208.35ns for logic ‘1’ and 144.07ns for logic ‘0’ (figure 69) , giving an average 

delay of 176.21ns. The difference in the writing delay between logic ‘1’ and ‘0’ is 

due to the asymmetric resistive switching behavior of memristors, where switching 

from HRS to LRS requires a longer time due to the higher electric field required to 

breakdown the bulk layer and form a conducting channel [177]. When switching to 

logic ‘0’ (from LRS to HRS), the memristance increases with time. Thus, it is 

observed that the rate of change of memristance with time (gradient of memristance-

time graph) decreases as the memristor approaches HRS, where current flow in the 

memristor decreases, which slows the change of memristance. Conversely, when 

switching to logic ‘1’ (from HRS to LRS), the memristance change is constant with 

time due to the large resistance presented by the initial HRS of the memristor. 
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Consequently, the energy consumption for writing logic ‘1’ is higher (0.958pJ) 

than for writing logic ‘0’ (0.363pJ), giving an average energy requirement of 0.683pJ 

per writing cycle. The energy consumption for writing logic ‘1’ is higher due to 

switching the memristor from its HRS to its LRS which requires a larger electric 

field and takes a longer time, thus energy consumption to switch to logic ‘1’ is 

higher. 

 

 

6.2.2 Read operation of 7T1M SRAM cell 

 

 

For the read operation of the proposed 7T1M SRAM cell, 𝑅 and 𝐸 are charged 

to VDD to create a low-impedance channel in the NMOS pass-transistors to connect 

the memristor and Rref to the cell. At the same time, 𝑊 is connected to ground that 

turns the transistor into high-impedance and disconnects the cell from the input 

signal 𝐷. Thus, the voltage across the Rref provides the logic stored in the cell, which 

is dependent on the resistance of the memristor. It should also be noted that during 

the read operation, the state of the memristor is unaltered. 
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 Simulation of the read process of the 7T1M SRAM cell. Figure 70.

 

 

The simulation results of the read operation are shown in figure 70, where the 

proposed cell requires 104ps to read logic ‘1’ and 146ps to read logic ‘0’. The 

reading of logic ‘0’ is slower than reading logic ‘1’ due to the lesser amount of 

current flowing through the high memristance when reading logic ‘0’. The amount of 

current when reading logic ‘0’ and ‘1’ is 10.49μA (HRS) and 13.48μA (LRS) 

respectively. Thus, the delay in reading logic ‘0’ is higher due to lesser current flow 

into node 𝑄. 

 

 

6.2.3 Non-volatile feature of 7T1M SRAM cell 

 

 

In the proposed 7T1M SRAM cell, similar to the CMOS 6T SRAM cell, 

inverters connected back-to-back forming a loop is used for retaining the logic 

information of the cell as long as VDD is available. However, should there be an 

interruption of VDD, unlike in the CMOS 6T SRAM cell, the proposed 7T1M SRAM 

cell retrieves the logic information using the memristor and restores logic 
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information into the inverter loop. This is achieved by performing a read operation 

with 𝑊 being turned off while transistors 𝐸 and 𝑅 are turned on. A short pulse of 1ns 

of VDD is applied at VCTRL during the read operation. Figure 71(a) shows the 

equivalent resistive circuit when read process is performed on the 7T1M SRAM cell. 

Figure 71(b) shows the switching of 𝑄 and �̅� between logic levels. 

 

 

 

 Equivalent circuit of the 7T1M SRAM cell during reading and (b) the simulation of Figure 71.

the inverter loop between 𝐐 and �̅�. 

 

 

The non-volatility characteristic of the 7T1M SRAM cell is initiated by turning 

off the power supply VDD for at least 0.5s to ensure parasitic capacitances of the 

transistors are fully discharged. Since the CMOS inverters have been discharged due 

to interruption in VDD, they offer high impedance. Thus, when the CMOS inverters 

are in parallel, their effect on the equivalent resistance is negligible. 𝑅 connects the 

cell to a fixed reference resistor Rref forming a series connections with transistors 𝐸 

and 𝑅, and resistor Rref. The resistance of transistors 𝐸 and 𝑅 is 10Ω. This creates a 

potential divider between Rref and the memristor. VCTRL is then charged to VDD for 

1ns to bring 𝑄 and �̅� to their appropriate voltage levels. 
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Considering that the stored logic level is low (‘0’) before the power 

interruption, then the memristor is in its HRS (20kΩ) state. This causes the initial 

voltage at 𝑄 to be about 1/3 of VCTRL. Hence, �̅� is charged to VDD by the CMOS 

inverter and subsequently 𝑄 is discharged to 0V. 

 

On the other hand, if the stored logic level is high (‘1’) before the power 

interruption, then the memristor is in its LRS (100Ω) state. Thus causing the initial 

voltage at 𝑄 is about 0.98 of VCTRL due to resistance of memristor and transistor 𝐸 

(total of 110 Ω) smaller than the resistance of Rref and transistor 𝑅 (10.01kΩ). �̅� is 

discharged to 0V and subsequently 𝑄 is charged to VDD, similar to that shown in 

figure 70(b). The simulation of the non-volatility of the proposed 7T1M SRAM cell 

is summarized in figure 72. 

 

 

 

 Demonstration of the non-volatile properties of the proposed memristive SRAM cell. Figure 72.
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6.3 Comparison of memristive SRAM cells 

 

 

Simulation is performed on the memristive SRAM cells from literature [136]–

[139] and the 7T1M SRAM cell. In order to provide a fair comparison, all the 

memristive SRAM cells are simulated using similar device parameters. Table 15 

summarizes the performance of the memristive SRAM cells. Switching delay is the 

average of the delay of writing logic ‘0’ and ‘1’, defined by the amount of time taken 

to completely switch memristance states. Power consumption is the rate of energy 

consumption by a memristive SRAM cell throughout switching process and 

retention of logic. The amount of device area used by the memristive SRAM cells is 

measured in terms of λ
2
, where λ is equivalent to the length of the minimum feature 

size (transistor gate length). For this research work, λ is 32nm. 

 

Energy-Delay-Area-Product (EDAP) is used to determine the optimum 

memristive SRAM cell. The EDAP value is the product of switching delay, power 

consumption and device area used by a memristive SRAM cell. Using the EDAP 

allows a single quantity for comparison because none of the memristive SRAM cells 

are superior in every performance aspect. For example, the 7T1M SRAM cell has the 

least power consumption, but uses more device area than the 4T2M cell [136]. 

Therefore, a smaller EDAP value represents a better overall performance of the 

memristive SRAM cell among the three performance aspects. 
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  Summary of the memristive SRAM cells and their EDAP value. Table 15.

Memristive 

SRAM cell 

Switching 

delay (ns) 

Power consumption 

(μW) 

Area 

(λ
2
) 

EDAP 

(10
4
 ns-μW-λ

2
) 

Proposed 7T1M 176.21 2.9665 308 1.61 

4T2M [136] 156.56 32.645 176 9.00 

7T2R [137] 132.91 28.648 352 13.40 

NVPG [138] 135.32 3.5126 396 1.88 

rSRAM [139] 186.66 5.3514 440 4.40 

 

 

The 4T2M cell [136] uses only four transistors and two memristors, which is 

the least number of components among the memristive SRAM cells in the literature. 

However, the two memristors are connected to the cell power supply, VDD, thus 

whenever the cell is in use, current constantly flows from VDD through both 

memristors. This increases the amount of energy dissipated across the two 

memristors, and increases the value of EDAP of the 4T2M cell. The usage of the 

7T2R cell [137] also causes current to constantly flow through two memristors. 

Moreover, the memristors are reciprocal to each other, meaning when one is in LRS, 

the other is in HRS. This causes the current to consistently flow through a high 

resistive memristor in the memristive SRAM cell, which increases energy 

consumption and increases the value of EDAP of the 7T2R cell. 

 

The NVPG cell [138] has lower energy consumption due to two pass-

transistors that are used to control the access of two memristors. This ensures that 

during the normal usage of the cell, the pass-transistors are switched off and 

becomes high-impedance. Thus, current do not pass through the memristors. 
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However, by using two pass-transistors and two memristors, as compared to the 

7T1M SRAM cell, the amount of device area used is increased which increases the 

EDAP value of the NVPG cell. 

 

The switching speed of a memristor is proportional to the amount of current 

flowing through a memristor. The large number of transistors used in the rSRAM 

cell [139] increases overall cell resistance, which reduces current flow in the rSRAM 

cell. The lesser amount of current in the rSRAM cell decreases switching speed and 

increases switching time delay in the rSRAM cell. Therefore, the large device area 

and long switching delay increases the EDAP value of the rSRAM value. 

 

The 7T1M SRAM cell uses the least number of memristors per cell, which 

decreases device area. Also, the amount of voltage applied across the memristor in 

the 7T1M SRAM cell is less than VDD, which is equivalent to VDD/2. This is due to 

the usage of VCTRL, set to VDD/2 during programming. These two factors contribute 

to lesser amounts of current passing through large resistances of memristors in the 

7T1M SRAM cell, which improves energy consumption. However, this contributes 

to the longer switching delay in the 7T1M SRAM cell than in the 4T2M, 7T2R, and 

NVPG SRAM cells, whereby the amount of current supplied to the memristors of 

the 7T1M SRAM cell is relatively lesser. 

 

Combining the performance criteria of switching delay, power consumption, 

and device area, the 7T1M SRAM cell has an overall EDAP value of 1.61, which is 

the lowest among the memristive SRAM cells. 
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6.4 Application of 7T1M SRAM cell in a switch matrix 

 

 

The CMOS SRAM-based switch matrix is improved by replacing CMOS 6T 

SRAM cells with 7T1M SRAM cells (figure 73). The output Q of the 7T1M SRAM 

cell is connected to the gate terminal of pass-transistors in the switch matrix to create 

a memristive-based non-volatile switch matrix. This circuit is simulated with a 

routing channel RCIN transmitting signals to another routing channel RCOUT. 

 

 

 

 Output Q of 7T1M SRAM cell connected to a pass-transistor in a switch matrix. Figure 73.

 

 

 

 Switch matrix pass-transistor controlled by the memristive switch matrix of 7T1M Figure 74.

SRAM cells and CMOS SRAM-based switch matrix. 
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The simulation of the control of the switch matrix is shown in figure 74 where 

RCIN is the input to the routing channel and RCOUT is the output of the routing 

channel. This simulation is conducted with 7T1M SRAM cells and CMOS 6T 

SRAM cells in the switch matrix. VOUT is the output from the cell that controls the 

gate-terminal of the switch matrix pass-transistor. VOUT of 0V turns off the pass-

transistor and RCOUT is disconnected from RCIN (as shown from 0ns to 60ns, and 

from 160ns to 200ns in figure 74). Likewise, if VOUT is 1V, RCIN is transmitted to 

RCOUT (as shown from 60ns to 160ns in figure 74). 

 

Since the simulation results of RCOUT of both types of switch matrices are 

similar to each other in terms of the amount of delay taken by RCOUT to reach 

appropriate voltage levels, as well as the stable voltage level reached by RCOUT, it is 

concluded that the memristive-based switch matrix is able to replace the CMOS 

SRAM-based switch matrix in terms of electrical performance. 
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7. MEMRISTIVE-BASED FPGA ARCHITECTURE 
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MEMRISTIVE-BASED FPGA ARCHITECTURE 

 

 

7.1 Memristive Logic Cell (MLC) and Configurable Memristive Logic Block 

(CMLB) 

 

 

A memristive logic cell (MLC) is designed with the schematic block diagram 

in figure 75. The MLC comprises of an NVLUT, two CMOS-based multiplexers, 

and an MDFF. The NVLUT may also act as an array of memory cells. Multiplexer f 

performs the selection switch between NVLUTs, while multiplexer control selects or 

de-selects the MDFF. MDFF is used if the MLC is programmed to function as a 

sequential logic circuit, asynchronous or synchronous. Conversely, the MDFF is not 

used if the MLC is programmed to function as a combinational logic circuit or if it 

does not require clock cycles. 

 

 

 Memristive logic cell (MLC). Figure 75.
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To construct the MLC, CMOS-based LUT is replaced with the 6-bit NVLUT 

and the D flip-flop is replaced with a memristive D flip-flop. The NVLUT can also 

be programmed to function between 2 to 6 input LUTs. Current FPGA logic cells are 

used to function as two 5-input LUTs, three 4-input LUTs, four 3-input LUTs, or 

five 2-input LUTs. Similarly, the 6-input NVLUT can also be used to function as 

two 5-input NVLUTs by assigning INPUT6 of the NVLUT as the control bit to 

select one of the two 5-input NVLUTs. f in figure 75 is connected to a multiplexer 

which selects the output from one of the two 5-input NVLUTs. This separates the 64 

memory cells into two sections of 32 memory cells, separated by logic ‘0’ and ‘1’ of 

INPUT6. The remaining 5 address lines (a – e in figure 75) are used as the 5-bit 

inputs to address one section of the 32 memory cells. Using this similar method, the 

6-input NVLUT can also be further used as three 4-input NVLUTs, four 3-input 

NVLUTs, or five 2-input NVLUTs. 

 

Several MLCs are then interconnected using switch matrices to form a 

configurable memristive logic block (CMLB), as shown in figure 76. The switch 

matrices function to route the output of an MLC to the input of another MLC, or vice 

versa. The switch matrices can also connect outputs of several MLCs to form a 

larger output. In the proposed CMLB, four switch matrices are used as the routing 

switches. 
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 Block diagram of configurable memristive logic block (CMLB). Figure 76.

 

 

 

7.2 Evaluation of MLC and CMLB 

 

 

The CMLB is evaluated by comparing: (i) the amount of device area used, (ii) 

average power consumed, and (iii) critical path delay. Due to various FPGAs being 

manufactured by various companies, the device area and power consumption of 

different test designs in different FPGA family would be different. Thus, the 

comparison performed in this article is based on only one type of FPGA family, 

Virtex-5. The test designs used in the simulations to validate and evaluate the CMLB 

are obtained from [223]. 

 

To measure the three performance criteria, the amount of resources used by 

each test design are obtained by synthesizing the test designs using an Electronic 

Design Automation (EDA) software for FPGAs. The test designs are synthesized 
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using Xilinx ISE 10.1 to obtain the breakdown of the resources utilized by each test 

design. Each of the logic blocks are then replaced with CMLBs and the device area 

and power consumed by the test design in the memristor-based environment is 

evaluated, where the amount of device area and power consumed by the test design 

is the summative consumption of each of the CMLB used in each test design. The 

critical path delay is obtained by measuring the accumulative delay in the critical 

path of each test design. To ensure that a fair comparison between the CMLB and the 

SRAM-based logic block (SLB), the design and structure of the SLB follows that of 

the CMLB but uses SRAM cells and CMOS circuits instead of memristive cells and 

circuits. 

 

 

7.2.1 Resource utilization of test designs 

 

 

 The amount of resources used by each test design depends on the 

minimization of logic computation performed by an FPGA EDA software. Xilinx 

ISE was chosen due to the denser packing of logic resources compared to other 

similar logic synthesizing software, which minimizes the amount of resources 

required by each test design [224]. 

 

In the MLC, the 6-bit NVLUT reduces a total of 128 transistors from the 

CMOS 6-bit LUT, but the use of MDFF requires additional 6 transistors compared to 

the CMOS D flip-flop. Overall, the MLC experiences a reduction of 122 transistors. 

The amount of device area per 6-bit input NVLUT is 196.608μm
2
 while the SRAM-



204 
 

based LUT uses 262.144μm
2
. This is an improvement of 65.536 μm

2
 in device area 

per each 6-bit input LUT. Therefore after subtracting the additional device area for 

the MDFF, the total device area reduction by the MLC is 60.416μm
2
. 

 

Each switch matrix consists of six pass-transistors, and each pass-transistor is 

controlled by an individual SRAM cell, which amounts to 6 SRAM cells. Hence, 

each SRAM cell is replaced with a 7T1M SRAM cell. The 7T1M SRAM cell uses 

one transistor more than the SRAM cell. This results in an addition of six transistors 

for six 7T1M SRAM cells per switch matrix, which amounts to an addition of 

3.072μm
2
 of device area. In each CMLB, four switch matrices are used, which 

results in an addition of 12.288μm
2
 of device area per CMLB. 

 

In overall, the CMLB has four MLCs and four switch matrices. Four MLCs 

reduces device area by 241.664μm
2
 but the four switch matrices increases 

12.288μm
2
 of device area. Therefore, the total reduction of device area by one 

CMLB is 229.376μm
2
. The estimated total device area of one CMLB is 950.272μm

2
 

while one SLB is 1179.648μm
2
. 

 

 

 Comparison of FPGA architecture performance based on one set of CMLB and one Table 16.

switch matrix. 

Logic Block Device area (μm
2
) Power (nW) 

SRAM-based 1179.648 116.647 

Memristor-based 950.272 74.343 
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Based on four sets of 6-bit input LUT logic cell and four switch matrices, 

overall utilization of FPGA device area is reduced when using the CMLB (table 16). 

Although memristive flip-flops and switch blocks use more device area than their 

respective SRAM-based blocks, this is compensated by the large reduction of device 

area by the NVLUT. Since the utilization of these logic blocks is based on the 

amount of resources required by a design, a more accurate comparison of device area 

is evaluated by the number of logic blocks used by each test design. 

 

 

 

 Resource utilization by device area of the test designs in (a) memristive-based and (b) Figure 77.

SRAM-based FPGA architectures. 

 

 

Figure 77 shows the average proportion of the type of FPGA blocks utilized by 

the test designs in SRAM and memristor-based FPGA architectures. Due to the 

designs usually utilizes a large number of logic blocks compared to other types of 

FPGA blocks, this result in an overall device area reduction when using memristor-

based architecture compared to the SRAM-based architecture. The device area 

utilized by the test designs in both types of FPGA architecture is summarized in 

table 16. 
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7.2.2 Power consumption of test designs 

 

 

The power consumption measurement of the CMLB is performed by running 

all the functions (programming and reading) of the CMLB in all of the modes 

(synchronous and asynchronous). The power consumption of the CMLB is measured 

by summing the amount of energy consumed by each component in the CMLB over 

a pre-determined number of clock cycles, and then dividing it by the amount of time 

equivalent to the clock periods. 

 

Since the proposed CMLB is for use in a memristive-based FPGA architecture, 

it is beneficial to take advantage of the non-volatile characteristics of the memristive 

circuits and memory cells. Thus, the clock feeding the MDFFs of the MLCs are 

turned off until a read process of the MDFF is activated. The average power 

consumption of the CMLB is 74.343nW, compared to the SLB that has an average 

power consumption of 116.647nW (table 16). 

 

 

7.2.3 Critical path delay in logic cell 

 

 

Due to the different type of resources used in the SRAM-based and memristor-

based FPGA architectures, the distance of critical path changes. However for this 

research, the structure and design of both the CMLB and SLB are the same, thus the 

critical path of the test designs is assumed to pass through the same type and same 



207 
 

amount of resources in both types of FPGA architecture. Figure 78 shows the typical 

critical path in a logic cell, both CMLB and SLB. The critical path delay through a 

logic cell in the CMLB is 5.81ns, while in the SLB is 5.86ns. This is measured by 

the amount of time taken for the output to reach a stable voltage level after a change 

in inputs to the logic cell is applied. 

 

 

 

 Typical critical path through a logic cell. Figure 78.

 

 

 

 

  



208 
 

7.3 Comparison against other memristive-based FPGA architectures in the 

literature 

 

 

Table 17 shows the comparison of memristive FPGA architectures in the 

literature benchmarked against the SRAM-based FPGA architecture. Value of more 

than 1 denotes improvement while value of less than 1 denotes deterioration against 

the SRAM-based FPGA architecture. 

 

 

 Comparison of memristive FPGA architectures in the literature against SRAM-based Table 17.

FPGA architecture (number of times improved against the SRAM-based FPGA architecture). 

FPGA architecture 
Process 

technology 

Device 

area 
Path delay Power 

CMLB (this research) 32nm 1.09 1.09 0.93 

GMS [114] 45nm 1.07 1.58 1.69 

mrFPGA [115] 45nm 5.18 2.28 1.63 

RRAM-based FPGA [116] 22nm 0.74 0.83 1.50 

Hybrid CMOS-Memristor 

[117] 
22nm 1.40 N/A N/A 

CMOS-RRAM Integration 

[118] 
32nm 6.00 1.10 1.23 

3D-stacking [119] 32/45nm 1.63 1.34 N/A 

 

 

The evaluation of the CMLB using test designs is summarized in tables 18 and 

19. The evaluation shows that the CMLB improves device area requirements by an 

average of 8.6%, while power consumption is increased by 7.1%. The power 

consumption evaluation does not take into account the retention of logic information 
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in the CMLB by removing power supply. This experiment was not performed 

because the removal of power supply and retention of logic information in the 

CMLB can last at least 10 years [187]. Thus, power reduction is dependent on the 

length of time of logic retention and this does provide a fair comparison against the 

SRAM-based FPGA architecture. Henceforth, it is postulated that the power 

consumption of this proposed CMLB will be lesser than the SRAM-based FPGA 

architecture if the non-volatile feature of the memristors are considered. Critical path 

delay is reduced by 1.094 times due to the smaller device area used by the CMLB 

which also decreases routing channel lengths. 

 

 

 Comparison of device area used by each design in terms of μm
2
. Table 18.

Test design 
SRAM-based 32nm       

device area 

Memristor-based 

32nm device area 

Device area improvement 

Percentage (%) 
Ratio 

(SRAM/memristive) 

s298 6661.364 6237.696 6.4 1.0679 

s349 5735.082 5555.536 3.1 1.0323 

s382 10942.954 10324.480 5.7 1.0599 

s400 10942.954 10324.480 5.7 1.0599 

s444 15401.990 14455.808 6.1 1.0655 

s510 17434.518 15940.848 8.6 1.0937 

s641 35755.976 32721.536 8.5 1.0927 

s713 33862.832 31026.416 8.4 1.0914 

s820 44219.460 40514.560 8.4 1.0914 

s1196 53068.894 48908.240 7.8 1.0851 

s1423 66107.720 61438.384 7.1 1.0760 

s1488 63889.104 58779.776 8.0 1.0869 

s5378 144289.476 133240.144 7.7 1.0829 

s9234 128309.782 118193.280 7.9 1.0856 

s15850 888418.344 800669.312 9.9 1.1096 

s35932 3112490.634 2813016.704 9.6 1.1065 

S38584 3122078.676 2810518.448 10.0 1.1109 

Average   8.6% 1.09 times 
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 Comparison of power consumption and critical path delay of each design. Table 19.

Test 

design 

Power consumption (μW) 

Improvement 

(%) 

Critical delay (ns) 

Improvement 

(times) SRAM-

based 
Memristor 

SRAM-

based 
Memristor 

s298 2.206 2.567 -16.4 2.830 2.462 1.149 

s349 2.714 3.113 -14.7 3.577 3.114 1.149 

s382 3.708 4.339 -17.0 3.324 2.815 1.181 

s400 3.708 4.339 -17.0 3.324 2.815 1.181 

s444 4.833 5.578 -15.4 3.324 2.815 1.181 

s510 4.469 4.846 -8.4 3.916 3.283 1.193 

s641 13.862 13.846 0.1 7.244 7.166 1.011 

s713 13.415 13.393 0.2 7.498 7.257 1.033 

s820 11.331 12.253 -8.1 5.542 5.357 1.035 

s1196 13.442 14.991 -11.5 10.107 9.521 1.062 

s1423 19.169 22.016 -14.8 7.503 7.291 1.029 

s1488 15.375 17.031 -10.8 5.551 5.701 0.974 

s5378 52.001 54.787 -5.4 8.874 7.708 1.151 

s9234 42.396 45.085 -6.3 5.233 4.498 1.164 

s15850 428.930 393.473 8.3 10.583 9.894 1.070 

s35932 1683.024 1549.361 7.9 4.603 4.736 0.972 

S38584 1450.245 1328.524 8.4 7.731 7.248 1.067 

Average   -7.1%   1.094 times 

 

 

The CMLB is made up of four switch matrices and four MLCs, which consists 

of a novel NVLUT and a memristive D flip-flop (MDFF) that was designed to 

replace CMOS D flip-flops. The usage of the 7T1M SRAM cell converts switch 

matrices to non-volatile memristive switch blocks. The memristive switch block and 

memristive sequential circuit uses larger device area than their CMOS counterparts 

by 1.17 times and 1.63 times respectively, but logic cells are used in abundance in 

the SRAM-based FPGAs and have a reduction of device area by 1.23 times when 

MLCs are used instead of CMOS-based logic cells. Although the logic blocks are 

used with different proportions in different designs, the test designs show that the 

CMLB uses an overall average of 8.6% lesser device area than the SRAM-based 
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FPGA. Due to the reduction in device area which shortens routing channels, as well 

as the reduction in transition delay when using memristive blocks, the overall critical 

path delay was reduced by 1.094 times. 

 

In summary, the SRAM-based logic blocks (SLB) in SRAM-based FPGA 

architectures are proposed to be replaced with the presented CMLB. A memristor-

based FPGA architecture is designed by replacing CMOS-based components such as 

flip-flops, switch matrix and LUTs with memristive D flip-flop, non-volatile LUT, 

and memristive switch block that are used in the CMLB. The CMLB presented in 

this article is proposed to only replace Configurable Logic Blocks in the CMOS-

based FPGA architectures. However, it is also noticed that these memristive 

components and circuits can also be used to build other types of FPGA blocks (such 

as control blocks). Thus, it is postulated that these memristive components and 

circuits are also suitable to be used to design a memristor-based FPGA architecture 

in a future research work. 
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7.4 Memristive and PCM cells crossbar 

 

 

Another advantage of memristors is the ability of fabrication of memristive 

crossbar topology, where memristors are fabricated in the programmable 

interconnects between metal layers. SRAM-based FPGA architectures frequently use 

nanocrossbar architectures to reduce device area and increase density. 

 

The crossbar architecture used in this research work is a 2x2 array of four 

memory cells arranged as shown in figure 79. The four memory cells M0 – M3 can 

be addressed using a 2-bit input that also represents the address of the memory cells. 

The 2-bit inputs used to address one of the four memory cells is decoded by using a 

2-to-4 demultiplexer. 

 

 

 

 Schematic diagram of the crossbar architecture used in this research. Figure 79.
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The write and read operations of the crossbar are activated by triggering 𝑊𝐸 

(write enable) and 𝑅𝐸 (read enable) respectively. 𝐷𝐴𝑇𝐴 and 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  (complementary 

of 𝐷𝐴𝑇𝐴) are used for programming the memory cells with appropriate logic 

information. At the row section, a decoder is used to gate the input for write and read 

processes. 𝑊𝐸 connects 𝐷𝐴𝑇𝐴 to the memory cells if write is performed, and 𝑅𝐸 

connects VREAD to the memory cells if read is performed. 

 

Since each of the memory cells is controlled by one row and one column pass-

transistors, both the respective pass-transistors must be enabled to access the 

respective memory cells in the crossbar. The least number of selector inputs for the 

decoder is log2N for N number of rows or columns. Since there are 2 rows and 2 

columns for a 2x2 array, this gives log22 = 1. Therefore, one input is required for 

each of the row (A0) and column (A1) decoders. The row and column pass-transistors 

that are to be enabled are selected using two 1-to-2 decoders, one for row and one for 

column. 

 

This crossbar architecture, as well as the write and read circuitry, are used for 

both types of memory cells; memristor and PCM. The memory cells M0 – M3 of the 

general 2x2 crossbar array are then substituted with memristors and PCM cells as 

shown in figures 80(a) and 80(b) respectively. 
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 Crossbar memory cells replaced with (a) memristors and (b) PCM cells. Figure 80.

 

 

7.4.1 Write operation of crossbar 

 

 

To write a memory cell, write enable (𝑊𝐸) allows current flow between 𝐷𝐴𝑇𝐴 

and 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  through the selected memory cell. 𝐷𝐴𝑇𝐴 is connected to the row section 

of the array and 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  is connected to the column section of the array. The direction 

of current through the selected memory cell depends on the potential difference 

between 𝐷𝐴𝑇𝐴 and 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅ . Due to the difference of the magnitude of voltage 

required to program memristors and PCM, there is a slight modification to the write 

circuitry to compensate for this difference as shown in figure 81. 

 

 

 

 

 Write circuit of (a) memristor crossbar and (b) PCM cells crossbar. Figure 81.
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The difference between programming logic ‘0’ and ‘1’ into memristors is the 

direction of current through the memristor. The magnitude of voltage for 

programming logic ‘0’ and ‘1’ is the same, which is 1V for the simulation in this 

research work. Thus, 𝐷𝐴𝑇𝐴 and 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  is designed to complement each other in the 

memristive crossbar write circuit to ensure a programming magnitude of 1V is 

always applied to the memristors. If 𝐼𝑁𝑃𝑈𝑇 is 1V, then 𝐷𝐴𝑇𝐴 is 1V and 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  is 

0V, and the selected memristor is programmed with logic ‘1’ due to current flowing 

into the positive terminal of the memristors in the crossbar. Conversely, if 𝐼𝑁𝑃𝑈𝑇 is 

0V, then 𝐷𝐴𝑇𝐴 is 0V and 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  is 1V, and the selected memristor is programmed 

with logic ‘0’ due to current flowing in the opposite direction, out of the positive 

terminal of the memristor. 

 

In the PCM crossbar, the programming voltage and time for logic ‘1’ and ‘0’ is 

different. Thus, 𝐷𝐴𝑇𝐴̅̅ ̅̅ ̅̅ ̅̅  is permanently grounded (0V) and 𝐷𝐴𝑇𝐴 is connected to a 

selector in the write circuit of the PCM crossbar. The selector decides the appropriate 

programming voltage to be applied to 𝐷𝐴𝑇𝐴 depending on the required input logic. 

0.8V is applied to 𝐷𝐴𝑇𝐴 for 200ns if logic ‘1’ is to be written into the PCM, while 

1.5V is applied for 10ns to 𝐷𝐴𝑇𝐴 if logic ‘0’ is to be written. The difference in 

voltage and input time is due to the different switching mechanisms between the 

amorphous and crystalline states of the PCM cells [45]. 
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7.4.2 Read operation of crossbar 

 

 

The read circuitry for memristive and PCM cells crossbar is the same, where a 

comparator amplifier is used. 𝑅𝐸 is charged to VDD to enable current flow from 

VREAD, through the memory cell and into the read circuitry. VREAD is set to 0.5V in 

this research work. VREF is channelled into the inverting input of the amplifier as 

reference voltage. 

 

For memristive crossbar, VREF is connected to a 0.25V supply and RCMP is 

200Ω, which is the mid-resistance between the high memristance (20kΩ) and low 

memristance (100Ω) states of the memristor. For PCM cells crossbar, VREF is 

connected to a 0.2V supply and RCMP is 50kΩ, which is the mid-resistance between 

high (200kΩ) and low (30kΩ) resistances of the average physical PCM devices. For 

both types of crossbar, the value of RCMP is not taken as the mid-point between the 

values of HRS and LRS, due to the consideration of the presence of untargeted 

memory cells which provides a path of parallel resistance. Figure 82 shows the 

difference in the read circuitry parameters for the memristor (figure 82(a)) and PCM 

cells crossbars (figure 82(b)). 

 

 

 Read circuitry for (a) memristive crossbar and (b) PCM cells crossbar Figure 82.
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The read operation for both types of crossbar is similar, by using a comparator 

amplifier that compares the potential differences at VCMP and VREF with respect to 

ground. The memristor and PCM memory cells are in series with RCMP, dividing the 

potential between VREAD and ground at VCMP. The equivalent resistive circuit during 

read operation is shown in figure 83. Resistance of transistors is 10Ω when turned 

on, which is 10 times and 3000 times smaller than the RON of memristors and PCM 

cells respectively. Thus, it can be reasonably omitted from the equivalent resistive 

circuit. The non-inverting input of the amplifier receives the potential difference 

across RCMP (equivalent to VCMP), while the inverting input of the amplifier is 

connected to VREF that act as the reference voltage. 

 

 

 

 Equivalent circuit when reading the crossbar, where Rtargeted and Runtargeted represent Figure 83.

the resistance of the memory cells which are targeted and untargeted respectively. 

 

 

While reading, leakage current passes through three untargeted memory cells 

to reach the same destination as the targeted current (figure 8 in chapter 2.13). 

Hence, there are also three untargeted resistances in the equivalent read circuit in 

figure 83. Table 20 summarizes the cases of reading the targeted memory cell for 
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different cases of untargeted memory cells (only worst case scenarios of the 

untargeted memory cells are listed in table 20). 

 

 

 Voltage formed at node VCMP for different cases of reading memristive and PCM cells Table 20.

crossbar. 

Memristive crossbar PCM cells crossbar 

Targeted 

memory cell 

Untargeted 

memory cells 
VCMP 

Targeted 

memory cell 

Untargeted 

memory cells 
VCMP 

Logic ‘0’ 

ROFF (20kΩ) 

All RON 0.40V Logic ‘0’ 

ROFF 

(200kΩ) 

All RON 0.45V 

All ROFF 0.01V All ROFF 0.25V 

Logic ‘1’ 

RON (100Ω) 

All RON 0.73V Logic ‘1’ 

RON (30kΩ) 

All RON 0.69V 

All ROFF 0.67V All ROFF 0.64V 

 

 

From the results, it was shown that the resistance of the memory cell is lower 

than RCMP if the memory cell contains logic ‘1’. This is due to the specifically 

chosen values of RCMP for the read operations. A larger portion of VREAD (more than 

0.5 of VREAD) is dropped across RCMP. Thus, the magnitude of VCMP is larger than 

VREF and 𝑂𝑈𝑇 obtains the positive input voltage of the amplifier, which is VDD 

(logic ‘1’). Conversely, a memory cell with logic ‘0’, where the resistance of the 

memory cell is higher than RCMP, results in VCMP lower than VREF. Thus, 𝑂𝑈𝑇 

obtains the negative input voltage of the amplifier, which is connected to ground, 0V 

(logic ‘0’). 
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7.4.3 Simulation results of memristive and PCM cells crossbar 

 

 

To evaluate the performance metrics of both PCM and memristive crossbars, 

programming and reading (both logic ‘0’ and ‘1’) are performed separately on each 

of the four memory cells. Two types of worst case scenarios were adopted for each 

experiment. The methods of initialisation to create the worst case scenarios are: 

(i) All other memory cells are initiated to a different logic than the 

programmed logic. 

(ii) All other memory cells are initiated to the same logic as the 

programmed logic. 

 

For the first type of worst case scenario, all other memory cells are initialised 

to logic ‘0’ if the targeted memory cell is tested with logic ‘1’. Similarly, all other 

memory cells are initialised to logic ‘1’ if the targeted memory cell is tested with 

logic ‘0’. For the second type of worst case scenario, all other memory cells are 

initialised to logic ‘1’ if the targeted memory cell is tested with logic ‘1’. Likewise, 

all other memory cells are initialised to logic ‘0’ if the targeted memory cell is tested 

with logic ‘0’. 

 

Simulation is performed on the crossbar array by writing to a targeted memory 

cell in the array, and then reading from the same memory cell, with both types of 

worst case scenarios used for programming and reading. This experiment is then 

repeated on the other memory cells. Simulation results are compiled and used to 

analyse programming and reading delay, programming and reading energy, and 
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leakage energy. The values of each performance criteria are measured from writing 

and reading each of the four memory cells. For each performance criteria, the results 

are averaged to estimate the general behaviour of a memory cell in the crossbar. 

 

Figure 84 shows the programming delay of memristive and PCM cells 

crossbar, while figure 85 shows the reading delay of the crossbars. Energy leakage 

dissipated by the crossbar is obtained by measuring the power consumption of all the 

unselected cells in the crossbar and is summarized in figure 86. 

 

 

 

 Average programming delay of memristive and PCM cells crossbar Figure 84.
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 Average read delay of memristive and PCM cells crossbar Figure 85.

 

 

 

 Leakage Energy in SRAM, Memristive, and PCM crossbars Figure 86.
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7.4.4 Delay of memristive and PCM cells crossbar 

 

 

From the simulation results, it was found that the programming delay for both 

memristive and PCM cells crossbars is worse than the SRAM crossbar by 2 and 3 

orders of magnitude respectively. The longer write delay in both memristive and 

PCM crossbars are contributed by the programming processes that require charge 

displacement and physical change of material in memristors and PCM cells. 

 

Due to these programming processes which are more complicated than 

switching the SRAM cell, current needs to be channelled through memristors and 

voltage needs to be applied across PCM cells for a certain amount of time. As a 

result, the writing delay in both memristive and PCM crossbars are prolonged. 

Contrarily, SRAM cells are switched by application of a voltage at the gate terminals 

of NMOS and PMOS transistors to either create or collapse an inversion layer 

between the collector and emitter terminals. The inversion layer is a very thin layer 

and hence, switching of SRAM cells takes shorter time than memristors and PCM 

cells [225]. 

 

Read delay is the amount of time taken for the output to become stable at its 

appropriate voltage level after a targeted memory cell has been addressed for 

reading. The read delay of the memristive crossbar is about 3 orders of magnitude 

faster than the reading process of SRAM crossbar while PCM crossbar is about 1.5 

orders of magnitude faster than the SRAM crossbar. The reason for the longer read 

delay of SRAM cells is the SRAM cells have high parasitic capacitance due to the 
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larger amount of transistors used to build an SRAM cell, compared to NVM cells. 

Thus, it takes a longer time to charge or discharge output load in the SRAM 

crossbar. 

 

Between memristive and PCM crossbar, the read delay for memristors is 

shorter due to the lower resistance of memristors when compared to the PCM cells. 

Thus, the amount of current flow into the read circuitry would be higher for the same 

amount of VREAD applied to the crossbar. VREAD is maintained the same magnitude 

for memristor and PCM crossbars so that the amount of leakage current and energy 

for the crossbars are produced by the same amount of power supply. This is to ensure 

a uniform comparison between memristor and PCM crossbars. 

 

 

7.4.5 Energy consumption of memristive and PCM cells crossbar 

 

 

Programming energy is the amount of energy consumed by the crossbar to 

complete the switching of a targeted memory cell. The programming energy of 

memristive and PCM crossbars were found to be 3 and 5 orders of magnitude higher 

than the programming energy of SRAM crossbars, while reading energy is 2 and 3 

orders of magnitude higher respectively. The reason for the high programming 

energy is due to the switching mechanisms of memristors and PCM cells, which 

requires the application of voltage and current for a longer duration than to switch an 

SRAM cell. Thus, this increases the amount of energy supplied to the crossbar and 

increases programming energy. 
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Leakage energy is the amount of energy that is wasted by untargeted memory 

cells while accessing the targeted memory cell. From simulation results, both PCM 

and memristive crossbars showed more than 3 orders of magnitude of improvement 

compared to the SRAM crossbar. The reason being the overall resistance levels of 

memristors and PCM cells are lower than that of SRAM cells. The high impedance 

of SRAM cells causes larger amounts of voltage dropped across the SRAM cells, 

which increases energy dissipated across the SRAM cells. Between PCM cells and 

memristors, PCM cells have the higher resistance range, thus, the energy 

consumption for reading and writing for PCM crossbar is the larger than that for 

memristive crossbar. Moreover, the longer programming and reading delays of PCM 

cells also contribute to higher energy consumption in the PCM crossbar. 

 

 

7.4.6 Summary of the comparison of memristive and PCM cells crossbar 

 

 

 Summary of simulation results performed on crossbar arrays of memristor, PCM, Table 21.

and SRAM. 

Average Memristor PCM SRAM 

Programming Delay (ns) 27.06 200 0.101 

Read Delay (ns) 0.346821 636.826 391.926 

Programming Energy (pJ) 1.752 126.73 0.00227 

Read Energy (fJ) 23.1125 1369 0.7099 

RON (Ω) 100 30 k <10 

ROFF(Ω) 20 k 200 k >10 M 

Size f 
2
 4f 

2
 6f 

2
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The summary of the simulation results are shown in table 21. Programming 

delay is the amount of time taken by the memory cells in the crossbar to complete 

switching from one logic state to another. 

 

Although both memristor and PCM crossbars show high programming and 

leakage energy as compared to the SRAM crossbar, researchers are still widely using 

NVM crossbars for non-volatile applications and have placed them as emerging 

technologies. This is due to the advantage of the non-volatile ability to retrieve 

information, whereas the SRAM crossbar requires re-programming to retrieve 

information. Thus, it is postulated that the long-term benefits of using NVM-based 

crossbars would overcome the short-term disadvantages of NVM-based crossbars 

(high energy consumption and long switching delays) against the SRAM-based 

crossbar. Due to the high number of applications using crossbars, the long-term 

usage of NVM-based crossbars has been placed for future research. 

 

Between memristive and PCM crossbars, the memristive crossbar showed 

superior performance compared to PCM in many aspects, except that PCM cells 

offer higher resistance range. Thus, it is summarized that PCM cells crossbar 

provides a better option for multilevel switching crossbar due to its higher resistance 

range, while memristive crossbar is more suited for bi-level switching crossbar due 

to its lower leakage current and energy. Alternatively, the non-volatile crossbar with 

two-input LUT memristor-based memory block can be used [220], which eliminates 

leakage current. 
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CONCLUSION 

 

 

8.1 Conclusion 

 

 

In this dissertation, a probable memristive-based FPGA architecture was 

proposed by replacing logic, control, and switch blocks with CMLB, and memristive 

control and switch blocks. To complete this project, a comprehensive literature 

review was conducted on the different types of FPGA and the mechanisms of 

various resistive switching devices available in the literature. Due to limited 

resources, all the experiments conducted for this research work are purely 

simulation. It was realized that simulation experiments could not cover all of the 

electrical and physical characteristics and behaviour of resistive switching devices, 

such as retention and endurance, as well as electrode material selection. 

 

For simulation-based experiments, a SPICE memristor model is required. 

Although a SPICE memristor model was published, it was based on the physical 

characteristics published in the literature at the time of publishing. It is understood 

that there could be new developments on the behaviour of memristors which will 

require updated SPICE memristor models in the future. 
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Using the published SPICE memristor model, the following memristive 

circuits and memory cells have been published: 

(i) 2TG1M memory cell and 7T1M SRAM cell (non-volatile memories) 

(ii) NVDL and MDFF (memristive sequential logic circuits) 

(iii) NVLUT and MLG (memristive combinational logic circuits) 

 

The 2TG1M memory cell was shown to have the fastest switching speeds 

among other published non-volatile memristive memory cells. This is due to the 

usage of transmission gates which allows near-lossless transfer of voltage from its 

input to output pins. The device area of the 2TG1M memory cell is smaller than all 

other memory cells in comparison, except for 1T1M memory cell, which is smaller 

than the 2TG1M memory cell. This is compensated by the 2TG1M memory cell 

being able to be written with a unipolar voltage source, instead of a bipolar input 

voltage. 

 

The 7T1M SRAM cell was shown to have the lowest power consumption 

among memristive SRAM cells at 2.9665μW. The 7T1M SRAM cell also operates 

with an average switching speed of 176.21ns. The drawback of the 7T1M SRAM 

cell is that it uses less current to switch the memristor, which increases switching 

delay. The Energy-Delay-Area Product (EDAP) value of 1.61 is the lowest among 

similar memristive SRAM cells in the literature. Therefore, the proposed 7T1M 

SRAM cell has the best overall electric performance and device characteristics 

among other similar memristive SRAM cells in the literature. 
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The NVLUT designed using 2TG1M memory cells operates with the fastest 

switching speed (at most 8 times faster) among LUTs using other published 

memristive memory cells. The NVLUT also reduces device area by 128 transistors 

per each 6-bit input LUT. Another type of combinational logic circuit was also 

proposed, in the form of MLGs. Two MLGs were proposed, AND-MLG and OR-

MLG. In this research work also, an improved version of the MRL was presented 

with simulation results to support findings. 

 

The NVDL and MDFF were shown to have better energy consumption over 

their CMOS equivalents, albeit with larger device area. However, in an FPGA 

architecture, the amount of device area used by the logic blocks far exceeds that of 

the CMOS sequential logic circuits. Thus, the percentage of device area reduced by 

using the NVLUT compensates for the additional device area that is used by the 

NVDL and MDFF. 

 

In conclusion, A memristor-based FPGA architecture replaces SRAM-based 

FPGA blocks (control, switch and logic) with novel memristor-based blocks. In this 

article, the SRAM-based logic blocks (SLB) are replaced with the novel CMLB, 

which is also proposed and presented in this article along with the structure and 

functionality. 

 

The proposed CMLB is made up of four switch matrices and four MLSs, 

which consists of a novel NVLUT and a memristive D flip-flop (MDFF), which was 

designed to improve CMOS D flip-flops. The usage of the 7T1M SRAM cell 

converts switch matrices to non-volatile (memristive switch block). The memristive 
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switch block (1.17 times) and memristive sequential circuit (1.63 times) uses larger 

device area than their CMOS counterparts, but logic cells are used in abundance in 

the SRAM-based FPGAs which have a reduction of device area by 1.23 times when 

MLSs are used instead. 

 

The logic blocks are used with different proportions in different FPGA 

designs, thus the FPGA test designs show that the CMLB uses an overall average of 

8.6% lesser device area than the SRAM-based FPGA. Due to the reduction in device 

area which shortens routing channels, as well as the reduction in transition delay 

when using memristive blocks, the overall critical path delay was reduced by 1.094 

times. It is also postulated that the power consumption of the CMLB is lower than 

that of the SRAM-based FPGA architecture if non-volatile feature is fully utilized by 

the CMLB. However, if non-volatile feature is not utilized power consumption of the 

CMLB increases by 7.1%. 
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8.2 Future research 

 

 

Although the effect of electrode material selection on resistive switching 

mechanisms was studied, a common trend was not found due to the lack of 

experiments conducted on a series of electrode materials on the same type of bulk 

layer. For example, various different materials, such as Al, W, Ti, and Ta, can be 

selected as the electrode for the TiO2 bulk layer memristor. 

 

 

 

The designing of memristive latches and flip-flops other than D-type would 

also benefit the semiconductor industry, because it provides design and layout 

flexibility when there is a larger range of sequential logic circuits to choose from. 

 

A larger scale of the memristive-based FPGA architecture that includes more 

CMLBs, switch matrices and various types of control blocks, as well as I/O blocks 

needs to be experimented on, whether it is in the form of simulation of physical 

experiments. This is due to the proposal of a full-extent memristive-based FPGA 

architecture requires thorough research on the total power supply required and the 

total amount of device area needed for fabrication of the FPGA chip. 

 

The implementation of the proposed CMLB into a physical FPGA chip is 

possible by adjusting current CMOS fabrication process to fabricate an MIM device 

in the vias between metal layers [54]. This would allow further verification of the 
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research work that has been conducted in this thesis. For this, collaboration with 

semiconductor companies would provide the opportunity to implement this research 

work onto a physical FPGA chip, which was however not possible at the time of 

research. 

 

In the future, the 3D-stacking FPGA could solve a lot of routing delay and 

device area issues. Therefore, this dissertation postulates that it would be beneficial 

for researchers to use the CMLB proposed in this article to be used in a memristive-

based 3D-stacking FPGA architecture. 
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Appendix A: Netlist for enhanced SPICE memristor model with dynamic 

ground (MEMRISTOR.lib) 

 

 

.SUBCKT memristor Pos Neg PARAMS: 

+ Ron=100 Roff_on=200 w0=0.5 uv=1e-14 

+ D=10n Roff=Roff_on*Ron offset=1n p=5 

 

 

.IC V(w)={w0*D+offset} 

 

 

Rser Pos ser 1m 

Emem ser Neg 

+ value={(Ron*(V(w)-offset)/D+Roff*(1-(V(w)-offset)/D))*I(Emem)} 

 

 

Gw 0 w value={(I(Emem)*Ron*uv/D)*f((V(w)-offset)/D,I(Emem),p)} 

* value={(I(Emem)*Ron*uv/D)} 

*+ value={(I(Emem)*Ron*uv/D)*f((V(w)-offset)/D,I(Emem),p)} 

Shigh w n1 w 0 highSW 

Slow w n2 w 0 lowSW 

Vhigh n1 0 DC {D+offset} 

Vlow n2 0 DC {offset} 

Cw w 0 10n 

 

 

.FUNC f(x,i,p)={1-(x-stp(-i))**(2*p)} 

.MODEL highSW SW(Ron=1n Roff=1G Vt={D+offset}) 

.MODEL lowSW SW(Ron=1G Roff=1n Vt={offset}) 

.ENDS memristor 
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Appendix B: Netlist for Non-volatile D-Latch (NVDL.lib) 

 

 

.SUBCKT NVDL VDD D CLK READ CTRL Q Q_ PARAMS: 

+ PL=32n PW=2u NL=32n NW=1u 

 

 

M1 D CLK Q 0 NMOS_32n L=NL W=NW 

M2 VDD Q_ Q VDD PMOS_32n L=PL W=PW 

M3 0 Q_ Q 0 NMOS_32n L=NL W=NW 

M4 VDD Q Q_ VDD PMOS_32n L=PL W=PW 

M5 0 Q Q_ 0 NMOS_32n L=NL W=NW 

M6 Q_ SWL N001 VDD PMOS_32n L=PL W=PW 

M7 N002 SWL Q VDD PMOS_32n L=PL W=PW 

 

 

XU1 N002 CTRL memristor 

XU2 N001 CTRL memristor 

 

 

A1 CLK READ 0 0 0 SWL 0 0 OR 

 

 

.LIB MEMRISTOR.lib 

.LIB PTM_MOS.lib 

.ENDS NVDL 
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Appendix C: Netlist for Memristive D Flip-flop (MDFF.lib) 

 

 

.SUBCKT MDFF VDD D CLK READ CTRL Q Q_ PARAMS: 

+ PL=32n PW=2u NL=32n NW=1u 

 

 

M1 Q SWL N006 VDD PMOS_32n L=PL W=PW 

M2 Q_ SWL N005 VDD PMOS_32n L=PL W=PW 

M3 N003 CLK N001 0 NMOS_32n L=NL W=NW 

M4 VDD N001 N002 VDD PMOS_32n L=PL W=PW 

M5 0 N001 N002 0 NMOS_32n L=NL W=NW 

M6 VDD N002 N003 VDD PMOS_32n L=PL W=PW 

M7 0 N002 N003 0 NMOS_32n L=NL W=NW 

M8 Q_ CLK N004 VDD PMOS_32n L=PL W=PW 

M9 VDD N004 Q VDD PMOS_32n L=PL W=PW 

M10 0 N004 Q 0 NMOS_32n L=NL W=NW 

M11 VDD Q Q_ VDD PMOS_32n L=PL W=PW 

M12 0 Q Q_ 0 NMOS_32n L=NL W=NW 

 

 

M§T1 N001 CLK D VDD PMOS_32n L=PL W=PW 

M§T2 N002 CLK N004 0 NMOS_32n L=NL W=NW 

 

 

A1 CLK READ 0 0 0 SWL 0 0 OR 

 

 

XU1 N006 CTRL memristor 

XU2 N005 CTRL memristor 

 

 

.LIB MEMRISTOR.lib 

.LIB PTM_MOS.lib 

.ENDS MDFF 
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Appendix D: Netlist for 2TG1M memory cell (2TG1M.lib) 

 

 

.SUBCKT 2TG1M D D_ W W_ 

 

 

XTG1 D N001 W W_ T_GATE 

XMemristor N001 N002 memristor 

XTG2 N002 D_ W W_ T_GATE 

 

 

.LIB MEMRISTOR.lib 

.LIB T_GATE.lib 

.ENDS 2TG1M 
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Appendix E: Netlist for Transmission Gate (T_GATE.lib) 

 

 

.SUBCKT T_GATE IN OUT GATE1 GATE2 VSS PARAMS: 

+ PL=32n PW=2u NL=32n NW=1u 

 

 

M1 IN GATE1 OUT 0 NMOS_32n L=NL W=NW 

M2 OUT GATE2 IN VSS PMOS_32n L=PL W=PW 

 

 

.LIB PTM_MOS.lib 

.ENDS T_GATE 
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Appendix F: Netlist for CMOS inverter (INVERTER.lib) 

 

 

.SUBCKT INVERTER IN OUT PARAMS: 

+ PL=32n PW=64n NL=32n NW=32n 

 

 

Vdd VDD 0 DC 1 

M1 OUT IN VDD VDD PMOS_32n L=PL W=PW 

M2 OUT IN 0 0 NMOS_32n L=NL W=NW 

 

 

.LIB PTM_MOS.lib 

.ENDS INVERTER 
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Appendix G: Netlist for 6-bit Non-Volatile Look-Up Table (NVLUT.lib) 

 

 

.SUBCKT NVLUT DATA EN RD ADD1 ADD2 ADD3 ADD4 ADD5 ADD6 VCC OUT 

 

 

XUB1 ADD1 WRITE1_ INVERTER 

XUB2 ADD2 WRITE2_ INVERTER 

XUB3 ADD3 WRITE3_ INVERTER 

XUB4 ADD4 WRITE4_ INVERTER 

XUB5 ADD5 WRITE5_ INVERTER 

XUB6 ADD6 WRITE6_ INVERTER 

XUB7 WRITE1_ WRITE1 INVERTER 

XUB8 WRITE2_ WRITE2 INVERTER 

XUB9 WRITE3_ WRITE3 INVERTER 

XUB10 WRITE4_ WRITE4 INVERTER 

XUB11 WRITE5_ WRITE5 INVERTER 

XUB12 WRITE6_ WRITE6 INVERTER 

 

 

XUA0 DATA N001 INVERTER 

XUA1 ADD1 N004 INVERTER 

XUA2 ADD2 N005 INVERTER 

XUA3 ADD3 N006 INVERTER 

XUA4 ADD4 N007 INVERTER 

XUA5 ADD5 N008 INVERTER 

XUA6 ADD6 N009 INVERTER 

XUA7 ADD7 N010 INVERTER 

XUA8 ADD8 N011 INVERTER 

XUA9 ADD9 N012 INVERTER 

XUA10 ADD10 N013 INVERTER 

XUA11 ADD11 N014 INVERTER 

XUA12 ADD12 N015 INVERTER 

XUA13 ADD13 N016 INVERTER 

XUA14 ADD14 N017 INVERTER 

XUA15 ADD15 N018 INVERTER 

XUA16 ADD16 N019 INVERTER 

XUA17 ADD17 N020 INVERTER 

XUA18 ADD18 N021 INVERTER 

XUA19 ADD19 N022 INVERTER 

XUA20 ADD20 N023 INVERTER 

XUA21 ADD21 N024 INVERTER 

XUA22 ADD22 N025 INVERTER 

XUA23 ADD23 N026 INVERTER 

XUA24 ADD24 N027 INVERTER 

XUA25 ADD25 N028 INVERTER 

XUA26 ADD26 N029 INVERTER 

XUA27 ADD27 N030 INVERTER 

XUA28 ADD28 N031 INVERTER 

XUA29 ADD29 N032 INVERTER 

XUA30 ADD30 N033 INVERTER 

XUA31 ADD31 N034 INVERTER 

XUA32 ADD32 N035 INVERTER 

XUA33 ADD33 N036 INVERTER 

XUA34 ADD34 N037 INVERTER 

XUA35 ADD35 N038 INVERTER 

XUA36 ADD36 N039 INVERTER 

XUA37 ADD37 N040 INVERTER 

XUA38 ADD38 N041 INVERTER 

XUA39 ADD39 N042 INVERTER 

XUA40 ADD40 N043 INVERTER 

XUA41 ADD41 N044 INVERTER 

XUA42 ADD42 N045 INVERTER 
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XUA43 ADD43 N046 INVERTER 

XUA44 ADD44 N047 INVERTER 

XUA45 ADD45 N048 INVERTER 

XUA46 ADD46 N049 INVERTER 

XUA47 ADD47 N050 INVERTER 

XUA48 ADD48 N051 INVERTER 

XUA49 ADD49 N052 INVERTER 

XUA50 ADD50 N053 INVERTER 

XUA51 ADD51 N054 INVERTER 

XUA52 ADD52 N055 INVERTER 

XUA53 ADD53 N056 INVERTER 

XUA54 ADD54 N057 INVERTER 

XUA55 ADD55 N058 INVERTER 

XUA56 ADD56 N059 INVERTER 

XUA57 ADD57 N060 INVERTER 

XUA58 ADD58 N061 INVERTER 

XUA59 ADD59 N062 INVERTER 

XUA60 ADD60 N063 INVERTER 

XUA61 ADD61 N064 INVERTER 

XUA62 ADD62 N065 INVERTER 

XUA63 ADD63 N066 INVERTER 

XUA64 ADD64 N067 INVERTER 

 

 

XUA65 EN EN_ INVERTER 

XUA66 RD RD_ INVERTER 

XU65 N001 N002 EN EN_ T_GATE 

XU67 N002 N003 RD RD_ T_GATE 

 

 

XU1 DATA N002 ADD1 N004 2TG1M 

XU2 DATA N002 ADD2 N005 2TG1M 

XU3 DATA N002 ADD3 N006 2TG1M 

XU4 DATA N002 ADD4 N007 2TG1M 

XU5 DATA N002 ADD5 N008 2TG1M 

XU6 DATA N002 ADD6 N009 2TG1M 

XU7 DATA N002 ADD7 N010 2TG1M 

XU8 DATA N002 ADD8 N011 2TG1M 

XU9 DATA N002 ADD9 N012 2TG1M 

XU10 DATA N002 ADD10 N013 2TG1M 

XU11 DATA N002 ADD11 N014 2TG1M 

XU12 DATA N002 ADD12 N015 2TG1M 

XU13 DATA N002 ADD13 N016 2TG1M 

XU14 DATA N002 ADD14 N017 2TG1M 

XU15 DATA N002 ADD15 N018 2TG1M 

XU16 DATA N002 ADD16 N019 2TG1M 

XU17 DATA N002 ADD17 N020 2TG1M 

XU18 DATA N002 ADD18 N021 2TG1M 

XU19 DATA N002 ADD19 N022 2TG1M 

XU20 DATA N002 ADD20 N023 2TG1M 

XU21 DATA N002 ADD21 N024 2TG1M 

XU22 DATA N002 ADD22 N025 2TG1M 

XU23 DATA N002 ADD23 N026 2TG1M 

XU24 DATA N002 ADD24 N027 2TG1M 

XU25 DATA N002 ADD25 N028 2TG1M 

XU26 DATA N002 ADD26 N029 2TG1M 

XU27 DATA N002 ADD27 N030 2TG1M 

XU28 DATA N002 ADD28 N031 2TG1M 

XU29 DATA N002 ADD29 N032 2TG1M 

XU30 DATA N002 ADD30 N033 2TG1M 

XU31 DATA N002 ADD31 N034 2TG1M 

XU32 DATA N002 ADD32 N035 2TG1M 

XU33 DATA N002 ADD33 N036 2TG1M 

XU34 DATA N002 ADD34 N037 2TG1M 

XU35 DATA N002 ADD35 N038 2TG1M 

XU36 DATA N002 ADD36 N039 2TG1M 

XU37 DATA N002 ADD37 N040 2TG1M 

XU38 DATA N002 ADD38 N041 2TG1M 
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XU39 DATA N002 ADD39 N042 2TG1M 

XU40 DATA N002 ADD40 N043 2TG1M 

XU41 DATA N002 ADD41 N044 2TG1M 

XU42 DATA N002 ADD42 N045 2TG1M 

XU43 DATA N002 ADD43 N046 2TG1M 

XU44 DATA N002 ADD44 N047 2TG1M 

XU45 DATA N002 ADD45 N048 2TG1M 

XU46 DATA N002 ADD46 N049 2TG1M 

XU47 DATA N002 ADD47 N050 2TG1M 

XU48 DATA N002 ADD48 N051 2TG1M 

XU49 DATA N002 ADD49 N052 2TG1M 

XU50 DATA N002 ADD50 N053 2TG1M 

XU51 DATA N002 ADD51 N054 2TG1M 

XU52 DATA N002 ADD52 N055 2TG1M 

XU53 DATA N002 ADD53 N056 2TG1M 

XU54 DATA N002 ADD54 N057 2TG1M 

XU55 DATA N002 ADD55 N058 2TG1M 

XU56 DATA N002 ADD56 N059 2TG1M 

XU57 DATA N002 ADD57 N060 2TG1M 

XU58 DATA N002 ADD58 N061 2TG1M 

XU59 DATA N002 ADD59 N062 2TG1M 

XU60 DATA N002 ADD60 N063 2TG1M 

XU61 DATA N002 ADD61 N064 2TG1M 

XU62 DATA N002 ADD62 N065 2TG1M 

XU63 DATA N002 ADD63 N066 2TG1M 

XU64 DATA N002 ADD64 N067 2TG1M 

 

 

XUZ1 WRITE1_ WRITE2_ ADD1 WRITE1 WRITE2_ ADD2 GATE1 WRITE2 WRITE1_ ADD3 

WRITE2 WRITE1  

+ ADD4 0 74HC08 

XUZ2 WRITE1_ WRITE2_ ADD5 WRITE1 WRITE2_ ADD6 GATE2 WRITE2 WRITE1_ ADD7 

WRITE2 WRITE1  

+ ADD8 0 74HC08 

XUZ3 WRITE1_ WRITE2_ ADD9 WRITE1 WRITE2_ ADD10 GATE3 WRITE2 WRITE1_ ADD11 

WRITE2  

+ WRITE1 ADD12 0 74HC08 

XUZ4 WRITE1_ WRITE2_ ADD13 WRITE1 WRITE2_ ADD14 GATE4 WRITE2 WRITE1_ ADD15 

WRITE2  

+ WRITE1 ADD16 0 74HC08 

XUY1 WRITE3_ WRITE4_ GATE1 WRITE3 WRITE4_ GATE2 GATEX1 WRITE4 WRITE3_ GATE3 

WRITE4  

+ WRITE3 GATE4 0 74HC08 

XUZ5 WRITE1_ WRITE2_ ADD17 WRITE1 WRITE2_ ADD18 GATE5 WRITE2 WRITE1_ ADD19 

WRITE2  

+ WRITE1 ADD20 0 74HC08 

XUZ6 WRITE1_ WRITE2_ ADD21 WRITE1 WRITE2_ ADD22 GATE6 WRITE2 WRITE1_ ADD23 

WRITE2  

+ WRITE1 ADD24 0 74HC08 

XUZ7 WRITE1_ WRITE2_ ADD25 WRITE1 WRITE2_ ADD26 GATE7 WRITE2 WRITE1_ ADD27 

WRITE2  

+ WRITE1 ADD28 0 74HC08 

XUZ8 WRITE1_ WRITE2_ ADD29 WRITE1 WRITE2_ ADD30 GATE8 WRITE2 WRITE1_ ADD31 

WRITE2  

+ WRITE1 ADD32 0 74HC08 

XUZ9 WRITE1_ WRITE2_ ADD33 WRITE1 WRITE2_ ADD34 GATE9 WRITE2 WRITE1_ ADD35 

WRITE2  

+ WRITE1 ADD36 0 74HC08 

XUZ10 WRITE1_ WRITE2_ ADD37 WRITE1 WRITE2_ ADD38 GATE10 WRITE2 WRITE1_ ADD39 

WRITE2  

+ WRITE1 ADD40 0 74HC08 

XUZ11 WRITE1_ WRITE2_ ADD41 WRITE1 WRITE2_ ADD42 GATE11 WRITE2 WRITE1_ ADD43 

WRITE2  

+ WRITE1 ADD44 0 74HC08 

XUZ12 WRITE1_ WRITE2_ ADD45 WRITE1 WRITE2_ ADD46 GATE12 WRITE2 WRITE1_ ADD47 

WRITE2  

+ WRITE1 ADD48 0 74HC08 
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XUZ13 WRITE1_ WRITE2_ ADD49 WRITE1 WRITE2_ ADD50 GATE13 WRITE2 WRITE1_ ADD51 

WRITE2  

+ WRITE1 ADD52 0 74HC08 

XUZ14 WRITE1_ WRITE2_ ADD53 WRITE1 WRITE2_ ADD54 GATE14 WRITE2 WRITE1_ ADD55 

WRITE2  

+ WRITE1 ADD56 0 74HC08 

XUZ15 WRITE1_ WRITE2_ ADD57 WRITE1 WRITE2_ ADD58 GATE15 WRITE2 WRITE1_ ADD59 

WRITE2  

+ WRITE1 ADD60 0 74HC08 

XUZ16 WRITE1_ WRITE2_ ADD61 WRITE1 WRITE2_ ADD62 GATE16 WRITE2 WRITE1_ ADD63 

WRITE2  

+ WRITE1 ADD64 0 74HC08 

XUY2 WRITE3_ WRITE4_ GATE5 WRITE3 WRITE4_ GATE6 GATEX2 WRITE4 WRITE3_ GATE7 

WRITE4  

+ WRITE3 GATE8 0 74HC08 

XUY3 WRITE3_ WRITE4_ GATE9 WRITE3 WRITE4_ GATE10 GATEX3 WRITE4 WRITE3_ GATE11 

WRITE4  

+ WRITE3 GATE12 0 74HC08 

XUY4 WRITE3_ WRITE4_ GATE13 WRITE3 WRITE4_ GATE14 GATEX4 WRITE4 WRITE3_ 

GATE15 WRITE4  

+ WRITE3 GATE16 0 74HC08 

XUX1 WRITE5_ WRITE6_ GATEX1 WRITE5 WRITE6_ GATEX2 VCC WRITE6 WRITE5_ GATEX3 

WRITE6  

+ WRITE5 GATEX4 0 74HC08 

 

 

XU66 N003 VDD2 VDD1 0 OUT level.2 Avol=1Meg GBW=100G Slew=100G ilimit=25m 

rail=0  

+ Vos=0 phimargin=45 en=0 enk=0 in=0 ink=0 Rin=500Meg 

R1 N003 0 10k 

VDD2 VDD2 0 0.5 

VDD1 VDD1 0 1.0 

 

 

.LIB MEMRISTOR.lib 

.LIB T_GATE.lib 

.LIB INVERTER.lib 

.LIB PTM_MOS.lib 

.LIB 74HC08.lib 

.LIB 2TG1M.lib 

.LIB UniversalOpamps2.sub 

.ENDS NVLUT 
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Appendix H: Netlist for 7T1M SRAM cell (7T1M.lib) 

 

 

.SUBCKT 7T1M D RD EN Q Q_ VDD PARAMS: 

+ PL=32n PW=2u NL=32n NW=1u RR=10k 

 

 

M1 0 Q_ Q 0 NMOS_32n L=NL W=NW 

M2 VDD Q_ Q VDD PMOS_32n L=PL W=PW 

M3 0 Q Q_ 0 NMOS_32n L=NL W=NW 

M4 VDD Q Q_ VDD PMOS_32n L=PL W=PW 

M6 D WORD Q 0 NMOS_32n L=NL W=NW 

M5 Q RD N001 0 NMOS_32n L=NL W=NW 

M7 N002 EN Q 0 NMOS_32n L=NL W=NW 

 

 

XM N002 CTRL memristor 

Rref 0 N001 RR 

 

 

.LIB PTM_MOS.lib 

.LIB MEMRISTOR.lib 

.ENDS 7T1M 

 

 

 


