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Abstract  15 

Microbes are susceptible to contaminant effects, and high concentration of chemicals in soil can impact on 16 

microbial growth, density, viability and development. The impact of single and binary mixtures of phenanthrene 17 

and its nitrogen-containing polycyclic aromatic hydrocarbon analogues (N-PAHs) on microbial metabolism of 18 

14C-glucose in soil was measured over a 90 d soil-contact time. Impacts were assessed by measuring the rates and 19 

mean overall extents of mineralisation (%), as well as the incorporation of 14C-glucose into the microbial biomass. 20 

The result revealed that the extents of 14C-glucose mineralisation were consistently greater in N-PAH amended 21 

soils than the control and phenanthrene soils with increased incubations. This indicates a trend of increasing 22 

diversion of C from biosynthesis to maintenance requirement by soil microorganisms. Furthermore, biomass 23 

uptake in the amended soils showed reduced substrate utilization (fixed-kEC), suggesting that N-PAHs decreased 24 

the amount of substrate-C that was incorporated into the microbial biomass. This however, signifies that N-PAHs 25 

imposes oxidative stress on soil microbial community. 26 

 27 

Key words: N-PAHs, phenanthrene, 14C-biomass uptake, mineralisation, kEC coefficient. 28 
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1. Introduction 31 

The importance of microbial activity in the cycling of organic matter and regulating active nutrient pools suggests 32 

that the effects of stress on microbial community will fundamentally impact on crops, natural vegetation and 33 

ecosystem productivity (Killham, 1985; Anyanwu and Semple, 2016a; Siles and Margesin, 2017). Soil 34 

microorganisms are very sensitive to environmental stress or change, and this often results in the diversion of 35 

carbon from biosynthesis to maintenance of cells (Bargett and Saggar, 1994; Anyanwu and Semple, 2016a). Thus, 36 

soil microbial biomass measurements are important in ascertaining the extent of chemical stress and/or 37 

disturbance on soil ecosystem and the time dependence of microbial recovery. Most studies have used respiration 38 

rate (Fournier et al., 1992; Nakamoto and Wakahara, 2004; Anyanwu and Semple, 2016a; Sun et al., 2017; Xu et 39 

al., 2017) and changes in biomass (Anyanwu and Semple, 2016a; Mehnaz et al., 2017; Siles and Margesin, 2017). 40 

Using a 14C-substrate, the influence of synthetic and organophosphate sheep dip formulations (Boucard et al., 41 

2008), pesticides (Fournier et al., 1992), heavy metals (Bargett and Saggar, 1994; Bogomolov et al., 1996), sewage 42 

sludge (Flieβbach et al., 1994; Witter and Dahlin, 1995) and the ratio of 14C-biomass-incorporated with 14C-43 

respired (Sparling and West, 1989; Sparling et al, 1990; Gunina et al., 2017), have been determined on soil 44 

microbial activity. The approach of using 14C-glucose as a substrate to determine the ratio of respired-C, to 45 

biomass-incorporated C, has shown that microorganisms in contaminated soils are less efficient in the utilization 46 

of substrates for biomass synthesis and spend more energy in the maintenance requirements (Bargett and Saggar, 47 

1994; Witter and Dahlin, 1995; Anyanwu and Semple, 2016a; Gunina et al., 2017). Thus, leading to a decrease in 48 

the ratio, increases in stress, faster respiration, reduced efficiency of fresh substrate incorporation into new soil 49 

microbial biomass and increased microbial turnover in contaminated soils (Fliebβach et al., 1994; Bargett and 50 

Saggar, 1994; Witter and Dahlin, 1995; Boucard et al., 2008; Gunina et al., 2017; Bore et al., 2017). These studies 51 

have revealed that the growth, activity and physiological conditions of soil microbial community may be altered 52 

and/or destroyed by the presence of contaminants.  53 

Persistent contaminants are of particular concern due to their toxicity and widespread pollution that has occurred 54 

during production, spills, combustion and disposition (Beelen and Doelman, 1997; Anyanwu and Semple, 2015a); 55 

examples include metals, pesticides and polycyclic aromatic hydrocarbons (PAHs). However, for sustainable 56 

environmental policies and regulations, risk assessment of other persistent contaminants such as, the nitrogen-57 

containing polycyclic aromatic hydrocarbons (N-PAHs) in the environment is of great importance. N-PAHs are 58 

chemicals present in most contaminated sites worldwide and represent two-thirds of known organic xenobiotic 59 
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chemically synthesized (Rajasekhar et al., 2000; Anyanwu and Semple, 2015a). For example, they are used as 60 

industrial solvents, dyes, explosives, pharmaceuticals and pesticides (Kaiser et al., 1996). The US Environmental 61 

Protection Agency (USEPA) and International Agency for Research on Cancer (IARC) classified N-PAHs as 62 

probable human carcinogens (IARC, 2012). Furthermore, many of these N-PAHs are antimicrobial (Vance et al., 63 

1986; Ferraz et al., 2017); therefore, their accumulation is a major threat to microbes because they have the 64 

potency of inducing oxidative stress to soil microorganisms and other biotas.  65 

Despite the widespread uses of N-PAHs, and previous N-PAHs studies in literature (Anyanwu and Semple, 2015a; 66 

2015b; 2016a; Anyanwu et al., 2017), there has not been information of their impacts on microbial utilization of 67 

14C-glucose and/or synthesis of cell biomass in soil. Functionally, microbes can act as relevant indicators of 68 

environmental pollution; as a result, there is great need to assess the impact of N-PAHs on soil microbial 69 

metabolism and biosynthesis of cell biomass. In this study therefore, the impact of single and binary mixtures of 70 

phenanthrene and its nitrogen-containing analogues on microbial utilization of 14C-glucose was investigated over 71 

a 90 d incubation period in soil using respirometric assays. 72 

 73 

2. Materials and Methods 74 

2.1 Chemicals  75 

Phenanthrene (Phen), 1,10-phenanthroline (1,10-Phen), 1,7-phenanthroline (1,7-Phen), 4,7-phenanthroline (4,7-76 

Phen) and benzo[h]quinoline (B[h]Q) and radiolabelled 14C-glucose were obtained from Sigma-Aldrich, UK. 77 

Goldstar liquid scintillation cocktails were supplied by Meridian Biotechnologies Ltd, UK. 78 

 79 

2.2 Soil preparation 80 

A pristine agricultural soil from Myerscough, UK, collected from the top layer of field under pasture, from a depth 81 

of approximately 5-20 cm was prepared for the study (n = 3). The soil texture was sandy-loam (19.5% clay, 60.4% 82 

sand, 20.0% silt), with organic matter content of 2.7%; total nitrogen of 0.14%; total organic carbon of 1.6% and 83 

pH 6.5. The soil was thoroughly homogenized, air dried at room temperature and sieved with 2 mm mesh size. 84 

The soil was rehydrated with deionised water back to 45% water holding capacity (WHC) and amended with 85 

phenanthrene and the N-PAH analogues as described in Doick et al. (2003). Soil samples were placed in bowls: 86 
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1/3 (100 g; n = 3) were amended with phenanthrene and four N-PAH standards (benzo[h]quinoline, 1,10-87 

phenanthroline, 1,7-phenanthroline or 4,7-phenanthroline) dissolved in acetone to give concentration of 100 mg 88 

kg-1. The amended soils were kept in the fume hood for 3 h to allow the carrier solvent volatilize, after which the 89 

soils were mixed with the remaining ⅔ (200 g). Blanks were prepared using un-amended soils. Soils amended 90 

with acetone only were also prepared to serve as a control. The amended soils were kept in amber glass jars and 91 

aged in the dark at 21 ± 1oC for 1, 30, 60 and 90 d. Soil moisture content was checked regularly and lost water 92 

was replenished with deionized water. After each ageing time (30 d interval), soils were analysed for microbial-93 

substrate-mineralisation and biomass uptake. Extractability of phenanthrene and the N-PAH analogues from soil 94 

over time, and their percentage recoveries has been reported by Anyanwu and Semple (2015b, 2016a) (Table 1). 95 

 96 

2.3 Mineralisation o f 14C-glucose in soil. 97 

The ability of indigenous soil microorganisms to mineralise 14C-glucose to 14CO2 was assessed at 1, 30, 60 and 90 98 

d contact time. Respirometric assays were carried out in modified 250 ml Schott bottles incorporating a Teflon-99 

lined screw cap containing 1 M NaOH to trap any 14CO2 (Reid et al., 2001). A slurry system with a solid: liquid 100 

ratio of 2:1 (20 g soil: 10 ml sterile water) was used to ensure complete 12/14C-glucose distribution. Standards were 101 

prepared in sterilized deionised water and delivered to give a 12C-glucose concentration of 3 mM glucose solution 102 

with an associated 14C-activity of 800 Bq per respirometer. Controls were also prepared. Respirometers were 103 

shaken at 100 rpm on an orbital shaker (Janke and Kunkel, IKA®-Labortechnik KS 510D), in the dark at 21±1oC. 104 

Sampling was carried out every 1, 2, 4, 6, 8, 12, 24 h and 2, 3, 4, 5 d with the vials containing trapped 14CO2. 105 

Goldstar liquid scintillation cocktail was added to the vials. The vials were stored in the dark for 24 h before 106 

sample quantification was carried out by liquid scintillation counting (LSC) using standard calibration and quench 107 

correction techniques (Reid et al., 2001).  108 

 109 

2.4 Uptake of 14C glucose into microbial biomass 110 

After each 5 d incubation, soil samples from respirometers were divided into three portions and analysed as 111 

follows: 112 

a) Sample oxidation: The first sample was oven dried at 30oC and combusted in a sample oxidizer (Packard 113 

307) to determine the level of 14C-activity remaining (i.e. residual 14C-activity in soil). Soil (1 g), plus 114 
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200 µl of combustAid was combusted for 3 min. Carbon-sorb-E (10 ml) and Permaflour-E (10 ml) was 115 

used as CO2 trap and scintillation fluid, respectively. Sample quantification was carried out using LSC. 116 

b) Un-fumigated extraction: The second sample (~4 g) was immediately extracted with 0.5 M K2SO4 (50 117 

ml, pH 7) by shaking on an orbital shaker at 100 rpm for 30 min. The soil solutions were filtered using 118 

Whatman No 1 filter papers and an aliquot of 5 ml supernatant was added to 15 ml scintillation cocktail. 119 

The quantification of 14C-activity was carried out using the LSC. 120 

c) Fumigated extraction: The third sample (~4 g) was placed in a desiccator and fumigated with ethanol-121 

free chloroform for 24 h to measure the 14C-activity within microbial biomass. After fumigation, the 122 

samples were vented to remove chloroform residuals in the soil. After venting, samples were extracted 123 

with 0.5 M K2SO4, filtered (using Whatman No 1 filter papers) and analysed as per the un-fumigated 124 

extract.  125 

 126 

2.5 Statistical analysis 127 

The proportion of 14C-glucose incorporated into the microbial biomass was calculated as in Sparling et al. (1990) 128 

and Boucard et al. (2008). 129 

14C-flush = 14C-activity in fumigated soil – 14C-activity in un-fumigated soil. 130 

14C-microbial biomass = 14C-flush ÷ kEC. 131 

1. A fixed kEC coefficient (0.35) was used to convert C-flush into microbial biomass Sparling et al., 1990; 132 

Boucard et al., 2008). 133 

2. Variable kEC coefficients were also calculated from each amendment, at all the ageing times, and the 14C-134 

microbial biomass was re-calculated with the new coefficient. This process is based on the assumption 135 

that; the calculated 14C-labelled microbial-C is a representative of the total microbial biomass and that 136 

all the 14C-activity not taken into account by mineralisation and un-fumigated soil extraction has been 137 

incorporated into the microbial biomass with negligible amount of extracellular metabolite (Sparling et 138 

al., 1990; Boucard et al., 2008). 139 

kEC = (14C-flush) ÷ (14Cinit.– 14C-respired – 14C-activity in un-fumigated soil). 140 

14C-flush and 14C-microbial biomass were later on expressed as percentages of the initial 14C-activity 141 

(14Cinit.). 142 
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3. Biophysical quotients (BQ) were calculated as: 143 

BQ = 14CO2 respired ÷ 14C-microbial biomass (calculated from either fixed or variable kEC). 144 

Following blank corrections, data was statistically analysed using SigmaStat 3.5. Statistical significant differences 145 

between the impacts of phenanthrene, N-PAHs, and soil contact time on soil microbial activity following addition 146 

of 14C-glucose was determined using analysis of variance (ANOVA). The statistical difference between the 147 

biomass calculated with fixed and variable kEC was also determined. Results are statistically significant when 148 

p<0.05. Data was presented as mean ± SE and graphs were plotted using Sigma-Plot 10.0 version.  149 

 150 

3. Results 151 

3.1 Mineralisation of 14C-glucose to 14CO2 by soil microorganisms 152 

The mineralisation of 14C-glucose in the presence of 100 mg kg-1 phenanthrene and its N-PAH analogues was 153 

measured (Fig. 1 and 2). Upon the addition of glucose, there was a considerable increase in % mineralisation in 154 

the presence of the amended chemicals. However, the mineralisation of the 14C-substrate (glucose) in the presence 155 

of benzo[h]quinoline (B[h]Q) soil was reduced at 1 d compared to the control soils (Fig. 1 and 2).  156 

The fastest rates of mineralisation were determined (Table 2), and the fastest rates (% 14CO2 h-1) recorded 157 

maximum values after 24 h following addition of 14C-glucose in all the amendments at all of the time points with 158 

the exception of 4,7-Phen, B[h]Q and Phen, which recorded their fastest rates 48 h after addition of 14C-glucose 159 

(30 d) (Table 2). Furthermore, 1,10-Phen (single amendment) and 1,10-Phen + Phen (binary mixtures) recorded 160 

maximum fastest rates at 6 h (90 d). From the data, the fastest rates followed a trend of decreased values with 161 

increases in the soil-contact time. However, 1,7-Phen and B[h]Q amendments showed a dramatic rise of 50% and 162 

70%, respectively, after  90 d (Table 2).  163 

The extents of mineralisation (total 14CO2-respired (%)) were determined (Table 2). The results revealed that the 164 

extents of mineralisation of 14C-glucose appeared to be consistently greater in amended soils than the control soils 165 

with increase in ageing time; with the exception of 1,10-Phen, 4,7-Phen and Phen amended soils (90 d). The 166 

overall extent of mineralisation followed a trend of increased 14C-glucose mineralisation at 1 d in all the 167 

amendments. Among the N-PAHs, however, B[h]Q soils recorded increased mineralisation with increase in soil-168 

contact time, but, this declined a little at 90 d (Table 2).  169 
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While the extents of mineralisation in the single amendments displayed decreased and increased values, a 170 

consistent decrease in 14C-glucose mineralisation was observed in the binary mixtures over time (Table 2). 171 

Analysis of data among the treatment groups showed no statistically significant differences between the mean 172 

values at 1 d (p>0.05); however, statistically significant differences was observed after 30 d (p<0.05) (Table 2). 173 

Furthermore, statistical analysis of data showed statistically significance differences between phenanthrene and 174 

N-PAH amended soils over time (p<0.05). In addition, incubation times were observed to affect the % 175 

mineralisation of 14C-glucose in all the amendments at all the time points (p<0.001).  176 

 177 

3.2 Impact of phenanthrene and N-PAHs on the kEC coefficients 178 

The impact of 100 mg/kg phenanthrene and its nitrogen-containing analogues on the kEC coefficients was 179 

calculated (Table 2). It was noted that the fumigation-extraction released 0.3–15% of the incorporated microbial-180 

C giving the calculated kEC ranges of 0.003–0.149. However, variation among the chemical amendments was 181 

observed in the calculated kEC values obtained after the fumigation-extraction (Table 2). Furthermore, the 182 

calculated kEC
 values (0.003–0.149) were lower than the fixed kEC value (0.35) in all the amendments (Table 2). 183 

Although the data showed a disparaging statistical difference, all the amendments showed a similar trend of low 184 

kEC
 values at 1 d and 60 d and high kEC

 values at 30 d and 90 d (with the exception of Phen and 1,7-Phen + Phen 185 

chemicals). Also, the presence of 1,10-Phen and 1,7-Phen in soil recorded lower kEC coefficients (30 d and 60 d) 186 

compared to the control soil values (Table 2).  187 

Soils amended with binary mixtures of phenanthrene and N-PAHs recorded low, but varying kEC
 values compared 188 

to the control soils at all the time points. For example, while control fixed kEC values ranged from 3.06 ± 0.87 – 189 

19.92 ± 3.65, values of 0.66 ± 0.13 – 15.08 ± 3.47 and 1.12 ± 0.11 – 9.93 ± 1.22 (fixed kEC) were recorded in the 190 

single amendments and binary mixtures, respectively. Also, while control values for variable kEC = 46.67 ± 8.55 191 

– 63.45 ± 18.1, values range of 34.03 ± 3.11 – 62.45 ± 11.22 and 41.45 ± 1.93 – 59.37 ± 9.45 (variable kEC) were 192 

measured (single amendments and binary mixtures, respectively) (Table 2). In addition, the calculated kEC values 193 

of 0.003 ± 0.00 – 0.140 ± 0.03 (single amendments), and 0.007 ± 0.00 – 0.013 ± 0.00 (binary mixtures) was 194 

obtained, while, control values = 0.016 ± 0.00 – 0.149 ± 0.02 (Table 2). Furthermore, incubation time was noted 195 

to have statistically significant effect on the kEC
 values in binary mixtures (p<0.001). Although not consistent, 196 

there was a trend of increases in the extraction efficiency of K2SO4 at 30 d and 90 d.  197 
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 198 

3.3 Uptake of 14C-glucose into microbial biomass 199 

The incorporation of the 14C-susbstrate into the microbial biomass in soils amended with 100 mg/kg single and 200 

binary mixtures of phenanthrene and the N-PAH analogues were calculated using fixed and variable kECS, 201 

respectively (Table 2). Although not showing a consistent trend, the results showed that increase in fixed kEC 202 

values, lead to decrease in variable kEC values and vice versa in all the amendments, with the exception of B[h]Q 203 

amendment (Table 2). Statistical analysis of data showed statistically significant differences in the calculated data 204 

for both the fixed and variable kEC values obtained after 1 d – 90 d soil-contact time (p<0.001). Also, there was a 205 

consistent trend of higher values in the C-flush resulting in higher biomass values (fixed kEC) and lower biomass 206 

values (variable kEC) (Table 2).  207 

The BQs (using biomass values calculated with fixed and variable kECs) was determined, and the results differed 208 

significantly in all the amendments at all the time points (Table 2). For example, BQs calculated with the fixed 209 

kEC varied widely compared to that of the variable kEC. Furthermore, the amended soils recorded significant BQ 210 

values at 1 d compared with the control soils (p<0.05); and Phen amendment recorded the highest BQ value of 211 

54.76% (Table 2). A trend of high BQ values at 1 d and 60 d (fixed kEC), and low values at 30 d and 90 d (variable 212 

kEC) was observed in all of the amendments (Table 2). Among the chemical amendments, B[h]Q showed a 213 

consistent increase in BQ value with increased ageing, recording values >1 (p<0.05). Although showing high 214 

variability, the calculated BQs recorded high values with increased ageing in the binary mixtures. 215 

 216 

4. Discussion 217 

4.1 Mineralisation of 14C-glucose to 14CO2 by soil microorganisms 218 

The impact of single and binary mixtures of phenanthrene and its nitrogen-containing analogues on microbial 219 

utilisation of 14C-glucose in soil was studied over a 90-d incubation. Loss of phenanthrene, benzo[h]quinoline, 220 

1,10-phenanthroline, 1,7-phenanthroline or 4,7-phenanthroline through volatilisation was considered minimal due 221 

to the sealed nature of the incubations (Hofman et al., 2008; Towell et al., 2011). From the results, mineralisation 222 

of 14C-glucose was greater in the N-PAHs amended soils than the control soil after 1 d; indicating that 223 

microorganisms utilized energy for cell maintenance rather than biosynthesis of new cells. This phenomenon 224 
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agrees with the observations of Bargett and Saggar (1994), Witter and Dahlin (1995), Chnader and Joergensen 225 

(2001), Boucard et al. (2008), and Bore et al. (2017). In support, Flieβbach et al. (1994) reported that in heavily 226 

contaminated sites, soil respiration increased substantially compared to the corresponding low contaminated soils. 227 

Respiration has been linked as a process and microbial biomass as a pool to metabolic quotient for CO2 (qCO2) 228 

by Anderson and Domsch (1986). Thus, it is widely accepted that a high qCO2 is a surprisingly common 229 

characteristic of soil microbial biomass in chronically contaminated soils (Flieβbach et al., 1994). This has been 230 

suggested to be a useful indicator of oxidative stress in soils (Brookes, 1993; Mooshammer et al., 2017). In 231 

addition, Gunina et al. (2017) reported that an increased qCO2 indicates stress to the soil microbial community.   232 

In this study, N-PAHs (B[h]Q amendment) recorded low mineralisation at 1 d; this is an evidence of reduced 233 

microbial substrate utilization efficiency under chemical stress. Hattori (1992) and Molaei et al. (2017) 234 

documented that initial microbial respiratory responses are the most sensitive in quantifying the impact of 235 

contaminants following their introduction into soil. However, the consistent increase in B[h]Q mineralisation after 236 

30 d could be attributed to oxidative stress and/or chemical bioavailability, due to its lower Kow (Anyanwu and 237 

Semple, 2015b, 2016a); since the total concentration did not exceed that of other amended soils.  238 

A decline in mineralisation (%) was observed over time. The notable decline may be as a result of chemical 239 

sequestration (into soil organic matter) there by rendering the contaminants less available to microorganisms 240 

(Semple et al., 2007), microbial degradation (Anyanwu and Semple, 2015b; 2016a) and/or adaptation to toxicity 241 

(Granato et al., 2017; Anyanwu and Semple, 2017b). Organic contaminants are known to be retained within the 242 

soil through chemical or physical sequestration processes, such as binding, sorption to clay and/or soil organic 243 

matter as well as occlusion within the 3-dimensional structure of the soil (Semple et al., 2007). Furthermore, 244 

factors which include, soil organic matter content and physico-chemical properties of the chemical (aqueous 245 

solubility, polarity, hydrophobicity, molecular structure, Kow, and lipophilicity) are known to control the fate and 246 

behaviour of organic contaminants (N-PAHs) in soil (Anyanwu and Semple, 2015b; 2017b; Zhu et al., 2017; 247 

Doley et al., 2017). 248 

 249 

4.2 Uptake of 14C-glucose into soil microbial biomass 250 

The study revealed that microbial uptake in the chemically amended soils did, however, show reduced substrate 251 

utilization. Thus, the amount of glucose incorporated was lower in amended soils. Studies have shown that 252 
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microorganisms subjected to stress exhibit a higher ratio of respired-C to biomass-incorporated-C; indicating a 253 

reduced microbial substrate utilization efficiency under chemical stress and a change in community structure 254 

following substrate addition (Bargett and Saggar, 1994; Witter and Dahlin, 1995; Frostegård et al., 1996; Knight 255 

et al., 1997; Boucard et al., 2008; Gunina et al., 2017). Killham (1985) recorded that increasing stress often causes 256 

a reduction in soil respiration, soil dehydrogenase activity and an increase in the ratio of respired-C to biomass 257 

incorporated-C. Furthermore, the decreased biomass uptake observed with N-PAHs (B[h]Q) over time may be 258 

attributed to microbial toxicity and/or oxidative stress as shown by the consistent increase in BQ to >1. (It should 259 

be noted that BQ values >1 signifies oxidative stress to microbial community). McGrath et al. (1995) observed 260 

that long-term exposure results in decreased soil microbial biomass. In this study, it may be because 261 

microorganisms differ in their sensitivity to chemicals and prolonged N-PAHs exposure may have increased the 262 

mortality of cells due to disturbance in the normal functioning, and/or gradually changed the community sizes due 263 

to alterations in viability or competence (Van Beelen and Doelman, 1997; Giller et al., 1998; Anyanwu and 264 

Semple 2016a; Molaei et al., 2017; Siles and Margesin, 2017).  265 

 Biomass uptake varied significantly over time; and the variations among chemicals were observed to be 266 

consistent. This confirms the findings of Chander and Brookes (1991); Bardgett and Sagger (1994); Boucard et 267 

al. (2008). Despite the variations, however, it could be concluded that soil microorganisms subjected to long term 268 

N-PAH exposure, may not be able to maintain the same overall biomass as in un-contaminated soil. 269 

 270 

4.3 Impact of phenanthrene and its nitrogen-containing analogues on the kEC coefficient 271 

The KEC coefficient is related to the extractability from the soil of the microbial-C after it has been released from 272 

dead fumigated cells. The kEC coefficient, which is used to convert the C-flush of oxidizable organic-C to 273 

microbial-C, allows for the incomplete release and extraction of microbial-C, and was obtained by calibrating 274 

against alternative methods to estimate the microbial-C (Sparling et al., 1990).  275 

Variation in kEC coefficients (fixed and variable) was observed. The observed variations in kEC coefficients after 276 

fumigation are consistent with the findings in water content (Sparling and West, 1989; Ross, 1990 b) and sheep 277 

dip formulation (Boucard et al., 2008). The cause is not known, however, difference in chemical amendments 278 

may be attributable. This portrays the impact of contaminants on soil microbial uptake and further showed that 279 

the fixed kEC coefficient (0.35), fails to consider the impact of contaminated sites on soil microorganism; thus 280 



12 
 

overestimating (and/or underestimating) the biomass uptakes in contaminated soils (if the biomass uptakes 281 

calculated with the variable kEC values are considered to be more accurate). In addition, the calculated kEC 282 

coefficient showed that PAH and N-PAH contaminants can greatly affect the amount of substrate-C extracted by 283 

0.5 M K2SO4 after fumigation. 284 

In this present study, it could be that: (1) N-PAHs may have impacted the kEC coefficients by influencing the 285 

factors that modify the toxicity of contaminants in soil; such as, physico-chemical properties and/or the 286 

physiological state of the microbes (Boucard et al., 2008; Siles and Margesin, 2017); or (2) The impact of N-287 

PAHs may have resulted in a possible reduction in the efficiency of chloroform disintegration of the microbial 288 

cell membrane (lysis) or interference with the K2SO4 extraction (Sparling et al., 1990; Joergensen et al., 1995; 289 

Badalocco et al., 1997; Boucard et al., 2008). However, N-PAHs bioavailability and/or differences in microbial 290 

community structure between soils that vary in their sensitivity to chemical toxicity (Butler et al., 2011), could be 291 

an important factor in explaining the variability in kEC coefficients.  292 

 293 

5. Conclusions 294 

In this current study, the presence of N-PAHs resulted in alterations to soil microbial activity and functions. It 295 

could be that the increased energy requirement for repair and maintenance probably was the main reason for the 296 

increased respiration, but synergistic process cannot be neglected. However, the study was unable to ascertain if 297 

the biomass uptakes in the chemically amended soils were characterized by either a low substrate utilization 298 

efficiency or death rate; if stress increased the burden of the microbial community. Nevertheless, B[h]Q, may 299 

have persistent deleterious impacts on soil microorganisms. From an ecotoxicity perspective, future investigations 300 

should consider the impact of these contaminants on changes in the soil microbial community structure. Further 301 

studies could also investigate the development of bacterial and fungal degrading populations within the microbial 302 

community which may be able to exploit the C and N for their metabolic needs. 303 
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Table 1. Extractability (%) of phenanthrene and its N-PAHs from soil over time  444 

Chemical 

Initial 

chemical conc 

(mg/kg) 

Mean chemicals extracted (mg/kg) 

Time (d) 

0 30 60 90 

Phen 100 78.00± 8.00 42.10±5.70 11.30 ± 3.10 3.10 ± 0.30 

1,7-Phen 100 59.30± 9.00 54.40±12.50 49.60 ± 4.00 38.00 ±8.00 

B[h]Q 100 59.20± 9.00 89.40 ± 7.00 64.10 ± 6.00 58.70 ± 4.20 

4,7-Phen 100 91.90 ± 4.20 41.70 ± 6.40 29.30 ± 4.00 29.60 ± 3.90 

Source: Anyanwu and Semple (2015b).  445 
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Table 2. Distribution of 14C-glucose in soils amended with 100 mg/kg single and binary mixtures of phenanthrene and its N-PAH analogues after 5 d 

Chemical 
Time 

(d) 

Fastest rates 

(% h-1) 

Respired 
14CO2 (%) 

C–flusha 
Biomass uptakeb 

(fixed kEC = 0.35) 

Biophysical 

quotient c 

Biomass uptaked 

(variable kEC) 

Biophysical 

quotiente 

Calculated 

kEC
f 

Control 

1 0.46 ± 0.08 42.62 ± 2.20 2.59 ± 0.33 7.41 ± 0.94** 5.75 ± 2.32* 53.42 ± 6.81** 0.79 ± 0.32 0.048 ± 0.00 

30 0.25 ± 0.01 35.07 ± 0.45* 3.63 ± 0.57 10.36 ± 1.63** 3.38 ± 0.27 54.02 ± 8.52** 0.64 ± 0.05 0.067 ± 0.01 

60 0.18 ± 0.03 31.07 ± 2.00* 1.07 ± 0.31 3.06 ± 0.87** 10.15 ± 2.28 63.45 ± 18.1** 0.48 ± 0.11 0.016 ± 0.00 

90 0.18 ± 0.00 28.42 ± 1.26* 6.97 ± 1.28 19.92 ± 3.65** 1.42 ± 0.34 46.67 ± 8.55** 0.60 ± 0.14 0.149 ± 0.02 

 

1,10-Phen 

1 0.43 ± 0.02 38.81 ± 2.84 1.49 ± 0.27 4.24 ± 0.77** 9.14 ± 0.00* 58.91 ± 10.78** 0.65 ± 0.26 0.025 ± 0.00 

30 0.29 ± 0.02 36.98 ± 0.81* 2.96 ± 0.02 8.46 ± 0.06** 4.72 ± 0.03 51.90 ± 0.39** 0.71± 2.02 0.057 ± 0.00 

60 0.23 ± 0.03 31.83 ± 1.55* 0.77 ± 0.36 2.21 ± 1.04** 14.42 ± 0.00 61.00 ± 23.82** 0.52 ± 0.05 0.012 ± 0.00 

90 0.15 ± 0.03 23.13 ± 1.70* 2.35 ± 0.04 6.72 ± 0.10** 3.44 ± 0.08 56.01 ± 0.85** 0.41 ± 1.98 0.04 2 ± 0.00 

1,7-Phen 

1 0.43 ± 0.02 41.77 ± 1.99 2.27 ± 0.08 6.49 ± 0.22** 6.43 ± 0.01* 54.21± 1.87** 0.76 ± 1.06 0.041 ± 0.00 

30 0.30± 0.03 36.90 ± 1.27* 2.82 ± 0.32 8.05 ± 0.90** 4.58 ± 0.00 51.35 ± 5.79** 0.71 ± 0.21 0.054 ± 0.00 

60 0.21 ± 0.02 36.83 ± 2.06* 1.67 ± 0.74 4.77 ± 2.11** 7.72 ± 0.00 53.72 ± 23.83** 0.68 ± 0.08 0.031 ± 0.01 

90 0.50 ± 0.07 34.74 ± 2.43* 5.28 ± 1.22 15.08 ± 3.47** 2.30 ± 0.00 37.49 ± 8.63** 0.92 ± 0.28 0.140 ± 0.03 

4,7-Phen 

1 0.26 ± 0.03 33.51 ± 2.93 0.31 ± 0.06 0.90 ± 0.16** 37.24 ± 0.03* 62.45 ± 11.22** 0.53 ± 0.26 0.005 ± 0.00 

30 0.22 ± 0.03 35.31 ± 1.78* 3.03 ± 0.44 8.65 ± 1.25** 4.08 ± 0.00 56.11 ± 8.16** 0.62 ± 0.21 0.053 ± 0.01 

60 0.20 ± 0.00 33.57 ± 0.27* 1.27 ± 0.16 3.64 ± 0.44** 9.22 ± 0.00 57.71 ± 7.10** 0.58 ± 0.03 0.022 ± 0.00 

90 0.17 ± 0.04 27.31 ± 2.35* 2.21 ± 0.62 6.31 ± 1.77** 4.32 ± 0.00 39.41 ± 11.08** 0.69 ± 0.21 0.056 ± 0.01 

B[h]Q 

1 0.37 ± 0.05 39.61 ± 1.83 0.53 ± 0.09 1.52 ± 0.25** 26.01 ± 0.01* 56.72 ± 9.43** 0.69 ± 0.19 0.009 ± 0.00 

30 0.28 ± 0.03 42.52 ± 2.73* 3.06 ± 0.61 8.75 ±  1.72** 4.85 ± 0.00 46.12 ± 9.11** 0.92 ± 0.29 0.066 ± 0.01 

60 0.34 ± 0.05 44.62 ± 2.30* 1.13 ± 0.47 3.22 ± 1.33** 13.86 ± 0.00 41.51 ± 17.26** 1.07 ± 0.13 0.027 ± 0.01 

90 0.70 ± 0.05 37.01 ± 2.25* 2.50 ± 0.23 7.16 ± 0.65** 5.17 ± 0.01 34.03 ± 3.11** 1.08 ± 0.72 0.073 ± 0.00 

Phen 

1 0.35 ± 0.02 36.42 ±1.21 0.23 ± 0.00 0.66 ± 0.13** 54.76 ± 0.17* 60.99 ± 1.27** 0.59 ± 0.95 0.003 ± 0.00 

30 0.27 ± 0.01 37.17 ± 0.92* 3.32 ± 0.18 9.48 ± 0.51** 3.91 ± 0.00 42.74 ± 2.31** 0.86 ± 0.39 0.077 ± 0.00 

60 0.23 ± 0.01 32.01 ± 2.47* 1.39 ± 1.03 3.96 ± 2.94** 8.07 ± 0.00 58.41 ± 43.33** 0.54 ± 0.05 0.023 ± 0.01 

90 0.19 ± 0.01 26.78 ± 0.21* 2.19 ± 0.35 6.27 ± 1.00** 4.27 ± 0.00 51.48 ± 8.24** 0.52 ± 0.02 0.042 ± 0.00 

1,10-

Phen+Phen 

1 0.41 ± 0.07 41.82 ± 3.49 0.64 ± 0.08 1.82 ± 0.21** 22.02 ± 0.03* 50.59 ± 6.09** 0.82 ± 0.57 0.012 ± 0.00 

30 0.26 ± 0.04 36.20 ± 2.80* 1.53 ± 0.56 4.39 ± 1.58** 8.25 ± 0.00 55.02 ± 19.92** 0.65 ± 0.14 0.027 ± 0.01 
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60 0.25 ± 0.02 36.33 ± 1.44* 1.13 ± 1.16 3.73 ± 3.31** 9.74 ± 0.00 53.70 ± 47.77** 0.67 ± 0.03 0.024 ± 0.02 

90 0.15 ± 0.03 23.87 ± 0.87* 2.47 ± 0.42 7.05 ± 1.20** 3.38 ± 0.00 50.07 ± 8.55** 0.47 ± 0.10 0.049 ± 0.00 

1,7-

Phen+Phen 

1 0.44 ± 0.10 42.72 ± 2.11 0.77 ± 0.11 2.19 ± 0.31** 19.51 ± 0.01* 55.99 ± 8.12** 0.79 ± 0.25 0.013 ± 0.00 

30 0.26 ± 0.04 38.02 ± 1.10* 2.56 ± 0.18 7.32 ± 0.51** 5.19 ± 0.00 52.74 ± 3.70** 0.72 ± 0.29 0.048 ± 0.00 

60 0.25 ± 0.03 36.41 ± 2.38* 1.44 ± 0.61 4.10 ± 1.74** 8.87 ± 0.00 53.44 ± 22.77** 0.68 ± 0.10 0.026 ± 0.01 

90 0.40 ± 0.04 31.99 ± 2.22* 2.50 ± 0.12 7.16 ± 0.33** 4.47 ± 0.03 41.45 ± 1.93** 0.77 ± 1.14 0.060 ± 0.00 

4,7-

Phen+Phen 

1 0.53 ± 0.02 44.20 ± 0.72 0.52 ± 0.08 1.47 ± 0.23** 29.98 ± 0.00* 59.37 ± 9.45** 0.74 ± 0.07 0.008 ± 0.00 

30 0.27 ± 0.01 39.88 ± 1.00* 3.30 ± 0.28 9.44 ± 0.79** 4.22 ± 0.00 53.39 ± 4.49** 0.74 ± 0.22 0.061 ± 0.00 

60 0.21 ± 0.03 35.89 ± 1.93* 1.89 ± 1.19 5.41 ± 3.39** 6.63 ± 0.00 57.95 ± 36.37** 0.61 ± 0.05 0.032 ± 0.02 

90 0.28 ± 0.05 31.21 ± 1.62* 3.02 ± 0.61 8.63  ± 1.73** 3.61 ± 0.00 52.73 ± 10.57** 0.59 ± 0.15 0.057 ± 0.01 

BhQ+Phen 

1 0.43 ± 0.04 43.89 ± 1.91 0.39 ± 0.04 1.12 ± 0.11** 39.21 ± 0.03* 54.64 ± 5.66** 0.80 ± 0.33 0.007 ± 0.00 

30 0.31 ± 0.04 42.91 ± 1.73* 2.38 ± 0.22 6.79 ± 0.61** 6.31 ± 0.00 49.32 ± 4.48** 0.86 ± 0.38 0.048 ± 0.00 

60 0.37 ± 0.03 43.00 ± 2.00* 2.42 ± 0.14 6.92 ± 0.39** 6.21 ± 0.01 50.66 ± 2.92** 0.84 ± 0.68 0.047 ± 0.00 

90 0.34 ± 0.05 32.63 ± 2.34* 3.48 ± 0.43 9.93 ± 1.22** 3.28 ± 0.00 44.93 ± 5.55** 0.72 ± 0.24 0.077 ± 0.00 
 

a C-flush = 14C-activity in fumigated soil–14C- activity in un-fumigated soil 

b 14C-microbial biomass = 14C-flush/fixed kEC 0.35 

c BQ = 14C respired/14C in biomass (using fixed kEC 0.35) 

d 14C-microbial biomass = 14C-flush/variable kEC 

e BQ = 14C respired/14C in biomass (using variable kEC)  

f kEC = (14C-flush)/(initial 14C-activity added–14C respired–14Cactivity in un-fumigated soil) 

Conc = 100 mg/kg 

n = 3 

* = p<0.05 

** = p<0.001 
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Fig. 1. Microbial mineralisation of 14C-glucose in soils amended with phenanthrene and its N-PAH analogues 

(single amendments). The 1–90 d incubation graphs shows: control (●), 1,10-Phen (○), 1,7-Phen (▼), 4,7-Phen 

(Δ), B[h]Q (■) and Phen (□). Conc = 100 mg/kg. 
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Fig. 2. Microbial mineralisation of 14C-glucose in soils amended with phenanthrene and its N-PAH analogues 

(binary mixtures). The 1–90 d incubation graphs shows: control (●), 1,10-Phen + Phen (○), 1,7-Phen + Phen (▼), 

4,7-Phen + Phen (Δ) and B[h]Q + Phen (■). Conc = 100 mg/kg. 

 

 


